
Efficient and Elastic
Management of Computing

Infrastructures

Gestión Elástica y Eficiente de Infraestructuras
de Cómputo

Dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy in the subject of Computer Science

October 2015

Author: Carlos de Alfonso Laguna
Advisor: Ignacio Blanquer Espert
Advisor: Germán Moltó Martinez

Acknowledgements

En primer lugar quiero dar las gracias a mis padres Lola y Ramón, por haberme
animado siempre a continuar trabajando. Gracias a ellos he ido avanzando en mi
vida y he llegado hasta aqúı. Están tan orgullosos, que sólo por óırles hablar de
mı́, merece la pena seguir haciendo cosas. Muchas gracias papás, espero seguir
consiguiendo que os sintáis orgullosos de mı́.

Quiero dar las gracias a Mar porque siempre está a mi lado y por haberme apoyado
tanto para terminar este trabajo. Ha estado todo el tiempo ah́ı animándome,
diciéndome lo poco que me iba a costar terminarlo, y que no me preocupara,
porque iba a quedar bien. Muchas gracias mi amor, espero que sigas siempre
junto a mı́.

También tengo que agradecer la labor de Miguel Caballer y Fernando Alvarrúız,
porque con ellos empezó esta tesis y porque han aportado mucho trabajo a ella. Y
agradecer a Nacho Blanquer y a Germán Moltó, que se hayan ido incorporando al
desarrollo del trabajo, y se hayan implicado de tal forma que han acabado siendo
mis directores. Muchas gracias a todos, espero poder continuar trabajando con
vosotros.

Y finalmente, quiero dar las gracias a Vicente Hernández, porque él es el art́ıfice
de que hace años empezase con esto de la investigación y sé que, aunque no me
haya podido acompañar hasta aqúı, se habŕıa sentido orgulloso al ver que por fin
he terminado. Muchas gracias, Vicente.

iii

Abstract

Modern data centers integrate a lot of computer and electronic devices. However,
some reports state that the mean usage of a typical data center is around 50% of
its peak capacity, and the mean usage of each server is between 10% and 50%. A
lot of energy is destined to power on computer hardware that most of the time
remains idle. Therefore, it would be possible to save energy simply by powering
off those parts from the data center that are not actually used, and powering them
on again as they are needed.

Most data centers have computing clusters that are used for intensive computing,
recently evolving towards an on-premises Cloud service model. Despite the use of
low consuming components, higher energy savings can be achieved by dynamically
adapting the system to the actual workload. The main approach in this case is
the usage of energy saving criteria for scheduling the jobs or the virtual machines
into the working nodes. The aim is to power off idle servers automatically. But it
is necessary to schedule the power management of the servers in order to minimize
the impact on the end users and their applications.

The objective of this thesis is the elastic and efficient management of cluster in-
frastructures, with the aim of reducing the costs associated to idle components.
This objective is addressed by automating the power management of the working
nodes in a computing cluster, and also proactive stimulating the load distribution
to achieve idle resources that could be powered off by means of memory overcom-
mitment and live migration of virtual machines. Moreover, this automation is of
interest for virtual clusters, as they also suffer from the same problems. While in
physical clusters idle working nodes waste energy, in the case of virtual clusters
that are built from virtual machines, the idle working nodes can waste money in
commercial Clouds or computational resources in an on-premises Cloud.

v

Resumen

En los Centros de Procesos de Datos (CPD) existe una gran concentración de
dispositivos informáticos y de equipamiento electrónico. Sin embargo, algunos
estudios han mostrado que la utilización media de los CPD está en torno al 50%, y
que la utilización media de los servidores se encuentra entre el 10% y el 50%. Estos
datos evidencian que existe una gran cantidad de enerǵıa destinada a alimentar
equipamiento ocioso, y que podŕıamos conseguir un ahorro energético simplemente
apagando los componentes que no se estén utilizando.

En muchos CPD suele haber clusters de computadores que se utilizan para com-
putación de altas prestaciones y para la creación de Clouds privados. Si bien se ha
tratado de ahorrar enerǵıa utilizando componentes de bajo consumo, también es
posible conseguirlo adaptando los sistemas a la carga de trabajo en cada momento.
En los últimos años han surgido trabajos que investigan la aplicación de criterios
energéticos a la hora de seleccionar en qué servidor, de entre los que forman un
cluster, se debe ejecutar un trabajo o alojar una máquina virtual. En muchos casos
se trata de conseguir equipos ociosos que puedan ser apagados, pero habitualmente
se asume que dicho apagado se hace de forma automática, y que los equipos se
encienden de nuevo cuando son necesarios. Sin embargo, es necesario hacer una
planificación de encendido y apagado de máquinas para minimizar el impacto en
el usuario final.

En esta tesis nos planteamos la gestión elástica y eficiente de infrastructuras de
cálculo tipo cluster, con el objetivo de reducir los costes asociados a los compo-
nentes ociosos. Para abordar este problema nos planteamos la automatización
del encendido y apagado de máquinas en los clusters, aśı como la aplicación de
técnicas de migración en vivo y de sobreaprovisionamiento de memoria para es-
timular la obtención de equipos ociosos que puedan ser apagados. Además, esta
automatización es de interés para los clusters virtuales, puesto que también sufren
el problema de los componentes ociosos, sólo que en este caso están compuestos,
en lugar de equipos f́ısicos que gastan enerǵıa, por máquinas virtuales que gastan
dinero en un proveedor Cloud comercial o recursos en un Cloud privado.

vii

Resum

En els Centres de Processament de Dades (CPD) hi ha una gran concentració
de dispositius informàtics i d’equipament electrònic. No obstant això, alguns es-
tudis han mostrat que la utilització mitjana dels CPD està entorn del 50%, i que
la utilització mitjana dels servidors es troba entre el 10% i el 50%. Estes dades
evidencien que hi ha una gran quantitat d’energia destinada a alimentar equipa-
ment ociós, i que podŕıem aconseguir un estalvi energètic simplement apagant els
components que no s’estiguen utilitzant.

En molts CPD sol haver-hi clusters de computadors que s’utilitzen per a com-
putació d’altes prestacions i per a la creació de Clouds privats. Si bé s’ha trac-
tat d’estalviar energia utilitzant components de baix consum, també és possible
aconseguir-ho adaptant els sistemes a la càrrega de treball en cada moment. En
els últims anys han sorgit treballs que investiguen l’aplicació de criteris energètics
a l’hora de seleccionar en quin servidor, d’entre els que formen un cluster, s’ha
d’executar un treball o allotjar una màquina virtual. En molts casos es tracta
d’aconseguir equips ociosos que puguen ser apagats, però habitualment s’assumix
que l’apagat es fa de forma automàtica, i que els equips s’encenen novament quan
són necessaris. No obstant això, és necessari fer una planificació d’encesa i apagat
de màquines per a minimitzar l’impacte en l’usuari final.

En esta tesi ens plantegem la gestió elàstica i eficient d’infrastructuras de càlcul
tipus cluster, amb l’objectiu de reduir els costos associats als components ociosos.
Per a abordar este problema ens plantegem l’automatització de l’encesa i apagat
de màquines en els clusters, aix́ı com l’aplicació de tècniques de migració en viu
i de sobreaprovisionament de memòria per a estimular l’obtenció d’equips ociosos
que puguen ser apagats. A més, esta automatització és d’interés per als clusters
virtuals, ja que també patixen el problema dels components ociosos, encara que
en este cas estan compostos per, en compte d’equips f́ısics que gasten energia, per
màquines virtuals que gasten diners en un provëıdor Cloud comercial o recursos
en un Cloud privat.

ix

Contents

Contents xi

1 Introduction and Objectives 1

1.1 Objectives . 8

1.2 Summary of the state of the art . 10

1.2.1 Automated Power Management . 10

1.2.2 Facilitating Power Management . 12

1.2.3 Elastic Virtual Clusters . 13

1.3 Organization of this Document . 14

2 An Energy Management System for Cluster Infrastructures 17

2.1 Introduction . 18

2.2 Power management approach . 19

2.3 Related Work . 20

2.4 System description . 22

2.4.1 CLUES Scheduler . 24

2.4.2 Resource Manager Connectors . 28

2.4.3 Hook system . 30

2.4.4 Sensor System . 31

2.5 Mixed cluster . 31

2.6 Results Evaluation . 32

2.6.1 Cluster 1 . 32

2.6.2 Cluster 2 . 34

2.7 Conclusion and Future Jobs . 37

xi

Contents

3 An Economic and Energy-Aware Analysis of the Viability of
Outsourcing Cluster Computing to the Cloud 39

3.1 Introduction . 40

3.2 Related work . 42

3.3 The Total Cost of Ownership (TCO) of an HPC Cluster 43

3.3.1 The Cost of an HPC Cluster on the Cloud . 46

3.4 Cost Analysis of Moving HPC to the Cloud . 48

3.4.1 Supporting Data for the Case Study . 51

3.4.2 Comparing clusters . 53

3.5 Discussion . 56

3.6 Conclusions . 57

4 EC3: Elastic Cloud Computing Cluster 59

4.1 Introduction . 60

4.2 Related Work . 61

4.3 EC3: Elastic Cloud Computing Cluster . 63

4.3.1 Virtual Infrastructure Deployment . 64

4.3.2 Elasticity Rules . 65

4.3.3 Overall Architecture . 68

4.3.4 Connecting to the IaaS . 70

4.4 Case studies . 71

4.4.1 Clusters with long usage period . 71

4.4.2 Ad-Hoc Cluster . 73

4.5 Conclusion and Future work . 76

5 Automatic Consolidation of Virtual Machines in On-Premises
Cloud Computing Platforms 79

5.1 Introduction . 80

5.2 Related works for the problem of redistributing the VMs 82

5.3 VMs distribution among physical hosts . 85

5.4 The Virtual Machine Consolidation Agent . 86

5.4.1 Connector to the platform . 87

5.4.2 Monitoring system . 88

5.4.3 Analysis of the platform and planning the migrations. 89

xii

Contents

5.4.4 Execution of the migration plan . 94

5.5 Integrating VMCA with the policies of the platform. 94

5.6 Experiments with VMCA . 95

5.6.1 Selecting a configuration of parameters . 96

5.6.2 Tests into the production platform . 99

5.7 Conclusions and future work . 102

6 Automatic Memory-based Vertical Elasticity and Overcommit-
ment on Cloud Platforms 105

6.1 Introduction . 106

6.2 Related work . 107

6.3 Problem, Methods & Materials . 109

6.4 Architecture . 111

6.4.1 Oversubscription via Stolen Memory . 114

6.5 Assessment via Case Studies . 116

6.5.1 Fully Elastic Virtual Clusters for Grid Infrastructures 116

6.5.2 Addressing Memory Overcommitment via Live Migration 119

6.6 Conclusion and Future Works . 124

7 Discussion of the Results 125

7.1 Putting Things Together: the Multi-Elastic Data Center. 125

7.2 Summary of the Achievements . 129

7.3 Publications . 130

7.4 Products . 131

7.4.1 CLUES . 131

7.4.2 EC3 . 134

7.4.3 VMCA . 135

7.4.4 CloudVAMP . 136

7.5 Future Directions . 136

7.5.1 Future Research Lines . 137

7.5.2 Future Improvements for the Products . 139

8 Conclusions 141

xiii

Contents

Bibliography 145

Index 159

xiv

Chapter 1

Introduction and Objectives

In modern societies, it is very common to apply Information and Communication
Technologies (ICT) to almost every daily action. Computer equipment is widely
used in one way or another in our workplace (computers, point of sale terminal,
robots, etc.), and some voices have started to claim about the problems associated
to the big scale of such amount of devices. There are initiatives that focus on the
problem that entail too many devices accessing data networks (e.g. Internet, 4G
networks, etc.), the waste management of all the devices that are being replaced
by new ones with the most advanced features, etc. But one of the main problems
is the huge need of electric power to run such big amount of devices, which will
increase over time, since giving more functionality to those devices usually implies
that they will need more energy.

When we focus on the data centers, where a lot of computer devices and electronic
units are needed for their common functions, maintenance, network connection,
etc., we face a problem that it is not possible to ignore. The problem is yet
more evident when we notice that the huge amount of energy used for the facility
is translated into a huge amount of money to pay for the energy. The energy
waste cannot be considered only an environmental concern, but also an economical
problem for the organizations that own the data centers. This problem has gained
importance as the price of the energy has been raising for the last years as seen in
Figure 1.1.

From a simple point of view, a data center consists of a set of servers. There
are different sizes of data centers that range from a reduced set of servers (e.g.
in a small enterprise), to facilities from big providers where there are dozens of
thousands of servers. It is usual that the principal providers keep the number of

1Sources for data: http://ec.europa.eu/eurostat/web/energy/data/main-tables and
http://www.eia.gov/forecasts/steo/tables/?tableNumber=8

1

http://ec.europa.eu/eurostat/web/energy/data/main-tables
http://www.eia.gov/forecasts/steo/tables/?tableNumber=8

Chapter 1. Introduction and Objectives

0,00 €

0,05 €

0,10 €

0,15 €

0,20 €

0,25 €

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

€
/k

W
h

Year

Price of Electricity - Euro Area (average)

Medium size Household Medium size Industry

$0,00

$0,02

$0,04

$0,06

$0,08

$0,10

$0,12

$0,14

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

$
/k

W
h

Year

Price of Electricity - United States (average)

Residential Sector Commercial Sector Industry Sector

Figure 1.1: Average price of energy in the Euro Area and the United States. According
to the available data1, the price has been raising in both geographical areas for all sectors,
except in the last two years for the industry sector in the Euro Area.

servers that they own in secret. In 2013, during a talk, Microsoft filtered that they
own more than one million of servers, while Google “is bigger” [16]. In 2009 it was
estimated that Google owned near one million of servers, and other big providers
such as Facebook, Yahoo, Amazon, IBM or HP own hundreds of thousands of
servers each one, hosted in their data centers [92]. In the context of eScience in
Spain, there exist different national data centers. One of the most important data
centers in Spain is the Barcelona Supercomputing Center (BSC) that owns more
than 3000 servers as of 2014[29]. There are also other smaller data centers such
as the Centro de Supercomputación de Castilla y León (CSCL) that owns around
300 servers [50], the supercomputer Margerit in the Centro de Supercomputación y
Visualización de Madrid that is built from around 300 servers2, the supercomputer
Altamira hosted in the University of Cantabria that accounts with more than
240 servers3, or the Centro de Supercomputación de Galicia (CESGA) that owns
around 150 servers [30].

In the end, the new era for ICT and the increase in the amount of new facilities
for computation have soared the demand of energy for data centers around the
world, in the last years. In 2008 a report stated that the fraction of energy needed
to power this kind of facilities was about 0.5% of the total energy consumed in the
world. It was also comparable to the energy consumption of a whole country such
as Argentina or The Netherlands [53]. This report also predicted that, if no action
was undertaken, such percentage would increase to 2% of the total by 2020. This
is such a big problem that in 2008, the emission of CO2 related to data centers
were also comparable to the emission of CO2 of the whole aviation industry [114].
In a later report [70], an analysis of the data a posteriori showed a slowdown in
the increase of the energetic demand, which was associated to the recession and
the economic downturn of 2008. Nevertheless the report situated the consumption
of data centers in 1.3% of the total energy in the world, in 2010.

2http://www.cesvima.upm.es/infrastructure/hpc
3http://web.unican.es/unidades/scti/servicio-santander-de-supercomputacion

2

http://www.cesvima.upm.es/infrastructure/hpc
http://web.unican.es/unidades/scti/servicio-santander-de-supercomputacion

All those data not only refer to the consumption of the servers, but also to the
facilities that are needed to host them. It is important to take into account that
the total energy needed for the data center is not only destinated to power the
servers, but also to other equipment that range from the Uninterruptible Power
Supplies (UPSs) to cooling machines that counteract the heat dissipated by the
electronic devices (e.g. servers, switches, displays, etc.).

Each data center has a lot of servers, but some reports state that the mean usage
of typical data centers is around 50% from the peak capacity to which they were
dimensioned [55], and the mean usage of each server is between 10% and 50% of its
capacity [110]. Such data uncover that it exists a lot of energy that is dedicated
to keep powered on a set of computer hardware that most of the time is idle.
Therefore, it would be possible to save energy simply by powering off those parts
from the data center that are not being used, and powering them on again as they
are needed.

In this context arises the need of containing the energetic consumption of computer
equipment. The two main approaches to energy saving in computers are basically
the Static Power Management (SPM) techniques and the Dynamic Power Manage-
ment (DPM) techniques [121]. The SPM techniques are related to the electronic
components as individuals, their consumption, their efficiency, etc., and the main
action in this sense is to use higher efficiency components with lower power re-
quirements. Most of the developments of SPM techniques have been encouraged
by the massive usage of mobile devices (e.g. laptops, smartphones, tablets, wear-
ables, etc.). These kind of devices is usually powered by batteries with reduced
sizes. Due to its size, the batteries have also a relatively low capacity. In this
sense, the reduction in the consumption of the components of these devices has
been the immediate answer to extend the service life of the batteries. The servers
and other components in the data centers have benefited from these advances,
as the electronic components have been enhanced and the consumption has been
reduced. Some examples of such kind of enhancements are: (1) the power sources
are now more efficient, while a few years ago, its efficiency was barely a 80% [79]
[63]; (2) the Solid State Drives (SSD) are commonly used, thus eliminating the
consumption associated to the mechanical parts of the conventional disks; (3) the
DDR memories of new generations are now more efficient than previous versions,
and are also appearing low consuming variants of the DDR memories; (4) in the
last years, the low consuming versions of the CPUs have been generalized; or (5)
some technologies such as the Dynamic Voltage and Frequency Scaling (DVFS)
or Power Gating (PG) are included in processors, to enable the synchronization
between the Operating System (OS) and the processor, in order to reduce power
consumption.

On the other side, we find the DPM techniques, that are related to the adaptation
of the system to the workload. In this sense we can find techniques that range from
selectively shutting down cores or other parts in the CPU, or varying the voltage

3

Chapter 1. Introduction and Objectives

or frequency of the clock (i.e. using the DVFS and PG features of the processors,
if available), to the usage of energy criteria for the selection of the server where a
job is being executed.

Probably one of the most common servers arrangement in a data center is the
cluster. A computing cluster is a set of servers that are interconnected by one
or several networks, working together to solve one or more computational prob-
lems. The cluster is usually managed by a Batch Queueing System (BQS) for
the case of High Performance Computing (HPC) systems, or Cloud Management
Platforms(CMPs) in the case of an on-premises Cloud. These two systems are
referred in general as the Local Resource Management System (LRMS). In this
way, users request the execution of a job and then, the LRMS selects which subset
of the internal servers will be in charge of running the job. Finally, the LRMS will
carry out the tasks which correspond to the lifecycle of the job (e.g. copying the
input files to the servers, starting the application, monitoring the execution, etc.).
The DPM techniques have been widely applied in computing cluster facilities. The
main approach in that case is the usage of energy saving criteria for scheduling
the jobs into the working nodes, but an additional step consists of putting into
low consuming mode (e.g. suspension, hibernation, power off) the nodes that are
not being used.

In the last years, the DPM techniques have gained importance due to the ad-
vances of the virtualization technology and the emergence of Cloud Computing
(the Cloud)[25]. By using virtualization techniques, a Virtual Machine (VM) is
delivered to the user, but while it will behave like a physical one, the VM runs
on top of the hardware of a physical machine with the help of a hypervisor (see
Figure 1.2). Moreover, multiple VMs may share the physical hardware. The virtu-
alization technology was seen as an opportunity to reduce the number of physical
servers of an organization, by converting these physical servers into virtual servers
and hosting them into a reduced number of physical servers. This way, it is possi-
ble to profit from the resources of physical servers that were dedicated to specific
tasks, but were idle most of the time. In such case, the physical resources can be
shared among different virtual servers, and those other physical servers that have
been freed could be powered off (thus saving the energy). The migration from
physical servers to virtual servers in a reduced set of physical servers has been
generally denominated as server consolidation, and it has been possible due to
products such as Xen[34], KVM[73], VMWare[126], Virtual Box[104], or Microsoft
Hyper-V[90].

The server consolidation was usually performed manually by the system admin-
istrator, but the Cloud introduced a new paradigm for the distribution and con-
sumption of resources through the Internet. This technology enabled the usage of

4Image inspired in media found on http://www.vmware.com/virtualization/

virtualization-basics/how-virtualization-works

4

http://www.vmware.com/virtualization/virtualization-basics/how-virtualization-works
http://www.vmware.com/virtualization/virtualization-basics/how-virtualization-works

Operating System

Application

ApplicationOperatingSystem

ApplicationOperatingSystemHypervisor

Figure 1.2: Virtualization of physical servers. With the help of hypervisors it is possible
to migrate multiple physical servers to virtual machines that share the same hardware4.

computational infrastructures, storage resources, applications, etc. on demand, in
a dynamic way, in a pay-per-use basis, through the Internet [14]. According to
the most accepted definition of Cloud computing provided by the NIST (National
Institute of Standards and Technology) it “is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable comput-
ing resources (e.g., networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management effort or service
provider interaction” [88]. In the end, the Cloud enables the possibility of having
storage space, a fully functional set of virtual machines, different applications, etc.
according to the specific needs at each moment, and paying only for what is being
used, in the case of using public Cloud providers. From the point of view of the
end-users, the Cloud enables them to access to virtually any kind of resources in
an agile and easy way. From the point of view of the providers, the Cloud is an
innovative mechanism to provide services through Internet.

Providing different resources in the Cloud introduce different requirements from
the users and problems for the providers on how to deliver the requested resources.
This is why the Cloud is usually classified according to the type of resource that
is delivered to the end-user. The most common classification differentiates three
layers or categories: (i) Infrastructure as a Service (IaaS), where the users deploy
running VMs; (ii) Platform as a Service (PaaS), where the developers can use
existing components to build his applications (e.g. web server, synchronization
queues, database servers, etc.); and (iii) Software as a Service (SaaS), where the
user can use applications that are provided from the Cloud.

The Cloud introduces new opportunities. On the one hand, it is possible to out-
source the data center to the Cloud, thus saving the costs associated to building
such kind of facilities (e.g. acquiring the physical placement, buying the equip-
ment, hiring computer administrators, installing servers, etc.). On the other hand,
it is possible to get immediate access to the computational resources, and thus
avoiding the delay introduced by building the data center. This also enables to
reduce the time-to-market when starting a new business. But the Cloud also in-

5

Chapter 1. Introduction and Objectives

Physical Servers on-premises

Virtual Private Network

(VPN)

Cloud Provider

Figure 1.3: It is possible to use cloud bursting to increase the size of the data center,
by creating some VMs that are connected to the on-premises servers.

troduces the opportunity of dynamically increasing the capacity of a data center
if needed. Data centers have been traditionally dimensioned to handle peaks of
workload, but as seen before, the mean usage of the data center is far from those
peaks. The Cloud enables to have a modest data center and to use the ability of
Cloud bursting (see Figure 1.3) techniques to increase the computational capacity
in the Cloud when a peak on the demand happens. Then the owner not only saves
the costs associated to the additional computer equipment and its maintenance,
but also the energy dedicated to power that extra equipment.

Anyway, fully outsourcing the data center to the Cloud is not a solution by itself.
The public Cloud providers have a pay-per-use business model, which means that
they charge a fee for each fraction of time that a VM is running in the Cloud,
whether it is being used or not. If we run a computing cluster in the Cloud, we
have the risk of having idle VMs that instead of wasting energy that cost money,
are directly wasting money. Here we can see that saving costs in the Cloud has a
parallelism with energy saving of physical servers. In both cases the idle machines
are wasting money. In the end, the minimum energy ever consumed by a server
is the residual energy needed when the server is off but capable of being remotely
powered on back again (e.g. the energy needed to keep the server in stand-by
mode, the energy needed to power the network card to be able to use Wake-on-
LAN, the energy needed for the Intelligent Platform Management Interface (IPMI)
service, etc.). On the other side, the minimum money ever needed to have a VM
ready to be deployed in the Cloud is the amount of money that is needed when the
VM is not running but it is possible to start it if needed (i.e. the money needed
to keep the storage available, the reservation of IP addresses in some providers,
etc.).

In any case, the services provided by Cloud providers are backed by the data
centers of those providers, and they use virtualization techniques to provide their
services. As an example, when a storage space is requested, the provider does
not deliver a physical disk for each user. Instead, they create a virtual storage
space that coexists with other virtual storage spaces from other users, in one or

6

Web Server e-mail ServerFile Server

Cloud Management
Platform

Web
Server

File
Server

e-mail
Server

Domain
Server

Database
Server

Figure 1.4: The data center can be re-arranged into a Cloud scheme, to create an on-
premises Cloud. Then, it is possible to migrate the physical servers to virtual machines,
to share the physical infrastructure for additional VMs.

more physical devices. This is the case of the machines requested to a Cloud
provider, since the user is not provided with access to a physical machine (as
it was happening prior to the Cloud). Instead, a VM is usually created for the
user, and the VM typically coexists with other VMs from other users, in the same
physical machine.

Many organizations are reluctant to outsource their data, their processes and their
machines to other providers, even when they still want to profit from the features of
the Cloud. These organizations not only consider that they lose control over those
resources, but they also have the risk of incurring on legal issues due to the lack of
knowledge about their physical placement. That is why some organizations that
already owned data centers, have re-arranged them into a Cloud scheme, to create
their on-premises Cloud. To make it, they simply have to re-arrange their clusters
and use a CMP such as OpenNebula[102], OpenStack[103] or VMWare[126] (see
Figure 1.4).

Organizing a data center as a private Cloud offers lots of advantages for the owner,
as it is possible to use the resources in a more convenient way, and to get economic
savings (by both the energy savings and the reduction of the number of equip-
ments). But it also offers advantages to the users, as they will probably gain in
quality of service. If the users access directly the physical machines, they will be
restricted to a common, limited environment, with a set of libraries installed on the
servers, a specific compiler, etc. The user will have to adapt to such environment
even if it is not optimal for his applications. If we move on to the Cloud, a specific
Virtual Cluster (VC) could be delivered to each user, with the needed libraries
installed on it and the optimal environment configured for the applications. Once
a VC has been used, it can be disposed of, to make room for other VMs in the
Cloud.

7

Chapter 1. Introduction and Objectives

The caveat here is that a frequent creation and destruction of VMs in a dynamic
context may drive to an inefficient distribution of the running VMs in the servers
of an on-premises Cloud, but it may also lead to the fragmentation of the virtu-
alization resources. One consequence is that it may happen that new VMs with
specific requirements cannot be hosted, even when the platform as a whole has
enough free resources. In this case, the free resources are fragmented among the
physical servers and cannot be used together. As an example, under a scenario of
two servers with two cores each, in which each of the servers is hosting a VM with
one core, a new VM that requests two cores could not be hosted even having two
free cores in the infrastructure. If both existing VMs had been hosted in only one
of the servers, the new VM request could have been served.

Moreover, we must take into account that in an on-premises Cloud we are also
working with conventional servers. Therefore, it would be interesting to apply
the aforementioned DPM techniques that consists in powering off the servers that
are idle, in order to save energy. An inefficient distribution of VMs would prevent
powering off the servers (e.g. few VMs are being hosted by many physical servers).
An extreme example is that all physical servers host a small VM. Under such
scenario, no server can be powered off, as they are not yet idle. In order to correct
such scenario, it would be interesting to include a mechanism to automatically
consolidate the VMs into a reduced number of physical servers. Continuing with
the previous example, it would probably be possible to host all the small VMs in a
few number of physical servers, thus enabling to power off those that will get idle.

1.1 Objectives

The main objective of this thesis is the efficient and elastic management of com-
puting clusters, both physical and virtual. The aim is to obtain a reduction in the
cost associated to the idle components of the infrastructure (energetic costs in the
case of physical infrastructure or economic costs associated to the VMs in the case
of virtual infrastructures).

In order to address this general objective, it is decomposed into several problems
that will be tackled in this thesis:

• It has been noted that data centers may be wasting energy and money in case
that idle equipment is kept powered on. First of all, we propose the creation
of an energy management system that will automate the power
management of the internal servers of a cluster. The task of this system
consists in detecting the servers which are idle, in order to power them off.
Conversely, this system will intercept the requests for the execution of jobs,
and it will power on some of them, to be able to execute the job(s). This

8

1.1 Objectives

system should neither modify the way of working of the users, nor interfere
with the end-user experience.

• The Cloud has been revealed as an alternative for the economic saving for
the users that need computing facilities. Moreover it avoids the up-front
investment of money needed to create and to start up a physical data center.
It is also an alternative to contain the size of a data center, and eventually
increase its capacity to attend to unexpected peaks on the workload. To
determine whether it is interesting or not to outsource a cluster, from an
economical point of view, we consider the need of studying the economic
cost of using a computing cluster in a commercial Cloud provider.
Once the different constraints are identified, we should be able to decide
under which circumstances is better to deploy a cluster in the Cloud or to
invest in a physical facility. This analysis should take into account not only
the price of the computing clusters, but also the ratio of performance per
money.

• Establishing a computing cluster in the Cloud seems to be an immediate task,
as it is no more than a set of VMs that are interconnected by a network, with
a specific configuration. But as it happens in the case of physical clusters,
the VC still has the problem of the idle servers. In the case of physical
servers, the waste of energy is translated into waste of money, whereas in
the case of virtual server it is directly a waste of money. So, we propose the
generalization of the system to automate the power management proposed
in the first point, in order to create Elastic Virtual Clusters. The
underlying idea is to apply the DPM technique that consists of powering off
the idle nodes by creating and destroying VMs depending on the workload,
instead of dealing with the physical servers. This kind of clusters should be
available for both commercial Cloud providers, in order to outsource parts
of the infrastructure, and for on-premises Cloud.

• The virtualization techniques and the Cloud have modernized the manage-
ment of the data centers. These techniques enable to manage the equipments
in a more convenient way, and also help to save costs by consolidating servers.
But the intrinsic dynamism for a Cloud may end up after several cycles of
creation and destruction of VMs with inefficient distributions of the VMs in
the physical hosts. Such inefficient distribution may prevent applying the en-
ergy saving techniques that we are considering in this work. This is why we
propose the creation of a system that will automatically redistribute
the VMs in the physical servers of an on-premises Cloud deploy-
ment, making use of live-migration techniques (in order to avoid downtimes
for the users of the VMs). In this case, the objective is to reduce the number
of physical servers needed to host all the VMs, with the aim of being able to
put the idle ones into a low consuming mode or to power them off.

9

Chapter 1. Introduction and Objectives

• As it happens in the case of the physical servers, the VMs in the Cloud may
also suffer from the overdimension of the resources that are needed to carry
out the calculations. It may also happen that users of the Cloud are forced to
use template-based VMs that allocated an amount of memory or number of
cores that exceeds the requirements of the applications that are being ran on
it. In this case we propose the creation of a system that automatically
and dynamically adapts the resources of the VMs to the actual
workload, by varying the resources that are allocated for it (i.e. memory).
The objective is to be able to overcommit the physical resources, in case
that they have a low usage. The effect is that the amount of virtual memory
requested for the VMs will be greater than the physical amount of memory
available in the servers that host the VMs. This will introduce an enhanced
VM consolidation per physical node, and also will get more free physical
resources. With the usage of live migration techniques, this technique can
restore the level of service as the applications running on the VMs demand
more memory than what is currently allocated.

By addressing all these problems, we can close the loop that enables to create
Elastic Virtual Clusters(EVCs) in an on-premises Cloud, backed by a physical
cluster where the memory of the VMs that build the cluster is automatically
adapted to the actual workload. Later, the VMs are consolidated into the less
possible number of physical server, to automatically power off the servers that are
idle. In this way, we achieve the creation of EVCs that run on physical clusters
with an elastic behaviour. Moreover, we will have an economic criteria to decide
whether it is convenient or not to outsource part of the EVCs requested by the
users to an external Cloud provider.

1.2 Summary of the state of the art

The central chapters of this document are academic papers that have been pub-
lished in different journals. So each of them include a part dedicated to revise the
state of the art in the particular problem addressed by the paper. Nevertheless,
we are including here a summary of the state of the art in order to help the reader
differentiate each of the topics that have been tackled.

1.2.1 Automated Power Management

Many efforts have focused on energy-aware allocation of tasks in clusters, both
for HPC clusters and on-premises Clouds. The survey [121] explains some DPM
works from other authors that would get idle resources, but any of the reviewed
works usually assume that the idle resources are powered on or off automatically
and do not consider any scheduling strategy for that. Most of them are basically
job schedulers that would substitute the existing schedulers or CMP, and as a

10

1.2 Summary of the state of the art

result, they will modify the way that users interact with them. In the revised
literature, there are also other approaches, but they also do not integrate with
the LRMS. An example is the work presented in [76], that is a method to reduce
power in large-scale distributed systems by switching nodes on and off according
to the load. This work is actually a booking system for computing nodes but not
an energy saver, and therefore it is not suitable for interactive systems. In that
case the decssion of whether a cluster can be powered off can be taken because of
the reservations.

From the point of view of system administrators, there are not many available
tools to implement green policies in clusters. In the case of HPC schedulers,
MOAB (which is the Enterprise version of Maui[35]) introduces some features
to pack workload and to place idle servers in power-saving modes [111]. The
latest versions of SLURM introduced the ability to change CPU frequency and
voltage in order to save energy. However, these solutions are tied to each of the
particular LRMSs. Since the choice of LRMS is conditioned by many factors,
administrators may find that the most suitable LRMS does not take into account
energy saving mechanisms. In the case of on-premises Cloud, the most common
CMPs in the scientific community (OpenNebula, OpenStack, Eucalyptus5, etc.)
do not offer automatic power management out of the box. In the particular case
of OpenQRM6, it offers power saving features for the enterprise version, which is
distributed under a commercial license, but not in the community version.

On the side of the commercial cloud platforms, we can also find several solutions
that offer automatic power management features. Probably the most popular
example is VMWare vSphere 5.57 which is capable of powering on and off physical
hosts, but it is restricted to VMWare hypervisor and its cost is very high (in 2015,
it starts at USD 2,875.00 for the version which is capable of power management).
Huawei’s FusionSphere 8 also claims to offer automated power management in
recent versions. It builds up on OpenStack, but its solution is also distributed
under a commercial license. But the commercial solutions are not of interest for
this work because once taken the decision of purchasing a commercial CMS, the
possible solutions of the problems that may arise during its lifetime are restricted
to the solutions offered by the developer.

5https://www.eucalyptus.com
6http://www.openqrm-enterprise.com
7http://www.vmware.com/products/vsphere
8http://e.huawei.com/en/products/cloud-computing-dc/cloud-computing/

fusionsphere/fusionsphere

11

https://www.eucalyptus.com
http://www.openqrm-enterprise.com
http://www.vmware.com/products/vsphere
http://e.huawei.com/en/products/cloud-computing-dc/cloud-computing/fusionsphere/fusionsphere
http://e.huawei.com/en/products/cloud-computing-dc/cloud-computing/fusionsphere/fusionsphere

Chapter 1. Introduction and Objectives

1.2.2 Facilitating Power Management

The automated power management can only be made in case that we get idle
servers that will be candidates to be powered off. At a scheduler level, there are
works that try to reduce the number of physical servers needed to run the jobs in
a HPC cluster, or to host the VMs deployed on an on-premises Cloud. In fact,
most of the schedulers shipped in the default distributions of the common LRMSs
include features for reducing the number of used servers. But the problem arises
when the job or the VM are started in a server, because that server cannot be
powered off. In the case of HPC, most of BQS include in one way or another, the
support for checkpointing the jobs and thus enabling to migrate them from one
host to another. But once the physical server has been selected to run a job, it
is usually accepted that the job will continue running in that physical server and
it will not be migrated unless it is necessary. The job will finish in an estimated
time, or it will be terminated if it exceeds the maximum running time9.

But in the case of the VMs, their lifetime is neither known in advance, nor it can
usually be estimated. So the automated power management needs to be facilitated,
by obtaining idle servers using other mechanisms. There are several works that try
to take advantage from live-migration features to consolidate the VMs in a platform
into a few number of physical hosts. The most common techniques are based in
artificial intelligence (IA) or model the problem as the bin packing problem (BP)
and solve it applying some heuristics. In the case of IA, the solutions range from
reinforcement learning [109][33][49] to fuzzy logic [87] or nature-based solutions
such as the works in [52], which is inspired on the movements of the ants in a
colony, [107] and [86], that are inspired on the behaviour of the swarms during
migratory flights, or [56], which is based on the movements of a bee colony. In the
case of the BP-like problem, there are several proposal of works such as [2] that
statically reduces the number of physical hosts, but is not intended to be used
in a continuously working platform, [123] that tries to combine VM placement
with DVFS, [19] that solves the BP problem and includes a scheduler to take into
account energy saving criteria to re-place the VMs, or the works [57] and [115]
that also try to reduce the number of used physical hosts. The main limitation
of those works is that they do not provide any available implementation of their
algorithms that can be used, and it is not easy to reproduce the experiments nor
implement the solution in real deployments.

Moreover, users tend to overestimate the amount of memory required by their
applications resulting in unused memory that could be dedicated to additional
VMs running on the same physical machine [119]. Besides making a low usage
of the resources, such overdimension may prevent from consolidating VMs to a
reduced number of servers. Some works have tried to adjust the resources of the

9The BQS include concepts such as the “wall time”, which implies that the job will be killed
if it has been running for longer than a predefined amount of time

12

1.2 Summary of the state of the art

VMs to the actual workload. As an example, the work shown in [39] tries to adapt
the allocation of the CPU in the VMs running on the Xen hypervisor, but it does
not study the memory. There are also other works such as [118] and [59] that try
to adapt the virtual memory to the actual needs of the applications running in
the VMs using various methods, but they make it at a single host level and do not
consider the platform as a whole. Therefore, these works are only useful for hand-
made distributions of VMs, because the CMP is not able to overcommit the hosts
according to the memory that is actually being used. There are also works such as
[80] that try to consider the platform level, but do not offer any countermeasure
in case that the memory is overcommited an a VM claims the memory that it had
requested at first.

1.2.3 Elastic Virtual Clusters

There are different examples of virtual clusters in the literature, such as [31], [44]
or [128], that propose the creation of VCs. These works mainly deal with the
provision of the VMs and configuration of the cluster topology (e.g. connectivity,
shared filesystem, ssh-ability, etc.). Some of them include configuration issues (e.g.
installing applications, creating users, etc.). But, while they are plenty of features,
most of them lack elasticity. In this sense, once a cluster has been delivered to the
user, all the VMs will continue running even if they are idle. Such static behaviour
can introduce a waste of money, in case that the VMs are deployed in a commercial
platform. In the case that the VMs are deployed in an on-premises Cloud, keeping
the VMs always on may prevent from creating other VMs because of the lack of
resources.

There are several works that identify the problem, and try to give a elastic be-
haviour to the clusters. As an example, [15] and [84] that evaluate the possibility
of using Amazon EC2 to extend a physical cluster, depending on the workload.
The work [99] also explores the dynamic provision of working nodes in the cloud,
depending on the size of the jobs in the queues, introducing several policies to
limit the amount of working nodes to be powered on. The main limitation of most
works in this field is that they seem to be ad-hoc private implementations that
have not been released or they remain as theoretical works.

As ready-to-use environments for VC, we can find that the standard distribution
of Hadoop [23] includes an easy-to-use mechanism to create VCs in Amazon EC2.
The main problem is that it only deals with Hadoop-based clusters, and the number
of nodes for the cluster is not dynamically managed (although it is possible to add
or destroy working nodes by hand). StarCluster [93] is an open source cluster-
computing toolkit for Amazon EC2. But the problem in this case is that it only
supports Amazon EC2, and it uses pre-built Virtual Machine Image (VMI) stored
with specific software installed. It is based on the Open Grid Scheduler LRMS
(formerly known as Sun Grid Engine, or SGE) and includes common libraries such

13

Chapter 1. Introduction and Objectives

as OpenMPI, OpenBLAS, LAPACK, etc. As a good point, it includes the module
Elastic Load Balancer that supports shrinking or expanding the cluster based on
the statistics of the queues of the LRMS. Recently we can find the work [12], that
is a development to create entire VCs running a batch system such as HTCondor
that grow and shrink automatically based on the usage. The caveat in this work
is that it only is designed to run the VMI distributed by them, and the target is
a Cloud exposing an EC2 interface (e.g. Amazon EC2 or OpenStack). While it is
a very interesting project, restricting to a precise VMI limits the applicability of
the EVC to the embedded software distribution.

1.3 Organization of this Document

The first part of the works made during the research phase is related to the topic of
the power management of cluster infrastructures (both physical and virtual), and
the economical advantages of applying such techniques. The chapters 2, 3 and 4
correspond to a set of papers related to this topic, that have been already published
on different journals in the area. The second part of the work is related to the
topic of facilitating the power management in on-premises Clouds. The chapters
5 and 6 are structured as papers, since they are in the process of submission to
different journals in the area. All these chapters altogether collect the work made
to address the problems proposed in this thesis.

First, chapter 2 explains the Cluster Energy Management System (CLUES), which
is an energy management system that automates the power management of a
computing cluster for both HPC and on-premises Cloud. It can be considered as a
framework for the application of the DPM technique that consists of powering off
the idle internal nodes from a cluster. In order to avoid interfering the interaction
of the user with the cluster, CLUES tries to give the end-user the illusion of using
the cluster as usual, as if all the nodes were available all the time. So, the scheme
of CLUES consists of intercepting the requests for executing the jobs (in the case
of the Cloud, the requests to host new VMs), and powering on a set of working
nodes that meet the requirements of the requests. According to this scheme,
we get an elastic behaviour for the physical infrastructure, as it is adapted to the
actual workload. The consequence is that it is saved the energy that correspond to
the internal nodes that are not being used. This chapter corresponds to the paper
[40], that has been published in the journal “Computers & Electrical Engineering”,
which has an impact factor of 0.992 and it is classified in the third quartile (Q3)
of the Journal Citation Report (JCR) for both the topics “Computers Science,
Hardware & Architecture” and “Computer Science, Interdiciplinary Applications”
in 2013 (when the paper was published). The main contribution for this paper is
the creation of the concept of CLUES and its architecture, along with the main
functions of the product.

14

1.3 Organization of this Document

Next, chapter 3 tries to answer the question brought by the Cloud paradigm
about when it is convenient to outsource a data center that is mainly dedicated to
e-Science, to a commercial Cloud provider. In this chapter it is revisited the Total
Cost of Ownership (TCO) of a physical computing cluster (i.e. acquisition of the
premises, adaptation of the building, purchase of the servers, maintenance, etc.),
also incorporating the cost of energy. The TCO is then compared to the cost of
establishing an equivalent cluster in Amazon EC2 (which is used as an example
for the commercial Cloud). In both cases it is considered that it is applied the
DPM technique of powering off the idle nodes (in order to save energy, and in
order to save money). Finally an analysis is made, in order to calculate whether
it is more convenient to purchase a physical cluster or to deploy it into the Cloud.
This chapter correspond to the paper [41], that has been published in the journal
“Future Generation Computer Systems”, which has a impact factor of 2.639 and
it is classified in the first quartile (Q1) of the Journal Citation Report (JCR) for
the topic “Computer Science, Theory & Methods” in 2013 (when the paper was
published). The main contribution for this paper is the creation of the whole
economic model, along with the comparison of the costs for the physical and the
VCs.

Chapter 4 is dedicated to generalize the usage of CLUES to be used for the cre-
ation and management of a EVC. The concept of an EVC consists of having a
set of VMs deployed in a Cloud (either commercial or on-premises) that follow
a cluster arrangement which is equivalent to a physical cluster (i.e. an intercon-
nection network, a shared storage space and a LRMS). An elasticity manager is
incorporated into the cluster, to control the number of internal nodes and to carry
out the tasks to create or to delete the corresponding VMs. In this case, CLUES is
used as the elasticity manager and it behaves as described in chapter 2 but dealing
with VMs instead of physical machines. We have called this development Elastic
Cloud Computing Cluster (EC3) and it profits from the Infrastructure Manager
(IM) [27] to create and to configure the VMs in the Cloud. This chapter corre-
spond to the paper [26], that has been published in the “Journal of Computer and
System Sciences”, which has a impact factor of 1.091 and it is classified in the
second quartile (Q2) of the JCR for both the topics “Computer Science, Hardware
& Architecture” and “Computer Science, Theory & Methods” in 2013 (when the
paper was published). The main contribution for this paper is the concept of the
EVC and the usage of CLUES to implement it.

Chapter 5 is focused on the problems related to inefficient distributions of VMs
that arises when a data center is arranged as an on-premises Cloud. On one side,
an inefficient distribution may prevent the application of the DPM technique of
powering off the idle servers. On the other side, it may cause the fragmentation
of the virtualization resources, that may prevent from hosting a VM with spe-
cific requirements, even when the platform has enough resources. In this chapter,
the Virtual Machine Consolidation Agent (VMCA) is described. This agent is in

15

Chapter 1. Introduction and Objectives

charge of monitoring the Cloud deployment, and to analyze whether it is possi-
ble to re-arrange the existing VMs to achieve a more efficient distribution. The
underlying objective is to consolidate the VMs into a reduced number of physical
servers in order to be able to power off the idle servers. The main contribution
for this paper is the concept of VMCA, the algorithms described on it, and the
usage of the agent to facilitate the automated power management, together with
the design of the use case and tests.

Chapter 6 is dedicated to explore the application of DPM techniques at a VM level,
to facilitate automated power management in an on-premises Cloud. In this paper
it is described Cloud Virtual machine Automatic Memory Packer (CloudVAMP),
a memory overcommitment framework that can be integrated in an on-premises
Cloud to automatically monitor the VMs and to dynamically adjust their allocated
memory to adapt to the current memory requirements of their running applica-
tions. This enables an additional step in VM consolidation per physical host as
the amount of requested virtual memory may exceed the physical memory. In case
the VMs claim part of the memory that they requested when they were created
and the sum of the virtual memory of the VMs in one host exceeds the physical
memory, it uses live migration to mitigate the problem. The main contribution for
this paper is the collaboration in the design of the architecture and the workflow
of CloudVAMP, and the implementation of part of the tool.

The chapters correspond to academic papers, so they are self-contained in the
sense that each of them include a part dedicated to revise the state of the art in
the particular problem that is addressed by the chapter, a discussion about the
contributions and conclusions about the obtained results. The chapter 7 includes
a discussion on how the results obtained in the framework of this thesis can be
used together to provide elasticity to a data center, at different levels. Then, it
is included a summary of the results achieved in this thesis, and collection of the
publications generated during the research phase, along with the end-products that
have also been generated, where the results of the research have been incorporated.
At the end of this chapter, it is discussed about the future directions of this work
and the plan for the developments of the generated products.

Finally chapter 8 is dedicated to draw some conclusions about the work that has
been carried out during the research period and how the objectives for this thesis
have been addressed.

16

Chapter 2

An Energy Management System
for Cluster Infrastructures

Published as

Carlos de Alfonso, Miguel Caballer, Fernando Alvarruiz, Vicente Hernández, An
energy management system for cluster infrastructures, Computers & Electrical

Engineering, Volume 39, Issue 8, November 2013, Pages 2579-2590, ISSN
0045-7906, http: // dx. doi. org/ 10. 1016/ j. compeleceng. 2013. 05. 004 .

Abstract

This paper presents a general energy management system for High Perfor-
mance Computing (HPC) clusters and cloud infrastructures that powers off
cluster nodes when they are not being used, and conversely powers them on
when they are needed. This system can be integrated with different HPC
cluster middleware, such as Batch-Queuing Systems or Cloud Management
Systems, and can also use different mechanisms for powering on and off the
computing nodes. The presented system makes it possible to implement dif-
ferent energy-saving policies depending on the priorities and particularities
of the cluster. It also provides a hook system to extend the functionality,
and a sensor system in order to take into account environmental informa-
tion. The paper describes the successful integration of the system proposed
with some popular Batch-Queuing Systems, and also with some Cloud Man-
agement middlewares, presenting two real use-cases that show significant
energy/costs savings of 27% and 17%.

17

http://dx.doi.org/10.1016/j.compeleceng.2013.05.004

Chapter 2. CLUES

2.1 Introduction

One of the challenges arising from the use of HPC clusters is reducing their power
consumption. This problem is especially important in clusters that are underuti-
lized, either because they form part of large scale distributed systems (grids or
clouds) [76], where load can have important variations, or because the clusters
have been in production for several years and their usage has decreased in favour
of other more modern systems. However, in the last years there have been ad-
vances in the energetic efficiency of HPC clusters, which have come as a result of
two different approaches: Static Power Management (SPM) techniques that use
low-power energy-efficient hardware to reduce energy usage, and Dynamic Power
Management (DPM) techniques that are based on the knowledge of resource uti-
lization and application workloads to reduce energy usage [121].

In the case of SPM there are efforts pursuing higher efficiency for power sources
[79], [63], which is usually lower than 80%. The hardware designers are also intro-
ducing new types of memory to increase the efficiency and reduce consumption.
New technologies, such as Solid State Drives (SSD), are also being adopted for
disks in order to reduce the energy consumed by mechanical parts, which accounts
for up to 65% of the total amount of energy consumed by a computer [58]. Dy-
namic Voltage and Frequency Scaling (DVFS) is an efficient technology to control
the processor power consumption [74].

The DPM approach takes advantage of the fact that many computing nodes that
are part of infrastructures such as clusters are usually powered on even when
they are not being used (e.g. the workload is low, some computing nodes are not
suitable for current calculations, there are reserved nodes for priority users, etc.).
These clusters are usually dimensioned for peaks of workload that are not the most
common situation. Therefore, energy can be saved by putting the idle nodes into
power-saving mode (e.g. turning nodes off). There are different mechanisms that
may be used to power on or off the nodes depending on the workload, that go
from managing power by hand (e.g. powering off part of the nodes when they are
not going to be used for a period of time) to introducing automated mechanisms
into the job submission tools (e.g. monitoring a queue of jobs and powering off
the computing nodes when the queue is empty).

A further step in automating the power management of nodes is to use energy-
aware scheduling/allocation algorithms for assigning resources to jobs. For in-
stance, schedulers may try to use the minimum number of computing nodes, in
order to enable energy reduction by powering off the idle nodes. However, imple-
menting an energy-aware allocation method in existing clusters of an organization
is a difficult task, since it is necessary to modify the scheduling code of the re-
source management middleware. Even if the source code is available, modifying it

18

2.2 Power management approach

can be a complex task, and maintaining modification through new releases of the
middleware makes it even worse.

In this context, this paper presents CLUES (Cluster Energy Saving System), which
is a general power management tool for computer clusters that can work in connec-
tion with different resource management middleware by means of easy-to-develop
connectors. Thus, the tool is an effective way to implement power management
policies in existing clusters, without having to modify the underlying control mid-
dleware. It could even be used in multipurpose clusters where different manage-
ment middlewares coexist, thus enabling cluster-wide energy management policies
for those situations. While CLUES was previously introduced in [6], this paper de-
scribes the tool in more depth, and provides details about the connectors that are
currently available for the interaction with existing cluster management systems.
It also presents some other features such as a hook system and a sensor system.
A discussion is provided about the algorithm that is considered in CLUES for the
power management of the nodes, and how it behaves when it is applied to real
computing infrastructures that are currently under production.

The remainder of the paper is structured as follows. First, section 2.2 presents the
general power management approach followed, and section 2.3 analyzes related
work. Then, section 2.4 presents the architecture of CLUES and describes all its
components. Section 2.5 discusses the features of CLUES to support more than
one LRMS coexisting in the same cluster. Section 2.6 presents an extended analysis
of results to demonstrate the proper interaction of CLUES with the underlying
system. Finally, section 2.7 provides conclusions and points to future work.

2.2 Power management approach

Current clusters are usually managed by a Batch-Queuing System (BQS) or, in
the case of Cloud Computing, a Cloud Management System (CMS). From now on
this middleware will be referred in general as Local Resource Management System
(LRMS) or resource manager. Examples of BQS are Torque/PBS1, SLURM2, Son
of GE3. Examples of CMS are OpenNebula4, OpenStack5 or CloudStack6.

There are two alternatives to provide an energy saving mechanism based on pow-
ering off idle nodes: (a) modify the LRMS scheduler, or (b) treat the scheduler as
a black box (BB) and connect it to some energy saving system that powers nodes
on/off as needed.

1http://www.clusterresources.com/products/torque
2https://computing.llnl.gov/linux/slurm
3https://arc.liv.ac.uk/trac/SGE
4http://www.opennebula.org
5http://www.openstack.org
6http://cloudstack.org

19

http://www.clusterresources.com/products/torque
https://computing.llnl.gov/linux/slurm
https://arc.liv.ac.uk/trac/SGE
http://www.opennebula.org
http://www.openstack.org
http://cloudstack.org

Chapter 2. CLUES

Modifying the scheduler may achieve better results, but presents the disadvantage
that it requires the creation of a modified version of the original scheduler, and
the new versions released by the developers of the LRMS will also need new mod-
ifications. Moreover, the power schedule mechanism would be tied to the specific
LRMS.

On the other side, a BB approach implies that the LRMS must contact the energy
saving system to provision the resources needed by the jobs. It requires some
degree of coordination between the job scheduler and the energy saving system,
i.e. the energy saving system should not power off a node if that node is useful
from the point of view of the scheduler, and conversely, a node that is not useful
from the point of view of the scheduler should be powered off to save energy. A
BB approach may not provide the best results because the energy saving system
does not have the whole information about the workload, and does not control
in which nodes the jobs are allocated. However, decoupling the scheduling of
jobs and the decision of suspending or restoring nodes eases the incorporation of
energy-saving policies in production clusters, since there is no need to modify the
resource manager.

This paper considers a BB approach, where the resource manager scheduler is
connected to an external energy saving system that powers nodes on/off.

2.3 Related Work

In the last years, many efforts have focused on energy-aware allocation of tasks in
clusters, both for virtualized and non-virtualized environments. For instance, [76]
presents a method to reduce power in large-scale distributed systems by switching
nodes on and off according to the load. The approach considers the possibility
of reserving resources in advance, and assumes that the duration of a job (or an
estimate of it) is provided by the user when submitting the job. The system
interacts with the user that submits a job, suggesting job starting times that are
most suitable for energy reduction. This work is actually a booking system for
computing nodes but not an energy saver. It decides whether a cluster can be
powered off because it is not reserved. It does not integrate with the LRMS and
therefore it is not suitable for interactive systems.

[22] presents an approach for virtualized data centres which is based on workload
consolidation using virtualization, combined with turning off idle servers. The sys-
tem uses machine learning in order to predict the consequences of different possible
allocations for each job, in terms of performance and energy. It then decides task
placing and reallocation in order to concentrate jobs in a reduced number of nodes
without degrading performance. The paper deals with task placement but not

20

2.3 Related Work

with infrastructure management. It does not consider integration with the LRMS,
and it also assumes that the user provides information on the job duration.

[116] and [24] also deal with the problem of resource allocation in virtualized
clusters, considering workload consolidation in order to be able to switch off idle
machines, while at the same time reducing the impact on the system performance.
The approach uses heuristics based on multicapacity bin packing over memory and
CPU load. [74] considers a power-aware scheduling algorithm for DVFS-enabled
clusters, where processor frequencies are scaled down in order to minimize power
consumed without substantially increasing execution times. [122] describes an ap-
proach to load balance Virtual Machine (VM) provisioning across different servers
to save energy and to maintain the performance of the system. The underlying
idea of such technique is to try to reduce energy consumption even if nodes cannot
be idle. [110] explores the combination of using DVFS and putting idle servers into
low-power mode, but a workload profiling phase is needed in order to determine
the optimal power configuration.

All of the reviewed results are related to the placement of the jobs and virtual
machines (VMs), with the idea of either packing the jobs to get some idle nodes,
or altering processor voltage to get less power consumption. However, they do
not describe how to manage the idle computing elements. According to [21], one
important research topic for getting energy efficiency by applying DPM techniques
is to schedule powering on and off computer’s components (the whole server in most
cases) to adapt to the workload. The survey [121] also explains some DPM works
from other authors that would get idle resources, but the reviewed works usually
assume that those idle resources are powered on or off automatically and do not
consider any scheduling strategy. Most of them are basically job schedulers that
would substitute the existing schedulers or cluster management middlewares and
would obviously modify the way that users interact with them.

There are many other scientific works exploring this area. However, from the point
of view of system administrators, there are not many available tools to implement
green policies in clusters. In the case of BQS schedulers, MOAB (which is the
Enterprise version of Maui) introduces some features to pack workload and to
place idle servers in power-saving modes [111]. The latest versions of SLURM
introduced the ability to change CPU frequency and voltage in order to save
energy. However, these solutions are of course tied to a particular BQS. Since the
choice of BQS is conditioned by many factors, administrators may find that the
most suitable BQS does not take into account energy saving mechanisms. In the
case of cloud middleware, Convirt 2.0 Enterprise Edition introduces scheduling
policies to consolidate VMs to enable the operation of the datacenter in power
saving mode, but it does not provide tools to automatically power off idle nodes.
VMWare vCenter includes tools to power off hosts when they are not needed.
Other cloud middleware do not take into account power consumption.

21

Chapter 2. CLUES

Figure 2.1: Architecture of the CLUES system.

2.4 System description

The purpose of the system proposed in this paper is to provide energy saving
mechanisms for a computer cluster, by powering off idle nodes, and conversely
powering on nodes when required. The system is able to interoperate with different
resource management middleware by means of a plug-in based architecture. Using
this approach, energy saving can be easily integrated with LRMS, and also with
clusters of generic applications such as Web Servers or emerging Platform as a
Service cloud systems. The design goals of the system are:

• It must be unobtrusive. From the point of view of the user, the way job
submission or VM launching is done should not be altered by the use of
CLUES.

• No changes to the underlying LRMS should be necessary to use the system,
unless the developer wants to implement specific features or tighten the
coordination between the job scheduling and the power management.

• It should be possible to use different mechanisms for switching on/off the
nodes, e.g. mechanisms such as Wake-on-Lan (WOL), Power Device Units
(PDU), Intelligent Platform Management Interface (IPMI) or infrastructure-
specific mechanisms.

• The system should be easy to extend, e.g. adding the capability to use
another LRMS, or adding another mechanism to switch on/off nodes.

As depicted in Figure 2.1, the system consists of a scheduling component, a set of
one or more resource manager connectors, a set of node management connectors,
and the hook and sensor subsystems.

The CLUES scheduler uses a connector to periodically ask the resource manager for
information on the cluster state (label 1 in the figure). Based on this information,
the scheduler determines if new nodes must be switched on, or if there are nodes
that can be switched off, and acts consequently (2). When a job is submitted to

22

2.4 System description

the resource manager (3), a request for nodes is made to CLUES by means of the
resource manager connector (4). When CLUES finishes processing this request, the
job is actually submitted to the resource manager (5), where it will be processed
by the scheduler and finally sent to the cluster for execution (6). There are two
more components that are called periodically by the CLUES scheduler: the hook
system, that enables to perform user defined actions when an event happens (7),
and the sensor system, that enables access to a set of environmental values to be
stored in the scheduler (8).

The CLUES scheduler is the main component, and is described in the following
section. The resource manager connectors provide a uniform way to interact with
different LRMS. This mechanism makes it easy to extend the system so as to
consider additional resource managers, by writing the corresponding connectors.

The node management connectors are responsible for switching on/off the cluster
nodes. The method to switch nodes on and off will be different depending on the
particular cluster, e.g. WOL can be used for switching on, and a remote “poweroff”
command can be used for ordered switching off, or PDUs can be used for both
switching on and off. Additionally, in some cases the underlying middleware must
be informed when a node is powered on/off, to activate or deactivate the node in
the resource manager. By providing several node management connectors, these
different situations can be accommodated. Currently, connectors have been devel-
oped for three different mechanisms: WOL, IPMI and a proprietary software to
manage PDUs used in IBM clusters.

Note that CLUES intercepts any incoming job and retains it while trying to pro-
vide resources for it. Once this has been done, the job is released to the LRMS.
Importantly, the jobs are released following a FIFO (First In First Out) strategy,
therefore preserving the order in which they are taken into account for its exe-
cution. Another possible approach would be not to intercept the jobs at all, but
instead make periodic inspections of the LRMS queue in order to detect if there
is a need to power on additional nodes.

The approach of intercepting the job enables to prepare the context for the LRMS,
instead of modifying it once the job has been scheduled under a state that is going
to be changed by CLUES. The idea is that when the jobs arrives to the LRMS
all the resources needed are already powered on. It also presents the advantage
that it provides a faster response, because the need for resources is detected at the
moment the job arrives. A disadvantage is that it can introduce small delays in
the start of some jobs, if they are submitted shortly after other less-priority jobs
which require nodes to be powered on.

In any of the two approaches, CLUES might try to bootstrap a node for a job that,
according to the LRMS policies, does not have the right to execute, e.g. because
the user has exceeded the execution quota. This can reduce the effectiveness of the

23

Chapter 2. CLUES

power saving strategy, since there might be more powered-on nodes than necessary.
However, this cannot be avoided with a BB approach because it is unaware of the
LRMS policies.

2.4.1 CLUES Scheduler

The CLUES scheduler is the component in charge of: (i) processing requests for
available resources and powering-on nodes if necessary; and (ii) powering-off idle
nodes. To carry out these tasks it performs the following procedure:

1. When a new request for nodes arrives, the request is evaluated in order to
determine if new nodes must be powered on for the request. If this is the
case, the appropriate actions are taken. CLUES has a synchronous behavior,
blocking the request and appending it to a list of pending requests while the
necessary nodes become ready.

2. Periodically, the state of nodes is updated according to the information pro-
vided by the resource manager connectors. After each update, the queue
of pending requests is examined. Each request is evaluated again and the
necessary power-on actions are taken. If the request is at the head of the
queue and the corresponding nodes are ready, it is removed from the queue
and released so that the associated job can proceed to its execution. Note
that a request can be released either because there are enough free nodes, or
because there are no more nodes that can be switched on. In both cases, no
further action can be done for the request.

In addition to examine the queue of pending requests, idle nodes are detected
and they are powered off if the inactivity time is larger than a predefined
value.

Different policies can be used in order to determine if new nodes must be powered
on to serve a request, each of them producing a different effect on desirable ob-
jectives: minimizing the power consumption, minimizing the impact on the users,
minimizing the heat dissipation, etc. The selection of the policy is an important
decision to obtain the desired behavior of the cluster. CLUES implements a set of
basic policies:

• The most simple one is to switch on all the nodes of the cluster when a job
arrives to the system. This is a coarse strategy but it is very simple to im-
plement and can obtain good results with some specific workloads (e.g. large
waves of jobs and long inactivity periods) and with clusters where powering
off some nodes may affect the network topology and the connectivity of the
remaining nodes.

24

2.4 System description

• Switch on the minimum number of nodes to fulfill the request needs. This
strategy enables minimum power consumption, but may increase the waiting
time of incoming jobs.

• Switch on the nodes using a block size: instead of powering on the exact
number of needed nodes, this strategy powers on an extra number of nodes,
thus providing extra spare idle nodes that may prevent subsequent requests
from waiting.

Obtaining the number of nodes available for a request

In order to apply any of the last two strategies, the scheduler must obtain the
number of nodes available for a request, taking into account the following consid-
erations:

• The process of booting up a node takes some time, during which the request
will be queued until the nodes are ready. This means that when a new
request arrives, there can be previous pending requests, and there can be
nodes booting up.

• A node can be shared by more than one job, e.g. a node typically contains
several cores, so it is possible to assign some of the cores to a job and other
cores to another job. Consequently, a node is considered to contain a number
of processing units or “slots” (e.g. cores), and a request asks for “virtual
nodes”, which are groups of slots in the same physical node.

• Requests can be made for nodes meeting certain conditions, e.g. nodes
belonging to a particular batch queue, nodes with a given minimum amount
of memory, installed software or configuration.

In order to determine the number of available nodes, the scheduler needs to use
information about the current request, such as the number of requested virtual
nodes (rv), number of slots per virtual node (sv), and possible conditions on the
nodes. It also needs information about previous requests that are waiting for
resources to become available, such as the total number of requested slots (trs).
Finally, information on the cluster nodes is also necessary. For each node i, the
scheduler needs to know its state (e.g. on, off, booting, failed...), number of free
slots (fsi) and total slots (si), and other information (e.g. amount of free memory,
administrator-defined tags...).

Based on this information, the scheduler performs two steps:

1. Determine the number of virtual nodes that are usable by the current request,
without taking into account previous requests. A virtual node is considered
usable if it is located in a node that satisfies the conditions of the request,

25

Chapter 2. CLUES

and its slots are not in use. The process followed can be seen in algorithm 1,
which obtains the number of usable virtual nodes in powered-on nodes (uvon)
and in booting nodes (uvbt). The algorithm goes through all the nodes that
satisfy the conditions of the request, and for each of them the number of
virtual nodes provided is obtained and accumulated (e.g. if a node has 5
free slots and the request asks for virtual nodes of 2 slots, 2 virtual nodes
are provided).

Algorithm 1 Computing the number of usable virtual nodes.

{uvon: number of usable virtual nodes in powered-on nodes.}
{uvbt: number of usable virtual nodes in booting nodes.}
{si: total number of slots in node i}
{fsi: number of free slots in node i}
{sv : number of slots per virtual node of current request}
uvon ← 0; uvbt ← 0
for all node i that matches current request do

if statei = on then
uvon ← uvon + bfsi/svc

else if statei = booting then
uvbt ← uvbt + bsi/svc

end if
end for

2. Correct these numbers of usable virtual nodes, by taking into account pre-
vious requests, that may take some of the slots of the usable virtual nodes.
Since the allocation of the requests to particular nodes/slots is decided later
at the LRMS level, the corrections are based only on estimations. The re-
sulting numbers are referred to as uv′on for powered-on nodes and uv′bt for
booting nodes. Best-case estimates are derived, based on simplifying as-
sumptions. First, the details of previous requests are not taken into account,
and only the total number of previously requested slots (trs) is used. Second,
it is assumed that these slots will be placed preferably in nodes that do not
satisfy the conditions of the request. Thus, previous requests will produce
minimum disturbance. According to this, uv ′

on is:

uv ′
on = min(max(0, b tfs − trs

sv
c), uvon) (2.1)

where tfs is the total number of free slots.

If tfs ≥ trs, uvbt is not corrected (uv ′
bt = uvbt). Otherwise, the previous

requests may also use booting nodes, and uv bt is corrected accordingly:

26

2.4 System description

uv ′
bt = min(max(0, b tfs + tbs − trs

sv
c), uv bt) (2.2)

where tbs is the total number of slots in booting nodes. Once uv ′
on and

uv ′
bt have been obtained, the sum of them is computed to get the estimated

number of virtual nodes available for the request.

An example In order to illustrate the procedure described above, a cluster is
considered with 20 nodes of 4 slots each. There are 2 completely free nodes, a
node with one free slot and a node with 3 free slots. 2 other nodes are booting
and the rest are switched off. There is a pending request which asked for 7 virtual
nodes of 2 slots each, and in this context a new request arrives for 4 virtual nodes
of 2 slots each. According to algorithm 1, the number of usable virtual nodes are
computed, obtaining uvon = 5 and uvbt = 4. Then, pending requests are taken
into account as explained in step 2. Taking into account that tfs = 12, trs = 14
and tbs = 8, equations (2.1) and (2.2) yield:

uv ′
on = min(max(0, (12− 14)/2), 5) = 0

uv ′
bt = min(max(0, (12 + 8− 14)/2), 4) = 3

This shows that the current request can get only 3 virtual nodes from currently
booting nodes. Since it needs 4 virtual nodes, more nodes have to be powered on.

Selecting the nodes to be powered on

The next step is to select which nodes, of the list of nodes that match the request,
will be switched on. There are also different strategies:

• Homogeneous Clusters: In this case, basic strategies such as selecting the
nodes using a fixed order or a random algorithm are good solutions, as all
the nodes provide the same features to all the jobs.

• Heterogeneous Clusters: In this case, more advanced strategies can provide
advantages by selecting the nodes according to different node features: per-
formance, power consumption, heat dissipation, etc. It is also possible to use
a combination of some factors, e.g. selecting the nodes with the best ratio
of performance / power consumption. In order to realize these strategies,
CLUES must obtain additional information about the nodes (e.g. perfor-
mance or power consumption). Currently, the information must be provided
by the system administrator using a set of static files, but CLUES is pre-
pared to use in the future some sensors or systems such as IPMI that can
provide the information automatically.

27

Chapter 2. CLUES

Powering off idle nodes

Another task to be done after each state update is to detect idle nodes that can
be switched off. The time of inactivity used to power off the nodes must be
specified by the system administrator. It is important to correctly select this time
to obtain good results with CLUES. Using a short time may reduce the power
consumption, but it can also increase the number of jobs having to wait, and the
number of power on/off operations. On the other hand, using a long time will
produce opposite results.

Some other factors are also considered when powering off nodes. In some cases,
because of the particularities of the hardware or the network topology, it is required
that some of the nodes (or all of them) remain powered in order for the cluster to
work properly (such as in the first cluster shown in the results evaluation section).

Re-evaluation of Jobs

A re-evaluation mechanism has been implemented, by means of which the queue
of the LRMS is periodically inspected, identifying jobs that have remained queued
for a specified amount of time. For each of those jobs, a request for nodes is sent
again to be re-evaluated by CLUES. This mechanism is introduced to correct some
possible undesirable conditions that arise when following a black-box approach
(e.g. a node may be powered off while a job that has not enough nodes is in
the queue). CLUES processes re-evaluation requests just like ordinary requests,
checking the resources needed by the job and switching on nodes if necessary.

2.4.2 Resource Manager Connectors

The resource manager connectors provide a uniform way to interact with different
LRMS. Each connector consists of two parts.

The first one is a monitoring system, that obtains information about the nodes of
the LRMS and presents it in a uniform way. The monitoring system connectors
are implemented as external executable files, which can be created using any pro-
gramming language. The connectors get the information directly from the LRMS
and publish it as a list of key-value pairs separated by semicolons, with one line
for each node, e.g.

host=node1;state=down;total_slots=2;free_slots=2;keywords=ok;

queues=sci

host=node2;state=free;total_slots=2;free_slots=1;keywords=ok;

queues=sec,sci

...

28

2.4 System description

There are only four mandatory fields: host, state, total slots and free slots.
The rest of fields depend on the type of LRMS used. For example the queues field
is used in the batch systems but not in the cloud ones.

The second part is a job interceptor, that comes into action whenever a new job is
to be submitted to a LRMS. Before the job is actually submitted, the connector
requests the necessary resources to the CLUES scheduler. When a response to the
request is received, the job is submitted to the LRMS.

Batch system connectors

Torque/PBS and SGE, two of the most popular queue systems, have been consid-
ered here and a connector has been implemented for each of them.

As mentioned above, one of the functions of a connector is to provide information
about the node states. In the case of PBS, this information is extracted by using
the command pbsnodes, and in the case of SGE with the qhost command. In
both cases, an option of the command is used in order to get the output in XML
format, which can be parsed more easily.

The other function of the connector is to catch incoming job submissions, in order
to request the corresponding resources to the CLUES scheduler. PBS provides a
feature known as “job submission filter” (or “qsub wrapper”) which is useful to
intercept the submission of jobs. A similar feature called “job submission verifier”
has been used in the case of SGE. By means of these features, a script can be
specified to be run before the effective submission of a job into the queue system.
In this case, the script must first determine relevant information of the job being
submitted (such as the number of required virtual nodes, the number of slots per
virtual node or the queue name), then send a request for nodes to CLUES, and
wait for a response. When a response is obtained, job submission can proceed.

Cloud system connectors

In the case of CMS, OpenNebula and OpenStack connectors have been developed.
The OpenNebula connector intercepts the creation of VMs by a mechanism pro-
vided by the middleware called “hooks”. Such mechanism enables the execution of
an application whenever a VM is created, and it is used to ask CLUES for working
nodes. The OpenStack connector does not provide any similar feature, and it was
necessary to modify one file of the middleware API to connect to CLUES.

The result is that each newly created VM is held while CLUES decides whether
extra nodes should be powered on, and in such case, while the nodes are booted.
If the VM were released before the node being ready to accept VMs, the scheduler

29

Chapter 2. CLUES

Hook Name Description
poweredon, poweredoff Before powering on/off a node
poweredon unexpected,
poweredoff unexpected

When CLUES detects that a node has been pow-
ered on/off unexpectedly

monitoring, monitored Before or after the monitoring procedure
enabled, disabled Once a node has been enabled or disabled
sensorover, sensorbelow The value of a sensor is over or below a threshold

Table 2.1: Hook types

might try to assign it to a working node that does not have enough resources. While
the VM is retained, CLUES tries to make its best for provisioning resources.

The information about the hosts is extracted in both cases using the corresponding
internal API for direct access. The main issue in the OpenNebula case is that
the information provided about the hosts is not enough for the CLUES scheduler,
regarding both the memory and the virtual CPUs booked: the internal information
system tracks the number of VMs that are running in a particular host (but not the
virtual CPUs), and the remaining free memory that is reported by the operating
system (that considers swap memory as real memory). The workaround has been
to extract the information from the description of the VMs.

2.4.3 Hook system

The hook system enables the extension of the functionality of CLUES without
the need to modify the source code. It specifies user defined actions (e.g. custom
scripts) to be executed before or after some event happens (eg. a node is being
powered on). The user must provide an executable file that receives as a parameter
some value related with the hook event. The events considered in the hook system
are shown in table 2.1.

This system also covers the CLUES monitoring system, to enable tasks to be
performed each time the CLUES scheduler monitors the system, or some measures
to be taken when a particular state is detected, e.g a message can be sent to the
system administrator when a node does not power on correctly or when it powers
off unexpectedly.

30

2.5 Mixed cluster

2.4.4 Sensor System

Nowadays it is quite common for the clusters to be monitored using some kind
of sensors to know some environmental parameters. Typical examples are the
temperature or the humidity. In some cases these sensors are managed by a piece
of software (e.g. Nagios) that can send notifications to the administrators to take
corrective measures.

A sensor system has been included in CLUES, enabling access to environmental
information, which can be used by the hook system to take automatic corrective
measures. CLUES can call periodically a set of sensor plugins (typically scripts)
that return a set of key-value pairs with the name of the parameter and the value
measured by the sensor. These values are stored and it is possible to configure the
system so that actions are taken whenever the value of any parameter is over or
below a given threshold.

In particular, the hook system can be used in order to take an action when the
parameter values are out of the specified limits. To implement this feature a new
type of hooks has been added to the scheduler where the user must define an upper
and/or lower limit for a measured value in the sensor system, and a command that
must be executed when the “exception” happens. The executed command will
receive as a parameter the string with the key-value pair obtained by the sensor
system. Corrective measures could be e.g. powering off the idle nodes, or even
powering off all the nodes, or, if a software provides the functionality, sending a
signal to switch on or off the air cooling system.

2.5 Mixed cluster

It is not very frequent to have more than one LRMS coexisting in the same cluster.
However, with the advent of cloud management systems, this option is not unrea-
sonable. Additionally, in some clusters used for testing purposes, it makes sense
to have two LRMSs installed, such as PBS and SGE. CLUES has been designed
to support this kind of mixed clusters, making it possible to manage nodes shared
by two or more LRMSs.

Although one node can be shared by different LRMSs, the number of slots must be
divided among them. For example, if a node has 6 slots, one LRMS could be using
2 of them and another one could use 4. It is a task of the system administrator to
configure the LRMSs properly.

The CLUES scheduler can manage a list of nodes included in each of the configured
LRMSs, storing the state and the features provided by the different connectors.
When processing an incoming request, the scheduler checks for available nodes only
within the list of nodes of the LRMS corresponding to the request. When selecting

31

Chapter 2. CLUES

the nodes to switch off, the scheduler must check the combined information about
all the nodes to select only the nodes that are considered idle in all the LRMSs.

2.6 Results Evaluation

In a previous work [40] of the authors, an analysis was made of the jobs launched
to the Torque/PBS LRMS of a HPC cluster, in order to have an estimate of
the benefits of applying green computing techniques to that cluster. Now the first
version of CLUES has been developed and it has been installed and working during
seven months in two different clusters. During this time period an evaluation, using
the current real workload of the clusters, has been made of the software behaviour,
and of the real impact on the power consumption and on the cluster users. This
evaluation was also useful to detect some aspects that were not initially considered
but are important in a production version.

2.6.1 Cluster 1

The tests have been performed in a cluster composed of 51 bi-processor nodes
with Intel Xeon CPUs at 2.80GHz, interconnected by a SCI network in a 10x5 2D
torus topology. Each node has 2 GB of RAM memory. The front-end node is the
access point to the cluster, and the other (50) are used as the working nodes. This
cluster is configured with a NFS system that is exported by the front-end node
and accessed by the computing nodes.

This cluster is used as a development and private testbed platform for parallel and
sequential high performance applications . The cluster is typically used to execute
both sequential and parallel CPU-intensive applications. During the seven months
considered for the evaluation, the system was used normally, with a total of 20,497
jobs submitted. 41% of the jobs were parallel and used an average of 14 nodes.
The average time per job was 14 hours, 41 minutes and 14 seconds.

A clamp meter was used to get the power consumption of each component of the
whole rack, and the corresponding data are shown in the rightmost column of table
2.2. In particular, power consumption has been obtained for three different states
of a cluster node: switched off (“N. off”), switched on but idle (“N. idle”), and
fully used (“N. used”). Finally, the entry “Other” refers to the power consumption
of the essential components of the cluster (front-end node, switches, KVMs) that
are always on.

Based on the analysis made in [40], a period of inactivity of 2 hours was considered
in order to switch off idle nodes. This period of time is the appropriate for the

7Cost: 0.091 e/kWh. Data obtained from the Ministerio de Industria, Turismo y Comercio
del Gobierno de España

32

2.6 Results Evaluation

Using CLUES Not using CLUES (est.) Consumption
per node

PCT kWh e7 PCT kWh e W
N. Off 45.6% 350 32 0.0% 0 0 3
N. Idle 4.9% 1,624 148 50.4% 16,234 1,477 130.9
N. Used 49.6% 26,051 2,371 49.6% 26,051 2,371 205.4
Other 100% 10,296 973 100% 10,296 973 2,012

TOTAL 38,321 3,487 52,581 4,785

Table 2.2: Cluster 1 power consumption and cost

deployment of the use-case, but it should be adjusted according to the features of
the actual deployment in which CLUES is used (the usage pattern of the cluster,
the power consumption for the nodes, etc.). The fact that the SCI network has a
2D torus topology implies that a message from a node A to another node B can be
routed through other intermediate nodes. Thus, these intermediate nodes should
not be powered off even if they are idle. In order to tackle this problem, the whole
cluster is kept switched on whenever a parallel job (using more than one node) is
running.

Figure 2.2 shows an evolution over the time of the number of requested slots in
the LRMS, and of the number of used and idle slots in the cluster. In the figure,
a slot is marked as used not only when a job is using it, but also when the slot
is part of a node that has at least one used slot. In this case, “used” means the
slot cannot be switched off. The vertical axis has been truncated to 100 to remove
peaks of requested slots that would make it difficult to see the figure. The period
of time considered in the figure has been reduced to the first two months, also
for the sake of clarity. In this first case there is a clear correlation between the
number of requested slots in the system and the number of nodes switched on by
CLUES. The figure shows that one node is always powered on, because this node
had some problems with the WOL configuration. Near the end of the two-month
period (about days 47 - 50) there is a peak where the whole cluster is switched on
with a reduced number of requested slots. This is produced by some parallel jobs
requiring all the cluster to be switched on due to the commented network topology
restrictions.

Table 2.2 shows the results of energy and money spent during the considered
period, in both the cases of using CLUES and not using it. The left part of the table
contains the data for the case of using CLUES. The first column (titled “PCT”)
represents the percentage of time a node spent on average in each state. The
second column (titled “kWh”) represents the total amount of energy consumed by
the specified components of the cluster, expressed in kilowatt hours. Last column
(titled “e”) contains the amount of money dedicated to those components. The
center part of the table corresponds to the estimation of the energy and money

33

Chapter 2. CLUES

Figure 2.2: Evolution of the number of used, idle and requested slots in cluster 1

spent if the CLUES system had not been used, presenting the same columns as
the left half. The energy consumption without CLUES has been estimated by
changing all the accumulated time of nodes in “Off” state to the “Idle” state,
because without CLUES these nodes would have never been switched off.

Table 2.2 shows that the total amount of energy saved is 14,260 kWh, which
represents 27.1% of the total amount of energy, but also means saving 1,297 e.

On the user impact side, an analysis has been made of the number of jobs that
needed to wait to access the resources. During all the period, 268 jobs had to wait
for some node to be switched on (1.31% of total jobs). The average waiting time
for these jobs was 1 minute and 40 seconds. This is a short enough waiting time,
considering that the average time per job exceeded 14 hours.

Another important issue is related with the number of switch-on/off cycles per-
formed in the cluster nodes. These operations can damage the hardware (mainly
the disk drives) and may cause consumption peaks that could increase the total
power consumption. During the evaluated period, an average of 38 switch-on/off
cycles were performed for each node, with a maximum of 54 cycles. This means
that a node completes a switch-on/off cycle once every 6 days on average, with a
maximum of once every 4 days.

2.6.2 Cluster 2

The CLUES system has also been tested in a cluster composed of an M1000e
blade server chassis with 6 Dell M610 and 3 Dell M910 nodes. Each M610 node
has two quad-core Intel Xeon E5620 processors, making a total of 8 cores and
16 GB of RAM per node. The M910 node has four quad-core Intel Xeon E7520
processors, with a total of 16 cores and 64 GB of RAM per node. The cluster uses
Torque/PBS and a NFS system is exported by the front-end node and accessed
by the computing nodes.

34

2.6 Results Evaluation

Using CLUES Not using CLUES (est.) Consumption
per node

PCT kWh e PCT kWh e W
N. Off 39.3% 181 16 0.0% 0 0 9
N. Idle 7.8% 363 33 47.1% 2,853 260 65
N. Used 52.9% 7,407 674 52.9% 7,407 674 187
Other 100% 3,070 279 100% 3,070 279 600

TOTAL 11,021 1,003 13,331 1,213

Table 2.3: Cluster 2 power consumption and cost

This cluster is used in a production grid environment, as one of the comput-
ing nodes of the Spanish National Grid Initiative8 in the European Grid Infras-
tructure9. The cluster is typically used to execute high throughput applications
launching sequential jobs. There is a wide range of different applications with
different behavior and requirements in terms of CPU, memory and I/O access
patterns. In particular, the workload of the system during the evaluation period
was composed of a total of 107,197 jobs, 13% of which were parallel and used an
average of 2.28 nodes. The average time per job was 2 hours, 39 minutes and 20
seconds. In contrast to the previous case, this cluster has no network restriction
and the nodes can be switched on individually. A time of 30 minutes has been
selected as the time of inactivity to power off the nodes.

Figure 2.3 shows an evolution over the time of the number of requested slots and
the number of used and idle slots in the cluster. As in the previous case, the “used”
state represents the slots that cannot be switched off. The vertical axis has been
truncated to 200 to remove peaks of requested slots that would make it difficult
to see the figure. As in the previous case, the period of time for the figure is two
months. The correlation between the number of requested slots and the number
of switched-on nodes is not as clear as in the previous case. The main reason is
that there are heterogeneous multicore nodes (with 16 or 32 slots per node), and
the job distribution among all the nodes depends on many factors: the LRMS
scheduler, the finalization of the jobs, the arrival of new jobs, etc. The LRMS can
be configured to pack the jobs in the minimum number of nodes, but other factors
cannot be controlled. It is possible, for instance, that only 9 jobs requesting 1 slot
each, end up keeping all the nodes switched on.

There are also some restrictions in the LRMS such as a maximum of 40 running
slots for each user group. This issue explains the behavior of the system about
the days 3 - 5 and 55 - 59, where the number of requested slots is bigger than the
number of used slots and no new nodes are switched on.

8http://www.es-ngi.es
9http://www.egi.eu

35

Chapter 2. CLUES

Figure 2.3: Evolution of the number of used, idle and requested slots in cluster 2

Table 2.3 shows the economic and energetic saving obtained by using the green
computing software. The left part of the table shows the power consumption
using CLUES, and the center part shows an estimation of the power consumption
without CLUES. The M1000e chassis has a complete set of energy management
tools to monitor the power consumption of the whole system and the individual
blades. These tools have been used to obtain the power consumption to perform
this study. The rightmost column of the table shows the power consumption of
one blade system in different states: switched off, switched on but idle, and fully
used, with the maximum number of jobs running. In this case the “Other” row
corresponds to the chassis.

The estimated economic saving is 210e, which means a reduction of 17.3% of the
total expenses. Unsurprisingly, the impact of the application of green measures
in this cluster is lower than in the previous case. The main reason is that, as
a production node of the EGI infrastructure, the cluster is periodically receiving
jobs in order to monitor the status of the system. These monitoring jobs cause
that at least 2 of the 9 nodes are always on. Other reasons are the important
power consumption of the chassis compared to that of the 9 nodes, and the fact
that the number of cores per node in this case is larger, which makes it easier for
the nodes to be only partially used.

On the user impact side, 2.9% of the jobs had to wait for some node to be switched
on, with an average waiting time of 1’54”. These are short enough values, consid-
ering that the average time per job exceeded 2 hours.

The average number of switch-on/off cycles for a node was 38, and 62 for the node
with the maximum number of these operations. It means that a node completes a
cycle once every 6 days, with a maximum of once every 4 days, that are very low
ratios.

36

2.7 Conclusion and Future Jobs

2.7 Conclusion and Future Jobs

The proposed CLUES tool is an energy manager for both HPC clusters and cloud
infrastructures, that is able to power off the nodes when they are not being used,
and power them on when they are needed. CLUES considers the underlying LRMS
as a BB. The advantage of this approach is that it can be integrated with differ-
ent resource management middleware, without needing any modification of that
middleware. Because of this flexibility, it can be used both for HPC clusters and
for cloud infrastructures. It can also be used with multipurpose clusters where
different management middleware coexist, thus enabling cluster-wide energy man-
agement policies. Additionally, it considers different mechanisms for powering on
and off the cluster nodes. The performance of CLUES is shown with two real
use-cases that show significant energy and cost savings of 27% and 17%.

Future directions of work include the introduction of modifications to the CLUES
scheduler, the use of alternative energy saving mechanisms such as DVFS, or
the use of other heuristic methods which may take into account prediction of
performance and energy consumption. At the same time, the integration with
other middlewares such as Eucalyptus or CloudStack is an ongoing work.

Another important issue to be considered in the future is the impact of CLUES in
systems using some kind of parallel file system like Lustre, GFS, GlusterFS, etc.
This kind of systems supports data replication, making it possible to switch off
some nodes of the infrastructure without losing access to the data. Configuration
issues imposed by this kind of systems must be analyzed, as well as the impact of
switching off nodes on the data access performance.

Finally, CLUES also opens possibilities for research in the field of scheduling poli-
cies for powering on and off the working nodes in multi-purpose clusters governed
by several coexisting middleware, with the aim of reducing energy consumption.

37

Chapter 3

An Economic and Energy-Aware
Analysis of the Viability of
Outsourcing Cluster Computing to
the Cloud

Published as

Carlos de Alfonso, Miguel Caballer, Fernando Alvarruiz, Germán Moltó, An
economic and energy-aware analysis of the viability of outsourcing cluster computing
to a cloud, Future Generation Computer Systems, Volume 29, Issue 3, March 2013,

Pages 704-712, ISSN 0167-739X,
http: // dx. doi. org/ 10. 1016/ j. future. 2012. 08. 014 .

Abstract

This paper compares the total cost of ownership of a physical cluster with
the cost of a virtual Cloud-based cluster. For that purpose, cost models for
both the physical cluster and the cluster on the Cloud have been developed.
The model for the physical cluster takes into account previous works and in-
corporates a more detailed study of the costs related to energy consumption
and the usage of energy saving strategies. The model for the cluster on the
Cloud considers pricing options offered by Amazon EC2, such as reserving
instances on a long-term basis, and also considers using tools for powering
nodes on and off on demand, in order to avoid the costs associated to keep-
ing idle nodes running. Using these cost models, a comparison is made of
physical clusters with Cloud clusters of a similar size and performance. The
results show that Cloud clusters are an interesting option for start-ups and
other organizations with a high degree of uncertainty with respect to the

39

http://dx.doi.org/10.1016/j.future.2012.08.014

Chapter 3. The Cost of a Cluster

computational requirements, while physical clusters are still more economi-
cally viable for organizations with a high usage rate.

3.1 Introduction

One of the main problems faced when deploying a cluster of PCs relates to the
high Total Cost of Ownership (TCO). This cost involves not only the purchase and
installation of the equipment (computational nodes, network components, cables,
hard disks, etc.), but also the operating costs. The latter includes the salaries
of the personnel in charge of the installation and maintenance, the electricity
consumed, and the costs related to rent appropriate housing and its associated
cooling systems. The problem is that the usage patterns of these machines are
highly dynamic, where peak loads are often restricted to the context of specific
experiments or deadlines. In addition to this, the prices of clusters of PCs rapidly
decrease (due to the technology obsolescence), thus reducing the value of the initial
investment in hardware.

As an alternative, researchers might access the resources at the Computing Centers
of national or international institutions. This is the case of the Spanish Supercom-
puting Network, which aggregates several supercomputing centers in Spain. The
access to this equipment is supervised by an access committee that grants limited
resource access according to the scientific merit of the proposals. Another example
is the not-for-profit organization Partnership for Advanced Computing in Europe
(PRACE), which provides access to a world class computing and data management
infrastructure [108].

Another alternative is to use Cloud computing, a model for enabling convenient,
on-demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider in-
teraction [88]. This is the case of Infrastructure as a Service (IaaS), which performs
on demand resource provision of computational resources, storage capacity, net-
work access, etc. This is achieved by means of virtual machines that run on the
Cloud provider’s computing center. In the case of public Cloud providers, a pay-
per-use pricing model is typically employed, where users are only charged for the
resources that they have consumed.

Virtualization was not considered a feasible approach for High Performance Com-
puting (HPC), due to the penalties involved mainly in the I/O. However, many
applications running on PC clusters are CPU-bound, thus their performance is
hardly affected by virtualization [100]. In addition, certain public Cloud providers,
such as Amazon, offer low latency links among instances, thus leveraging the idea
of using virtual clusters on the Cloud. Having a virtual cluster infrastructure on
a public Cloud provider has a large number of advantages for the end user, since

40

3.1 Introduction

no hardware costs are involved. However, the sustainability of this infrastructure
in the long term might represent a high cost, since the pay-as-you-go model of-
fered by the Cloud providers implies that a running virtual machine costs money
regardless of it being used for computations or not.

Due to the increase of the use of virtualisation and Cloud technologies, some
initiatives to create HPC clusters over Cloud infrastructures are emerging. One of
the first approaches, described in [23], enabled to launch a fully functional Hadoop
cluster over Amazon EC2 using a set of simple scripts1. Other tools can create
HPC clusters in the Cloud using some kind of Local Resource Management System
(LRMS) to manage the jobs. StarCluster2 uses this approach to create a cluster
in the Amazon EC2 infrastructure, with a set of predefined installed applications
(Sun Grid Engine, OpenMPI, NFS, etc.) to enable launching parallel jobs to the
queue system.

Recently Cycle Computing used Cloud infrastructures to create a 30,000-core HPC
cluster using Amazon EC2 standard instances3. The cluster ran for about seven
hours, with 3,809 compute instances and a total of 26.7TB of RAM and 2PB
(petabytes) of disk space, with a 10 Gigabit Ethernet network. Amazon itself
actually built a supercomputer on its own Cloud that made it onto the list of
the world’s Top 500 supercomputers. With 7,000 cores, that specific Amazon
cluster ranked number 232 in the world in November 2010 with speeds of 41.82
teraflops, falling to number 451 in June of this year4. It is estimated that the
whole Amazon EC2 infrastructure can be ranked number 42 among the world’s
Top 500 supercomputers5.

These tools and services turn the Cloud into a technologically feasible option for
the deployment of clusters of PCs. However, it is important to assess the economic
viability of outsourcing the deployment of a cluster on the Cloud, compared to the
purchase of a physical cluster. For that, this article analyses and compares the
cost of having a physical HPC cluster with that of a similar infrastructure on a
public Cloud provider.

The remainder of the paper is structured as follows. First, section 3.2 describes
the related work in the literature comparing physical clusters with virtual clusters
deployed on the Cloud, either economically or in terms of performance. Then,
section 3.3 dissects the TCO of an HPC cluster, introducing an energy-aware cost
model for physical clusters, and a cost model for virtual clusters on the Cloud.
Later, section 3.4 introduces some simplifying assumptions and considerations in

1http://wiki.apache.org/hadoop/AmazonEC2
2http://web.mit.edu/stardev/cluster/
3http://arstechnica.com/business/news/2011/09/30000-core-cluster-built-on-

amazon-ec2-cloud
4http://www.top500.org/system/details/10661
5http://www.readwriteweb.com/cloud/2011/11/amazon-ec2-now-42-supercompute.php

41

http://wiki.apache.org/hadoop/AmazonEC2
http://web.mit.edu/stardev/cluster/
http://arstechnica.com/business/news/2011/09/30000-core-cluster-built-on-amazon-ec2-cloud
http://arstechnica.com/business/news/2011/09/30000-core-cluster-built-on-amazon-ec2-cloud
http://www.top500.org/system/details/10661
http://www.readwriteweb.com/cloud/2011/11/amazon-ec2-now-42-supercompute.php

Chapter 3. The Cost of a Cluster

the cost models developed in the previous section, also presenting data related
to energy consumption, prices of hardware components and Cloud instance prices.
The resulting models are then used in subsection 3.4.2 in order to compare physical
clusters with Cloud clusters. Finally, a discussion of the results is presented in
section 3.5, followed by concluding remarks in section 3.6.

3.2 Related work

There is recent work in the literature comparing large scale public Cloud infras-
tructures with PC clusters, especially for HPC. In [84], the authors include a
comprehensive evaluation of performance comparing physical HPC clusters to vir-
tual HPC clusters on Amazon EC2, where the larger network latency in the latter
introduces a severe performance penalty for parallel applications. In [65], a similar
performance comparison is made with workflow applications composed of loosely-
coupled parallel applications consisting of computational tasks linked via data
and control dependencies. Different EC2 instance types were employed to assess
the performance of the applications and a virtualisation overhead below 8% was
computed.

Other works have studied the cost or benefit of using Cloud technologies from dif-
ferent points of view: in [42], the authors study the cost of executing the Montage
astronomy application in public Cloud environments. In [15], the authors evaluate
the cost of expanding a local virtual cluster using a Cloud technology provider, in
order to reduce the response time of the user requests. In [69] the authors com-
pare the performance and monetary cost-benefits of Clouds versus desktop Grids
(or Volunteer Computing) infrastructures, ranging in size and storage. In [77],
the TCO and Utilisation Cost of a Cloud infrastructure are analysed from the
point of view of the IaaS service provider. They also developed a web tool where
the users can introduce the parameters of their Clouds and obtain the total cost
analysis. Finally, other works such as [14], [10] or [131] have tried to compare the
cost of owning a datacenter infrastructure versus the pay-per-use costs of Cloud
deployments.

Those contributions show that it is crucial to evaluate the economic impact of
outsourcing an organisation’s HPC computing infrastructure to an external Cloud
provider. As opposed to previous works, this paper performs a detailed compari-
son between physical and virtual HPC clusters from the point of view of the TCO,
considering energetic, management and infrastructural issues, using concepts and
estimations from related work, but considering a more detailed analysis. In previ-
ous works, the cost of the energy is only estimated, while in this work a detailed
model of the energy consumption cost has been defined, where green-aware tech-
nologies are a key task to minimize the energetic consumption and the costs in the
Cloud deployments. The electrical power required to run a cluster and the price

42

3.3 The Total Cost of Ownership (TCO) of an HPC Cluster

of the energy have made owners to take such cost into account when operating
the computing infrastructures and to create heuristics to try to reduce its impact
[130][19]. This paper also analyzes how the Amazon EC2 reserved instances can
be used to reduce the cost when the users can estimate the average usage of the
cluster.

3.3 The Total Cost of Ownership (TCO) of an HPC
Cluster

TCO is generally used as a means of addressing the real costs attributed to owning
and managing an IT infrastructure in a business. Therefore, the TCO of owning a
HPC cluster not only includes the capital cost, but also the cost of operating the
IT infrastructure, and other factors [14].

The cost of owning an HPC cluster can be modelled according to the expression
(3.1), where CF stands for the fixed costs, which only occur once, as opposed to
variable costs (CV), required during the operation of the equipment. CF can be
detailed as in (3.2).

C = CF + CV (3.1)

CF = CP + CS + CCP + CA (3.2)

Concerning the costs related to the purchase and configuration of the equipment
(CP), we have considered the computing nodes, additional components, such as
switches, Power Device Units, etc., and auxiliary physical elements (racks, cables,
etc.). Besides the costs of purchasing the cluster itself, it is important to con-
sider the costs related to buying or renting the physical space where the cluster
will be located, together with appropriate refurbishment (CS). The expression
includes the costs related to the purchase of the cooling system (CCP) and the ad-
ministrative costs (CA) involved in the purchase (mortgages, loans, infrastructure
documentation, etc.). These costs have already been studied in the literature (see
e.g. [71]). Another concept traditionally considered when calculating the TCO is
the equipment disposal. This topic has not been included in the equation since due
to initiatives such as the European Recycling Platform6, most computer vendors
like Dell7 or HP8, etc. offer a free recycling program to their clients. In addition,

6http://www.erp-recycling.org/
7http://www1.euro.dell.com/content/topics/topic.aspx/emea/topics/services/

recycle?c=es&cs=esbsdt1&l=es&s=bsd
8http://www8.hp.com/es/es/hp-information/environment/hardware-recycling.html

43

http://www.erp-recycling.org/
http://www1.euro.dell.com/content/topics/topic.aspx/emea/topics/services/recycle?c=es&cs=esbsdt1&l=es&s=bsd
http://www1.euro.dell.com/content/topics/topic.aspx/emea/topics/services/recycle?c=es&cs=esbsdt1&l=es&s=bsd
http://www8.hp.com/es/es/hp-information/environment/hardware-recycling.html

Chapter 3. The Cost of a Cluster

other tasks such as backing up the data or removing data from hard drive to ensure
data privacy, etc, are included as part of the maintenance costs.

In addition to the fixed costs, it is possible to break down the variable costs CV ,
which account for periodic costs during the lifetime of the hardware:

CV = CL + CM + CO + CE (3.3)

Among the variable costs included in (3.3), one should consider the purchase and
update of the software licenses employed (CL), together with the costs of preventive
and corrective maintenance (CM) to repair the machine and to update certain
parts. The operation costs of the cluster (CO) broadly include the costs of the
personnel in charge of deploying, updating and securing the cluster.

Finally, we have to consider the energy cost (CE), which is one of the most complex
and highly variable aspects to evaluate. This cost is expressed in (3.4), where four
principal components are included, which correspond to different aspects of the
cluster energy consumption. These components are aggregated and multiplied by
the cost of the energy unit (CU), in order to obtain the final cost.

CE = (E0 + EI + EJ + ECO) · CU (3.4)

E0 = t · P0 (3.5)

EI = PI ·
n∑

i=1

tI(i) (3.6)

EJ =

m∑
j=1

(PP · tP (j) · nj + PU (j) · tU (j) · nj) (3.7)

We have considered four energy consumption patterns, related to the different
main states in which a cluster can operate:

• Energy consumption of the essential components (E0) for the normal
functioning (switches, front-end, network cards, etc.), represented in (3.5).
It is related to the power consumed by those components (P0) and to the
considered time (t).

44

3.3 The Total Cost of Ownership (TCO) of an HPC Cluster

• Energy consumption of idle nodes (EI), represented in (3.6). It depends
on PI (power consumed by an idle node), tI(i) (amount of time node i is
idle), and n (number of nodes in the cluster).

• Energy consumption dedicated to workload computation (EJ), as
expressed in (3.7), which can be split in two. On the one hand, the energy
consumed while preparing the nodes for the job (data staging, file transfers,
environment setup, etc.), which depends on PP (power consumed by a node
while it is under preparation), tP (j) (time invested in that preparation for
job j) and nj (number of nodes used by the job). On the other hand, the
energy consumed while the job uses the resources, which depends on the
function PU (j) (power consumed), tU (j) (job duration) and nj (number of
nodes used by the job). The total energy is the sum of these two components
for all the m jobs.

• Energy consumption of the cooling system, denoted by ECO.

These states have been considered to be different because PI < PP << PU (j). In
our case we have represented the power consumed by a node while it is computing
as a function PU (j), since that consumption largely depends on the number of
cores and processors being simultaneously employed.

C = CP + CS + CCP + CA + CL + CM + CO+t · P0 + PI ·
n∑

i=1

tI(i) +

m∑
j=1

(PP · tP (j) · nj + PU (j) · tU (j) · nj) + ECO

 · CU

(3.8)

Expression (3.8) includes the TCO of an HPC cluster during a certain amount
of time. This expression collects the principles and concepts employed in other
studies as covered in the related work section. In addition, it introduces the energy
consumption breakdown. The previous studies focus on aspects related to the
purchase and maintenance of hardware, while our approach puts more emphasis
on analysing the costs that arise when operating the cluster.

Some of the aforementioned costs are constant, while others are typically covered
by the economic resources of the organisations. In research centers or universities a
space reorganisation can be performed in order to reduce CS to the bare minimum.
This is precisely the case with CA since this cost might be reduced if the existing
administrative personnel take responsibility for the administrative management of
the cluster. In some cases, costs such as CL can also be neglected since licences
could be included in the purchase contract of the equipment.

45

Chapter 3. The Cost of a Cluster

Finally, the energy required for the cooling system tends to be estimated as pro-
portional to the energy consumed by the cluster components, using the Power
Usage Efficiency (PUE) ratio. This energy consumption increment can involve
from 30% to 200% of the energy consumed by the cluster components alone [18].

Taking into account the aforementioned considerations, the simplified total cost
of the cluster mainly depends on the purchase of the hardware, the maintenance
and operation of the cluster and its energy consumption. We are not considering
CS and CCP costs, which have been studied earlier in some papers detailed in the
related work section. For the discussion, we assume that the owner of the cluster
hosts the hardware in an available data center and, thus, the analysis focuses on
the costs related to the purchase and operation of the cluster. Buying or building
the appropriate infrastructure to host the cluster represents a larger cost than the
cluster itself. In this last case, other more exhaustive studies should be carried
out, as in [71], in order to decide the features of the installation, the amount of
hardware to host, the facilities included, together with the related cost.

Expression (3.8) presents a term related to the energy consumption of idle nodes.
In some cases, the amount of time in which the nodes remain idle can represent a
high percentage of time of the hardware lifetime. This is due to over-provisioning
of resources in order to better cope with peak workloads. Therefore, it is not
uncommon to see usage rates of clusters of PCs in the order of 20% [14]. Under
these conditions, we could power off the idle nodes in order to save energy and
reduce the total cost, as pointed out in [40]. Powering off the idle nodes tries to
reduce

∑n
i=1 tI(i) from (3.6) and (3.8) to zero, thus eliminating the corresponding

term. In this case, the time involved in starting up the nodes would be included
in the preparation phase, tP (j). Considering all these assumptions, the expression
reads as follows:

C = CP + CM + CO +
(
t · P0 +

∑m
j=1 (PP · tP (j) · nj + PU (j) · tU (j) · nj) + ECO

)
· PUE · CU

(3.9)

3.3.1 The Cost of an HPC Cluster on the Cloud

For the case of clusters on the Cloud, the economic analysis is based on the pay-
per-use model that Cloud platforms introduce. Moving the cluster to the Cloud
discards the fixed costs, such as the purchase of the equipment and the supporting
infrastructure, the cooling system, etc. In addition, the administrative costs are
substantially reduced since there is no longer need to perform such an upfront
investment to purchase the hardware. In any case, the energy consumption related
to the cluster and the cooling system is entirely covered by the Cloud provider.
However, in this case there are usage costs, represented by the pay-as-you-go model
of Cloud computing.

46

3.3 The Total Cost of Ownership (TCO) of an HPC Cluster

For the discussion, we consider the pricing model proposed by Amazon EC2, since
it is one of the pioneer Cloud providers and it has the biggest market share in
the provision of computational resources in Cloud. In addition, many providers
are adopting the pricing model proposed by Amazon. In this case, an “instance”,
which corresponds to a virtual machine running with specific virtual hardware
features (processors, disk, memory, etc.), is charged per hours running, regard-
less of its utilization. The different instances offered by Amazon EC2, with the
corresponding features and cost, are shown in [7].

There are also additional costs that should be considered, such as the data storage
cost and the network transfer cost. Both Amazon and other IaaS-supplier com-
panies charge for using storage space apart from the one required for the proper
functioning of the virtual machine, i.e., databases, persistent volumes, etc. The
network bandwidth usage for inbound and outbound connectivity of virtual ma-
chines is also considered in the pricing model.

With the aforementioned considerations, it is possible to propose a cost model of a
cluster of PCs based on the pricing model of Amazon EC2, as shown in expression
(3.10).

C = CA + CL + CO + t · (CH + n · CW) + CST + CN (3.10)

This model includes the administrative, license and operation costs, together with
the usage costs of the virtual machines, where we differentiate the cost of the front-
end instance (a.k.a the head node, CH) and the cost of the working node instance
(CW). The usage cost also depends on the number n of computational nodes
of the cluster and the amount of time that these nodes are running. Following
the same considerations as in the case of a physical cluster, we will assume that
administrative and license costs are negligible. In this case the prices of virtual
machine images can also include the license costs of preinstalled applications.

Finally, the model also considers the costs related to data storage (CST) and net-
work bandwidth usage (CN). For the former, a virtual machine that does not re-
quire additional storage space, other than the one provided by the virtual machine
image, will not incur in further charges. For the latter, if a virtual machine does
not perform or receive an outbound connection (external to the Cloud provider’s
network) it will not produce any economic charges. In the case of an HPC cluster,
it is important to notice that, since the computational nodes are deployed inside
the infrastructure of a Cloud provider, the network communications among the
nodes will not cause any charge.

Therefore, the network cost would be caused by the data transfers from the user
network to the cluster (and to retrieve the results of the computations), as well
as the downloads that the working nodes could eventually perform (if they are

47

Chapter 3. The Cost of a Cluster

allowed). In the case of Amazon EC2, uploading data to the Cloud incurs in no
additional charges.

Note that working nodes are charged regardless of whether they are busy or idle.
Considering the cost model for a physical cluster (3.9) and the ability to power
off nodes in order to reduce energy consumption, it is easy to realize that an
approach for energy reduction would also be valid for reducing the economic cost
in the Cloud. In order to reduce this cost there is software such as StarCluster,
Hadoop, Globus Provision9 and elasticwulf10, which enable to deploy a cluster
with a given number of nodes on a Cloud infrastructure, such as Amazon EC2. In
these cases, the resources are released when the computations finish, in order to
save money. Due to the growth of this kind of tools, different computer services
providers are offering the HPC cluster creation as a service to their clients. As
an example SGI11, Sabalcore12 or Penguin Computing13 provide access to HPC
clusters that can scale on demand. Also some research centres such as SARA14

offer services to create “Virtual Private HPC Clusters”.

With these considerations, it is possible to break down the economic cost of (3.10),
applying the criteria from (3.7) to the pay-per-use model, which results in expres-
sion (3.11). In this case, the startup time of the virtual nodes is included in the
preparation phase of the instances tP (j).

C = CO + t · CH + CW ·
m∑
j=1

(tP (j) + tU (j)) · nj + CST + CN (3.11)

3.4 Cost Analysis of Moving HPC to the Cloud

This section thoroughly analyses the tradeoffs of moving HPC to the Cloud, in
the shape of a virtual cluster deployed on Amazon EC2, compared to a traditional
in-house physical cluster, from an economic perspective. The expressions in this
section no longer include the CO cost, because we assume this cost is of the same
order of magnitude for both the physical and the virtual cluster, and thus can be
omitted.

The cost of a cluster throughout a period of time largely depends on its usage rate
and the workload distribution among the nodes, determined by its LRMS. In our
case, using the expression (3.9), we compute the lower and upper bounds to the

9http://globus.org/provision
10http://code.google.com/p/elasticwulf
11http://www.sgi.com/products/hpc_cloud/cyclone
12http://www.sabalcore.com
13http://www.penguincomputing.com/POD
14http://sara.nl/services/cloud-computing

48

http://globus.org/provision
http://code.google.com/p/elasticwulf
http://www.sgi.com/products/hpc_cloud/cyclone
http://www.sabalcore.com
http://www.penguincomputing.com/POD
http://sara.nl/services/cloud-computing

3.4 Cost Analysis of Moving HPC to the Cloud

TCO of a physical cluster. For that, according to [10], we estimate the maintenance
cost of the machines (CM), including out of warranty repairs, to be an annual 10%
of the initial cost of the hardware. Concerning the PUE, choosing the right value
depends on the specific installation but, according to [18], it typically varies from
1.3 to 3.0. For the analysis we choose the average value of that scale, i.e. 2.15,
although other cases might involve adjusting that ratio, such as in [131, 9].

The lower bound for the TCO of a physical cluster is shown in expression (3.12) and
it corresponds to the situation where a cluster is purchased but no computations
are ever performed. Therefore, all the internal nodes are powered off and only
the front-end and the essential components remain powered on. The upper bound
expression is shown in (3.13), and it corresponds to the theoretical state in which
the cluster is working at full workload, where all the computing nodes are running
and using 100% of all the computing cores (c). In (3.13), the amount of power
consumed by the n nodes is estimated using the power of an idle node (PI) and
the additional power consumed by each of the c cores in the cluster (PC). Y
corresponds to the duration of one year.

C = CP + 0.1 · CP ·
t

Y
+ t · P0 · 2.15 · CU (3.12)

C = CP + 0.1 · CP ·
t

Y
+ [t · P0 + t · (n · PI + c · PC)] · 2.15 · CU (3.13)

Just like the physical cluster, the cost of a cluster in the Amazon EC2 Cloud
depends on its usage, since this determines the number of computational nodes
to provision. In our case, instead of creating a synthetic benchmark to obtain the
average cluster activity, we use a percentage of usage (u) of the equipment through
the time of the study:

C = CH · t+ CW · n · u · t+ CST + CN (3.14)

However, to increase the diversity of cases in the study, we have included the
reserved instances model offered by EC2. This allows users to make a one-time
payment to reserve an instance for a three-year period, and in turn receive a signif-
icant discount on the hourly charge for that instance. Considering our approach,
a number of p reserved instances would be kept up and running for the reservation
period tR, and the other instances could be fired up and down on demand up to
the maximum number of n nodes. The expression now reads as in (3.15).

C = (CHR+CWR·p)·d
t

tR
e+CW ·(n−p)·u′·t+(CHU+CWU ·p)·t+CST +CN (3.15)

49

Chapter 3. The Cost of a Cluster

This expression introduces the head node instance reservation price (CHR) and
the hourly price for using the reserved instance (CHU). In a similar way, it also
considers the cost of the reserved working nodes (CWR and CWU). It also considers
u′, which corresponds to the usage rate of nonreserved instances, which we will
refer to as nonreserved usage.

From now on, we will assume that the costs related to storage (CST) are zero,
since our study focuses on the operating costs of the cluster. This assumption is
reasonable considering that the front-end instance has enough free storage space
to operate the cluster. For example, an m1.small instance in Amazon EC2 has
a 160 GBytes disk size. The front-end will probably be shared with the internal
computing nodes via the network (using NFS, for example).

Concerning the costs of the network bandwidth CN , this will depend on the ap-
plications to be executed on the cluster, the amount of data required to start
the computations, and the generated output data of the executions. In the case
of Amazon EC2, internal transfers do not incur in additional charges. However,
outer transfers, i.e., the data movement between the Cloud provider’s network
and the client, are billed. Considering a reference value of 100 Gb of data transfer
per month (more than 3 Gb of daily results by the users), this would represent a
monthly cost of 12$. Since this study handles values in the order of thousands of
euros, the cost of the data transfers is negligible.

It is important to point out that expression (3.15) is an estimation that includes
simplifications and, therefore, the actual results will depend on the usage patterns
of the cluster and the LRMS. In addition, the expression represents an upper bound
to the cost of the cluster in the Cloud, since we have assumed that the reserved
instances will remain active all the time. This is because we have assumed that
the usage rate of the reserved nodes is very high, in order to match the typical
workload of the system. Notice that additional savings could be made if those
reserved nodes were powered off if they remain idle for a certain amount of time.

An important issue to be considered is that the variable u′ included in expression
(3.15) is not the usage rate of the cluster, but the usage rate of the extra (n− p)
unreserved nodes. If we assume that the reserved nodes are always used, the global
usage rate of the cluster would be p/n+ ((n− p)/n) · u′.

Figure 3.1 shows a conceptual view of the costs of the cluster related to its work-
load, according to the proposed model. In the left hand side of the figure, an
example of the workload of a physical cluster is shown, which is characterized by
the number of nodes being used during the time study. Considering the proposed
model, this workload results in an economic cost due to the energy consumption.
In the right hand side of the figure, the same workload is depicted for the case of a
cluster in the Cloud. Assuming the initial purchase of a set of reserved instances in
EC2, the final cost would consist of the cost of these reserved instances (lower part

50

3.4 Cost Analysis of Moving HPC to the Cloud

Figure 3.1: Usage rate beyond the amount of preallocated nodes (reserved instances)

Parameter Value
CU ($ per kWh) 0.0988

P0 (kW) 0.7659
PI (kW) 0.0966
PC (kW) 0.01075

Table 3.1: Energy consumption a cluster node (Intel Xeon E5520 2.3 GHz)

of the figure, in light gray), together with the cost of the dynamically provisioned
instances, which cope with the excess of workload that cannot be executed by
the reserved instances (upper part of the figure, in dark gray). In the expression
(3.15), the dark gray part corresponds to (n− p) · u′ · t.

As an example, in the case of a 64-node cluster where 40 nodes are reserved
instances, there are 24 nodes that should be powered on and off depending on the
workload of the cluster. Therefore, the nonreserved usage u′ refers to those 24
nodes. Thus, a nonreserved usage of 0.5 would represent that an average of 12
nodes (out of the 24) are powered on during all the time of study, or equivalently,
the 24 nodes are powered on during half of the time of study.

Introducing the nonreserved usage and the previous assumptions, we will be able
to identify a broad spectrum of cases when using a cluster infrastructure, thus
performing a thorough study. The following section analyses the cost for two
clusters, a small-sized one with 64 cores and a larger one with 1024 cores.

3.4.1 Supporting Data for the Case Study

The cost of a physical cluster related to energy consumption has been computed
considering the values in Table 3.1. The energy price CU comes from the average
value of the energy in the USA [1]. In some European countries (like Spain), the
energy price can reach 0.20$ per kWh [46].

In order to obtain the actual power consumed by the essential components of the
cluster (P0) and by an idle node (PI), we have relied on the monitoring systems of

51

Chapter 3. The Cost of a Cluster

Instances 1 2 3 4 5 6 7 8
Increment (W) 34 44 57 68 71 73 78 86

Increment / core (W) 34.0 22.0 19.0 17.0 14.20 12.17 10.71 10.75

Table 3.2: Power consumption of a modern cluster node

Component Unit Price
Computational nodes with two Quad-core Intel Xeon
E5620 2.4Ghz processors, 16 GB of RAM and 146GB of hard disk

3600 $

Front-end node with similar features than the computational node 5000 $
Network by means of Gigabit Ethernet switches 2500 $

Rack 4000 $

Table 3.3: Configuration of a physical cluster

a physical cluster of PCs. To estimate the power consumption of an individual core
we have used the well-known Linpack [45] benchmark, which has been executed
with a different number of instances ranging from 1 to the maximum number of
cores of a node whose features are described in Table 3.3. The average power
consumption has been analysed and the increment of power with respect to the
idle state (PI) has been computed, taking into account the number of instances
employed. Since the benchmark only stresses the CPU, this power consumption
increment can only be attributed to the CPU. The resulting data is shown on
Table 3.2.

As shown in the table, the power consumption per core is not linearly related
to the number of cores. If we want to compute an upper bound of the power
consumption, we can use the increment of power per core corresponding to the
case when all the cores are being employed.

Concerning the price of purchasing a cluster, we have assumed a standard rack-
based configuration, with the components detailed on Table 3, for which prices
have been obtained through different vendors in early 2012.

To compute the cost of the cluster in the Cloud, the values in Table 3.4 have been
employed, which reflect the pricing policies of Amazon EC2 as of early 2012 [7]. To
make the comparison, the “Cluster Compute Eight Extra Large” instance (named
cc2.8xlarge in Amazon EC2) has been used. It has been selected because it gets
the best price/ performance ratio. This instance type, with 16 cores, provides
88 EC2 Compute Units (ECU) and it has also been considered for HPC usage
in previous works [47]. ECU has been used to compare the performance of the
different instances, as it has become the “de facto” standard unit to measure the
performance of Cloud systems. Other type of instance could be used depending
on the concrete cluster needs and the specific required resources for each virtual
node. Concerning the reservation of instances, Amazon considers different prices

52

3.4 Cost Analysis of Moving HPC to the Cloud

Item Value
Front-end instance price ($/3 years) 300 $
Front-end instance price ($/hour) 0.013 $

Internal reserved instance price ($/3 years) 10490 $
Internal instance price ($/hour) 2.4 $

Internal reserved instance price ($/hour) 0.494 $

Table 3.4: Considered values to compute the cost of a cluster on Amazon EC2

MFlops (Linpack) Normalized
Amazon EC2 (m1.small) 522.26 1

Real Node Xeon E5620 2.4Ghz 1516.52 2.903758
Amazon EC2 (cc2.8xlarge) 1614.90 3.092139

Table 3.5: Performance value of the studied nodes (per core)

for low, medium and high use instances. With respect to low usage instances, high
usage instances have a higher one-time reservation fee and lower hourly price. For
simplicity, in this study we consider only high use instances, although results for
low or medium use instances would not be substantially different.

Two different cases have been considered. On the one hand, a small-size cluster
composed of 1 rack, 1 Gigabit Ethernet switch, 1 front-end, 8 nodes and 64 cores,
with an approximate cost of 40,300 $. On the other hand, a large cluster composed
of 4 racks, 6 Gigabit Ethernet switches, 1 front-end, 128 nodes and a total 1024
cores, with a total approximate cost of 496,800 $.

3.4.2 Comparing clusters

Using the previous data, a cost comparison analysis has been performed between
a physical cluster (considering the lower and upper bounds in (3.12) and (3.13),
respectively) and an EC2 virtual cluster of the same size, using the model in
(3.15), from which lower and upper bounds can be derived using the minimum
and maximum usage of the cluster. We consider not only the cluster size for the
comparison, but also the performance. For that purpose we have run the Linpack
benchmark both in an EC2 instance and in a physical cluster node equivalent to
the computation node described in the previous section. The results and their
normalized values are shown in Table 3.5, where we see that the performance of
the physical cluster node and the cc2.8xlarge EC2 instance are quite similar, both
obtaining a result about three times greater than the m1.small instance.

For the comparison, a period of 4 years has been considered, following the recom-
mendations of [83]. The evolution of the cost with respect to the time is shown on

53

Chapter 3. The Cost of a Cluster

Figure 3.2: Cost comparison between the physical cluster and the cluster in the Cloud
for a 64-core cluster (on the left), and for a 1024-core cluster (on the right) for 4 years

Figure 3.2. The left hand graph corresponds to the 64-core cluster, while the righ
hand graph shows the data for the 1024-core cluster.

For each case, four different cases are shown, which correspond to different com-
binations of reserved nodes (p) and nonreserved usage (u′) in the virtual cluster.
The combinations illustrate the upper limit and lower limit of the virtual cluster
cost for different cases of reserved instances (p = 0, p = n/2 and p = n). There
are two special cases: a cluster that has not reserved instances and it is not used
at all (p = 0 and u′ = 0), and a cluster that has all its nodes reserved (p = n).
In the first case, the cost is exactly 0 and it is not shown in the graph because it
coincides with the horizontal axis. In the second case, both the upper and lower
bounds of the costs are the same since there is no variable part in the cost.

In both graphs, the thick lines correspond to the lower bound (dashed black line)
and the upper bound (solid gray line) of the physical cluster cost. The increment
in cost with respect to time corresponds to the energy cost and the hardware
maintenance. This cost can represent more than 70% of the initial cluster price
after 4 years.

We can see that the virtual cluster cost on the left graph is approximately propor-
tional to the same cost on the right graph, as is to be expected according to the
expression (3.15). The differences between the graphs correspond to the scale of
the prices and to the price of the physical cluster.

The graphs point out the influence of the saving plans of the Cloud provider (i.e.
reserved instances) in the total cost of the cluster. In particular, if no reserved
instances are pre-purchased, the price of a cluster in the Cloud shoots up to more

54

3.4 Cost Analysis of Moving HPC to the Cloud

than 350% (with respect to the physical cluster) in the case of the small cluster
(n = 64) and more than 500% in the case of the large cluster (n = 1024) for
a maximum usage rate. However, using no reserved nodes could be better if
the cluster usage rate is sufficiently low. This option is certainly interesting in the
case of internet-based start-ups in which estimating the workload of the computing
infrastructure is difficult, since this might depend on the success of the product.

Using reserved instances, it is possible to gain an economic advantage in the long
term with respect to provisioning all the computing resources on demand. How-
ever, sometimes this means no real advantage with respect to the physical cluster.
It is true that the hourly rates of reserved resources are lower than those of non-
reserved ones. However, the initial investment in the reserved instances makes the
total cost of the virtual cluster to easily surpass the cost of the physical cluster.
In addition, the slope related to the hourly prices of the instances is steeper than
the slope corresponding to the electricity and maintenance costs for the physical
cluster. In this case we face the additional problem of having to decide the number
of instances to purchase in advance This requires a careful planning and estimation
of the computational resources to be needed in the near future. Otherwise, the
user would incur in a penalty cost for having an overdimensioned cluster.

It is worth noting that the lines corresponding to the upper bound of the virtual
cluster cost intersect in one single point that corresponds to about 7.6 months.
In fact, using expression (3.15) and considering the costs corresponding to any
two different values of p, we obtain that both costs are equal for time tE given in
(3.16), which depends only on u′ and on the prices of reserved and nonreserved
instances for the cluster working nodes.

tE =
CWR

CW · u′ − CWU
(3.16)

In particular, the intersection point mentioned above corresponds to the case where
u′ = 1, which substituting in (3.16) yields t = 5503.67 hours, or approximately
7.64 months.

In general, expression (3.16) could help us decide if the option of reserving nodes is
preferrable for a particular case, assuming that we have enough information about
the cluster usage rate.

55

Chapter 3. The Cost of a Cluster

3.5 Discussion

Deciding whether it is still convenient to purchase hardware to enable scientific
computations in the shape of HPC (High Performance Computing), HTC (High
Throughput Computing) or MTC (Many Task Computing) instead of outsourcing
computations to an IaaS Cloud provider depends on several factors. Obviously,
a cluster in the Cloud provides the user with the inherent benefits of the Cloud
technology, such as avoiding the upfront investment in hardware, maintenance,
cooling, etc. In addition, it also frees the user from setting up the space ded-
icated to host the cluster together with its refurbishing costs. This represents
both a considerable investment, studied in publications such as [106], and an en-
try barrier that might delay the start of the operations of the cluster. In many
cases, these delays are not admissible. Therefore, the Cloud could be employed
as the final computing infrastructure or as a transition solution until the physical
infrastructure is set up.

We found that, in some cases, a cluster in the Cloud can deliver an amount of
computational power comparable to a physical cluster with a similar cost. If the
usage of the cluster is going to be very high during all its life-cycle, the physical
cluster is the best option. But if the average usage of the cluster is going to be
moderate or low, only having some periods with peak workloads, the Cloud can
be a very good option. Note that it is important to correctly estimate the usage of
the cluster in order to purchase the correct number of reserved instances to take
advantage from commercial IaaS.

Another important aspect to be considered is that the hardware depreciates with
time, due to the rapid obsolescence of the equipment and its delivered performance.
Therefore, a physical cluster cannot be considered a middle or long term investment
unless a plan of Return of Investment (ROI) exists. In this sense, one should expect
public Cloud providers to periodically upgrade the underlying hardware (or reduce
the price) so that users can benefit from the performance improvements. In the
case of Amazon EC2 the hardware upgrade produced in the last years enabled
an important reduction of the price per ECU (more than 75%) in the last years
[125]. So it is logical to think that the price fall could continue in the next years.
However, this fact has not been included in the proposed model due to the related
uncertainty concerning a future price fall. Nevertheless, this should be considered
by a customer when deciding among different Cloud providers.

It is also important to point out that estimating the cluster size is far from being
a trivial task. If the cluster is underdimensioned, we face the risk of being unable
to fulfill the computational requirements of the users. However, if the cluster is
overdimensioned, we face an unnecessary cost for unused resources. In the case of
a physical cluster, this decision is critical, since the dimension of the cluster relates
to space for housing, energy supply, cooling systems, etc. In the case of a cluster

56

3.6 Conclusions

in the Cloud, an inappropriate dimensioning of the cluster is less problematic since
computational resources can be provisioned and released on demand, in order to
satisfy unexpected peak workloads.

Another aspect to be considered is that one might think that a usage rate of 20%
or 40% (73 or 146 days in a year) in a cluster is significantly low. Even though
there are scientific applications that require sustained computing power for weeks
or months, not many applications used in clusters have usage patterns over that
usage ratio. This represents a total of 224,256 and 439,296 CPU hours for a 128-
node cluster. For example, a node that our research group dedicates as part of the
Spanish NGI (National Grid Initiative) has a usage rate of 33%.

One of the target users of a cluster in the Cloud would be a start-up (an enterprise
with a high degree of uncertainty with respect to the computing requirements) or
an organisation whose workloads match a high level rate during medium or small
time periods (e.g., without exceeding a 20-40% sustained usage rate across the
year). In these cases, the organizations avoid the upfront investment, reduce the
Time to Market (TTM) and can postpone the decision of investing in a physi-
cal infrastructure, possibly depending on the ROI of the business activity. Such
organisations could objectively map the Cloud costs to the price charged to the
customers, and adjust the use of reserved instances according to the changing
needs.

3.6 Conclusions

Nowadays, there are several IaaS public Cloud providers, which represent an alter-
native to the traditional purchase of computing infrastructure. However, the users
of computer clusters have traditionally relied on physical clusters. This article
has focused on the convenience of outsourcing cluster-based computations (HPC,
HTC, MTC, etc.) to the Cloud.

For that purpose, a cost model of a physical cluster has been developed, which
considers the different aspects studied in the literature, but also includes the cost
related to energy consumption and the usage of energy saving strategies. We have
used the pricing options of Amazon EC2 to create a cost model of a cluster in
the Cloud. This model considers the reserved instances approach offered by the
provider and it also considers the usage of tools to power on and off instances on
demand, in order to avoid idle nodes on the Cloud and its associated cost.

A comparison has been made of the cost of physical clusters and their virtual
counterparts, with the same number of nodes and similar performance. The result
is that from the point of view of a data center, which expects a high usage rate
for their clusters, it is still economically preferable to purchase a physical cluster
hosted on its facilities. The fact is that these centers expect a ROI related to

57

Chapter 3. The Cost of a Cluster

the usage and renting of their equipment and, therefore, can benefit from the
economies of scale to turn themselves into infrastructure providers. But if the goal
is obtaining high performance computing, and the sustained usage rate is moderate
or low, the Cloud can provide similar equipment at a competitive price. Having a
good estimation of the workload is necessary in order to select the correct number
of reserved instances. We have also obtained an expression to help us decide
whether the option of reserving nodes is economically preferrable, depending on
the estimated usage rate of the cluster.

Our cost model does not include additional features such as spot instances, which
enable the user to bid for unused Amazon EC2 capacity, since their cost is not
deterministic. However, it could be an interesting option when performing HTC
computations. A scenario could be envisaged in which the cluster grows and
shrinks opportunistically according to the instance prices.

58

Chapter 4

EC3: Elastic Cloud Computing
Cluster

Published as

Miguel Caballer, Carlos de Alfonso, Fernando Alvarruiz, Germán Moltó, EC3:
Elastic Cloud Computing Cluster, Journal of Computer and System Sciences,

Volume 79, Issue 8, December 2013, Pages 1341-1351, ISSN 0022-0000,
http: // dx. doi. org/ 10. 1016/ j. jcss. 2013. 06. 005 .

Abstract

This paper introduces Elastic Cloud Computing Cluster (EC3), a tool that
creates elastic virtual clusters on top of Infrastructure as a Service (IaaS)
Clouds. The clusters are self-managed entities that scale out to a larger
number of nodes on demand, up to a maximum size specified by the user.
Whenever idle resources are detected, the clusters automatically scale in,
according to some predefined policies, in order to cut down the costs in
the case of using a public Cloud provider. This creates the illusion of a
real cluster without requiring an investment beyond the actual usage. Two
different case studies are presented to assess the effectiveness of an elastic
virtual cluster. The results show that the usage of self-managed elastic
clusters represents an important economic saving when compared both to
physical clusters and to static virtual clusters deployed on an IaaS Cloud,
with a reduced penalty in the elasticity management.

59

http://dx.doi.org/10.1016/j.jcss.2013.06.005

Chapter 4. EC3

4.1 Introduction

The usage of clusters of PCs as a computing facility is currently widespread in the
scientific community. In the last years, the success of this computing platform,
either for High Performance Computing (HPC) or for High Throughput Comput-
ing (HTC) has been unparalleled. However, one of the main drawbacks of these
computing platforms is the relatively large upfront investment together with the
maintenance cost. For small and medium-sized research groups or organizations
the purchase of such an equipment might represent an important cost.

Traditionally, virtualization was not considered as a viable option for HPC, mainly
due to the overhead costs in I/O and network devices. However, the major im-
provements in hypervisor technologies have paved the way for Cloud computing
to rise as a paradigm where resources (in the shape of virtual machines (VM),
network, storage capacity, etc.) can be dynamically provisioned and released on a
pay-as-you-go basis [88]. This is the case of public Infrastructure as a Service (IaaS)
Cloud providers such as Amazon Elastic Compute Cloud (EC2) or Rackspace.

In a previous work [4] we concluded that, in some cases, it is interesting to deploy
a virtual cluster instead of a physical one. A virtual cluster in an IaaS provider
is able to get a competitive performance per price rate, but also gets important
benefits from the Cloud provider such as reducing the administration costs (both
personnel costs and maintenance of equipments), avoiding hiring or buying the
physical building to host the infrastructure, avoiding the upfront investments in
hardware, cooling systems, etc. Therefore, deploying a cluster in the Cloud can
also inherit these advantages.

However, clusters are generally not used at 100% of its capacity during their life-
time [14]. The total lifetime of a cluster can be divided into two parts: the time
while the cluster is calculating (Tc) and the time when the system is idle (Ti). In a
Cloud environment it would be adequate to stop the VMs while they are not being
used and pay only for Tc. The idea is similar to what is currently done with energy
saving techniques in a datacenter, where physical nodes are dynamically powered
on and off in order to reduce energy consumption while maintaining the required
level of service. However, whereas for Green computing the aim is to save energy,
for Cloud computing the main aim is to save money (in the case of public Cloud
providers). In this case, the Green computing techniques seem to be suitable for
creating elastic clusters in an IaaS cloud deployment.

This article proposes the combination of Green computing, Cloud Computing and
HPC techniques to create Elastic Cloud Computing Cluster (EC3), a tool that
creates elastic virtual clusters on top of IaaS Clouds. EC3 creates elastic cluster-
like infrastructures that automatically scale out to a larger number of nodes on
demand up to a maximum size specified by the user. Whenever idle resources are
detected, the cluster dynamically and automatically scales in, according to some

60

4.2 Related Work

predefined policies, in order to cut down the costs in the case of using a public
Cloud provider. This creates the illusion of a real cluster without requiring an
investment beyond the actual usage. Therefore, this approach aims at delivering
cost-effective elastic Cluster as a Service on top of an IaaS Cloud.

The remainder of the paper is structured as follows. First, section 4.2 describes
the related work and the main contributions of EC3 to the state-of-the-art. Later,
section 4.3 details the architecture and implementation details of EC3. Then,
section 4.4 describes two case studies to demonstrate the functionality of EC3
both in the case of a stable cluster and in the case of an ad-hoc cluster for a
specific application. Finally, section 4.5 concludes the paper and points to future
work.

4.2 Related Work

This work encompasses the dynamic deployment of virtual elastic clusters on the
Cloud. Regarding the creation of clusters in the Cloud, some works such as [97],
[128] and [81] have analyzed architectures, algorithms and frameworks to deploy
HTC clusters over private, public and hybrid Cloud infrastructures. In [97] the
authors analyze the performance of virtual clusters deployed on top of hybrid
Clouds obtaining good results that demonstrate the feasibility of these kind of
deployments. The work by Wei et al [128] is focused on algorithms to deploy
VMs over a set of physical resources in the most efficient way trying to obtain the
best performance on the virtual cluster. In [81], the authors try obtain the best
resource allocation solution for a set of virtual clusters from different users with
different job features. However, none of them deals with the elastic adaptation of
the cluster size to the workload submitted by their users.

In [84, 85], the Nimbus toolkit is employed to implement and evaluate an elas-
tic site manager, which dynamically extends existing physical clusters based on
Torque with computational resources provisioned from Amazon EC2 according to
different policies. A similar approach is employed in [15], where the benefits of us-
ing Cloud computing to augment the computing capacity of a local infrastructure
are investigated, but no details about the underlying technologies are given.

The standard distribution of Hadoop [23] includes a utility to create a virtual clus-
ter in the Amazon EC2 infrastructure, managed by the Hadoop middleware. The
utility powers on the master virtual machine, using a pre-defined Amazon Machine
Image (AMI) and creates the computing nodes using another AMI, performing the
required network configuration. It is possible to add new computing nodes to the
running cluster. However there is no additional support to remove the nodes from
the Hadoop cluster. Finally, when the cluster is no longer needed, it is imme-
diately terminated in order to free the allocated resources. ViteraaS [44] allows

61

Chapter 4. EC3

creating virtual clusters on hybrid Clouds. This software enables the submission
of jobs that need to be run in a cluster to the system. The middleware creates
a cluster to fit the job and manages the execution of the job. The main problem
is that ViteraaS does not allow the user to remotely access the cluster. Instead,
ViteraaS is devoted to execute jobs as done in classic Grid approaches without
providing access to a cluster. StarCluster [93] enables the creation of a Sun Grid
Engine based cluster in the Amazon EC2 infrastructure, following a predefined
configuration of applications (Sun Grid Engine, OpenMPI, NFS, etc.). It includes
a plugin system that enables the user to add new elements to be installed on the
cluster nodes, but the VMs are based on a pre-defined Amazon AMI. As it hap-
pens with Hadoop, the creation of the cluster is made from a User Interface (UI)
that connects to EC2 and starts the instances, prepares the network, configures
the middleware, etc. Along with StarCluster a plugin called Elastic Load Balancer
[94] has been developed that is able to grow and shrink the cluster according to
the length of the cluster’s job queue. The caveat of this plugin is that it requires
the StarCluster UI to be connected to the Cloud infrastructure, in order to create
and destroy the VMs. Thus, any failure on the UI results in the loss of control of
the elasticity capabilities of the cluster.

In the case of commercial solutions we can find different approaches to create
virtual clusters. One example is IBM Platform Dynamic Cluster [64] that aims at
partitioning the owned resources to deliver each user a custom cluster with specific
features by using virtual machines. This is different from common clusters where
any application or library is installed on every node and is available for every
user, and it is sometimes hard for administrators to install different applications
or libraries at the same time. The virtual machines ease this situation and enable
user activity isolation. The drawback in this case is that this product is oriented
to manage on premise infrastructures and cannot be connected to commercial
Cloud providers. Another example of commercial solutions is CycleCloud [38]
that is a service provided by CycleComputing that deploys virtual clusters, but it
is restricted to Amazon EC2. This service provides the user with a virtual cluster
based on SGE, Torque or Condor where a subset of popular scientific applications,
offered by CycleCloud, are installed. The user is able to manage the virtual nodes
using a web interface, and it is possible to configure the cluster so that it is
automatically sized based upon pending jobs.

The summary is that several solutions have appeared for different environments,
but there is no general framework that enables the creation and management of
elastic clusters in general IaaS deployments. Moreover (i) most of them provide a
virtual cluster that comprises a fixed number of nodes; (ii) each of the solutions is
oriented to a specific LRMS since they take advantage of the individual features of
such implementation; and (iii) most of them are oriented to Amazon EC2 and do
not consider other public IaaS deployments, or even on-premise Cloud deployments
(e.g. based on OpenNebula, OpenStack, Eucalyptus, etc.).

62

4.3 EC3: Elastic Cloud Computing Cluster

The main advantage of our approach consists in the development of a generic
framework to create and manage elastic clusters that dynamically adapt to the
current workload. The deployed clusters turn into self-managed entities where
elasticity is handled from the cluster itself, without requiring external entities to
monitor and act upon the cluster. In this way, a cluster on a Cloud dynamically
shrinks and grows according to predefined policies without human intervention.
In addition, the tool seamlessly harnesses resources from public and on premise
Clouds.

4.3 EC3: Elastic Cloud Computing Cluster

It is important to point out that the user experience should be maintained re-
gardless of the cluster being physical or virtual, i.e., the user should be unaware
that the virtual cluster is actually formed on top of a virtual infrastructure that
dynamically adapts (by increasing and decreasing the number of nodes) to the
cluster workload. The user is provided with a remote secure shell as the entry
point to the cluster.

We have previously stated that it could be an important investment to move a
cluster to a Cloud. Nevertheless, the usage of Green computing techniques in a
Cloud can alleviate the cost involved in deploying and maintaining the cluster.
This is achieved by introducing the concept of virtual elastic cluster, which auto-
matically fires up and down virtual machines depending on the workload. This
provides the user with the illusion of a real infrastructure at a fraction of its cost
in the case of using a public IaaS Cloud provider. Virtual elastic clusters are also
interesting for on-premise Cloud infrastructures as they may be used to partition
a real cluster into smaller ones with specific features (Operating System, applica-
tions, libraries, etc.) that are delivered to specialized users such as scientists. In
this case the elasticity is applied to multiplex the real infrastructure, and being
able to show an aggregated number of nodes greater than it actually is. Such case
assumes that the clusters are not being simultaneously executed using the total
amount of nodes. Otherwise the risk of overcommiting will arise, but its impact
is reduced if we consider that the servers are not working at 100% all the time.

Anyway it is crucial to introduce trade-off strategies that consider the orthogonal
criteria of both reducing the idle nodes and reducing the waiting time of the users
to the resources. The aim of this work is to combine transparency for the end users
and ease of administration for the sysadmins. The sysadmin should only specify
the maximum size of the cluster and delegate on automatic mechanisms to scale
in and scale out the cluster depending on the current workload. As an advanced
functionality, the sysadmin might indicate the precise software configuration to be
available on each node of the cluster. The underlying system is responsible for
deploying the infrastructure and the installation and configuration of the libraries,

63

Chapter 4. EC3

applications and required middlewares. The resulting system becomes autonomous
and self-managed, increasing and decreasing the number of computational nodes
according to the usage rates.

The following subsection describes the components employed to create the archi-
tecture required to deploy virtual elastic clusters on a Cloud.

4.3.1 Virtual Infrastructure Deployment

The deployment of a virtual elastic cluster broadly requires two tasks. Firstly, the
virtual infrastructure must be deployed, which results in a fully configured cluster
running on top of virtualized resources. Secondly, an elasticity manager must be
included in the cluster in order to self-manage the elasticity rules to provision and
release computational nodes on demand.

In order to deploy the virtual cluster (first task), we rely on previously developed
components that help to deploy a virtual infrastructure on top of a Cloud. Even
though these component are detailed in [5], we provide a concise description for
each of them here for the sake of completeness.

• VMRC (Virtual Machine image Repository and Catalog). This system is
used to find a suitable Virtual Machine Image (VMI) that accomplishes the
requirements of the user (in terms of Operating System, CPU architecture,
applications installed, etc.), and is compatible with the hypervisor available
in the Cloud system. This component stores and indexes VMIs in order to
be reused in multiple contexts. It also implements matchmaking algorithms
to obtain a ranked list of VMIs that satisfy the aforementioned given set of
requirements.

• RADL (Resource and Application Description Language). It is a declarative
language for users to describe the computational infrastructure needed to
run their applications. The purpose of the RADL is to describe the features
that a given virtual infrastructure should have, by declaring the capabilities
or requisites of the VMs to be deployed.

• Contextualizer. Ansible [11] has been used to enable the unattended exe-
cution of commands specified in an YAML document in order to perform
the automated installation of software dependences. Therefore, this tool
performs the installation of the software so that the VM is configured to
successfully execute the application.

• Infrastructure Manager (IM): It orchestrates the different components, en-
abling the effective deployment of an initial computing infrastructure, and
the operations required to modify it on demand, by adding or removing
virtual nodes.

64

4.3 EC3: Elastic Cloud Computing Cluster

To provide elasticity to the virtual cluster, it is possible to modify the source
code of an LRMS that considers energy management to support shutting down
the nodes, in order to power on or off virtual machines instead of real nodes.
An alternative is to take advantage of existing energy management software to
create ad-hoc solutions for specific combinations of LRMS and Cloud deployments.
Some examples of such LRMS are MOAB (the Enterprise version of Maui) [36] or
SLURM [75]. In this work, the Cluster Energy Saving system (CLUES) [40], [6]
has been used. CLUES is an energy management system for High Performance
Computing (HPC) Clusters and Cloud infrastructures. The main function of the
system is to power off internal cluster nodes when they are not being used, and
conversely to power them on when they are needed. CLUES is integrated with
the cluster management middleware, such as a LRMS or a Cloud infrastructure
management system, by means of different connectors. CLUES is also integrated
with the physical infrastructure by means of different plug-ins, so that nodes can be
powered on/off using the techniques which best suit each particular infrastructure.
It also provides a hooking system enabling actions to be executed before or after
an action is done by the CLUES scheduler.

Section 4.3.3 will describe the whole process of creating the infrastructure by
orchestrating all these components.

4.3.2 Elasticity Rules

Depending on the usage patterns, each cluster might rely on different elasticity
rules (e.g. having available as many nodes as required to match the number of
jobs to be executed, having a specified queue size, etc.). Therefore, it is important
to provide different policies in order to match the requirements of the sysadmins.

These policies are related to the elasticity manager which, in our case is handled
by CLUES. This software implements different policies that aim at balancing the
tradeoff that arises when trying to minimize the waiting time for the jobs (which
involves a larger number of available nodes) and the minimization of a Cloud
infrastructure cost (which involves a reduced number of nodes, which generate a
cost).

In our case, we have modified the CLUES scheduler to adapt it to the purpose
of the virtual elastic cluster and to introduce new policies. The policies can be
divided in two groups: the policies used to decide when to increase the capacity
of the cluster and those used to decide when to decrease the number of nodes.

In the first case CLUES can interact with the LRMS at two levels. On the one
hand, it intercepts the submitted jobs before they reach the LRMS. In this way,
CLUES can decide if it is required to increase the capacity of the cluster to make
room for the job. When the submitted job reaches the LRMS, the cluster will have

65

Chapter 4. EC3

the appropriate size to accommodate the workload (depending on the elasticity
rule, the job might end up on the queue waiting for other jobs to finish). On the
other hand, CLUES also monitors the queued jobs in the LRMS to check if these
jobs need new nodes to be added to the cluster.

The next paragraphs describe the different elasticity rules for the intercepted jobs
and for the jobs queued up at the LRMS. It also addresses some considerations in
order to shut down the virtual machines.

Starting nodes for intercepted jobs

For the intercepted jobs, these policies provide them with the illusion of a cluster
with the required capacity, since nodes will be automatically started (i.e., virtual
machines will be automatically deployed and included in the cluster as internal
nodes) before the job is scheduled to run on these nodes via the LRMS. By inter-
cepting jobs, it is possible to give an immediate response to the user, before the
job arrives to the queue system. In contrast with other solutions that periodically
polls the information about the LRMS queues that have some kind of delay on
detecting the new jobs.

These are the policies that have been implemented in EC3 by means of integrating
the CLUES software, for intercepted jobs:

• Group-based start. Every time a new internal node is required, a group of
them are started. This policy assumes a workload model in which as soon as
a job reaches the LRMS, there is a high probability that other subsequent
jobs will be submitted in a short period of time. By overprovisioning a larger
number of nodes, the waiting time of the subsequent jobs will be reduced.
This represents an appropriate policy when a sudden burst of relatively large
jobs are submitted to the cluster. By properly adjusting the size of the group,
the waiting time of the jobs, together with the related cost, might be reduced.

• Starting the whole cluster. When a job is submitted, the whole cluster is
started. This is useful in the cases where the configuration of the cluster
requires all the nodes to be active in order to properly operate This policy
also pays off when workload peaks occur, since the whole cluster might cope
with the workload if it has been properly dimensioned. It is important to
point out that idle nodes will be later shut down according to the inactivity
rules of the elasticity manager.

Notice that it is difficult to choose a one-size-fits-all policy for a general cluster.
However, virtual clusters on a Cloud can be deployed to accommodate specific
workloads that arise in scientific applications, specially for High Throughput Com-
puting (HTC) schemes such as parameter sweep or Bag of Tasks (BoT), and High
Performance Computing (HPC).

66

4.3 EC3: Elastic Cloud Computing Cluster

Starting nodes for jobs in the LRMS

For the jobs that are already queued up at the LRMS, the following policies to
start nodes are oriented to maximize the energy saving (in the case of a physical
cluster) or the cost (in the case of a virtual cluster in a Cloud):

• When a job has remained in the queue for a certain amount of time (X).
This policy tries to prevent jobs from exceeding a threshold waiting time,
increasing the size of the cluster when this rule is triggered. In this case,
the requirements of the job are reevaluated (as if it was submitted again) to
decide if new nodes should be provisioned in order to satisfy them.

• When the queue size is larger than N jobs during X time units. This policy
aims at maximizing the energy saving (or the cost), since new nodes are
only provisioned when the cluster workload is relatively large for a sustained
amount of time. This represents a tradeoff between the quality of service in
the cluster (in terms of reduced waiting time for the jobs) and the economic
savings. Therefore, there is a limit in the number of jobs waiting to be
executed, but a large number of internal computing nodes is avoided.

Shutting down nodes that are not in use

Deciding when to shut down a node is a difficult task because it has an impact
on the end user, since starting the node again forces to wait an extra time for
subsequent jobs. Concerning the policies used to decide when to decrease the
number of nodes, the strategy is to remove a node from the cluster when it has
been idle for a specified amount of time. Increasing this time results in an increased
cost of the cluster, although the waiting time of the jobs will probably decrease.
The selection of this time depends on the workload of the cluster and it is important
to achieve a good tradeoff between the cost and the waiting time of the jobs. In
any case it is important to consider the following aspects:

• Time blocks. In some cases, such as when using public Clouds, the user pays
a (typically) hourly-rate for using VMs. Therefore, once this block of time
has been payed it is a good option to maintain the VM active until the whole
block of time has expired (i.e. hour or fraction). Considering time blocks
enables the system to keep the maximum number of nodes active in order
to try to minimize the waiting time of jobs without an additional cost.

• Queued jobs. The queued jobs at the LRMS must be considered before
removing any node from the cluster. If a number of idle nodes are going
to be necessary for the execution of queued jobs, those nodes are not shut
down. This strategy avoids an increased waiting time for queued jobs when
the scheduler decides to run them. However, it may increase the cost due to
the number of idle nodes not removed.

67

Chapter 4. EC3

Administrator User

VM

VM

.

.

.
Create front-end VM

Cluster User

Cloud
Manager

Launch Jobs

Front-End
VM

CLUES LRMS

Initial Start UP

RADL File

Contextualize
front-end VM

Ask for a
front-end node

Search VM Image

EC3-L

VMRC

IM

cntxtldr

IM

cntxtldr

Cloud
Connector

Figure 4.1: EC3 architecture.

• Keeping some nodes always active. This strategy enables the cluster to have
at least n idle nodes waiting for jobs. This way, we try to prevent incoming
jobs from waiting while internal computing nodes are started. This is a good
policy if the cluster workload consists of series of relatively small jobs. The
value of n may also depend on the time needed to boot up new nodes. If the
time needed is small, a smaller value of n could be used. In this way, there
is a tradeoff between the cost of the initially idle nodes and the ability to
accommodate jobs with minimum waiting time.

4.3.3 Overall Architecture

Figure 4.1 summarizes the main architecture of EC3. As stated earlier, the de-
ployment of the virtual elastic cluster consists of two phases. The first one involves
starting a VM in the Cloud to act as the cluster front-end while the second one
involves the automatic management of the cluster size, depending on the workload
and the specified policies.

For the first step, a launcher (Elastic Cloud Computing Cluster Launcher or EC3-
L) has been developed that deploys the front-end on the Cloud using the infras-
tructure deployment services described in section 4.3.1. The sysadmin will run
this tool, providing it with the following information:

68

4.3 EC3: Elastic Cloud Computing Cluster

• Maximum cluster size. This serves to establish a cost limit in case of a
workload peak. The maximum cluster size can be modified at any time
once the virtual cluster is operating. Thus, the sysadmins can adapt the
maximum cluster size to the dynamic requirements of their users. In this
case the LRMS must be reconfigured to add the new set of virtual nodes and
in some cases it may imply a LRMS service restart.

• RADL document specifying the desired features of the cluster front-end, re-
garding both hardware and software (OS, LRMS, additional libraries, etc.).
These requirements are taken by the launcher and extended to include addi-
tional ones (such as installing CLUES and its requirements together with the
libraries employed to interact with the IaaS Cloud provider, etc.) in order
to manage elasticity.

The launcher starts an IM that becomes responsible of deploying the cluster front-
end. This is done by means of the following steps: (i) selecting the VMI for the
front-end. The IM can take a particular user-specified VMI, or it can contact the
VMRC to choose the most appropriate VMI available, considering the require-
ments specified in the RADL; (ii) choosing the Cloud deployment according to
the specification of the user (if there are different providers); (iii) submitting an
instance of the corresponding VMI and, once it is available, installing and config-
uring all the required software that is not already preinstalled in the VM. One of
the main LRMS configuration steps is to set up the names of the cluster nodes.
This is done using a sysadmin-specified name pattern (e.g. vnode-*) so that the
LRMS considers a set of nodes such as vnode-1, vnode-2... vnode-n, where n is
the maximum cluster size. This procedure results in a fully operational elastic
cluster.

Once the front-end and the elasticity manager (CLUES) have been deployed, the
virtual cluster becomes totally autonomous and every user will be able to submit
jobs to the LRMS, either from the cluster front-end or from an external node that
provides job submission capabilities. The user will have the perception of a cluster
with the number of nodes specified as maximum size. CLUES will monitor the
working nodes and intercept the job submissions before they arrive to the LRMS,
enabling the system to dynamically manage the cluster size transparently to the
LRMS and the user, scaling in and out on demand. The scale functionality is
provided by CLUES with a developed connector that interacts with different IaaS
Clouds, as will be explained in section 4.3.4.

Just like in the deployment of the front-end, CLUES internally uses an IM to
submit the VMs that will be used as working nodes for the cluster. For that,
it uses a RADL document defined by the sysadmin, where the features of the
working nodes are specified. Once these nodes are available, they are automatically
integrated in the cluster as new available nodes for the LRMS. Thus, the process
to deploy the working nodes is similar to the one employed to deploy the front-end.

69

Chapter 4. EC3

Note that the EC3-L tool can be executed on any machine that has a connection
with the Cloud system and it is only employed to bootstrap the cluster. Once
deployed, the cluster becomes autonomous and self-managed, and the machine
from which the EC3-L tool was used (the dashed rectangle in Figure 4.1) is no
longer required. The expansion of the cluster while it is operating is carried out
by the front-end node, by means of CLUES, as explained above.

On the other hand, even though the front-end duties could be assumed by a ma-
chine outside of the Cloud, deploying the front-end together with the working
nodes in the Cloud has several advantages: (i) there is direct connectivity between
the front-end and the working nodes, without requiring Virtual Private Network
(VPN) tunnels. In addition, the connectivity among the nodes does not generate a
cost, since traffic does not crosses the boundaries of the public Cloud provider (this
is the case of a region in Amazon EC2, for example) and it increases communica-
tion speed between the front-end and the working nodes; (ii) it avoids managing
the physical machine together with its drawbacks (power outages, network prob-
lems, hardware problems, etc.), since these issues are delegated (never avoided)
to the Cloud provider; (iii) this will conform a self-managed cluster on the Cloud,
independently from other external machines.

4.3.4 Connecting to the IaaS

In order to manage the elastic cluster on top of a Cloud infrastructure, we created
the appropriate CLUES Cloud connector which enables the interaction with vir-
tual machines instead of physical ones. This connector interacts directly with the
IM for the deployment of VMs in the Cloud and, therefore, it provides a gateway
to operate with the different Cloud middlewares supported by the IM (currently
supporting Amazon EC2, OpenStack and OpenNebula) and standards (OCCI),
contacting the corresponding Cloud Manager. The user must provide the appro-
priate credentials to access the different Cloud deployments. The connector will
pass these credentials to the IM, enabling access to the Cloud providers.

The Cloud connector is in charge of starting and stopping the machines requested
by CLUES. In this case, instead of dealing with physical machines, it deploys or
terminates instances of virtual machines in the Cloud infrastructure. Besides, an
additional step is required to integrate new VMs into the LRMS. In particular, the
LRMS software must be installed and configured in the newly created VM, and the
front-end must be reconfigured to include the new node. This last step includes
mapping the IP of the new Cloud instance to one of the configured virtual nodes
that are initialized with an unreachable IP, to enable the front-end node to access
it. All these steps are defined via a recipe that is processed by the contextualizer
software, and they are configurable so that the users can adapt it to their own
configuration requirements. In case of terminating an instance, no reconfiguration

70

4.4 Case studies

is needed since the LRMS will detect that the node is down, and it will be discarded
to receive new jobs.

In addition to the aforementioned tools to start and terminate nodes, the Cloud
plugin includes a monitoring system that checks the state of the submitted VMs,
together with the monitoring of the LRMS available in CLUES. This is employed
to prevent having active VMs (generating cost) that are not integrated in the
LRMS (which have been disconnected from the system). In that case, these VMs
can be terminated if the LRMS reports that they are in a wrong state for a certain
amount of time, defined by the sysadmin.

4.4 Case studies

In order to assess the effectiveness of an elastic virtual cluster on a Cloud infras-
tructure we have used two different use cases. The first one tries to analyze the
usage of the EC3 solution in the case of two clusters during a long usage period.
It uses the analysis made in [6] with two physical clusters and applies the same
analysis to a “Cloud version” of the clusters. The second one uses EC3 to create
an ad-hoc cluster to execute an HTC-based scientific application with dynamic
computing requirements, which can greatly benefit from an elastic computing in-
frastructure that adapts to the workload changes as the execution progresses

4.4.1 Clusters with long usage period

In [6], CLUES was tested with two real use cases, involving two physical HPC
clusters of 51 and 7 nodes. The first one (Cluster 1) is composed of 51 bi-processor
nodes with Intel Xeon CPUs at 2.80GHz, interconnected by a SCI network in a
10x5 2D torus topology. Each node has 2 GB of RAM memory. The second one
(Cluster 2) is composed of an M1000e blade server chassis with 7 Dell M610. Each
M610 node has two quad-core Intel Xeon E5620 processors, making a total of 8
cores and 16 GB of RAM per node. It was shown that significant energy/cost
savings could be obtained by using green computing techniques (38% saving in
the first cluster and 16% in the second one). In this section the idea is to explore
what is the cost of running the same clusters on Amazon EC2 and, especially, what
is the saving obtained by using the elasticity features provided by EC3/CLUES.
The instance types c1.medium and m3.2xlarge respectively have been selected
since they are the most similar ones to the original physical nodes. For simplicity,
the use case does not consider using reserved instances to decrease the cost of the
allocated resources in the Cloud. However, as shown in [4], a proper selection of
the number of reserved instances, considering the cluster workload, can deliver
significant cost savings.

71

Chapter 4. EC3

Elastic cluster Static cluster Cost
(EC3) per node

PCT $ PCT $ $
N. Off 52.0% 0 0.0% 0 0
N. Idle 12.7% 8,066 64.7% 41,091 1,270
N. Used 35.3% 22,419 35.3% 22,419 1,270
Other 100.0% 1,270 100.0% 1,270 1,270

TOTAL 31,755 64,780

Table 4.1: Cluster 1 cost

In [6], the power consumption of the clusters was measured to get the energy
consumed and its associated cost. In particular, three different states for a cluster
node were considered: switched off (“N. off”), switched on but idle (“N. idle”),
and fully used (“N. used”). The clusters worked using CLUES for a period of eight
months, and the percentage of time a node had stayed on average in each state
was obtained. Then, the total cost of the energy consumed was derived.

In order to obtain the cost of the same clusters if they are deployed on EC2, we
consider the cost of a virtual node instance running for a period of one year. This
cost is shown in the rightmost column of Tables 4.1 and 4.2. Additionally, since
the cluster uses the elasticity features of EC3, we need to know the percentage of
time a node stays in each state. These percentages can be expected to be the same
as in [6], if we assume that the computational power and boot time of a virtual
node are approximately the same as those of a physical node. Some studies such
as [105] show that the mean boot time of an EC2 instance is about 60-90 seconds,
which is consistent with the boot time of the clusters considered in [6].

In accordance to the previous discussion, tables 4.1 and 4.2 show the cost of the
two clusters if they are deployed on EC2 for a period of one year. The left part
of the table contains the data for the case of an elastic cluster (EC3) and the
center part corresponds to the case of a static cluster. In each of these two cases,
the column “PCT” represents the percentage of time a node spent on average in
each state (taken from [6], as discussed above), and the column “$” contains the
amount of money dedicated to keep the node in that state. Note that in the case
of a static cluster a node is never shut down, so the percentage of time in that
state is added to that of the idle state. The row “Other” refers to the cost of the
essential components of the cluster that are always on, in this case the front-end
instance. The results show that the total amount of money saved is 33,025 $ in
cluster 1 and 29,223 $ in cluster 2, which represents 49% and 52% of the total
amount of money, respectively.

On the user impact side, the results shown in [6] are also applicable here, which
means that only 1.31% and 2.9% of total jobs of clusters 1 and 2, respectively,

72

4.4 Case studies

Elastic cluster Static cluster Cost
(EC3) per node

PCT $ PCT $ $
N. Off 55.6% 0 0.0% 0 0
N. Idle 11.6% 6,097 67.2% 35,320 8,760
N. Used 32.8% 17,240 32.8% 17,240 8,760
Other 100.0% 8,760 100.0% 8,760 8,760

TOTAL 32,097 61,320

Table 4.2: Cluster 2 cost

needed to wait to access the resources. The average waiting time for these jobs
was 1’40’ and 1’54’ respectively.

4.4.2 Ad-Hoc Cluster

For this particular case study, we have used a scientific application that performs
the optimization of photonic crystal fibres using automated procedures based on
Genetic Algorithms [95]. The large amount of computations involved during the
optimization process demand the usage of efficient technologies that are able to
cope with these computational requirements. Genetic Algorithms (GA) are em-
ployed to optimize the features of the fiber and the corresponding injected pulse.
It is well known that increasing the number of individuals increases the search
capabilities of the GA, although this increases the computational cost in order to
evaluate the fitness of all individuals [13]. Therefore, a scheme where the popu-
lation size of the GA shrinks and grows according to the evolution of the fitness
function is of importance in order to tradeoff computational cost and enhanced
search capabilities. For this case study, this generates several jobs to be executed
where each job corresponds to the evaluation of a single individual.

Two different cloud deployments have been used to perform this second test. The
first one is a private Cloud managed by OpenNebula 3.4.1 using the KVM hyper-
visor. Amazon EC2 has been selected as the second cloud deployment. The test
includes a total of 52 job executions in 8 series of 2, 4, 8, 10, 12, 6, 8 and 2. This
execution pattern simulates the changes in a dynamic population of a GA of up to
12 individuals in which the population increases or decreases in each generation.
The case study has been slimmed down in order to focus on the execution patterns
rather than addressing a large problem. With a larger amount of computational
resources, a larger population size can be employed. In this particular application,
a population size of 30-50 is typically employed.

Six different tests have been carried out. In the first two (cases a and d in Figure
4.2), the virtual cluster is kept fully operational during the whole duration of

73

Chapter 4. EC3

0

2

4

6

8

10

12

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00

Used Idle

(a) ONE. Static size, 12
nodes

0

2

4

6

8

10

12

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30

Used Idle

(b) ONE. Dynamic size,
group-based start policy
(size 2)

0

2

4

6

8

10

12

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00

Used Idle

(c) ONE. Dynamic size,
keeping at least 2 nodes alive

0

2

4

6

8

10

12

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30

Used Idle Paid

(d) EC2. Static size, 12
nodes

0

2

4

6

8

10

12

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30

Used Idle Paid

(e) EC2. Dynamic size,
group-based start policy
(size 2)

0

2

4

6

8

10

12

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30

Used Idle Paid

(f) EC2. Dynamic size,
keeping at least 2 nodes alive

Figure 4.2: Node usage with different configurations of the virtual clusters with up to
N nodes.

the test. In the other four (cases (b), (c), (e) and (f) in Figure 4.2), CLUES is
employed to dynamically manage the cluster size depending on the workload, using
two different policies to increase the size of the cluster. In particular, cases (b) and
(e) use a group-based start policy of size 2, while cases (c) and (f) use a policy of
keeping 2 extra nodes alive. Concerning the termination policy of these four tests,
a reduced waiting time was employed (5 min.), in order to minimize the number of
VMs up during all the execution time, reducing the usage of the Cloud platform.
In the case of the EC2 tests, as the price is charged per instance-hour, the EC3
platform does not terminate the instances until the whole hour has passed.

In the OpenNebula (ONE) tests, Figure 4.2 shows the number of existing VMs
in Used and Idle states during the execution time. In the EC2 tests there is also
a third state named “Paid”. This state corresponds to idle VMs that are not
terminated because their paid hour is not over yet (with a margin of 5 min.).

In the case (a), the global execution time reaches a total of 4h19’, with an average
job time of 31’27”. Since a total of 12 nodes remain active during the whole
execution process, this represents a total 51h48’ of CPU time, where 46.31% of
the time is effective and the remainder 53.69% corresponds to idle time for the
VMs. In the EC2 case (d), the total CPU time consumed increases to 59h due to
the instance-hour price. 40.68% of the total time is effective, 47.16% corresponds

74

4.4 Case studies

to idle VMs, and 12.16% is for VMs that are kept idle until the end of the paid
hour.

In the case (b) (using OpenNebula and CLUES with a group-based start policy
of size 2), the total execution time rises up to 4h36’, due to the waiting time of
some jobs while the VMs are started and get ready to accept the execution of jobs.
This represents 6.5% extra time. In the tests performed, a total of 14 jobs have
to wait for a node to start, with an average waiting time of 2’47”. During the
execution, there are six moments that require nodes to be started, which provokes
that extra time. In this case, the effective usage rate of the cluster is 50.9% but
the main difference with respect to the previous case is that the nodes are idle
for only 3.4% of the time, since CLUES is responsible to terminate the nodes for
the remainder 45.7%, thus without generating an excessive usage. Therefore, a
total 29h51’ of CPU time is required from the 12 virtual nodes, which represents
a saving of 42.3% of CPU time.

In the case (e) (the same as (b) but EC2 instead of ONE), the total execution
time is almost the same (4h35’), but in this case only 12 jobs have to wait for a
VM to start, with an average waiting time of 2’56”. This is due to the fact that
some VMs that are kept idle until the end of the paid hour are reused for other
jobs (this happens in the transition from 6 to 8 nodes at approximately 3h30’). As
in the previous EC2 test, the total CPU time used increases to 34h27’, compared
with the OpenNebula test, due to the instance-hour price. There is a saving of
47.37% of money with respect to the static EC2 test (d).

In the case (c) (using OpenNebula and CLUES with 2 extra nodes alive), the total
execution time is 4h26’, that represents 2.7% extra time with respect to the case
(a). This is clearly lower than the case (b), due to the use of the policy to keep 2
extra nodes alive, reducing to two the number of moments that require nodes to
be started. In this case, the main difference with respect to the case (b) is that
16.1% of the time the nodes are idle, and 34.9% are off. A total of 34h36’ of CPU
time is required from the 12 virtual nodes, which represents a saving of a 33.2%
with respect to having the whole cluster on.

Finally in the case (f) (the same as (c) but EC2 instead of ONE), the total ex-
ecution time is very similar to (c) with 4h28’. Like in the other EC2 tests, the
total CPU time increases, in this case to 44h23’, which still represents a saving of
28.2% of money compared to the static EC2 test (d).

As expected, using the elastic cluster considerably reduces the usage of the private
Cloud infrastructure and the total cost of the execution on a public IaaS Cloud
provider, although a small increase in the execution time is introduced. It depends
on the selected policy to obtain a lower extra time or a lower cost. The first policy
(cases (b) and (e)) obtains a greater cost reduction but it introduces some extra
execution time, because this strategy only adds the required nodes on demand.

75

Chapter 4. EC3

In the second one (cases (c) and (f)) the cost reduction is less important but the
extra execution time is reduced, because keeping 2 extra nodes alive (with this
particular workload) enables a reduction in the number of times the jobs must
wait. The impact in the execution time between the two different policies is very
low (below 4% of total time).

Another important issue to choose the right policy is to forecast the time needed to
add a node into the cluster. In the previous tests, the time needed to have a node
running and configured into the LRMS is 2’47” on average in the OpenNebula
case and 2’56” in the EC2 tests. But it is important to notice that this time may
have important variations. In case of using a large infrastructure such as Amazon
EC2, some studies [105] have demonstrated that launching simultaneous VMs has
little impact in the time required to have the VMs up and running. However, in
private infrastructures some factors may affect this time such as the size of the
Cloud deployment, the number of running VMs, the usage of the network, the
policy used to balance the workload, etc. For example, launching a set of VMs to
start simultaneously has an important impact in this time. Therefore, if the block
size selected to add nodes to the cluster is large, and the Cloud infrastructure is
relatively small, then the time may have an important increase.

4.5 Conclusion and Future work

This article has introduced Elastic Cloud Computing Cluster (EC3), a tool to
create HPC clusters on top of Cloud infrastructures that, using Green computing
concepts, creates a self-managed system that dynamically scales to adapt to the
workload of users.

The tool builds on top of CLUES, an energy manager system for cluster-like infras-
tructures, enabling the cluster to gain elastic capabilities on a Cloud deployment.
For that, a Cloud connector has been developed to manage the interaction with
the infrastructure manager in charge of starting and terminating the virtual ma-
chines that correspond to the internal nodes. Moreover the CLUES scheduler has
been modified to adapt its policies to be able to manage elasticity to create virtual
elastic clusters.

EC3 enables end users to deploy elastic clusters of a given maximum size in a
matter of minutes with just a command line tool. Besides, the policies to start
and shutdown nodes have been contributed back in order to enhance CLUES
enabling more possibilities in order to consider the tradeoff between minimizing
the impact in the waiting time for the user (which implies having a larger number
of nodes started) and the reduction of the Cloud costs (which implies having a
reduced number of running virtual machines).

76

4.5 Conclusion and Future work

Future works include several research lines. In the case of commercial Clouds it
is crucial to incorporate cost-aware schedulers that consider not only the number
of nodes but also the cost of the instances in order to better manage the budget
without surpassing the specified limits (daily, monthly, etc.) specified by the user.
Concerning the costs, it is important to consider deploying multi-core virtual ma-
chines that can share the execution of several jobs. This would enable reduced
prices per execution unit. Finally, it is important to consider the case for het-
erogeneous cluster computing, where each node could exhibit different capabilities
(more storage space, different CPU type, support for GPUs, etc.).

77

Chapter 5

Automatic Consolidation of Virtual
Machines in On-Premises Cloud
Computing Platforms

Submitted as

Carlos de Alfonso, Ignacio Blanquer, Germán Moltó, Miguel Caballer, “Automatic
Consolidation of Virtual Machines in On-Premises Cloud Computing Platforms”.

Abstract

After a sequence of creation and destruction of virtual machines (VMs) in an
on-premises Cloud computing platform, the scheduling decisions to host the
VMs are far from being optimal and the fragmentation of the physical re-
sources may impede the platform to host some VMs despite the free available
virtualization resources. This paper describes a Virtual Machine Consolida-
tion Agent that addresses this problem by analyzing the distribution of the
VMs in the virtualization platform to migrate some of them among hosts, in
order to defragment the physical resources and to enhance the efficiency on
their usage. The agent has been validated in a production platform, where
it is capable of minimizing the number of servers needed to host the VMs.
The algorithms achieve near-optimal values at a very reduced computational
cost, thus making it suitable for production platforms.

79

Chapter 5. VMCA

5.1 Introduction

Cloud Computing resources are typically provisioned from datacenters by means
of virtualization to share computational resources. In particular, a user is provided
with Virtual Machines (VMs) in the well-known Infrastructure as a Service (IaaS)
Cloud model [88], where VMs represent the partition of the physical computers. A
Cloud datacenter is dimensioned to ensure that the expected workload is satisfied,
but the peak of the demand is rarely achieved. In fact the mean usage ratio of a
datacenter was estimated to be between 10% and 50% [110]. Moreover the mean
efficiency of datacenters is around 50% [55]. That leads to a waste of energy
which gains importance when it is known that the power dedicated to feed the
datacenters of the world represents the 0.5% of the total energy consumed, and it
is estimated to achieve 2% of the total by 2020 [53].

In order to reduce the wasted energy it is possible to apply Static Power Man-
agement (SPM) or Dynamic Power Management (DPM) techniques [121]. SPM
consists of using more efficient components to build the computing nodes (low
power CPU, enhanced memory, hard drives without mechanical parts, etc.). DPM
techniques consist of adapting the computing infrastructure to the actual work-
load, whether modifying behaviour the individual components (e.g. modifying the
frequency of the processor using Dynamic Voltage and Frequency Scaling) or en-
hancing the distribution of the jobs to use the most efficient working nodes and
powering off those that are not needed. Obviously, both techniques may be applied
together to obtain better results.

In the Cloud Computing field, some previous works [19] [22] have introduced tech-
niques to enhance the VM scheduling into the hosting nodes as these VMs are being
created, to get a better distribution of the usage of the resources. The scheduling
decision for a VM to be hosted into a specific host may be correct when the VM
was created. However, during the lifecycle of the Cloud platform (i.e. sequences
of creation and destruction of VMs) the distribution of the VMs gets worse and
the distribution of the resources may be degraded. It is possible to reach very
inefficient situations: (1) there are physical nodes that are not hosting any VM,
or (2) the running VMs could be hosted in a fewer number of physical nodes or in
a more energy efficient subset of nodes. In the former case, some of the idle hosts
can just be powered off. But in the latter case the virtualization resources are
fragmented and the VM distribution should be rearranged, if possible, to reduce
the number of nodes hosting the very same VMs, without affecting the Quality of
Service delivered to the VMs.

Moreover, the creation and destruction of VMs may drive to a fragmentation of
the physical resources, in case that the lifecycle of the VMs make that the physical
resources do not get efficiently used. Such fragmentation of resources may make
that the platform cannot host some VMs while there are enough free resources (e.g.

80

5.1 Introduction

trying to host VM1 that requests 16 Gb. RAM on a platform in which hosts H1

and H2 have 10 Gb. RAM free each). If a continuous creation of VMs takes place,
the new scheduling decisions would probably correct these scenarios. But for long
lasting VMs and smaller scale on-premise Cloud platforms where there are usually
periods of time where the activity is very reduced (e.g. night, lunchtime, weekend,
holidays, etc.), it would be cost-efficient to enhance the distribution of the VMs in
the physical hosts to reduce fragmentation. Moreover, green computing techniques
can be employed to power off the unused nodes and save energy.

This paper describes the Virtual Machine Consolidation Agent (VMCA), that an-
alyzes the distribution of the VMs of the platform and migrates a set of them
from the hosts in which they are hosted to other hosts, to achieve a more effi-
cient usage of the resources of the Cloud platform. Finding the best placement
for a set of VMs in an empty platform is usually modelled as the well-known
multi-dimensional bin packing problem, that is considered to be NP-hard. Its
asymptotical computational cost is exponential and it is not guaranteed that the
resulting VM distribution can be achieved from the initial distribution of VMs.The
task of VMCA is harder in the sense that it starts from a given distribution of
VMs and tries to migrate them to other hosts in order to reduce the power con-
sumption or to enhance the usage of the resources of the physical hosts. It is
important to notice that VMCA is not an scheduler, as it does not try to select
the host in which a VM should be hosted. Instead, VMCA will select a set of
VMs that are candidate to be migrated and will delegate to the scheduler of the
platform the decission of selecting the host to which the VMs can be migrated,
then VMCA will evaluate the different VM movements and will select which of
them is the best to get to a enhanced distribution of the VMs. In most of the
cases it is crucial delegate the responsibility of scheduling the VMS to the existing
scheduler, as it may take into account co-allocation of VMs (e.g. a set of VMs
that must be deployed by the same physical host, or in the same virtual network)
or other constraints or policies for hosting the VMs in the platform. In the end,
VMCA can be considered as a DPM technique that actuates “a posteriori”.

After the introduction, the remainder of the paper is organized as follows. First,
section 5.2 introduces the related works in the area. Next, Section 5.3 introduces
the concept of fragmentation of the virtualization resources and the problems
associated to it. Then, section 5.4 explains the architecture of VMCA and the
different heuristics that have been considered for this work. Section 5.5 explains
the problems that can arise when trying to integrate a system such as VMCA in a
production environment. Later, section 5.6 describes the experimental study that
has been carried out to validate the behaviour of VMCA and to analyze which
heuristics are more suitable to obtain a better usage of the resources. Finally,
section 5.7 summarizes the obtained results and explains the future works for
VMCA.

81

Chapter 5. VMCA

5.2 Related works for the problem of redistributing the
VMs

According to [124] the techniques for server consolidation can be classified in (a)
static techniques, where VMs are scheduled according to the current resource dis-
tribution; (b) semi-static techniques, where VMs are re-placed after long periods of
time; and (c) dynamic techniques, where VMs are re-placed in real time according
to the workload. In the group of static techniques we can include the schedulers
that are shipped in most of the Cloud Management Platforms (CMPs), since they
select the hosting node according to the actual workload. These schedulers follow
different strategies such as packing the VMs in the minimum number of hosts,
scattering the VMs across the hosts, random hosting, distributing the workload,
etc. After the VM has been placed on a particular host, it will be kept in that
host until it is migrated by the administrator or it is terminated. The problem is
that after a sequence of creation and destruction of VMs, the former scheduling
decisions are far from being optimal.

At this point it is possible to correct the situation by re-distributing the VMs in the
physical hosts. The most obvious approach is to undeploy VMs and deploy them
back using the scheduler of the CMP or an algorithm that will calculate the most
efficient VM placement. However, this might introduce a significant downtime of
the VMs that may last for a long time, depending on the features of the VMs
and the characteristics of the Cloud platform. Using an algorithm to calculate
the optimal VM placement by exploring any VM placement combination (such as
brute force or branch and bounding) will only be feasible for small Cloud platforms
because the cost is known to be exponential (O(NH) in the case of brute force,
where N is the number of VMs in the platform and H the number of physical
hosts).

A common technique to address these problems is to apply reinforced learning
algorithms. This approach is described in [22], where the existing applications in
a datacenter are consolidated by shipping them into VMs and placing them on de-
mand. But the most noticeable work in this field was made in the project “Green
Active Management of Energy in IT Service Centers” (GAMES) [109], although
Cloud platforms are not specifically considered in this project. The datacenter is
considered from a global point of view and utilizes sensors and context-modelling
techniques for the datacenter and its activity. Once analyzed the situation using a
reinforcement learning algorithm, the system uses actuators for very different pur-
poses (e.g. powering on or off the cooling machines, or migrating the VMs across
the servers). The main problem is that it is difficult to create heuristics for such
different kind of sensors and while the authors suggest that it would be feasible to
apply their system to a Cloud platform [33], the simulations shown in [112] need
a considerable execution time for the analysis, even for small Cloud deployments.
Other example of using reinforced learning algorithms for VM consolidation is de-

82

5.2 Related works for the problem of redistributing the VMs

scribed in [49]. In this work, it is tried to optimize the number of active hosts,
according to the resources needed by the VMs that are deployed in the infrastruc-
ture. The work shown in [87] introduces fuzzy learning as an improvement for the
reinforced learning strategies.

One different approach to solve the problem is shown in [52], where the authors
describe an algorithm inspired on the movements of the ants in a colony. Other
example of VM consolidation is shown in [107] where a methodology for server
consolidation inspired on the behaviour of the swarms during migratory flights is
described. The main drawback in these cases is the long running time required
even for small problems. The ant-inspired algorithm has been improved using a
de-centralized approach to benefit from parallel calculations in [51]. Other similar
distributed solution has been proposed in [86]. The work of Ghafari et al [56]
describes a method based on a bee colony algorithm that tries to detect over
utilized hosts and selects VMs to be migrated to reduce their utilization.

A widely adopted approach to solve the VM distribution is by modelling the prob-
lem as a multidimensional bin packing (mBP) problem where the physical nodes
are modeled as multi-dimensional containers, and each dimension corresponds to
a type of resource (typically CPU, memory or hard disk). The VMs consume
these resources and must be placed using the minimum number of bins. Then the
problem is solved by applying different approaches and heuristic-based optimiza-
tion techniques that include First Fit (FF) or Best Fit (BF) techniques. These
techniques consist of sorting the items that have not been placed in the bins yet,
and allocate them according “the first item that fits the bin” or “the item that
best fits the bin” criteria, respectively. Both types of algorithms have the variant
”Decreasing” that sort the remaining items in the reverse order, to create the FF
Decreasing (FFd) and the BF Decreasing (BFd) algorithms.

These techniques are widely applied to the server consolidation field. In [2] a
BFd algorithm is applied to a virtualized datacenter. In this work, the VMs are
placed into real servers but there is no dynamic re-placement. The decision is
treated as static and there will be a new BFd placement decision when a new VM
is created. The work shown in [123] considers Dynamic Voltage and Frequency
Scaling (DVFS) adjustment, powering off servers and dynamic placement of VMs.
It applies a one dimensional FFd algorithm that only takes into consideration the
CPU resource to enhance performance of VMs.

According to the topology introduced in [133], placing a set of VMs into several
hosts can be categorized as the Variable Sized Bin Packing Problem [32], which is
an extension of the Classic One-Dimensional Bin Packing Problem in which several
bin types are introduced. But the scenario proposed in the current paper starts
from a given distribution, which makes it is slightly more complex.

83

Chapter 5. VMCA

An interesting work in this sense is shown in [19] and [20], where a system is
described that: (i) selects the VMs that are candidates to be moved, according
to the CPU utilization of the host node and, (ii) places them according to a BFd
algorithm whose criteria is based on minimizing the energy consumption. While
this is a very interesting approach, it is focused on selecting the VMs that should be
migrated, instead of enhancing the usage of the physical resources. Moreover, they
schedule the new placement of the VMs (according to power consumption criteria),
thus bypassing the criteria of the current scheduler of the CMP. It also lacks a
multi-dimensional approach, as it only consideres the physical CPU utilization to
decide the host whose VMs are considered to be moved. Moreover, it does not take
into account the cost of the migration or other restrictions about VM placement.
The work also does not consider or discusses about heterogeneous hosts (i.e. hosts
with different capacities).

The work shown in [115] describes an algorithm that addresses some of the prob-
lems of the previous one (such as using multiple resources), but the work is focused
on scheduling the VMs in the other physical hosts, and it does not integrate the
criteria of the actual scheduler of the CMP. This work also makes a survey of how
different heuristics affect to the vector bin packing algorithms for server consoli-
dation.

Other approaches to solve this problems include optimization techniques such as
simulated annealing (SA) or genetic algorithms (GA). On the one hand, the work
[132] demonstrates that while SA can get better solutions, it is more time consum-
ing that the classic FF-like approaches. On the other hand, works such as [48] and
[78] have applied GA techniques to try to solve the bin BP problem using different
dimensions, concluding that while GA can get better solutions, these algorithms
have a high computational cost compared to the classical FF-like approaches.

While there are several approaches to re-locate the VMs, we have not found any
work that addresses the multi-dimensional approach in BF algorithms for VM
consolidation when starting from a given VM distribution, and also integrates
with the existing VM scheduler. Most of the works try to schedule the VMs
according to different criteria (e.g. energy saving, physical host stress, etc.), but
integrating with the existing scheduler may be crucial, as it also takes into account
co-allocation of VMs, the policies for VM scheduling and usage of other resources,
or restrictions on the placement of the VMs. Introducing a “green” scheduler
will probably reduce energy consumption, but it can also interfer in the QoS of
the platform, may violate the restrictions for the placement of the VMs, or may
even make that the VMs cannot take profit from some of the features offered
by a scheduler that is deployed specifically in the platform (e.g. reservation of
hosts). The mechanism to consolidate the VMs should integrate with the existing
scheduler even when the VMs are scheduled in a way that is not the best for
the objective pursued when consolidating VMs. On the other side, most works
usually consider a one dimensional approach when consolidating VMs, as they only

84

5.3 VMs distribution among physical hosts

deal with the CPU resource. As shown in [28], the multi-dimensional approach is
considerably harder than the single dimensional.

5.3 VMs distribution among physical hosts

Distributing the VMs across the physical hosts using green computing techniques
represents a trade-off between energy saving and Quality of Service (QoS) for the
VMs. On the one hand, using the least number of physical hosts leads to reduce
energy consumption since idle nodes can be powered off. On the other hand,
increasing the density of VMs per physical host leads to resource contention thus
reducing the QoS and performance of the VMs. Moreover some VMs will have
special requirements that are only met by some physical hosts (e.g. the amount
of RAM memory, the number of CPUs or even access to specific devices such
as GPUs). In the end this is a problem that must be addressed depending on
the objectives of the virtualization platform, and balancing the different available
criteria.

There are different works addressing the problem of identifying the best VM place-
ment, as seen in section 5.2. However, during the lifecycle of the virtualization
platform the creation and destruction of VMs will surely end up with a distribu-
tion in which the VMs are using only one part of the real resources in the physical
hosts and the rest of resources are idle. That is what is commonly known as the
fragmentation of resources.

The problem of the fragmented resources can affect the capacity of a platform
to host VMs. An example to illustrate the problem of the fragmented resources
is shown in Figure 5.1. For the sake of simplicity, in this figure the VM slots
represent virtual CPUs, but a similar discussion can be made for RAM memory
or a combination of resources. Even if the criteria of the scheduler of the VMs in
the platform is to try to reduce the number of physical servers hosting the VMs,
the lifecycle may lead to a distribution of VMs such as the one shown in the upper
part of figure (i.e. there were other VMs hosted in the hosts, but they have been
destroyed). Obviously, in this context, we know that the VMs could be hosted
using fewer physical hosts (e.g. VM2 hosted on host1). But the problem goes
further, because if a user asks for a VM such as VM4 that needs 6 virtual CPUs,
the platform would not be ready to meet the requirements. If the resources were
defragmented as in the lower part of the figure, the requested VM (VM4) could
be hosted in host2.

The problem of re-arranging the distribution of the VMs on a platform is complex
to tackle. The most simple solution will be to suspend the current VMs and to
schedule them again according to the order in which they were requested. Other
immediate solution is to calculate the optimal distribution and to try to place the

85

Chapter 5. VMCA

VMs according to it. Both approaches require free hardware where VMs will be
temporarily moved to keep them running. If the VM movement is done offline, the
impact on the user experience will be noticeable, because storing the state of every
VM in secondary storage and restoring it later, requires a considerable amount of
time.

Instead of using a temporary infrastructure, we should identify the sequence of VM
movements needed to find the optimal placement from the current state without
violating any constraint [62]. But it is not guaranteed that such sequence could
be computed, as Figure 5.2 shows. This reinforces the thesis proposed in [2], that
a convenient approach is to find a near-optimal solution in a reasonable time.

5.4 The Virtual Machine Consolidation Agent

The Virtual Machine Consolidation Agent (VMCA) is an agent that monitors a
virtualization platform managed by a CMP (such as OpenNebula or OpenStack),
analyzes the distribution of the deployed VMs and the physical hardware, and
schedules a set of VM migrations between hosts that will drive to a better distri-
bution of the VMs in the hosts. The sequence of phases follows the ”Monitoring,
Analyzing, Planning and Executing” (MAPE) model proposed in [112]. The con-
cept of a better distribution of VMs depends on the level of service that is being
provided by the platform (e.g. allocating one real core per virtual CPU, allocating
1 GB. of real RAM per 1 GB. of virtual RAM, limit the number of VMs per phys-
ical host, etc.) and the policies of the service provider (e.g. save energy, scatter

defragmented
resources

host 1 - VM Slots host 2 - VM Slots host 3 - VM Slots

VM 1 VM 2 VM 3
VM 4
(6 slots)

fits host 2

fragmented
resources

host 1 - VM Slots host 2 - VM Slots host 3 - VM Slots

VM 1 VM 2 VM 3
VM 4
(6 slots)

does
not fit

Figure 5.1: Fragmented resources vs defragmented resources.

86

5.4 The Virtual Machine Consolidation Agent

optimal vm placementcurrent vm placement

host 1 - 8 Slots

VM 1
(6 slots)

host 2 - 6 Slots

VM 2
(4 slots)

host 3 – 6 Slots

VM 3
(4 slots)

host 2 - 6 Slots

VM 1
(6 slots)

host 3 – 6 Slotshost 1 - 8 Slots

VM 2
(4 slots)

VM 3
(4 slots)

cannot
get

Figure 5.2: There is no feasible sequence of movements that starting from the distribu-
tion in the left and without using additional resources, can end up with the distribution
in the right.

VMs across physical hosts, defragment resources, have spare resources per physi-
cal host, etc.). In this paper we are considering that we get a better distribution
of VMs when we reduce the number of physical hosts needed to host the VMs
or when we reduce the global fragmentation of the non-allocated resources, while
maintaining the level of service (e.g. allocating 1 core per virtual CPU and 1 GB.
of real RAM per 1 GB. of virtual RAM). This level of service will not choke up
the real resources as the hosts are dedicated to virtualization tasks. That level
of service is the one that is accepted in the common CMPs such as OpenNebula
(ONE), OpenStack or even commercial ones such as VMWare vCenter.

The architecture of VMCA is shown in Figure 5.3. There are four basic decoupled
components: (1) the connector to the platform, (2) the monitoring system, (3) the
analyzer, and (4) the migration plan manager. The following subsections describe
these components.

5.4.1 Connector to the platform

VMCA makes an abstraction of the virtualization platform, with the purpose of
not being tightened to any particular platform. By decoupling VMCA from the
platform it is possible to use the same algorithms for different CMPs.

The abstraction consists of two parts: an output data model that obtains the
information model of the platform, and an actuator that can be used to order the
migration of a VM from one host to another. Both parts need to be implemented
for the target platform, using the specific platform API.

The information about the platform is represented by (i) the physical hosts, which
are abstracted by using the resources that are dedicated by that host to virtual-
ization tasks (i.e. real memory, number of cores, shared disk, etc.), and (ii) the
VMs, which are abstracted by using the virtual resources that are requested by

87

Chapter 5. VMCA

the VMs (i.e. virtual memory, virtual CPUs, virtual disk, etc.), its state (running,
stopped, unknown, etc.), and the server that is hosting the VM.

Depending on the support to VM migration of the CMP, the actuator may even
be a simple function that makes the effective migration of a VM from the host in
which it is hosted to another host.

5.4.2 Monitoring system

The information obtained by the connector to the platform represents a snapshot
of the virtualization platform. The purpose of the monitoring system is two-fold:
on the one hand, to collect the evolution of the state of the platform; on the
other hand, to be used as a simulator of the platform to record the changes in the
allocation of resources due to the migration of the VMs.

The evolution of the state of the platform is modeled by storing the changes in the
state of the VMs, obtained by monitoring snapshots, along with the timestamp of
the instant when such change occurred. The tuple (identifier, state, host, timestamp)
defines the state of a VM. Using this state, we can infer the stability of a VM in
the context of VMCA, which is related to how long the VM remains in a state, in
one host. And by aggregating the state of the VMs hosted in a host, we can infer
the stability of a host in the context of VMCA, that it represents how long the
VMs of the host remain in the same state.

A VM is considered to be stable when its state has not changed for a period of
time. A VM that is not stable will not be considered for migration by VMCA.
This is useful to avoid problems related to very frequent migrations in dynamical
Cloud deployments. The most immediate example is the ”ping-pong” effect, that
consists of continuously moving a VM between two hosts because the analysis
of the platform results in doing it in subsequent decissions of VMCA. This is a
concept which is very similar to the ”cool down period” concept used in Amazon
Web Services to control auto scaling groups [8]. The value for the stability depend
on the features of the platform and the QoS constraints, so it must be tuned for
the specific deployment. In the case of VMCA this value defaults to 30 minutes.

The evolution of the state of the platform is guessed from the discrete values
obtained from the monitoring snapshots, as it is not possible to know what happens
in-between. Getting valid information about the state (when a VM changed from
a state to another) is also impossible for a CMP, because it relies on periodically
checking the state of the VMs in the hosts. But the underlying idea is that the
VMCA monitoring system will rely on the middleware that manages the platform
(by using the proper connector to the platform).

This monitoring system is also conceived to act as a simulator for the platform,
and enable VMCA to test different sequences of movements instead of effectively

88

5.4 The Virtual Machine Consolidation Agent

Figure 5.3: Architecture of VMCA.

ordering them on the real platform. The monitor is able to simulate how the
migration of one VM from one host to another would change the allocation of
the resources of the physical hosts. In the end, this monitor provides the VMCA
re-scheduling algorithms with a view of the platform. The simulation makes it
possible for the algorithms to try multiple sequences of movements, and to evaluate
which of them will provide a better distribution of the VMs.

5.4.3 Analysis of the platform and planning the migrations

The main task for this component is to detect whether it is possible to obtain a
better distribution of the VMs in the physical nodes, and to provide the sequence
of movements to get it. In this paper, the objective of VMCA is to obtain as many
empty nodes as possible. So the key objective for the analysis of VMCA is to move
every VM from a physical host to the other servers that are already hosting a VM
to get some physical nodes idle. The final consequence is that the idle nodes may
be suspended or powered off by using other software such as CLUES [4].

Other works have focused on selecting a set of VMs to migrate, depending on the
stress of the physical hosts, or based on thresholds of usage of physical hosts. And
most of other works, schedule the VMs according to a specific scheduler. These
strategies introduce two problems: on the one hand, the mechanism to select the
VMs do not take into account the features of the VMs. Moreover it does not
guarantee that the physical host will be free of VMs as they only move enough
VMs to get the usage of the resources under a threshold. On the other hand, using
a specific schedulers modify the behaviour of the platform, as it does not integrate
with the policies used by the CMPs used to schedule the VMs when they are first
created.

In order to surpass those problems, VMCA incorporates an Iterative BF-FFd
(IBFFFd) algorithm that follows the principles introduced in [66] to re-allocate
the VMs from a set of host to the rest. In that work it is introduced a BF
mechanism to select which of the distributions fits best for the final objective (in

89

Chapter 5. VMCA

our case, which physical host is the best one for moving its VMs to other hosts).
The underlying idea is (i) to have a distribution of VMs in physical nodes, (ii)
for each server that is hosting VMs invidually, compute the state of the platform
if only its VMs were moved to other physical nodes using a FFd algorithm (e.g.
how balanced are the resources, how much power is consuming the platform or
how many nodes can be powered off), (iii) move the VMs from the host that gets
the platform in the best state to other hosts, and (iv) start over until we cannot
re-arrange the distribution. The algorithm is shown in Algorithm 2.

In the case of VMCA, it starts from a specific VM distribution and then detects
which nodes are in a stable state. For each stable node (lines 7-21), the algorithm
tries to re-place its VMs following a FFd scheme (lines 10-16), where the VMs are
selected starting from the one that needs less resources. The destination for the
VM is obtained by using the scheduler from the platform (line 11), considering
all the nodes but the one that is analyzed to be powered off. This way VMCA
integrates with the existing scheduler, instead of trying to create a new one. The
criteria for scheduling the VMs is fully delegated to the scheduler of the platform,
to adjust to the policies of the organization. Using this approach, integrating with
other schedulers such as those shipped with the CMPs or to green schedulers such
as the one used in [19] simply consists in establishing a mechanism to communicate
VMCA with the scheduler or integrating part of the code of the scheduler in
VMCA.

In this case we introduce the concept of reward and cost for the migration (line
18), to evaluate the movements of the VMs. The reward is a value that represents,
in a heuristic-defined scale, the value that adds the migration to the platform (i.e.
the “goodness of the migration”). An example of the evaluation is the difference
between the variances of the resources in the platform, which could be used to
balance the usage of the resources in the physical nodes. The cost corresponds to
the time needed to make the migrations of the VMs from the node to other nodes.
The estimation of the cost of the migration mainly depends on the platform and
the features of the VM that is being migrated. An example of model to estimate
the cost of live migration is shown in [117]. In our case, we are simplifying the
calculation of the cost of migrating one VM by approximating it to the amount of
memory of the VM, multiplied by a factor of magnitude epsilon.

If not all the VMs in a host can be re-placed into another hosts, the sequence of
migrations will be discarded, because the aim of this algorithm is to get nodes idle,
in order to power them off. If a successful sequence is found, it is evaluated and
recorded to be compared with the other possible sequences. At the end, the most
valuable distribution is selected (line 22). Then the host analyzed is not further
considered to host VMs (as it is likely to be powered off) and the hosts that are
the destinations for the migrations will not be considered as stable anymore (lines
23-28). Once the new situation is decided, VMCA continues trying to move the
VMs from the next host, until every stable host has been analyzed.

90

5.4 The Virtual Machine Consolidation Agent

The asymptotic cost of Algorithm 2 is O(h2 ∗max(ni) ∗ cost(scheduler)), where
h is the number of stable nodes (those whose VMs have not changed for a period
of time) and ni is the number of VMs in the stable node i. The h2 term is
included because there is a “for” loop that schedules the VMs inside a “repeat”
loop that explores the stable hosts. At the end, the upper bound of the cost of
this algorithm is O(H2 ∗N ∗ cost(scheduler)), which is a quadratic cost instead of
the exponential cost of an exhaustive search solution (where N is the number of
VMs in the platform and H the number of physical hosts). It must be noticed that
the cost of the schedulers shipped in the default distributions of common CMPs
typically have an upper bound of their computational cost which is linear to the
number of hosts H (i.e. checking the number of VMs of each host in order to pack
or scatter the VMs in the hosts).

The quadratic cost of this algorithm is a problem when dealing with big platforms
(hundreds of hosts and thousands of running VMs). In that case, we want to use
VMCA as part of a DPM technique to reduce power consumption, and the analysis
will be triggered frequently, and the total running time should be reduced.

VMCA incorporates a modification that we have called Iterative FFd-FFd (IFFdFFd)
that tries to reduce the total cost of the computation of the analysis of the platform,
while trying to maintain the quality of the solution. In this case, the underlying
idea is (i) to have a distribution of VMs in physical nodes, (ii) select which node
is the most appropriate one to move its VMs to other hosts, (iii) make the migra-
tions, and (iv) start over until we cannot re-arrange the distribution. This second
algorithm is shown in Algorithm 3.

The underlying concepts of this algorithm are pretty much the same included
in Algorithm 2, but in this case it is tried to determine the node that is more
interesting to migrate its VMs away to other nodes a priori, by applying a FFd
algorithm in function select node to empty (line 6) to select which of the nodes
is going to be analyzed to move its VMs away from it. This function introduces
heuristics to evaluate the function used to sort the items for the FFd algorithm.
In this case we have implemented the “select the node with more VMs hosted”
and “select the node with fewer VMs hosted” functions to validate VMCA, but it
is possible to create some more complex criteria to select the order in which the
nodes are going to move its VMs away. We can introduce heuristics that consider
the consumption of the nodes (e.g. select the node that is consuming more in first
place), heuristics that take care of the cost of migrating the VMs from one host
(e.g. select the node that would cost less to migrate its VMs in first place), or
even heuristics that only take into account VM specific features (e.g. select the
node that has the biggest VMs in first place). Evaluating these criteria falls out
of the scope of this paper, as we are not trying to compare heuristics.

The rest of the algorithm is almost the same, adapted to this alternate scheme:
lines 9 to 15 apply a FFd algorithm to schedule the VMs from the selected host

91

Chapter 5. VMCA

Algorithm 2 The Iterative BF-FFd analysis algorithm to redistribute VMs

1: nodes = detect stable nodes(monitor)
2: possible destinations = nodes with VMs
3: simulator = clone(monitor)
4: repeat
5: migration plan = []
6: possible migrations = []
7: for all node in nodes do
8: migrations = []
9: local simulator = clone(simulator)

10: for all vm in node.vms do
11: destination = platform scheduler.schedule(

local simulator.hosts information(), vm, possible destinations - node)
12: if destination is not None then
13: migrations.append(vm, destination)
14: local simulator.make migrations([(vm, destination)])
15: end if
16: end for
17: if len(migrations) == len(node.vms) then
18: reward, cost = evaluate(migrations)
19: possible migrations.append((reward, cost, node, migrations))
20: end if
21: end for
22: (node, migrations selected) = select migration(possible migrations)
23: nodes.remove(node)
24: for all (vm, destination) in migrations selected do
25: possible destinations.remove(destination)
26: end for
27: simulatior.make migrations(migrations selected)
28: migration plan.append(migrations)
29: until no node is empty or there are no stable nodes pending of analysis

92

5.4 The Virtual Machine Consolidation Agent

into other hosts and lines 16 to 24 apply the migrations (in case that every VM
from the selected host can be moved away to other hosts) and adjust the hosts
that are considered as stable and those that can host VMs.

The asymptotic cost of Algorithm 3 is O(h ∗max(ni) ∗ cost(scheduler)), where h
is the number of stable nodes (those whose VMs have not changed for a period
of time) and ni is the number of VMs in the stable node i. In this case, the
upper bound of the cost of this algorithm is O(H ∗N ∗ cost(scheduler)), which is
a linear cost with respect to the number of nodes instead of the quadratic cost of
Algorithm 2 (where N is the number of VMs in the platform and H the number
of physical hosts).

Algorithm 3 The Iterative FFd-FFd analysis algorithm to redistribute VMs

1: nodes = detect stable nodes(monitor)
2: possible destinations = nodes with VMs
3: simulator = clone(monitor)
4: repeat
5: migration plan = []
6: node = select node to empty(nodes)
7: migrations = []
8: local simulator = clone(simulator)
9: for all vm in node.vms do

10: destination = platform scheduler.schedule(
local simulator.hosts information(), vm, possible destinations - node)

11: if destination is not None then
12: migrations.append(vm, destination)
13: local simulator.make migrations([(vm, destination)])
14: end if
15: end for
16: if len(migrations) == len(node.vms) then
17: possible destinations.remove(node)
18: for all (vm, destination) in migrations do
19: possible destinations.remove(destination)
20: end for
21: nodes.remove(node)
22: simulatior.make migrations(migrations)
23: migration plan.append(migrations)
24: end if
25: until no node is empty or there are no stable nodes pending of analysis

93

Chapter 5. VMCA

Heuristic set 2

host 1 - VM Slots

vm
1

vm
2

host 2 - VM Slots

vm
3

host 3 - VM Slots

vm
4

Heuristic set 1

host 1 - VM Slots

vm
1

vm
2

host 2 - VM Slots

vm
3

host 3 - VM Slots

vm
4

Figure 5.4: Different criteria provide different results.

5.4.4 Execution of the migration plan

Once the migration plan has been calculated, VMCA will schedule and make the
migrations to try to achieve the new VM distribution in the hosts. In the case
of the algorithms considered in VMCA, it is not possible to find any dependency
between the migrations. Once a VM is moved, it will not be moved until a period
of time has passed, and the migration plan has been fully carried out. Moreover,
two migrations can be carried out in parallel, if the source and destination hosts
of one migration are not the source or destination host of the other migration. So
the migrations in the migration plan can be re-arranged to try to make migrations
in parallel to reduce the total time for executing the migration plan.

Once the migration plan has been started, the analysis of the platform will not be
performed again until the migration plan is fully executed, or a disruptive event
occurs. This kind of events are those that make that the platform enters into
an unexpected state. Some examples of the disruptive events are: a new VM is
executed in the platform, an execution of a migration fails, a node is powered on
or off, etc.

5.5 Integrating VMCA with the policies of the platform

Integrating with the virtualization platform while trying to reduce energy con-
sumption is a complex task. So when deploying VMCA in production some issues
should be addressed. On one side, it is important to notice that the configuration
of the different criteria and techniques for re-placing the VMs will obtain different
results, as it is shown in Figure 5.4. In the left side of the figure, VM2 is moved
first to host2, so there is no place for VM1 anywhere. In the right side of the
figure, VM1 is moved first to host2 and then VM2 can be moved to host3 to get
host1 empty. In this case, the important part to adapt is the criteria to apply the
FFd order for scheduling the VMs, but a similar situation can happen for the case
of the mechanism to select the node whose VMs are moved away to other hosts
in first place (the function to evaluate the cost and reward in Algorithm 2 or the
function to select the host in Algorithm 3).

94

5.6 Experiments with VMCA

There are also other problems that should be addressed when integrating with
the scheduler of the CMP, such as reducing energy consumption and the local
scheduler may pursue opposite objectives. In the case of ONE, the scheduler
included in the bundle package has four different policies to schedule the VMs
(apart from the customized policies) [101]: (1) Stripping the VMs, to maximize
resources available for the VMs by spreading the VMs in the hosts, (2) Packing
the VMs, to minimize the number of hosts in use by packing the VMs in the hosts
to reduce VM fragmentation, (3) Load-aware, to maximize resources available for
the VMs by using those nodes with less load and (4) Fixed, where hosts will be
ranked according to a prioritized order for the hosts.

In case that we are using the Stripping criteria for ONE, when re-locating the VMs,
these will be tried to be distributed among the different hosts. The consequence
will be that these hosts that are receiving VMs will not be considered stable for
a while. Consider the scenario of using the stripping scheduler and having three
equal hosts (H1, H2 and H3). At one moment, we have 2 VMs on each host, but
all the VMs can be hosted on one host. If we try to move the VMs of H1 to other
hosts, the first one will be allocated on H2 and the second one on H3. That will
prevent from moving the VMs of H2 to H3 because H2 is not considered stable, as
it has just received one VM. Under that scenario, getting the minimum physical
hosts to host the VMs will imply the payload of an extra period of stability and
an extra analysis of VMCA. A change from the stripping policy to the packing
policy would make the deal.

5.6 Experiments with VMCA

In order to validate VMCA, we have deployed it in an on-premises cloud platform
managed by ONE. The platform consists of 8 dual processor with 14 core nodes
(28 cores per node), with 64 Gb. of RAM and a shared storage system of 10
Tb., backed by a Storage Area Network (SAN) where the hard disks are stored
as volumes. This on-premises cloud is used in production by our research group
both for providing computational resources to the users. The VM types that are
allowed in the platform are shown in Table 5.1, and they resemble the default
types in the well known OpenStack CMP.

There are different possible configurations to deploy VMCA. So instead of choos-
ing any combination of parameters for the deployment of VMCA in production
platform, we have made a study to select a suitable configuration for the platform.

95

Chapter 5. VMCA

Type Memory CPU (Cores) disk (GB.)
Tiny 512 MB. 1 10
Small 2 GB. 1 20

Medium 4 GB. 2 20
Large 8 GB. 4 50

Extra Large 16 GB. 8 50

Table 5.1: Types of Virtual Machines.

5.6.1 Selecting a configuration of parameters

To select a criteria for the deployment of VMCA, we have tried to identify a
configuration of the available possibilities that would provide good results for the
platform. For each of the available algorithms we have implemented several cri-
teria for the customizable functions and, at the end we have constructed nine
configurations that are shown in Table 5.2.

These configurations should be considered as a sample of common configurations
that are used in the context of this paper to validate VMCA, and do not try to be
an exhaustive survey of the posibilities of server consolidation heuristics. There
are other works such as [67] or [115] that try identify which kind of heuristics
provide better results in FFd-like algorithms for server consolidation.

In these algorithms we are using the expression |Ru
h| to refer to the normalized

amount of used resources in host h. It is calculated using the expression (5.1),
which is the weighted euclidean distance normalized. In this expression mu

h, cuh
and duh represent the quantity of memory, cpu and disk used by VMs in host
h, maxm, max c and max d are the maximum amount of memory, cpu and disk
available in any host in the platform, and α, β and κ are the weights that represent
the importance of memory, cpu and disk, respectively in the platform. We are also
using the normalized amount of the free resources (|Rf

h|, calculated applying the
same expression to the free resources of host h). In our tests, we have set α = 1,
β = 1, κ = 0 (κ is set to zero because we have a common backend for the disk, so
the space consumed is not relevant to differentiate the VMs).

|Ru
h| =

√
(α · mu

h

maxm)2 + (β · cuh
max c)2 + (κ · du

h

max d)2√
α2 + β2 + κ2

(5.1)

96

5.6 Experiments with VMCA

ID Name Description
1 FF-fewer VMs FF algorithm that moves the VMs from the host with fewer

VMs in first place.
2 FF-More VMs FF algorithm that moves the VMs from the host with more

VMs in first place.
3 FF-Less Used resources per

VM
FF algorithm that moves the VMs from the host that has
less normalized amount of used resources per VM in the host
(calculated as |Ru

h|/count(vm, vminh)).
4 FF-More Used resources per

VM
FF algorithm that moves the VMs from the host that has
more normalized amount of used resources per VM in the host
(this is the same algorithm than the previous one, but with
the reversed criteria).

5 BFd-Quicker sequence BFd algorithm that estimates the time needed for migrating
each VM and selects the sequence of movements that gets the
VMs away from one host to others quicker.

6 BFd-Less time per VM BFd algorithm that estimates the time needed for migrating
each VM and selects the sequence of movements that gets
the VMs away from one host to others quicker per VM (as a
mean). This is the same algorithm than the previous one, but
dividing the time by the number of VMs.

7 BFd-Balance free resources BFd algorithm that tries to balance the distribution of the free
resources of the servers that are hosting VMs. To compute
out how the free resources are balanced in the platform, we
calculate the variance of the normalized amount of the free
resources in the hosts, using expression (5.2) (less variance
means more equality in the distribution).

8 BF-Unbalance free resources BF algorithm that tries to unbalance the distribution of the
free resources of the servers that are hosting VMs. It is the
same algorithm than the previous one, but with the reversed
sort.

Table 5.2: Configurations of criteria for VMCA.

S2 =
1

hosts

hosts∑
h=1

(|Rf
h| −Rf)2 (5.2)

To compare the behaviour of these configurations, we have generated thousands of
random synthetic platform configurations with random workloads of VM deployed
on them, and we have analyzed the use cases using VMCA, applying each one of
the nine configurations of the implemented criteria, and the two VM scheduling
policies available in ONE that do not depend on the features of the VMs while they
are running: stripping and packing. For each of the analysis, we have recorded the
number of free nodes at the end of the analysis and the number of migrations that
would be needed to achieve the final distribution, assuming that the migration plan
can be carried out and nothing happens in-between. Then we have calculated the
number of use cases in which each configuration got the best final result among
the different analysis (getting the maximum number of empty hosts).

In the case of platforms that were built up from homogeneous hosts (i.e. platforms
in which the hosts had the same amount of physical resources), we got that almost
everytime (99% of times), all the configurations got the same number of empty
hosts. In the case of heterogeneous platforms the results were very different.
Figure 5.5 shows the percentage of times that each configuration achieved the

97

Chapter 5. VMCA

Figure 5.5: Percentage in which a configuration of criteria gets the maximum free
servers when hosting all the VMs deployed in the platform, on a sample of thousands of
heterogeneous random platforms (higher is best).

maximum number of empty hosts, for the case of heterogeneous platforms, for
both the stripping and the packing VM scheduling policies. The figure reveals
that the best configurations are “FF-fewer VMs” (1), “BFd-Less time per VM”
(6) and “BFd-Balance free resources” (7). From the results, it seems that the
configurations of criteria that get the best results tend to move the VMs away
from the hosts that have fewer VMs: try to get a node empty using the minimum
number of migrations.

From the synthetic results, in the case of our homogeneous platform, it seems that
getting the maximum number of empty nodes is not a matter of criteria. Any
of the implemented configurations is likely to get a good result if it is allowed to
make enough migrations. Then, the main difference is the number of migrations
needed to reach the stable state. A migration is a costly task that can drive to
a downtime of a VM or to a QoS penalty in many cases. Therefore, the lower
the number of migrations is, the better the migration plan obtained is. Figure 5.6
shows the percentage of use cases in which each of the configurations of criteria
that provided best results got the minimum number of possible migrations (when
getting the maximum number of free nodes), in the case of the stripping scheduler,
which is the one used in the target CMP.

In this figure we can see that the configuration that provides better results (less
migrations) is “FF-fewer VMs” (1), in both homogeneous and heterogeneous plat-
forms, but it has even better results for homogeneous platforms. Therefore, this
is the configuration that we selected for the production tests.

It is also noticeable that when we focus on the different sheduling options, the
“packing scheduler” always needed to make less migrations than the “stripping

98

5.6 Experiments with VMCA

Figure 5.6: Percentage in which a configuration of criteria gets the minimum needed
migrations to get the maximum free servers when hosting all the VMs deployed in the
platform, on random platforms when using the stripping VM scheduler in the CMP
(higher is better).

scheduler”, under the same other parameters. This is because the packing sched-
uler tries to schedule the VMs in the physical hosts that have more hosted VMs
and that helps to keep the VMs concentrated into a lower number of physical
hosts. That scheduler facilitates clearing the other physical hosts. But we have to
take into account that the underlying scheduler is a constraint of the virtualization
platform with which VMCA has to integrate. In the case of our tests, the policy
for the ONE platform is “stripping” and it cannot be changed since it is used in
production.

5.6.2 Tests into the production platform

As a result from the synthetic analysis, VMCA was configured to use algorithm 3,
applying the criteria of selecting in first place the node that had the less number
of VMs (“FF-fewer VMs”). The VM scheduler in ONE is “stripping the VMs”
(which is the default criteria for a fresh ONE installation). We have executed
VMCA in 10 different periods of time, that we will consider the use cases from
C1 to C10. These use cases correspond to moments in which VMCA was not run
for several days and the plaform was in a state driven by the lifecycle of the VMs
and the interaction of the users with the platform. The state of the platform at
the start of each execution is summarized in Table 5.3. In this table, each row Cj

represents one use case named according to the first column. The second column
represents the total number of VMs that were hosted by the platform, and each of
the columns named as Hi from H1 to H8 represent the different physical hosts in
the platform. The value contained in each cell in the table is the tuple formed by

99

Chapter 5. VMCA

Case VMs H1 H2 H3 H4 H5 H6 H7 H8

C1 45 1,1,1,0,0 1,2,2,1,2 2,0,2,0,0 2,4,2,0,0 0,1,1,1,1 1,1,2,0,1 0,2,0,0,1 0,4,5,1,0

C2 53 3,3,2,0,0 2,1,1,0,0 0,1,5,1,1 2,2,4,0,0 1,2,3,0,2 1,2,4,0,0 0,2,1,0,1 1,2,1,1,1

C3 39 0,0,2,0,0 1,4,0,0,0 1,2,1,1,0 1,0,3,1,0 0,2,1,2,0 0,1,4,2,0 0,1,1,2,1 0,0,3,1,1

C4 41 0,2,3,0,0 0,3,3,0,0 2,2,3,0,0 2,2,2,0,0 1,1,1,0,2 1,3,0,0,0 0,3,0,1,0 0,1,2,0,1

C5 62 2,3,6,1,0 1,4,4,2,0 1,4,2,1,0 1,6,1,1,0 1,3,3,0,0 0,2,0,1,0 1,1,3,0,0 2,2,1,1,1

C6 45 2,0,2,1,0 1,2,3,0,1 0,1,1,1,0 0,0,2,1,0 2,4,3,1,0 2,0,2,0,0 1,4,1,2,0 2,2,0,1,0

C7 61 2,2,5,2,0 3,0,4,0,2 2,1,5,1,0 3,2,1,1,1 0,4,2,0,2 1,0,3,1,1 0,1,2,0,1 1,2,0,2,1

C8 58 0,4,4,1,0 1,2,4,2,1 2,2,1,0,1 1,1,1,0,0 1,6,3,1,1 1,1,5,2,0 1,1,3,0,0 0,2,1,1,0

C9 73 3,2,2,2,0 1,3,2,1,1 0,5,4,0,1 1,3,4,2,1 0,4,3,2,1 0,2,2,1,1 0,9,1,0,0 1,2,3,3,0

C10 53 1,1,1,1,0 2,3,5,0,0 1,1,1,0,2 1,1,2,0,0 0,2,0,2,0 2,3,1,0,0 1,6,5,1,0 1,1,2,2,1

Table 5.3: States of the platform before running VMCA.

Case VMs H1 H2 H3 H4 H5 H6 H7 H8

S1 45 2,4,3,0,2 - 2,3,5,1,1 2,5,2,1,1 - 1,3,5,1,1 - -

S2 53 3,4,4,0,0 - 0,2,7,1,1 - 2,2,4,0,2 - 2,4,3,0,1 3,3,3,1,1

S3 39 0,1,5,2,1 1,5,4,0,0 2,2,3,2,1 - 0,2,3,5,0 - - -

S4 41 0,2,5,0,2 - 4,6,5,0,1 - - - 2,9,4,1,0 -

S5 62 2,4,9,1,0 - 1,7,6,2,0 - - - 2,8,4,2,0 4,6,1,2,1

S6 45 4,1,4,3,0 - - 1,4,4,2,0 - 4,2,4,0,1 1,6,2,2,0 -

S7 61 2,2,5,2,0 3,1,4,0,2 2,3,5,1,1 3,3,1,1,2 - 1,0,7,1,1 - 1,3,0,2,2

S8 58 0,5,6,1,0 2,2,4,2,1 - - 1,6,3,1,1 - 2,2,6,0,1 2,4,3,3,0

S9 73 3,3,3,2,1 1,5,3,2,1 - 1,3,4,2,1 0,5,3,2,1 - 0,10,3,0,1 1,4,5,3,0

S10 53 3,5,6,2,0 - 2,2,2,1,2 1,8,6,1,0 - - - 3,3,3,2,1

Table 5.4: States of the platform after running VMCA.

the number of (tiny, small, medium, large and extra large) number of instances,
hosted in host i for use case j.

The resulting distribution of the VMs after each analysis is summarized in Table
5.4. For each use case Ci we have obtained a new distribution of VMs Si that is the
result of moving VMs from one hosts to others using live migration techniques. As
in Table 5.3, each row of this table contains the number of tiny, small, medium,
large and extra large instances, respectively, hosted in host i when VMCA has
made the migrations and has achieved a stable state. In case that a node is not
hosting any VM, it has been marked using a “-” to ease its visual identification.

According to the objectives of this work, a better distribution will be that with the
maximum number of empty nodes. The optimal number of physical hosts needed
to host an infrastructure of VMs can be theoretically obtained from the number
of physical hosts used by applying a FFd algorithm to place the VMs in an empty
platform using the expression (5.3) derived from the study made in [134]. In this
expression, L represents the set of VMs in the platform, FFD(L) the number of

100

5.6 Experiments with VMCA

Case Total time Total migrations Iterations Hosts used FFdi OPT(L)
S1 1975.46 25 1 4 4 3 (2,45)
S2 1574.70 19 1 5 5 4 (3,27)
S3 1966.45 24 2 4 4 3 (2,45)
S4 2480.83 33 3 3 3 2 (1,64)
S5 2477.83 31 2 4 4 3 (2,45)
S6 2033.08 25 1 4 4 3 (2,45)
S7 926.91 12 1 6 6 5 (4,09)
S8 1545.54 18 1 5 5 4 (3,27)
S9 1292.61 16 1 6 6 5 (4,09)
S10 2747.54 33 1 4 4 3 (2,45)

Table 5.5: Evaluation of the results obtained by VMCA.

physical hosts needed to host the VM set L obtained as a result of applying the
FFd algorithm, and OPT (L) the number of physical hosts needed to host the VM
set L in the optimal solution.

(FFD(L)− 1) · 9

11
≤ OPT (L) (5.3)

The evaluation of the results obtained by VMCA is summarized in Table 5.5. The
column titled “Total migration” represents the time in seconds since VMCA was
started to the instant when the platform was considered as “stable” by VMCA
(that means that VMCA could not make any extra migration). This time includes
the VMCA analysis and all the migrations. The total execution time for the
VMCA analysis algorithm (3) was less than 0.02 seconds in any of the cases.
The column “Total migrations” is the total number of migrations to get to the
distribution of VMs Si from the starting situation Ci. Column “Iterations” refers
to the number of times that the analysis of VMCA took place. The problem of
needing multiple iterations is explained in section 5.5, but it occurs because VMCA
needs to move a VM several times and it has to wait for the VMs to become stable
again. In our case, this was due to the “stripping scheduler” used by ONE in
our platform. Column “Hosts used” refers to the number of hosts needed to host
all the VMs when achieving to the distribution obtained in Si. Column FFdi is
the number of hosts needed to host the VMs if applied the aforementioned FFd
algorithm to host all the VMs if the platform was empty. The last column named
“OPT(L)” is the optimal number of hosts, according to expression (5.3) using the
value FFdi (for the purpose of VMCA, a fraction of the host is considered as a
whole host, although the obtained value is included between parentheses).

In this table we can see that, in all of the cases, we have achieved a solution in
which we obtained the same number of hosts needed to host all the VMs in the

101

Chapter 5. VMCA

platform, that a offline FFd algorithm would obtain if it distributed the VMs
in a platform starting from the beginnning (i.e. when the platform was empty,
but knowning which VMs were to be created). In this case, VMCA had the initial
constraint of starting from a given distribution, and the solution has been obtained
in a reduced number of steps. That means that VMCA has always obtained a very
good solution, as it is always only one host greater than the theoretical optimal
value.

Although we have always obtained the same value than using the FFd algorithm
we cannot infer that VMCA will always obtain that value, facing any distribution
of VMs. In the use cases shown in this paper, we have obtained that nice solu-
tion probably because the platform is not heavily occupied and there was enough
empty space in the platform to make the needed migrations. Notice that in con-
strained scenarios with less empty space, VMCA might require an extra number
of migrations or may get solutions that are not so near to the theoretical optimal
value.

Regarding the total time to reach from use case Ci to Si we can see that it
represents a large amount of time that ranges from 15,45 minutes in case S7 to
41,35 minutes in case S4. That is due to the time needed to effectively migrate
the VMs (which was 80,59 seconds as a mean in our tests) and the fact that
VMCA had not been active for a large period of time. If VMCA was run more
frequently, the subsquent analysis would not imply too many VM movements. In
a platform where there are several empty nodes (they would ideally be powered
off by automatic mechanisms such as CLUES [40]) and there is little space to host
VMs, the task of VMCA is very limited and it will probably not try to move any
VM if it could not get a node empty.

5.7 Conclusions and future work

In this paper we have presented VMCA, which is a Virtual Machine Consolida-
tion Agent that tries to re-arrange the distribution of the VMs in an on-premises
cloud computing deployment to try to use the physical resources in a more effi-
cient manner. We have shown an iterative BFd-FFd algorithm to re-arrange the
distribution which is based on multidimensional Bin Packing. This algorithm is a
contribution to the state-of-the-art algorithms to re-place the VMs. We have also
created an iterative FFd-FFd algorithm that reduces the computational cost and
enables to introduce VMCA in a production ready platform to get physical hosts
idle. The result is that VMCA can be considered as a DPM technique since it
has a reduced computational cost, and it can be integrated with green computing
techniques so that hosts can be powered off to save energy. Furthermore VMCA
is not only a theoretical exercice, and we have integrated the results of this paper
in a product that can be downloaded from [3] in source-code.

102

5.7 Conclusions and future work

Since VMCA makes use of FF-like algorithms, it is based in heuristics. The config-
urations of criteria implemented in the framework of this paper are very straight-
forward, but we consider that they are valid for common on-premises deployments.
In this paper we have demonstrated that these configurations obtain near-optimal
values at a reduced computational cost. We have not tried to make a survey of
different criteria for packing VMs on to hosts. Instead the objective of this paper
is to create light versatile algorithms that achieve good results and can be used
in medium-high used production platforms. Moreover, the paper focuses on the
consolidation of the VMs instead of creating a new scheduler that affects the crite-
ria of the existing scheduler. The algorithms shown in this paper enable to create
more sophisticated criteria that can take benefit from runtime features to enhance
the migration plan at a reduced computational cost (e.g. taking into account the
dirty memory pages to select which VMs are likely to live-migrate in first place).
Moreover both algorithms try to interfer as less as possible with the scheduling
policies of the platform. So they do not implement any VM scheduler and fully
integrate with the VM scheduler used in the platform.

The use cases shown in this paper show the real usage of a scientific cloud platform
in a production state. VMCA got profit from the fact that the platform is not
under an extreme ocupation, so the migrations were feasible and VMCA got idle
resources that could be powered off.

As a immediate work for VMCA, we have to integrate it with other on-premises
platforms such as OpenStack. Previous releases of this middleware made hard to
migrate VMs from one host to other, but current version provide an enhanced
support for making it.

As a future work, VMCA will focus in resource defragmentation and integration
with elastic infrastructure managers such as CLUES to consider the possibility of
powering on hosts that have been powered off because they were empty, to move
VMs to them, in order to enhance the distribution of VMs. The work described in
this paper focuses on server consolidation instead of a strict resource defragmen-
tation. The main difference for these two cases is the pursued objective. Whereas
a “server consolidation” approach tries to reduce the number of physical hosts
that are hosting the VMs, a “resource defragmentation” approach would focus on
balancing the usage of the resources. That would mean that, as an example, in a
”server consolidation” approach the VMs will not be moved if such movements do
not result in a reduced number of physical hosts, but a “resource defragmentation”
approach will move the VMs if they enhance the resource distribution even if no
hosts become idle.

103

Chapter 6

Automatic Memory-based Vertical
Elasticity and Overcommitment on
Cloud Platforms

Submitted as

Germán Moltó, Miguel Caballer, Carlos de Alfonso, “Automatic Memory-based
Vertical Elasticity and Oversubscription on Cloud Platforms”.

Abstract

Hypervisors and Operating Systems support vertical elasticity techniques
such as memory ballooning to dynamically assign the memory of Virtual
Machines (VMs). However, current Cloud Management Platforms (CMPs),
such as OpenNebula or OpenStack, do not currently support dynamic verti-
cal elasticity. This paper describes a system that integrates with the CMP
to provide automatic vertical elasticity to adapt the memory size of the
VMs to their current memory consumption, featuring live migration to solve
overcommitment scenarios, without downtime for the VMs. This enables an
enhanced VM per host consolidation ratio while maintaining the Quality of
Service for VMs, since their memory is dynamically increased as necessary.
The feasibility of the development is assessed via two case studies based on
OpenNebula featuring i) horizontal and vertical elastic virtual clusters on
a production Grid infrastructure and ii) elastic multi-tenant VMs that run
Docker containers coupled with live migration techniques to alleviate over-
commitment. The results show that memory oversubscription can be inte-
grated on CMPs to deliver automatic memory management without severely
impacting the performance of the VMs. This results in a memory oversub-
scription framework combined with live migration techniques to safely enable
transient overcommitment of physical resources in a CMP.

105

Chapter 6. CloudVAMP

6.1 Introduction

Elasticity [54], or the ability to rapidly provision and release resources, is one
of the integral characteristics of Cloud Computing. Horizontal elasticity is com-
monly employed to provision additional computational nodes in order to sustain
the quality of service delivered by an architecture deployed on a Cloud platform,
specially after an increase in the number of users or workload. Horizontal elasticity
has been extensively studied in the past, with services already available for public
Clouds, such as Auto Scaling1 for Amazon Web Services (AWS), and Heat2 for
OpenStack.

Instead, vertical elasticity enables to increase and decrease the number of resources
allocated to a single Virtual Machine (VM). The increased support to techniques
such as memory ballooning [127] and CPU hot plugging by popular hypervisors
such as KVM, Xen or VMware paves the way for vertical elasticity to be adopted
by Cloud platforms. However, popular open source CMPs such as OpenNebula
and OpenStack do not currently support vertical elasticity without downtime. As
an example, the KVM hypervisor fully supports memory ballooning in order to
dynamically modify the allocated memory to a given VM without any downtime,
and the main Operating Systems (OSs) support this feature. However, CMPs
require to stop the VM in order to change its allocated memory.

In our previous work [96] we demonstrated the benefits of introducing vertical elas-
ticity to dynamically adjust the allocated memory of VMs to their current memory
consumption, specially for applications with dynamic memory requirements dur-
ing their execution. In fact, the number of VMs that one physical machine can
support is typically limited by its memory size. Besides, users tend to overesti-
mate the amount of memory required by their applications resulting in unused
memory that could be dedicated to additional VMs running on the same phys-
ical machine [119]. In addition, CMPs typically provide templates, such as the
flavors in OpenStack, which enforce a certain amount of memory size regardless
of the actual memory requirements of the application. Just as airlines sell more
tickets than available seats (i.e. oversubscribe the plane) in the hope that some
passengers do not show up, Cloud providers can oversubscribe their resources by
deploying additional VMs in a host, in the hope that VMs will actually use less
memory than initially requested.

However, this situation might incur in memory overcommitment for a host, where
the sum of memory of its VMs exceeds the physical memory of the host. This
situation, at the Cloud infrastructure level, is called oversubscription [60], which
is a technique that can lead to an increase in the number of VMs per physical host
though it can have an impact on the Quality of Service and probably violate the

1Auto Scaling: http://aws.amazon.com/autoscaling
2Heat: https://wiki.openstack.org/wiki/Heat

106

http://aws.amazon.com/autoscaling
https://wiki.openstack.org/wiki/Heat

6.2 Related work

Service Level Agreement established by the Cloud provider. However, oversub-
scription can enable Cloud providers to better use the available memory in their
physical systems if the appropriate countermeasures are introduced. As Williams
et al. [129] state, in well-provisioned datacenters, overload is unpredictable, rela-
tively rare, uncorrelated, and transient, indicating that an opportunity exists for
memory oversubscription in those facilities.

In this paper we introduce CloudVAMP (Cloud Virtual machine Automatic Mem-
ory Procurement) a memory oversubscription framework that can be integrated in
an on-premises CMP to automatically monitor the VMs and to dynamically ad-
just their allocated memory to adapt to the current memory requirements of their
running applications. Without any user intervention, the system automatically
manages the memory of the VMs (or a subset of VMs) irrespective of the memory
initially allocated by the user. This introduces enhanced VM consolidation per
physical node while live migration is employed in case of overcommitment.

The remainder of the paper is structured as follows. First, section 6.2, describes the
related works in the area of vertical elasticity and memory oversubscription. Next,
section 6.3 briefly describes the problem addressed and the underlying technologies
employed. Later, section 6.4 describes the architecture of CloudVAMP, in order
to manage vertical elasticity in an on-premises Cloud. Then, section 6.5 describes
two case studies carried out to assess the behaviour and benefits of the developed
platform. Finally, section 6.6 summarises the paper and points to future work.

6.2 Related work

There can be found other works in the literature that have focused on vertical
elasticity and memory oversubscription, though most of them are just focused on
virtualisation platforms and, thus, not covering the intricacies of CMPs. In [39],
the authors propose an Elastic VM architecture that scales the number of cores,
CPU capacity and memory using the Xen hypervisor. They study the adaptation
of the VM capacities to the requirements of a web application. However, their
case study does not address memory scaling but only increasing the virtual CPU
allocation.

In [118], a system to provide proactive dynamic memory allocation based on the
Bayesian predictions is introduced to increase server consolidation. In [59], the
Ginkgo memory overcommitting framework is introduced, which dynamically es-
timates VM memory requirements for applications and automates the distribution
of memory across VMs through ballooning techniques. It uses performance pro-
files of the applications to characterise incoming load. The case study focuses
on VMs running on a single physical host. These two works focus on a set of
virtual machines running in a single hypervisor, while our work focuses at the

107

Chapter 6. CloudVAMP

whole infrastructure provided by the CMP, involving memory management across
multiple physical hosts. In [113] an extension of ballooning techniques is applied
to applications (using as example a database engine and the Java runtime) to
reallocate memory between memory managers of different applications. However,
these requires modifications of the Xen Balloon Driver and does not address the
overcommitment problems that arise in CMPs.

Overdriver [129] is a system to mitigate the problems that arise in oversubscribed
virtualised hosts, by automatically deciding when to use network memory, using
a cooperative swap approach, or live migration depending on whether the work-
load is considered to be transient or sustained, respectively. However, they do not
consider memory ballooning as a mitigation strategy for oversubscription. This
is the case of the work by Hwang et al. [61] where a system to opportunistically
use memory during periods of light loads is introduced. For that, they allow the
hypervisor to dynamically allocate memory at fine granularity, focusing on disk
and application level caches. The work by Baset et al [17] describes the different
techniques employed to alleviate oversubscription and mitigate the overload. They
designed an event-driven simulator to develop an understanding of oversubscrip-
tion. However, they focus exclusively on offline and live migration but ballooning
techniques are discarded.

Regarding memory ballooning, the KVM hypervisor has a project called Auto-
matic Ballooning [72] where the management of the balloon is automatic. When
the host is under pressure, it asks guests to relinquish memory. When a guest
detects memory pressure, it gets some memory back from the host. This requires
Linux kernel 3.10+ and a specific version of QEMU. However, this approach focuses
exclusively on the VMs running on a single physical machine and, thus, it does not
solve the problems that arise when the host is overcommitted, specially within an
on-premises Cloud, where VMs could be live migrated across other physical hosts
to restore the level of service.

The most similar work to our proposal is the one carried out by Litke [80], where
the Memory Overcommitment Manager (MOM) is introduced. This system re-
quires a daemon to be installed in the VMs to gather information regarding the
memory usage from the VMs and a policy actuator that runs on the host’s OS
to decide when to increase or decrease memory though memory ballooning tech-
niques. While this approach is of interest for a virtualisation platform where VMs
have dynamic memory requirements, it does not introduce countermeasures for
overcommitted hosts.

As the authors of [60] state, much of the research conducted thus far has focused on
managing oversubscription of a single physical machine though this narrow focus
is rather limiting. While other projects successfully manage memory overcommit-
ment at a host level, we have not found any previous work that automatically
manages oversubscription in an on-premises Cloud. Therefore, building on pre-

108

6.3 Problem, Methods & Materials

Physical Host A

VM1 VM2

Hypervisor

Physical Host A

VM1 VM2

Hypervisor

VM3

Physical Host A

VM1 VM2

Hypervisor

VM3

Physical Host B

Hypervisor

a) b) c)

VM5VM3

Figure 6.1: Depiction of an on-premises Cloud with support for dynamic memory
management. a) the allocated memory of the VMs has been reduced because there is
enough free memory, b) a third VM is deployed on the same physical host and c) live
migration is employed to solver overcommitment of memory in the physical host.

vious works in the area we introduce CloudVAMP, a memory oversubscription
framework combined with live migration techniques to safely enable automatic
transient overcommitment of physical resources within a CMP.

As opposed to previous work, our approach considers memory management not at
a single physical host but at the the whole infrastructure level in an on-premises
Cloud. In addition, CloudVAMP is responsible to safely reduce the allocated
memory to the VMs in order to enable transient oversubscription. The fact that
CloudVAMP is integrated with a CMP enables the latter to deploy additional VMs
to the same physical host according the stablished scheduling policies within Cloud
infrastructure. Therefore, CloudVAMP does not only manage, but also enables,
oversubscription at the Cloud infrastructure level, which is a feature not included
in previous aforementioned related works.

In addition, we introduce a proof-of-concept open source implementation based
on OpenNebula, which can be easily adapted to other CMPs (such as Open-
Stack). Therefore, this introduces unattended efficient memory management for
on-premises Clouds.

6.3 Problem, Methods & Materials

This paper is based on the following underlying technologies. First, KVM [68], a
popular open source hypervisor that fully supports memory ballooning. Second,
OpenNebula [98], an open-source Cloud Management Platform that manages the
life cycle of VMs on a physical infrastructure. However, the system described in
this paper can also be adapted to work with a different hypervisor and or CMP.

109

Chapter 6. CloudVAMP

According to [17], there are different mechanisms to mitigate the problems that
arise with oversubscription: i) stealing, which allows a hypervisor to steal (actually
borrow) resources from underloaded VMs running on the same physical host; ii)
quiescing VMs, so that a VM is shut down and migrated offline to an underloaded
physical machine; iii) live migration, to hot migrate VMs from an overloaded phys-
ical machine to an underloaded one; iv) streaming disks, to transfer the minimum
portion of a VM’s local disk to allow the VM to be started on another physical
machine, and v) network memory, to use memory of another machine as a swap
space over the network.

In this paper we focus both on memory ballooning and live migration techniques
and its integration in a CMP. We rely on these techniques because they are fully
supported on most hypervisors and by the main OSs (including Linux and Win-
dows). Therefore, this enables to create a system that can be easily integrated in
today’s on-premises Cloud deployments to seamlessly leverage these techniques.

Figure 6.1 summarises the main problem that aims to be addressed. In a), two
VMs (VM1 and VM2) have been deployed by a CMP on the same physical host
(A). Depending on the scheduling configuration of the CMP this situation can be
very frequent. For example, OpenNebula can be configured to use a packing sched-
uler and so, the VMs tend to be allocated to the same physical machine if there is
enough memory available. In KVM, a deployed VM has both a memorysize and
a maxmemorysize attribute. A VM cannot grow beyond the maxmemorysize,
which corresponds to the memory initially allocated when the VM was created.
However, its memorysize (the memory currently allocated to the VM) can range
from the minimum amount of memory to support the OS, typically in the order
of 200-300 Mbytes for a Linux VM [96], to its maxmemorysize. Notice that in a)
the memory size of both VMs has been shrunk due to the usage of memory bal-
looning, because the applications running on the VM were not using that amount
of memory. Then, in b) since there is enough available memory to host an addi-
tional VM (because the actual memory needed by VM1 and VM2 is less than the
original amount requested), the CMP’s scheduler has decided to allocate a new
VM to that physical host.

Later, in c), VM2 requires more memory because the application (or applications)
running inside has requested so and, thus, the physical host incurs in overcommit-
ment. Therefore, one or more VMs (in this case, only VM3) have to be relocated
to another physical host to restore as soon as possible the quality of service across
the infrastructure managed by the CMP. In our case, this involves live migration,
according to a certain policy, so that no downtime is introduced for the migrated
VM.

110

6.4 Architecture

6.4 Architecture

The architecture of CloudVAMP consists of three components:

• Cloud Vertical Elasticity Manager (CVEM). An agent that analyses the
amount of memory actually needed by the VMs and dynamically updates
the memory allocated to each of them, according to a set of customisable
rules. It is an agent that queries the monitoring system of the CMP, and
has access to the hypervisors (e.g. ssh access to the physical nodes of the
on-premises Cloud). It can decide to live migrate VMs in order to restore
the level of service under memory overcommitment situations.

• Memory Reporter (MR). An agent that runs in the VMs and reports to a
monitoring system the free and used memory by the applications in the VM.
This information must be available for CVEM, so it should be integrated
within the CMP’s monitoring system (as it has been currently implemented)
or by relying on a third-party monitoring system (e.g. Ganglia).

• Memory Overcommitment Granter (MOG). A system that informs the CMP
about the amount of memory that can be overprovisioned on the hosts, to
be taken into account by the scheduler of the CMP.

Figure 6.2 depicts the architecture of the proposed system and how it fits in an
on-premises Cloud. The proof-of-concept implementation is based on OpenNeb-
ula (ONE) and it is seamlessly integrated using the components that it offers.
OpenNebula requires a cluster-based installation in which the main services are
installed in the front-end node (ONE Front-end in Figure 2.a) whereas the VMs
are deployed on the internal working nodes (ONE Host in Figure 2.b), where the
KVM hypervisor (other hypervisors are supported as well) has to be installed.

The architecture of CloudVAMP has been implemented via lightweight Python-
based agents. For example, CVEM runs alongside ONE to obtain the monitoring
information regarding the actual memory usage of all the VMs in the infrastruc-
ture. For that, we rely on the MR, which runs in the VM. The MR agent periodi-
cally (by default every five seconds although it can be configured on a per-VM ba-
sis) reports the memory usage to OneGate3 by properly querying /proc/meminfo
to obtain both the total and free memory in the VM as well as the usage of the
swap space. We rely on the contextualisation mechanisms provided by OpenNeb-
ula to dynamically stage in the running VM the agent that periodically monitors
the memory consumption and the memory available reporting back to OneGate.
This enables CVEM to access centralised monitoring information about the mem-
ory usage of all the VMs deployed in the on-premises Cloud (by default every

3OneGate: http://docs.opennebula.org/4.12/advanced_administration/application_

insight/onegate_overview.html

111

http://docs.opennebula.org/4.12/advanced_administration/application_insight/onegate_overview.html
http://docs.opennebula.org/4.12/advanced_administration/application_insight/onegate_overview.html

Chapter 6. CloudVAMP

HW

OS

ONE CVEM

HW

OS

KVM - LibVirt

GUEST OS

App

ONE Host

GUEST OS

DockerMRMR

C1

App1 App2

C1VM

VM

a) b) c)
ONE Host

One
Gate

1. List VMs and Monitor
Memory Usage

2. Update
Memory

 Collect
Memory Usage

MOG

OpenNebula

ONE Front-end

Figure 6.2: Architecture of an on-premises Cloud with support for the CloudVAMP.
a) the OpenNebula (ONE) frontend host, b) a sample ONE host that executes VMs and
c) a sample configuration employed for the case study.

five seconds). Notice that MR and CVEM are decoupled systems which can work
at different frequencies. In addition, the MR only reports significative memory
changes so it can run very frequently.

The usage of contextualisation avoids the need to have pre-packaged Virtual Ma-
chine Images (VMIs) with the MR agent pre-installed. Instead, by using the
contextualisation offered by OpenNebula, our solution is independent of the VMI
chosen by the user (though our proof-of-concept is based on GNU/Linux-based
VMIs), since the agent is installed on-the-fly when the VM is deployed. Notice
that, for other CMPs, DevOps tools such as Puppet or Ansible could also be used
to dynamically deploy the MR agent right after the VM has booted.

Finally, to inform the ONE scheduler about the amount of memory from the hosts
that can be oversubscripted, we have created a modified version of the KVM Vir-
tual Machine Manager (VMM) monitoring driver component that is shipped with
OpenNebula. This version calculates the amount of stolen memory from each host
and instructs the ONE scheduler to use part of it to allocated additional VMs in
that host. We define the stolen memory for a given physical host as the total
amount of memory that CVEM has been able to freed from the different VMs
running on that physical host, in our case, through the use of memory balloon-
ing via KVM. CVEM decides to enlarge or shrink the VM’s allocated memory
depending on the actual memory usage reported by the MR to OneGate.

112

6.4 Architecture

Notice that the current Allocated Memory (AM) to a VM is divided between
the current Used Memory (UM) by the applications running inside and the Free
Memory (FM) and, therefore, AM = UM +FM . The vertical elasticity rules im-
plemented in CloudVAMP build on our previous work [96] to maintain a Memory
Overprovisioning Percentage (MOP) of an additional 20% of the current UM. The
goal is to keep that extra amount of free memory in case the application running
in the VM starts requesting more memory. In our previous work we assessed the
behaviour of different values of MOP, in particular 10% and 30% to understand
the tradeoff between reducing the free memory in a VM at the expense of increas-
ing the chances of an application to start thrashing due to lack of free memory in
case the application requires a memory increase [96].

However, the vertical elasticity rules are only triggered if the percentage of free
memory of the VM is smaller than 80% or greater than 120% of the MOP. This
enables the system to only react when substantial changes in the used memory of
the VM occur, thus removing unnecessary oscillatory memory changes. In these
circumstances, CloudVAMP dynamically adapts the VM memory size using (6.1),

AM = UM × (1 +MOP) (6.1)

where AM is the newly allocated memory to the VM by the hypervisor and UM
is the current used memory by the applications in the VM. As an example, a MOP
of 20% means that the elasticity rule will only be triggered when the free memory
of the VM is lower than 16% (80% of 20%) or greater than 24% (120% of 20%)
of the used memory of the VM. If a VM has 1000 MB of AM and the application
starts using 900 MB, then the new AM will be 1080 MB (900× 1.2).

For the sake of clarity, Figure 6.3 shows the memory thresholds that trigger the
vertical elasticity rules in an example VM (left part of the figure) that was initially
deployed with 2500 MB and was subsequently downsized to 1200 MB (AM), of
which 1000 MB are being used by the application (UM) and 200 MB are the free
memory (FM) provided by the MOP (20% of the UM). Whenever the UM passes
the Increase Memory Threshold (IMT) or the Decrease Memory Threshold (DMT)
the vertical elasticity rule (6.1) is applied in order to maintain that extra 20% free
memory. Any memory consumption changes between those thresholds will not
trigger the elasticity rules to avoid unnecessary oscillations. In case the application
starts demanding additional memory, the system allocates extra memory resulting
in the case shown in the right part of the Figure 6.3, which corresponds to the VM
with, for example, 2000 MB of UM.

The elasticity rule has been complemented with a fail-safe mechanism when thrash-
ing has already occurred within a VM. In that case, the memory size increase
should be much larger to rapidly counteract the devastating effects that thrashing
has in application performance [43]. For that we use a mechanism that greatly

113

Chapter 6. CloudVAMP

Memory (MB)

Time

Used Memory (UM)

Free Memory (FM)
1200

1000

Increase Memory Threshold - IMT
(16% of UM = 160 MB of FM)

Decrease Memory Threshold - DMT
 (24% of UM = 240 MB of FM)

2500

Initial VM
Allocated
Memory

(AM)

Current VM
AM

Current App(s)
Memory

Consumption

UM

FM

2400

2000
IMT (320 MB of FM)

DMT (480 MB of FM)

Maximum VM
AM

VM1

VM1

Figure 6.3: Memory thresholds that trigger the vertical elasticity rules in two example
VM configurations. In the left, a VM with 1000 MB of Used Memory (UM) and, in the
left, a VM with 2000 MB of UM. MOP=20% of UM.

inspires in exponential backoff [91]. If there is no available free memory in the VM,
an additional 50% of the difference between the maximum memory and the current
allocated memory is assigned. This enables to rapidly increase the allocated mem-
ory to the VM, attempting to scape from thrashing as fast as possible. If there is
still shortage of memory, the same additional allocation of memory is performed.
Finally, if the third monitoring interval still reports a shortage of memory in the
VM (probably because the application running in the VM is requesting memory
faster than the rate at which CloudVAMP is increasing the allocated memory to
the VM), the VM is allocated its maximum memory size. Notice that any excess of
allocated memory will be corrected in subsequent steps by CloudVAMP by reduc-
ing the allocated memory according to the rule in (6.1), leading to a self-regulatory
system.

6.4.1 Oversubscription via Stolen Memory

The KVM VMM monitor shipped with ONE has been modified in order to instruct
the ONE scheduler to overcommit the memory of the physical hosts. The actual
amount of memory available in the host that is reported to the ONE monitoring
system is the amount of physical memory obtained by the actual monitoring system
plus a percentage O from the amount of memory that could be stolen from the
free memory available in the VMs. The scheduler shipped in ONE is unaware of
the memory reduction of the VMs, and calculates the amount of memory available

114

6.4 Architecture

for virtual machines in one host as the memory available in the host minus the
memory requested by the VMs when they were deployed, as shown in (6.2).

HostVMsmem = Hostmem −
∑

VM in host

VMmem (6.2)

Using this approach, the ONE scheduler will act as if the hosts had more memory
available for the VMs and will try to deploy new VMs in the physical host even
if the total amount of memory requested by the VMs is greater than the physical
memory available at the destination host.

The value of O can be configured for the on-premises Cloud in order to increase the
degree of memory oversubscription. It is a percentage so a value of 0% means that
no memory oversubscription will be introduced by CloudVAMP. This means that
the sum of allocated memory of all the VMs of a host in the on-premises Cloud will
never exceed the available memory of that host. A value of 100% for O means that
CloudVAMP will try perform as much oversubscription as possible. This means to
reclaim all the free memory from the VMs to enable maximum oversubscription,
since the CMP scheduler will allocate additional VMs to the underlying hosts.
Notice that this may require to migrate VMs more frequently if applications start
demanding additional memory. Notice that under no circumstances CloudVAMP
will reclaim used memory from the VMs since that would have a dramatic impact
on the performance of applications. In the end, this parameter should be properly
fine-tuned depending on the requirements of the on-premises Cloud.

Live Migration in On-premises Clouds

KVM fully supports live migration among physical hosts without any downtime
provided that i) the Virtual Machine Image is located on a shared storage among
the source and destination physical machines, and ii) both physical machines reside
in the same subnet. These assumptions are commonly (and easily) met in an on-
premises Cloud deployment.

Migration involves copying the memory pages from source to destination machines.
The time involved in the live migration depends on the memory size of the VM
but it is much more dependent on the rate at which dirty pages are created, which
depends on the application usage of memory. As Clark et al. [82] noted, if the
VM continuously dirty pages faster than the rate of copying, then the copy of
pages work will be in vain. In particular, we have detected stalled live migrations
for VMs executing memory-intensive applications, in which the memory is being
frequently modified, thus creating new dirty pages at a faster rate than the ability
of KVM to transfer those pages to destination.

115

Chapter 6. CloudVAMP

This behaviour of live migration affects the policy employed to select the VM that
should be live migrated under memory overcommitment scenarios. Notice that
the VM whose allocated memory is being increased, as happens in Figure 6.1.c, is
expected to later use that memory, thus being a candidate to produce more dirty
pages. Therefore, CloudVAMP will try to avoid choosing that VM when consider-
ing which VM should be migrated. In particular, CloudVAMP uses the following
approach: First, it selects the VM with the least amount of allocated memory,
running on the same machine that hosts the VM whose memory is growing. This
policy tries to minimise the migration time. Then it selects the destination host,
selecting the one with the largest amount of free memory. In case that none of
the available hosts has enough free memory to receive the VM, the migration is
not performed. Notice that enhanced live migration strategies can be addressed
although they lie out of the scope of this paper.

6.5 Assessment via Case Studies

This section assesses the usefulness of the developed system in a standard produc-
tion environment based on OpenNebula 4.8 that consists of three dual 4 core Xeon
E5620@2.40GHz with 16 GB RAM and three quad 4 core Xeon E7520@1.86GHz
with 32 GB RAM, for a total of 72 cores and 144 GB RAM. The operating system
for the platform is Ubuntu 12.04.5 LTS, and the version of KVM is 1.0. Any piece
of software is installed from the official repositories of Ubuntu and OpenNebula,
except for the implementations made in this paper. In our tests, the value of O is
set to 100% to gain the maximum amount of memory for other VMs, thus fostering
maximum oversubscription.

For that, two case studies are executed. The first one integrates this technique
in a production elastic virtual cluster of the es-NGI4 infrastructure, the Spanish
National Grid Initiative, to seamlessly accommodate workload of different sizes
within a virtual cluster that features both horizontal and vertical elasticity. The
second one focuses on the deployment of Docker containers running on a multi-
tenant vertical elastic VM to adapt its memory size to the varying workload.

6.5.1 Fully Elastic Virtual Clusters for Grid Infrastructures

The es-NGI infrastructure is the spanish national Grid initiative that contributes
computing and storage resources to the European Grid Initiative (EGI5) which
is a global Grid infrastructure (also supporting federated Clouds) that supports
scientific activities. More than 320 organisations across 43 countries offer a com-

4es-NGI: http://www.es-ngi.es
5EGI: European Grid Initiative

116

http://www.es-ngi.es

6.5 Assessment via Case Studies

0	

10	

20	

30	

40	

50	

60	

70	

1:
00
:0
0	

1:
20
:5
9	

1:
41
:3
8	

2:
02
:2
0	

2:
23
:2
4	

2:
44
:1
1	

3:
04
:4
7	

3:
25
:1
7	

3:
45
:4
8	

4:
06
:1
5	

4:
26
:2
4	

4:
44
:4
7	

5:
02
:5
3	

5:
21
:1
9	

5:
40
:0
5	

5:
58
:1
8	

6:
16
:3
9	

6:
34
:4
8	

6:
52
:5
7	

7:
11
:2
0	

7:
30
:3
8	

7:
50
:1
4	

8:
09
:0
4	

8:
28
:0
2	

8:
47
:1
9	

9:
06
:3
9	

9:
25
:5
5	

9:
45
:2
7	

10
:0
4:
52
	

10
:2
4:
02
	

10
:4
3:
13
	

11
:0
2:
23
	

11
:2
1:
37
	

11
:4
0:
50
	

M
em

or
y	
(G
iB
)	 niebla03	

niebla04	

niebla02	

niebla13	

Total	

Figure 6.4: Evolution of the stolen memory of the hosts that execute the VMs that
support the virtual elastic cluster that executes the jobs from the es-NGI.

puting capacity that exceeds 480.000 cores where more than 1.4M jobs per day
are executed6.

Our research group contributes with computing capacity in the shape of elastic
virtual clusters in which VMs are dynamically provisioned to support the execu-
tion of incoming jobs in a sandboxed environment created by EC3 (Elastic Cloud
Computing Cluster)7 [26] an open-source tool to create elastic virtual clusters on
hybrid Cloud infrastructures. This virtual cluster is based on a front-end node
managed by CLUES [4] that monitors the LRMS (Local Resource Management
System) and decides when to scale out (provision additional working nodes) and
scale in (terminate working nodes) according to a set of configurable rules. How-
ever, the nodes of the cluster, which are VMs, are deployed with a fixed amount of
memory, regardless of the amount of memory actually consumed by the applica-
tions being executed in them. The Workload Management System (WMS) of the
Grid infrastructure is responsible for allocating the applications to resources with
at least as much free memory as the application requests. However, the running
applications typically use less memory than the one actually available in the VMs.
That memory could be employed to allocate new VMs for the execution of other
jobs thus increasing both the job throughput and the usage of our on-premises
Cloud platform.

In this case study we wanted to assess the effectivity of introducing vertical elastic-
ity in the shape of dynamic memory management within this production platform.
We introduced CloudVAMP into the platform, and recorded data from a repre-
sentative workload that arose from different real jobs in a period of 12 hours. The
case study involves three physical hosts with 16 GB of RAM (niebla02, niebla03
and niebla04) and one physical host with 64 GB of RAM (niebla13).

6http://www.egi.eu/infrastructure/operations/egi_in_numbers/
7EC3: http://www.grycap.upv.es/ec3

117

http://www.egi.eu/infrastructure/operations/egi_in_numbers/
http://www.grycap.upv.es/ec3

Chapter 6. CloudVAMP

0

1

2

3

4

5

6

7

8

9

1
:0
0
:0
0

1
:1
4
:5
2

1
:2
9
:4
8

1
:4
4
:1
8

1
:5
8
:5
6

2
:1
3
:5
1

2
:2
8
:4
0

2
:4
3
:2
7

2
:5
8
:0
8

3
:1
2
:4
3

3
:2
7
:1
2

3
:4
1
:4
8

3
:5
6
:1
8

4
:1
0
:4
9

4
:2
5
:0
2

4
:3
8
:0
7

4
:5
1
:0
9

5
:0
3
:5
7

5
:1
7
:0
3

5
:3
0
:1
9

5
:4
3
:3
4

5
:5
6
:2
4

6
:0
9
:2
6

6
:2
2
:2
2

6
:3
5
:1
4

6
:4
8
:0
7

7
:0
1
:0
7

7
:1
4
:1
0

7
:2
7
:1
3

7
:4
1
:4
9

7
:5
5
:3
1

8
:0
8
:5
4

8
:2
2
:0
7

8
:3
5
:5
5

8
:4
9
:3
6

9
:0
3
:2
1

9
:1
7
:0
1

9
:3
0
:4
4

9
:4
4
:3
7

9
:5
8
:1
9

1
0
:1
2
:0
3

1
0
:2
5
:3
9

1
0
:3
9
:1
5

1
0
:5
2
:5
2

1
1
:0
6
:2
6

1
1
:2
0
:0
6

1
1
:3
3
:4
3

1
1
:4
7
:2
3

A
llo

ca
te

d
 M

e
m

o
ry

 (
G

iB
) VM1

VM2

VM3

VM4

VM5

VM6

VM7

VM8

VM9

Figure 6.5: Evolution of the allocated memory of some of the VMs that compose the
virtual elastic cluster.

Figure 6.4 represents a summary of the evolution of the stolen memory for the
physical hosts that hosted the VMs that where part of the elastic virtual cluster
deployed to support the execution of jobs coming from the es-NGI. Remember
that the stolen memory is the memory that has been freed in a physical host as
a result of the usage of CloudVAMP. The figure also depicts the sum of stolen
memory across the physical hosts. The larger the amount of stolen memory per
host, the higher the chances are that the CMP deploys additional VMs in that
host. The figure shows that under real workload scenarios, CloudVAMP is able
to free memory from the VMs by adjusting their allocated memory to the real
memory requirements of the VM.

Within the same time frame, Figure 6.5 describes the evolution of a representative
subset of nine VMs of that virtual cluster. Take into account that the number
of nodes of the virtual cluster dynamically changes depending on the number of
jobs currently received by our Grid site. Notice that all the VMs are initially
deployed with 8 GB and they are almost instantly downsized depending on the
actual memory consumption of the application. A VM can host the execution
of different simultaneous Grid applications, depending on the number of virtual
CPUs, which for this study is set to 4 vCPUs. Subsequent executions of different
applications in the same VM is also possible.

The oscillatory memory allocation patterns that can be seen at the beginning of
the execution of some VMs, as is the case of VM1 and VM7, can be both due
to the highly dynamic memory consumption patterns of a single application or
the concurrent execution of different applications and, henceforth, with different
memory consumption.

118

6.5 Assessment via Case Studies

Host niebla13 niebla02 niebla04 niebla03
Phys. Mem. (GiB) 64 16 16 16

Avg. Stolen Mem. (GiB) 4.97 12.82 9.91 16.38

Table 6.1: Comparison of the physical memory of the hosts vs the stolen memory (the
freed memory per node when using CloudVAMP) .

Notice that VM8 and VM9 are deployed at around 7:30 minutes since the study
was started. These represents the horizontal elasticity of the virtual cluster in
action, where two additional nodes are deployed because new incoming jobs are
requested to be executed in the virtual cluster. Then, VM8 is terminated approxi-
mately 20 minutes after its deployment. These depends on the horizontal elasticity
rules provided by CLUES, where new VMs are dynamically deployed to host the
execution of incoming jobs and they are terminated when no longer required.

Table 6.1 compares the physical memory of the hosts with the average stolen
memory obtained as a result of the application of CloudVAMP during the 12-hour
case study. Notice that in the case of the host niebla03 the average stolen memory
exceeds its physical memory. To understand this, consider a scenario in which two
8 GB VMs are deployed on a physical host with 17 GB of RAM in which, with the
help of CloudVAMP are reduced to 1 GB per VM to fit the memory consumption
of the applications running in the VMs. An additional 8 GB VM is deployed on
the same host and later shrank to 1 GB. These VMs fit in the physical host and
you are saving 7 GB per VM, which represents a total save of 21 GB, an amount
larger than the physical host’s memory. Therefore, CloudVAMP enables memory
oversubscription to take place, by allowing the CMP to schedule the deployment
of additional VMs in the physical hosts. However, when applications running
in the VMs start using more memory, and CloudVAMP increases their allocated
memory, the physical host might incur in memory overcommitment. This is why
live migration techniques can be used to restore the quality of service delivered by
the on-premises Cloud. This is the topic addressed in the next case study.

6.5.2 Addressing Memory Overcommitment via Live Migration

This section introduces an approach to solve memory overcommitment by using
live migration techniques available in the KVM hypervisor. For that, we are going
to introduce a multi-tenant scenario based on Docker containers.

Docker [89] introduces the ability to package applications and their dependences
into lightweight containers tailored for specific distributions which, as opposed
to VMs, can be spun up very fast. This technology is of special interest for
multi-tenant scenarios in which a set of physical resources has to be shared among
different users, by leveraging process isolation and without the overhead introduced

119

Chapter 6. CloudVAMP

Memory

Time

A

C

B

D

E F

G H

Figure 6.6: Sequence of events that introduce memory overcommitment in a multi-
tenant scenario based on Docker containers.

by a hypervisor layer. In fact containerization is one of the underlying technologies
among popular open-source PaaS tools such as CloudFoundry8 and OpenShift9.

This case study features the deployment of a VM with Docker that supports the
deployment of containers to host different applications within the same VM. This
approach separates infrastructure provision (from the Cloud) and application de-
ployment (using Docker containers) which introduces significant benefits to deploy
applications on multiple back-ends. In multi-tenant scenarios, where a single VM
can be used to deploy multiple containers from multiple users, it is expected a
larger variation in the memory consumption patterns, when compared to a single
application running on a single VM. This is why we believe that CloudVAMP can
be beneficial by automatically managing the allocated memory to the VM (or a
set of VMs) according to the memory used by its active containers.

Figure 6.6 describes the scenario employed, along with the following events:

A A VM (VM1) is provisioned with a certain amount of RAM on a specified
physical host of the on-premises Cloud.

B CloudVAMP reduces the allocated RAM of VM1 since the memory con-
sumption of the VM after its boot is very low (no application is being ran
yet).

C Docker is installed and the first container is deployed based on an image with
the Apache Tomcat application server. This will result in an increase of the
allocation of memory to VM1, as requested by CloudVAMP.

8CloudFoundry:http://www.cloudfoundry.org
9OpenShift:http://www.openshift.com

120

http://www.cloudfoundry.org
http://www.openshift.com

6.5 Assessment via Case Studies

0

50

100

150

200

250

300

350

400

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1
:0
0
:0
0

1
:0
0
:2
2

1
:0
0
:4
3

1
:0
1
:0
4

1
:0
1
:2
5

1
:0
1
:4
6

1
:0
2
:0
8

1
:0
2
:3
0

1
:0
2
:5
2

1
:0
3
:1
4

1
:0
3
:3
6

1
:0
3
:5
7

1
:0
4
:1
8

1
:0
4
:3
8

1
:0
5
:0
1

1
:0
5
:2
2

1
:0
5
:4
4

1
:0
6
:0
6

1
:0
6
:2
8

1
:0
6
:4
9

1
:0
7
:1
0

1
:0
7
:3
1

1
:0
7
:5
3

1
:0
8
:1
4

1
:0
8
:3
5

1
:0
8
:5
6

1
:0
9
:1
8

1
:0
9
:4
1

1
:1
0
:0
3

1
:1
0
:2
5

1
:1
0
:4
7

1
:1
1
:0
9

1
:1
1
:3
0

1
:1
1
:5
1

M
e

m
o

ry
 (

G
iB

)

VM MFLOPS

A B

C

D
F

G H

Figure 6.7: Memory consumption of a VM

D A second container is deployed based on the same image. We expect a
memory increase, although slightly lower due to the sharing of some pages
between the two containers.

E Since VM1 memory was reduced, there is enough free available memory in
the physical machine to host another VM (VM2), as decided by the Open-
Nebula scheduler, which will be running in the same physical host.

F A memory-intensive application is executed on a third container which in-
troduces memory pressure for VM1. We will use a synthetic benchmark
application that enables us to control the memory allocation pattern and to
obtain the performance of the application (in MFLOPS) as described in [96].

G CloudVAMP will try to increase the memory of VM1 but since this would
result in memory overcommitment, it will use a live migration strategy as a
contingency plan. This involves migrating a VM from the physical host to
restore the capability of VM memory without overcommitment.

H When enough memory has been freed from the physical host, VM1 can be
allocated more memory. Remember that the VM memory size will not be
able to grow beyond the amount of memory specified when initially created
the VM.

The aforementioned sequence of events has been carried out in the same on-
premises Cloud. Figure 6.7 shows the real memory allocation of the VM that
hosted the different Docker containers.

First of all, the VM is deployed with 4 GB of RAM at time instant 1:00:00 (which
corresponds to event A in Figure 6.6). A few seconds later, CloudVAMP detects

121

Chapter 6. CloudVAMP

that the VM has enough free memory and decides to reduce its allocated memory
to slightly over than 500 MB (event B). At 1:01:57 we perform the installation of
required packages to use Docker, what demands additional memory and results in
a periodic increase in the allocated memory to the VM.

At 1:04:44, the first Docker container is deployed (C) what increments the memory
requirements for the VM thus resulting in an increase of its allocated memory. The
plateau of allocated memory to the VM that can be noticed from 1:06 until 1:07
is due to the steady state of the VM, since once the Docker containers are started,
no activity is really performed with those containers, for the sake of clarity in this
case study.

At 1:07:36, the second container is deployed (D) what introduces memory pressure
in the VM resulting in a periodic increase in the allocated memory, according to
the increasing memory requirements for the containers, which host Tomcat, a
memory-intensive Java application server. Within this period we have purposely
deployed other VMs within the same physical host to introduce memory pressure
in the host when the analysed VM starts demanding more memory.

At instant 1:09:01 the memory-intensive application is deployed in the VM to force
a steady memory consumption from 0 to 1000 MB in 2 minutes and maintain that
memory consumption for other 60 seconds (F). This results in CloudVAMP to
periodically increase the allocated memory of the VM at relatively similar mem-
ory chunks according to the periodic memory consumption increase of the VM.
At instant 1:10:36, there is so much memory pressure in the physical host that no
additional memory can be allocated to the VM. Although the application is con-
stantly demanding more memory, CloudVAMP cannot allocate additional memory
to the VM because the host is already overcommitted. In this situation, the ap-
plication might incur in thrashing because it has to rely on swap memory. Since
this situation dramatically affects the performance of applications, it is important
to alleviate the memory overcommitment in the physical host. This requires live
migration techniques to move a VM away from the physical host so that the avail-
able free memory can later be allocated to additional VMs running on the physical
host.

In this case CloudVAMP was configured to live migrate the VM with the least
amount of allocated memory to alleviate as fast as possible the memory overcom-
mitment situation. Remember that the time invested in live migration is typically
related to the memory size, though it is much dependent on the applications run-
ning inside, in particular the rate at which dirty pages are created.

Therefore, at around instant 1:10:36 (G) a VM other than the one considered in
this case study is migrated away from the physical host in a process that lasted less
than a minute. This way, at instant 1:11:09 (H) the VM can now be allocated more

122

6.5 Assessment via Case Studies

memory to comply with the increasing memory requirements of the application.
Shortly after, the application is stopped and the case study is finished.

It is important to point out that the usage of CloudVAMP in an on-premises
Cloud has enabled to dynamically manage the memory allocated to the VMs
and to alleviate the memory pressure that arises due to overcommitment via live
migration techniques without any VM downtime.

Notice that Figure 6.7 also shows the MFLOPS that delivers the application, to
evaluate the impact of the memory overcommitment scenario and the live migra-
tion of the VM on the performance of the application being executed. You can
notice a reduction of up to 15% in the MFLOPS delivered by the application
which can be attributed mainly to thrashing and secondarily to live migration.
However, this reduction is very transient and, for long running applications, might
be negligible. In addition, CloudVAMP can be fine tuned in order to try to pre-
vent the applications from thrashing at the expense of wasting additional memory
by increasing, for example, the value of MOP or reducing the value of O at the
infrastructure level.

As a final remark, notice that certain type of applications that require low latency
responses may prefer not to be live migrated to other hosts, which might have an
impact (although relatively small, as shown on the case study) on its performance
and the level of service expected by the client. If a Cloud provider needs to run
applications that are very sensitive to performance, this can be supported in our
system by allocating the VMs that run those applications to a subset of hosts
that will not be monitored by CloudVAMP. This way, the allocated memory to
those VMs will not be reduced and applications will run on the requested resources
without being migrated to other hosts.

Also, notice that the goal of CloudVAMP is not to allocate more resources to
increase the performance of an application but to reclaim the unused resources
(in particular we focus on the memory because hypervisors support their dynamic
management) without affecting the performance of the application.It is possible
to reduce the allocated memory of a VM that is currently not being used by
an application for other VMs to use it. Of course, depending on the memory
consumption patterns the application might require the extra memory back and
this might introduce a performance penalty. In the end, these techniques can be
further customised for a specific on-premises Cloud depending on the workload
and application characteristics.

123

Chapter 6. CloudVAMP

6.6 Conclusion and Future Works

This paper has introduced CloudVAMP, a customisable system to safely enable
transient memory overcommitment in on-premise Clouds via vertical elasticity
without VM downtime and featuring live migration to solve oversubscription sce-
narios. By leveraging the memory ballooning techniques and live migration ca-
pabilities available in the KVM hypervisor, CloudVAMP integrates with Cloud
Management Platforms to dynamically reduce and increase the allocated memory
to the VMs so that they fit the memory requirements of the applications running
in the VMs.

We have introduced a generic architecture that can be deployed for different CMPs,
and we have implemented a fully functional proof-of-concept based on OpenNebula
which is currently being used in production at our research center. We have also
released CloudVAMP as open-source to the scientific community10. The benefits of
CloudVAMP have been assessed via a case study that uses horizontal and vertical
elastic virtual clusters that run jobs from a production Grid infrastructure and
a multi-tenant scenario based on Docker containers. The ability of CloudVAMP
to reclaim unused memory from the VMs to enable temporary overcommitment
for the CMPs has resulted in increased VM-per-host consolidation ratio with a
reduced impact for the running applications. The usage of live migration has been
beneficial to restore the level of service in overprovisioning scenarios.

Future works includes adjusting the O percentage on a per-VM level considering
the stability of each VM. For example, CloudVAMP could reclaim different per-
centages of free memory depending on the amount of time in which a VM’s memory
consumption has remained among a certain range. For VMs with long periods of
stable memory consumption it might be safe to assume that the unused memory
will not be used, and a greater percentage can be reclaimed by CloudVAMP to be
used for additional VMs to be hosted on the same physical node.

We plan to explore memory bursting, where a VM could temporarily allocate more
memory than the one initially requested, much in the same way as CPU bursting
is available for certain instance types (e.g. t2.micro) in Amazon EC2. This can
be easily implemented by increasing the VM deployment memory request by a
certain percentage, which would depend on the policies of the on-premises Cloud,
and letting CloudVAMP to dynamically manage the memory consumption, which
could temporarily exceed the amount of memory initially requested.

Finally, we plan to generalise our development to other CMPs (e.g. OpenStack).
For that, one can use Ganglia as the memory reporting system and modify the
monitoring system of OpenStack to integrate CloudVAMP.

10CloudVAMP, available at https://github.com/grycap/cloudvamp

124

https://github.com/grycap/cloudvamp

Chapter 7

Discussion of the Results

The results of the works of this thesis have been detailed in the papers that have
been published in different journals which address the related topics. These papers
have been included as the central chapters of this document, as each one of them
addresses one part of the key problems in which the main objective has been
decomposed. We did not want to restrict our research to a set of theoretical
results, since they can be applied to real deployments. This is why we have created
open-source developments that can be used by others.

In the next sections we include a description of how the different components can
be used in conjunction to manage a data center, a summary of the papers that
have been written under the framework of this research, and the products that
have been also created. Finally we outline the future directions for this work.

7.1 Putting Things Together: the Multi-Elastic Data
Center

The products that we have developed are the building blocks of a multi-elastic data
center, which is a data center that is elastically managed at different levels. The
scenario for the multi-elastic datacenter is that in which an organization (such as a
research center) owns a physical cluster that is managed by an on-premises Cloud,
using a CMP such as OpenNebula or OpenStack. The end-users are granted EVCs
whose VMs meet the requirements of their applications. The physical servers that
are idle, are automatically powered off, in order to save energy, and activated again
when needed.

125

Chapter 7. Discussion of the Results

Figure 7.1 shows the schema of the multi-elastic data center. In the figure, we can
see that two sides are distinguished: (1) the physical infrastructure and (2) the
Cloud. On the one side, the physical infrastructure is intended to be managed by
the sysadmins, who will install and manage the physical servers. On the other side,
the end-users will only interact with the Cloud side. The components described
in this document are the green shaded boxes:

• The physical side (lower part of the figure)

– An instance of CLUES (CLUESp) that interacts with the physical
servers. It is connected to the CMP, and intercepts the queries for
the creation of new VMs to power on new physical servers, in case that
it is needed. If the physical servers are detected to be idle for a while,
they are powered off, in order to save energy.

– An instance of VMCA, that interacts with the CMP in order to detect
inefficient distributions of VMs in the physical servers.

– An instance of CloudVAMP, that interacts with the CMP in order to
detect if the applications in the VMs are using all the memory that has
been assigned, or it is possible to reduce it. It interacts with CLUESp

to power on servers if the overcommitment makes the servers to thrash.

• The Cloud side (upper part of the figure)

– Multiple instances of EC3 (EC3i), that are used to create the EVCs.
And one instance of the IM, that is needed by EC3 in order to deploy
and to configure the VMs.

– One instance of CLUES (CLUESi
e) for each instance i of EC3, that

will be the responsible of managing the elasticity of the EVCs.

The interaction between all the components in the figure is explained in the form
of an use-case that starts with part of the physical servers powered off (as a result
of the action of CLUESp), because the Cloud platform is partially idle:

1. On the Cloud side (the upper part of the figure), a user needs a EVC and
deploys it by using EC3 to run an High Throughput Computing (HTC)
application which is composed by multiple loosely-coupled jobs. The user
describes the VMs that are needed, along with the maximum number of
working nodes for the EVC. EC3 interacts with the IM to deploy the front-
end of the EVC in the CMP, and installs and configures CLUES as the
elasticity manager (CLUESe).

126

7.1 Putting Things Together: the Multi-Elastic Data Center

Computing nodes Front-end

VMCA
(consolidation

of VMs)

P
h

ysical Sid
e

C
lo

u
d

 Sid
e

In
fr

as
tr

u
ct

u
re

 M
an

ag
er

(V
M

 d
ep

lo
ym

en
t)

end user (i)

end user (1)

EC3 – Elastic Virtual Cluster (i)

VM1 VM2 VMn

CLUESe (elasticity manager)

VM3

EC3 – Elastic Virtual Cluster (1)

VM1 VM2 VMn

CLUESe (elasticity manager)

VM3

OpenNebula (Cloud Management System)

CLUESp (automated power management)

CloudVAMP
(memory

overcommit)

Figure 7.1: The multi-elastic data center.

127

Chapter 7. Discussion of the Results

2. When the user of the EVC queries for the execution of jobs, CLUESe will
create new VMs that will be deployed by the CMP on the physical infras-
tructure.

3. The instance of CLUES that is installed in the physical side (CLUESp)
intercepts the queries for the creation of new VMs and detects that there
is not enough room for the new VMs, and then it powers on some physical
nodes.

4. Once the physical nodes are on, the new VMs are deployed in the CMP.

5. When the VMs are running and available, CLUESe detects that the working
nodes are on, and they integrated to the EVC. The jobs can be finally started
in the working nodes.

6. The user interacts with the EVC, running jobs and creating new working
nodes (if needed), as happened in previous steps.

7. After a while, the execution goes on and as jobs finish, the corresponding
working nodes become idle. CLUESe detects these idle nodes and deletes
the corresponding VMs by interacting with the IM that, in fact, interacts
with the underlying CMP. The other working nodes from the EVC continue
with the calculations.

8. VMCA detects that the current distribution of the VMs in the physical
servers prevent from powering them off. It calculates a new distribution of
VMs that will reduce the number of physical servers that are hosting VMs,
and starts moving some VMs to obtain the new distribution of VMs in the
servers. The VMs are moved to the other hosts using live-migration, in order
to avoid downtimes.

9. CLUESp detects that the physical servers are getting idle, as their VMs are
being live-migrated to other physical servers. After a period of inactivity,
CLUESp powers the idle physical servers off.

10. The calculations that are being made in the cluster do not use all the memory
that is included in the VMs that EC3 is creating. CloudV AMP detects
that the VMs can be shrinked and dinamically varies the memory using the
memory ballooning technique available in the KVM hypervisor.

11. VMCA detects that it is possible to pack the VMs into a lower number of
physical hosts, and starts migrating VMs to obtain the new distribution of
VMs.

12. CLUESp detects that there are more physical servers idle, as their VMs are
being migrated to other physical servers (now the physical memory is being

128

7.2 Summary of the Achievements

overcommited, as a result of the action of CloudV AMP). After a period of
inactivity, CLUESp powers the idle physical servers off.

13. The calculations start to reclaim the memory that it was assigned to them
and the hosts start thrashing. CloudVAMP detects the situation and re-
quests CLUESp to power on some hosts to be able to migrate the VMs.

14. When the hosts have finally been powered on, CloudVAMP live-migrates
some VMs to the empty nodes, in order to make room to grant the amount
of memory that the applications need.

The use case would continue, and once the EVC is not needed anymore, EC3 will
delete the VMs (via the IM), and CLUESp will power off the nodes that got idle.

As this use case has shown, elasticity can be introduced in the management of
a data center at different levels. On the one side, the more natural way is the
EVC, taking profit from the elasticity of the Cloud, that enables the on-demand
provision of VMs. In an on-premises Cloud, the elasticity enables to manage the
infrastructure in a more efficient way. In this example, other EVCs could have
been deployed and the underlying infrastructure had been shared, while each of
the user would have it own environment.

On the other side, the physical elasticity enables to save the energy that would have
been dedicated to power some idle physical servers. But under usual circumstances
the platform would probably drive to distributions of VMs without idle servers.
Therefore, such “idleness” can be stimulated, by redistributing the VMs in the
platform.

7.2 Summary of the Achievements

The results that have been obtained from the works that have been carried out
during the research phase of this thesis are summarized below:

• Enabling the reduction of the energy consumption for physical computing
cluster infrastructures. This is achieved by powering off the servers that
are in idle state. In the tests shown in the papers, we have reduced the
consumption between 17% and 27%, but in newer tests we have achieved
near 50% of savings in real deployments. We achieve an elastic behaviour for
the physical computing cluster infrastructures by adapting the performance
of the system to the actual workload. Moreover, we enable the reduction of
the energy consumption and the elastic behaviour not only for classic batch
LRMS systems, but for other services such as on-premises Clouds where
there are VMs hosted.

129

Chapter 7. Discussion of the Results

• Calculating the TCO of deploying a cluster in a commercial Cloud provider,
and comparing it to the TCO of owning a physical cluster. Besides other
criteria, we introduced an economical variable to be able to decide if it is
better to create the physical facility, or to deploy a virtual cluster in the
Cloud.

• Easing the creation of VC in the Cloud and giving them an elastic behaviour,
to create EVCs. Such elastic behaviour enables adapting the economic ex-
penses to the actual workload, and the consequence is that it reduces the
cost of virtual clusters in the Cloud, as VMs that are not executing jobs are
powered off.

• Facilitating the automated power management for the physical infrastructure
that supports an on-premises Cloud, by exploiting live-migration technology
to consolidate the active VMs into a reduced number of physical servers. In
our tests, we reduced the number of physical servers to near the theoretical
minimum number in most of the cases: we achieved between the 75% and
the 85% of the free hosts in the theoretical optimal solution, and the 100%
of the free hosts in the off-line algorithm used to estimate the theoretical
optimal value.

• Introducing the ability of overcommiting the physical memory of the servers
in an on-premises Cloud, at a CMP level, by dynamically adapting the virtual
memory that is allocated by the VMs to the actual needs of the applications.
To our knowledge, none of the open-source CMPs manages the memory of
the VMs in such a dynamic way, to enable overcommission or aggresive
server consolidation. In our tests, we got hosts hosting a set of VMs that
had requested more than the 200% of the physical memory.

7.3 Publications

In the framework of this thesis, we have written several papers, with the collab-
oration of other researchers. These papers describe the solutions proposed to the
different problems that have been exposed during the research phase.

• De Alfonso, C., Caballer, M., Hernández, V. (2010) “Efficient power manage-
ment in high performance computer clusters”. In 1st International Multi-
Conference on Innovative Developments in ICT (pp. 39-44). http://dx.

doi.org/10.5220/0003036500390044.

• Alvarruiz, F.; de Alfonso, C.; Caballer, M.; Hernández, V., “An Energy Man-
ager for High Performance Computer Clusters”, Parallel and Distributed
Processing with Applications (ISPA), 2012 IEEE 10th International Sympo-

130

http://dx.doi.org/10.5220/0003036500390044
http://dx.doi.org/10.5220/0003036500390044

7.4 Products

sium on , vol., no., pp.231,238, 10-13 July 2012. http://dx.doi.org/10.

1109/ISPA.2012.38

• Carlos de Alfonso, Miguel Caballer, Fernando Alvarruiz, Vicente Hernández,
“An energy management system for cluster infrastructures”, Computers &
Electrical Engineering, Volume 39, Issue 8, November 2013, Pages 2579-2590,
ISSN 0045-7906, http://dx.doi.org/10.1016/j.compeleceng.2013.05.

004.

• Carlos de Alfonso, Miguel Caballer, Fernando Alvarruiz, Germán Moltó, “An
economic and energy-aware analysis of the viability of outsourcing cluster
computing to a cloud”, Future Generation Computer Systems, Volume 29,
Issue 3, March 2013, Pages 704-712, ISSN 0167-739X, http://dx.doi.org/
10.1016/j.future.2012.08.014.

• Miguel Caballer, Carlos de Alfonso, Fernando Alvarruiz, Germán Moltó,
“EC3: Elastic Cloud Computing Cluster”. Journal of Computer and System
Sciences, Volume 78, Issue 8, December 2013, Pages 1341-1351, ISSN 0022-
0000, http://dx.doi.org/10.1016/j.jcss.2013.06.005.

7.4 Products

Apart from the scientific papers, we have created a set of products that gather the
ideas and the implementations used for the validation of the research works. Apart
from the implementations that have been made to validate the ideas and algorithms
described in the papers, an extra effort has been invested for the creation of final
products that can be exported to other deployments. The next sections describe
these products, and also their level of maturity.

7.4.1 CLUES

CLUES is an energy management system for HPC Clusters and Cloud infrastruc-
tures. The main function of the system is to power internal cluster nodes off when
they are not being used, and conversely, to power them on when they are needed.
The CLUES system integrates with cluster management middlewares, such as a
BQS system or a CMP, by means of different connectors.

CLUES also integrates with the physical infrastructure by means of different plug-
ins, so that nodes can be powered on/off using the techniques that best suit each
particular infrastructure (e.g. using wake-on-LAN, IPMI or PDUs).

CLUES is an implementation oriented to the final product, of the work described
in chapter 2. We have created a main application that acts as a server, and a set of

131

http://dx.doi.org/10.1109/ISPA.2012.38
http://dx.doi.org/10.1109/ISPA.2012.38
http://dx.doi.org/10.1016/j.compeleceng.2013.05.004
http://dx.doi.org/10.1016/j.compeleceng.2013.05.004
http://dx.doi.org/10.1016/j.future.2012.08.014
http://dx.doi.org/10.1016/j.future.2012.08.014
http://dx.doi.org/10.1016/j.jcss.2013.06.005

Chapter 7. Discussion of the Results

command line utilities that enable the interaction with the server. Other features
included for CLUES are summarized below:

• Web interface for the administration of the cluster. It is possible to obtain
an snapshot of the state of the physical servers, and also to issue power
management operations on them.

• A tool for the creation of energy management reports, that makes it possible
to obtain a summary about the cluster operation over a period of time. In
this report it is possible to identify the usage of the internal nodes, which
of them have been more (or less) used, etc., to assist in the decisions with
respect to the equipment administration (e.g. purchase of new servers, en-
hancement of existing server, etc.).

• Establishment of adaptable energy saving policies, that enable to keep pow-
ered on an excess of nodes (to handle an eventual peak of workload), powering
on sets of nodes in order to better execute a set of jobs, etc.

CLUES has a web page (http://www.grycap.upv.es/clues) where it is explained
in depth. The web page also includes the product image, some real use cases, etc.,
and also it enables to download it in the form of source code which is ready to be
used. A snapshot of the front web page is shown in figure 7.2. CLUES is licensed
under the GPL 3.0 license. At the current point of writing this document, the first
version1 of the CLUES runtime has been downloaded more than 300 times, for
a total of more than 1200 downloaded files including the user’s manual, plug-ins,
etc.

We have recently finalized the development of CLUES 2, which is a major en-
hancement with respect to the version which is described in chapter 2. It has been
fully rewritten, in order to enhance the legibility of the source code, and to adapt
it to a object oriented approach. The architecture of the system has also been
refurbished, in order to enable new features. This new version has been released
in a public repository in GitHub (https://github.com/grycap/clues), to match
the strategy of the GRyCAP.

From its first release, some contacts from users have been received2. We have
helped these users deploy CLUES, according to a best-effort policy, and their
suggestions have been considered to be included in the new versions of CLUES.
The most noticeable contacts are:

1CLUES was first released in 2012, as a initial version that includes the preliminary results
of the research work. Since then, it has been enhanced according to the feedback of the users
and the evolution of the research.

2CLUES has a support mail list: clues@upv.es

132

http://www.grycap.upv.es/clues
https://github.com/grycap/clues

7.4 Products

Figure 7.2: The CLUES web page.

• The center “Fundación de Supercomputación de Castilla y León” (FSCL)
that uses CLUES for the day-to-day function of the supercomputer Caléndula.
This is one of the use-cases that are included in the CLUES web page.

• The Reference Network in Theoretical and Computational Chemistry from
Catalonia (XRQTC, from the catalan Xarxa de Referència de Qúımica Teòrica
i Computacional agreed a seminar about CLUES under the framework of the
event “Grid Engine 2012” from the HPC Knowledge Portal3.

CLUES is registered in the CARTA system from the Universitat Politècnica de
València (UPV), as part of the technological offer from the UPV. In the framework
of the marketing plan of the UPV, some press releases have been published in the
mass media. These press releases include some highlights about the features of
the product and the use-cases. Moreover, the developers of CLUES appeared on
TV (in the UPV-TV channel), to describe the product. The following urls link to
the different publications in the mass media:

• “Un sistema ahorra hasta un 50% de enerǵıa en grandes conjuntos de orde-
nadores” appeared in “El Confidencial / Cotizalia”, available online at http:
//www.elconfidencial.com/ultima-hora/economia/2013/02/sistema-ahorra-

hasta-energia-grandes-conjuntos-20130203-545127.html

• “Un nuevo sistema ahorra hasta un 50% de enerǵıa en grandes conjuntos de
ordenadores” appeared in “Canarias7.es”, available online at http://www.

canarias7.es/articulo.cfm?id=291345

• “Un sistema ahorra hasta un 50% de enerǵıa en grandes conjuntos de orde-
nadores” appeared in “Las Provincias.es”, available online at http://www.

lasprovincias.es/agencias/20130203/economia/sistema-ahorra-hasta-

energia-grandes_201302031158.html

3http://www.hpckp.org/index.php/training/grid-engine-training-12

133

http://www.elconfidencial.com/ultima-hora/economia/2013/02/sistema-ahorra-hasta-energia-grandes-conjuntos-20130203-545127.html
http://www.elconfidencial.com/ultima-hora/economia/2013/02/sistema-ahorra-hasta-energia-grandes-conjuntos-20130203-545127.html
http://www.elconfidencial.com/ultima-hora/economia/2013/02/sistema-ahorra-hasta-energia-grandes-conjuntos-20130203-545127.html
http://www.canarias7.es/articulo.cfm?id=291345
http://www.canarias7.es/articulo.cfm?id=291345
http://www.lasprovincias.es/agencias/20130203/economia/sistema-ahorra-hasta-energia-grandes_201302031158.html
http://www.lasprovincias.es/agencias/20130203/economia/sistema-ahorra-hasta-energia-grandes_201302031158.html
http://www.lasprovincias.es/agencias/20130203/economia/sistema-ahorra-hasta-energia-grandes_201302031158.html

Chapter 7. Discussion of the Results

• “Un sistema ahorra hasta un 50% de enerǵıa en grandes conjuntos de orde-
nadores” appeared in “Invertia”, available online at http://www.invertia.
com/noticias/sistema-ahorra-energia-grandes-conjuntos-ordenadores-

2813719.htm

• “Un sistema ahorra hasta un 50% de enerǵıa en grandes conjuntos de or-
denadores” appeared in “Finanzas.com”, available online at http://www.

finanzas.com/noticias/empresas/20130203/sistema-ahorra-hasta-energia-

1705791.html

• “Un sistema ahorra hasta un 50% de enerǵıa en grandes conjuntos de or-
denadores” appeared in “La Verdad.es”, available online at http://www.

laverdad.es/agencias/20130203/comunidad-valenciana/sistema-ahorra-

hasta-energia-grandes_201302031144.html

• “Noticias Destacadas: CLUES, sistemas de ahorro de enerǵıa [2013-02-11]”,
available at https://youtu.be/41RlxxrUA3U

• “Politécnica Tal Cual: Sistema CLUES para el ahorro energético. [2013-02-
13]”, available at https://youtu.be/pdMBwrutiPo

7.4.2 EC3

EC3 is an acronym for Elastic Cloud Computing Cluster, and it is a tool to create
EVCs in both commercial Clouds (such as Amazon Web Services) and on-premises
(based on OpenNebula or OpenStack). The first release of EC3 was an implemen-
tation oriented to the final product of the ideas and the developments from chapter
4. The current version of EC3 has been greatly enhanced due to the effort of other
researchers in the GRyCAP4.

EC3 consists of the combination of the ability of the Infrastructure Manager (IM)5

[27] for the deployment and contextualization of VMs in different Cloud providers,
and the elastic management features of CLUES. In order to exploit this combina-
tion, EC3 includes a set of recipes6 for the IM, and a plug-in that makes it possible
that CLUES uses the IM to implement the elasticity for the cluster (i.e. the cre-
ation and destruction of the VMs). According to this approach, EC3 benefits both
from CLUES and from the IM. Thanks to the effort of other researchers of the
GRyCAP, EC3 has been enhanced to include additional features such as exploita-
tion of spot instances on Amazon EC2, enhancements in the contextualization,
etc.

4http://www.grycap.upv.es
5The IM is a development made by the GRyCAP research group.
6The IM is based on “recipes” that describe the desired features for the VMs (e.g. the installed

software, the users that should be available, etc.)

134

http://www.invertia.com/noticias/sistema-ahorra-energia-grandes-conjuntos-ordenadores-2813719.htm
http://www.invertia.com/noticias/sistema-ahorra-energia-grandes-conjuntos-ordenadores-2813719.htm
http://www.invertia.com/noticias/sistema-ahorra-energia-grandes-conjuntos-ordenadores-2813719.htm
http://www.finanzas.com/noticias/empresas/20130203/sistema-ahorra-hasta-energia-1705791.html
http://www.finanzas.com/noticias/empresas/20130203/sistema-ahorra-hasta-energia-1705791.html
http://www.finanzas.com/noticias/empresas/20130203/sistema-ahorra-hasta-energia-1705791.html
http://www.laverdad.es/agencias/20130203/comunidad-valenciana/sistema-ahorra-hasta-energia-grandes_201302031144.html
http://www.laverdad.es/agencias/20130203/comunidad-valenciana/sistema-ahorra-hasta-energia-grandes_201302031144.html
http://www.laverdad.es/agencias/20130203/comunidad-valenciana/sistema-ahorra-hasta-energia-grandes_201302031144.html
https://youtu.be/41RlxxrUA3U
https://youtu.be/pdMBwrutiPo

7.4 Products

EC3 has a webpage (http://www.grycap.upv.es/ec3) where its features, the
architecture, etc. are explained in depth. But the core of the development and
distribution of EC3 has been moved to a public repository in GitHub (https:
//github.com/grycap/ec3). That repository includes both the current develop-
ments of EC3, and the documentation about them. EC3 is licensed under the
GPL 3.0 license.

7.4.3 VMCA

The Virtual Machine Consolidation Agent (VMCA) is a system that facilitates
the automatic power management of servers in an on-premises Cloudbased on
OpenNebula and OpenStack. The agent monitorizes the Cloud deployment and
analyzes it with the aim of defragmenting the available resources by applying live-
migration techniques. The objective is to reduce the number of physical servers
needed to host the VMs that are hosted in the platform. The result is an increase
in the density of VMs per physical server, thus getting a consolidation of the
existing resources. The consequence is that some physical servers get rid from the
VMs that they were hosting, and so they are candidates to be powered off by using
an automated power management system, such as CLUES.

VMCA is a version oriented to the final product of the ideas and developments
of the algorithms described in chapter 5. The implementation consists of an au-
tonomous agent that inspects and analyzes the platform and, if possible, arranges
and supervises the live-migrations needed to achieve a distribution of VMs in which
some physical servers are free from VMs.

This product has a web page (http://www.grycap.upv.es/clues/vmca) that ex-
plains VMCA in depth. It is also possible to download the source code of VMCA
in this web page, and it is licensed under the GPL 3.0 license. Since its first release,
it has been downloaded more than 50 times.

Recently an enhanced version has been created, where the architecture of VMCA
and the algorithms included on it have been improved. This new version has been
released through a public repository in GitHub (https://github.com/grycap/
vmca) in order to match the strategy of the GRyCAP. This repository includes
information about the product, and also offers VMCA as open source under the
GPL 3.0 license.

135

http://www.grycap.upv.es/ec3
https://github.com/grycap/ec3
https://github.com/grycap/ec3
http://www.grycap.upv.es/clues/vmca
https://github.com/grycap/vmca
https://github.com/grycap/vmca

Chapter 7. Discussion of the Results

7.4.4 CloudVAMP

The Cloud Virtual Machine Automatic Memory Packing (CloudVAMP) is an auto-
matic system that enables and manages memory overcommiting in an on-premises
Cloudplatform. The current version of CloudVAMP is integrated with OpenNeb-
ula, and it makes use of monitoring system and other products that are shipped
in the default distribution of that CMP to borrow the memory that is not used in
the running VMs, and to make it available for other VMs. The activity of Cloud-
VAMP is motivated by idea that the users usually have VMs with more resources
than needed whether because they are able to request a free amount of resources
and they do not know what are the actual requirements for the application that
they are intended to run, or because there are fixed templates for the VMs and
they exceed the requirements of the applications.

CloudVAMP is a version oriented to the final product of the ideas and develop-
ments described in chapter 6. The implementation consists of three parts: (1) an
agent that is injected in the VMs via the contextualization features of OpenNeb-
ula, to monitor the memory usage, (2) a subsystem that re-integrates the borrowed
memory to the platform, in order to enable OpenNebula to consider it for schedul-
ing the VMs, and (3) and agent that dynamically adapts the memory granted to
the VMs to the actual needs of the applications, and schedules migrations in case
that the physical hosts are likely to incur on memory trashing.

This product has been released through a public repository in GitHub (https:
//github.com/grycap/cloudvamp). The repository includes information about
the product, and also offers the source code of the different components under the
Apache 2.0 license.

7.5 Future Directions

With respect to the future lines for the work made under the framework of this
thesis, we have distinguished two areas. On the one side, we have the future works
related to the research, and on the other side, we have the future improvements
for the products that have been released. The next sections explain the plan for
each of these blocks.

136

https://github.com/grycap/cloudvamp
https://github.com/grycap/cloudvamp

7.5 Future Directions

7.5.1 Future Research Lines

The current research has a roadmap which is mainly focused on two of the topics:
on the one side, the works related to the elastic management of the infrastructures
and the automation of the power management of the servers, and on the other
side, facilitating the automated power management in on-premises Cloud.

The current work with respect to the scheduling of powering on and off the server
are in an early state. The viability of such research has been demonstrated by using
basic schedulers that may be enough for most of common use-cases. However, we
are planning the exploration of new scheduling policies such as those described
below:

• Managing the power of the servers according to energetic criteria, with the
aim of powering on those nodes with lesser energetic consumption, and also
prioritizing powering off those servers that can help save more energy.

• Managing the power of servers according to physical criteria and heat dis-
sipation. This feature is a result of the feedback of the users, who have
asked for the possibility of powering on/off nodes according to where they
are physically located in the rack, with the aim of physically distributing
the heating surfaces. It is foreseen that such criteria would help manage the
cooling machines that counteract the heat of the servers in a more efficient
manner.

• In the case of receiving multiple jobs that cannot be executed using the
servers that are already powered on, it is possible to introduce new criteria
based on the similarity of the features of the servers, in order to concentrate
as many jobs as possible in the lesser number of servers. The current policy
consists in using a prioritized list, and selecting the first server that will
meet the job requests. Other policies are likely to be introduced. As an
example, if we get two jobs that request two cores each, we could have
different alternatives: (1) powering one single node with four cores to serve
both jobs, (2) powering on one single node with more cores than needed, or
(3) powering on one node with two cores for each job.

• The current policies for powering on/off nodes are reactive in the sense that
they are evaluated when new requests for the execution of jobs (hosting
VMs) are received. It would be interesting to introduce proactive policies
that try to guess patterns of workload (e.g. time slots, bunch of jobs, user
preferences, etc.).

On the side of facilitating power management on on-premises Cloud, we have also
opened different working lines. We are confident in the approach introduced in
VMCA, from a end-product point of view. But from the point of view of the
strict research, it would be interesting to explore other optimization algorithms

137

Chapter 7. Discussion of the Results

(e.g. simulated annealing or genetic algorithms), and try to get optimized versions
that are comparable with the current solution. Moreover it would be interesting
to bring some techniques that come from the OSs and from the caché memory
management to the selection of the VMs that are candidates to be migrated from
one server to other (e.g. considering different generations of VMs, based on the
age of the VM and the times that they have been previously migrated).

Moreover, we have focused the action of VMCA on facilitating the automatic
power management of the physical servers, with the aim of reducing the energetic
consumption. But it is important to explore additional approaches where all the
servers are considered for receiving VMs, even when they are off. Such approach
is likely to provide additional energy savings, if some servers are powered on and
they host some of the VMs in a more efficient manner. As an example, under an
scenario in which four physical servers with one core each are powered on, and
each server is hosting one VM that requests one core, it would probably be more
efficient to power on a modern server with four cores that will host all the VMs,
and power off the other four.

But these techniques should be considered in conjunction with other criteria that
take into account the possible fragmentation of the resources. It should be possible
to decide under which condition is more interesting to power a server on, even when
the new distribution of the VMs would prevent hosting new VMs with special
requirements.

Finally, for the case of CloudVAMP, we have focused the activity on oversubscrib-
ing the memory of the servers. This is because CloudVAMP relies on the features
of the hypervisors and the capacity of the OS of adapting to the variations of the
hardware. We are exploring the possibility translating the techniques that we are
currently using for the memory to dynamically vary the number of virtual CPUs
that the VMs are granted. Currently, it is not well supported. Desipite the hyper-
visors support memory ballooning and the OSs is able to adapt to the variations
on the amount of memory, and adding CPUs at runtime is supported by some
hypervisors and OSs (using the CPU-hotplug feature), removing CPUs (i.e. CPU
hot-unplug) is not supported by popular hypervisors such as KVM. So we have to
wait for the new versions of the hypervisors7, or to explore different alternatives
such as varying other parameters such as the fraction of physical CPU dedicated
to the VMs, and try to develop new techniques.

7According to http://wiki.qemu.org/Features/CPUHotplug (visited on may, 2015) qemu is
working in implementing hot-unplugging interfaces

138

7.5 Future Directions

7.5.2 Future Improvements for the Products

The future lines for the products that are derived from this research have two
parts. On the one side, we plan to incorporate the results from the research works
to the final products. On the other side, we are planning new features to produce
end-products of high quality. For this second case, we have already planned some
new enhancements that include the following (but are not limited to them):

• CLUES has to be integrated with some of the most common LRMS such
as SLURM or Condor, but also with OpenStack. The current release is
integrated with Torque and OpenNebula.

• CLUES will focus on the automation of power management for on-premises
Cloud. This feature already existed, but it was prioritized the aspect of
energy management on HPC clusters.

• We are going to create a simplified version of EC3 that will enable to deploy
elastic virtual clusters in Amazon EC2 with a reduced set of options, as other
products such as StarCluster do. The underlying idea is to have a simple
version that does not need the IM in order to work.

• We have planned the creation of a new product so-called Cluster as a Service
(ClusterAAS) that will enable to create on-demand elastic virtual clusters,
that will incorporate CLUES as the elasticity manager. The initial release
of this product will be oriented to Amazon EC2, and it is planned that it
will provide a limited set of options on the basis of the simplified version of
EC3.

• The migration manager of VMCA is going to be enhanced, with the objective
of making several migrations in parallel. The main aim is to reduce the time
needed to reach to the distribution of VMs that has been calculated.

• VMCA is going to be connected to CLUES, in order to be able to work in a
coordinated manner for (1) avoiding a double monitorization of the platform,
and (2) for enabling that VMCA requests that a server is powered on, to be
able to host some of the VMs on it. VMCA.

• CloudVAMP has to be integrated with other popular open source CMPs
such as OpenStack.

• CloudVAMP is going to be connected to CLUES and to VMCA. On one
side, the current version of CloudVAMP has not been fully integrated with
CLUES, as it is simply able to request to power on some physical hosts but
it does not control whether they have been powered on or not. On the other
side, CloudVAMP is currently ordering simple oportunistic live-migrations
by itself, but it needs to be integrated with VMCA in order to get better

139

Chapter 7. Discussion of the Results

distributions of VMs and to integrate with the existing CMP to take into
account the specific requirements of the VMs.

• The parameter O in CloudVAMP controls the fraction of memory that is
not being used that can be granted to other running VMs. It is currently
a static value, but it can be transformed into a dynamic value that can
be calculated depending on the usage of the memory by each of the VMs.
This way the VMs that vary the usage of memory frequently will keep the
allocation of memory for a longer time. This will make CloudVAMP borrow
more memory from those VMs that have a stable low usage of memory.

140

Chapter 8

Conclusions

The objective proposed for this thesis is the efficient and elastic management of
computational infrastructures such as computing clusters and on-premises Clouds.
During the early stages of the research, we focused on the strictly physical side of
the infrastructure: the data centers and the servers that are hosted in them. This
is why the main research line starts with CLUES and the work described in chapter
2. But the enhancement of the virtualization techniques and the generalization of
the use of the Cloud in the scientific community have made evolve the management
of the data centers towards on-premises Clouds. Such evolution has also brought
new requirements for the cluster server arrangements both for the physical servers
and for the VMs.

So, during in the course of the research, we have broadened the scope of the initial
work to address the concepts for the elastic and efficient management for both
physical and virtual computing infrastructures.

The concept of efficiency applied to the physical machines has been addressed from
a energetic point of view. In this sense, the work that has been carried out during
this thesis has tried to achieve energy saving for the physical clusters. Energy
saving in large computing facilities is a problem of main concern, and a proof of
that is the existence of the list “Green500” [37] whose purpose is to classify the
supercomputers in the “Top500”1[120], according to their energetic efficiency. Our
thought is that a server that is powered on is a server that is consuming energy
(even if it is a little amount, because it uses energy-efficient components). In our
research we have tried to exploit the fact that the minimum energy ever needed
for a server that is available to be used, is the residual amount of energy that is
needed when the server is powered off but can be remotely powered on.

1The Top500 list is a ranking of the most powerful supercomputers in the world.

141

Chapter 8. Conclusions

Therefore, we have focused on a concept that, as seen in the state of the art in
chapters 1 and 2 and its updates in the other chapters, only few systems implement.
Most of the scheduling mechanisms for jobs (or VMs in the case of the Cloud) that
appear in the literature that we have read assume that the servers that are idle
will be powered off “automatically” and will be powered on again “when they are
needed”. Moreover, most the commercial products that we have reviewed do not
implement such automation, and only a few of them implement the automatic
power management for the “enterprise” versions (e.g. MOAB, vmWare’s vSphere
5.5 and Huawei’s FusionSphere).

But the servers cannot be powered off as soon as they get to a idle state, because
powering on/off them has a high cost in time, and repercussions for the system
that manages the cluster. Some other problems arise in the case of deciding
which servers have to be powered on, because we have to take into account the
requirements of the jobs (or the VMs), the need of powering on servers, and the
consequences of keeping off some other servers. Implementing a bad automation of
the power management may have a devastating impact on the end-user experience,
on the efficiency of the applications and on the quality of service. Such automation
is not a trivial task, and it is worth to research on it. In the end, it is a problem
of scheduling the power on/off of the servers, working together with the LRMS in
the cluster.

In chapter 2 we have described CLUES, that is a system that automates power
management in physical cluster infrastructures and on-premises Clouds. By using
CLUES, the users have the illusion of having the whole physical infrastructure
available, all the time, while it is partially powered off to avoid the waste of
energy dedicated to maintain idle servers on. Its architecture is very versatile
and can adapt to virtually any cluster-like infrastructure that is managed using
a LRMS and whose power can be remotely managed (i.e. using IPMI, Wake-
on-LAN, or others). It includes different policies for scheduling the power of the
servers, but it is indeed an extensible power scheduling framework that enables to
develop particular scheduling policies that adapt to the specific requirements of a
computing infrastructure.

The key concept of elastic management in the case of physical infrastructures has
been resembled to the fact that powering on or off the servers gives the infras-
tructure a elastic-like behaviour with respect to the workload. In this way, the
physical infrastructure is elastic as it adapts its potential performance to the ac-
tual workload, while the rest of the infrastructure is powered off. This happens
in contrast to the traditionally static behaviour of this kind of facilities, where all
the computing capacity is usually available, just for the case that it occasionally
arrives a peak of workload. Moreover, as the framework proposed in this thesis is
generic, new servers could be aggregated to the infrastructure, and they will be
considered to be powered on/off as if they have been always there. Conversely,

142

the obsolete servers could be removed from the infrastructure, and they will not
be considered any more.

In chapters 5 and 6 we have introduced VMCA and CloudVAMP, respectively, that
implement two different techniques that facilitate the application of automated
power management in on-premises Clouds. In these virtualization platforms, get-
ting idle servers needs to be stimulated, because the lifetime of the running VMs
cannot usually be foreseen, and their distribution in the physical hosts may pre-
vent from applying automated power management techniques because the physical
servers do not get idle. The underlying ideas described in these chapters consist
in reducing the size of the running VMs, and consolidating the running VMs into
a few number of physical servers. Using these techniques in conjunction with
CLUES enables to create an on-premises Cloud, that is backed by an elastic data
center.

In the virtual side, the concept efficient management has been addressed from
the economical point of view. It is common to find users that see in the Cloud
an opportunity to save money, since no upfront investments for the equipment
or building are required. But it is important to take into account that using a
commercial Cloud for a long term, makes us spend an amount of money that is by
no means negligible. In the case of an on-premises Cloud, the upfront investment
is needed unless the data center already exists. During the course of this thesis
(see chapter 3), we have considered that it is important to calculate the real cost
of a cluster in the Cloud, as it is a popular arrangement in the context of the
e-Science. Once the cost is known, we can compare it to the cost of having a
physical cluster, and to be able to decide whether is more interesting to invest in
the physical infrastructure or to deploy a virtual one in the Cloud.

In the end, we can see that using a commercial Cloud is expensive if no cost-control
mechanisms are implemented. So, in the framework of this thesis we have focused
on containing the economic costs of virtual clusters. In our work, we have started
from the concept of the automated power management, and we have extended it to
the virtual infrastructures. So, in order to schedule the VMs the build the virtual
clusters we have adapted the systems that connect to the physical infrastructure to
a virtual context. For the specific case described in chapter 4, we have connected
CLUES to the IM, in order to use it as a bridge to the different Cloud providers,
and to get customized VMs that are suitable for the VC.

Finally, the objective of an elastic management of the virtual clusters has been
oriented according to the concept of elasticity in the Cloud. In this way, the
virtual clusters are elastic because its size is adapted to the actual workload on
them, instead of using a traditional approach by which all the VMs that build
the cluster will be wasting money in the commercial Cloud even if they are idle.
An important feature for the EVC is that the elasticity is automatic and is self-
managed by the cluster. Moreover, the owner of the VC should be able to adapt

143

Chapter 8. Conclusions

the policies for the elasticity to his particular use-case. Our proposal prevents the
user to have to take any action to grow or to shrink the virtual infrastructure,
and such behaviour is automatically carried out in the runtime, by the elasticity
manager.

As a final conclusion, we consider that we have fully covered the objectives for this
thesis. But we have also opened new lines to continue the work and to progress
in our research. The most immediate work plan has been described in chapter 7.
Moreover, as the works carried out during this thesis address problems from the
real world, that are faced by system administrators in the data centers and the
scientists as individuals, we have accepted the chance of transferring the results
to the scientific community, and thus we have created different products that
are likely to be used by those users. In this sense, the research described in
this document has gone one step forward from the theoretical results, since the
products that we have developed have been transferred to the community and
used in production environments. The thought of helping to other users using the
products developed in the framework of this thesis for their daily work, greatly
encourages us to continue working on them, and also to continue the research on
this topic.

144

Bibliography

[1] U.S. Energy Information Administration. Electricity Explained: Factors Af-
fecting Electricity Prices. url: http://www.eia.gov/energyexplained/i
ndex.cfm?page=electricity_factors_affecting_prices.

[2] Yasuhiro Ajiro and Atsuhiro Tanaka. “Improving Packing Algorithms for
Server Consolidation.” In: Int. CMG Conference. Computer Measurement
Group, Feb. 1, 2008, pp. 399–406.

[3] C. de Alfonso. Virtual Machine Consolidation Agent (VMCA). 2015. url:
https://github.com/grycap/vmca.

[4] Carlos de Alfonso et al. “An energy management system for cluster infras-
tructures”. In: Computers & Electrical Engineering 0 (2013), pp. –. issn:
0045-7906. doi: 10.1016/j.compeleceng.2013.05.004.

[5] Carlos de Alfonso et al. “Infrastructure Deployment Over the Cloud”. In:
3rd IEEE International Conference on Cloud Computing Technology and
Science (CloudCom 2011). 2011, pp. 517–521.

[6] F. Alvarruiz et al. “An Energy Manager for High Performance Computer
Clusters”. In: Parallel and Distributed Processing with Applications (ISPA),
2012 IEEE 10th International Symposium on. 2012, pp. 231–238. doi: 10
.1109/ISPA.2012.38.

[7] Amazon. Amazon EC2 Pricing. url: http://aws.amazon.com/ec2/pric
ing/.

[8] Amazon. Auto Scaling Concepts. 2011. url: http://docs.aws.amazon.c
om/AutoScaling/latest/DeveloperGuide/AS_Concepts.html.

145

http://www.eia.gov/energyexplained/index.cfm?page=electricity_factors_affecting_prices
http://www.eia.gov/energyexplained/index.cfm?page=electricity_factors_affecting_prices
https://github.com/grycap/vmca
http://dx.doi.org/10.1016/j.compeleceng.2013.05.004
http://dx.doi.org/10.1109/ISPA.2012.38
http://dx.doi.org/10.1109/ISPA.2012.38
http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/ec2/pricing/
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/AS_Concepts.html
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/AS_Concepts.html

Bibliography

[9] Amazon. The Economics of the AWS Cloud vs. Owned IT Infrastructure.
Tech. rep. url: http://aws.amazon.com/economics.

[10] Amazon. User Guide: Amazon EC2 Cost Comparison Calculator. url: ht
tp://awsmedia.s3.amazonaws.com/User_Guide_Amazon_EC2_Cost_Com

parison_Calculator.pdf (visited on 11–2011).

[11] AnsibleWorks. Ansible. url: http://ansible.cc.

[12] CERN CernVM Software appliance. Creating Elastic Virtual Clusters. Mar.
2015. url: http://cernvm.cern.ch/portal/elasticclusters.

[13] J. Arabas, Z. Michalewicz, and J. Mulawka. “GAVaPS-a genetic algorithm
with varying population size”. In: Proceedings of the First IEEE Conference
on Evolutionary Computation. IEEE World Congress on Computational
Intelligence. IEEE, pp. 73–78. isbn: 0-7803-1899-4. doi: 10.1109/ICEC.19
94.350039.

[14] Michael Armbrust et al. Above the Clouds: A Berkeley View of Cloud Com-
puting. Tech. rep. UC Berkeley Reliable Adaptive Distributed Systems Lab-
oratory, 2009. url: https://www.eecs.berkeley.edu/Pubs/TechRpts/2
009/EECS-2009-28.pdf.

[15] Marcos Dias de Assuncao, Alexandre di Costanzo, and Rajkumar Buyya.
“Evaluating the Cost-benefit of Using Cloud Computing to Extend the
Capacity of Clusters”. In: Proceedings of the 18th ACM International Sym-
posium on High Performance Distributed Computing. HPDC ’09. Garching,
Germany: ACM, 2009, pp. 141–150. isbn: 978-1-60558-587-1. doi: 10.114
5/1551609.1551635.

[16] Steve Ballmer. Worldwide Partner Conference 2013 Keynote. Microsoft.
2013. url: http://news.microsoft.com/2013/07/08/steve-ballmer-w
orldwide-partner-conference-2013-keynote/ (visited on 2015).

[17] Salman A. Baset, Long Wang, and Chunqiang Tang. “Towards an under-
standing of oversubscription in cloud”. In: (Apr. 2012), p. 7.

[18] C Belady and A Rawson. Green grid data center power efficiency metrics:
PUE and DCiE. Tech. rep. The Green Grid, 2008.

[19] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. “Energy-aware
resource allocation heuristics for efficient management of data centers for

146

http://aws.amazon.com/economics
http://awsmedia.s3.amazonaws.com/User_Guide_Amazon_EC2_Cost_Comparison_Calculator.pdf
http://awsmedia.s3.amazonaws.com/User_Guide_Amazon_EC2_Cost_Comparison_Calculator.pdf
http://awsmedia.s3.amazonaws.com/User_Guide_Amazon_EC2_Cost_Comparison_Calculator.pdf
http://ansible.cc
http://cernvm.cern.ch/portal/elasticclusters
http://dx.doi.org/10.1109/ICEC.1994.350039
http://dx.doi.org/10.1109/ICEC.1994.350039
https://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
https://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://dx.doi.org/10.1145/1551609.1551635
http://dx.doi.org/10.1145/1551609.1551635
http://news.microsoft.com/2013/07/08/steve-ballmer-worldwide-partner-conference-2013-keynote/
http://news.microsoft.com/2013/07/08/steve-ballmer-worldwide-partner-conference-2013-keynote/

Bibliography

Cloud computing”. In: Future Gener. Comput. Syst. 28.5 (May 2012), pp. 755–
768. issn: 0167-739X. doi: 10.1016/j.future.2011.04.017.

[20] Anton Beloglazov and Rajkumar Buyya. “Energy Efficient Resource Man-
agement in Virtualized Cloud Data Centers”. In: Proceedings of the 2010
10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing. CCGRID ’10. Washington, DC, USA: IEEE Computer Soci-
ety, 2010, pp. 826–831. isbn: 978-0-7695-4039-9. doi: 10.1109/CCGRID.20
10.46.

[21] Anton Beloglazov et al. “A Taxonomy and Survey of Energy-Efficient Data
Centers and Cloud Computing Systems”. In: Advances in Computers. Aca-
demic Press 82 (2011). Ed. by Marvin V. Zelkowitz, pp. 47–111. issn: 0065-
2458. doi: 10.1016/B978-0-12-385512-1.00003-7.

[22] Josep Ll. Berral et al. “Towards energy-aware scheduling in data centers
using machine learning”. In: Proceedings of the 1st International Confer-
ence on Energy-Efficient Computing and Networking. e-Energy ’10. Passau,
Germany: ACM, 2010, pp. 215–224. isbn: 978-1-4503-0042-1. doi: 10.114
5/1791314.1791349.

[23] A Bialecki et al. Hadoop: a framework for running applications on large
clusters built of commodity hardware. Tech. rep. 2005. url: http://hadoo
p.apache.org.

[24] D. Borgetto et al. “Energy-aware resource allocation”. In: Grid Computing,
2009 10th IEEE/ACM International Conference on. 2009, pp. 183–188. doi:
10.1109/GRID.2009.5353063.

[25] Rajkumar Buyya, James Broberg, and Andrzej M. Goscinski. Cloud Com-
puting Principles and Paradigms. Wiley Publishing, 2011. isbn: 9780470887998.

[26] Miguel Caballer et al. “EC3: Elastic Cloud Computing Cluster”. In: Journal
of Computer and System Sciences 0 (2013), pp. –. issn: 0022-0000. doi: 1
0.1016/j.jcss.2013.06.005.

[27] Miguel Caballer Fernández. “Gestión de infraestructuras virtuales config-
uradas dinámicamente”. PhD thesis. Universitat Politècnica de València,
2014.

[28] Alberto Caprara and Paolo Toth. “Lower bounds and algorithms for the
2-dimensional vector packing problem”. In: Discrete Applied Mathematics

147

http://dx.doi.org/10.1016/j.future.2011.04.017
http://dx.doi.org/10.1109/CCGRID.2010.46
http://dx.doi.org/10.1109/CCGRID.2010.46
http://dx.doi.org/10.1016/B978-0-12-385512-1.00003-7
http://dx.doi.org/10.1145/1791314.1791349
http://dx.doi.org/10.1145/1791314.1791349
http://hadoop.apache.org
http://hadoop.apache.org
http://dx.doi.org/10.1109/GRID.2009.5353063
http://dx.doi.org/10.1016/j.jcss.2013.06.005
http://dx.doi.org/10.1016/j.jcss.2013.06.005

Bibliography

111.3 (2001), pp. 231 –262. issn: 0166-218X. doi: http://dx.doi.org/10
.1016/S0166-218X(00)00267-5.

[29] Barcelona Supercomputing Center. MareNostrum III (2013) System Archi-
tecture. Barcelona Supercomputing Center. 2013. url: http://www.bsc.e
s/marenostrum-support-services/mn3 (visited on 2015).

[30] CESGA. Centro de Supercomputación de Galicia - Finisterrae. Centro de
Supercomputación de Galicia (CESGA). 2015. url: https://www.cesga
.es/es/infraestructuras/computacion/finisterrae (visited on 2015).

[31] Jeffrey S. Chase et al. “Dynamic Virtual Clusters in a Grid Site Manager”.
In: Proceedings of the 12th IEEE International Symposium on High Per-
formance Distributed Computing. HPDC ’03. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 90–. isbn: 0-7695-1965-2.

[32] C. Chu and R. La. “Variable-Sized Bin Packing: Tight Absolute Worst-
Case Performance Ratios for Four Approximation Algorithms”. In: SIAM
Journal on Computing 30.6 (2001), pp. 2069–2083. doi: 10.1137/S009753
979834669X.

[33] T. Cioara et al. “Energy Aware Dynamic Resource Consolidation Algo-
rithm for Virtualized Service Centers Based on Reinforcement Learning”.
In: Parallel and Distributed Computing (ISPDC), 2011 10th International
Symposium on. 2011, pp. 163–169. doi: 10.1109/ISPDC.2011.32.

[34] Citrix Systems, Inc. Xen. url: http://www.xen.org.

[35] Cluster Resources Inc. MAUI Cluster Scheduler. url: http://www.clust
erresources.com/products/maui-cluster-scheduler.php.

[36] Cluster Resources Inc. Green Computing Powered by Moab. url: http://w
ww.clusterresources.com/solutions/green-computing.php.

[37] LLC CompuGreen. The Green 500. Web Page. 2015. url: http://www.gr
een500.org (visited on 2015).

[38] CycleComputing. CycleCloud. url: http://www.cyclecomputing.com/cy
clecloud.

[39] Wesam Dawoud, Ibrahim Takouna, and Christoph Meinel. “Elastic VM for
Cloud Resources Provisioning Optimization”. In: Advances in Computing
and Communications. First International Conference, ACC 2011, Kochi,

148

http://dx.doi.org/http://dx.doi.org/10.1016/S0166-218X(00)00267-5
http://dx.doi.org/http://dx.doi.org/10.1016/S0166-218X(00)00267-5
http://www.bsc.es/marenostrum-support-services/mn3
http://www.bsc.es/marenostrum-support-services/mn3
https://www.cesga.es/es/infraestructuras/computacion/finisterrae
https://www.cesga.es/es/infraestructuras/computacion/finisterrae
http://dx.doi.org/10.1137/S009753979834669X
http://dx.doi.org/10.1137/S009753979834669X
http://dx.doi.org/10.1109/ISPDC.2011.32
http://www.xen.org
http://www.clusterresources.com/products/maui-cluster-scheduler.php
http://www.clusterresources.com/products/maui-cluster-scheduler.php
http://www.clusterresources.com/solutions/green-computing.php
http://www.clusterresources.com/solutions/green-computing.php
http://www.green500.org
http://www.green500.org
http://www.cyclecomputing.com/cyclecloud
http://www.cyclecomputing.com/cyclecloud

Bibliography

India, July 22-24, 2011. Proceedings, Part I. Vol. 190. 2011, pp. 431–445.
url: http://www.springerlink.com/index/K75M2705443R2402.pdf.

[40] Carlos De Alfonso, Miguel Caballer, and Vicente Hernández. “Efficient
Power Management in High Performance Computer Clusters”. In: Proceed-
ings of the 1st International Multi-Conference on Innovative Developments
in ICT. Proceedings of the International Conference on Green Computing
2010 (ICGreen 2010). Athens, Greece, 2010, pp. 39–44. isbn: 978-989-8425-
15-7.

[41] Carlos De Alfonso et al. “An economic and energy-aware analysis of the
viability of outsourcing cluster computing to a cloud”. In: Future Gener.
Comput. Syst. 29.3 (Mar. 2013), pp. 704–712. issn: 0167-739X. doi: 10.1
016/j.future.2012.08.014.

[42] Ewa Deelman et al. “The cost of doing science on the cloud: the montage ex-
ample”. In: 2008 ACM/IEEE conference on Supercomputing. Austin, Texas,
2008.

[43] Peter J. Denning. “Thrashing: Its causes and prevention”. In: Proceedings
of the December 9-11, 1968, fall joint computer conference, part I on -
AFIPS ’68 (Fall, part I). New York, New York, USA: ACM Press, Dec.
1968, p. 915. doi: 10.1145/1476589.1476705.

[44] F. Doelitzscher et al. “ViteraaS: Virtual Cluster as a Service”. In: Cloud
Computing Technology and Science (CloudCom), 2011 IEEE Third Inter-
national Conference on. 2011, pp. 652–657. doi: 10.1109/CloudCom.2011
.101.

[45] J Dongarra. LINPACK: users’ guide. SIAM, 1979.

[46] Energy Price in Spain. url: http://www.boe.es/boe/dias/2011/12/31
/pdfs/BOE-A-2011-20650.pdf.

[47] Roberto R. Expósito et al. “Performance analysis of HPC applications in
the cloud”. In: Future Generation Computer Systems 29.1 (2013), pp. 218
–229. issn: 0167-739X. doi: 10.1016/j.future.2012.06.009.

[48] E. Falkenauer and A. Delchambre. “A genetic algorithm for bin packing
and line balancing”. In: Robotics and Automation, 1992. Proceedings., 1992
IEEE International Conference on. 1992, 1186–1192 vol.2. doi: 10.1109/R
OBOT.1992.220088.

149

http://www.springerlink.com/index/K75M2705443R2402.pdf
http://dx.doi.org/10.1016/j.future.2012.08.014
http://dx.doi.org/10.1016/j.future.2012.08.014
http://dx.doi.org/10.1145/1476589.1476705
http://dx.doi.org/10.1109/CloudCom.2011.101
http://dx.doi.org/10.1109/CloudCom.2011.101
http://www.boe.es/boe/dias/2011/12/31/pdfs/BOE-A-2011-20650.pdf
http://www.boe.es/boe/dias/2011/12/31/pdfs/BOE-A-2011-20650.pdf
http://dx.doi.org/10.1016/j.future.2012.06.009
http://dx.doi.org/10.1109/ROBOT.1992.220088
http://dx.doi.org/10.1109/ROBOT.1992.220088

Bibliography

[49] F. Farahnakian, P. Liljeberg, and J. Plosila. “Energy-Efficient Virtual Ma-
chines Consolidation in Cloud Data Centers Using Reinforcement Learn-
ing”. In: Parallel, Distributed and Network-Based Processing (PDP), 2014
22nd Euromicro International Conference on. 2014, pp. 500–507. doi: 10
.1109/PDP.2014.109.

[50] FCSCL. Fundación Centro Supercomputación Castilla y León. Fundación
Centro Supercomputación Castilla y León. 2015. url: http://www.fcsc
.es/ (visited on 2015).

[51] E. Feller, C. Morin, and A. Esnault. “A case for fully decentralized dynamic
VM consolidation in clouds”. In: Cloud Computing Technology and Science
(CloudCom), 2012 IEEE 4th International Conference on. 2012, pp. 26–33.
doi: 10.1109/CloudCom.2012.6427585.

[52] E. Feller, L. Rilling, and C. Morin. “Energy-Aware Ant Colony Based
Workload Placement in Clouds”. In: Grid Computing (GRID), 2011 12th
IEEE/ACM International Conference on. 2011, pp. 26–33. doi: 10.1109
/Grid.2011.13.

[53] William Forrest, James Kaplan, and Noah Kindler. Datacenters: How to
cut data centre carbon emissions? McKinsey & Company, 2008, pp. 4–13.

[54] Guilherme Galante and Luis Carlos E. de Bona. “A Survey on Cloud Com-
puting Elasticity”. In: 2012 IEEE Fifth International Conference on Utility
and Cloud Computing. IEEE, Nov. 2012, pp. 263–270. isbn: 978-1-4673-
4432-6. doi: 10.1109/UCC.2012.30.

[55] Lakshmi Ganesh. “Data Center Energy Management”. PhD thesis. Faculty
of the Graduate School of Cornell University, 2012.

[56] S.M. Ghafari et al. “Bee-MMT: A load balancing method for power con-
sumption management in cloud computing”. In: Contemporary Computing
(IC3), 2013 Sixth International Conference on. 2013, pp. 76–80. doi: 10.1
109/IC3.2013.6612165.

[57] Marco Guazzone, Cosimo Anglano, and Massimo Canonico. “Exploiting
VM Migration for the Automated Power and Performance Management
of Green Cloud Computing Systems”. In: Proceedings of the First Inter-
national Conference on Energy Efficient Data Centers. E2DC’12. Madrid,
Spain: Springer-Verlag, 2012, pp. 81–92. isbn: 978-3-642-33644-7. doi: 10
.1007/978-3-642-33645-4_8.

150

http://dx.doi.org/10.1109/PDP.2014.109
http://dx.doi.org/10.1109/PDP.2014.109
http://www.fcsc.es/
http://www.fcsc.es/
http://dx.doi.org/10.1109/CloudCom.2012.6427585
http://dx.doi.org/10.1109/Grid.2011.13
http://dx.doi.org/10.1109/Grid.2011.13
http://dx.doi.org/10.1109/UCC.2012.30
http://dx.doi.org/10.1109/IC3.2013.6612165
http://dx.doi.org/10.1109/IC3.2013.6612165
http://dx.doi.org/10.1007/978-3-642-33645-4_8
http://dx.doi.org/10.1007/978-3-642-33645-4_8

Bibliography

[58] Taliver Heath et al. “Energy conservation in heterogeneous server clusters”.
In: Proceedings of the tenth ACM SIGPLAN symposium on Principles and
practice of parallel programming. PPoPP ’05. Chicago, IL, USA: ACM,
2005, pp. 186–195. isbn: 1-59593-080-9.

[59] Michael R. Hines et al. “Applications Know Best: Performance-Driven
Memory Overcommit with Ginkgo”. In: 2011 IEEE Third International
Conference on Cloud Computing Technology and Science. IEEE, Nov. 2011,
pp. 130–137. isbn: 978-1-4673-0090-2. doi: 10.1109/CloudCom.2011.27.

[60] Rachel Householder, Scott Arnold, and Robert Green. “On Cloud-based
Oversubscription”. In: International Journal of Engineering Trends and
Technology 8.8 (2014), pp. 425–431.

[61] Jinho Hwang et al. “Mortar: Filling the Gaps in Data Center Memory”. In:
ACM SIGPLAN Notices 49.7 (Sept. 2014), pp. 53–64. issn: 03621340. doi:
10.1145/2674025.2576203.

[62] Chris Hyser et al. Autonomic Virtual Machine Placement in the Data Cen-
ter. Tech. rep. HPL-2007-189. HP Laboratories, 2008.

[63] U. Hölzle and B. Weihl. High-efficiency power supplies for home computers
and servers. Tech. rep. Presented at the Intel Developer Forum, September,
2006. Google, 2006. url: http://services.google.com/blog_resource
s/PSU_white_paper.pdf.

[64] IBM. IBM Platform Dynamic Cluster. url: http://www-03.ibm.com/sy
stems/technicalcomputing/platformcomputing/products/lsf/dynam

iccluster.html.

[65] Gideon Juve, Ewa Deelman, and Karan Vahi. “Scientific workflow applica-
tions on Amazon EC2”. In: Workshop on Cloud-based Services and Appli-
cations (5th IEEE International Conference on e-Science (e-Science 2009)
(Dec. 2010), pp. 59–66. doi: 10.1109/ESCIW.2009.5408002.

[66] Jangha Kang and Sungsoo Park. “Algorithms for the variable sized bin
packing problem”. In: European Journal of Operational Research 147.2
(2003). Fuzzy Sets in Scheduling and Planning, pp. 365 –372. issn: 0377-
2217. doi: 10.1016/S0377-2217(02)00247-3.

[67] G. Keller et al. “An analysis of first fit heuristics for the virtual machine
relocation problem”. In: Network and service management (cnsm), 2012

151

http://dx.doi.org/10.1109/CloudCom.2011.27
http://dx.doi.org/10.1145/2674025.2576203
http://services.google.com/blog_resources/PSU_white_paper.pdf
http://services.google.com/blog_resources/PSU_white_paper.pdf
http://www-03.ibm.com/systems/technicalcomputing/platformcomputing/products/lsf/ dynamiccluster.html
http://www-03.ibm.com/systems/technicalcomputing/platformcomputing/products/lsf/ dynamiccluster.html
http://www-03.ibm.com/systems/technicalcomputing/platformcomputing/products/lsf/ dynamiccluster.html
http://dx.doi.org/10.1109/ESCIW.2009.5408002
http://dx.doi.org/10.1016/S0377-2217(02)00247-3

Bibliography

8th international conference and 2012 workshop on systems virtualiztion
management (svm). 2012, pp. 406–413.

[68] A Kivity, Y Kamay, and D Laor. “KVM: the Linux virtual machine moni-
tor”. In: Proceedings of the Linux Symposium (2007), pp. 225–230. url: h
ttp://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf.

[69] Derrick Kondo et al. “Cost-benefit analysis of cloud computing versus desk-
top grids”. In: 2009 IEEE International Symposium on Parallel & Dis-
tributed Processing. 2009.

[70] Jonathan Koomey. Growth in Data center electricity use 2005 to 2010.
Oakland, CA: Analytic Press, 2011.

[71] Jonathan Koomey et al. A simple model for determining true total cost of
ownership for data centers. Tech. rep. 2008. url: http://www.uptimeins
titute.org/wp_pdf/(TUI3011C)SimpleModelDetermingTrueTCO.pdf.

[72] KVM. Automatic Ballooning. url: http://www.linux-kvm.org/page/Pr
ojects/auto-ballooning.

[73] linux KVM.org. Kernel Based Virtual Machine. url: http://www.linux
-kvm.org/.

[74] G. von Laszewski et al. “Power-aware scheduling of virtual machines in
DVFS-enabled clusters”. In: Cluster Computing and Workshops, 2009. CLUS-
TER ’09. IEEE International Conference on. 2009, pp. 1–10. doi: 10.110
9/CLUSTR.2009.5289182.

[75] Lawrence Livermore National Laboratory. Simple Linux Utility for Re-
source Management. Power Saving Guide. url: https://computing.l

lnl.gov/linux/slurm/power_save.html.

[76] Laurent Lefèvre and Anne-Cecile Orgerie. “TOWARDS ENERGY AWARE
RESERVATION INFRASTRUCTURE FOR LARGE-SCALE EXPERI-
MENTAL DISTRIBUTED SYSTEMS”. In: Parallel Processing Letters 19.03
(2009), pp. 419–433.

[77] Xinhui Li et al. “The method and tool of cost analysis for cloud comput-
ing”. In: IEEE International Conference on Cloud Computing, 2009. 2009,
pp. 93–100. doi: 10.1109/CLOUD.2009.84.

152

http://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
http://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
http://www.uptimeinstitute.org/wp_pdf/(TUI3011C)SimpleModelDetermingTrueTCO.pdf
http://www.uptimeinstitute.org/wp_pdf/(TUI3011C)SimpleModelDetermingTrueTCO.pdf
http://www.linux-kvm.org/page/Projects/auto-ballooning
http://www.linux-kvm.org/page/Projects/auto-ballooning
http://www.linux-kvm.org/
http://www.linux-kvm.org/
http://dx.doi.org/10.1109/CLUSTR.2009.5289182
http://dx.doi.org/10.1109/CLUSTR.2009.5289182
https://computing.llnl.gov/linux/slurm/power_save.html
https://computing.llnl.gov/linux/slurm/power_save.html
http://dx.doi.org/10.1109/CLOUD.2009.84

Bibliography

[78] Xueping Li, Zhao Zhaoxia, and Zhang Kaike. “A Genetic Algorithm for
the Three-Dimensional Bin Packing Problem with Heterogeneous Bins”.
In: Proceedings of the 2014 Industrial and Systems Engineering Research
Conference. Ed. by Y. Guan and H. Liao. 2014.

[79] S.-A. Liang. “Low cost and high efficiency PC power supply design to meet
80 plus requirement”. In: Industrial Technology, 2008. ICIT 2008. IEEE
International Conference on. 2008, pp. 1 –6.

[80] Adam Litke. Manage resources on overcommitted KVM hosts. Tech. rep.
2011. url: http://www.ibm.com/developerworks/library/l-overcomm
it-kvm-resources/.

[81] Feifei Liu and Xiaoshe Dong. “A Novel Elastic Resource Allocation Strategy
of Virtual Cluster”. In: 2011 Fourth International Symposium on Parallel
Architectures, Algorithms and Programming. IEEE, Dec. 2011, pp. 168–173.
isbn: 978-1-4577-1808-3. doi: 10.1109/PAAP.2011.28.

[82] “Live migration of virtual machines”. In: USENIX Association, May 2005,
pp. 273–286.

[83] John Mahvi and Avi Zarfaty. Using TCO to Determine PC Upgrade Cycles.
Tech. rep. Intel, 2009. url: http://communities.intel.com/docs/DOC
-3172/version/1.

[84] P. Marshall, K. Keahey, and T. Freeman. “Elastic Site: Using Clouds to
Elastically Extend Site Resources”. In: Cluster, Cloud and Grid Comput-
ing (CCGrid), 2010 10th IEEE/ACM International Conference on. 2010,
pp. 43–52. doi: 10.1109/CCGRID.2010.80.

[85] Paul Marshall et al. “Architecting a Large-Scale Elastic Environment: Re-
contextualization and Adaptive Cloud Services for Scientific Computing”.
In: 7th International Conference on Software Paradigm Trends (ICSOFT).
Rome, Italy, 2012.

[86] Moreno Marzolla, Ozalp Babaoglu, and Fabio Panzieri. “Server consoli-
dation in Clouds through gossiping”. In: Proceedings of the 2011 IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks. WOWMOM ’11. Washington, DC, USA: IEEE Computer Soci-
ety, 2011, pp. 1–6. isbn: 978-1-4577-0352-2. doi: 10.1109/WoWMoM.2011.5
986483.

153

http://www.ibm.com/developerworks/library/l-overcommit-kvm-resources/
http://www.ibm.com/developerworks/library/l-overcommit-kvm-resources/
http://dx.doi.org/10.1109/PAAP.2011.28
http://communities.intel.com/docs/DOC-3172/version/1
http://communities.intel.com/docs/DOC-3172/version/1
http://dx.doi.org/10.1109/CCGRID.2010.80
http://dx.doi.org/10.1109/WoWMoM.2011.5986483
http://dx.doi.org/10.1109/WoWMoM.2011.5986483

Bibliography

[87] S.S. Masoumzadeh and H. Hlavacs. “Integrating VM selection criteria in
distributed dynamic VM consolidation using Fuzzy Q-Learning”. In: Net-
work and Service Management (CNSM), 2013 9th International Conference
on. 2013, pp. 332–338. doi: 10.1109/CNSM.2013.6727854.

[88] Peter Mell and Tim Grance. The NIST Definition of Cloud Computing.
NIST Special Publication 800-145 (Final). Tech. rep. 2011. url: http://c
src.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.

[89] Dirk Merkel. “Docker: lightweight Linux containers for consistent develop-
ment and deployment”. In: Linux Journal 2014.239 (Mar. 2014), p. 2. issn:
1075-3583.

[90] Microsoft. Hyper-V. url: https://technet.microsoft.com/library/cc
753637.

[91] L.E. Miller. “Performance analysis of exponential backoff”. In: IEEE/ACM
Transactions on Networking 13.2 (Apr. 2005), pp. 343–355. issn: 1063-6692.
doi: 10.1109/TNET.2005.845533.

[92] Rich Miller. Who Has the Most Web Servers? 2009-2013. url: http://ww
w.datacenterknowledge.com/archives/2009/05/14/whos-got-the-mo

st-web-servers/ (visited on 2015).

[93] MIT. StarCluster. url: http://web.mit.edu/stardev/cluster/.

[94] MIT. StarCluster Elastic Load Balancer. url: http://web.mit.edu/star
dev/cluster/docs/0.92rc2/manual/load_balancer.html.

[95] G Moltó et al. “Optimization of Supercontinuum Spectrum Using Genetic
Algorithms on Service-Oriented Grids”. In: Proceedings of the 3rd Iberian
Grid Infrastructure Conference (IberGrid 2009). 2009, pp. 137–147.

[96] Germán Moltó et al. “Elastic Memory Management of Virtualized Infras-
tructures for Applications with Dynamic Memory Requirements”. In: Pro-
ceedings of the International Conference on Computational Science (ICCS
2013). Elsevier, 2013, pp. 159–168. doi: 10.1016/j.procs.2013.05.179.

[97] Ruben S. Montero, Rafael Moreno-Vozmediano, and Ignacio M. Llorente.
“An elasticity model for High Throughput Computing clusters”. In: Journal
of Parallel and Distributed Computing 71.6 (2011). Special Issue on Cloud
Computing, pp. 750 –757. issn: 0743-7315. doi: 10.1016/j.jpdc.2010.0
5.005.

154

http://dx.doi.org/10.1109/CNSM.2013.6727854
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
https://technet.microsoft.com/library/cc753637
https://technet.microsoft.com/library/cc753637
http://dx.doi.org/10.1109/TNET.2005.845533
http://www.datacenterknowledge.com/archives/2009/05/14/whos-got-the-most-web-servers/
http://www.datacenterknowledge.com/archives/2009/05/14/whos-got-the-most-web-servers/
http://www.datacenterknowledge.com/archives/2009/05/14/whos-got-the-most-web-servers/
http://web.mit.edu/stardev/cluster/
http://web.mit.edu/stardev/cluster/docs/0.92rc2/manual/load_balancer.html
http://web.mit.edu/stardev/cluster/docs/0.92rc2/manual/load_balancer.html
http://dx.doi.org/10.1016/j.procs.2013.05.179
http://dx.doi.org/10.1016/j.jpdc.2010.05.005
http://dx.doi.org/10.1016/j.jpdc.2010.05.005

Bibliography

[98] Rafael Moreno-Vozmediano and Ignacio M. Llorente. “IaaS Cloud Archi-
tecture: From Virtualized Datacenters to Federated Cloud Infrastructures”.
English. In: Computer 45.12 (Dec. 2012), pp. 65–72. issn: 0018-9162. doi:
10.1109/MC.2012.76. url: http://www.computer.org/csdl/mags/co/2
012/12/mco2012120065.html.

[99] Shuangcheng Niu et al. “Cost-effective Cloud HPC Resource Provisioning
by Building Semi-elastic Virtual Clusters”. In: Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Stor-
age and Analysis. SC ’13. Denver, Colorado: ACM, 2013, 56:1–56:12. isbn:
978-1-4503-2378-9. doi: 10.1145/2503210.2503236.

[100] L Nussbaum et al. “Linux-based virtualization for HPC clusters”. In: Pro-
ceedings of the Linux Symposium. 2009.

[101] OpenNebula. Scheduler. 2015. url: http://docs.opennebula.org/4.10
/administration/references/schg.html.

[102] OpenNebula Project Leads. OpenNebula. url: http://www.opennebula.o
rg.

[103] OpenStack.org. OpenStack Cloud Software. url: http://www.openstack
.org.

[104] ORACLE. Virtual Box. url: https://www.virtualbox.org.

[105] Simon Ostermann, Alexandru Iosup, and Nezih Yigitbasi. “A performance
analysis of EC2 cloud computing services for scientific computing”. In:
Cloud Computing. Ed. by Geoffrey Avresky, Dimiter R. and Diaz, Michel
and Bode, Arndt and Ciciani, Bruno and Dekel, Eliezer and Akan, Ozgur
and Bellavista, Paolo and Cao, Jiannong and Dressler, Falko and Ferrari,
Domenico and Gerla, Mario and Kobayashi, Hisashi and Palazzo, Sergio
and Sa. Springer Berlin Heidelberg, 2010, pp. 115–131. url: http://www
.springerlink.com/index/T640753R2597524U.pdf.

[106] W. Pitt and K. Brill. Cost Model: Dollars per kW plus Dollars per Square
Foot of Computer Floor. Tech. rep. Uptime Institute, 2008, Whitepaper No

TUI3028A.

[107] Cristina Bianca Pop et al. “A swarm-inspired data center consolidation
methodology”. In: Proceedings of the 2nd Int. Conference on Web Intelli-
gence, Mining and Semantics. WIMS ’12. Craiova, Romania: ACM, 2012,
41:1–41:7. isbn: 978-1-4503-0915-8. doi: 10.1145/2254129.2254180.

155

http://dx.doi.org/10.1109/MC.2012.76
http://www.computer.org/csdl/mags/co/2012/12/mco2012120065.html
http://www.computer.org/csdl/mags/co/2012/12/mco2012120065.html
http://dx.doi.org/10.1145/2503210.2503236
http://docs.opennebula.org/4.10/administration/references/schg.html
http://docs.opennebula.org/4.10/administration/references/schg.html
http://www.opennebula.org
http://www.opennebula.org
http://www.openstack.org
http://www.openstack.org
https://www.virtualbox.org
http://www.springerlink.com/index/T640753R2597524U.pdf
http://www.springerlink.com/index/T640753R2597524U.pdf
http://dx.doi.org/10.1145/2254129.2254180

Bibliography

[108] PRACE Research Infrastructure. url: http://www.prace-ri.eu.

[109] The GAMES research project. The GAMES research project. 2013. url: h
ttp://www.green-datacenters.eu.

[110] Mustafa M. Rafique et al. “Power management for heterogeneous clusters:
An experimental study”. In: Green Computing Conference and Workshops
(IGCC), 2011 International. Los Alamitos, CA, USA: IEEE Computer So-
ciety, 2011, pp. 1–8. isbn: 978-1-4577-1222-7. doi: 10.1109/IGCC.2011.6
008549.

[111] Cluster Resources. MOAB Adaptative HPC Suite. url: http://www.clus
terresources.com/products/adaptive-hpc-suite.php.

[112] Ioan Salomie et al. “An energy aware context model for green IT service
centers”. In: Proceedings of the 2010 international conference on Service-
oriented computing. ICSOC’10. San Francisco, CA: Springer-Verlag, 2011,
pp. 169–180. isbn: 978-3-642-19393-4.

[113] Tudor-Ioan Salomie et al. “Application level ballooning for efficient server
consolidation”. In: Proceedings of the 8th ACM European Conference on
Computer Systems - EuroSys ’13. New York, New York, USA: ACM Press,
Apr. 2013, p. 337. isbn: 9781450319942. doi: 10.1145/2465351.2465384.

[114] Parliament Office of Science and Technology. ICT and CO2 Emissions. 319.
UK: The Parliament Office of Science and Technology, 2008.

[115] Lei Shi, J. Furlong, and Runxin Wang. “Empirical evaluation of vector bin
packing algorithms for energy efficient data centers”. In: Computers and
Communications (ISCC), 2013 IEEE Symposium on. 2013, pp. 000009–
000015. doi: 10.1109/ISCC.2013.6754915.

[116] Mark Stillwell et al. “Resource Allocation Using Virtual Clusters”. In: Pro-
ceedings of the 2009 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid. CCGRID ’09. Washington, DC, USA: IEEE Com-
puter Society, 2009, pp. 260–267. isbn: 978-0-7695-3622-4. doi: 10.1109/C
CGRID.2009.23.

[117] A. Strunk. “Costs of Virtual Machine Live Migration: A Survey”. In: Ser-
vices (SERVICES), 2012 IEEE Eighth World Congress on. 2012, pp. 323–
329. doi: 10.1109/SERVICES.2012.23.

156

http://www.prace-ri.eu
http://www.green-datacenters.eu
http://www.green-datacenters.eu
http://dx.doi.org/10.1109/IGCC.2011.6008549
http://dx.doi.org/10.1109/IGCC.2011.6008549
http://www.clusterresources.com/products/adaptive-hpc-suite.php
http://www.clusterresources.com/products/adaptive-hpc-suite.php
http://dx.doi.org/10.1145/2465351.2465384
http://dx.doi.org/10.1109/ISCC.2013.6754915
http://dx.doi.org/10.1109/CCGRID.2009.23
http://dx.doi.org/10.1109/CCGRID.2009.23
http://dx.doi.org/10.1109/SERVICES.2012.23

Bibliography

[118] Evangelos Tasoulas, H̊a rek Haugerund, and Kyrre Begnum. “Bayllocator:
a proactive system to predict server utilization and dynamically allocate
memory resources using Bayesian networks and ballooning”. In: Proceed-
ings of the 26th international conference on Large Installation System Ad-
ministration: strategies, tools, and techniques. USENIX Association, Dec.
2012, pp. 111–122.

[119] Luis Tomás and Johan Tordsson. “Improving cloud infrastructure utiliza-
tion through overbooking”. In: Proceedings of the 2013 ACM Cloud and
Autonomic Computing Conference on - CAC ’13. New York, New York,
USA: ACM Press, Aug. 2013, p. 1. isbn: 9781450321723. doi: 10.1145/24
94621.2494627.

[120] Top500.org. Top 500, the list. Web Page. 2015. url: http://www.top500
.org (visited on 2015).

[121] GiorgioLuigi Valentini et al. “An overview of energy efficiency techniques in
cluster computing systems”. In: Cluster Computing 16.1 (2013), pp. 3–15.
issn: 1386-7857. doi: 10.1007/s10586-011-0171-x.

[122] Hien Nguyen Van, F.D. Tran, and J.-M. Menaud. “Performance and Power
Management for Cloud Infrastructures”. In: Cloud Computing (CLOUD),
2010 IEEE 3rd International Conference on. 2010, pp. 329–336. doi: 10.1
109/CLOUD.2010.25.

[123] Akshat Verma, Puneet Ahuja, and Anindya Neogi. “pMapper: power and
migration cost aware application placement in virtualized systems”. In:
Proceedings of the 9th ACM/IFIP/USENIX International Conference on
Middleware. Middleware ’08. Leuven, Belgium: Springer-Verlag New York,
Inc., 2008, pp. 243–264. isbn: 3-540-89855-7.

[124] Akshat Verma et al. “Server workload analysis for power minimization using
consolidation”. In: Proceedings of the 2009 conference on USENIX Annual
technical conference. USENIX’09. San Diego, California: USENIX Associ-
ation, 2009, pp. 28–28.

[125] K Vermeersch. A Broker for Cost-efficient QoS aware Resource Allocation
in EC2. Tech. rep. University of Antwerp, 2011.

[126] VMware Inc. VMware. url: http://www.vmware.com.

157

http://dx.doi.org/10.1145/2494621.2494627
http://dx.doi.org/10.1145/2494621.2494627
http://www.top500.org
http://www.top500.org
http://dx.doi.org/10.1007/s10586-011-0171-x
http://dx.doi.org/10.1109/CLOUD.2010.25
http://dx.doi.org/10.1109/CLOUD.2010.25
http://www.vmware.com

Bibliography

[127] Carl A. Waldspurger. “Memory resource management in VMware ESX
server”. In: ACM SIGOPS Operating Systems Review 36.SI (Dec. 2002),
p. 181. issn: 01635980. doi: 10.1145/844128.844146.

[128] Xiaohui Wei et al. “Dynamic Deployment and Management of Elastic Vir-
tual Clusters”. In: Chinagrid Conference (ChinaGrid), 2011 Sixth Annual.
IEEE, 2011, pp. 35–41. isbn: 978-1-4577-0885-5. doi: 10.1109/ChinaGrid
.2011.31.

[129] Dan Williams et al. “Overdriver: handling memory overload in an oversub-
scribed cloud”. In: ACM SIGPLAN Notices 46.7 (July 2011), p. 205. issn:
03621340. doi: 10.1145/2007477.1952709.

[130] M. Witkowski et al. “Practical power consumption estimation for real life
HPC applications”. In: Future Generation Computer Systems 29.1 (2013),
pp. 208 –217. issn: 0167-739X. doi: 10.1016/j.future.2012.06.003.

[131] M. Woitaszek and H.M. Tufo. “Developing a cloud computing charging
model for high-performance computing resources”. In: IEEE 10th Interna-
tional Conference on Computer and Information Technology (CIT). 2010,
pp. 210–217. doi: 10.1109/CIT.2010.72.

[132] Yongqiang Wu, Maolin Tang, and W. Fraser. “A simulated annealing al-
gorithm for energy efficient virtual machine placement”. In: Systems, Man,
and Cybernetics (SMC), 2012 IEEE International Conference on. 2012,
pp. 1245–1250. doi: 10.1109/ICSMC.2012.6377903.

[133] Gerhard Wäscher, Heike Haußner, and Holger Schumann. “An improved
typology of cutting and packing problems”. In: European Journal of Oper-
ational Research 183.3 (2007), pp. 1109 –1130. issn: 0377-2217. doi: 10.1
016/j.ejor.2005.12.047.

[134] Minyi Yue. “A simple proof of the inequality FFD (L) less or equal than
11/9 OPT (L) + 1, forany L for the FFD bin-packing algorithm”. In: Acta
Mathematicae Applicatae Sinica 7.4 (1991), pp. 321–331. issn: 0168-9673.
doi: 10.1007/BF02009683.

158

http://dx.doi.org/10.1145/844128.844146
http://dx.doi.org/10.1109/ChinaGrid.2011.31
http://dx.doi.org/10.1109/ChinaGrid.2011.31
http://dx.doi.org/10.1145/2007477.1952709
http://dx.doi.org/10.1016/j.future.2012.06.003
http://dx.doi.org/10.1109/CIT.2010.72
http://dx.doi.org/10.1109/ICSMC.2012.6377903
http://dx.doi.org/10.1016/j.ejor.2005.12.047
http://dx.doi.org/10.1016/j.ejor.2005.12.047
http://dx.doi.org/10.1007/BF02009683

Bibliography

159

Acronyms

BQS Batch Queueing System. 4, 12, 131

CMP Cloud Management Platform. 4, 7, 13, 125, 126, 128, 130, 131, 136, 139,
140

DPM Dynamic Power Management. 3, 4, 8–10, 14–16

DVFS Dynamic Voltage and Frequency Scaling. 3, 4, 12

EVC Elastic Virtual Cluster. 10, 14, 15, 125, 126, 128–130, 134, 143

HPC High Performance Computing. 4, 10–12, 14, 131, 139

HTC High Throughput Computing. 126

IM Infrastructure Manager. 15, 126, 128, 129, 134, 139

IPMI Intelligent Platform Management Interface. 6

LRMS Local Resource Management System. 4, 11–15, 129, 142

OS Operating System. 3, 138

PG Power Gating. 3, 4

SPM Static Power Management. 3

TCO Total Cost of Ownership. 15, 130

161

Acronyms

UPS Uninterruptible Power Supply. 3

VC Virtual Cluster. 7, 9, 13–15, 130, 143

VM Virtual Machine. 4–10, 12–16, 125, 126, 128–130, 134–143

VMI Virtual Machine Image. 13, 14

162

	Contents
	Introduction and Objectives
	Objectives
	Summary of the state of the art
	Automated Power Management
	Facilitating Power Management
	Elastic Virtual Clusters

	Organization of this Document

	An Energy Management System for Cluster Infrastructures
	Introduction
	Power management approach
	Related Work
	System description
	CLUES Scheduler
	Resource Manager Connectors
	Hook system
	Sensor System

	Mixed cluster
	Results Evaluation
	Cluster 1
	Cluster 2

	Conclusion and Future Jobs

	An Economic and Energy-Aware Analysis of the Viability of Outsourcing Cluster Computing to the Cloud
	Introduction
	Related work
	The Total Cost of Ownership (TCO) of an HPC Cluster
	The Cost of an HPC Cluster on the Cloud

	Cost Analysis of Moving HPC to the Cloud
	Supporting Data for the Case Study
	Comparing clusters

	Discussion
	Conclusions

	EC3: Elastic Cloud Computing Cluster
	Introduction
	Related Work
	EC3: Elastic Cloud Computing Cluster
	Virtual Infrastructure Deployment
	Elasticity Rules
	Overall Architecture
	Connecting to the IaaS

	Case studies
	Clusters with long usage period
	Ad-Hoc Cluster

	Conclusion and Future work

	Automatic Consolidation of Virtual Machines in On-Premises Cloud Computing Platforms
	Introduction
	Related works for the problem of redistributing the VMs
	VMs distribution among physical hosts
	The Virtual Machine Consolidation Agent
	Connector to the platform
	Monitoring system
	Analysis of the platform and planning the migrations
	Execution of the migration plan

	Integrating VMCA with the policies of the platform
	Experiments with VMCA
	Selecting a configuration of parameters
	Tests into the production platform

	Conclusions and future work

	Automatic Memory-based Vertical Elasticity and Overcommitment on Cloud Platforms
	Introduction
	Related work
	Problem, Methods & Materials
	Architecture
	Oversubscription via Stolen Memory

	Assessment via Case Studies
	Fully Elastic Virtual Clusters for Grid Infrastructures
	Addressing Memory Overcommitment via Live Migration

	Conclusion and Future Works

	Discussion of the Results
	Putting Things Together: the Multi-Elastic Data Center
	Summary of the Achievements
	Publications
	Products
	CLUES
	EC3
	VMCA
	CloudVAMP

	Future Directions
	Future Research Lines
	Future Improvements for the Products

	Conclusions
	Bibliography
	Index

