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h i g h l i g h t s

• We improve the solution of symmetric Toeplitz linear systems in multicore systems.
• We transform the Toeplitz matrix into a Cauchy-like one to obtain some benefits.
• The problem is partitioned into two half-sized independent problems.
• We use partial local pivoting to improve the accuracy of the solution.
• We propose a special scheme to store data in memory that accelerates the algorithm.
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a b s t r a c t

Toeplitzmatrices are characterized by a special structure that can be exploited in order to obtain fast linear
system solvers. These solvers are difficult to parallelize due to their low computational cost and their
closely coupled data operations. We propose to transform the Toeplitz system matrix into a Cauchy-like
matrix since the latter can be divided into two independent matrices of half the size of the systemmatrix
and each one of these smaller arising matrices can be factorized efficiently in multicore computers. We
use OpenMP and store data in memory by blocks in consecutive positions yielding a simple and efficient
algorithm. In addition, by exploiting the fact that diagonal pivoting does not destroy the special structure
of Cauchy-like matrices, we introduce a local diagonal pivoting technique which improves the accuracy
of the solution and the stability of the algorithm.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The linear system of equations that we work with in this paper
is defined as
Tx = b, (1)
where T ∈ Rn×n is a real symmetric Toeplitz matrix, and b, x ∈ Rn

are the independent right-hand side and the solution vectors, re-
spectively. The elements of a symmetric Toeplitz matrix are Ti,j =
t|i−j|, with tT =

�
t0 t1 . . . tn−1

�T .
Toeplitz matrices appear in many areas of science and engi-

neering. Signal Processing is one of these fields where Toeplitz
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matrices can be found in topics like filtering, linear prediction, etc.
Signal processing interpretations of Toeplitzmatrices can be found,
e.g., in [28,22,30]. In particular, Toeplitz matrices appear in the
solution of inverse filtering problems and equalization of multi-
channel acoustic systems where matrices can be very large, ac-
cording to the filter length [16,17]. In some cases, the number of
filters are also large, proportional to the number of sources (loud-
speakers) like it is the case in [26,8], where 96 loudspeakers are
used to position a sound signal in a 3D space of a room. The least
squares problems which arise in that problems conduce to the so-
lution of linear systems with Toeplitz matrices, sometimes non-
symmetric or symmetric indefinite. Efficient solvers, other than the
traditional Levinson-type ones [18], represent a good alternative
for these cases.

Many (fast) algorithms that exploit the special structure of
Toeplitz matrices have been developed over recent years [23].
These algorithms reduce the O(n3) flops required to solve a dense
linear system by at least one order of magnitude lower if any
type of structure is taken into account. In general, fast algorithms
can be classified into Levinson-type algorithms (which perform an

http://dx.doi.org/10.1016/j.jpdc.2014.02.003
0743-7315/© 2014 Elsevier Inc. All rights reserved.
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implicit computation of the inverse of the system matrix), and
Schur-type algorithms (which perform a factorization of the sys-
tem matrix) [15]. Levinson-type algorithms have a memory com-
plexity of O(n) data, but they are very rich in dot products with
closely coupled operations. Therefore, a good speed-up in a par-
allel implementation is difficult to achieve. Schur-type algorithms
usually need O(n2) data in memory and are easier to parallelize;
however, they also have closely coupled operations [1].

Fast (O(n2)) and superfast (O(n log2 n)) algorithms can be un-
stable or might return inaccurate solutions for indefinite Toeplitz
matrices [10]. The work in [14] proposed moving the symmetric
Toeplitz matrix to a symmetric Cauchy-likematrix to solve the lin-
ear system. This translation allows pivoting techniques to be in-
corporated in the algorithms since pivoting does not destroy the
structure of Cauchy-like matrices, which is contrary to what hap-
pens with Toeplitz matrices.

The idea of using Cauchy-likematrices has also been used to de-
velop parallel algorithms. The Cauchy-like matrix obtained in this
way has great sparsity that can be exploited to reduce the linear
system to two smaller independent linear systems of half the size
of the original one, reducing both time and memory to solve the
problem. For example, this was used in [33] to propose a shared
memory algorithm. It was also used in [9] leading to a multilevel
parallel MPI-OpenMP algorithm. In that paper, the Toeplitz matrix
was transformed into a Cauchy-like matrix and split into two in-
dependent matrices, each one assigned to an MPI process which
could be mapped onto different nodes in a network, or onto the
same node thus fixing the problem of the lack of compilers that
support OpenMPnested parallelism. Then, each one of thesematri-
ces arising from the former partition were factorized concurrently
to obtain their LDLT decomposition, but the scalability of this last
factorization step was poor for many cores due to the low mem-
ory–CPU throughput of the algorithm. Different out of order strate-
gies consisting of producer–consumer task queues implemented
with pthreadswere studied in [4] to improve the speed-up of the
algorithm. However, it was shown that the sequential order in the
computation of the blocks in which the triangular matrix is parti-
tioned is as fast as othermore complicated out of order approaches.

In this paper, we use a similar approach based on the trans-
formation of linear system (1) into a Cauchy-like linear system.
The algorithm applied to factorize Cauchy-like matrices makes
use of very regular memory access patterns allowing independent
blocks of the resulting triangular factor to be computed concur-
rently. Block versions of O(n3) algorithms have traditionally been
developed to exploit the hierarchical memory levels. In the case of
multicore computers, one step beyond this has been proposed to
improve results. This step consists of storing all the data belong-
ing to the same block in consecutive memory locations. It was
initially proposed and investigated in [19–21] where the layout is
referred to as Square Block Format. This technique has been success-
fully applied to level 3 algorithms of BLAS in [11]where the storage
format is called Block Data Layout (BDL). Based on a hierarchical or-
ganization of the data by blocks, new ideas have been proposed as
alternatives to the current implementation of LAPACK in different
ways [12,34]. A recent contribution has been proposed, in partic-
ular, for a similar problem: the LDLT decomposition of symmetric
indefinite dense matrices [6]. In order to improve the efficiency of
the parallel triangularization of each one of the two submatrices,
we propose using the BDL storage format. The derived algorithm is
also easy to implement since it is based on simple OpenMP direc-
tives instead of complicated task queues of pthreads.

In order to improve accuracy of the solution of symmetric lin-
ear systems by matrix decomposition diagonal pivoting (Bunch–
Kaufman) is used. In parallel execution pivoting can reduce
performance due to the data interchanging. Some variants of di-
agonal pivoting have been proposed for the factorization of sym-
metric indefinite matrices that improve performance, thanks to a

reduction in the number of matrix column interchanges. This
proposition can be found, e.g., in [31], where it is proposed and
studied an algorithm variant supported on lookahead-type tech-
niques. Also, for Toeplitz matrices, lookahead techniques have
widely studied with the aim at improving accuracy, further to en-
sure stability of Levinson- and Schur-type algorithms which can
even break down for well-conditionedmatrices [13,7]. But, in gen-
eral, look-ahead algorithms for Toeplitz matrices are based on
heuristics with variable results (depend on the given matrix) and
they are difficult to apply in concurrent environments where we
try to keep the sough-after performance of the multicore system.
Thus, our option consists of using local diagonal pivoting in the
algorithm. Although diagonal and local pivoting has limitations
compared with full or partial pivoting, we show through some ex-
amples that the precision of the solution might be improved. Since
symmetric Cauchy-likematrices are not destroyed by diagonal piv-
oting and pivoting is bound to diagonal blocks (local pivoting), the
execution time is barely affected.

The next section presents an abridged mathematical descrip-
tion of the problem and shows the overall algorithm. Details about
the implementation of the proposed algorithm can be found in
Section 3. The block pivoting technique incorporated to the algo-
rithm is described in Section 4. Experimental results are shown in
Section 5. Some conclusions are presented in Section 6.

2. Mathematical background

The solution of system (1) can be carried out by solving the lin-
ear system

C x̃ = b̃, (2)

where C ∈ Rn×n is known as a Cauchy-like matrix, and b̃, x̃ ∈ Rn.
Matrix C = [aij] is called Cauchy-like (also generalized Cauchy) if for
certain n-tuples of complex numbers c = (ci)n−1

0 and d = (di)n−1
0

the matrix
∇(c, d)C =

�
(ci − dj)aij

�n−1
0 ,

has a rank r which is ‘‘small’’ compared with the order of C . In this
paper we deal with real symmetric Cauchy-like matrices, i.e., the
n-tuples are real and c = d [23]. The normalized Discrete Sine
Transformation (DST), represented bymeans of the symmetric and
orthogonal matrix S as defined in [25], allows system (1) to be
transformed into system (2) by performing C = STS, x̃ = Sx,
b̃ = Sb. Matrices T and C both belong to the class of structured ma-
trices [24]. Structuredmatrices are characterized by having a ‘‘low’’
displacement rank r (r � n), which briefly means that information
contained in the full matrix is implicitly contained in only n-size r
vectors. This property can be exploited to derive O(n2) algorithms
for their triangular factorization. In the case of Cauchy-like matrix
C (2), the displacement rank r is 4.

Working in the Cauchy-like domain has an additional advantage
since entries cij such that i + j is odd are 0. Let P ∈ Rn×n be the
odd–even permutation that positions the odd entries of an array
to the top and the even entries to the bottom, then the linear
system (2) can be divided into the two independent linear systems
Cix̂i = b̂i, for i = 1, 2, with C1 ∈ Rn1×n1 and C2 ∈ Rn2×n2 , since

PCPT =
�
C1

C2

�
, Px̃ =

�
x̂1
x̂2

�
and Pb̃ =

�
b̂1
b̂2

�
, (3)

where n1 = �n/2� and n2 = �n/2�.
Matrices C1 and C2 are also Cauchy-like (though they do not have

zero entries as C) and have a displacement rank of 2, i.e.,
�
Λ1

Λ2

� �
C1

C2

�
−

�
C1

C2

� �
Λ1

Λ2

�

=
�
G1
G2

�
J
�
GT
1 GT

2

�T (4)
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Algorithm 1 Algorithm for the solution of symmetric Toeplitz
linear systems.
Require: Toeplitz vector t of size n and independent vector b.
1: Compute the 8 generator vectors, 4 per each block matrix C1 and C2.
2: Transform b into b̂1 and b̂2.
3: Compute the LDLT decomposition of C1 and C2 using Algorithm 2.
4: Solve the two triangular systems for each Cauchy-likematrix Ci , i = 1, 2.
5: Transform x̂1 and x̂2 into x.

where G1 ∈ Rn1×2 and G2 ∈ Rn2×2, which are called generators,
are computed as

�
GT
1 GT

2

�T =
√
2PS(u e1), being u =

(0 t2 t3 · · · tn−2 tn−1 0)Tand e1 the first column of the
identity matrix of order n. Signature matrix J has the form

J =





1
−1

1
−1



 .

Let F ∈ Rn×n be the matrix with Fij = 1 if |i − j| = 1 and
0 otherwise, then displacement matrices Λ1 ∈ Rn1×n1 and Λ2 ∈
Rn2×n2 are computed as

�
Λ1 ⊕ Λ2

�
= PSFSP .

The algorithm for the solution of the symmetric Toeplitz linear
system (1) (Algorithm 1) starts with the computation of a total
of 8 vectors, 4 for each submatrix Ci, i = 1, 2. Those are the
two columns of Gi (g1 and g2), the diagonal of Λi (λ) and the
diagonal of Ci (c), for i = 1, 2. For the sake of convenience,
we denote all of them by generator vectors or simply generators.
Next, the triangular factorization of matrices Ci is carried out. The
algorithmused to perform the triangular factorization LDLT of each
one of submatrices Ci, with L unit lower triangular and D diagonal,
works on the entries of these 4 generators (Algorithm 2). For the
factorization of a matrix of order m, the cost of this algorithm
is 13

2 m2 − 39
2 m. In step 4, Algorithm 1 computes the solution of

two triangular systems with the matrices obtained in the previous
step, counting for n2

4 flops. A more detailed description of the
backgrounds of the computations of all of these operations can be
found in [9].

Algorithm2Algorithm for the LDLT decomposition of aCauchy-like
matrix of displacement rank 2.
Require: Generator vectors g1, g2, λ and c describing a Cauchy-like matrix of the

form Ci (3), for i = 1, 2.
1: for k = 0, . . . , n − 1 do
2: d = ck
3: Lkk = d
4: for i = k + 1, . . . , n − 1 do
5: l = (−g2ig1k + g1ig2k)/(d(λi − λk))
6: g1i = g1i − g1kl
7: g2i = g2i − g2kl
8: ci = ci − dl2
9: Lik = l
10: end for
11: end for

3. Implementation

Step 1 of Algorithm 1 is parallelized using OpenMP sections.
The diagonal c of Cauchy-like matrix C (2) is computed with a fast
algorithm that allows it to be obtained without explicitly forming
C . Vector λ has analytically known entries that just depend on
the size of the problem. Details of all of these operations can be
found in [9]. We used a Fortran 90 module to apply the DST [2]
which, based on the problem size, automatically chooses the best
routine between dfftpack [32] and Intel MKL [27]. A total of four
operations can be performed concurrently for the computation of
the generator vectors. Since step 2 is independent from step 1, it

Algorithm 3 Block Data Layout (BDL) Algorithm for the LDLT
decomposition of a Cauchy-like matrix of displacement rank 2.
Require: Generators vectors g1, g2, λ and c describing a Cauchy-like matrix of the

form Ci (3), for i = 1, 2.
1: for K = 0, . . . ,M − 1 do
2: Compute LDKK
3: for I = K + 1, . . . ,M − 1 do
4: Compute LDIK
5: end for
6: end for

Algorithm 4 Algorithm for the computation of a m × ν block of
the LDLT decomposition of a Cauchy-like matrix of displacement
rank 2.
Require: Arrays g1, g2, λ and c of sizem, and arrays ḡ1, ḡ2, λ̄ and d of size ν which

represent parts of generator G̃ and the diagonals of Λ̃ and C̃ of (6).
1: for k = 0, . . . , ν − 1 do
2: for i = 1, . . . ,m − 1 do
3: l = (−g2i ḡ1k + g1i ḡ2k)/(dk(λi − λ̄k))
4: g1i = g1i − ḡ1kl
5: g2i = g2i − ḡ2kl
6: ci = ci − dkl2
7: Lik = l
8: end for
9: end for

is also carried out in a different parallel section. Having computed
the first two steps of Algorithm 1, both triangular factorizations
are computed (step 3). Since they are completely independent, two
OpenMP sections are used. Actually, step 4 can also be performed
concurrently at this level of parallelism, so it is carried out in the
same section of its corresponding LDLT factorization. We denote
this splitting as first level of parallelism. Finally, step 5 of Algorithm
1 turns the solution obtained into the Toeplitz field by means
of (3).

The main contribution to the efficiency of the algorithm is the
parallelization of the LDLT factorization of each matrix Ci (3) that
we call second level of parallelism. Hence, we use OpenMP nested
parallelism to combine both levels of parallelism. It can be said
that, in general, it is difficult to achieve a good speed-up with
algorithms of cost O(n2) mainly due to both the irregular memory
access patterns that result inmany cachemisses and their intrinsic
low throughput per data accessed in memory. In order to improve
the efficiency of the Toeplitz solver, we rewrote Algorithm2 so that
it worked by blocks. Hence, we modified the code in Algorithm
2 to develop a BDL version, i.e., a blocked algorithm that uses the
BDL storage format to store factor L (Algorithm 3). Let LDLT be
the factorization of Ci, and let LD be a block-matrix with lower
triangular blocks on the diagonal and rectangular blocks below
diagonal, then Algorithm 3 lets to obtain matrix LD containing
the lower triangular factor L and the diagonal entries of D in
its diagonal stored in a BDL format. The algorithm works on the
M = �n/ν� blocks, for a given block size ν, in which matrix LD is
partitioned. The computation of the lower triangular blocks of the
diagonal in step 2, i.e. LDKK , is carried out bymeans of Algorithm 2.
Upon completion the computation of LDKK , all blocks in column K
down block LDKK , i.e. blocks LDIK , I > K , are computed (steps 3–5).
This computation is carried out efficiently thanks to Algorithm 4,
which is derived from Algorithm 2. To obtain block LDIK , I > K ,
of size m × ν, being m ≤ ν (blocks LD(M−1)K could have less rows
than ν), Algorithm 4 is called with the following arguments in the
same order they appear in the entry of the routine: g1(iI : jI),
g2(iI : jI), λ(iI : jI), c(iI : jI), g1(iK : jK ), g2(iK : jK ), λ(iK : jK ),
diag(LD(iK : jK )), where iI = Iν, jI = Iν + m − 1, iK = Kν and
jK = (K + 1)ν − 1.

The threaded algorithm corresponding to Algorithm 3 com-
putes each column of LD in the outer loop sequentially. On the
contrary, the square blocks of the column in the inner loop are
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Fig. 1. Example of 5 × 5 block-matrix LD flow layout of Algorithm 3.

computed concurrently by means of a parallel-for OpenMP primi-
tive. The dependency flow of tasks shown in Fig. 1 represents the
parallel implementation of the blocked algorithm, where each task
is denoted by the coordinates of LD block computed by the task.
All the blocks on the same column down the diagonal block are
computed in parallel after the computation of the diagonal block
in data-level parallelism. Task-level parallelism has also been ex-
plored in [4] without significant improvements for this algorithm.
Fig. 1 also shows the generator vectors (G) partitioned in rectangu-
lar blocks.

The BDL storing format has an additional advantage in memory
saving. Using Algorithm 2 to factorize C requires a space of n × n
entries to store L in column major order although only the lower
part would be referenced. On the contrary, the BDL storage scheme
only allocates memory for blocks in the lower triangular part of
the matrix. Although a small change in Algorithm 2 could allow to
save the factor in packed form, the low performance achieved by
the BLAS routine for the triangular system solution discourages the
use of this option.

4. Block diagonal pivoting

For the sake of simplicity we denote by C each of the twomatri-
ces Ci (3), i = 1, 2, in this section. A displacement representation
for matrix C can be

ΛC − CΛ = GHGT , (5)

where Λ is a diagonal matrix such that λi �= λj, ∀i, j. This
displacement equation is obtained by equating (4). Each member
of (5) has a rank of 2. Actually, a Cauchy-like matrix can be defined
as the symmetricmatrix C that keeps the rank of 2 of (5) for a given
matrix Λ. Matrix G denotes each one of the two generators Gi, i, =
1, 2, mentioned in Section 2. Matrix H is a 2 × 2 signature matrix.

Let P a permutation matrix (the identity matrix with any re-
ordering of its rows), then we perform the transformation P(·)PT

to (5) so

P(ΛC − CΛ)PT = (PΛPT )(PCPT ) − (PCPT )(PΛPT )

= Λ̃C̃ − C̃Λ̃T = (PG)H(PG)T = G̃HG̃T , (6)

given that P is orthogonal. It is easy to show that matrix Λ̃ is diag-
onal, i.e., matrix Λ with the diagonal entries reordered according
with P . In addition, the transformation used keeps the rank of 2 of
the equation. Thus, C̃ is a also Cauchy-like matrix like C . In other
words, it can be said that pivoting does not destroy the displace-
ment structure of Cauchy-like matrices.

The factorization of C with pivoting consists of obtaining the
LDLT of a modified version of C . This modified version is obtained

by applying a sequence of permutation matrices {Pk}n−1
k=0 such that

Pn−1 · · · P1P0CPT
0 P

T
1 · · · PT

n−1 = LDLT .

Each permutation Pk of the sequence is calculated so that the di-
agonal element ck, which is the first element of the diagonal of
the Schur complement of C regarding C0:k−1,0:k−1 (the Schur com-
plement if k = 0 is C), is interchanged with cj, being cj =
maxk≤m≤n−1 |cm|. This diagonal pivoting is the same to that named
symmetric pivoting in [15] providing the algorithm with the same
stability properties and limitations. Algorithm2 can be easilymod-
ified to incorporate pivoting at it is shown in Algorithm 5; in
fact, only the addition of steps 2 and 3 in the latter makes them
different.

Algorithm5Algorithm for the LDLT decomposition of aCauchy-like
matrix of displacement rank 2 with pivoting.
Require: Columns g1 and g2 of G̃, arrays λ and c containing the diagonal of Λ̃ and

C̃ (6), respectively.
1: for k = 0, . . . , n − 1 do
2: Search for j so that cj = max

k≤m≤n−1
|cm|.

3: Swap the pairs (ck, cj), (g1k, g1j), (g2k, g2j), (λk, λj), (Lk,0:k−1, Lm,0:k−1)
4: d = ck
5: Lkk = d
6: for i = k + 1, . . . , n − 1 do
7: l = (−g2ig1k + g1ig2k)/(d(λi − λk))
8: g1i = g1i − g1kl
9: g2i = g2i − g2kl
10: ci = ci − dl2
11: Lik = l
12: end for
13: end for

In order to keep tasks independent so that they can be com-
puted concurrently by separate cores, we propose to perform local
pivoting. With local pivoting, the pivoting is limited to the compu-
tation of each diagonal block keeping the swaps local to the actual
diagonal block not affecting the rest of the blocks. Lets see how the
local block pivoting algorithm works with a simple example on a
2 × 2 blocks matrix.

Suppose that we make a 2 × 2 block partition of C and let
P = P1 ⊕ P2 be a diagonal block permutation matrix, the block
diagonal pivoting algorithm obtains the following block triangular
decomposition

PCPT =
�
P1

P2

� �
C1 CT

3
C3 C2

� �
PT
1

PT
2

�

=
�
L1
L3 L2

� �
D1

D2

� �
LT1 LT3

LT2

�

, (7)

where L1, L2 are unit lower triangular, L3 is rectangular and D1,D2
are diagonal.

The algorithm starts by computing P1C1PT
1 = L1D1LT1 by means

of Algorithm5,which also returns the permutationmatrix P1. After
this step we have
�
P1

I

� �
C1 CT

3
C3 C2

� �
PT
1

I

�
=

�
L1D1LT1 P1CT

3
C3PT

1 C2

�
. (8)

Now, the algorithm computes a rectangular factor M such that
C3PT

1 = MD1LT1 . The computation of this factor is carried out by
means of Algorithm 4 as explained in Section 3. Using factorM we
have that expression (8) is equal to
�
L1D1LT1 L1D1MT

MD1LT1 MD1MT + C̃2

�
=

�
L1
M

�
D1

�
LT1 MT � +

�
0 0
0 C̃2

�
. (9)

Matrix C̃2 is the Schur complement of matrix (8) regarding block
P1C1PT

1 , i.e., C̃2 = C2 − MD1MT . This Schur complement is not
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explicitly formed, it is implicitly known by means of its generators
which are also returned by Algorithm 4 when computesM .

The algorithm continues by computing P2C̃2PT
2 = L2D2LT2

through Algorithm 5. Lets see the form of the second term in (9)
when permutation P2 is applied,
�
I

P2

� �
L1D1LT1 L1D1MT

MD1LT1 MD1MT + C̃2

� �
I

PT
2

�

=
�

L1D1LT1 L1D1MTPT
2

P2MD1LT1 P2MD1MTPT
2 + P2C̃2PT

2

�
.

This matrix can also be expressed as
�

L1
P2M L2

� �
D1

D2

� �
LT1 MTPT

2
LT2

�
,

showing the decomposition (7), where P2M = L3. The product
P2M is not explicitly formed since, as will be shown later, it can
be avoided in later stages, as we are interested in solving the linear
system. Extending this reasoning to partitions with more than two
blocks can be derived easily.

We continuewith the same 2×2 blockmatrix example to show
the solution of the Cauchy-like system Cx = b when pivoting is
used, i.e.,

PCPT Px = Pb, (10)

where P defined in (7). System (10) is equivalent to
�

L1
P2M L2

� �
D1

D2

� �
LT1 MTPT

2
LT2

� �
P1x1
P2x2

�
=

�
P1b1
P2b2

�
. (11)

Then, the solution to system (10) is obtained by solving
�

L1
P2M L2

� �
y1
y2

�
=

�
P1b1
P2b2

�
, (12)

where
�
y1
y2

�
=

�
D1

D2

� �
LT1 MTPT

2
LT2

� �
P1x1
P2x2

�
,

and this is performed by solving, first, the lower triangular system
L1y1 = P1b1 to obtain y1 and, second, solving

P2My1 + L2y2 = P2b2 → L2y2 = P2b2 − P2My1
→ L2y2 = P2(b2 − My1),

to obtain y2.
Having the solution to the lower triangular system (12), the

solution to (10) continues by solving
�
D1

D2

� �
z1
z2

�
=

�
y1
y2

�
,

where
�
z1
z2

�
=

�
LT1 MTPT

2
LT2

� �
P1x1
P2x2

�
, (13)

by solving D1z1 = y1 and D2z2 = y2.
The solution of (13) is performed similarly to the solution

of (12). Let
�

w1
w2

�
=

�
P1x1
P2x2

�
,

thenwe solve LT2w2 = z2 to obtainw2 and x2 = PT
2 w2. Now, looking

the upper equation of (13), LT1w1 + MTPT
2 w2 = z1, we see that

w1 can be obtained by solving LT1w1 = z1 − MTx2 and, therefore,
x1 = PTw1. Algorithm 6 summarizes the described process for the
solution of the triangular system for the general case of more than
2 blocks. Diagonal of matrices in lines 6 and 15 is implicitly 1 so

Algorithm6Algorithm for the solution of a system LDLT x = bwith
the form (11).
Require: Matrix LD returned by Algorithm 3, a set of permutation matrices PI and

a right hand side vector b partitioned in N blocks bI , where I = 0, . . . ,N − 1.
{Unit lower triangular system }

1: for J = 0 toM − 1 do
2: for I = 0 to J − 1 do
3: bJ ← bJ−LDJI yI
4: end for
5: bJ ← PJ bJ
6: Solve LDJJ yJ = bJ
7: end for

{Diagonal system }
8: for J = 0, . . . ,M − 1 do
9: zJ = yJ/diag(LDJJ )
10: end for

{Unit upper triangular system }
11: for J = N − 1 downto 0 do
12: for I = N − 1 downto J + 1 do
13: zJ ← zJ−LDT

JI xI
14: end for
15: Solve LDT

JJwJ = zJ
16: xJ = PT

J wJ
17: end for

Fig. 2. Time of system solution (Algorithm 1) regarding block size (n = 20 000).

it is not referenced. These triangular system solutions are carried
out by the BLAS routine dtrsv. The matrix–vector products are
carried out with routine dgemv. The division in line 9 is a point-
wise division between pair-wise arrays elements.

With this example we have shown that permutation P only
must be applied to one dimensional arrays showing that the
product P2M does not need to be explicitly formed.

5. Experimental results

The experimental results have been obtained on a computer
which consists of two processors AMD OpteronTM Processor 6272
at 2.1 GHz. with 16 cores each. The processor module consists
of two dies, each with four dual-core modules sharing a cache
memory (L3) of 6 MB. The total amount of main memory is 32 GB.
The compiler used is GNU gcc (Version 4.4.6).

The blocked algorithm is sensitive to the block size, so a
preliminary study for the best size must be done. Fig. 2 shows the
runtime behavior with regard to the block size for a matrix of size
n = 20 000. The time shown in Fig. 2 is for all the computation
of Algorithm 1, that is, the overall computation for the solution of
the linear system. The behavior of the entire algorithm according
to this parameter allows to obtain the value for which the solution
is obtained in the shortest time possible. The cache size is themost
influential factor for the block size. We did more tests varying the
problem side and increasing the number of threads used obtaining
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Fig. 3. Speed-up of the factorization of Cauchy-like matrix C (2). Left is for the unblocked algorithm and right is for the blocked algorithm.

Table 1
Time results in one core of the different parts of Algorithm 1.

n Init. Decomp. Triang. Syst. Sol. Obtaining x Total

10 000 00.8E−2 0.5 0.1 0.2E−2 0.6
20000 01.4E−2 1.8 0.4 0.3E−2 2.2
30000 14.6E−2 4.1 0.9 4.6E−2 5.0
40000 03.2E−2 7.9 1.7 0.7E−2 9.6
50000 34.8E−2 12.5 2.6 11.2E−2 15.1
60000 35.1E−2 18.3 3.7 11.2E−2 22.0

always the same conclusion, i.e., a fix value of 126 for the block size
is suitable to run the application as fast as possible in most of the
cases.

The analysis of the algorithm continues with the study of the
sequential time consumed by the different parts of the algorithm.
Table 1 shows in four columns the time spent by Algorithm 1 in
each one of the four parts in which the algorithm divides all the
computation:

• the initialization, which consists of steps 1 and 2 of Algorithm1;
• the LDLT decomposition (step 3 of Algorithm 1);
• the Triangular Systems Solution (step 4 of Algorithm 1); and
• obtaining the final solution x to system (1) (step 5 of

Algorithm 1).

Clearly, the second and third stages are the most time-
consuming parts of the process. The timeused on these parts grows
quadratically with the problem size with 5 being the approximate
ratio between them. Thus, the parallelization should be focused on
these two steps. The time used on the first and last parts of the
algorithm are not directly correlated with the problem size. On the
contrary, the computational cost of the DST is proportional to the
size of the largest of the prime factors of the problem size. Either
way, the Fortran 90 module mentioned in the implementation
section selects the best routine to apply the transformation so this
particular effect of the DST is lessened and the time is kept within
a very small strip.

For the triangular factorization of the Cauchy-like matrix in (2),
two levels of parallelism are used as described in the implemen-
tation section. The algorithm appeared in [9] also used both levels
of parallelism, by partitioning the work into two MPI processes,
each one in charge of factorizing one of the two rank-2 Cauchy-
like matrices (C1 and C2, respectively) resulting from the splitting
process shown in (3). Each one of these two matrices were fac-
torized in turn by an OpenMP parallel loop. We denote here this
version as unblocked algorithm, where the twoMPI processes have
been replaced by two OpenMP threads instead. The parallel loop

has been suitably tuned to get the maximum performance by fix-
ing the schedule policy to static and choosing the best chunk
size (500 for the target machine).

Fig. 3 shows the results obtained in form of speed up and the
evolution with the problem size. The figures compare the two ver-
sions only for the factorization of the Cauchy-like matrix C . Both
algorithms speed up well when only 2 threads are used since this
is the case when only the first level of parallelism is used. More
than 2 threads mean that half the total of threads participates in
the factorization of each one of the two rank-2 Cauchy-like matri-
ces (second level of parallelism). For example, with 4 threads, the
factorization of C1 and C2 is performed by 2 threads each. The per-
formance of the unblocked version is limited by the memory data
transfer. This is just what the new blocked version tries to avoid
by using the BDL storage format, and it is what it can be observed
when more than 4 threads are used. Furthermore, the BDL storage
format allows tackle larger matrices since it is only needed to al-
locate memory to store the blocked lower triangular matrix. This
result shows the scalability of the factorization method achieved
by a suitable rearrangement of the data in memory.

The graphics in Fig. 4 show the total time for the solution of
the Toeplitz linear system (1). The sequential algorithm is very fast
so there is no significant speed-up with small problem sizes. In
particular, the low throughput of the parallel implementation of
the triangular systems solution in step 4 of Algorithm 1 somehow
burdens the total solution. However, savings in time are largerwith
the increase in the problem size. The algorithm in the experiment
also uses local diagonal pivoting and thread affinity. (Both
parameters are optional in our application.)We tested that no large
differences exist for different thread-core binding combinations,
obtaining only slightly better results by mapping each of the
two subproblems (3) on each processor. Just to eliminate
variable thread placement during the computation, which allows
reusingmemory resources (caches), implies some improvement in
performance. Since Algorithm2 is used to factorize twomatrices of
order n/2, the total cost of step 3 of Algorithm 1 is 13

4 n2 − 39
2 n.

This operations are carried on 4 n-arrays to produce a large set
of n2/2. Thus the most time-consuming operation is storing data
into memory, fact that limits the performance of the algorithm
in terms of speedup when the number of threads is large. Given
the characteristics of the algorithm, we value that the parallel
application exploits the total amount of cores available in this
hardware to produce the result in the minimum possible time.

Table 2 shows some features of Algorithm 1 in comparisonwith
other methods. We used the Levinson algorithm implemented in
routine tsld of the Netlib Library [29]. For the comparison, we
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Table 2
Time results and accuracy of different Toeplitz solvers.

n = 10 001 n = 30 000
Random KMS(10E−14) Random

Time For. err. Back. err. For. err. Back. err. Time For. err. Back. err.

Algorithm 1 0.22 2.0E−7 1.4E−12 1.3E−10 4.2E−14 1.30 5.9E−6 1.5E−11
Algorithm 1 + piv 0.22 8.6E−9 2.7E−14 1.3E−10 4.2E−14 1.30 9.3E−8 3.6E−14
Levinson 0.34 2.5E−9 9.2E−12 2.6E+6 8.6E−3 2.20 9.2E−7 5.0E−10
dsysv 12.5 1.4E−14 8.7E−15 1.4E−14 8.7E−15 216 3.1E−11 5.3E−15

Fig. 4. Time for the solution of the symmetric Toeplitz linear system (1).

also picked the Lapack [5] routine dsysv, which solves symmetric
linear systems with pivoting of general matrices. In particular we
used the Intel MKL implementation of this routine. For randomly
generated matrices of sizes n = 10 001 and n = 30 000, the time
obtained by Algorithm 1 using 32 threads was smaller that the
Levinson algorithm. Obviously, the Lapack routine spentmore time
computing the linear system since it is a O(n3) flops algorithm that
does not take into account the Toeplitz structure of the matrix. We
also note that the use of our local diagonal pivoting technique did
not have a significant impact on the execution time.

We studied forward and backward errors defined as
�x − x̂�

�x� ,
�b − T x̂�
�T� · �b� ,

respectively, where x̂ is the computed solution and x has 1 in
all its entries. The case for n = 10 001 shows that the most
accurate solution was obtained when the structure of the matrix
was not taken into account. The second most accurate result was
attained with Algorithm 1 with pivoting followed by the Levinson
algorithm. It is well known that the Levinson algorithm offers an
inaccurate solution and might even break down if the Toeplitz
matrix is not strongly regular (a matrix is strongly regular if all its
leading principal minors are well-conditioned). To show this, we
used aKac–Murdock–Szego (KMS(α))matrix defined as t0 = α and
ti = 0.5i, for i = 1, . . . , n−1. A KMS(α) matrix has all its principal
minors of order m ill-conditioned if m − 1 is a multiple of 3 and
α = 10−14. The Cauchy-like transformation method, however, is
insensitive to this problem.

6. Conclusions

In this paper, we have addressed the solution of symmetric
Toeplitz linear systems in multicore systems. By transforming the
system matrix into a Cauchy-like matrix we built a blocked algo-
rithm in which all blocks in a column can be concurrently com-
puted. The special structure of the matrix was exploited to have a
fast algorithm. We used the Block Data Layout scheme to manage

data in memory, thus obtaining a good speed-up with the usual
number of cores available in current machines. The resulting par-
allel algorithm is easy to implement with OpenMP. There exist
techniques allowing algorithms based on Levinson and Schur-type
methods to deal with non strongly regular matrices, e.g., look ahead
algorithms. However, the algorithm that factorizes the Cauchy-like
matrix is not affected by this problemmaking these techniques un-
necessary. Furthermore, since pivoting does not destroy the struc-
ture of Cauchy-likematrices, we have proposed incorporating local
diagonal pivoting, which does not impair the execution time and
improves the accuracy of the solution. This algorithm is available
in StructPack [3], which is a package for the solution of struc-
tured matrix problems.

The designed algorithm does not leverage efficiently all avail-
able cores. This inefficiency comes from the time spent on writing
the resulting factors of the triangular decompositions into mem-
ory, which leads to a CPU–memory bus saturation. In addition, the
solution of the triangular systems is a low cost operation compared
to the decomposition, yet this operation is hardly parallelizable
and negatively affects the efficiency of the whole algorithm as the
number of cores increases. A future concept to explore consists of
designing a variant of the algorithm in which the first lower trian-
gular system solution is merged into the triangular decomposition
so that both operationswould be realized in a single step.With this,
we aim at increasing the number of operations performed per data
stored in memory, and only one triangular system solution would
be computed a posteriori, i.e. once the triangular factor is stored in
memory. As current systems have an increasing number of cores,
these aggregated resources can be used to performmost of the new
operations involved in the simultaneous solution of the triangular
system of equations and the triangular factorization.
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