Resumen

Este TFG desarrolla una estación de radioaficionado ubicada en un entorno urbano y optimizada para concursos a nivel mundial. El TFG comprende desde la selección de los diferentes sistemas radiantes para las bandas de frecuencias atribuidas a los radioaficionados, el desarrollo de un sistema de filtrado para evitar interacción entre los transmisores, la disposición de los equipos y accesorios requeridos para que la estación sea competitiva dentro de las limitaciones del entorno urbano. La selección de los elementos radiantes comprende tanto la selección de soluciones comerciales como la propia fabricación de estos elementos, basándose en diseños ya conocidos. Las soluciones adoptadas son asequibles para su implementación en la ubicación en sí, no siendo necesaria la intervención de maquinaria pesada para su instalación.

Para la banda de 160 metros y 80 metros se ha optado por la utilización de un acoplador remoto de procedencia comercial, con un hilo eléctrico como elemento radiante y su respectivo plano de tierra, adecuando la disposición y longitud del elemento radiante a obtener el mejor diagrama de radiación para los comunicados a larga distancia.

Para la banda de 40 metros se ha optado por la utilización de un dipolo tipo bazooka, que consiste en un dipolo plegado con unos latiguillos en los extremos para conseguir la adaptación de 50 ohmios.

Para las bandas de 10, 15 y 20 metros se ha dispuesto una solución comercial consistente en un dipolo rígido tribanda, procedente de una antena de tres elementos marca *Cushcraft A3-S*. Este es un dipolo que usa trampas del tipo LC para que en cada frecuencia se comporte como un dipolo de un cuarto de onda. Se ha implementado un sistema de filtrado para evitar la interacción entre estaciones con una EIRP elevada, ubicadas muy cerca, cumpliendo así con las bases de los concursos.

El proyecto abarca el diseño del puesto de operación, teniendo en cuenta la ergonomía para el operador de radio, teniendo en cuenta la fatiga que desarrolla por los largos periodos de operación.

Se presta especial atención a las necesidades eléctricas, desde el punto de vista de la calidad del suministro y de las instalaciones pertinentes.

El proyecto finaliza con un presupuesto detallado teniendo en cuenta todo el material aportado y/o fabricado por el autor para tal fin.

Palabras clave

Radio afición, radio deportiva, SO2R, filtros pasa banda, acoplador remoto, dipolo, antenas de recepción, antenas de bucle cerrado.

Glosario

Armónicos	Frecuencias múltiplos de la frecuencia fundamental de trabajo del sistema y cuya amplitud va decreciendo conforme aumenta el múltiplo.
Azimut	Angulo de una dirección contado en el sentido de las agujas del reloj a partir del Norte Geográfico.
Capsula electret	Variante del micrófono de condensador que usa un electrodo (fluorocarbonato o policarbonato de flúor) lamina de plástico polarizado.
Código morse	Sistema de representación de letras y números mediante señales emitidas de forma intermitente formando puntos y rayas.
Dipolo	Antena formada por dos elementos conductores rectilíneos de igual longitud y alimentados por el centro.
DX	Abreviación usada en radio afición para nombrar los comunicados a larga distancia. Es la abreviación de Distancia X
EIRP	Potencia isotrópica radiada equivalente, cantidad de potencia que emitiría una antena isotrópica (que distribuye la potencia exactamente igual en todas direcciones) para producir la densidad de potencia observada en la dirección de máxima ganancia de una antena.
ЕМІ	Electromagnetic interference (interferencia electromagnética)
Espectro radioeléctrico	También denominado espectro de radiofrecuencia, se aplica a la porción menos energética del espectro electromagnético, distribución energética del conjunto de las ondas electromagnéticas.
IARU	International Amateur Radio Union, Unión Internacional de Radioaficionados
Impedancia	En una antena, es la relación entre la tensión y la corriente de entrada, es un número complejo. La parte real resistencia y la parte compleja reactancia.
Interfaz	Dispositivo encargado de la comunicación entre dos o más dispositivos diferentes.
Osciloscopio	Instrumento electrónico de representación gráfica de señales eléctricas que pueden variar en el tiempo.
Patrón de radiación	Representación gráfica de las características de radiación de una antena en función de la dirección (coordenadas y azimut)
Telegrafía	Transmisión de mensajes escritos sin el soporte físico, originalmente sobre cables y usando el código morse.
Transceptor	Dispositivo que cuenta con un receptor y un transmisor que comparten parte de los circuitos o que se encuentran dentro de la misma caja.
UIT	Unión Internacional de Telecomunicaciones

Índice

R	esume	en		2
P	alabra	s clav	ve	2
G	losario	0		3
Ín	dice	•••••		4
1	Ob	jetivo	os	7
2	Inti	roduc	eción	9
	2.1	La	radio deportiva	9
	2.2	Fre	cuencias autorizadas	9
	2.3	Mo	dos de emisión	10
	2.4	Cor	ntenido de un comunicado	10
	2.5	Cor	ncursos de radio deportiva	11
3	Ins	talaci	iones de radioaficionados	12
	3.1	Intr	oducción	12
	3.2	Ant	tenas	12
	3.2	.1	Finalidad:	12
	3.2	2	Características:	12
	3.2	3	Ubicación:	
	3.2	.4	Propagación de las ondas:	17
	3.3	Cab	ole coaxial	
	3.3	.1	Finalidad:	
	3.3		Características:	
	3.4	Equ	iipos transceptores	
	3.4	.1	Finalidad:	22
	3.4		Características:	
	3.5	Am	plificadores de potencia	
	3.5	.1	Finalidad:	
	3.5		Características:	
	3.5		Ubicación:	
	3.6		mentos auxiliares	
	3.6		Medidor de potencia	
	3.6		Micrófono	
	3.6		Interface transceptor-PC	
	3.6		Conmutador de antenas	
	3.7	Eje	mplos de estaciones	30

4	Inst	stalación de radioaficionado objeto de diseño	31
	4.1	Ubicación de la estación	31
	4.2	Problemas de la ubicación	32
	4.3	Ventajas de la ubicación	33
	4.4	Análisis de ángulos de radiación	33
	4.5	Sistema Radiante	35
	4.6	Antenas utilizadas	35
	4.6	5.1 Dipolo rígido CUSHCRAFT A3S 14, 21, 28MHz	35
	4.6	5.2 Dipolo Coaxial Mod. BAZOOKA 7MHz	36
	4.6	Hilo largo con acoplador remoto 3.6, 1.8 MHz	36
	4.7	Diagramas de radiación	38
	4.7.	7.1 Dipolo rígido CUSHCRAFT A3S 14, 21, 28MHz	38
	4.7	7.2 Dipolo Coaxial Mod. BAZOOKA 7MHz	40
	4.7.	7.3 Hilo largo con acoplador remoto 3.6, 1.8 MHz	40
	4.8	Antena de recepción	41
	4.9	Sistema de conmutación de antenas	43
	4.10	Sistema de filtrado	44
	4.11	Cable coaxial	45
	4.12	Equipos transceptores	46
	4.13	Puesto de operación	48
	4.14	Elementos auxiliares	49
	4.1	4.1 Conmutador de antenas	49
	4.1	4.2 Selector de filtros	50
	4.1	4.3 Caja de conmutación de audio y micrófono SO2R	50
	4.1	4.4 Interfaz Transceptor-PC	51
	4.15	Software de registro de comunicados	51
	4.16	Sistema de energía	52
	4.1	6.1 Filtrado	52
	4.1	6.2 Potencia eléctrica	52
5	Pla	anos y esquemas	53
	5.1	Esquema ubicación antenas	54
	5.2	Esquema unifilar	55
	5.3	Esquema estación de radioaficionado	56
6	5 Pre	esupuesto	57
7	Pro	opuestas de mejora	59
8	B Pru	ueba de la instalación	61
9) And	nexo 1, plan de bandas de la IARU región 1	62

Anexo 2, proceso de montaje de los elementos que componen la estació	
diseñados específicamente para dicha estación.	73
10.1 Conmutador de antenas	74
10.2 Sistema de filtrado, filtros pasa banda.	76
10.3 Proceso de montaje de la caja de conmutación de audio y micrófono	SO2R 78
11 Anexo 3, mediciones.	79
11.2 Conmutador de antenas	80
11.3 Sistema de filtrado. Filtros pasa banda	81
12 Anexo 4, Tabla comparativa de equipos transceptores	82
13 Bibliografía	85

1 Objetivos

Este proyecto contempla el análisis y el diseño de una estación de HF en las bandas de radioaficionado, en la categoría mono-operador multibanda baja potencia, con capacidad de obtener puestos de cabeza en los concursos mundiales de radio deportiva.

En el proyecto se contempla el diseño de una estación ubicada en un entorno urbano, con las limitaciones de espacio que ello conlleva. Para ello se han tenido en cuenta dichas limitaciones, y se ha optado por las opciones con más garantías de éxito, para ello se han diseñado y fabricado partes de la estación para adaptarlas a las necesidades físicas de la estación y a la capacidad económica del autor.

Cabe decir que las soluciones adoptadas en el presente proyecto podrían no ser igualmente validas en otro emplazamiento con similares características ya que el entorno es decisivo en este aspecto.

La estación debe de ser capaz de transmitir y recibir en las seis bandas de HF de 160 a 10 metros asignadas a los radioaficionados, de manera no simultánea. Esta, dispondrá de dos equipos transceptores, un equipo llamado running, dedicado a la llamada continua en una misma frecuencia, y otro equipo llamado multiplicador, dedicado a la búsqueda y captura de nuevos multiplicadores, esta configuración de equipos transmisores se denomina SO2R, *Single operator 2 radios*.

La estación debe de ser capaz de transmitir y recibir de manera no simultánea en el espectro de HF en las siguientes bandas:

Banda	Frecuencia (MHz)
160 metros	1,810-2,000
80 metros	3,500-3,800
40 metros	7,000-7,200
20 metros	14,000-14,350
15 metros	21,000-21,450
10 metros	28,000-29,700

Y en los siguientes modos:

- Banda Lateral Única con portadora suprimida (J3A)
- Telegrafía por portadora interrumpida (A1A)
- Radioteletipo (RTTY)
- Modos digitales BPSK y QPSK

Para ello, la estación debe contar con las siguientes premisas de calidad de las emisiones:

• Potencia de emisión: 100W p.e.p. a la salida del transceptor

• Radiaciones espúreas menores de -50dB

• Pureza espectral Superior a 70dB para los armónicos múltiplos de la emisión fundamental

•	Recepción: intensidad de campo de al menos	Debe de ser capaz de discernir señales de 1μV.

2 Introducción

2.1 La radio deportiva

La radio deportiva comprende la actividad de realizar comunicados alrededor de todo el mundo por radioaficionados autorizados legalmente en diferentes segmentos de frecuencia distribuidos a lo largo de prácticamente todo el espectro radioeléctrico. En las competiciones se debe intentar realizar el máximo número de comunicados con tantas estaciones como sea posible durante un periodo de tiempo determinado, normalmente 24 o 48 horas. Estas competiciones que se llevan a cabo desde una estación de radioaficionado que pueden estar operadas de manera individual o colectiva. En cada comunicado se debe hacer intercambio de unos reportes de señal y unos datos adicionales que establecen las bases de cada concurso.

Finalizado el concurso, y dentro de un plazo de tiempo posterior al mismo, cada participante envía sus listados con los comunicados y la puntuación estimada a la organización del concurso. Estos mediante programas informáticos cruzan los listados de cada participante para comprobar la veracidad de cada comunicado, y emiten la puntuación después de haber realizado las correcciones pertinentes si fuera el caso. Posteriormente se emite un listado con los participantes y su puntuación, ordenando de mayor a menor puntuación en una clasificación a los mismos, y separados por categorías.

2.2 Frecuencias autorizadas

Dentro del espectro radioeléctrico, se han reservado unos segmentos de frecuencias para el uso de la radio deportiva, estos se dividen en bandas denominadas por los radioaficionados según su longitud de onda en metros:

•	Banda	Frecuencia
MF	2200 metros	135,7-137,8 kHz
Frecuencia media	160 metros	1,810-2,000 MHz
HF	80 metros	3,500-3,800 MHz
Alta frecuencia	40 metros	7,000-7,200 MHz
	30 metros	10,100-10,150 MHz
	20 metros	14,000-14,350 MHz
	17 metros	18,068-18,168 MHz
	15 metros	21,000-21,450 MHz
	12 metros	24,890-24,990 MHz
	10 metros	28,000-29,700 MHz
VHF	6 metros	50,000-52,000 MHz
Muy alta frecuencia	4 metros	70,150-70,200 MHz
	2 metros	144,000-146,000 MHz
UHF	70 centímetros	430,000-440,000 MHz
Ultra alta frecuencia	23 centímetros	1.240-1.300 MHz
	13 centímetros	2.300-2.400 MHz
SHF	6 centímetros	5.650-5.850 MHz
Súper alta frecuencia	3 centímetros	10,000-10,500 GHz
	1,5 centímetros	24,000-24,250 GHz

EHF	6 milímetros	47,000-47,200 GHz
Frecuencia		
extremadamente alta		

En otras regiones de la UIT, los segmentos de frecuencias pueden sufrir ligeras variaciones, sobre todo en las bandas de 160, 80 y 40 metros. Esto no es impedimento para realizar contactos, ya que se suele usar los comunicados dúplex, en el cual se usan diferentes frecuencias de emisión-recepción pero siempre dentro de la misma banda.

La IARU establece una serie de recomendaciones regulando segmentos dentro de cada banda que son de uso prioritario para determinados modos y/o potencias, aunque en la práctica estas recomendaciones no se tienen en cuenta, sí que diferentes organizadores de concursos están empezando a penalizar el no cumplimiento de estas.

El plan de bandas detallado emitido por la IARU para la región 1 se encuentra en el anexo 1.

2.3 Modos de emisión

Dentro de la radio deportiva, los comunicados se pueden realizar usando diferentes modos de emisión-recepción, existen multitud de modos, estos son los principales usados en concursos.

SSB Banda lateral única
 USB Banda lateral superior
 LSB Banda lateral inferior

CW Telegrafía por portadora conmutada

• RTTY Radioteletipo

• PSK Manipulación en desplazamiento de fase

Los modos de USB y LSB serían los correspondientes a fonía, el comunicado se realiza mediante voz.

El modo de CW es el correspondiente a la telegrafía. El comunicado se realiza mediante código morse.

Los modos de RTTY y PSK corresponden a los modos digitales, estos modos son combinaciones de sonidos codificados y es necesario el uso de un ordenador tanto para la emisión como para la recepción, bajo la supervisión de un operador.

2.4 Contenido de un comunicado

Los comunicados en la radio deportiva pueden ser de lo más amplios, extendiéndose varios minutos como si de un coloquio entre amigos se tratara, pero en concursos estos deben de ser breves, claros y concisos para no perder tiempo de más.

La información intercambiada en el comunicado se ciñe a la información estrictamente requerida por la organización del concurso y siempre intentando facilitar al corresponsal el buen entendimiento de la misma.

Un ejemplo de comunicado correspondiente al concurso CQ WW SSB:

• **Estación 1:** "CQ CQ CQ de EA6AKN EA6AKN CONTEST" (llamada general de EA6AKN a los participantes del concurso)

- **Estación 2:** "NN1A" Estación de Estados Unidos que contesta a la llamada.
- **Estación 1:** "NN1A 59 14" Confirmamos el indicativo recibido y le indicamos que le recibimos con calidad de recepción de 5 (perfectamente legible) e intensidad de señal 9 (extremadamente fuerte) y le comunicamos nuestra zona del mundo nº 14 (bases del concurso)
- **Estación 2:** "THANKS 59 05" El corresponsal confirma la recepción de nuestra información y nos comunica que nos recibe con calidad de recepción de 5 (perfectamente legible) e intensidad de señal 9 (extremadamente fuerte) desde la zona del mundo nº 5
- **Estación 1:** "THANKS EA6AKN QRZ" Confirmamos la recepción del intercambio y quedamos atentos a nuevas llamadas.

Los comunicados en otros modos son muy similares, salvo por el uso de abreviaciones estandarizadas en el mundo del radioaficionado. En los concursos, un operador experimentado es capaz de realizar ratios de 10 comunicados por minuto en fonía, y alrededor de 5 por minuto en telegrafía.

2.5 Concursos de radio deportiva

En los concursos de radio se da una puntuación a cada comunicado para así obtener una puntuación global por estación participante y poder conformar una clasificación.

La suma total de puntos se obtiene sumando el total de puntos y multiplicándolo por la suma total de multiplicadores. Cada comunicado, dependiendo de si este se realiza entre estaciones del mismo continente o de diferente continente obtiene una puntuación diferente, obteniendo mayor puntuación los contactos intercontinentales.

En determinados concursos un multiplicador es cada uno de los primeros contactos conseguidos en cada banda con estaciones de diferentes regiones del mundo, tanto las zonas ITU (70 zonas) como las zonas CQ (40 zonas) o diferentes países, estados de EEUU, provincias, según el ámbito del concurso, y según lo establecido en las bases del concurso. Por ejemplo, en un concurso de ámbito nacional se premia con mayor puntuación los contactos a nivel nacional que los efectuados a nivel internacional, sucediendo al contrario con los de ámbito internacional.

El intercambio de información en un concurso se ciñe al intercambio propio de señales, y lo establecido en las bases de dicho concurso, esto puede ser un numero correlativo correspondiente al número de contacto realizado en ese momento, la zona geográfica donde se ubica nuestra estación (zona ITU o CQ), estado, provincia u otro dato breve.

Los errores en la recepción del intercambio o del indicativo del corresponsal son penalizadas con la sustracción de puntos, llegando incluso a poder ser descalificados si se supera un porcentaje de puntos sustraídos sobre la cantidad que hubiéramos obtenido de ser validos esos contactos.

3 Instalaciones de radioaficionados

3.1 Introducción

Una instalación de radioaficionado son todos aquellos elementos necesarios para que una señal, por ejemplo de voz, sea emitida en forma de radiofrecuencia. Atendiendo a las necesidades del operador, esta podrá contener más o menos elementos auxiliares, estos equipos para que dicha señal de voz se transforme en una onda de radio son:

- Antenas
- Soporte de antenas
- Cables coaxiales
- Amplificadores de potencia
- Equipos transceptores
- Elementos auxiliares

Cabe decir que el diseño de los sistemas de radioaficionado se caracteriza por disponer de una impedancia característica de 50 Ohm, impedancia que nos define el sistema y que se debe de adoptar en los diferentes elementos para proveer al sistema de la máxima transferencia de energía y no provocar pérdidas por desadaptación.

3.2 Antenas

3.2.1 Finalidad:

Las antenas son los elementos radiantes de la estación de radio, es el elemento encargado de transmitir la onda de radio del cable coaxial, proveniente del transceptor, a la atmosfera para que dicha onda se propague por ella.

3.2.2 Características:

En las especificaciones de las antenas podemos encontrar una serie de características:

- Ganancia: La ganancia de una antena se define como la relación entre la densidad de potencia radiada en una dirección y la densidad de potencia que radiaría una antena isotrópica, a igualdad de distancias y potencias entregadas a la antena.
- Diagrama de radiación: El diagrama de radiación de una antena es la representación gráfica de las características de radiación en función de la dirección angular.

- Potencia máxima soportada: Es la potencia máxima que es capaz de soportar la antena, esta potencia máxima deberá estar especificada según el modo de emisión.
- Frecuencia: Indica para que frecuencia o frecuencias ha sido diseñada la antena, esta puede ser mono banda si solo pueden trabajan en un segmento de frecuencia, o multibandas si pueden trabajar en varios segmentos de frecuencia.
- Ancho de banda: el ancho de banda de una antena indica el segmento de frecuencias para el cual los parámetros de la antena guardan las características descritas.
- Relación delante/atrás: es la relación existente entre la máxima potencia radiada en una dirección geométrica y la potencia radiada en el sentido opuesto, por norma general se calcula con la dirección de máxima potencia. En los catálogos aparece en inglés, *Front to back* o simplemente *F/B*.
- Impedancia de entrada: es la relación entre la tensión y el voltaje de entrada, dicha impedancia resulta un número complejo, cuya parte real resulta en la resistencia de la antena, y la imaginaria en la impedancia de la antena. Dicha antena será resonante cuando su reactancia de entrada se anula
- Relación de ondas estacionarias ROE: es la relación de la energía enviada por el transmisor, y la que es reflejada por el sistema de transmisión y devuelta al transmisor, dicha reflexión ocurre por desadaptaciones de la impedancia de entrada de la antena. A menor ROE, mayor eficiencia del sistema radiante. También lo podemos encontrar como SWR, en inglés Standing Wave Ratio.

A continuación podemos observar unas hojas de características de unas antenas comerciales.

Antena para cuatro bandas del fabricante MOMO-BEAM

La MB7 10-15-20-40 es una antena Yagi diseñada para cubrir las frecuencias de 7 MHz, 14 Mhz, 21 MHz y 28 MHz, con una bobina de carga y sombrero capacitivo solo en el elemento de 7 Mhz. Se alimenta mediante un solo cable coaxial de 50 Ohm.

Especificaciones

Ganancia: 13.0 dBi (10m) / 11.0 dBi (15m) / 11.0 dBi (20m) / Relacion Frente/Espalda: 20.0 dB (10m) / 12.0 dB (15m) / 13.0 dB (20m) / 0 dB (40m) ROS: mejor de 1:1.7 (10m) / 1:1.5 (15m) / 1:1.4 (20m) / 1:1.5 (120 KHz de banda en 40m) Elementos activos: 3 (10m) / 2 (15m) / 2 (20m) / 1 (40m) Elemento más largo: 11,80 m Longitud del Boom: 4,60 m

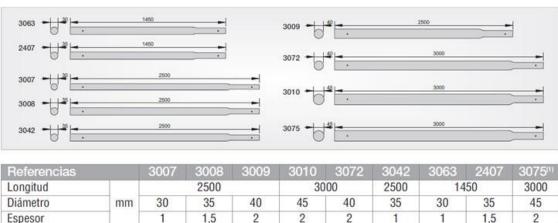
Antena de 4 elementos para la banda de 40 metros del fabricante Optibeam.

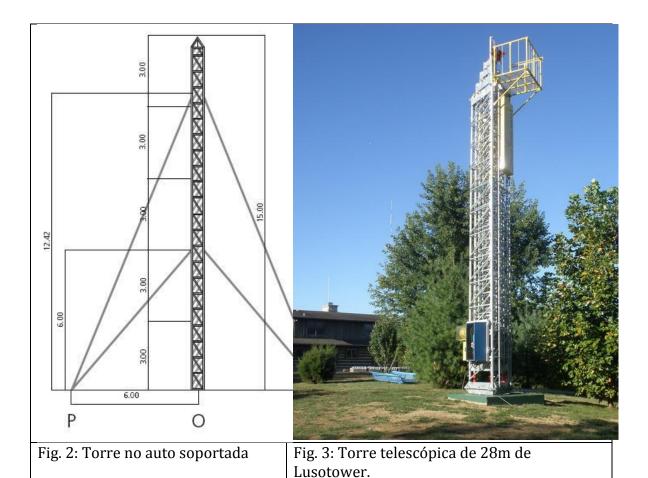
OB4-400WA	40m 4el full sized OWA Yagi
Bands	40
Gain (dbd)*	6,3
Gain (dbi)**	12,6 / 13,75
F/B (db)	21
SWR	
7,000 - 7,150 - 7,300	1,5 - 1,3 - 1,3
Elements (number)	4
Max. Elementlength (m)	22,30
Boomlength (m)	15,00
Turning Radius (m)	13,20
Feedlines (number)	1 Coax 50 Ohm
Weight (kg)	185
Windload at 130 km/h	3.120 N / 3,90 m ² / 41,93 feet ²

3.2.3 Ubicación:

La ubicación de las antenas resulta determinante para el buen funcionamiento de estas, por norma general se suelen instalar de manera elevada y separadas de elementos metálicos u otro tipo de elementos que pudieran afectar a sus características o rendimiento. Para su ubicación se disponen sobre una serie de soportes atendiendo al tipo de antenas, características de la misma, lugar de instalación, etc.

Para el soporte de estas antenas se utilizan diversos soportes, para las antenas verticales, al tener un patrón de radiación omnidireccional se instalan directamente sobre el suelo, o sobre un mástil convenientemente anclado a un elemento fijo.




Fig. 1: Mástiles disponibles por el fabricante Televés.

Estos se anclan al elemento fijo con el anclaje adecuado a ello, cada fabricante dispone de varios modelos según el soporte donde se vayan a anclar. Para ello se debe usar la tornillería adecuada a los esfuerzos los cuales va a ser sometido dicho anclaje.

En el caso del soporte de las antenas yagi, al ser estas directivas, es necesaria la posibilidad de orientación hacia la dirección más adecuada, por ello se disponen dichos mástiles sobre una torreta.

Las torretas pueden ser auto soportadas que no requieren la disposición de riostras para su soporte, o no auto soportadas que si requieren de dichos elementos para su soporte. Las torretas auto soportadas a su vez se dividen en torres fijas, torres telescópicas y torres con carro elevador de antenas. Las torres telescópicas disponen de diferentes tramos los cuales se ubican uno dentro del otro, y mediante un sistema de poleas y cable de acero esta se eleva aumentando considerablemente la altura.

Las torres con carro elevador son torres fijas a las cuales en un lateral les han adosado un sistema de rail con un carro donde se ubican las antenas, para así poder bajar estas a un nivel más bajo para realizar labores de mantenimiento o para salvaguardarlas del viento.

La instalación de dichas torres comprende un estudio exhaustivo de la naturaleza del terreno y de los vientos predominantes en la zona para los cálculos de la solera de hormigón necesaria para su soporte.

Las antenas yagi, para ser dirigidas hacia la dirección deseada se dispone de un rotor de antenas que simplemente es un motor ubicado en el extremo superior de la torre se encarga de rotar la antena hacia la dirección deseada y al mismo tiempo, señalizar dicha dirección en el controlador.

Fig. 4: Rotor de antena del fabricante Prosistel.

3.2.4 Propagación de las ondas:

Para el diseño de la ubicación, soporte y características de la antena a usar en una instalación de radioaficionado, es muy importante conocer el fenómeno de la propagación, ya que esta es la manera en que las ondas se propagan por la atmosfera.

Para ello vamos a explicar el fenómeno de la reflexión ionosférica.

La ionosfera es una capa de la atmosfera situada en la región alta de esta, entre 60 y 400km de altura, está formada por iones y plasma ionosférico, dicha capa tiene forma esférica.

Esta permite reflejar o refractar ondas radioeléctricas siempre que estas se encuentren por debajo de la frecuencia máxima utilizable, MUF.

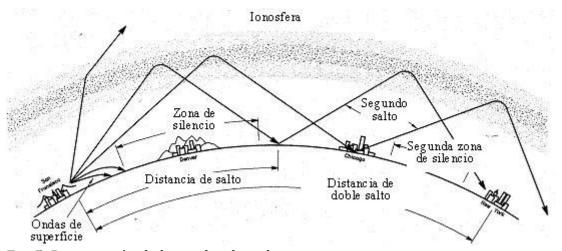


Fig. 5: Propagación de las ondas de radio.

La ionosfera está compuesta por tres capas:

- Capa D: esta capa es la más cercana a la tierra (60km de altura), el viento solar provoca la ionización de dicha capa, aumentando la densidad de electrones y provocando la absorción de las ondas radioeléctricas. Durante la noche, al no recibir viento solar dicha capa desaparece. Dicha capa absorbe fuertemente frecuencias por debajo de 10MHz.
- Capa E: esta capa refleja las ondas de radio, es formada por ionización del aire por causas que no dependen de la radiación solar. La propagación por dicha capa se denomina Esporádica E.
- Capa F: dicha capa durante las horas diurnas se divide en capa F1 y capa F2. En dichas horas diurnas la propagación del tipo Esporádica E tiene lugar en la región E de la ionosfera, en ciertos momentos del ciclo solar, la región F1 se junta con la F2. Durante las horas nocturnas las capas D, E y F1 se quedan sin electrones libres, por tanto, la única capa disponible para las comunicaciones es la F2. De manera esporádica, durante las horas nocturnas se puede dar el caso de propagación Esporádica E.

La capa F2 es muy importante para la propagación en HF debido a que está presente las 24h del día, debido a su altitud permite comunicaciones más lejanas y por norma general refleja las frecuencias más altas de HF. En la capa F2 el tiempo de vida de los electrones es mayor, razón por la cual esta capa refleja las ondas por la noche. En las capas E, F1 y F2, los periodos de vida de los electrones son de 20 segundos, 1 minuto y 20 minutos respectivamente.

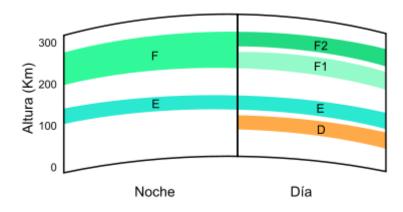


Fig. 6: Capas de la ionosfera.

3.3 Cable coaxial

3.3.1 Finalidad:

El cable coaxial es el encargado de transportar las ondas de radio desde el transceptor hasta la antena y viceversa.

Dicho cable está formado por dos conductores concéntricos, uno central llamado vivo encargado de llevar la información, y otro exterior de aspecto tubular llamado malla, que sirve como referencia de tierra y blindaje, como separación de ambos conductores existe un material mal conductor de la electricidad llamado dieléctrico. Las ondas de radio al viajar por el coaxial sufren unas perdidas debidas al conductor, estas pérdidas están reflejadas en las tablas de características del cable.

3.3.2 Características:

Las características más significativas de un cable coaxial son:

- Impedancia: es la relación entre el diámetro del conductor central, el diámetro del conductor exterior y del coeficiente del dieléctrico del cable. Dicha impedancia es independiente de la longitud del cable, y se calcula según la siguiente formula: $Z=138*\log_{10}(\frac{\frac{D}{d}}{\sqrt{K}})$ siendo D el diámetro mayor, d el diámetro menor y K el coeficiente del dieléctrico.
- Factor de velocidad: relación entre la velocidad de propagación de una señal en el cable y la velocidad de propagación de la luz en el espacio libre.
- Tensión máxima: nos define a que tensión máxima puede estar sometido dicho cable, nos define la potencia máxima que es capaz de soportar, si conocemos la impedancia del sistema receptor.
- Capacidad: normalmente especificado en pF (pico Faradios) por metro.
 Indica la capacidad del conductor comportándose este como un condensador por unidad de metro.
- Atenuación: es la perdida de potencia sufrida en el cable por el hecho de que la onda se propaga por el medio de transmisión. Esta atenuación varía con la frecuencia, y se expresa en decibelios por cada 100 metros.

A continuación adjuntamos una tabla de características de los cables coaxiales más usados.

Tabla de características de los principales cables coaxiales

10	bia u	carac		cas de n Caracter									
				Lai actei	isucas	ue IU					lioc nor	cada 10)() mtc
		Factor	Aislan.	Tensión	pF		A	tenuac	ion en	uecibe	:1105 poi	caua II	Diam.
Coaxial	Ohm		Dieléc.	Máx.	Por	10	50	100	200	400	1 GHz	3 GHz	en
		VCIOC	Dicicc.	RMS	Metro	MHz	MHz	MHz	MHz	MHz	1 GIIZ	3 GIIZ	mm
RG-5	50	0,66	Esp PE		93,50	2,72	6,23	8,85	13,50	19,40	32,15	75,50	8,30
RG-8	52	0,66	PE	4.000	97	1,80	4,27	6,23	8,86	13,50	26,30	52,50	10,30
RG-9	51	0,66	PE	4.000	98	2,17	4,92	7,55	10,80	16,40	28,90	59,00	10,70
RG-10	52	0,66			100	1,80	4,25	6,25	8,85	13,50	26,30	52,50	12,00
RG-14	52	0,66			98,40	1,35	3,28	4,60	6,55	10,20	18,00	41,00	13,90
RG-17	52	0,66		11.000	67	0,80	2,05	3,15	4,90	7,85	14,40	31,10	22,10
RG-18	52	0,66			100	0,80	2,05	3,15	4,90	7,85	14,40	31,10	24,00
RG-19	52	0,66			100	0,55	1,50	2,30	3,70	6,05	11,80	25,30	28,50
RG-20	52	0,66			100	0,55	1,50	2,30	3,70	6,05	11,80	25,30	30,40
RG-58	50	0,66	PE	1.900	93	4,60	10,80	16,10	24,30	39,40	78,70	177,00	5,00
RG-74	52	0,66			98	1,35	3,28	4,59	6,56	10,70	18,00	41,00	15,70
RG- 122	50	0,66				5,58	14,80	23,00	36,10	54,10	95,10	187,00	4,10
RG- 142	50	0,70	PTFE	1.900	96	3,60	8,85	12,80	18,50	26,30	44,25	88,60	4,90
RG-	50	0,66	PTFE	1.500	101	12,80	21,70	29,20	39,40	57,40	98,40	210,00	2,60
174 RG-		,				Í	Í	,		,	,	,	
177	50	0,66				0,70	2,03	3,12	4,92	7,85	14,40	31,20	22,70
RG- 178	50	0,69				18,40	34,50	45,90	63,30	91,90	151,00	279,00	1,90
RG- 188	50	0,69				19,70	31,50	37,40	46,60	54,80	102,00	197,00	2,80
RG- 195	95	0,69				10,80	15,10	18,70	24,90	35,40	55,80	115,00	3,90
RG- 196	50	0,69				18,40	34,50	45,20	62,30	91,90	151,00	279,00	2,00
RG-	50	0,66				2,72	6,23	8,86	13,50	19,40	32,20	75,50	8,50
212 RG-	50	0,66	PE	5.000	101	1,80	4,30	6,25	8,85	13,50	26,30	52,50	10,30
213 RG-	50	0,66		5.000		·	4,95			16,40		Í	10,80
214 RG-		·				·	•				·	·	
215 RG-	50	0,66		5.000	101	1,80	·	Í		13,50		·	10,30
217	50	0,66				1,35	3,30	4,60	6,55	10,20	18,00	40,50	13,80
RG- 218	50	0,66			96	0,80	2,05	3,10	4,90	7,85	14,40	31,20	22,10

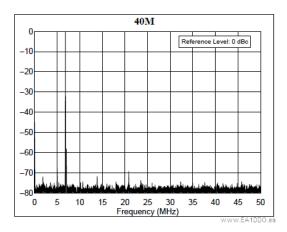
RG- 219	50	0,66				0,80	2,05	3,10	4,90	7,85	14,40	31,20	24,00
RG- 220	50	0,66			96	0,55	1,50	2,30	3,70	6,10	11,80	25,50	28,50
RG- 221	50	0,66				0,55	1,50	2,30	3,70	6,10	11,80	25,50	30,40
RG- 222	50	0,66				14,40	30,50	42,70	59,10	85,30	141,00	279,00	8,50
RG- 223	50	0,66	PE	1.900	101	3,95	10,50	15,80	23,00	32,80	54,10	100,00	5,40
RG- 303	50	0,69				3,61	8,86	12,80	18,50	26,30	44,30	88,60	4,30
RG- 316	50	0,69				19,70	31,50	37,40	46,60	54,80	102,00	197,00	2,60
NOTAS		PE = Po	olietilen	0									
		Esp.PE	= Espui	ma de Po	lietiler	10							
		PTFE =	Teflón	(Politetr	afluor	oetilen	0)						
		RG-214	4 y RG-2	23 = Con	doble	prote	cción (Doble	apanta	ıllado)			

3.4 Equipos transceptores

3.4.1 Finalidad:

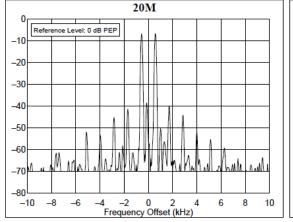
Los equipos transceptores son los encargados de emitir/recibir las señales de radio, para ello, en el caso de la emisión, procesa la señal de audio procedente de la voz del operador y la procesa para posteriormente transformar dicha señal en una señal de radio que se emite por las antenas.

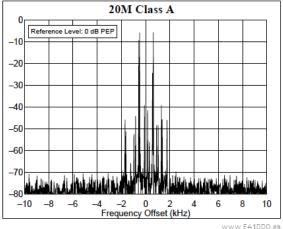
En el caso de la recepción, la señal de radio recibida es procesada para que esta sea escuchada y/o descodificada por una persona o una máquina Los equipos transceptores tienen diversas características significativas de diseño en cuanto a sus capacidades de recibir con una determinada sensibilidad para discernir las señales débiles, o la capacidad para emitir manteniendo una determinada calidad de la señal.


3.4.2 Características:

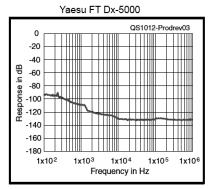
Para explicar las características de los equipos transceptores, vamos a dividir estas en las características para la parte de transmisión y las características para la parte de recepción.

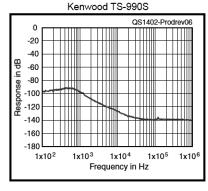
Transmisión:

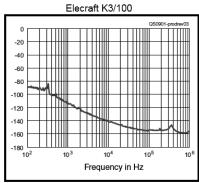

En la parte de Transmisión, tenemos tres columnas; Spurious, IMD 3, IMD 5 y Ruido Oscilador


Spurious; (espúreas) referente a la limpieza de la señal generada. Al
generar una señal en una frecuencia determinada denominada frecuencia
central, aparecen otras señales no deseadas en frecuencias no deseadas
formadas debido a la configuración y alineación de las diferentes etapas de
los dispositivos amplificadores. Los valores expresados son negativos,
expresan en decibelios, el nivel por debajo de la frecuencia central en que se
encuentran.

En la figura de la izquierda, se observa la frecuencia central sobre los 7 MHz, y cada uno de los picos que aparecen a derecha e izquierda de la central son las denominadas espúreas. En este caso observamos que la espúrea mayor se sitúa sobre los 21MHz con un valor aproximado de -70dB.

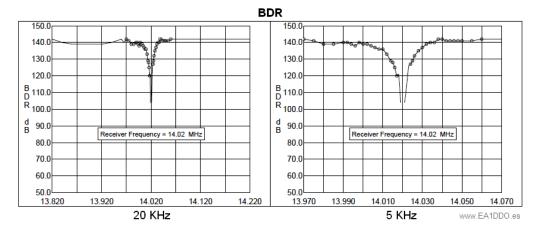

IMD (distorsión de intermodulación): medida creada a partir de la inserción de dos tonos cercanos a una frecuencia central, al insertar estos dos tonos se producen otros por efecto de la intermodulación. La diferencia de nivel entre los tonos insertados y los tonos producidos se le denomina IMD. Dicha intermodulación presenta la característica de resultar en múltiplos de la frecuencia central, el tercer IMD3 y quinto múltiplo IMD5 al ser los más cercanos son los de mayor valor y los realmente interesantes para la medida.



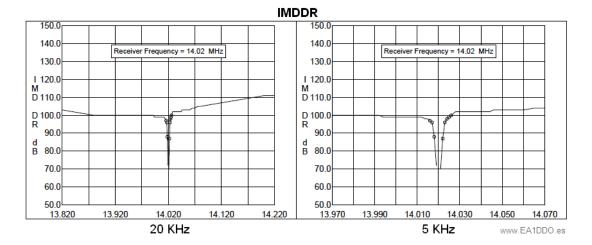


En la figura superior se observan los dos tonos insertados (los de mayor nivel) y los tonos creados por efecto de la intermodulación a ambos lados de los mismos.

Ruido Oscilador (Phase noise, Composite noise): ruido generado por el oscilador principal en el mezclador de transmisión. Dicho ruido sale al aire durante la transmisión incluso sin señal sonora de audio. En la etapa receptora ocurre que también se puede percibir dicho ruido, pero los fabricantes de los equipos ponen mayor empeño en solucionar dicho ruido en esta etapa y no en la transmisión.

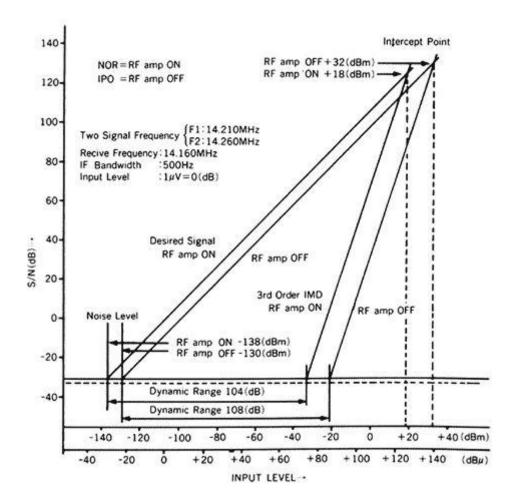


www.EA1DDO.es


Recepción:

En la parte de Recepción, tenemos; RMDR, MDS, BDR, IMDDR e IP3 a 20, 5 y 2 KHz.

- RMDR (Reciprocal Mixing Dynamic Range, Rango dinámico): el rango dinámico del receptor es la habilidad del receptor en permitir escuchar una señal cerca de otra señal cercana. Parecido al IMDDR y BDR pero éstos se miden con dos señales cercanas y el RMDR con una sola.
- MDS (mínimum discernible signal, señal mínima discernible): sensibilidad
 de recepción, mide la señal mínima capaz de distinguirse del ruido de fondo
 (ruido generado por la propia radio). Se puede describir como el nivel de
 una señal de entrada que produce un aumento en el audio de salida de 10db
 con respecto al ruido de fondo.
- BDR (blocking dinamic range => rango dinámico de bloqueo): se mide insertando a 2, 5 o a 20 KHz (también se puede hacer a 10 KHz) de una frecuencia dada, otra señal y observando en dicha frecuencia cuanto le afecta la señal insertada, es decir, la capacidad del equipo de bloquear las frecuencias cercanas.



• IMDDR (intermodulación-distorsión dinamic range, rango dinámico de la distorsión por intermodulación): en recepción pasa algo parecido que el IMD en transmisión, cuando aparecen dos transmisiones en frecuencias cercanas a la nuestra, estas crean señales falsas (2f1-f2 o 2f2-f1) que tienden a engañarnos (cw) o dificultarnos (ssb) la escucha de la señal deseada, el IMDDR es la calidad que tiene una radio de no generar señales falsas. El valor nos indica el nivel mínimo necesario para que aparezcan esas señales falsas.

• **Ip3**: (Third order Intercept Point): esta característica no es una medida en sí, sino que es el resultado de una operación matemática hecha con los valores anteriores Ip3=((MDS)+ (1'5 x IMDDR)). Ocasionalmente se usa como medida de calidad de los receptores.

A continuación tenemos un gráfico de ejemplo de obtención del valor Ip3 del FT-1000 D realizado por Yaesu:

En el Anexo 2 se dispone de una tabla comparativa con los valores anteriormente descritos de la mayoría de los equipos de radioaficionado.

Dicha tabla está elaborada por la ARRL (*American Radio Relay League*), la unión de radioaficionados americanos. Dicha asociación dispone de unos laboratorios en los cuales se dispone a los miembros de la ARRL de dicho laboratorio para realizar mediciones y calibraciones de sus montajes. Dicho laboratorio se encarga de elaborar exhaustivas mediciones de los equipos que van saliendo al mercado para después reflejar dichos resultados en una tabla juntamente con otros equipos de radioaficionado.

Fig. 7: Vista general del laboratorio de la ARRL

Cabe decir que las medidas reflejadas en las tablas, aunque estén realizadas en un laboratorio de elevado prestigio entre la comunidad de radioaficionados, con equipos de medida calibrados, sucede que estas mediciones pueden tener cierto grado de error, debido a factores externos, y también cabe destacar que dado que los equipos de radio, en la fase final del proceso de montaje, estos son ajustados de manera manual por un operario, es común que dos equipos iguales, no muestren los mismos valores en las mediciones realizadas.

Centrándonos en el tema de los concursos conviene indicar la importancia del BDR e IMDDR, mediante estas cifras sabremos cómo va a resultar un equipo en medio de tales trabajos. Los fabricantes ofrecen medidas de BRD e IMDDR elevadas, pero con el detalle que estas son a 20 KHz de separación, demasiada separación para poder evaluar con exactitud un equipo, más interesante es saber esas medidas más cerca a nuestra frecuencia, a 5Khz, o incluso a 2Khz, dado que es lo más parecido al mundo real.

3.5 Amplificadores de potencia

3.5.1 Finalidad:

Los amplificadores de potencia, como su nombre indica, sirven para amplificar la señal de radio emitida, ya que los equipos transceptores solo emiten con potencias máximas de 100W y algunos equipos de gama alta con 200W.

3.5.2 Características:

- Frecuencia de trabajo: Frecuencia para la cual el amplificador ha sido diseñado.
- Elemento amplificador: Define que elemento es el encargado de amplificar la señal, este puede ser un transistor o una lámpara de vacío.
- Potencia de entrada: Potencia mínima a la cual tiene que alimentarse el amplificador para que este realice su función.
- Potencia de salida: Potencia que entregara el amplificador.

3.5.3 Ubicación:

Dicho amplificador se ubicara a la salida del equipo transceptor, antes de posibles medidores.

En el apartado correspondiente de planos y esquemas se encuentra un esquema de conexión de todos los elementos que componen una estación de radio.

3.6 Elementos auxiliares

En las estaciones de radio disponemos de numerosos elementos auxiliares para la operación de la estación, o simplemente para facilitarnos dicha operación, algunos ejemplos de dichos elementos son:

3.6.1 Medidor de potencia

Es un dispositivo que nos sirve para saber la potencia con la que estamos transmitiendo.

Cada medidor está diseñado para un rango de frecuencias y un rango de potencias determinado.

Fig. 8: medidor *BIRD 43*, fabricado por Bird Technologies, es un instrumento de altísima precisión usado en laboratorios. Su rango de frecuencias y potencias se varía mediante unos insertos tubulares en el medidor diseñados estos para unos rangos de frecuencia y de potencias determinados.

3.6.2 Micrófono

Es el elemento encargado de transformar las ondas sonoras que forman la voz, a energía eléctrica para que esta sea procesada por el equipo transceptor y después transmitida mediante ondas de radio.

Los dos tipos más usados son los dinámicos y los de condensador o electret. **Micrófonos dinámicos:** utilizan el mismo principio dinámico como en un altavoz, sólo se invierten. Un pequeño móvil bobina de inducción, posicionado en el campo magnético de un imán permanente, está unido a la membrana. Cuando el sonido entra a través del parabrisas del micrófono, la onda de sonido se mueve el diafragma. Cuando el diafragma vibra, la bobina se mueve en el campo magnético, produciendo una variación de corriente en la bobina a través de la inducción electromagnética. Una sola membrana dinámica no responde linealmente a todas las frecuencias de audio.

Micrófono de condensador electret: o simplemente, electret, es una variante del micrófono de condensador que utiliza un electrodo (fluorocarbonato o policarbonato de flúor) lamina de plástico que al estar polarizado no necesita alimentación. Que las placas estén polarizadas significa que están cargadas permanentemente desde su fabricación (se polarizan una sola vez y pueden durar muchos años). La carga electrostática se induce en la placa móvil (diafragma) durante el proceso de fabricación,

cuando la misma se somete a una temperatura de 220 grados, al tiempo que se le aplicaban 4.000 voltios.

La existencia de esta carga electrostática hace que para alimentar las placas ya no sean necesarias ni pilas ni alimentación phantom para su funcionamiento, sin embargo, sí que se requiere esta alimentación para proporcionar energía al preamplificador. Como el diafragma pesa menos (tiene menor masa), la respuesta en frecuencia del micrófono electret está más cerca de la respuesta que proporciona un micrófono de bobina móvil, que de la que ofrece un micro de condensador convencional.

Lo habitual en las estaciones de radio es el uso de micrófonos electret, que mediante el uso de un previo de micrófono, dan una respuesta buena en radio. Además, se tiende al uso de ecualizadores de audio para hacer la señal de audio más aguda, ya que está en un entorno de elevado ruido se vuelve más penetrante y por lo tanto destaca sobre las otras y así se distingue mejor.

3.6.3 Interface transceptor-PC

Aunque numerosos equipos actuales ya disponen de conexiones USB y SERIE, es común el uso de interfaces para la interconexión del transceptor al ordenador del cuarto de radio. Estos dispositivos llevan integrados transformadores separadores para la señal de audio, a parte incorporan otras funcionalidades tales como control de rotores de antena, control de amplificadores lineales, control de conmutadores de antenas...

Fig. 9: Interface del fabricante MICROHAM, modelo STATION MASTER deluxe

3.6.4 Conmutador de antenas

Cuando en el exterior de la estación se disponen de varias antenas para las diferentes bandas de radioaficionado, y se desea que dichas antenas estén disponibles para dos equipos en el caso de los concursos, o simplemente por la imposibilidad de conectar más de una antena a nuestro equipo transceptor, se hace necesario el uso de conmutadores de antena.

Dichos conmutadores pueden ser manuales o remotos, estos últimos disponen de dos cajas diferenciadas entre sí, una caja remota que es la ubicada en el exterior de la estación donde se conectan todas las antenas y los cables coaxiales de conexión al equipo o equipos transceptores, y otra caja ubicada en el interior de la estación en el puesto de operación, que alberga el mando de selección de antenas, normalmente esta selección puede realizarse de manera manual o automática mediante el interfaz de conexión transceptor-PC o mediante el PC.

3.7 Ejemplos de estaciones

Estaciones de radio con elevadas inversiones y sistemas radiantes complejos y extensos han proliferado durante los últimos 20 años. Ejemplos de ellas son:

www.radioarcala.com

Finlandia

• www.cn2r.net

Marruecos

• http://d4c.cc

Cabo Verde

• www.dr1a.com

Alemania

Fig. 10: Ejemplo del sistema radiante de la estación DR1A de Alemania.

Fig. 11: Vista general de la estación OH8X o comúnmente conocida como Radio Arcala.

4 Instalación de radioaficionado objeto de diseño.

Dicha instalación deberá cumplir con las características descritas anteriormente en el apartado objetivos.

Para ello se han analizado las soluciones comerciales existentes en el mercado y se han diseñado y fabricado aquellos elementos que el autor ha considerado adecuado, bien por ser la opción comercial no adecuada para la instalación diseñada, o bien por su elevado precio.

4.1 Ubicación de la estación

La estación de radio estará ubicada en una vivienda, situada en:

Calle: Bartolomé Vicente Ramón nº 24. Coordenadas UTM: 38.982842, 1.302953

Locator: JM08px Código Postal: 07820

Población: Sant Antoni de Portmany

Provincia: Baleares

La ubicación de la estación es un factor importante por determinados aspectos, puntuación en los concursos, ruido eléctrico en el entorno, elementos que afectan a la radiación de nuestras señales...

El entorno urbano que define la estación será determinante para la elección de sistemas radiantes y sobre todo para la implementación de un sistema de filtrado que evite tanto que nuestras señales puedan interferir en otros sistemas como que las otras señales puedan interferir en nuestros sistemas.

A continuación se adjunta una imagen procedente del google earth con la ubicación de la estación y otra imagen con más detalle sobre la ubicación de la estación.

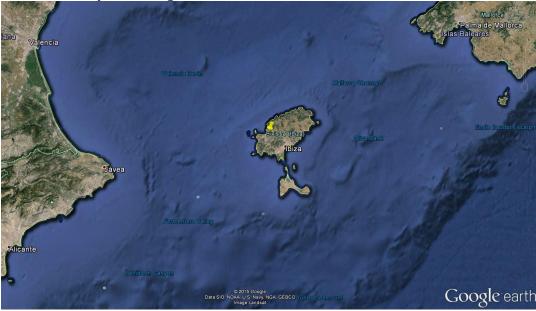


Fig. 12: ubicación de la estación de radioaficionado.

Fig. 13: detalle de la ubicación de la estación sobre la Isla de Ibiza.

4.2 Problemas de la ubicación

La ubicación de la estación en un entorno urbano conlleva determinados problemas tales como que la extensión para los sistemas radiantes es muy limitado, extendiéndose este a unos 200 metros cuadrados, salvando los diferentes sistemas de comunicaciones existentes en la vivienda, tales como televisión digital terrestre.

El alto volumen turístico que recibe la población en temporada estival provoca elevado ruido eléctrico debido a las numerosas infraestructuras electrónicas que se disponen solo para la temporada, así como ruido eléctrico provocado por los motores y sus sistemas de control dispuestos en los edificios vacacionales de la población.

4.3 Ventajas de la ubicación

La principal ventaja de la ubicación es la de que el titular ya dispone de dicha vivienda y no tiene que adquirir otra ubicación más costosa.

Al estar dentro de un núcleo de población, la fiabilidad del sistema eléctrico hace prescindir de sistema de respaldo en caso de cortes de luz, ya que en la población estos son muy poco frecuentes y de corta duración (un par de minutos).

4.4 Análisis de ángulos de radiación

Se han analizado los ángulos de radiación para ver el efecto del terreno en estos, para ello se ha usado la aplicación web del programa *RADIOMOBILE*. Solo se ha simulado la radiación en el plano horizontal, usando como referencia una antena con un patrón omnidireccional, a una altura de 25 metros sobre el suelo, potencia de transmisión de 100 W, y unas pérdidas del cable en transmisión de 1dB. Dado que la frecuencia más baja de simulación son 10MHz, se ha optado por simular y analizar los dos extremos de frecuencia, 10MHz y 29,7MHz, y así poder evaluar de manera aproximada si existen sectores azimutales en los cuales la orografía del terreno pueda dificultar los contactos de radio.

Fig. 14: Emisión en 10 MHz

Fig. 15: Emisión en 29.7 MHz

Se observa que en la frecuencia más alta, el campo que abarca la señal con las condiciones expresadas de simulación es menor debido a que las señales se atenúan más según suben estas en frecuencia.

Observamos que solo sufrimos una ligera atenuación hacia el norte debido al sistema montañoso conocido como *Es Amunts*, una formación rocosa de alturas máximas sobre los 350 que recorre todo el norte de la isla.

Hacia los otros sectores debido a la distancia hasta las formaciones rocosas, conseguimos superar estas formaciones, las cuales podemos decir que no sufrimos atenuación.

4.5 Sistema Radiante

El sistema radiante determina en casi la totalidad, el rendimiento de la estación, "Si tienes 10, gasta 9 en antenas y 1 en equipos transceptores" (frase comúnmente escuchada entre los radioaficionados americanos).

4.6 Antenas utilizadas

4.6.1 Dipolo rígido CUSHCRAFT A3S 14, 21, 28MHz

Se ha escogido este dipolo rígido, procedente de una antena comercial de 3 elementos, usando solo el único elemento activo de la antena y reajustando sus dimensiones en el caso que ha sido necesario. Este dipolo se encuentra sobre un mástil a 3 metros de la azotea del edificio, logrando así una altura de aproximadamente 20m sobre tierra. Al estar el dipolo a una longitud de onda para su banda más baja, se logra un ángulo de radiación bajo, perfecto para comunicados a larga distancia.

SPECIFICATIO	NS
Model	A3S
Frequency Ranges	28, 21, 14
Forward Gain, dBd	8
Front to Back Ratio, dB	25
2:1 Bandwidth KHz	>500
Power Rating, Watts PEP	2000
3 dB Beam Width, Deg. E Plane	60
Boom Length	14 (4.27)
Boom Diameter, In (cm)	1.5 (3.81)
Longest Element, ft (m)	27.75 (8.45)
Element Center Dia, In (cm)	1.25 (3.18)
Turning Radius, ft (m)	15.5 (4.72)
Mast Size Range, In (cm)	1.25-2 (3.18-5.08)
Wind Load, ft ² (m ²)	4.36 (0.47)
Weight, Ib (kg)	27 (12.9)

Fig. 16: Especificaciones de la antena CUSHCRAFT A3S

4.6.2 Dipolo Coaxial Mod. BAZOOKA 7MHz

Este dipolo mono banda, está construido con cable coaxial y unos rabillos de ajuste finales. Tiene la misma longitud que un dipolo convencional de un cuarto de onda por rama, pero con la particularidad de un gran ancho de banda, y también de un mejor rendimiento frente al ruido. Se encuentra montado en configuración de V invertida con el vértice superior sobre una caña de fibra de vidrio protegida contra los rayos UV, tipo caña de pescar de 6m de longitud, encontrándose este vértice a aproximadamente 23m sobre tierra. Esta configuración dota al dipolo de un diagrama de radiación similar al de una antena vertical, siendo este omnidireccional en cuanto a grados azimutales y bajo ángulo de radiación para los ángulos del plano vertical.

4.6.3 Hilo largo con acoplador remoto 3.6, 1.8 MHz

Para las bandas bajas, al poseer una longitud de onda muy grande, dificulta la instalación de antenas con un rendimiento aceptable en la azotea de un inmueble. Se ha optado por un hilo largo alimentado por un extremo, con dos radiales para formar el plano de tierra e intentar que el lóbulo de radiación sea lo más uniforme. El hilo radiante está constituido por hilo eléctrico forrado de sección circular de 1mm² y longitud aproximada de 25m, formando una V invertida sobre el mismo soporte que para el dipolo de 7MHz.

Esta antena, se adapta para cada frecuencia mediante un acoplador remoto ICOM AT-120, el cual ajusta la impedancia de la antena mediante una combinación de bobinas y condensadores.

La particularidad de esta antena hace que aunque principalmente sea destinada a las bandas bajas, se puede usar en cualquiera de las otras bandas, haciéndola así un sistema muy versátil para concursos cuando el espacio disponible es muy limitado.

Number of Semiconductors : Transistors 13

ICs 19 (CPU included) Diodes 39

Frequency Range : 2 to 24MHz

Power Capability : 150W PEP

100W continuous

Input Impedance : 50 ohms

Tune-up Power : 5 to 15W

Tune-up Time : Typically 2 to 3 seconds

Matching Accuracy (VSWR) : Less than 2.0

Antenna Required : Marconi type with suitable RF ground

(More than 23 feet suggested)

Power Supply Required : 13.6V DC (negative ground)

2A maximum (supplied by the IC-M700)

: -30°C to +60°C Usable Temperature Range

Dimensions : 230mm x 340mm x 80mm

Case Construction ; Weather-proof

Weight : 2.4kg

Control Cable : AWG 14 x 4 conductors

Fig. 17: Especificaciones del acoplador remoto ICOM AT-120

4.7 Diagramas de radiación

Los diagramas de radiación de las diferentes antenas se han obtenido mediante simulación por ordenador con el programa MMANA-GAL, para la frecuencia central de cada banda.

4.7.1 Dipolo rígido CUSHCRAFT A3S 14, 21, 28MHz

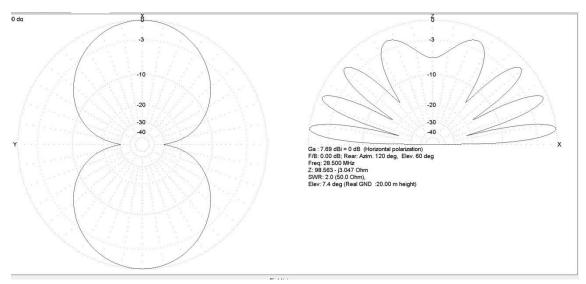


Fig. 18: Diagrama de radiación para la banda de 10m

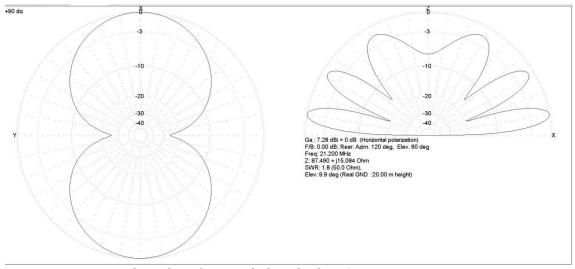


Fig. 19: Diagrama de radiación para la banda de 15m

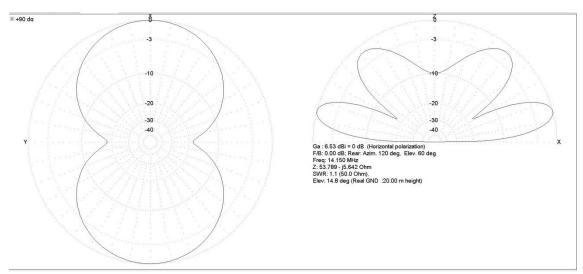


Fig. 20: Diagrama de radiación para la banda de 20m

4.7.2 Dipolo Coaxial Mod. BAZOOKA 7MHz

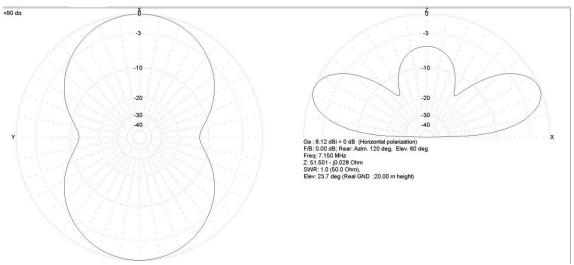


Fig. 21: Diagrama de radiación para la banda de 40m

4.7.3 Hilo largo con acoplador remoto 3.6, 1.8 MHz

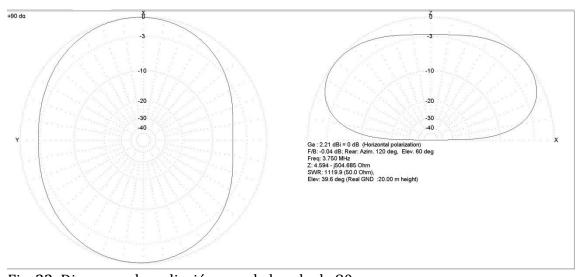


Fig. 22: Diagrama de radiación para la banda de 80m

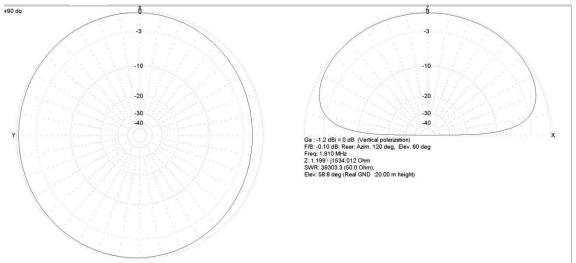


Fig. 23: Diagrama de radiación para la banda de 160m Observamos que las bandas de 80 y 160m obtenemos un diagrama de radiación con un ángulo de radiación bastante elevado respecto a las otras bandas, esto nos dificultara a la hora de hacer comunicados a larga distancia, pero el espacio disponible no permite otras opciones.

4.8 Antena de recepción

La operación en bandas bajas de frecuencia, exige el uso de antenas de recepción diferentes a las antenas de emisión. Las antenas de recepción más usadas y con mayor fama y rendimiento en la radio afición son las llamadas *beverages*, antenas tipo loop construidas mediante un transformador separador de relación 1:9, hilo largo paralelo a tierra de longitud mínima de una longitud de onda para la banda a recibir, conectadas a tierra en el extremo libre mediante una resistencia. Las dimensiones de estas hacen completamente inviable su uso en la ubicación elegida, por lo tanto se ha dispuesto una antena tipo *K9AY* formada por 2 bucles cerrados de hilo que mediante unos relés conseguimos conmutar para obtener 4 direcciones disponibles de recepción, para discriminar al máximo las señales interferentes o no deseadas.

Las dimensiones de la antena, así como el esquema de la caja de conmutación se indican en las figuras siguientes.

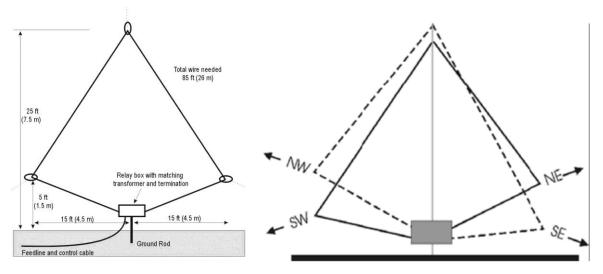


Fig.24: Dimensiones K9AY

Fig. 25: Configuración K9AY

Los bucles de cable que conforman la antena se conectan a una caja la cual se encarga de conmutar una serie de relés para seleccionar la dirección más adecuada.

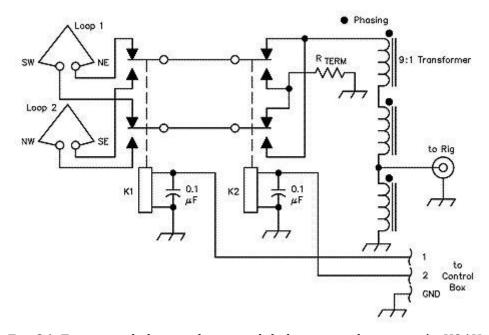


Fig. 26: Esquema de la caja de control de la antena de recepción K9AY La selección de las diferentes direcciones de recepción se corresponde con la siguiente tabla:

Dirección	K1	K2
SE	12V	GND
NE	GND	GND
NW	12V	12V
SW	GND	12V

4.9 Sistema de conmutación de antenas

La configuración de equipos adoptada en la estación, implica que cualquiera de los dos equipos pueda elegir cualquiera de las antenas dispuestas, con la particularidad que ambos equipos no pueden estar conectados a la misma antena, ya que implicaría una grave avería en uno de los equipos transmisores, por lo tanto se ha optado por construir un conmutador de antenas de esquema muy utilizado y más que probado, en el cual cada transceptor tiene dos contactos de relé para seleccionar una antena, y las antenas no utilizadas son conectadas a masa a través de una resistencia de 50ohm y 5W, aumentando así el aislamiento entre equipos y reduciendo las posibles interacciones debidas a las proximidades entre antenas. Este conmutador posee la particularidad de que incorpora una conexión para antenas de recepción para el equipo principal, que mediante una señal procedente de equipo y un sistema de relés, imposibilitan el uso de esta antena para emisión. En las figuras siguientes se puede observar el esquema del diseño original y del diseño modificado por el autor para obtener la conexión de antenas de recepción.

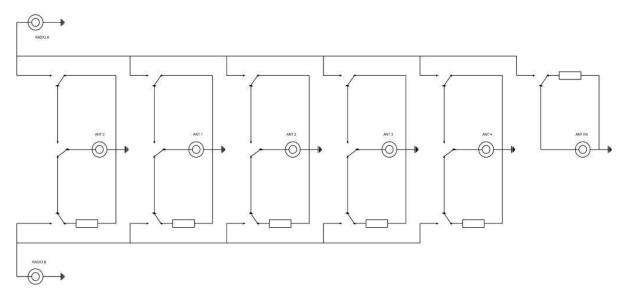


Fig. 27: Esquema del conmutador de antenas modificado con la antena de recepción.

En el apartado correspondiente se describe el proceso de montaje de dicho conmutador, así como las mediciones obtenidas.

4.10 Sistema de filtrado

La disposición tan próxima de equipos transceptores y antenas pueden provocar señales que interfieran en el otro equipo, para ello se han dispuesto dos sistemas de filtros pasa banda conmutables mediante relés para cada una de las seis bandas de frecuencia.

El esquema del filtro es el mostrado a continuación.

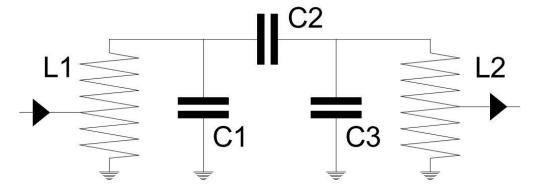


Fig. 28: Esquema general del filtro pasa banda para cada banda de frecuencia.

El esquema general de un conjunto de filtros quedaría de la siguiente manera.

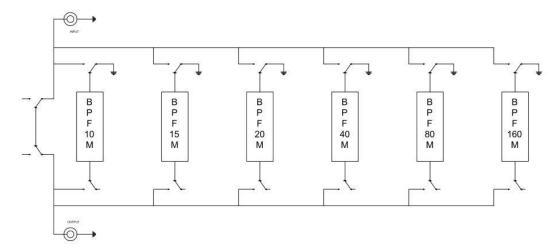


Fig. 29: Esquema general de un grupo de filtros.

En el apartado correspondiente se describe el proceso de montaje de dichos filtros, así como las mediciones obtenidas.

4.11 Cable coaxial

El cable coaxial elegido es del tipo RG-213 MIL-C-17, fabricado según las especificaciones militares, tiene una buena relación prestaciones, durabilidad, precio.

Sus características se describen a continuación:

• Impedancia: 50Ω

• Conductor: cobre estañado 7 x 0,75 mm.

• Dieléctrico: Polietileno

• Factor de velocidad: 0,66

• Capacidad nominal: 101 pf/m.

• Frecuencia máx. trabajo: 2 GHz

• Dimensiones (cond./dieléctrico/exterior): 2,25 / 7,25 / 10,3 mm.

• Cubierta: PVC

Peso aprox.: 15,3 Kg/100m.Radio curvatura: 100 mm.

Atenuaciones por 100m:

100 MHz. 8,2 dB.

400 MHz. 14.5 dB.

1000 MHz. 23 dB.

• Potencia máxima

145 MHz. 800 W.

400 MHz. 300 W.

Dado que las frecuencias en las cuales trabaja la estación son muy bajas, y las longitudes de cable coaxial no superan los 50 metros, no se han realizado cálculos de atenuaciones en los cables coaxiales.

4.12 Equipos transceptores

Los equipos transceptores son los encargados de recibir y procesar la señal de radiofrecuencia, para transformar esta en una señal de audio capaz de ser escuchada por el usuario.

Los equipos escogidos para el puesto de operación son:

• Equipo principal (running)

- Yaesu FT DX 5000MP
- Equipo secundario (multiplicadora)
 Yaesu FT 1000MP MARK V

La elección de estos equipos se ha llevado a cabo según las especificaciones, la ergonomía y su más que contrastada reputación entre los aficionados a los concursos. El equipo principal cuenta en su diseño con filtros digitales de procesamiento de señales, por lo que lo hace especialmente adecuado para concursos donde las señales de los concursantes están muy próximas entre sí. En cambio en el equipo secundario hay que adaptarle filtros mecánicos para ello.

Fig. 30: Yaesu FT DX5000MP Características del equipo por Universal Radio inc.

Features

- 160-6 meters
- Electronic Keyer
- Variable RF Filter (160-10M)
- Parametric Microphone Equalizer
- Dual Receive In Band Function
- Contest-ready Antenna Selection
- Manual and Automatic Digital Notch
- Electro-Luminescent Subdisplays
- High Speed Automatic Antenna Tuner
- DSP Noise Reduction

The Yaesu FTDX5000 series of HF/50 MHz 200 watt transceivers are a new premium class of Yaesu radios with two fully independent receivers plus many unique options and accessories designed to meet the performance requirements of even the most demanding amateur radio operator. Yaesu engineers have achieved 112 dB dynamic range and an IP3 [3rd Order Intercept Point] of +40 dBm (CW, 500 Hz BW). Newly designed, extra sharp roofing filters for VFOA/Main receiver are selectable between 300 Hz (optional on some versions), 600 Hz, 3 kHz, 6 kHz and 15 kHz. Yaesu incorporates two of their famous custom designed 32 bit

floating point DSP chips based on the TI TMS320C6727B running at 300 MHz ... one for VFO A and one for VFO B. Enjoy state of the art on the transmit side with a pair of reliable VRF150 FETS in a push-pull configuration yielding 200 watts (75 watts class A operation). Three electro-luminescent subdisplays indicate sub frequency, graphical wave and menu functions. The rear panel features a 9 MHz IF out from VFO Main receiver. Other enhancements include: large multi-function meter and variable CW audio peak filter. Shown above with SM5000 Station Monitor which is optional on some versions. Supplied with MH-31B8 Up-Down hand mic.

Fig. 31: Yaesu FT 1000MP MARK V

Características del equipo por Universal Radio inc.

Features

- Dual Receive
- Class A PA Operation
- Integrated Shuttle Jog Control
- 10 Pole Collins Mechanical Filter
- Manual and DSP Auto Notch
- 200 Watts Power!
- Separate FP-29 Power Supply
- Enhanced DSP
- 13 Tuning Steps
- Manual and Auto AGC

The Yaesu FT-1000MP Mark-V represents the crowning achievement in Yaesu's HF transceiver design history. A unique blend of analog and digital technology, the Mark-V is based on the concept of rigorous filtering in all stages of the receiver and transceiver. A high speed antenna tuner is built in. A temperature comopensated reference oscillator is built into every FT-1000MP MarkV providing 0.5 ppm. For even greater frequency accuracy add the optional TCXO-6. This radio includes a hand mic.

4.13 Puesto de operación

El puesto de operación se ha diseñado teniendo en cuenta los largos periodos de operación en los concursos e intentar reducir en lo posible la fatiga por el uso de estos.

La ubicación de los equipos se ha dispuesto de manera que esté al alcance de la mano del operador, por ello el quipo principal se sitúa frontalmente y el equipo secundario a la derecha del mismo, de forma circular. De tal modo, la postura del operador no es una postura forzada.

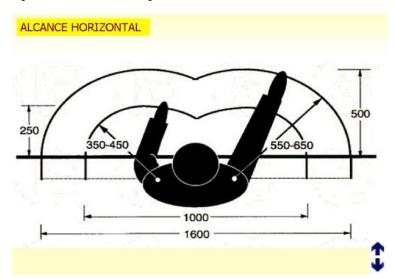


Fig. 32: Alcance horizontal de los miembros superiores

Por lo tanto se ha dispuesto en el puesto de operación de una silla del tipo ergonómica y de material transpirable como la que se muestra en la siguiente figura.

Fig. 33: Silla ergonómica

4.14 Elementos auxiliares

La estación dispone de numerosos elementos auxiliares tales como los controladores del conmutador de antenas, el selector de filtros, la caja de conmutación de audio y micrófono SO2R, el controlador del acoplador remoto.

4.14.1 Conmutador de antenas

La caja de control del conmutador de antenas es la encargada de proporcionar la señal correspondiente a cada relé o grupo de relés según lo que el operador seleccione mediante un selector giratorio.

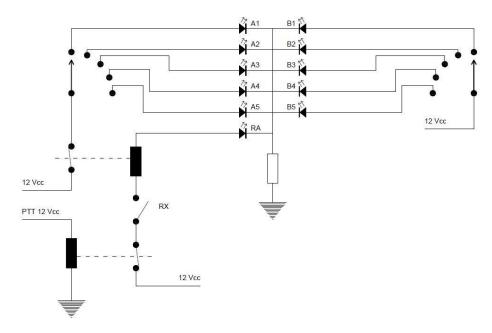


Fig. 34: Esquema controlador conmutador antenas.

4.14.2 Selector de filtros

El selector de filtros se basa simplemente en un conmutador giratorio que da una señal de 12V de corriente continua a los relés correspondientes al filtro deseado.

4.14.3 Caja de conmutación de audio y micrófono SO2R

Este circuito se basa en la posibilidad de poder seleccionar la escucha por los auriculares, del equipo principal, del equipo secundario, o de ambos a la vez escuchando uno por el canal derecho del auricular y el otro por el izquierdo, según una selección mediante interruptores de dos posiciones, asimismo, según presionemos el pedal del PTT de un equipo u otro, este también se encarga de conmutar el micrófono al equipo seleccionado.

Esta caja incorpora un previo de micrófono para alimentar la capsula electret normalmente presente en los micrófonos actuales, y un circuito comercial que es un retardo a la conexión, para que cuando trabajemos con la antena de recepción, asegurarnos con un breve retardo que el equipo se pone a transmitir después de la conexión de los relés correspondientes del conmutador de antenas. Dicho circuito es un retardo a la conexión, que activa la transmisión del equipo transceptor con un pequeño retardo respecto a los relés correspondientes del conmutador de antena.

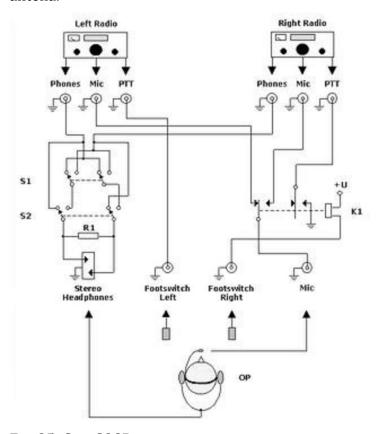


Fig. 35: Caja SO2R

4.14.4 Interfaz Transceptor-PC

Los equipos transceptores estarán conectados al PC para así poder operar con modos digitales, y obtener información de estos para automatizar y facilitar la operación de registro de comunicados.

La interfaz seleccionada es la del fabricante RigExpert, modelo Standard.

Fig. 36: Interface *Rigexpert Standard*

Esta interfaz se conecta al PC mediante conector USB. Dispone de aislamiento de audio para evitar ruidos, e incorpora un puerto serie con conector DB9 para el control de dispositivos.

4.15 Software de registro de comunicados

El software de registro de comunicados elegido es el N1MM+. Este software gratuito permite llevar el registro de comunicados durante un concurso, con la particularidad que la mayoría de concursos internacionales ya están predefinidos en los archivos del programa permitiendo así la visualización en tiempo real de las puntuaciones. Permite, mediante conexión a internet, la posibilidad de ver la frecuencia que se encuentran los multiplicadores mediante la obtención de datos de las diferentes redes llamadas *clúster*, permite la operación en modo SO2R, además de muchas otras funciones tales como control de rotor, llamador de voz, selección automática de antenas entre muchas otras funciones.

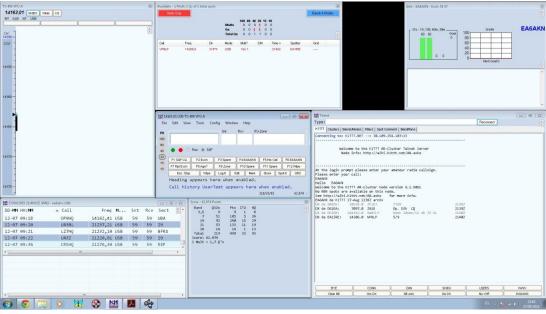


Fig. 37: Aspecto que presenta el software de registro de comunicados N1MM+

4.16 Sistema de energía

La alimentación de los equipos transceptores es directamente a la red, a la tensión de 230V y 50Hz, los demás elementos auxiliares están alimentados a 12V en corriente continua a través de fuentes de alimentación.

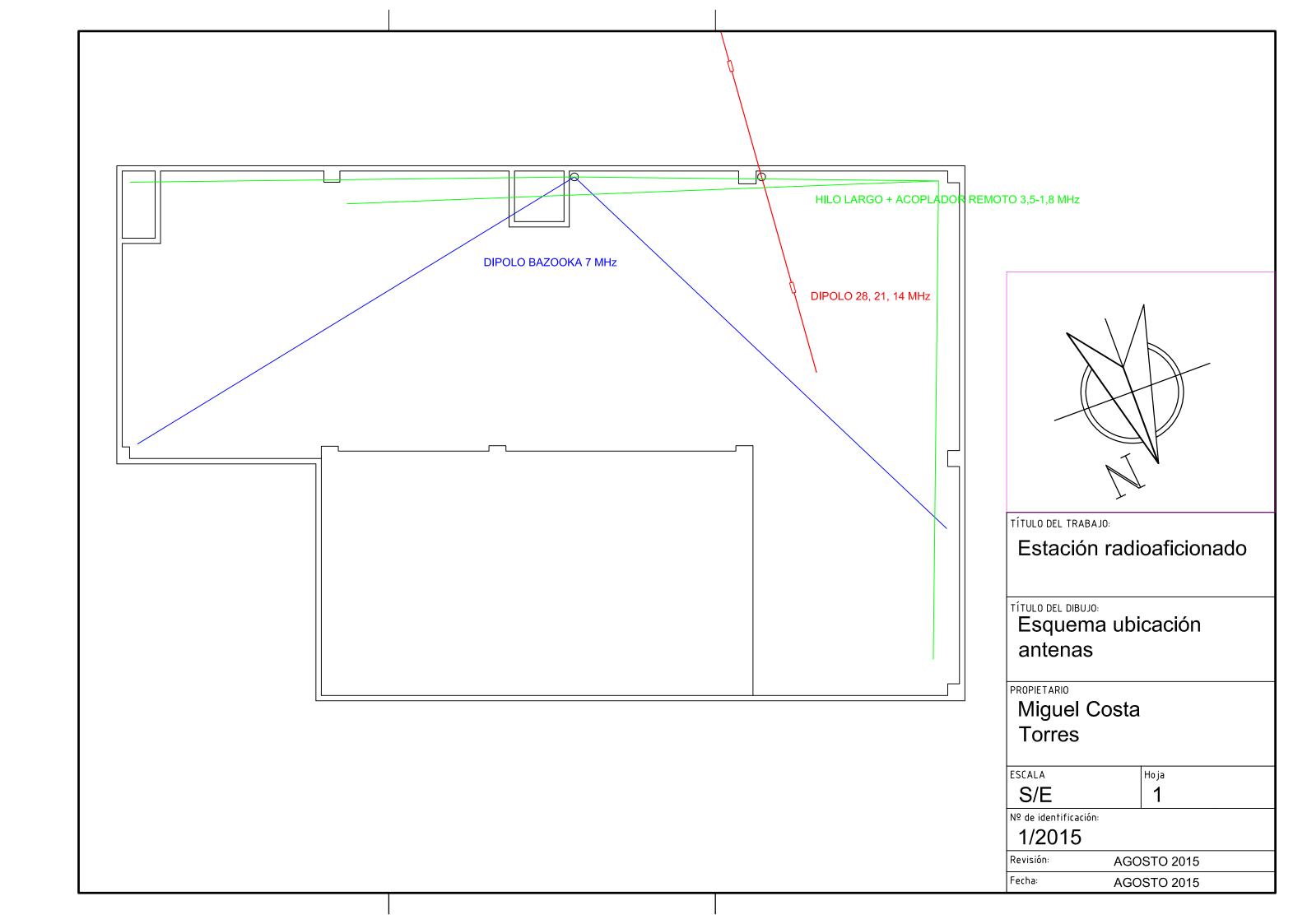
La calidad de la alimentación es primordial para asegurar que los transceptores trabajan adecuadamente y sin ruidos provocados por una mala alimentación.

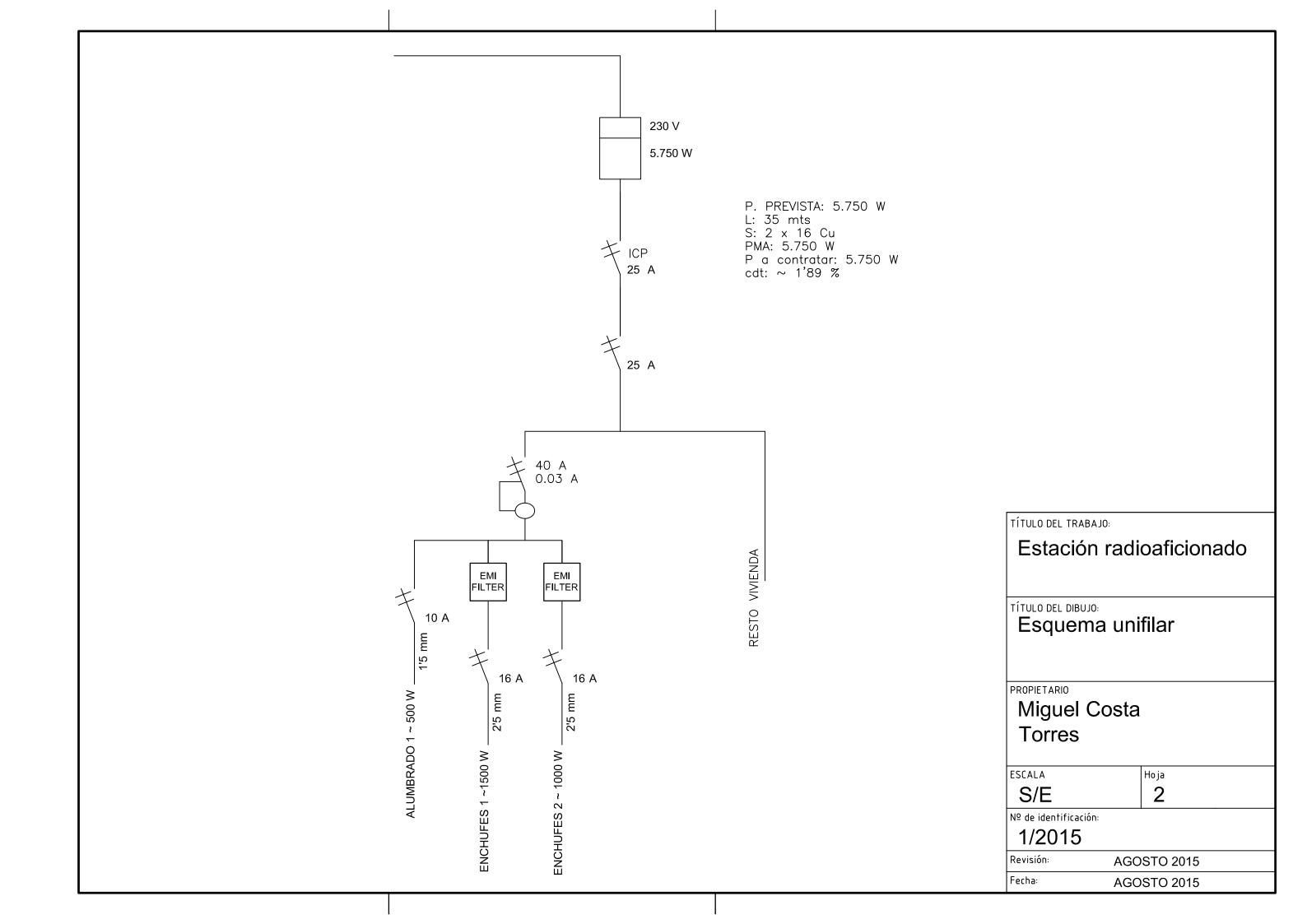
4.16.1 Filtrado

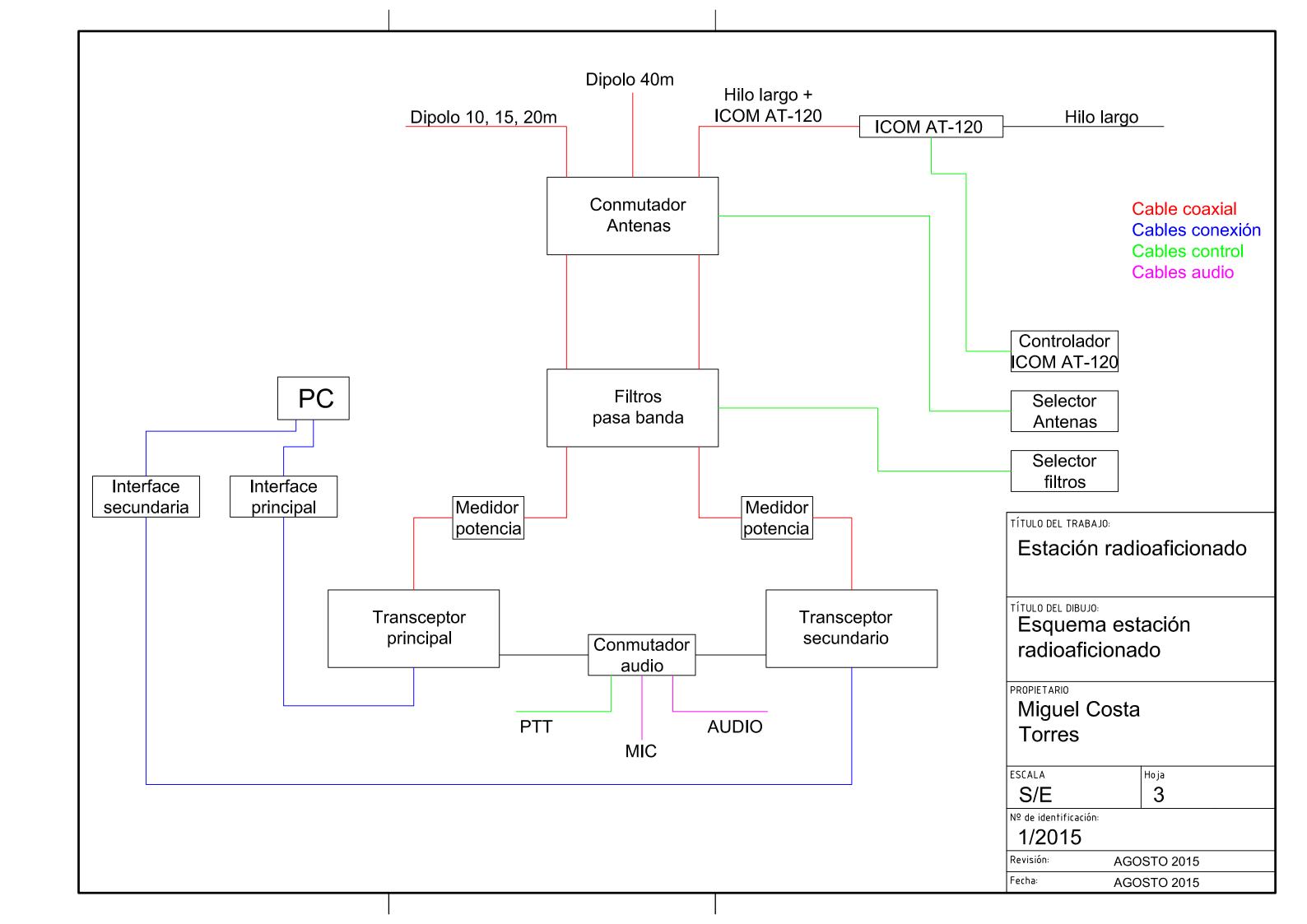
Para asegurar una buena calidad de la alimentación de los equipos, se dispondrá un sistema de filtrado de energía eléctrica.

El filtro escogido es un filtro comercial conocido como *Filtro EMI* del fabricante *SCHAFFNER mod: FN 2010A-16*. Dicho filtro soporta una intensidad de 16A, suficiente dado que la línea estará protegida por un magneto térmico de 16A.

Fig. 38: Filtro EMI


Este filtro estará ubicado en línea entre el magneto térmico de protección y la toma de enchufe, intentando que este quede lo más cerca posible al final de la línea.


4.16.2 Potencia eléctrica


Para poder determinar el número de líneas de enchufe necesarias para nuestra estación determinaremos el consumo en amperios total de la estación, teniendo en cuenta que cada línea de enchufes, por propia construcción, pueden soportar un máximo de 16A.

EQUIPO	UD.	CONSUMO (A)	TOTAL (A)
Yaesu ftmp5000	1	9	9
Yaesu ft1000mp markV	1	8	8
Ordenador sobremesa	1	2	2
Pantalla LED	1	1	1
Fuente alimentación	1	6	6
Lámpara	2	0,2	0,4
		SUBTOTAL	26,4
Factor simultaneidad	0.6	TOTAL	15.84

5 Planos y esquemas

6 Presupuesto

Nο	Concepto	Ud.	Precio (€)	Total (€)
1	Dipolo rigido CUSHCRAFT A3S	1	250	250
3	Dipolo bazooka 40m	1	20	20
4	Mastil fibra soporte antenas	1	15	15
5	Hilo largo 80 y 160m	25	0,2	5
6	Antena Recepción K9AY	1	75	75
7	Acoplador remoto ICOM AT-120	1	315	315
9	Conmutador antenas	1	60	60
10	Armario ubicación equipos remotos	1	110	110
11	Cable coaxial RG-213	50	1,5	75
13	Cable control equipos remotos	150	0,2	30
15	controlador conmutador antenas	1	30	30
17	Filtros pasabanda	2	125	250
19	Selector filtros	1	30	30
21	Caja SO2R autoconstruida	1	40	40
22	Yaesu FTDX 5000 MP	1	4800	4800
23	Yaesu FT 1000 MP MARK V	1	1500	1500
24	Fuente alimentación 30-40A	1	150	150
25	Interface RIGEXPERT STANDARD	2	180	360
26	Cables varios alimentacion	1	50	50
27	Sistema informatico	1	600	600
28	Mobiliario	1	200	200
29	Tornilleria y varios	1	180	180
	Total estacion			9145

7 Propuestas de mejora

Los factores que se pueden mejorar una estación de radio son diversos y variados, partiendo desde el punto de vista que lo que más afecta al buen funcionamiento de la estación es el sistema radiante, la mejor propuesta de mejora podría estar en este aspecto.

La posibilidad de instalar una torreta del tipo telescópica sobre la vivienda, de aproximadamente unos 10 metros de altura, aseguraría el poder ubicar una antena para la banda de 40 metros a una altura igual a media longitud de onda, con lo cual mejoraría considerablemente su ángulo de radiación.

En las bandas superiores no veríamos mejoras muy significantes en el ángulo de radiación, pero si en el poder disponer de una antena del tipo yagi de 4 elementos por la directividad que esta proporciona.

Como ejemplos de antenas a instalar:

Optibeam OB11-5, 11 elementos para las bandas de 10/12/15/17/20m.

Optibeam OB1-40, dipolo rígido para la banda de 40m.

Caña de fibra SPIDERBEAM 22m para la construcción de una antena vertical para la banda de 80m, al disponer la caña una longitud igual a un cuarto de longitud de onda.

Gamma match en la torre para 160m, adaptador de impedancias para usar la torre telescópica como elemento radiante en la banda de 160m.

Otro aspecto a mejorar seria la potencia de emisión, la instalación de un amplificador de potencia sería la mejora a adoptar, los modelos automáticos serían los adecuados para así evitar fallos humanos en su ajuste.

Como ejemplo de amplificador lineal seria el EXPERT 1K-FA, un modelo de amplificador transistorizado que permite la operación mediante dos transceptores. Su rendimiento eléctrico y las numerosas protecciones de las que dispone lo hacen ideal para su uso tanto en concursos como en la práctica habitual de la radio.

Fig. 39: Amplificador transistorizado EXPERT 1K-FA

El último aspecto a mejorar en la estación sería el equipo de radio principal, esto conllevaría la sustitución del equipo principal YAESU FT DX5000 MP que pasaría al lugar del equipo secundario, y en el lugar del equipo principal colocaríamos un YAESU FT DX 9000 MP. Este equipo dispone de una pantalla la cual hace que todas las funciones del equipo sean más fáciles de manejar y estén a la vista de operador de manera más clara.

Fig. 40: Yaesu FT DX 9000MP

8 Prueba de la instalación.

Para realizar las pruebas de la instalación, se llevó a cabo la participación en un concurso a nivel mundial, IARU HF CHAMPIONSHIP, los días 11 y 12 de Julio.

La estación disponía de todos los elementos que se han diseñado para tal fin, a excepción de los equipos transceptores, para dicho concurso se dispuso de un equipo transceptor KENWOOD TS-480 SAT. Tampoco se disponía de antena para la banda de 160m.

Los resultados fueron los siguientes:

Band	QSOs	Pts	ITU	HQ
3.5	9	9	1	8
7	51	103	5	24
14	92	240	15	29
21	53	133	11	19
28	14	14	1	13
Total	219	499	33	93
Score=	62.874			
Mult=	1.7Q's			

Ante las limitaciones de la estación por la falta de ciertos componentes, observamos que los resultados fueron acordes a las horas que se operó. El concurso permitía un tiempo de operación de 24h de las cuales se operaron 11h 29'.

Las condiciones veraniegas proporcionaron una propagación bastante mala, haciendo que solo fuera efectiva la manera de operar llamada S&P *Search & Pound,* algo así como búsqueda y captura, en la cual exige que el operador esté continuamente en busca de contactos que realizar.

Según los resultados del año anterior, se estima que este año dicha estación estará entre los 200 puestos de cabeza a nivel mundial.

9 Anexo 1, plan de bandas de la IARU región 1.

PLAN DE BANDAS DE LA IARU REGIÓN 1

	Anchura		
Frecuencias (kHz)	banda (Hz)		Modos preferidos y uso
137 kHz (2.2	. ,		
135,7 - 137,8	200	CW	QRSS y modos digitales de banda estrecha
1,8 MHz (16	0 m)		, ,
1.810 - 1.838	200	CW	1.836 kHz: centro de actividad QRP
1.838 - 1.840	500	Modos de banda estrecha	1.000 KHZ. OCHRO GO GORVIGGG GEV
1.840 - 1.843	2.700	Todos los modos	Modos digitales
1.843 - 2.000	2.700	Todos los modos	(En España, de 1.850 a 2.000 sólo en determinados concursos)
3,5 MHz (80		Todos los modes	(21) Espaina, de 11866 à 21866 dels est determinades certeuress)
3.500 - 3.510	200	CW	Prioridad para operaciones intercontinentales
3.510 - 3.560	200	CW	Preferido para concursos CW, 3.555 kHz: centro actividad QRS
3.560 - 3.580	200	CW	3.560 kHz: centro de actividad QRP
3.580 - 3.590	500	Modos de banda estrecha	Modos digitales
3.590 - 3.600	500	Modos de banda estrecha	Modos digitales, estaciones de datos automáticas (desatendidas)
3.600 - 3.620	2.700	Todos los modos	Modos digitales, estaciones de datos automáticas (desatendidas)
3.600 - 3.650	2.700	Todos los modos	Preferido para concursos SSB, 3.630 kHz: centro actividad de voz digital
3.650 - 3.700	2.700	Todos los modos	Todos los modos, 3.690 kHz: centro de actividad QRP SSB
3.700 - 3.800	2.700	Todos los modos	Preferido para concursos SSB, 3.725 kHz: centro de actividad de imagen, 3.760 kHz: centro de actividad de emergencia de la Región 1
3.775 - 3.800	2.700	Todos los modos	Prioridad para operaciones intercontinentales
7 MHz (40	m)		
7.000 - 7.040	200	CW	7.030 kHz: centro de actividad QRP
7.040 - 7.047	500	Modos de banda estrecha	Modos digitales
7.047 - 7.050	500	Modos de banda estrecha	Modos digitales, estaciones de datos automáticas (desatendidas)
7.050 - 7.053	2.700	Todos los modos	Modos digitales, estaciones de datos automáticas (desatendidas)
7.053 - 7.060	2.700	Todos los modos	Modos digitales
7.060 - 7.100	2.700	Todos los modos	Preferido para concursos SSB, 7.070 kHz: centro de actividad de voz digital, 7.090 kHz: centro de actividad QRP SSB
7.100 - 7.130	2.700	Todos los modos	7.110 kHz: centro de actividad de emergencia de la Región 1
7.130 - 7.200	2.700	Todos los modos	Preferido para concursos SSB, 7.165 kHz: centro de actividad de imagen
7.175 - 7.200	2.700	Todos los modos	Prioridad para operaciones intercontinentales
10 MHz (30			
10.100 - 10.140	200	CW	10.116 kHz: centro de actividad QRP
10.140 - 10.150	500	Modos de banda estrecha	Modos digitales
14 MHz (20			
14.000 - 14.060	200	CW	Preferido para concursos CW, 14.055 kHz: centro actividad QRS
14.060 - 14.070	200	CW	14.060 kHz: centro de actividad QRP
14.070 - 14.089	500	Modos de banda estrecha	Modos digitales
14.089 - 14.099	500	Modos de banda estrecha	Modos digitales, estaciones de datos automáticas (desatendidas)
14.099 - 14.101	0.700	Balizas internacionales	Exclusivamente para balizas
14.101 - 14.112	2.700	Todos los modos	Modos digitales, estaciones de datos automáticas (desatendidas)
14.112 - 14.125	2.700	Todos los modos	Destable nere consumer OOD 44400 III
14.125 - 14.300	2.700	Todos los modos	Preferido para concursos SSB, 14.130 kHz: centro de actividad de voz digital, 14.195 ± 5: prioridad para expediciones, 14.230 kHz: centro de actividad de imagen, 14.285 kHz: centro de actividad QRP SSB
14.300 - 14.350	2.700	Todos los modos	14.300 kHz: centro de actividad de emergencia mundial
18 MHz (17			
18.068 - 18.095	200	CW	18.086 kHz: centro de actividad QRP CW
18.095 - 18.105	500	Modos de banda estrecha	Modos digitales
18.105 - 18.109	500	Modos de banda estrecha	Modos digitales, estaciones de datos automáticas (desatendidas)
18.109 - 18.111		Balizas internacionales	Exclusivamente para balizas
18.111 - 18.120	2.700	Todos los modos	Modos digitales, estaciones de datos automáticas (desatendidas)
18.120 - 18.168	2.700	Todos los modos	18.120 kHz: centro de actividad QRP SSB, 18.150 kHz: centro de actividad de voz digital, 18.160 kHz: centro de actividad de

			emergencia mundial
21 MHz (15	m)		
21.000 - 21.070	200	CW	21.055 kHz: centro actividad QRS, 21.060 kHz: centro actividad QRP
21.070 - 21.090	500	Modos de banda estrecha	Modos digitales
21.090 - 21.110	500	Modos de banda estrecha	Modos digitales, estaciones de datos automáticas (desatendidas)
21.110 - 21.120	2.700	Todos los modos (no SSB)	Modos digitales, estaciones de datos automáticas (desatendidas), no SSB
21.120 - 21.149	500	Modos de banda estrecha	
21.149 - 21.151		Balizas internacionales	Exclusivamente para balizas
21.151 - 21.450	2.700	Todos los modos	21.180 kHz: centro de actividad de voz digital, 21.285 kHz: centro de actividad QRP SSB, 21.340 kHz: centro de actividad de imagen, 21.360 kHz: centro de actividad de emergencia mundial
24 MHz (12			
24.890 - 24.915	200	CW	24.906 kHz: centro de actividad QRP
24.915 - 24.925	500	Modos de banda estrecha	Modos digitales
24.925 - 24.929	500	Modos de banda estrecha	Modos digitales, estaciones de datos automáticas (desatendidas)
24.929 - 24.931		Balizas internacionales	Exclusivamente para balizas
24.931 - 24.940	2.700	Todos los modos	Modos digitales, estaciones de datos automáticas (desatendidas)
24.940 - 24.990	2.700	Todos los modos	24.960 kHz: centro de actividad de voz digital
28 MHz (10	m)		
28.000 - 28.070	200	CW	28.055 kHz: centro actividad QRS, 28.060 kHz: centro de actividad QRP
28.070 - 28.120	500	Modos de banda estrecha	Modos digitales
28.120 - 28.150	500	Modos de banda estrecha	Modos digitales, estaciones de datos automáticas (desatendidas)
28.150 - 28.190	500	Modos de banda estrecha	
28.190 - 28.199		Balizas internacionales	Balizas de la Región 1 a tiempo compartido
28.199 - 28.201		Balizas internacionales	Balizas mundiales a tiempo compartido
28.201 - 28.225		Balizas internacionales	Balizas en servicio continuo
28.225 - 28.300	2.700	Todos los modos	Balizas
28.300 - 28.320	2.700	Todos los modos	Modos digitales, estaciones de datos automáticas (desatendidas)
28.320 - 29.200	2.700	Todos los modos	28.330 kHz: centro de actividad de voz digital, 28.360 kHz: centro de actividad QRP SSB, 28.680 kHz: centro de actividad de imagen
29.200 - 29.300	6.000	Todos los modos	Modos digitales, estaciones de datos automáticas (desatendidas)
29.300 - 29.510	6.000	Satélites	Bajada de satélites
29.510 - 29.520		Canal de reserva	
29.520 - 29.590	6.000	Todos los modos	Entrada de repetidores FM (RH1 - RH8)
29.600	6.000	Todos los modos	Canal de llamada FM
29.610	6.000	Todos los modos	Repetidor FM simplex
29.620 - 29.700	6.000	Todos los modos	Salida de repetidores FM (RH1 - RH8)

DEFINICIONES

Todos los modos: SSB, CW y los relacionados como centro de actividad, más AM (hay que tener consideración hacia los usuarios de canales adyacentes)

Imagen: Cualquier modo de imagen analógica o digital dentro de los límites de anchura de banda, por ejemplo SSTV y FAX.

Modos de banda estrecha: Todos los modos con anchura de banda de hasta 500 Hz, que incluye CW, RTTY, PSK, etc.

Modos digitales: Cualquier modo digital dentro de dentro de los límites de anchura de banda, por ejemplo RTTY, PSK, MT63, etc.

NOTAS

- La AM se pude usar en las subbandas de fonía, teniendo consideración hacia los canales adyacentes.
- Los QSO en CW se aceptan en todas las bandas, salvo en los segmentos de balizas.
- No deben realizarse concursos en 10, 18 y 24 MHz.
- Se ruega a las sociedades miembro que pongan claramente en las bases de sus concursos los segmentos de operación, que deberían estar de acuerdo con los planes de bandas de IARU.
- A los radioaficionados no concursantes se recomienda que utilicen las bandas de HF libres de concursos (30, 17 y 12 metros) durante los grandes concursos internacionales
- El término "estaciones de datos automáticas" incluye las estaciones de almacenamiento y envío.
- Las frecuencias anunciadas en el plan de bandas se entiende que son "frecuencias transmitidas" (¡no las de portadora suprimida!).

Estaciones transmisoras desatendidas: Se ruega a las sociedades de la IARU que limiten esta actividad en las bandas de HF. Se recomienda que las estaciones transmisoras desatendidas se activen sólo bajo control de un operador, salvo en el caso de las balizas acordadas con el coordinar de Balizas de la IARU Región 1, o las estaciones experimentales con licencia especial.

Uso de la banda lateral: Por debajo de 10 MHz usar la banda lateral inferior (LSB) y por encima de 10 MHz, la banda lateral superior (USB).

- 135,7 kHz: La potencia máxima radiada en esta banda será de 1 W y se evitará causar interferencias a estaciones del servicio de navegación que operen en esta banda.
- **1,8 MHz**: Aquellas sociedades que tengan una atribución de SSB por debajo de 1840 kHz solamente pueden seguir utilizándola, pero se les pide que tomen las medidas pertinentes ante su Administración para que ajuste los segmentos de fonía al plan de bandas de la IARU Región 1.
- 3,5 MHz: La actividad intercontinental es prioritaria en los segmentos de 3500-3510 y 3775-3800 kHz.

Si no hay tráfico de DX implicado, los segmentos para concursos no deben incluir 3500-3510 ni 3775-3800 kHz. Las sociedades nacionales pueden establecer otros límites (más reducidos) para los concursos nacionales (dentro de estos límites).

El segmento de 3510-3600 kHz puede utilizarse para balizas ARDF desatendidas (CW).

Las sociedades miembro deberían contactar con sus autoridades para pedirles que no asignen frecuencias a otros servicios en los segmentos de banda que la IARU tiene asignado para tráfico internacional de larga distancia.

10 MHz: La SSB puede usarse en situaciones de emergencia.

El segmento de 10120-10140 kHz puede utilizarse en África subecuatorial para transmisiones en SSB durante las horas diurnas. No deben emitirse boletines de noticias en esta banda.

28 MHz: Las sociedades miembro deberían advertir a los operadores que no transmitan en las frecuencias comprendidas entre 29,3 y 29,51 MHz para evitar interferencias con la bajada de satélites.

Las frecuencias de operación en FM banda estrecha serán cada 10 kHz desde 29.210 hasta 29.290 kHz. Puede haber una desviación de +2,5 kHz con 2,5 kHz máximo de frecuencia de modulación.

50 a 52 MHz (6 m)

Frecuencia (kHz)	Anchura de banda (-6 dB)	Modo		Uso
50.000	500 Hz	Telegrafía en ex- clusiva (excepto balizas)	Reservado para el fu 50.000 - 50.010 50.012 - 50.020 50.020 - 50.030 50.050 50.090	uturo Proyecto de Balizas Sincronizadas: (a) Región 1 Región 2 Región 3 Futuro centro de actividad internacional en CW Centro de actividad internacional en CW
50.100	2.700 Hz	SSB Telegrafía	Segmento preferento 50.100 - 50.130 50.110 50.130 - 50.200 50.150	e para contactos internacionales Segmento intercontinental Centro de actividad intercontinental (b) Segmento internacional Centro de actividad internacional
50.200 50.300	2.700 Hz	SSB Telegrafía	Uso general 50.285	Para uso en banda cruzada
50.300 50.400	2.700 Hz	MGM Banda estrecha Telegrafía	50.305 50.310 - 50.320 50.320 - 50.380	Centro de actividad PSK Centro de actividad EME Centro de actividad MS
50.400 50.500	1.000 Hz	MGM Telegrafía	Balizas en exclusiva 50.401	Balizas WSPR (+/- 500 Hz)
50.500 52.000	12 kHz	Todos los modos	50.510 50.540 - 50.580 50.550 50.600 50.620 - 50.750 50.630 51.210 - 51.390 51.410 - 51.590 51.510 51.630 51.810 - 51.990	Pasarelas de voz a Internet en simplex FM Frecuencia de imagen RTTY Comunicaciones digitales Llamada DV Entrada repetidores FM/DV, canales de 20 kHz (c) FM/DV simplex (d) Frecuencia de llamada en FM Llamada DV (voz digital) Salida de repetidores FM, canales de 20 kHz (c)

NOTAS

a) La banda de 50,0 - 50,1 MHz está compartida actualmente con las balizas propagación, que migrarán a 50,4 - 50,5 MHz antes de agosto 2014 para dejar más espacio a la telegrafía y al nuevo proyecto de balizas sincronizadas.

- b) La frecuencia de llamada intercontinental de 50.110 kHz no debe usarse en ningún momento para llamadas dentro de Europa.
- c) Equipos canalizados: En esta banda, el espaciado de canales en FM banda estrecha es de 20/10 kHz.
- d) Este canal es para uso simplex sin pasarelas de voz digital (DV). Se permite el tráfico de datos con voz digital, en cuyo caso los usuarios de DV deben verificar antes que el canal no está en uso en otras modalidades.

Para la numeración de los canales, ver anexo más abajo.

En aquellos países europeos donde se permita la instalación de repetidores de FM en la banda de 50 MHz, se recomiendan los canales indicados en orden a establecer una uniformidad.

En aquellos países donde no se permitan repetidores que operen con frecuencias de salida por encima de 51 MHz, las frecuencias de salida pueden estar 500 kHz por debajo de las frecuencias de entrada del repetidor.

70 a 70,5 MHz (4 m)

Frecuencia (kHz)	Anchura de banda (-6 dB)	Modo		Uso
70.150 70.200	2.700 Hz	Todos los modos	70.200	Centro de actividad SSB/CW

(Autorizado hasta el 19 de enero de 2015)

144 - 146 MHz (2 m)

Frecuencia (kHz)	Anchura de banda (-6 dB)	Modo		Uso
144.000	, ,	Tolografía (a)	144.002,5 - 144.025,0	Satélites
	500 Hz	Telegrafía (a) EME	144.050	Llamada CW
144.110		CIVIC	144.100	MS sin cita previa
144.110	500 Hz	Telegrafía	144.110 - 144.160	EME, MGM
144.150	300 HZ	MGM	144.138	Centro de actividad PSK31
144.150	2.700 Hz	Telegrafía, SSB,	144.160 - 144.180	Segmento alternativo MGM
144.180	2.700 ⊓2	MGM	144.170	Llamada alternativa MGM
144.180	0.70011-	Tala	144.195 - 144.205	MS SSB sin cita alternativa
144.360	2.700 Hz	Telegrafía y SSB	144.300	Llamada SSB
144.360	0.700.11	Telegrafía, SSB,	444.070	Lla va alla FOKAAA
144.399	2.700 Hz	MGM	144.370	Llamada FSK441
144.400	500 11	Telegrafía	Balizas en exclusiva	
144.491	500 Hz	MGM	144.4920 ± 500 Hz	Balizas WSPR
144.500			144.500	Llamada SSTV
			144.525	Llamada/respuesta ATV SSB
			144.600	Llamada RTTY
	20 kHz	Todos los modos (b)	144.630 - 144.660	Salida transpondedor lineal
			144.660 - 144.690	Entrada transpondedor lineal
			144.700	Llamada fax
144.794			144.750	Llamada/respuesta ATV
144.794			144.800	APRS
144.9695				
		MGM (c)	144.8125	DV - Pasarela de voz a Internet
	12 kHz		144.8250	DV - Pasarela de voz a Internet
		Comunicaciones	144.8375	DV - Pasarela de voz a Internet
		digitales	144.8500	DV - Pasarela de voz a Internet
			144.8625	DV - Pasarela de voz a Internet
144.975	40111	EMAA (! '- ! (D) ()	144.9750 y 144.9875	Entrada de repetidores DV
145.194	12 kHz	FM/Voz digital (DV)	145.000 - 145.125	Entrada de repetidores en exclusiva (d)
145.194 145.206	12 kHz	FM/Voz digital (e)		Comunicaciones espaciales (f)
145.206			145.2375	Pasarela de voz a Internet en FM
			145.2875	Pasarela de voz a Internet en FM
	40 1.11-		145.300	RTTY local
	12 kHz	FM/Voz digital (e)	145.3375	Pasarela de voz a Internet en FM
			145.375	Llamada de voz digital
145.5625			145.500	Llamada FM
145.5750	40.111		145.5750 y 145.5875	Salida de repetidores de voz digital
	145.7935 12 kHz	FM/Voz digital	145.600 - 145.725	Salida de repetidores en exclusiva (d, g)

145.794 145.806	12 kHz	FM/Voz digital (e)	Comunicaciones espaciales (f)
145.806 146.000	12 kHz	Todos los modos (h)	Satélites en exclusiva

NOTAS

- a) La telegrafía se permite en toda la banda, excepto en los segmentos de balizas y repetidores; la telegrafía en exclusiva, entre 144.000 y 144.110, excepto la bajada a tierra de la salida de satélites.
- b) Ninguna estación desatendida utilizará el segmento todo-modo, excepto los transpondedores lineales y las balizas ARDF.
- c) Las estaciones desatendidas de radiopaquete y los puntos de acceso digital se permiten en el segmento de 144.800 144.9625 kHz, siempre que sea plenamente compatible con la canalización a 12,5 kHz.
- **d)** Si hubiera una necesidad real de más canales de repetidores, se recomienda instalarlos en bandas de frecuencia más elevadas. Se recomienda la canalización a 12.5 kHz.
- Se recomienda que los repetidores de FM incorporen subtonos, dando un período de transición hasta finales de 2014.
- **e)** Este canal es para uso simplex sin pasarelas de voz digital (DV). Se permite el tráfico de datos con voz digital, en cuyo caso los usuarios de DV deben verificar antes que el canal no está en uso en otras modalidades.
- f) Para las comunicaciones de voz NBFM con estaciones especiales como naves espaciales se recomienda el uso de 145.200 para operación en símplex o 145.200/145.800 kHz para operación en dúplex.
- g) Las frecuencias en símplex establecidas en los canales de salida de repetidores pueden quedarse ahí.
- h) En vista de la importancia que tienen los satélites de cara a las relaciones públicas, los satélites pueden usar la banda de 145,8 a 146,0 MHz.

430 a 440 MHz (70 cm)

Frecuencia (kHz)	Anchura de banda (-6 dB)	Modo		Uso
430.000 Plan de banda subregional (nacional) (a) 431.975	20 kHz	Todos los modos	430.025 - 430.375 430.400 - 430.575 430.600 - 430.925 430.925 - 431.025 431.050 - 431.825 431.625 - 431.975	Salida repetidores FM (F/PA/ON), canales de 12,5 kHz, desplazamiento de 1,6 MHz (b) Enlaces de comunicaciones digitales (c, d) Repetidores de comunicaciones digitales (c, d, e) Canales multimodo (d, e, f) Entrada repetidores (HB/DL/OE), canales de 25 kHz, desplazamiento de 7,6 MHz (b) Entrada repetidores (F/PA/ON), canales de 12,5 kHz, desplazamiento de 1,6 MHz (b)
432.000 432.025	500 Hz	Telegrafía (g)		Rebote lunar
432.025 432.100	500 Hz	Telegrafía (b) MGM	432.050 432.088	Centro de actividad en telegrafía Centro de actividad en PSK31
432.100 432.400	2700 Hz	Telegrafía SSB MGM	432.200 432.350 432.370	Centro de actividad en SSB Centro de actividad llamada-respuesta Llamada FSK441 sin cita previa
432.400 432.490	500 Hz	Telegrafía MGM		Balizas en exclusiva (h)
432.500	12 kHz	Todos los modos	432.500 432.600 432.700 (i)	Frecuencia APRS alternativa RTTY (ASK/PSK) FAX (ASK) Entrada repetidores, canales de 25 kHz, desplazamiento de 2 MHz (canales: 433.600-431.975) En el Reino Unido son para salida de repetidores.
432.975				
433.000 433.375	12 kHz	FM Voz digital Repetidores		Entrada repetidores, canales de 25 kHz, desplazamiento de 1,6 MHz (canales: 433.000-433.375)
433.400 433.575	12 kHz	FM Voz digital (j)	433.400 433.450 433.500	SSTV (FM/AFSK) Llamada voz digital Llamada FM Canales simplex de 25 kHz (433.400 - 433.575)
433.600	20 kHz	Todos los modos	433.600 433.625 - 433.775 433.700 433.800	RTTY (AFSK/FM) Comunicaciones digitales (c, k, l) Fax (FM/AFSK) APRS (sólo si no se pueda usar 144,800 MHz).
434.000			434.000	Frecuencia central para experimentos digitales (m)

434.000 434.594	12 kHz	Todos los modos y ATV (n)	434.450 - 434.5475	Canales para comunicaciones digitales (excepcionalmente) (c)
434.594 434.981	12 kHz	ATV y FM (n)		Salida repetidores, canales de 25 kHz, desplazamiento de 1,6 MHz (canales: 434.600 – 434.975.) En el Reino Unido son para entrada de repetidores.
435.000 438.000	20 kHz	Satélites y ATV (n)		
438.000			438.025 - 438.175	Comunicaciones digitales (c)
ATV (m) y			438.200 - 438.525	Repetidores de comunicaciones digitales (c, d, e)
plan banda			438.550 - 438.625	Canales multimodo (d, e, f)
subregional	20 kHz	Todos los modos	438.650 - 439.425	Salida repetidores (HB/DL/OE), canales de 25 kHz,
(nacional (a)				desplazamiento de 7,6 MHz (b)
(439.800 - 439.975	Enlace de comunicaciones digitales (c, d)
440.000			(i)	- , , ,

NOTAS

- **a)** "Subregional" significa que estas bandas han de coordinarse no a nivel de la Región 1 sino entre los países que las tienen atribuidas. "Nacional" se refiere a las bandas o segmentos que están permitidos en un solo país o en unos pocos.
- b) El sistema de repetidores de gran desplazamiento de Suiza, Alemania y Austria, en uso desde hace mucho tiempo, es importante de cara a un mejor uso de toda la banda, de ahí que la IARU Región 1 haga suyo el sistema. Esto también se aplica al sistema francés, holandés y belga, que la IARU Región 1 apoya como una medida útil para rellena una parte no utilizada de la banda.
- c) En el plan de bandas se han designado los siguientes segmentos para comunicaciones digitales:
 - i) 430.544 430.991 kHz Extensión de la entrada del sistema de repetidores de 7,6 MHz a las CC.DD.
 - 437.194 438.531 kHz Canales de salida para los anteriores.
 - ii) 433.619 433.781 kHz
 - 433.019 438.181 kHz
 - iii) 430.394 430.581 Enlaces de comunicaciones digitales
 - 439.794 439-981 Enlaces de comunicaciones digitales
- d) Cuando se pretenda instalar un repetidor o enlace a menos de 150 km de la frontera, la sociedad promotora ha de coordinar la frecuencia y las condiciones técnicas con la sociedad de la IARU del país vecino. Deberá ponerse especial atención en utilizar antenas direccionales y el mínimo de potencia necesaria.

Esté acuerdo también es válido para cualquier experimento de enlace que se lleve a cabo en los canales multimodo, segmento 438.544 - 438.631 kHz.

- e) En el Reino Unido están permitidos los repetidores de fonía de baja potencia en el segmento 438.419 438.581 kHz.
- f) Estos canales multimodo han de utilizarse para experimentar con nuevas tecnologías de transmisión.
- g) La telegrafía se permite en todo el segmento de DX en banda estrecha; la telegrafía en exclusiva, entre 432.000 y 432.100 kHz. El modo PSK31 puede usarse también en este segmento.
- h) Las frecuencias de balizas de más de 50 vatios de potencia están bajo control del coordinador de balizas de la IARU Región 1.
- i) En algunos países existen estos usos:
- 432.500-432-600: Entrada de transpondedores lineales
- 432.600-432.800: Salida de transpondedores lineales
- 439.9875: POCSAG
- j) Se permite el tráfico de datos integrados junto con la voz digital. Los usuarios de voz digital deben comprobar antes que el canal no está ocupado con otros modos.
- k) En países donde el único segmento disponible para comunicaciones digitales sea el de 433.619 433.781 kHz, no deben usarse las técnicas de modulación que requieran una separación de canales superior a 25 kHz. En caso de que los países vecinos tengan otro uso distinto o incompatible de este segmento, deberían coordinarse entre ellos para evitar interferencias
- I) En plan temporal, en países donde el único segmento disponible para comunicaciones digitales sea el de 433.619 433.781 kHz,
 - 1. Pueden usarse las siguientes frecuencias centrales en comunicaciones digitales: 432.700, 432.725, 432.750, 432.775, 434.450, 434.475, 434.500 y 434.575.
 - 2. El uso de estos canales no deben interferir a los transpondedores lineales.
 - 3. N deben usarse técnicas de modulación que requieran una separación de canales superior a 25 kHz.
- **m)** Los experimentos en modos digitales de banda ancha pueden realizarse en la banda de 435 MHz en aquellos países que tengan los 10 MHz completos concedidos. Estos experimentos deberían hacerse en los alrededores de 434 MHz, usando antenas de polarización horizontal y con la potencia mínima necesaria.
- n) A los operadores de ATV se les anima a que utilicen los segmentos de microondas allí donde estén autorizados, pero pueden seguir utilizando la banda de 430 MHz, teniendo en cuenta que, en caso de interferencias entre ATV y satélites, tienen prioridad los satélites. Las transmisiones en ATV deben tener lugar en el segmento de 434.000 440.000 kHz. La portadora de vídeo ha de estar por debajo de 434.500 o por encima de 438.500 kHz.

Notas generales

- En Europa no deben permitirse repetidores de FM entre 432 y 433 MHz.
- Para la numeración de canales, ver anexo más abajo.

1.240 a 1.300 MHz (23 cm)

Frecuencia (MHz)	Anchura de banda (-6 dB)	Modo		Uso
1.240,000 1.243,250	20 kHz	Todos los modos	1.240,000 - 1.241,000 1.242,025 - 1.242,250 1.242,250 - 1.242,700 1.242,725 - 1.243,250	Comunicaciones digitales (a) Salida repetidores, canales RS1-RS10 Salida repetidores, canales RS11-RS28 Radiopaquete dúplex, canales RS29 – RS50
1.243,250 1.260,000	(a)	ATV ATV Digital	1.258,150 - 1.259,350	Salida repetidores, canales R20-R68
1.260,000 1.270,000	(a)	Satélites		
1.270,000 1.272,000	20 kHz	Todos los modos	1.270,025 - 1.270,700 1.270,725 - 1.271,250	Entrada repetidores, canales RS1-RS28 Radiopaquete dúplex, canales RS29-RS50
1.272,000 1.090,994	(a)	ATV		Incluye DATV
1.290,994 1.291,481	20 kHz	Entrada repetidores FM, voz digital	1.291,000 – 1.291,475	Canales de 25 kHz, RM0 a RM19
1.291,494 1.296,000	(a)	Todos los modos	1.293,150 - 1.294,350	Entrada repetidores, canales R20 - R68.
1.296,000 1.296,150	500 kHz	Telegrafía MGM	1.296,000 - 1.296,025 1.296,138	Rebote lunar Centro de actividad en PSK31
1.296,150	2700 Hz	Telegrafía SSB MGM	1.296,200 1.296,400 - 1.296,600 1.296,500 1.296,600 1.296,600 - 1.296,700 1.296,750 - 1.296,800	Centro actividad en banda estrecha Entrada de transpondedores lineales Centro de imagen (SSTV, Fax, etc.) Centro de datos (RTTY, MGM) Salida de transpondedores lineales Baliza local (10 W máx)
1.296,800 1.296,800 1.296,994			1.290,730 - 1.290,800	Balizas en exclusiva (b)
1.296,994 1.297,481	20 kHz	Salida repetidores FM	1.297,000 – 1.297,475	Canales de 25 kHz, RM0 - RM19
1.297,494	20 kHz	FM (c) Voz digital (d)	1.297,000 – 1.297,975 1.297,500 1.297,725 1.297,900 – 1297,975	Canales símplex de 25 kHz, SM20 - SM39 Centro de actividad FM Llamada de voz digital Pasarela de voz a Internet
1.298,000 1.299,000	20 kHz	Todos los modos	1.298,025 - 1.298,975	Uso mixto analógico o digital (canales RS1 - RS39)
1.299,000 1.299,750	150 kHz	Todos los modos	1.299,075 – 1.299,675	Datos digitales en alta velocidad (5 canales)
1.299,750 1.300,000	20 kHz	Todos los modos	1.299,775 – 1.299,975	FM o voz digital (8 canales)

NOTAS

- a) La anchura máxima de banda, según la legislación nacional.
- b) Las frecuencias de balizas de más de 50 vatios de potencia están bajo control del coordinador de balizas de la IARU Región 1.
- c) En países donde el segmento 1298 1300 MHz no esté asignado al servicio de aficionados (por ejemplo, Italia), puede usarse también el segmento de FM símplex para comunicaciones digitales.
- d) Se permite el tráfico de datos integrados junto con la voz digital. Los usuarios de voz digital deben comprobar antes que el canal no está ocupado con otros modos.

General: Durante los concursos y aperturas de banda, el tráfico local en banda estrecha debe realizarse entre 1296,500 y 1296,800 MHz.

2.300 a 2.400 MHz (13 cm)

Frecuencia (MHz)	Anchura de banda	Modo	Uso
2.300,000 2.320,000	20 kHz	Todos los modos	
2.320,000 2.320,150	500 Hz	CW	2.320,000 - 2.320,025 Rebote lunar 2.320,138 Centro de actividad PSK31
2.320,150 2.320,800	2700 Hz	CW/SSB	2.320,200 Centro de actividad SSB 2.320,750 - 2.320,800 Balizas locales
2.320,800		Balizas en exclusiva	

2.321,000				
2.321,000	20 kHz	FM y voz digital		
2.322,000	20 KI IZ	Símplex y repetidores		
2.322,000			2.322 - 2.355	ATV
			2.355 - 2.365	Comunicaciones digitales
		Todos los modos	2.365 - 2.370	Repetidores
			2.370 - 2.392	ATV
2.400,000			2.392 - 2.400	Comunicaciones digitales
2.400,000		Satélites	2.427 - 2.443	ATV si ningún satélite utiliza este
2.450,000		Satemes	2.421 - 2.443	segmento

(Para usar esta banda se requiere autorización previa en España, salvo la subbanda 2316 a 2332 MHz).

NOTAS

- No se permite el uso de la modulación de frecuencia (FM) en el segmento 2320.000 2321.000 MHz
- El modo de emisión para banda lateral única es USB.
- El segmento 2400 2450 MHz está también atribuido a aplicaciones ICM: Se deben aceptar la interferencias perjudiciales provenientes de este uso.

5.650 a 5.850 MHz (6 cm)

Frecuencia (MHz)	Anchura de banda	Modo		Uso
5.650,000 5.668,000	2700 Hz	Todos los modos	Subida de satélites	
5.668,000 5.670,000	2700 Hz	Todos los modos	Bajada de satélites 5.668,200	Centro de actividad en banda estrecha
5.670,000 5.700,000		MGM		
5.700,000 5.720,000		ATV		
5.720,000 5.760,000		Todos los modos		
5.760,000 5.760,800	2700 Hz	Todos los modos	5.760,200 5.760,750 - 5.760,800	Centro de actividad en banda estrecha Balizas locales
5.760,800 5.760,990		Telegrafía MGM	Balizas solamente	
5.761,000 5.790,000		Todos los modos		
5.790,000 5.850,000		Todos los modos	Bajada de satélites	

(Para usar esta banda se requiere autorización previa en España, salvo la subbanda 5660 a 5684 MHz)

NOTAS: Se recomienda a los usuarios de la banda que hagan todo lo posible por estar activos en ambos segmentos de banda estrecha.

10,000 a 10,500 GHz (3 cm)

Frecuencia (GHz)	Anchura de banda	Modo		Uso
10,000 10,150		MGM		
10,150 10,250		Todos los modos		
10,250 10,350		MGM		
10,350 10,368		Todos los modos		
10,368 10,368.800	2700 Hz	Todos los modos	10,3682 10,368.750-10,368.800	Centro de actividad en banda estrecha Balizas locales
10,368.800 10,368.990			Balizas solamente	

10,369 10,450	Todos los modos		
10,450	To be be seen to	10,450 - 10,452	Banda estrecha en países donde no
10,500	Todos los modos	Satélites	esté disponible 10,368-10,370

24,000 a 24,250 GHz (1,5 cm)

Frecuencia (GHz)	Anchura de banda	Modo		Uso
24,000 24,048		Todos los modos		
24,048 24,048.800	2700 Hz	Todos los modos	24,0482 Satélites	Centro de actividad de banda estrecha
			24,048.750-24,058.800	Balizas locales
24,048.800 24,048.995		Todos los modos	Balizas	
24,049 24,050	2700 Hz	Todos los modos	Satélites y modos de ba	ndas estrecha
24,050 24,250		Todos los modos	24,125	Frecuencia de operación para equipos de banda ancha

NOTAS

24,00-24,05: No se necesita autorización individual para su uso en España. **24,05-24,25:** Se necesita autorización individual para su uso en España.

47,000 a 47,200 GHz (6 mm)

Frecuencia (GHz)	Anchura de banda	Modo		Uso
47,000		Todos los modos		
47,088				
47,088	2700 Hz	Todos los modos	47,088.200	Centro de actividad de banda estrecha
47,090			Satélites	
47,090	Todos los mo	Todos los modos		
47.200		Todos los modos		

ANEXO:

SISTEMA DE DENOMINACIÓN DE CANALES DE FM BANDA ESTRECHA EN VHF/UHF

Aunque los canales de FM banda estrecha se pueden referenciar por su frecuencia central, se recomienda el siguiente sistema de designación de canales en 50, 145 y 435 MHz.

(NOTA: Para las bandas de microondas, se sigue recomendando aún el antiguo sistema de numeración, tal como se indica en el plan de bandas.)

El sistema se basa en los principios siguientes:

1) Una letra específica en cada banda:

51 MHz: **F** 145 MHz: **V** 435 MHz: **U**

- 2) A cada letra le seguirán dos (para 50 y 145 MHz) o tres (para 435 MHz) dígitos indicando el canal.
- 3) Si un canal se usa como salida de repetidor, el conjunto alfanumérico irá precedido de la letra "R".
- 4) En la banda de 50 MHz los números de los canales empezarán por F00 en 51,000 MHz y aumentarán de uno en uno por cada 10 kHz.

- 5) En la banda de 145 MHz los números de los canales empezarán por V00 en 145,000 MHz y aumentarán de uno en uno por cada 12,5 kHz.
- 6) En la banda de 435 MHz los números de los canales empezarán por U000 en 430 MHz y aumentarán de uno en uno por cada 12,5 kHz.

Ejemplos

F5 51,510 MHz - frecuencia símplex
RF81 51,810 MHz - frecuencia de salida de repetidor
V40 145,500 MHz - frecuencia símplex (antiguo S20)
RV48 145,600 MHz - frecuencia de salida de repetidor (antiguo R0)
U280 433.500 MHz - frecuencia símplex (antiguo SU20)
RU002 430,025 MHz - frecuencia de salida de repetidor (antiguo FRU1)
RU242 433,025 MHz - frecuencia de salida de repetidor (antiguo RB1)

434,600 MHz - frecuencia de salida de repetidor (antiguo RU0) 438.650 MHz - frecuencia de salida de repetidor (antiguo R70)

NOTAS: En la banda de 50 MHz no se establecen canales de FM banda estrecha por debajo de 51 MHz. (Ver también nota "e" al plan de bandas de 50 MHz)

En la banda de 145 MHz los canales de FM banda estrecha sólo existen en el segmento 145.000 - 145.800 kHz (el último canal puede utilizarse como enlace de bajada por parte de las estaciones espaciales).

En la banda de 435 MHz, no se establecen canales de FM banda estrecha en el segmento de 432.000 MHz - 433.000 kHz.

SIGLAS:

RU368

RU692

AFSK (Audio-Frequency Shift Keying) = Manipulación por desplazamiento de audiofrecuencia. Método de RTTY usado en FM

AMTOR (Amateur Microprocessor Teleprinting Over Radio) = Modo semejante al RTTY que posibilita la corrección de errores.

APRS (Automatic Packet/Position Reporting System) = Sistema automático de información de posición, que usa mapas digitales para posicionar en ellos estaciones y objetos.

ASK (Amplitude-Shift Keying) = Manipulación por desplazamiento de amplitud.

ATV (Amateur TV) = Televisión de aficionados.

EME (Earth-Moon-Earth) = Rebote lunar.

FAI: (Field Aligned Irregularities) = Propagación por irregularidades del campo magnético.

FSK (Frequency Shift Keying) = Manipulación por desplazamiento de frecuencia. Método de RTTY usado en SSB.

FSK441 = Variante del modo FSK a 441 baudios, diseñado para MS.

IBP (International Beacon Project) = Proyecto Internacional de Balizas

JT44 = Modo digital de transmisión, diseñado por K1JT, usado en rebote lunar.

MGM (Machine Generated Mode) = Modos generados por máquinas (RTTY, AMTOR, PSK31, FSK441 y semejantes).

MS (Metteor Scatter) = Propagación por dispersión meteórica.

NBFM (*Narrow Band Frequency Modulation*) = FM en banda estrecha.

POCSAG (Post Office Code Standardization Advisory Group) = Protocolo de transmisión de datos para avisos.

PSK (*Phase-Shif Keying*) = Manipulación por desplazamiento de fase. Método de RTTY que se emplea tanto en SSB como en FM.

PSK31 (*Phase-Shif Keying 31*) = Modulación PSK a 31,25 baudios. Modo similar al RTTY para realizar contactos en tiempo real v sin protocolo a nivel de enlace.

RTTY (RadioTeleTYpe) = Radioteletipo

SSTV (Slow Scan TV) = Televisión de barrido lento.

WSPR (Weak Signal Propagation Reporter) = Balizas QRP

10 Anexo 2, proceso de montaje de los elementos que componen la estación diseñados específicamente para dicha estación.

10.1 Conmutador de antenas.

Para el montaje del conmutador de antenas se usó una placa de baquelita de topos de las usadas para prototipos por su elevada versatilidad. Los relés usados son del tipo 1 circuito de 12V *FINDER MOD.40.31*.

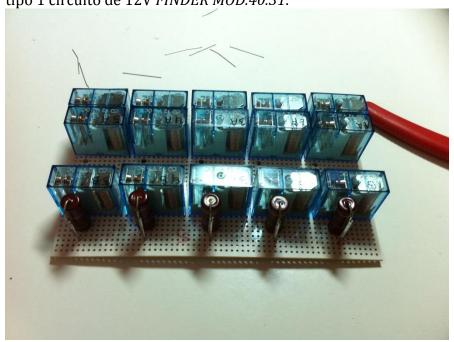


Fig. 41: Placa de topos de baquelita con los relés y las resistencias ya montadas. Las resistencias terminales son de 510hm y 5W de potencia.

Fig. 42: Resistencias terminales del conmutador de antenas. Los relés incorporan condensadores de 1nF y un diodo 1N4148 entre sus contactos para evitar el *repiqueteo* producido por estos cuando trabajan en entornos con radiofrecuencia.

En la figura siguiente se muestra una vista general del conmutador durante el proceso de montaje.

Fig. 43: Vista general del conmutador terminado con todas sus conexiones. La placa superior izquierda que contiene dos relés es la encargada de la antena de recepción, se dejó un relé de reserva para poner en un futuro antena de recepción en el equipo 2 también.

10.2 Sistema de filtrado, filtros pasa banda.

Los filtros pasa banda se han construido basándose en el diseño del fabricante *Dunestar* obtenido de internet y mediante el análisis de otros circuitos similares. Estos se han construido mediante placa de circuito impreso de fibra de vidrio por el método del insolado, revelado y posterior atacado con cloruro férrico. Las bobinas se han bobinado al aire sobre una forma de 25mm de diámetro mediante hilo de 1.8 y 2.1mm de diámetro, según la banda. Los condensadores usados son de material cerámico y de mica, de voltaje mínimo de 1Kv para asegurar el correcto funcionamiento hasta una potencia aproximada de 150W.

Fig. 44: Vista general de una placa de filtros para las 6 bandas de frecuencia

Los relés usados para la conmutación de cada filtro son relés de 1 circuito a 12v, usando dos por cada filtro, obteniendo así una atenuación mínima en el peor caso de aproximadamente 50dB entre bandas adyacentes.

Cada conjunto de seis filtros están ubicados de manera conjunta sobre la misma placa de fibra de vidrio aislando físicamente cada filtro mediante trozos de placa de circuito impreso conectada a masa para evitar las interferencias por radiación. Ambos conjuntos de filtros y relés selectores se han ubicado en el interior de una caja metálica procedente de reciclaje.

Fig. 45: Vista general de los filtros con los relés de conmutación dentro de la caja metálica.

El esquema general de un conjunto de filtros quedaría de la siguiente manera.

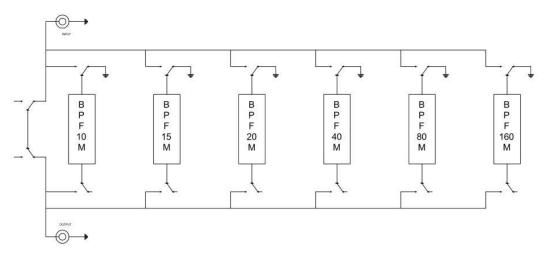


Fig. 46: Esquema general de un grupo de filtros.

La banda de filtrado más próxima al inicio será la correspondiente a la frecuencia mayor, con el fin de minimizar las perdidas.

10.3 Proceso de montaje de la caja de conmutación de audio y micrófono SO2R.

Para la construcción de dicho elemento se han tenido en cuenta la importancia de elaborar y asegurar la calidad de las conexiones de los diferentes conductores dado que de no ser así podría provocar molestos ruidos e interferencias.

El esquema adoptado se ha descrito anteriormente, y en dicho esquema se le ha incorporado diferentes elementos para adaptar este a las necesidades propias de la estación objeto de diseño.

Este incorpora un alimentador de micrófono que corresponde con el siguiente esquema:

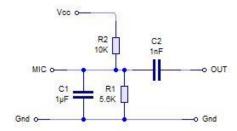


Fig. 47: alimentador micrófono electret

Fig. 48: Vista del panel frontal.

11 Anexo 3, mediciones.

11.2 Conmutador de antenas

Para determinar la calidad obtenida en el montaje del conmutador de antenas se ha probado el aislamiento entre conexiones y las pérdidas derivadas de los circuitos y demás elementos internos.

Para ello se ha usado un generador de onda senoidal, y se ha comparado la onda obtenida en la entrada y en la salida del conmutador mediante un osciloscopio digital, obteniendo de manera aproximada los siguientes resultados.

Aislamiento entre conector A y conector B:

- 74db a 28MHz
- 68db a 50MHz

Aislamiento entre 2 conectores consecutivos:

• 50db a 28MHz

Aislamiento entre conectores separados 2 conectores (ej. Conector 0 y conector 2)

• 60db a 28MHz

Aislamiento en conector 1 y en el 5 con el conector 0 seleccionado por equipo A o por B

• 72db con el equipo A y 40db con el equipo b

11.3 Sistema de filtrado. Filtros pasa banda

Para su ajuste se ha utilizado un generador de funciones de onda senoidal y un osciloscopio comparando las señales a la entrada y la salida del mismo obteniendo de manera aproximada los siguientes resultados.

Banda	160m	80m	40m	20m	15m	10m
Filtro						
160m	0.6	32	49	36	28	23
80m	52	8.0	36	53	37	38
40m	46	50	0.9	56	41	46
20m	48	43	40	0.4	50	37
15m	47	44	40	42	0.6	42
10m	55	49	44	43	34	0.8

Tabla 1: Atenuaciones según filtro seleccionado y banda, unidades en db.

12 Anexo 4, Tabla comparativa de equipos transceptores.

ARRL - QST	T X												R X																
	ESPUREAS	IMD	IMD	Ruido	OSCILADOR		RMDR		M	DS	BDR	80м		BDR	20M		IMDDR	80м		IMDDR	20M			80m			20m		
		3RD	5тн	2 KHz	20 KHz	20 KHZ	5 KHZ	2 KHZ	80m	20M	20 KHZ	5 KHZ	2 KHZ	20 KHZ	5 KHZ	2 KHZ	20 KHZ	5 KHZ	2 KHZ	20 KHZ	5 KHZ	2 KHZ	20 Khz	5 Khz	2 Khz	20 Khz	5 Khz	2 Khz	
DRAKE R-4C SHERWOOD									143	143	131	127		131	127		119	118		119	118		66	207		66	64		
Drake R-7									139	139	120			120			100			100			180			41			
ICOM IC-R9500									142	142	144			144			100			103	102	99	180	180	180	43	41	37	
PERSEUS									129	127	115	104	98	117	105	99	100			100	97	97	180			53	49	49	
RF SPACE SDR-14										125				110						34									
RF SPACE SDR-IQ									120	120	114	104	114	114	104	114													
ROHDE & SCHWARZ XK2100L	70	36	50	68	106	99	75	63	127	132				147	111	102				106	103	98							
SRL QSIR									118	118	122	122	122	122	122	122													
WINRADIO WR-G3IDDC						128	128	128	130	130	127	127	127	128	128	128	107			107			63			61			
DRAKE TR-7	46	32	36						133	133	120			120			84			90			156			32			
ELECRAFT K2	44	29	44						136	137	136	126		136	126		100	88		98	88		180	162		40	25		
ELECRAFT K3	52	29	43	95	115	116	106	95	138	138	142	140	139	142	140	140	108			106	105	103	76			51	50	47	
ELECRAFT K3/100	52	29	43	94	119	112	100	86	138	138	142	140	139	142	140	140	108			106	105	105	80			51	50	50	
ELECRAFT KX3	60	36	43	120	124	120	119	114	139	139	136	131	131	135	130	128	101			103	103		62			46	46		
FLEX 3000	54	31	36						122	135	III	111	111	114	113	113	Ш			99	98	95	197			44	42	38	
FLEXRADIO SDR-1000	55	26	37						132	130	Ш	111	Ш	Ш	111	Ш	97	97	97	99	99	99	176	176	176	49	49	49	
FLEXRADIO FLEX-1500	56	31	41						131	132	107	107	107	107	107	107	93			100	86	86	170			48	27	27	
FLEXRADIO FLEX-3000	54	31	36	91	95	114	114	114	122	135	Ш	111	Ш	II2	112	II2	101			97	96	95	68			41	39	38	
FLEXRADIO FLEX-5000	51	34	40						129	132	123	123	123	123	123	123	94			99	99	99	171			47	47	47	
FLEXRADIO FLEX-6300	65	41	42	145	148	121	117	116	119	119	129	128	128	127	127	126	81			89	92	92							
FLEXRADIO FLEX-6700	68	41	44	137	144	124	117	116	140	140	126	126	126	130	128	128	103			107	103	103							
HILBERLING PT-8000A	55	35	48	120	122	112	111	103	142	142	145	135	135	144	140	140	96			103	98	97							
ICOM IC-7000	59	33	50						139	138	Ш	88	86	II2	88	86	89	78	60	89	79	63	164	147		26	11		
ICOM IC-703	54	24	46						4	4	127	95		122	95		93	78		91	76		170	147	147	26	3	3	
ICOM IC-706 MKIIG	53	30	33						142	142	118	86		120	86		87	74		86	74		161	141		17	-1		
ICOM IC-7200	57	32	31						4	4	137	101	82	138	102	83	100			99	83	67	180		141	38	14	-11	
ICOM IC-736	49	24	37	105	123				139	139	118			130			94			95									
ICOM IC-737	50	39	48	115	130				139	137	122			122			98			95									
ICOM IC-738	53	40	40	114	130				138	139	II6			119			98			94									
ICOM IC-746	58	23	37						143	143	II5	88		113	88		96	78		92	78		174	147		25	4		
ICOM IC-7410	70	30	35	78	99	101	88	78	44	143	144	118	Ш	143	117	Ш	107			107	98	88	90			48	34	19	
ICOM IC-746 PRO	58	25	44						142	142	117			118			91			92			167			26		igspace	
ICOM IC-75I	60	36	44						142	138							93			93								\perp	
ICOM IC-756	54	20	30						139	139	137			132			93			97			170			37			
ICOM IC-756 PRO	57	_	49			<u> </u>			4		122	104		120	104		90	80		88	80		165	150		22	10		
ICOM IC-756 PRO II	57		40						143	4	119	102		118	100		102	77		97	76		183	146		35	3		
ICOM IC-756 PRO III	58	31							140	140	122	102		118	101	99	102	78		103	74	73	183	147		45	1		
ICOM IC-756 PRO III INRAD	58	31							140	140				139	119	98				105	100	76	400			48	40	4	
ICOM IC-76I	56	37	45						140	139	126			131			100			102			180	455		44	40		
ICOM IC-765	64	40	44	98	108				142	142	148	118		146	118		98	83		96	83		177	155		32	13		
ICOM IC-7600	70	_	3 5	78	103	105	91	82	4	[4]	122	111	99	123	113	102	104			106	94	88	81			48	30	21	
ICOM IC-7700	61		41	75	107	109	91	78	144		125	103	103	125	103	102	103			115	96	95	76			60	31	30	
ICOM IC-775 DSP	60	36	42	88	110				143		139	104	103	137	104		106	77		106	77		189	146		46	3		
ICOM IC-7100	65	34	43	115	126	103	85	84	140	140	121	91	90	120	90	89	94			95	70	68						lacksquare	
ICOM IC-7800	63	30	50	78	114				4	142	139	114		138	115		105	88		104	89		188	162		44	22		
ICOM IC-7800 II	63	32		75	Ш	_			140	4	143	127	114	144	127	117	106	95	86	108	96	86	189	173	159	51	33	18	
ICOM IC-78I	63	37	39						137	134	133			133			97			100			176			46		\perp	
ICOM IC-9100	68		36	77	100	101	80	77	144	143	4	121	Ш	142	120	Ш				81						9			
JRC JST-245	58	39	56						138	138	123			126			92			95			168			35			
KACHINA 505 DSP	53	36	44						140	142	100			103			94			97			171			34			

					I		r						-		1	T I			1			1			1			<u>, </u>
KENWOOD TS-2000	55	27	42						138	137	127	99		126	99		96	67		94	67		1/4	131		34	-/	
KENWOOD TS-440S	43	28	46						140	139	II2			Ш			89			89			164			25		↓
KENWOOD TS-450S	50	35	49						140	4	109			108			70			71			135			-5		ļ
KENWOOD TS-480 HX	58	26	39						4	4	122	98		123	98		99	76		99	75		179	144		38	2	<u> </u>
KENWOOD TS-50 S	50	30	42						139	139	110			109			86			88			159			23		<u> </u>
KENWOOD TS-530 S	42	28	40						135	136	II2			120			88			90			162			29		
KENWOOD TS-570 SG	57	30	45						140	139	119	87		115	87		99	72		97	72		179	138		37	-1	
KENWOOD TS-590 S	56	29	32	32	108	120	106	91	139	139	140	140	120	141	4	121	104			106	106	97	66			50	50	37
KENWOOD TS-590 SG	61	31	38	105	132	118	106	94	137	137	139	139	132	139	139	130	98			106	106	106						
KENWOOD TS-830S	62	32							136	136	129						89			89			164			28		
KENWOOD TS-850S	64	28	40						143	4	141			148			100			99			180			38		
KENWOOD TS-870S	60	32	47						4	139	127			127			99			97			179			37		
KENWOOD TS-930S	50	3 5	42						139	139	139			139			87,5			86,5			161			21		
KENWOOD TS-940S	54	37	43						140	139	4			138			93			97			170			37		
KENWOOD TS-950SD	55	42	46						143	142	139			139			99			101			179			40		
KENWOOD TS-990S - MAIN	69	31	46	81	108	117	101	87	139	138	149	139	134	148	138	133	104			113	III	101						
KENWOOD TS-990S - SUB	69	31	46	81	108	117	105	94	138	137	145	138	138	143	138	130				107	107	98						
SSB ZEUS ZS-I	62	34	51	125	126	128	123	120	138	136	125	125	125	129	129	129	98			105	105	100						
TEN-TEC ARGONAUT VI	46	30	36						136	135							94			96	96	96	171			39	39	39
TEN-TEC EAGLE	>60	28							133	134	137	134	127	137	133	126	97			102	98	98	176			49	43	43
TEN-TEC OMNI V	48	30	45						135	136	135			135			95			97			173			40		
TEN-TEC OMNI VI	41	39	39						134	136	124	119		128	119		95	86		100	86		173	159		44	23	
TEN-TEC OMNI VI PLUS	43	26	43						135	133	123	119		123	119		98	86		97	86		177	159		43	26	
TEN-TEC OMNI VII	52	27	53						139	140	137	134	134	137	135	134	92	84	82	91	84	82	168	156	153	27	16	13
TEN-TEC ORION	53	32	42	138	136				134	136	130	130	10 4	130	130	104	95	94	ÜL.	95	93	Ü.	173	171	.00	37	34	<u> </u>
TEN-TEC ORION II	52	28	42	128	123				138	137	139	139	139	136	136	136	96	98	94	92	96	95	174	177	171	31	37	34
TEN-TEC PARAGON	56	33	49	120	120				1/.0	137	138	10 /	10 7	136	100	100	102	/ 0	74	101	70	70	183	.,,		45	Ų.	
YAESU FT-100	40	29	47						138	137	121			125			88			91			162			30		
YAESU FT-1000 D	45	36	42	93	103				136	136	137	68		154	68		94	72		98	72		171	138		41	2	
YAESU FT-1000 MKV	60	44		81	103				136	135	129	106		129	106		98	78		101	78		177	147		47	12	
YAESU FT-1000 MKV FIELD	60	36	58	O1	111				135	133	123	100		122	100		94	76		98	73		171	141		44	7	
YAESU FT-1000 MKV INRAD	60	44							100	100	123	107		146	130		94	74		93	89		17.1	141		44	-	
YAESU FT-1000 MP	55	27	45						130	135	139			137	150		91			93	09		167			36		
	55 55	27	45						130	100	139				128		91				90		107			30		
YAESU FT-1000 MP INRAD	47								177	177				4	120		0.2			100	90		153			32		
YAESU FT-107M YAESU FT-2000	47	32	40						133	133	176	107	91	126	108	92	82	07	4.7	90 95	0.5	64		156	125	_	17	-15
	60			77	0.0	107	0.6	77	-		130			126			100	84	63		1			150	125	18	9	-24
YAESU FT-2000 D	62		47 27	76 61	98	103 98	86 83	76 74	136	135 136	139	93	85 87	136	106 93	87	83			82	76	54 76	52 84			43	23	8
YAESU FT-450 D	60 50			61	86	98	83	/4			137	93	67	136	93	88	101			99	86	76	159				23	0
YAESU FT-817	50		46						133	134	107			106			86			87						27		1
YAESU FT-840	50 50	28	49						137		108	0.0		113	0.0		90	7.7		90	77		165	140		27	4	
YAESU FT-847	50	28	31						137	136	109	82		109	82		90	73		89	73		165	140		28 24	4	├ ──
YAESU FT-857	53	25							136	137	109			109			88			87			162					1
YAESU FT-897	53	23							137	137				109			91			89			167			27		1
YAESU FT-920	53	25		7.7	0.0	0.1		5.7		138	134	110	0.7	131	144	0.0	99			98	61	71	179			39	20	1
YAESU FT-950	62		40	73	98	86	69	57			129	112	97	128	111	98	90			95	91	71	79			36	30	-1
YAESU FT-990	49	38	47								130		1.0	131			94			92			171			39	40	45
YAESU FT-DX 1200	57	32	35	81	103	104	91	81		140	140	130	124	138	131	123	94			101	100	83	67			42	40	15
YAESU FT-DX 3000	62		40	78	91	106	93	82	4		4	132	127	142	132	127	104			110	105	100	80			53	46	38
YAESU FT-DX 5000	54	43		120	131	109	109	104	143	_	146	136	136	146	136	136	109			114	114	114	85			59	59	59
YAESU FT-DX 9000 CONTEST	56		>64	95	113					_	134	118	97	133	119	97	99	99	78	101	98	78	179	179	147	49	44	14
YAESU FT-DX 9000 D	46	43	63	93	110				132	134	135	125		138	130	114	98	95		100	98	87	177	173		46	43	27
YAESU FT-DX 9000 MP	60	37	53	78	98	114	105	92	130	131	136	124	99	137	122	102	97			99	99	85	62			48	48	27

13 Bibliografía

- Devoldere, John, ON4UN, "Low-band DXing", ARRL
- Reglamento electrotécnico para baja tensión
- Wetherhold, Ed, W3NQN, "Clean up your signals with Band-Pass Filters-Part 1, Part 2", ARRL QST
- <u>www.universal-radio.com</u>
- www.televes.com
- <u>www.arrl.org</u>
- J. Rosales, Juan, EA9IE "Recopilación de artículos sobre el DX"
- Cardama Aznar, Jofre Roca, Rius Casals, Romeu Robert, Blanch Boris, Ferrando Bataller *"Antenas"* Ed. UPC