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The Hanle effect1, being one of the first manifestations of quantum theory 

introducing the concept of coherent superposition between pure states, plays 

a key role in numerous aspects of science, varying from applicative 

spectroscopy2 to fundamental astrophysical investigations3,4. Optical 

analogues of quantum effects help to achieve deeper understanding of 

quantum phenomena and, in turn, to develop cross-disciplinary approaches to 

realizations of new applications in photonics5,6. Here we show that metallic 

nanostructures can be designed to exhibit a plasmonic analogue of the 

quantum Hanle effect and its associated polarization rotation. In the original 

Hanle effect, the time-reversal symmetry is broken by a static magnetic field. 

Here we achieve this by introducing dissipative level crossing of localised 

surface plasmons due to nonuniform losses, as can be explained by a non-

Hermitian formulation of quantum mechanics7,8. These artificial plasmonic 

“molecules” arranged in ordered lattice are shown to form a new type of 

metamaterial with strong circular birefringence and optical activity.  
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The quantum Hanle effect describes the polarization rotation of scattered 

electromagnetic radiation due to atomic coherence between Zeeman states, split by 

a weak magnetic field1. The significance of this phenomenon is important in lifetime 

measurements and spectroscopy2, detection of magnetic fields in solar prominence3 

and stellar winds4. The main advantage for typical measurements of this kind is a 

very high spectral resolution and sensitivity to magnetic fields, since the level 

crossings are not limited by the Doppler width of the spectral lines, but solely by the 

coherence in individual atoms. The observation of the Hanle effect is possible in the 

presence of a magnetic field which violates the time-reversal symmetry as was 

observed in the experiments on coherent backscattering9 and can contribute to parity 

symmetry breaking10. 

The investigations of optical analogues of quantum effects are important to 

achieve deeper understanding of quantum phenomena and give prospect to new 

applications based on cross-disciplinary approaches. For example, the realization of 

sharp spectral resonances with nanoscale metallic (plasmonic) nanostructures 

important for biosensing and nonlinear photonic applications has resulted from the 

studies of optical counterparts of the Fano resonance (interference between 

scattering amplitudes of bound and continuum electronic states)5 and 

electromagnetically induced transparency (EIT) (destructive interference of electron 

probability amplitudes, induced by two spectrally different optical beams)6.  

Here we investigate an optical counterpart of the quantum Hanle effect. By 

employing the concepts of nonhermitian quantum mechanics7,8, we have designed 

an artificial plasmonic “atom” which has a pair of degenerate resonances that split by 
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broken time-reversal symmetry due to the presence of loss. This is a complete 

optical analogue of the atomic system where initially degenerate atomic states are 

split when the time-reversal symmetry is broken by the magnetic field1. Two-

dimensional (2D) arrays of these particles can form a new artificial material 

(metamaterial) with extremely efficient optical activity.  

Metamaterials provide vast opportunities to manipulate light beams in an 

uncommon way11, promising a wide range of potential applications such as cloaking 

12,13 and perfect lensing14 based on negative index of refraction. In the optical range, 

the properties of metamaterials rely on plasmonic effects 11. In this work we will 

employ the localized surface plasmon (LSP) resonances supported by metal 

nanoparticles made of noble metals15. These resonances are solely determined by 

the particle’s shape and surrounding environment and can be engineered and tuned 

to the desired frequency16–18.   

The basic scheme of the Hanle effect is represented in Fig. 1(a-b). Linearly 

polarized light, being a superposition of left and right circular polarizations, excites 

coherently the p-orbitals of an atom, conserving the total angular momentum. The 

degeneracy between p-states [Fig. 1(a)] could be removed by an applied static 

magnetic field [Fig 1(b)]. The excited p-states evolve in time with slightly dissimilar 

time constants, adding different phases for opposite circular polarizations and, as a 

consequence, resulting in polarization-unpreserved light scattering. The polarization 

of the scattered light depends then on the strength of the magnetic field. The 

plasmonic “atom level” diagram of our optical analogue is shown in Fig. 1(c-d). The 

vacuum state (|vac>) is analogous to the ground state of an atom, while the 

degenerate (in frequency) LSP resonances represent the p-orbitals of this atom and 

are marked as |H> and |V> on the diagram [Fig. 1(c)]. The degeneracy of this LSP 
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states can be removed by dissipative coupling in the presence of nonuniform loss 

[Fig. 1(d)], resulting in the shift of LSP resonances with respect to each other,  as will 

be shown below.  

The nanoparticle analysed in this work has been taken to be a metallic cross 

that has two degenerate dipolar LSP resonances, corresponding to horizontal (|H>) 

and vertical (|V>) polarisations, respectively. This particle is used as the unit cell of 

the array depicted in Fig. 1(e), and it represents the above description when εim=0. In 

this degenerate case, the polarisation of the normally incident light on the 

nanostructure will not change. In principle, degeneracy may take place between 

plasmonic resonances of any order and could lead to interesting interplay and time 

evolution19. The degeneracy between the LSP resonances can be removed by 

introduction of losses (imaginary part of permittivity εim≠0) in some places near the 

cross arms. Such plasmonic nanoparticle with non-degenerate |H> and |V> states 

coherently scatters a fraction of the incident linearly polarised light into the 

orthogonal polarization state. Thus, the polarisation of the scattered light will depend 

on the “splitting” of the LSP states governed by the loss—in analogy to the 

polarisation state of light scattered by atoms in the quantum Hanle effect depending 

on the splitting of atomic levels governed by magnetic field.  

To analyze the loss-induced interplay and coupling between eigenmodes of 

the structure we developed a rigorous theoretical description using the non-

Hermitian quantum mechanical approach to describe loss-induced coupling between 

LSP resonances 7,8. Non-Hermitian formulation of quantum mechanics is especially 

useful in the description of dissipative systems helping to get rid of ‘bath’ degrees of 

freedom.   Rigorously, probability conservation does not necessarily mean the 

hermicity of time-evolution operators, but just the combination of parity and time-
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reversal commutations with an appropriate Hamiltonian of the system. Interesting 

phenomena, such as higher harmonics generation20 or unidirectional mode coupling 

in waveguide structures21, may be analyzed in terms of this nonhermitian formalism. 

For our plasmonic system –or any other electromagnetic system under 

consideration- the eigenmodes can be derived from the solution of the following 

master equations22: 

( ) ( )

( )( ) ( ) ( )
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,
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H r H r
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(1) 

where ( )H r
  is the magnetic field of the mode, ω  is the angular frequency, c is the 

speed of light in vacuum, and ( ),rε ω is the position and frequency dependent 

dielectric constant. If both dispersion and absorption of the medium are neglected, 

the above defined Θ -operator is Hermitian and forms a complete orthogonal set of 

eigenmodes ( ){ }H r
  . Nevertheless, for certain problems (e.g. lasers, optical 

amplifiers or lossy structures), even if a single frequency is considered, the dielectric 

permittivity is a complex number and the Θ -operator in not Hermitian anymore. 

However, it is always possible to decompose it into a sum of Hermitian and anti-

Hermitian parts as follows: 
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where HΘ  and AΘ  are the Hermitian and anti-Hermitian operators and 

( ) ( ) ( ), , ,r imr r i rε ω ε ω ε ω= +
   . HΘ  provides an orthogonal set of eigenmodes 

spanning the entire electromagnetic space.  

In the following we have considered (for the sake of simplicity) only two 

modes |a> and |b>, investigating their coupling originating from the presence of loss 

or gain ( 0AΘ ≠ ). The total magnetic field is given by the sum of individual modes:  

( ) ( ) ( )( ) ( )i t i t
a bH r a t H r e b t H r eω ω= +

    
, (3) 

where a(t) and b(t) are the complex time-dependent amplitudes of each mode. In the 

case of small imaginary part of the permittivity ( ( ) ( ), ,r imr rε ω ε ω 
 ), the time 

evolution can be obtained in the slowly varying amplitudes ( ( ), ( )a t b t ) approximation 

by inserting Eq.3 into Eq.2 and taking into account the orthogonality of the field 

components ( ( ) ( )* 3

02i j ijH r H r d r ω δ
µ

⋅ =∫
      ): 
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where ( )jE r
   is the electric field corresponding to the j-th mode and  is the Plank 

constant. A similar equation may be obtained for the amplitude of the mode ( )b t . 

As can be seen from Eq. 4, the coupling between the two modes is given by 

an overlap integral weighed by the space-dependent imaginary part of the 

permittivity. For structures with high symmetry and uniform losses, the coupling 

coefficients between two modes will be identically zero. However, the situation will 

be completely different if the medium is not uniformly lossy (e.g., selectively doped 

dielectric substrate or electrically or optically induced loss or gain). The loss-induced 

coupling will cause the removal of the degeneracy and will lead to the modification of 

the polarisation state of scattered light (Fig. 1(d)).  

In order to validate the analytical results, we have numerically simulated gold 

nano-crosses on a silica substrate, surrounded by a host dielectric medium. This 

surrounding material has been chosen to be selectively lossy only in one quarter of 

space (Fig. 1(e)). The metallic particles were distributed in an ordered array with 600 

nm periodicity, forming a 2D planar metamaterial structure in order to enhance the 

overall optical response. The particle dimensions (marked on Fig. 1(e)) were taken to 

be w = 100 nm, t = 20 nm, and l = 400 nm. The refractive index of the substrate, as 

well as embedding dielectric is 1.45, while the losses in one quarter of the 
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embedding dielectric are subject to changes. A Drude model fit for gold was chosen 

for the particle’s material23.  

The numerical experiment was performed in the frequency domain using the 

commercial software CST Microwave StudioTM with periodic boundary conditions. 

The normalized transmission spectra for amplitudes (upper set of curves in Fig. 2(a)) 

are shown for the metamaterial with different losses of the dielectric patch (Fig. 1 

(e)). With the increased loss, the LSP resonances exhibit broadening as expected. 

The level splitting between |H> and |V> states cannot be observed in these 

transmission spectra due to the natural broadening of the resonances. The width of 

the resonances is determined by the coefficients aξ and bξ  (Eq. 4) which depend on 

both metal and dielectric losses, while the level splitting is defined by the coupling 

coefficient - abξ . Assuming a passive environment ( ( ) 0im rε >
 ),the weighted 

Hermitian inner product over L2 metric space may be defined, and the following 

Cauchy-Schwarz inequality will hold 

2
a b abξ ξ ξ≥ . (5) 

This implies that in this system the broadening of the resonances with the loss 

increase will always be greater than the splitting, preventing the direct observation of 

the splitting of the resonances. This is in striking contrast with the plasmonic 

analogues of EIT6, where the splitting is larger than the resonance width. In our case 

the coupling takes place between two “bright” modes while a “dark” (with narrow 

linewidth) mode is generally used for EIT. The splitting can be observed, however, if 

we consider the transmission spectra for the two uncoupled supermodes of the unit 

cell, |V>+|H> and |V>-|H>, which result from the coupling of |H> and |V>. These two 
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supermodes can be excited independently using incident diagonal polarizations, for 

which two different resonances in the transmission spectra can be seen (Fig. 2(c)), 

with no polarization conversion between them. We see in Fig. 2(c) that the splitting of 

the two supermodes increases with the losses, as predicted by our model. 

The lower set of curves in Fig. 2(a) shows the conversion efficiency of the 

polarization defined as the ratio of the square root of intensity of V-polarized 

(scattered) to H-polarized (incident) fields. The overall conversion efficiency is 

reaching 10% in the vicinity of the LSP resonance and may be improved by 

increasing losses (Fig. 2b).  

The steady state behaviour of the system may be analyzed in terms of ‘rate 

equations’ following the energy diagram in Fig. 1(d). The mode population of the 

vertical (V) resonance under the incident horizontal (H-polarized) field is obtained as: 

( )( )
( )( )

( )( )

, , , ,

, , , ,

, , , ,

1
ba V rad V dis H rad H dis

ba ab V rad V dis H rad H dis

ba V rad V dis H rad H dis

V E

E

ξ γ γ γ γ
κ
ξ ξ γ γ γ γ

κξ γ γ γ γ

+ +
= ≈

+ + −

≈ − + +
,

 
(6) 

where E is the input H-polarized field amplitude and disVradVV ,, γγγ += , being radV ,γ  

and disV ,γ  the radiative

 

and nonradiative (dissipative) lifetimes, respectively. In the 

approximation made in Eq. 5, we assumed that the inter-mode coupling ( abξ ) is small 

compared to the overall damping coefficient which is proportional to aξ and bξ  (Eq. 

4). The far-field intensity of light with the rotated polarization is proportional to 

,/ V radV γ . The behaviour of the conversion efficiency with abξ , predicted to be linear 
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by Eq. 6, is verified by the numerical experiment for small losses where Eq. (6) is 

valid, and deviates slightly from linear dependence at larger losses (Fig. 2(b)).  

It is interesting to consider the effect that this structure has on incident circular 

polarization. The output transmitted polarization (the amplitude ratio and the phase 

difference between the vertical and horizontal components) is plotted in Fig. 3(a), 

both for incident right- and left-handed circular polarization. We see that elliptical 

polarization is transmitted near the resonance. The reflected polarization is also 

elliptical (Fig 3(b)). The degree of elipticity also depends on how close the 

wavelength of the incident light is to the plasmonic resonances and on the loss.   

 We have introduced an analogue of the quantum Hanle effect in 

artificial plasmonic molecules. Ordered arrays of artificial molecules are shown to 

form a metamaterial with extraordinary pronounced circular birefringence and optical 

activity induced by loss-coupled polarisation states. The efficient control of the 

polarization state of light can be achieved using this effect in subwavelength thick 

slabs in both reflection and transmission geometries. Polarization manipulation by 

2D optically active artificially structured media has been previously demonstrated in 

several configurations, such as planar arrays of subwavelength gammadions24, spiral 

bull-eye structures25, and 3D metamaterials26. The use of the loss-coupled states 

open the possibility to build metamaterial components for active control of the 

reflected or transmitted light polarization if the nonuniform loss can be selectively 

induced by external stimuli, such as thermal, electric or optical signals. If turned 

around, the effect can be used for measurements of local absorption (or gain) in 

metamaterials via polarization measurements or indeed in sensing applications for 

analytes introducing optical loss. Understanding of spatially nonuniform loss/gain 

coupling is imperative also for the development of loss-compensation and gain in 
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metamaterials, where loss may result in additional and sometimes undesirable 

effects. From the fundamental point of view, the proposed general formalism for 

dissipative level crossing by employing the non-Hermitian effects in metamaterials 

may be used to analyse and design new effects in plasmonic systems where metal 

loss is intrinsically present. 
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Figure Captions 

Figure 1. Quantum Hanle effect and its plasmonic analogue. (a-b) Basic level 

structure of ‘traditional’ Hanle effect (a) without and (b) with an applied magnetic field 

to break time symmetry. (c-d) Optical counterpart of the Hanle effect in an artificial 

plasmonic molecule: (c) Degenerate resonances in the symmetric particle and (d) 

dissipative coupling of the resonances |H> and |V> (top) and its equivalent scenario 

of the splitting into two supermodes |V>+|H> and |V>-|H> (bot). (e) Schematic of the 

metamaterial unit cell for the observation of the Hanle effect analogue: a metal 

nanocross on a substrate, with an embedding dielectric, one quarter of which will 

have the imaginary part of the permittivity subject to changes. 

Figure 2. Spectral response and polarization conversion. (a) (upper set of 

curves) S-parameter transmission spectra, (lower curves) polarization conversion 

efficiency, defined as the s-parameter transmission from the input to the orthogonal 

polarization at the output.  The different loss values for one quarter of the embedding 

dielectric appear at the legends. (b) Polarization conversion efficiency as a function 

of induced losses. (c) Transmission spectra for the two incident diagonal polarization 

exciting the two uncoupled supermodes of the structure, showing the increased 

splitting for higher loss values of the dielectric patch. In all the spectral figures, the 

transmission s-parameter is plotted, defined as ( ) ( )0// ηη insoutT EES =  where sη  

and 0η  are the substrate and vacuum wave impedances, such that the power 

transmission is given by 2
TST = . We use s-parameters rather than power 

transmission because, being proportional to the electric field amplitude, they are 

easily related to field polarization. 
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Figure 3. Effects on incident circular polarization. Amplitude ratio (solid line) and 

phase difference (dashed line) of the vertical and horizontal (a) transmitted field 

components and (b) reflected field components, when the input plane wave is right 

or left-handed circularly polarized. 
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Figure 1. Quantum Hanle effect and its metamaterial analogue. 
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Figure 2. Spectral response and polarization conversion 
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Figure 3. Effects on incident circular polarization. 
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