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Abstract 14 

The main aim of this study was to develop an advanced controller to optimise 15 

filtration in submerged anaerobic MBRs (SAnMBRs). The proposed controller was 16 

developed, calibrated and validated in a SAnMBR demonstration plant fitted with 17 

industrial-scale hollow-fibre membranes with variable influent flow and load. This 18 

2-layer control system is designed for membranes operating sub-critically and 19 

features a lower layer (on/off and PID controllers) and an upper layer (knowledge-20 

based controller). The upper layer consists of a MIMO (multiple-input-multiple-21 

output) control structure that regulates the gas sparging for membrane scouring and 22 

the frequency of physical cleaning (ventilation and back flushing). The filtration 23 

process is monitored by measuring the fouling rate on-line. This controller 24 

demonstrated its ability to keep fouling rates low (close to 0 mbar min-1) by applying 25 

sustainable gas sparging intensities (approx. 0.23 Nm3 h-1 m-2). It also reduced the 26 

downtimes needed for ventilation and back-flushing (less than 2% of operating 27 

time).  28 

 29 

 30 
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 4 

Nomenclature 5 

Alk carbonate alkalinity   6 

AnR anaerobic reactor   7 

B back-flush   8 

B-1 biogas recycling blower  9 

BRF biogas recycling flow  10 

BRFMAX maximum BRF   11 

BRFMIN minimum BRF   12 

BRFSP set point BRF   13 

BRFSP (t) BRFSP at sample time  14 

BRFSP (t - CT) BRFSP at previous sample time  15 

ΔBRFSP modification in the BRF set point   16 

c centre of Gaussian membership function   17 

CI confidence interval   18 

CIP clean in place   19 

COD chemical oxygen demand 20 

CODS soluble COD 21 

CODT total COD 22 

CT control time   23 

DV degasification vessel   24 

eFRC error in FRC   25 

ΔeFRC difference in FRC   26 

ΔeFRC (t) difference in fouling rate error at control time 27 

ΣeFRC accumulated error in FRC  28 

ΣeFRC (t) accumulated error in fouling rate at control time. 29 

ΣeFRC (t – CT) accumulated error in fouling rate at previous control time 30 

EPS extracellular polymeric substances 31 
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FC frequency converter  1 

FC-P11 rotating speed of permeate pump   2 

FC-P12 rotating speed of sludge recycling pump   3 

FIT flow indicator transmitters   4 

FIT-P11 permeate flow   5 

FIT- P11SP permeate flow set point   6 

FIT-P12 sludge flow entering membrane tank   7 

F-R filtration-relaxation   8 

FR fouling rate   9 

FRC FR related to cake-layer formation   10 

FRC (t) FRC at sample time   11 

FRC_SP FRC set point   12 

FRM’ intrinsic variation of FR due to change in J20   13 

FRM’ (t) FRM’ at sample time     14 

FRT measured FR 15 

FRT (t) measured FR at sample time 16 

FS flat sheet   17 

HF hollow fibre   18 

HN high negative   19 

HP high positive   20 

HRT hydraulic retention time   21 

HS- total sulphide expressed as HS- 22 

J transmembrane flux   23 

J20 20 ºC-normalised J   24 

∆J20 change in J20  25 

  decrease in  J20 between two sample times 26 

  maximum decrease in J20  27 

J20,MIN minimum J20   28 

J20,MIN (t) J20,MIN at sample time   29 

J20 SP J20 set point   30 
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J20 SP (t) J20 SP at sample time 1 

%J20 SP maximum decrease in J20  referred to the established J20 SP   2 

%J20 SP (t)  %J20 SP at sample time   3 

JC critical flux   4 

K permeability   5 

K20 20 ºC-normalised K   6 

%K20 maximum decrease in highest K20 recorded during filtration 7 

K20,MAX,BF maximum back-flushing K20   8 

K20,MAX,F maximum K20 during filtration   9 

K20,MIN minimum K20  10 

KC controller gain  11 

KM’,20 intrinsic membrane permeability  12 

LN low negative   13 

LP low positive  14 

MBR membrane bioreactor   15 

MIMO multiple-input-multiple-output  16 

MLTS mixed liquor total solids  17 

MLTSAnR MLTS in AnR (MLTS entering MT) 18 

MLTSMT MLTS in MT 19 

MLTSMT,SP set point of MLTS returning to AnR  20 

MT membrane tank  21 

N negative   22 

NH4-N ammonium measured as nitrogen 23 

OLR organic loading rate  24 

OPC OLE for process control  25 

P positive  26 

P-11 permeate pump  27 

P-12 sludge recycling pump  28 

PID proportional-integrative-derivative  29 

PIT pressure indicator transmitter  30 

PLC programmable logic controller  31 
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PO4-P orthophosphate measured as phosphorous 1 

RC cake-layer resistance  2 

RI irreversible layer resistance  3 

RM membrane resistance  4 

RT total membrane resistance  5 

SAnMBR submerged anaerobic MBR  6 

SCADA supervisory control and data acquisition   7 

SD standard deviation   8 

SGDm specific gas demand per membrane area  9 

SGDp specific gas demand per permeate volume  10 

SISO single-input-single-output  11 

SIT solids concentration indicator transmitter  12 

SMP soluble microbiological products 13 

SO4-S sulphate measured as sulphur 14 

SRF sludge recycling flow  15 

SRFMAX maximum SRF  16 

SRFMIN minimum SRF 17 

SRFSP SRF set point  18 

SRT sludge retention time  19 

ST sample time  20 

T temperature  21 

TS total solids  22 

TSS total suspended solids  23 

tF,MAX maximum filtering time  24 

∆tFR time interval used in FR calculations  25 

TMP transmembrane pressure  26 

TMP (t) TMP at sample time 27 

TMP (t - ∆tFR) TMP at start of ∆tFR 28 

∆TMP change in TMP  29 

ΔTMPM’ change in TMP associated with KM’,20 due to a change in J20  30 

ΔTMPM’ (t) ΔTMPM’ at sample time 31 
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TMPMAX maximum TMP 1 

u control action  2 

V ventilation  3 

VFA  volatile fatty acids 4 

VS volatile solids  5 

VS volatile suspended solids  6 

WWTP wastewater treatment plant  7 

Z zero   8 

zMIN minimum quantity of filtration phase data  9 

σ amplitude of Gaussian membership function  10 

δ modifying algebraic factor  11 

η permeate viscosity  12 

µ(p) degree of membership of input variable p 13 

tI constant of integrative time  14 

tD constant of derivative time 15 

 16 

1. Introduction 17 

 18 

In recent years there has been increased interest in the feasibility of using 19 

SAnMBRs to treat municipal wastewater at ambient temperatures, focussing not only on 20 

the main advantages of MBRs (i.e. clarified and partially disinfected effluent; smaller 21 

environmental footprint of WWTPs) but also on the greater sustainability of anaerobic 22 

rather than aerobic processes: low sludge production due to the low anaerobic biomass 23 

yield, low energy consumption because no aeration is needed, and biogas generation 24 

that can be used as an energy resource.  25 

 26 

MBRs usually operate at high MLTS levels which contribute to membrane fouling: 27 

one of the main handicaps of membranes [1]. Fouling reduces K and increases operating 28 
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and maintenance costs [2]. In this respect, MBR installations still consume more energy 1 

than conventional activated sludge systems, calling for further study into economical 2 

and sustainability considerations [3]. Therefore, one key operating challenge of 3 

SAnMBR technology is how membrane performance can be optimised whilst 4 

minimising membrane fouling – in particular the irreversible/permanent component that 5 

cannot be eliminated by chemical cleaning and ultimately determines the membrane 6 

lifespan [4, 5, 6].  7 

 8 

One such fouling control strategy consists of operating membranes at sub-critical 9 

filtration conditions [7] delimited by JC [8, 9]. On the other hand, in order to minimise 10 

membrane fouling, a suitable physical and chemical membrane cleaning protocol must 11 

be applied to given filtration conditions. Gas sparging intensity, usually measured as 12 

SGDm or SGDp, is one of the factors that affects JC most (at a specific MLTS level). The 13 

gas sparging intensity in each operating range must, therefore, be optimised in order to 14 

minimise membrane fouling and maximise energy savings in SAnMBR systems. It is 15 

important to emphasise that aeration can account for up to 50 – 75% of all the energy 16 

consumed by aerobic MBR technology [10]. Furthermore, minimising total operating 17 

downtime whilst using other physical cleaning protocols (relaxation and back-flushing) 18 

is a major challenge that must be solved if SAnMBR technology is to become 19 

economically feasible.  20 

 21 

Several studies published recently have theoretically analysed and experimentally 22 

validated the energy savings of different types of advanced control (mainly model-based 23 

or knowledge-based) in aerobic MBR technology.  24 

 25 

One of the model-based control systems, Drews et al. [11, 12], aimed to improve 26 
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the efficiency of the filtration process in MBR technology by applying mathematical 1 

models to enable appropriate action to increase permeability over time. Busch et al. [13] 2 

proposed a model-based run-to-run (or run-by-run, batch-to-batch) process control 3 

system that optimised the adjusted variables (filtration and back-flushing stages) after 4 

each filtration cycle. However, the main drawback of such approaches is that the 5 

complexity of the mechanisms involved makes it impossible to describe fouling exactly 6 

or build a deterministic filtration model [14]. Due to the highly non-linear relations 7 

found throughout the physical separation processes and the large number of filtration 8 

mechanisms, the results achieved by model-based controllers are only acceptable when 9 

the process dynamics are bounded by a well-defined linear zone.   10 

 11 

A variety of knowledge-based control laws, on the other hand, have been widely 12 

implemented in wastewater treatment in recent decades and been successful in several 13 

MBR applications. Huyskens et al. [3] validated an advanced knowledge-based control 14 

system that evaluated the reversible fouling propensity by using MBR-VITO (a specific 15 

on-line fouling measuring tool) [15]; Monclús et al. [16] developed and validated a 16 

knowledge-based control module for optimising MBR start-up procedures and 17 

minimising fouling; and Ferrero et al. [17, 18, 19] developed a knowledge-based control 18 

system to supervise filtration in aerobic MBRs, achieving considerable energy savings 19 

(up to 21%) in membrane scouring.  20 

 21 

Several simple operating strategies to control membrane fouling instead of 22 

advanced controllers have been experimentally validated. Jeison and van Lier [20] 23 

developed an on-line cake-layer management protocol that monitored critical flux 24 

constantly and prevented excessive cake-layer from building up on the membrane 25 

surface; Smith et al. [21] developed a control system to optimise back-flushing which 26 
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reduced the water needed for back-flushing by up to 40%; Vargas et al. [22] established 1 

a control algorithm for fouling prevention which regulated back-flushing by constantly 2 

measuring TMP and J; and Park et al. [23] studied how membrane fouling could be 3 

reduced by successively increasing and decreasing the gas sparging intensities, and 4 

recorded the effectiveness in reducing membrane fouling.  5 

 6 

Nevertheless, further study is required into control strategies of this type (designed 7 

to save energy in SAnMBR technology on an industrial scale) due to the lack of 8 

knowledge about fouling in anaerobic MBRs. In this respect, knowledge-based 9 

controllers may be a powerful tool for filtration control in SAnMBR technology because 10 

they are easily applied to non-linear processes. Fuzzy-logic controllers [24] in particular 11 

can optimise a variety of processes in dynamic operating and loading conditions by 12 

applying valuable expert knowledge [25, 26, 27]. In addition, control strategies of this 13 

type do not require a large amount of data and/or a rigorous mathematical model, and 14 

also allow MIMO control schemes to be developed.  15 

 16 

To gain more insight into the optimisation of a SAnMBR system on an industrial 17 

scale, we designed a new control approach to minimise energy consumption during sub-18 

critical filtration in a SAnMBR demonstration plant. To obtain representative results 19 

that could be extrapolated to full-scale plants, the SAnMBR system featuring industrial 20 

HF membrane units was operated using effluent from the pre-treatment of the Carraixet 21 

WWTP (Valencia, Spain). The main aim was to design a competitive and feasible 22 

control system capable of enhancing filtration in industrial-scale SAnMBR systems with 23 

minimum operating costs. This advanced control system was developed taking 24 

advantage of the industrially feasible on-line sensors now available for monitoring key 25 

physical variables in filtration processes (i.e. pressure, flow and total solids).  26 
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 1 

2. Materials and methods 2 

 3 

2.1. SAnMBR plant description 4 

 5 

Figure 1 shows a simplified lay-out of the SAnMBR plant used in this study 6 

including the main instrumentation and controllers. The plant consists of an anaerobic 7 

reactor with a total volume of 1.3 m3 (0.4 m3 head space for biogas) connected to two 8 

membrane tanks each with a total volume of 0.8 m3 (0.2 m3 head space for biogas). 9 

Each membrane tank (MT) has one industrial HF ultrafiltration membrane unit 10 

(PURON®, Koch Membrane Systems (PUR-PSH31) with 0.05 µm pores). Each module 11 

has a total membrane surface of 30 m2. To recover the bubbles of biogas in the permeate 12 

leaving the membrane tank, two degasification vessels (DV) were installed: one 13 

between each MT and the respective vacuum pump. The funnel-shaped section of 14 

conduit makes the biogas accumulate at the top of the DV. The resulting permeate is 15 

stored in the CIP tank. The two parallel membrane tanks make plant operating very 16 

flexible because it can work with one membrane tank or the other or both. Moreover, 17 

each tank enables the resulting permeate to be constantly recycled back into the 18 

anaerobic reactor, enabling different transmembrane fluxes to be tested without 19 

affecting HRT. The filtration results given in this paper are experimental data obtained 20 

from a membrane tank constantly recycling permeate back into the system. The HRTs 21 

tested to assess biological performances were, therefore, obtained from another 22 

membrane tank running in parallel. 23 

 24 

Aspects of membrane operating taken into account included not only the classic 25 

membrane operating stages (filtration, relaxation and back-flushing) but also 26 
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ventilation. In the ventilation stage, permeate is pumped into the membrane tank 1 

through the degasification vessel instead of through the membrane. The aim of 2 

ventilation is to recover the biogas that accumulates in the degasification vessel. Thus, 3 

in terms of membrane cleaning, ventilation acts as a relaxation since no transmembrane 4 

flux is applied whilst maintaining a given gas sparging intensity.  5 

 6 

For further details about this SAnMBR system, see Giménez et al. [28] and Robles 7 

et al. [7].  8 

 9 

2.2. Monitoring system description  10 

 11 

Many on-line sensors and automatic devices were installed in order to automate and 12 

control plant operating and provide on-line information about the state of the process 13 

(see Figure 1). All instrumentation is labelled according to the name of the tank or 14 

equipment (i.e. pump or blower) where the sensor is installed. The main features of the 15 

installed equipment are: on-line availability and industrial feasibility, low-cost, 16 

corrosion resistance, long lifespan, and low and easy maintenance. The instrumentation 17 

is connected to a network system featuring several transmitters, a PLC and a PC to 18 

perform multi-parameter control and data acquisition. Both the operating data logging 19 

and the plant control are carried out by a SCADA system installed in the PC, which 20 

centralises all the signals from the sensors and actuators installed in the plant. In 21 

addition, the SCADA is linked to an OPC system that enables communication with 22 

external dedicated applications featuring upper-layer controllers.  23 

 24 

The group of on-line sensors used in this study, shown in Figure 1, consists of the 25 

following: one solids concentration indicator transmitter (Hach Lange model TSS EX1 26 
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sc), MLTSAnR, located in the anaerobic reactor; two flow indicator transmitters 1 

(Endress+Hauser model Proline Promag 50), FIT-P11 and FIT-P12, i.e. one for the 2 

permeate pump (JUROP VL02 NBR, P-11) and another for the mixed liquor feed pump 3 

(CompAir NEMO, P-12); one flow indicator transmitter (Iberfluid model VORTEX 4 

84F), FIT-B1, for the membrane tank blower (FPZ 30HD, B-1); one pH-temperature 5 

sensor (Endress+Hauser model Liquiline M pH-ORP CM42), pHT-MT, located in the 6 

membrane tank; and one liquid pressure indicator transmitter (Endress+Hauser model 7 

Cerabar M PMC41), PIT-P11, to monitor the TMP. The group of actuators used in this 8 

study consists of a group of on/off flow-direction valves to control the different 9 

membrane operating stages (filtration, back-flushing, ventilation…), and three 10 

frequency converters (Micromaster Siemens 420) FC-P11, FC-P12 and FC-B1 to 11 

control the rotating speed of the permeate pump (P-11), the mixed liquor feed pump (P-12 

12) and the membrane tank blower (B-1), respectively.  13 

 14 

The composition of the biogas (CH4, CO2, H2 and H2S) was measured online using 15 

an X-STREAM enhanced analyser (EMERSON PROCESS Analytical GmbH). This 16 

equipment combines four measuring channels: two non-dispersive infrared channels for 17 

measuring CH4 and CO2; one thermal conductivity channel for measuring H2; and one 18 

non-dispersive ultraviolet channel for measuring H2S. 19 

 20 

2.3. Sampling and analytical monitoring 21 

 22 

The performance of the biological treatment was assessed by taking 24-hour 23 

composite samples of influent and effluent plus grab samples of biogas and anaerobic 24 

sludge once a day. The following parameters of influent, effluent and anaerobic sludge 25 

were analysed: TS, VS, TSS, VSS, VFA, Alk, SO4-S, total sulphide (expressed as HS-), 26 
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nutrients (NH4-N and PO4-P), and CODT and CODS.  1 

 2 

Levels of solids, COD, sulphate, total sulphide and nutrients were determined by 3 

Standard Methods [29], and Alk and VFA levels by titration according to the method 4 

proposed by WRC [30]. 5 

 6 

2.4. Operating conditions 7 

 8 

The SAnMBR plant in this study was fed with effluent from the pre-treatment 9 

phase of a full-scale urban WWTP (screening, degritter and grease removal). Table 1 10 

shows the average properties of this influent wastewater. This highlights its significant 11 

sulphate content in comparison with typical domestic wastewater, and also the wide 12 

variation in influent loads as shown by the high standard deviation of each parameter. 13 

The uncertainty of each value takes into account both the SD of the different samples 14 

analysed and the variation coefficient of the analytical methods.  Table 1 also shows the 15 

median, minimum and maximum values and 95 % CI. 16 

 17 

During the 3-year experimental period, the plant was operated continuously under a 18 

variety of operating conditions to study the biological process performance: SRT ranged 19 

from 20 to 70 days; HRT ranged from 5 to 24 hours, resulting in OLR of 0.5 to 2 20 

kgCOD m-3 d-1; and temperatures, from 14 to 33ºC. 21 

 22 

3. Advanced control system description 23 

 24 

The proposed controller aims to optimise the filtration process in a SAnMBR 25 

system, maintaining sub-critical filtration conditions and minimising operating costs. In 26 
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this respect, this control system aims to operate membranes at fouling rates close to zero 1 

by modifying not only the gas sparging intensity for membrane scouring in the 2 

membrane tank, but also the starting time and frequency of both ventilation and back-3 

flushing. 4 

 5 

As Figure 1 shows, the proposed control system consists of a combination of 5 6 

lower-layer controllers (3 PID, 1 proportional and 1 on/off) and 1 upper-layer controller 7 

(decision-support controller). The lower-layer controllers are based on classic on-off 8 

and feedback PID (proportional-integral-derivative) controllers consisting of SISO 9 

control structures. The upper-layer controller allows the different set points for the 10 

controlled variables in the lower-layer controllers to be established according to the data 11 

gathered from the different sensors installed in the plant. The upper-layer controller is 12 

based on knowledge-based theory and consists of a MIMO control structure.  13 

 14 

3.1. Lower-layer controllers  15 

 16 

The group of lower-layer controllers used in this study, shown in Figure 1, consists 17 

of the following: three PID controllers to adjust the rotating speed of the sludge 18 

recycling pump (P-12), the permeate pump (P-11) and the biogas recycling blower (B-19 

1) by the corresponding frequency converter (FC-P12, FC-P11 and FC-B1 respectively) 20 

in order to keep the corresponding flow close to its set point value; one on-off controller 21 

that determines the membrane operating stage by changing both the position of the 22 

corresponding on-off valves and the flux direction of the permeate pump; and one 23 

proportional  controller that determines the SRFSP through the membrane tank 24 

depending on the FIT-P11SP and the MLTS in the anaerobic reactor (measured by 25 

MLTSAnR). The PID controllers were fine-tuned by trial and error. 26 



 

15 

 

 1 

The aim of the proportional controller is to reduce the energy consumption of both 2 

sludge and permeate pumping. When the anaerobic reactor is operated at high MLTS 3 

levels, the SRF must be high enough not only to maintain suitable levels of MLTS in 4 

the membrane tank, but also to minimise the energy consumed by permeation. It must 5 

be emphasised that, depending on the sludge concentration factor (the ratio between the 6 

sludge flow entering the membrane tank and the net permeate flow), the MLTS in the 7 

membrane tank could reach prohibitive levels. It must also be said that MLTS is a key 8 

operating factor as regards membrane permeability [31] which therefore affects the 9 

energy required for permeate pumping. Nonetheless, SRF must be minimised in order to 10 

maximise energy savings since sludge pumping energy accounts for 15 – 20% of all the 11 

energy consumed by aerobic MBR technology [10]. Hence, it is advisable for SRF to be 12 

regulated in order to optimise the economic feasibility of full-scale SAnMBR systems. 13 

Therefore, the proposed advanced control system features a control strategy based on 14 

proportional action taking into account both the MLTS entering the membrane tank and 15 

the permeate flux. 16 

 17 

This proportional controller calculates the SRFSP by applying a simple mass 18 

balance (MLTS mass balance) to the membrane tank (see Eq. 1). The left and right sides 19 

of Eq.1 are the input and output terms of the mass balance, respectively. In this mass 20 

balance, the effluent MLTS concentration is assumed to be zero (see second term on the 21 

right side of Eq.1). Accumulation and generation terms are not considered.  22 

 23 

𝑀𝐿𝑇𝑆𝐴𝑛𝑅 · 𝑆𝑅𝐹 = 𝑀𝐿𝑇𝑆𝑀𝑇 · (𝑆𝑅𝐹 −  𝐹𝐼𝑇𝑃11) + 0 · 𝐹𝐼𝑇𝑃11 (Eq. 1) 24 

 25 
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Hence Eq.1 can be used to calculate the SRFSP theoretically required to maintain a 1 

given MLTSMT,SP as a function of the recorded values of MLTSAnR and FIT-P11 (see 2 

Eq. 2).  3 

 4 

SRFSP =  
FITP11 ·  MLTSMT,SP

MLTSMT,SP  −  MLTSAnR
       (Eq. 2) 5 

 6 

SRFSP was only modified within a pre-defined range delimited by the minimum and 7 

maximum flows provided by the sludge recycling pump: SRFMIN (1.0 m3 h-1) and 8 

SRFMAX (2.7 m3 h-1), respectively.  9 

 10 

3.2. Upper-layer controller 11 

 12 

The flow chart of the proposed upper-layer controller (Figure 2) shows how this 13 

upper-layer controller is divided in three subsections: (i) initialisation where the control 14 

variables are calculated; (ii) a preliminary group of knowledge-based rules; and (iii) a 15 

fuzzy-logic controller. As mentioned before, this control system aims to operate 16 

membranes sub-critically, keeping the fouling rate close to zero. Basically, the fouling 17 

rate is controlled by adjusting the BRF through the membrane tank by means of the 18 

fuzzy-logic controller, and the membrane operating stage (filtration, ventilation or back-19 

flushing) by the preliminary knowledge-based rules. In addition to the FR, the control 20 

variables of this MIMO control structure are TMP, K and J.  21 

 22 

3.2.1. Determining the control variables  23 

 24 
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Control variables TMP and J were calculated by a 15 second, mobile average in 1 

order to filter the typical signal noise from the corresponding sensors (ST set to 5 2 

seconds). Therefore, a minimum quantity of filtration phase data (zMIN) was needed to 3 

calculate the control parameter. The J20 was calculated using Eq. 3 in order to reflect the 4 

dependence of η on T, and the K20 was calculated using a simple filtration model (Eq. 4) 5 

that takes into account the TMP and J20 data monitored on-line.  In this classic filtration 6 

model, RT was theoretically represented by RM, RI, and RC. 7 

 8 

𝐽20 = 𝐽𝑇 ·  𝑒−0.0239 (𝑇−20)
        (Eq. 3) 9 

𝐾20 =  
1

𝜂·𝑅𝑇
=

1

𝜂·(𝑅𝑀 + 𝑅𝐼 + 𝑅𝐶)
=  

𝐽20

𝑇𝑀𝑃
      (Eq. 4) 10 

 11 

As regards the control variable, i.e. the fouling rate, several techniques to monitor 12 

membrane fouling are described in literature. In most of them, however, membrane 13 

fouling cannot be measured on-line because they are too invasive and require 14 

subsequent chemical cleaning, or require new instrumentation which increases their 15 

operating costs [32]. In our study membrane fouling was measured on-line as the 16 

change in TMP over time (Eq. 5). 17 

 18 

𝐹𝑅𝑇  (𝑡) =
ΔTMP

Δ𝑡
=  

𝑇𝑀𝑃 (𝑡)− 𝑇𝑀𝑃 (𝑡−∆𝑡𝐹𝑅)

∆𝑡𝐹𝑅
     (Eq. 5) 19 

 20 

From Eq. 4 it can be assumed that any change in J20 (∆J20) results in a proportional 21 

change in TMP (∆TMP) when treating clean water. In this case, KM’,20 can be assumed 22 

to be constant and proportional to the sum of  both the membrane and irreversible 23 
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fouling resistances in series (see Eq. 6). Membrane and irreversible fouling resistances 1 

can be assumed to be constant because the tortuosity of both the membrane and the 2 

irreversible fouling layer is not expected to increase due to pressure in low-pressure 3 

filtration processes.  4 

 5 

𝐾𝑀′,20 =
1

𝜂·(𝑅𝑀 + 𝑅𝐼)
=  

∆𝐽20

∆𝑇𝑀𝑃
       (Eq. 6) 6 

 7 

On the basis of this assumption, the fouling rate calculated by Eq. 5 was not 8 

adopted as the control variable of the control system. The control variable adopted was 9 

FRC calculated by Eq. 7. The intrinsic variation of the fouling rate caused by a change in 10 

J20 was not considered in order to minimise the total energy consumption since this 11 

fouling rate component cannot be remedied/minimised by increasing BRF. FRC variable 12 

is obtained from the total measured fouling rate (Eq. 5) and the intrinsic variation of the 13 

fouling rate due to a change in J20 (FRM’, Eq.8).  14 

 15 

𝐹𝑅𝐶  (𝑡) =  𝐹𝑅𝑇  (𝑡) − 𝐹𝑅𝑀′ (𝑡)       (Eq. 7) 16 

 17 

𝐹𝑅𝑀′ (𝑡) =
𝛥𝑇𝑀𝑃𝑀′ (𝑡)

∆𝑡𝐹𝑅
        (Eq. 8) 18 

 19 

In order to calculate ΔTMPM’ using Eq. 6, KM’,20 must be estimated. This is done by 20 

using the simple filtration model given in Eq. 4 during back-flushing, determining the 21 

maximum back-flushing permeability, i.e. K20,MAX,BF which is considered to be the 22 

maximum filtering permeability of the membrane under study. This assumption is based 23 

on the fact that after a significant back-flushing period, cake layer resistance is 24 
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negligible, and the resulting membrane resistance is the sum of both membrane and 1 

irreversible fouling resistances. This permeability is therefore calculated when the TMP 2 

during back-flushing remains stable over time at a given J. This calculation is done once 3 

a day when the maximum filtering time (tF,MAX) is reached (see Figure 2). This 4 

maximum filtering time (set to 1 day in this study) is defined in order to apply at least 5 

one back-flush per day, when the filtration stage is not interrupted by other conditions 6 

defined in the control system. 7 

 8 

Calculating maximum back-flushing permeability is an useful way of monitoring the 9 

reduction in permeability during long-term membrane operating and deciding the right 10 

time to conduct chemical membrane cleaning or recovery.  11 

 12 

In addition to K20,MAX,BF, K20,MAX,F was another input variable for the preliminary 13 

knowledge-based rules. This variable was defined as the maximum K20 calculated by 14 

Eq. 4 during each filtration stage.  15 

 16 

Thus, as Figure 2 shows, the first subsection of the flow chart (i) represents all the 17 

calculations needed to obtain the final values of the control variables at each CT: FRC, 18 

K20, TMP and J20. In this study, CT was set to 20 seconds. 19 

 20 

3.2.2. Preliminary knowledge-based rules 21 

 22 

Similar to Vargas et al. [22], different knowledge-based rules have been included in 23 

the proposed advanced control system. The aim of these control rules was to decide 24 

when to initiate both ventilation (also acting as relaxation) and back-flushing. An 25 



 

20 

 

additional rule designed to determine the right time for the chemical cleaning or 1 

recovery of membranes was also taken into account. 2 

 3 

As Figure 2 shows (subsection ii), at each time interval between two control actions 4 

(CT), the control system applies the different knowledge-based rules to decide whether 5 

or not to start ventilation or back-flushing.  6 

 7 

3.2.2.1. Ventilation initiation  8 

 9 

As mentioned above, the aim of ventilation is to recover the biogas that 10 

accumulates in the degasification vessel thus reducing the amount of methane expelled 11 

with the effluent. For this reason, a degasification vessel was installed in the membrane 12 

tank. This degasification vessel accumulates the biogas released from the extracted 13 

permeate.  14 

 15 

Ventilation takes place when the system detects that some of the biogas accumulated 16 

in the degasification vessel is extracted with the effluent during filtration. This is revealed 17 

by the rotating speed of the permeate pump suddenly increasing to its maximum operating 18 

value without reaching the permeate flow set point. Ventilation is activated at this stage 19 

in order to recover the biogas remaining in the degasification vessel by recycling it into 20 

the membrane tank. As mentioned before, ventilation causes membrane permeability to 21 

fall to previous values because it acts as relaxation in terms of membrane physical 22 

cleaning. The corresponding control action is expressed by Rule 1. 23 

 24 

𝐼𝐹 [𝐽20 (𝑡) <   𝐽20,𝑀𝐼𝑁 (𝑡)] 𝐴𝑁𝐷 [(
𝜕 𝐽20

𝜕𝑡
) > (

𝜕 𝐽20

𝜕𝑡
)

𝑀𝐴𝑋
] 𝑇𝐻𝐸𝑁 [𝑉𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑔𝑒]  (Rule 1) 25 
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J20,MIN (t) is calculated by Eq. 9. 1 

 2 

𝐽20,𝑀𝐼𝑁  (𝑡) =  %𝐽20𝑆𝑃
·  𝐽20𝑆𝑃

 (𝑡)      (Eq. 9) 3 

%J20 SP (t) was set to 95% in our study. 4 

 5 

3.2.2.2. Back-flushing initiation  6 

 7 

Back-flushing minimises the long-term build-up of a reversible cake layer on the 8 

membrane surface. Two different rules for back-flushing initiation were defined in the 9 

proposed advanced control system: (1) when membrane permeability is below a 10 

minimum value (Rule 2); and (2) when a maximum TMP value (Rule 3) is reached. 11 

 12 

 𝐼𝐹 [𝐾20 (𝑡) <   𝐾20,𝑀𝐼𝑁 ] 𝑇𝐻𝐸𝑁 [𝐵𝑎𝑐𝑘 − 𝑓𝑙𝑢𝑠ℎ𝑖𝑛𝑔 𝑠𝑡𝑎𝑔𝑒]    (Rule 2) 13 

K20,MIN is calculated by Eq. 10. 14 

 15 

𝐾20,𝑀𝐼𝑁 = %𝐾20 ·  𝐾20,𝑀𝐴𝑋,𝐹        (Eq. 10) 16 

%K20 was set to 65% in our study. 17 

 18 

𝐼𝐹 [𝑇𝑀𝑃 (𝑡) >   𝑇𝑀𝑃𝑀𝐴𝑋  ] 𝑇𝐻𝐸𝑁 [𝑏𝑎𝑐𝑘 − 𝑓𝑙𝑢𝑠ℎ𝑖𝑛𝑔 𝑠𝑡𝑎𝑔𝑒]     (Rule 3) 19 

TMPMAX was set to 450 mbar in our study. 20 

 21 

3.2.3. Fuzzy-logic controller  22 

 23 

The fuzzy-logic controller determines the variation in the set point of the biogas 24 
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recycling flow (i.e. ΔBRFSP) on the basis of three inputs obtained from the estimated 1 

fouling rate caused by cake-layer formation, i.e. error (Eq. 11), accumulated error (Eq. 2 

12) and error difference (Eq. 13). The structure of this controller is, therefore, a fuzzy 3 

version of the classical PID. 4 

 5 

𝑒𝐹𝑅𝐶  (𝑡) =  𝐹𝑅𝐶  (𝑡) − 𝐹𝑅𝐶_𝑆𝑃       (Eq. 11) 6 

 7 

𝛴𝑒𝐹𝑅𝐶  (𝑡) = Σe𝐹𝑅𝐶  (𝑡 − 𝐶𝑇) + 𝐶𝑇 ·  𝑒𝐹𝑅𝐶  (𝑡)     (Eq. 12) 8 

 9 

𝛥𝑒𝐹𝑅𝐶  (𝑡)  = e𝐹𝑅𝐶  (𝑡) –  𝛿 ·  e𝐹𝑅𝐶  (𝑡 –  𝐶𝑇)      (Eq. 13) 10 

 11 

The fouling rate error difference variable calculated by Eq. 13 will be negative or 12 

positive depending on whether or not the fouling rate error tends to zero because this 13 

equation features a modifying algebraic factor (δ) which is defined in Eq. 14. 14 

 15 

𝛿 =
𝑒𝐹𝑅𝐶 (𝑡) · 𝑒𝐹𝑅𝐶 (𝑡−𝐶𝑇) 

|𝑒𝐹𝑅𝐶 (𝑡) · 𝑒𝐹𝑅𝐶 (𝑡−𝐶𝑇)|
         (Eq. 14) 16 

 17 

Although a classical PID controller could have been used, the fuzzy-logic based 18 

controller was preferred because of strong non-linear relations between the input and 19 

output of the filtering process (several factors affect membrane performance 20 

considerably). Fuzzy-logic controllers are suitable for systems which are extremely non-21 

linear and also for processes that are too complex to be analysed using conventional 22 

quantitative techniques or when available sources of information are subjective, inexact 23 

or unreliable. Well-developed fuzzy logic controllers can generalise to a great extent 24 

and can easily be developed and fine-tuned by an experienced plant operator because 25 
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fuzzy logic is much closer to human reasoning and natural language than traditional 1 

control algorithms. 2 

 3 

3.2.4. Description of fuzzy-logic controller structure 4 

 5 

The fuzzy-logic controller has five stages. In the first stage the input variables 6 

(eFRC, ΔeFRC and ΣeFRC) are calculated from the estimated fouling rate due to cake-7 

layer formation (see Eq. 11 to 13). Once the input variables are calculated, in the 8 

fuzzification stage (stage 2) the input variables are converted into linguistic variables 9 

(fuzzy set) represented by membership functions. The proposed controller used 10 

Gaussian membership functions (see Eq 15) because they produce smooth controller 11 

output.  Three Gaussian membership functions were considered for each input: N, Z and 12 

P. 13 

 14 

µ(𝑝) = 𝑒𝑥𝑝 (− 
(𝑝−𝑐)2

2· 𝜎2 )         (Eq. 15) 15 

 16 

The output variable of the controller is ΔBRFSP. In the defuzzification stage of this 17 

output variable, four singleton membership functions were defined as output linguistic 18 

variables: HN, LN, LP and HP.  19 

 20 

In stage 3, the inference engine, a set of rules is applied to the fuzzy sets obtained in 21 

stage 2. Table 2 shows the inference rules defined for the proposed fuzzy-logic 22 

controller. As Table 2 shows, each inference rule consists of an if-then fuzzy 23 

implication. Each inference rule is built by the fuzzy intersection (AND) of two input 24 

fuzzy sets (N, Z, P) from the input variables (eFRC, ΔeFRC, ΣeFRC). Each fuzzy 25 
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intersection results in one fuzzy output set (HN, LN, LP, HP) for the output variable 1 

(ΔBRFSP). The degree of membership (µ) of each input fuzzy set is given by the 2 

corresponding Gaussian membership function in the range [0, 1]. When µ is zero, the 3 

corresponding rule is inactive and does not contribute to the output.  4 

 5 

Because the proposed filtration control system is hierarchical, the priorities for 6 

applying Table 2 rules are different from those of the preliminary group of knowledge-7 

based rules. The filtration control system prioritises the preliminary group of 8 

knowledge-based rules, so when a knowledge-based rule is initiated the controller is 9 

initialised and no fuzzy-logic controller action is applied (see Fig. 2, subsection ii). 10 

Otherwise, when no knowledge-based rule is initiated, Table 2 rules are applied (see 11 

Fig. 2, subsection iii). 12 

 13 

The output linguistic variables (fuzzy output sets) were obtained in this stage by 14 

applying Larsen’s fuzzy inference method [33] using the Max-Prod operator. Hence, for 15 

each rule defined in Table 2, the operator represented by Eq. 16 was applied (where i 16 

represents each inference rule defined and j represents each of the input fuzzy sets in 17 

rule i). 18 

 19 

µ𝑖 = ∏ µ𝑗
𝑗
1            (Eq. 16) 20 

 21 

The operator expressed in Eq. 17 (where k represents each of the linguistic 22 

variables defined for the output variable) was then applied to establish just one 23 

linguistic output value when the consequences of different rules are the same (i.e. the 24 

consequence results in the same linguistic output variable). 25 

 26 
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µ𝑘 = 𝑀𝑎𝑥(µ𝑖)          (Eq. 17) 1 

 2 

During defuzzification (stage 4), linguistic variables are converted into the 3 

corresponding numerical control actions. Hence, in order to obtain a single output value 4 

from the fuzzy linguistic set, the Height Defuzzifier method [34] was employed (see Eq. 5 

18). 6 

 7 

𝛥𝐵𝑅𝐹𝑆𝑃  (𝑡) = 
∑(𝑐𝑘·µ𝑘)

∑(µ𝑘)
          (Eq. 18) 8 

 9 

Finally, stage 5 is the output stage where the numerical control action of the fuzzy-10 

logic controller is obtained, i.e. the set point of the biogas recycling flow. The control 11 

action of the fuzzy logic controller is expressed by Eq. 19, giving the integral output 12 

action necessary for set-point tracking. 13 

 14 

𝐵𝑅𝐹𝑆𝑃(𝑡) = 𝐵𝑅𝐹𝑆𝑃(𝑡 − 𝐶𝑇) +  𝛥𝐵𝑅𝐹𝑆𝑃 (𝑡)      (Eq. 19) 15 

 16 

The biogas recycling flow was only modified within a defined range to avoid 17 

operating problems, taking into account the following constraints: the minimum biogas 18 

recycling flow needed for the membranes to operate and the maximum biogas recycling 19 

flow provided by the blower. These are BRFMIN (5.5 Nm3 h-1, i.e. an SGDm of 0.18 Nm3 20 

h-1 m-2) and BRFMAX (11 Nm3 h-1, i.e. an SGDm of 0.37 Nm3 h-1 m-2), respectively.  21 

 22 

4. Results and discussion 23 

 24 

To account for the considerable fluctuations in the influent flows of WWTPs, we 25 



 

26 

 

used the standard dry weather influent records (updated in 2006) recommended by Copp 1 

[35] which are generally accepted for evaluating control algorithms in WWTPs. The 2 

influent flow dynamics were calculated by applying a dynamic peak flow factor 3 

(calculated on the basis of the above-mentioned influent file) to an influent flow base of 4 

225 L h-1. The permeate flow was then set using the same time-series behaviour as for 5 

the influent.  6 

 7 

The influent flow base (225 L h-1) was established on the basis of the lifetime of the 8 

membranes used. It is important to emphasise that the proposed control system was 9 

calibrated and validated using a two-and-a-half-year-old membrane.  Permeability was 10 

expected to be low because this membrane was used constantly and never underwent 11 

any physical or chemical cleaning. 12 

 13 

4.1. Performance of sludge recycling flow controller 14 

 15 

Figure 3 illustrates the performance of the sludge recycling flow controller during 16 

one day of operation (day 16). This figure shows the evolution of SRFSP and SRF 17 

throughout the membrane tank, FIT-P11 and FIT-P11SP, and FC-P12.  18 

 19 

As Figure 3 shows, SRF was adjusted proportionately to permeate flow. In this 20 

operating period MLTSAnR remained almost constant, varying from around 17.2 to 17.5 21 

g L-1, whilst MLTSMT,SP was set to 20 g L-1. From hours 3 to 9, and 10.5 to 11.5, the 22 

minimum rotating speed for the sludge recycling pump and maximum SRF were 23 

reached, respectively. Therefore, the controller was not able to set the SRF to the 24 

expected set point. Nevertheless, the controller generally allowed MLTS to remain close 25 

to its set point in the membrane tank (checked by the corresponding lab measurements), 26 
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thereby enabling an overall reduction in the energy consumed during filtration.  1 

 2 

For instance, for our case study, comparing the results shown in Figure 3 (average 3 

SRF of 1.7 m3 h-1) with those obtained when operating at a set SRF of 2.7 m3 h-1, energy 4 

savings of up to 50% are obtained in sludge pumping (calculated theoretically using the 5 

classical mechanical energy balance). This means that the energy demand for sludge 6 

pumping could be reduced from approximately 0.06 to 0.03 kWh m-3.   7 

 8 

4.2. Performance of knowledge-based rules  9 

 10 

As mentioned before, the aim of the knowledge-based rules is to determine the best 11 

time to start ventilation and back-flushing. 12 

 13 

4.2.1. Ventilation initiation 14 

 15 

Figure 4 shows how the knowledge-based rule concerning ventilation initiation 16 

performed on one operating day (day 16). Figure 4a shows FIT-P11SP and the 17 

membrane operating mode. Figure 4b shows the recorded J20 and J20,SP, J20,MIN, and FC-18 

P11. 19 

 20 

Figure 4a shows how ventilation frequency increases as permeate flow increases. 21 

This increase in ventilation frequency is related to the amount of biogas in the permeate 22 

leaving the system. In this respect, the higher the permeate flow, the greater the amount 23 

of biogas extracted. Therefore, ventilation frequency increases in order to recover as 24 

much biogas as possible from the top of the degasification vessel. No ventilation was 25 

conducted between hours 4 and 9 approximately due to the lower vacuum strength 26 
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applied for filtration (i.e. low transmembrane fluxes were applied), resulting in little 1 

biogas being extracted with the effluent. On the other hand, it must be emphasised that 2 

each ventilation stage constituted a relaxation stage in terms of membrane scouring, 3 

resulting in a partial improvement in membrane permeability.  4 

 5 

Figure 4b shows the ventilation initiation times calculated by the respective 6 

knowledge-based rule. As mentioned before, the controller triggers ventilation when a 7 

sharp increase in the rotating speed of the permeate pump is detected but the 8 

corresponding J20 set point is not maintained. This situation was observed 24 times 9 

during the operating period shown in Figure 4. It is important to emphasise that Figure 4 10 

illustrates the higher ventilation frequency observed throughout the experimental period 11 

that includes controller validation. This frequency means a ventilation downtime of 12 

around 1.4% of operating time. This value is considerably lower than the average full-13 

scale results from aerobic MBR technology found in literature. For instance, Judd and 14 

Judd [1] reported a relaxation downtime of around 10% of the operating time in both FS 15 

and HF configurations. Therefore, considerable energy savings may be achieved by 16 

using the rule-based controller rather than the fixed membrane operating sequences 17 

provided by membrane suppliers.  18 

 19 

4.2.2. Back-flushing initiation 20 

 21 

Figure 5 shows how the knowledge-based rules concerning the start of back-22 

flushing performed during one day of operation (day 16). Figure 5a shows TMP, 23 

TMPMAX and membrane operating mode. Figure 5b shows K20,MAX,F and K20,MIN, and 24 

K20 calculated over time using on-line T, TMP and J data.  25 

 26 
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Figure 5a shows three back-flushing starts during the experimental period. Rule 2 1 

was applied at hours 2.7 and 12. As Figure 5b shows, K20 declined considerably (35%) 2 

during filtration, which triggered back-flushing. On the other hand, Rule 3 triggered 3 

back-flushing at hour 11.5 because the maximum TMP set for membrane operation 4 

(0.45 bars) had been reached.      5 

 6 

Hence, as Figure 5 shows, back-flushing downtime accounted for around 0.2% of 7 

operating time. Similar results were observed throughout the experimental period in 8 

which controller validation took place. This downtime is also considerably lower than 9 

the average results reported for full-scale aerobic MBR technology in literature, i.e. 10 

back-flushing downtime of around 6 – 9% of operating time dedicated to treating urban 11 

wastewater aerobically [1]. This gives a total average downtime for physical cleaning 12 

(relaxation and back-flushing) of around 16 – 19% of operating time when using HF 13 

technology to treat urban wastewater aerobically (instead of the downtime of approx. 14 

1.6% obtained in the period shown in Figures 4 and 5).  15 

 16 

4.3. Performance of fuzzy-logic controller  17 

 18 

An example of how the control system performed after calibration (day 16) is 19 

shown in Figure 6. The fuzzy-logic controller was adjusted by means of the classic trial 20 

and error method.  21 

 22 

Figure 6a illustrates the evolution of FIT-P11 and FIT-P11SP (fixed by the dry 23 

weather influent dynamics records proposed by Copp), and also BRF and BRFSP 24 

resulting from the control action. Figure 6b also shows BRF and BRFSP, plus FRC and 25 

FRC_SP. The fouling rate set point was set to 0 mbar min-1 in order to keep filtration 26 
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conditions sub-critical. 1 

 2 

As can be observed in Figure 6, a fast controller response was achieved to 3 

compensate the fouling rate error (see, for instance, hours 20 to 24). In this respect, even 4 

when a dynamic influent flow set point was applied, the control response was able to 5 

keep the controlled variable close to the established set point by modifying BRF.  6 

 7 

As Figure 6b shows, the controller operated mainly at the minimum threshold value 8 

established for BRF (5.5 Nm3 h-1) as, for instance, in hours 2 to 7. In this period an 9 

excessive gas sparging intensity could have been applied for membrane scouring 10 

because the minimum BRF was reached. Between hours 9 to 12, on the other hand, BRF 11 

reached its maximum established value (11 Nm3 h-1). During this period the fouling rate 12 

increased because it was not possible to maintain the controlled variable around its set 13 

point. This behaviour can be also observed from hours 20 to 24. In this situation, it can 14 

be assumed that critical filtration conditions were exceeded. It must once again be 15 

emphasised that the controller was validated using a two-and-a-half-year-old membrane, 16 

resulting in low membrane permeability due to the irreversible fouling on the surface of 17 

the membrane during its lifetime. Consequently, it is expected that the permeate flux 18 

could be set to considerably higher values after chemical membrane cleaning, probably 19 

requiring no increase of the gas sparging intensity. 20 

 21 

Figure 6 shows that the fuzzy-logic controller proposed in this study performed 22 

adequately: the fouling rate remained close to its set point when there were no 23 

constraints on the gas sparging intensity. Indeed, in spite of the considerable variation in 24 

the permeate flux the controlled variable remained at quite suitable values, highlighting 25 

that the proposed fuzzy-logic controller performed well under conditions similar to 26 
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those expected in full-scale SAnMBR systems.  1 

 2 

4.4. Overall performance of the advanced control system  3 

 4 

Figure 7 shows the average daily membrane performance logged whilst using the 5 

control system for one month. The average MLTS concentration entering the membrane 6 

tank during the operating period ranged from around 16 to 18 g L-1. This variation in 7 

MLTS was caused by the dynamics of the influent flow and load entering the 8 

demonstration plant. The results shown in Figure 7 can be divided in two different 9 

periods: whilst the controller was not calibrated (until day 9) and when fully adjusted 10 

(after day 9). Before the advanced control system was implemented, the membranes 11 

were operated by time-based filtration sequences (resulting in a J20 of 8 LMH) with 12 

constant gasification intensity (SGDm of 0.35 Nm3 h-1 m-2). The time-based filtration 13 

sequences entailed a specific schedule consisting of a combination of different 14 

individual stages (back-flushing, degasification and ventilation) taken from a basic F-R 15 

cycle. The time-based operating mode was as follows: a 300-second basic F-R cycle 16 

(250 s filtration and 50 s relaxation), 30 seconds of back-flush every 10 F-R cycles, 40 17 

seconds of ventilation every 10 F-R cycles, and 30 seconds of degasification every 50 18 

F-R cycles.   19 

 20 

The savings made in specific gas demand (SGDm, SGDP) after implementing the 21 

proposed control system (in comparison with the previous time-based membrane 22 

operating mode) is shown in Figure 7 as a clear area (i.e. the difference between the 23 

applied specific gas demand and the maximum y-axis value: 0.35 Nm3 h-1 m-2). 24 

Comparing the results shown in Figure 7 with those of the previous operating period in 25 

which membranes were operated at a fixed BRF of 0.35 Nm3 h-1 m-2, reveals energy 26 
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savings during membrane scouring of up to 60% (calculated theoretically by 1 

considering the energy needed for adiabatic compression according to the classic 2 

mechanical energy balance). Indeed, the energy demand for membrane scouring was 3 

reduced from approx. 0.36 to 0.15 kWh m-3.   4 

 5 

As Figure 7 shows, even whilst operating sub-optimally (until day 9), the controller 6 

allowed a slight reduction in the energy required for membrane scouring. On the other 7 

hand, after tuning the control system, an SGDm of around 0.23 Nm3 h-1 m-2 was enough 8 

to operate the two-and-a-half-year-old membranes sub-critically (see Figure 7a). As a 9 

result, the SGDP was reduced by up to 25%. These values resulted in an SGDP of 10 

around 30, operating with average permeability of 40 LMH bar-1. In this respect, quite 11 

stable average TMP values (around 0.18 bars) were achieved when operating with an 12 

average J20 of 8 LMH.  13 

 14 

Taking into account how long membranes last if not chemically cleaned or 15 

recovered (as reflected by the low permeability values), the results shown in this study 16 

predict that operating a full-scale SAnMBR using the proposed advanced control system 17 

would be quite sustainable. For instance, Judd and Judd [1] reported average SGDm and 18 

SGDP values of 0.57 Nm3 h-1 m-2 and 27.5, respectively, in full-scale WWTPs treating 19 

urban wastewater with submerged aerobic MBRs featuring flat-sheet membranes. The 20 

same authors reported average SGDm and SGDP values of 0.3 Nm3 h-1 m-2 and 16, 21 

respectively, when the membranes were hollow-fibre. These full-scale aerobic operating 22 

results are similar to the results obtained in our study because the MLTS levels applied 23 

in our study (approx. 20 g L-1) were higher than those in aerobic MBRs (ranging from 24 

around 12 to 18 g L-1). In addition, the lifespan of the membranes in our study must be 25 

taken into account. 26 
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 1 

As regards the physical cleaning stages, the average ventilation and back-flushing 2 

frequencies were about 21 and 5, respectively. The total downtime caused by physical 3 

cleaning therefore accounted for less than 2% of operating time. 4 

 5 

Table 3 summarises the average SAnMBR performance when operating on a time-6 

based mode and the performance of the proposed filtration control system, showing that 7 

far greater energy savings could be achieved by the proposed control system than the 8 

time-based fixed operating mode.  9 

 10 

The proposed advanced control system enables adequate filtration performance; 11 

makes use of the on-line equipment available in the plant; and is user-friendly and 12 

adaptable to new operating requirements. 13 

 14 

4.4. Overall performance of the SAnMBR system  15 

 16 

As mentioned earlier, the filtration system controller was tested using a membrane 17 

tank that continuously recycled the permeate back into the system. As Figure 4a shows, 18 

the permeate flow ranged from about 135 to 400 L h-1 (225 L h-1 on average). As 19 

regards designing a full-scale plant, the findings set forth in this paper would be useful 20 

for determining the reaction volume giving the HRT needed to ensure that the biological 21 

process performs adequately.  22 

 23 

Previous research on this SAnMBR system has shown that acceptable COD 24 

removal efficiencies (of around 90%) can be accomplished in a wide range of operating 25 

conditions: SRT of 20 - 70 days, ambient temperature conditions (14 - 33 ºC), OLR of 26 
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0.5 - 2 kgCOD m-3 d-1, and HRT of 5 - 24 hours. These results shows that this SAnMBR 1 

system would be able to treat the organic load occurring at the peak flow simulated in 2 

this study by applying Copp’s influent data. 3 

 4 

Biogas was produced at a significant rate on average (around 100 L d-1) throughout 5 

the experimental period. A fraction of the biogas stored in the anaerobic reactor head 6 

space was recycled through the membrane tanks to scour them which enabled the ORP 7 

and pH in the mixed liquor to remain relatively stable at around 450-500 mV and 6.5-8 

7.1, respectively. An equilibrium between liquid and gas phases in SAnMBR systems 9 

was observed [36], i.e. the CO2 content of the effluent was similar to the CO2 saturation 10 

point. Hence, most of the CO2 produced remained in the mixed liquor and acted as a pH 11 

buffer. This was confirmed by the high Alk content of the mixed liquor (around 600 12 

mgCaCO3 L
-1 during the operating period), in comparison with the influent Alk (around 13 

332 mgCaCO3 L
-1). This behaviour highlights the importance of scouring the 14 

membranes with a fraction of the biogas produced by SAnMBR systems because 15 

according to recent literature, pH is a key factor in membrane fouling [37, 38].  16 

 17 

As regards the impact of SRT on membrane fouling, a considerably higher 18 

propensity to irreversible fouling was observed when SRT was 20 days rather than 70 19 

days. This was attributed mainly to the fact that EPS and SMP concentrations were 20 

higher when SRT was lower (data not shown). Furthermore, it is well known that at any 21 

given reactor volume, the higher the SRT, the higher the MLTS in the system. MLTS 22 

directly reduces K [31], resulting in higher operating costs. Therefore, a compromise 23 

must be struck between SRT and MLTS levels in order to minimise both irreversible 24 

membrane fouling and operating costs. On the basis of the results obtained, we propose 25 

that SAnMBR systems be operated with MLTS levels of approximately 15 to 20 g L-1 in 26 
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the membrane tank and a minimum SRT of 40 days. 1 

 2 

5. Conclusions  3 

 4 

An advanced control system designed to control filtration in SAnMBR systems has 5 

been developed, fine-tuned and validated. It consists of lower-layer controllers (classical 6 

on-off and PID controllers) and an upper-layer (knowledge-based) control. The results 7 

of this study suggest that the proposed control system is promising: low fouling rates 8 

(almost 0 mbar min-1) were achieved by applying sustainable gas sparging intensities 9 

(approx. 0.23 Nm3 h-1 m-2). Moreover, ventilation and back-flushing downtimes were 10 

reduced considerably (to around 2% of total operating time) in comparison with full-11 

scale aerobic MBRs. 12 
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Figure and table captions 1 

 2 

Figure 1. Simplified lay-out of the SAnMBR demonstration plant where the control system was 3 

designed.  4 

Figure 2. Flow chart of the proposed filtration control system. 5 

Figure 3. Performance of the sludge recycling controller. Evolution of sludge recycled through the 6 

membrane tank (SRF), set point of the sludge recycled through the membrane tank (SRFSP), permeate 7 

flow (FIT-P11), permeate flow set point (FIT-P11SP), and rotating speed of the sludge recycling pump 8 

(FC-P12). 9 

Figure 4. Ventilation initiation time determined by knowledge-based rule. Evolution of: (a) permeate 10 

flow set point (FIT-P11SP) and membrane operating stage (V: ventilation; B: back-flushing; and F: 11 

filtration); and (b) 20 ºC-normalised transmembrane flux (J20), 20 ºC-normalised transmembrane flux set 12 

point (J20, SP), 20 ºC-normalised minimum transmembrane flux set point (J20, SP), and rotating speed of the 13 

permeate pump (FC-P11). 14 

Figure 5. Back-flushing initiation time triggered by knowledge-based rules. Evolution of: (a) 15 

transmembrane pressure (TMP) and membrane operating stage (V: ventilation; B: back-flushing; and F: 16 

filtration); and (b) membrane permeability (K20), maximum filtration membrane permeability recorded 17 

between consecutive back-flushing (K20,MAX,F), and maximum calibrated back-flushing membrane 18 

permeability (K20,MAX,BF). 19 

Figure 6. Fuzzy-logic controller performance. Evolution of: (a) permeate flow (FIT-P11), permeate flow 20 

set point (FIT-P11SP), biogas recycling flow set point (BRFSP) and biogas recycling flow (BRF); and (b) 21 

fouling rate (FRC), fouling rate set point (FRC_SP), biogas recycling flow set point (BRFSP) and biogas 22 

recycling flow (BRF). 23 

Figure 7. Overall advanced control system results. Evolution of: (a) 20 ºC-normalised transmembrane 24 

flux (J20), specific gas demand per membrane area (SGDm), and transmembrane pressure (TMP); and (b) 25 

20 ºC-normalised transmembrane flux (J20), specific gas demand per permeate volume (SGDp), and 26 

membrane permeability (K20). 27 

Table 1. Average influent wastewater properties. 28 

Table 2. Inference rules of control system.  29 

Table 3. Overall SAnMBR operating results with control system on and off.  30 
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Figure 1. Simplified lay-out of the SAnMBR demonstration plant where the control system was 2 
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Figure 2. Flow chart of the proposed filtration control system. 2 
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 1 

Figure 3. Performance of the sludge recycling controller. Evolution of sludge recycled through the 2 

membrane tank (SRF), set point of the sludge recycled through the membrane tank (SRFSP), permeate 3 

flow (FIT-P11), permeate flow set point (FIT-P11SP), and rotating speed of the sludge recycling pump 4 

(FC-P12). 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 



 

43 

 

 1 

(a) 2 

 3 

(b) 4 

Figure 4. Ventilation initiation time determined by knowledge-based rule. Evolution of: (a) permeate 5 

flow set point (FIT-P11SP) and membrane operating stage (V: ventilation; B: back-flushing; and F: 6 

filtration); and (b) 20 ºC-normalised transmembrane flux (J20), 20 ºC-normalised transmembrane flux set 7 

point (J20, SP), 20 ºC-normalised minimum transmembrane flux set point (J20, SP), and rotating speed of the 8 

permeate pump (FC-P11). 9 
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 3 

(b) 4 

Figure 5. Back-flushing initiation time triggered by knowledge-based rules. Evolution of: (a) 5 

transmembrane pressure (TMP) and membrane operating stage (V: ventilation; B: back-flushing; and F: 6 

filtration); and (b) membrane permeability (K20), maximum filtration membrane permeability recorded 7 

between consecutive back-flushing (K20,MAX,F), and maximum calibrated back-flushing membrane 8 

permeability (K20,MAX,BF). 9 
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(b) 4 

 5 

Figure 6. Fuzzy-logic controller performance. Evolution of: (a) permeate flow (FIT-P11), permeate flow 6 

set point (FIT-P11SP), biogas recycling flow set point (BRFSP) and biogas recycling flow (BRF); and (b) 7 

fouling rate (FRC), fouling rate set point (FRC_SP), biogas recycling flow set point (BRFSP) and biogas 8 

recycling flow (BRF). 9 
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 3 

(b) 4 

Figure 7. Overall advanced control system results. Evolution of: (a) 20 ºC-normalised transmembrane 5 

flux (J20), specific gas demand per membrane area (SGDm), and transmembrane pressure (TMP); and (b) 6 

20 ºC-normalised transmembrane flux (J20), specific gas demand per permeate volume (SGDp), and 7 

membrane permeability (K20). 8 
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Table 1. Average influent wastewater properties. 1 

Parameter Unit Mean SD CI (95%) Median ( min - max ) 

TSS mgTSS L-1 323 176 16 286 ( 44 - 1060 ) 

VSS %  80.4 7.9 0.7 81.4 ( 44.1 - 100.0 ) 

NH4-N mgN L-1 32.2 8.9 0.9 32 ( 4.1 - 69.9 ) 

PO4-P mgP L-1 4.0 1.6 0.2 3.89 ( 0.58 - 13.32 ) 

SO4-S mgS L-1 105 13 2 103 ( 70 - 139 ) 

Total COD mgCOD L-1 585 253 43 537 ( 211 - 1472 ) 

Soluble COD mgCOD L-1 80 20 4 77 ( 32 - 132 ) 

pH un. pH 7.7 0.2 0.02 7.7 ( 6.8 - 8.2 ) 

Alk mgCaCO3 L-1 332 58 5 331 ( 139 - 707 ) 

VFA mgCOD L-1 7.9 10.5 0.9 6.3 ( 0 - 198 ) 
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Table 2. Inference rules of control system.  1 

Inference Rules 

1. If eFRC is P and ΣeFRC is P then ΔBRFSP is LP  

2. If eFRC is N and ΣeFRC is N then ΔBRFSP is LN 

3. If eFRC is Z and ΣeFRC is Z then ΔBRFSP is LN 

4. If eFRC is P and ΔeFRC is P then ΔBRFSP is HP 

5. If eFRC is N and ΔeFRC is P then ΔBRFSP is HN 

 2 

 3 

 4 
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Table 3. Overall SAnMBR operating results with control system on and off. 1 

Operating results 
Time-based 

operating mode 

Control system 

action 

Average SGDm 

(Nm3 h-1 m-2) 
0.35 0.25 

Average SGDP 45 30 

Average SRF 

(m3 h-1) 
2.7 1.7 

Energy for membrane scouring 

(kWh m3) 
0.36 0.15 

Energy for pumping sludge 

(kWh m3) 
0.06 0.03 

Ventilation frequency 

(initiations/day) 
27 21 

Back-flushing frequency 

(initiations/day) 
27 5 

Downtime for ventilation 

(%) 
1.6 1.4 

Downtime for back-flushing 

(%) 
1.2 0.2 

Overall downtime for physical 

cleaning 

(%) 

2.8 1.6 

 2 

 3 

 4 


