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Abstract 

In this article we propose a new pixellation scheme which makes it possible to speed up the time of reconstruction. This proposal 
consists in splitting the field of view of the scanner into as many circular sectors as rotation positions of the detector. The sectors 
are pixellated using circular pixels whose size is always smaller than the resolution needed. The geometry of the pixels and the 
arrangement on circular sectors make it possible to compute the entire matrix from only one position of the scanner. Therefore, 
the size of the matrix decreases as many times as the number of rotations. This results in a significant reduction of the system 
matrix which allows algebraic methods to be applied within a reasonable time of reconstruction and speeds up the time of matrix 
generation. 

The new model is studied by means of analytical CT simulations which are reconstructed using the Maximum Likelihood 
Emission Maximization algorithm for transmission tomography and is compared to the cartesian pixellation model. Therefore, two 
different grids of pixels were developed for the same scanner geometry: one that employs circular pixels within a cartesian grid 
and another that divides the field of view into a polar grid which is composed by identical sectors, with circular pixels too. 

The results of both models are that polar matrix is built in a few seconds and the cartesian one needs several hours, the size of 
the matrix is significantly smaller than the circular one, and the time of reconstruction per iteration using the same iterative method 
is less in the polar pixel model than in the square pixel model. Several figures of merit have been computed in order to compare 
the original phantom with the reconstructed images. Finally, we can conclude that both reconstructions have been proved to have 
enough quality but, the polar pixel model is more efficient than the square pixel model. 
© 2008 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The first reconstruction algorithm approach for CT image reconstruction was based on Algebraic Reconstruction 
Techniques (ART). The reconstruction problem was modeled by means of a set of linear equations which are resolved 
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by using ART algorithms. Since the system matrix (SM) was the core of ART methods, the SM relates the resulting 
images and the acquired data and reflects the scanner behavior. The SM size was pretty big and tricky to be handled 
for the computers of the early 70s. In fact, the images from these scans took 2.5 h to be reconstructed by means of 
ART on a large computer. Despite all this, the informatics field growth was spectacular, the CT scanner hardware 
was developed at a more rapid pace. After the first production of X-ray CT machines called the EMI-Scanners [1], 
several scanner generations followed one after another, and they provided more sensitive detectors, more sophisticated 
scanner configurations, improved X-ray sources and better hardware acquisition developments. The quantity of data 
continued growing too, and the ART methods were substituted by Fourier based algorithms [2], which do not use an 
SM and provided a better reconstruction speed. 

However, ART provided a better quality reconstruction than other alternatives, such as filtered back-projection 
techniques, with incomplete or noisy measurement [3,4]. 

The popularity of the iterative reconstruction methods started with the Maximum Likelihood Emission 
Maximization (MLEM) algorithm which was proposed for emission tomography and described in the seminal paper 
of Shepp and Vardi [5]. Lately, several derived procedures have been proposed such as the MLEM algorithm for 
transmission tomography [6] and alternative implementations such as the Ordered Subset Expectation Maximization 
(OSEM) algorithm [7] in which the iterations are accelerated. Therefore, ART methods came to have practical use. 

Despite improvements in the reconstruction algorithm, the size of the collected data is one of the drawbacks 
on these techniques. Several pixellation configurations have been proposed in order to decrease the computational 
complexity and to improve the reconstruction quality using alternative models such as polar pixels [8,9], blobs 
grids [10], natural pixels [11] or strip functions [12]. Furthermore, several approaches are based on polar pixel grid for 
Compton-camera [13], SPECT [8,14,15] and commercial CT [16]. In this paper, two approaches of the mathematical 
model for a medical CT scanner based on geometric features are proposed. One model is based on using a cartesian 
arrangement of the pixel and another model is based on a polar arrangement. 

(1) The cartesian model is similar to the most usual models used in CT reconstruction but, in this approach the pixels 
are defined as circles in order to facilitate the calculations. 

(2) The polar approach uses an innovative pixellation configuration that takes advantages of all the natural symmetries 
of the scanner geometry and allows us to reduce the matrix size highly. The polar pixel adds an extra complexity 
to the reconstruction algorithm and the image visualization. The balance between the properties of the new 
pixellation configuration and the increased complexity of the polar pixel configuration is evaluated in this paper. 
The pixels used in the polar pixel model are circular pixels too. 

The comparison between these models is of interest, since it helps us to find out if the objective of reducing the 
size of data by means of a new polar model is accomplished without loss of accuracy in the reconstruction. 

This paper is organized as follows. In Section 2, the mathematical model assumptions considered in both models 
are presented. The cartesian model is described in Section 3 and the polar pixel model in Section 4. The polar grid 
design criteria, the SM structure and the image visualization in the polar pixel model, are detailed in Section 4. The 
main features of the reconstruction algorithm MLEM and the implementation details for both models are described 
in Section 5. Once the models are described, experimental proofs are developed in order to assess the reconstructed 
images of both models by means of quality indicators. The CTSim simulation package [17] has been chosen in order 
to obtain a simulated data acquisition because this is a free package that allows us to compare our methods, easily. 
These details about the implementation of the model and the figures of merit definition are presented in Section 6. 
The results of the implementation using this simulated data source and the figures of merit are given in Section 7. The 
objective of this section is to resume the comparison between both models in terms of efficiency and reconstruction 
quality. Finally, several conclusions about the model and their implementation results are given in Section 8. 

2. Basis of mathematical model for a CT scanner 

The reconstruction is the process whereby the acquisition data becomes a reconstructed image which reflects the 
original object. In ART algorithms, the relation between images and acquired data is modeled by means of the SM 
elements. Therefore, the properties of the reconstructed image are determined by the SM model and the reconstruction 
algorithm. 
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Fig. 1. The figure shows a fan-beam scanner in which the detectors, X-ray source, ray projections and field of view are marked. 

Here, a mathematical model of a 2D scanner is proposed based on the following points: 

• If the scanner system is a fan-beam CT scanner geometry defined by an X-ray source and a ID array pixellated 
detector (see Fig. 1), a ray is the area delimited by the X-ray source and the two lateral limits of each detector 
element which shapes a triangle. 

• The scanner measurement is composed by several rotated positions around an isocenter point. The Field of View 
(FOV) is the intersected area delimited by all the scanner positions, in which the measured object is located. The 
area of the reconstructed images is the result of a FOV discretization. 

• In this model, the pixels are defined as circles which are arranged in two configurations, one in a cartesian grid and 
another in a polar grid. 

• An element wij of the system matrix W, is defined as the circular pixel j area which intersects a ray beam i as 
shown in Fig. 2. The circular shape of the pixel is chosen because its symmetries simplify the calculation of areas. 
Actually, the symmetry of circular pixels makes it possible to reduce the calculation of areas to only six different 
cases for all different rays and views of the focus. Fig. 2 shows an example of one of these cases. 

3. Square grid model 

In the square pixel model the circular pixels are arranged into a cartesian grid as shown in Fig. 3. This figure shows 
the pixel alignment of the model and a magnification of a pixel j in which is shown the definition of a weight element 

as the area intersected in pixel j by a ray i. 
Since the pixel configuration is cartesian, the reconstructed images can be visualized directly. Despite the fact that 

the circular pixels are perfectly symmetric from all the scanner rotated locations, the square pixel model has only 4 
symmetries due to the arrangement in a cartesian grid which are marked in Fig. 3. 

4. Polar grid model 

4.1. Circular pixels in a polar grid 

The focus of the polar pixel model has been to maintain at least as good quality features as the square pixel model 
and to provide more symmetries to the SM. Using both criteria, the design of this pixel grid has been tackled using 



Fig. 2. The figure shows a pixel j overlapped by a ray i. The SM weight w;; is the shady area which intersects the ray and the pixel. 

X-Ray Source 

Fig. 3. The Square Pixel Model is shown for a simplified example of 20 detectors and 100 pixels. 

two main principles: to preserve the intrinsic spatial resolution of the scanner and to take advantage of all the natural 
symmetries that the scanner geometry provides in order to compact the SM. Therefore, it was decided to design the 
pixel grid by dividing the FOV into v equal circular sectors (see Fig. 4). Each circular sector is divided into pixels 
following a similar distribution to the one shown on Fig. 5. As a result, the pixel configuration observed from the 
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Fig. 4. Polar pixel grid for an example of scanner geometry of six rotated positions. 

Fig. 5. Example of polar pixel grid in a circular sector. Notice that the circumscribed circles inside the polar pixels, satisfy rules (1) and (2) and are 
used to set the A9 polar pixel measure. 

scanner focus, in each view, is always the same. In this way, the pixel grid design keeps all the natural symmetries of 
the system. 

The pixel division within the circular sectors has been arranged using the following rules: 
(1) A circular pixel, whose diameter is half of the intrinsic spatial resolution of the scanner, is placed on the center of 

the FOV (isocenter). 
(2) From the central circle the rest of the circular sector is divided into polar pixels that are determined by Ar and AO 

where: 
(a) All the polar pixels have a circle circumscribed whose diameter is less than or equal to half of the spatial 

resolution of the system. 
(b) All the circumscribed circles whose centers have the same radial coordinate, have the same diameter. 
(c) Ar is the diameter of the circumscribed circles and it is the biggest possible one which accomplishes conditions 

(a) and (b). 
Fig. 5 shows an example of one circular sector. It can be observed a variable size of the polar pixels depending on 

its distance to the isocenter, as well as an increment of the pixel number on the central area of the FOV due to the 
design of the pixels within circular sectors. This higher density of pixels implies a higher resolution in the central area 
where there is located the most quantity of measured target. In this area the scanner sensibility is higher. 



4.2. System matrix structure 

In ART, the reconstruction problem is defined by a linear equation system 

WX = P, 

where W is the SM that models the relation between pixels X and projections P. The vector of projections can be 
decomposed into a set of N views (Pi), where each Pi acts on all the pixels of the FOV. As we have seen before, since 
the FOV is splitting into N equal circular sectors, W in the polar grid approach can be decomposed into N submatrices 
Wi, which affects each Pi component. Therefore, the W; are obtained by rotating the pixels of each circular sectors 
and keeping the natural symmetries of the scanner. Consequently, W can be expressed as a block matrix where the 
first block is the first view W\ and the rest are rotations of it, that is, 

W •• 

where R and its powers are the rotations. Furthermore, the rays of each view are symmetric with respect to the line 
that goes from the focus to the center of the FOV. Therefore, only the first half of beams of the first view needs to be 
calculated because the second half can be obtained by reflecting the SM data of the first one. Then, if 
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we obtain that 

W\ = [w, wM], 

where w is the block matrix corresponding to the first half of beams of the first view. Therefore, 
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where w is the only block matrix to be computed. 

4.3. Image visualization 

The reconstructed images are arranged in a polar configuration and it is necessary to design an additional procedure 
to display them. We have implemented a viewer that converts a reconstructed image in circular pixels to another in 
square pixels. The viewer consists of placing each pixel on a cartesian grid thin enough to keep the resolution of 
the original circular images. The relation between these two grids is calculated as the intersection between them. 
Moreover, the uncovered areas among circular pixels are filled using nearest neighbor interpolation. The viewer 
procedure takes only 3 s to convert a polar grid image from a data acquisition of 512 rays to a square pixel image 
of 2048 x 2048 pixels and does not need any stored data or precalculated information. The converted reconstructed 
image is reduced in order to compare with the original phantom image. After the conversion from polar pixels to 
cartesian pixels no post-filter processes are used. 

5. Reconstruction algorithm: MLEM 

The maximum likelihood expectation maximization (MLEM) algorithm for transmission tomography is one of 
the most well-known statistical iterative reconstruction methods [6]. Since Poisson noise has been proved to be the 



dominating noise contributor [3], this algorithm treats the transmission data as realizations from a Poisson distribution. 
Therefore, MLEM seeks to maximize the logarithm of the Poisson likelihood objective function, 
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\ 
where / = {/;\i = 1 , . . . , m} is a vector of the m pixel values of the image, p = [pj \j = 1 , . . . , n] are the « 
projection values of the data acquisition, bi is blank scan value at i and W = {Wij} is the m x n SM that gives the 
percentage of a ray i passing through a pixel j . fk+l is the £ + 1 estimation of the image and the f° estimation is 
usually ff = 0, Vj . 

MLEM was chosen for reconstruction because it can be easily adapted to the peculiarities of both configurations 
of pixels and it has remarkable properties: 

• The iterates fk converge for k -> oo to an image that maximizes the loglikelihood. 
• The cost of the algorithm increases monotonically with iterations. 
• It is easy to incorporate a priori information in the algorithm. 
• The robustness of the numerical procedure has been established [18]. 

Two versions of the MLEM were implemented for each grid configuration. 
In the square pixel model algorithm, the total matrix has to be computed for all the views of the scanner. For 

computational reasons we need to calculate the SM in advance and then to store it. Since the complete SM is huge, 
this process involves a slow access to the data and a slow reconstruction algorithm. The process of generation of the 
matrix is costly and does not allow us to change the matrix configuration easily. 

In the polar pixel MLEM version, as we can see in Section 4.2, the grid has as many identical circular sectors as 
angular positions of the detector so that, the algorithm uses only the first view and calculates the rest of the views from 
it by using rotations and reflections. 

Moreover, the pixel numeration increases in the same direction as the rotation of the scanner. Since obtaining the 
corresponding pixels and rays in the rest of views from the first view, is a very easy task, this procedure is carried 
out by using two permutation matrices whose elements are computed when and only if they are necessary. Therefore, 
these permutation matrices do not need to be precalculated in advance and the procedure to obtain the matrix elements 
from the submatrix does not add a high complexity to the algorithm. 

The geometry of the pixels and the arrangement on circular sectors allow the entire matrix to be computed from 
only one position of the scanner. The size of the matrix is decreased as many times as the number of rotations and the 
time of SM generation is highly reduced too. 

6. Experiments for model assessment 

6.1. Data source 

The simulated projections are a 2D Shepp-Logan head phantom [5] with well-known properties which is widely 
used in order to validate reconstruction algorithms. The Shepp-Logan phantom contain ellipses with different 
absorption properties, that resemble the outline of a head. The simulations were built with the Open Source Computer 
Tomography Simulator package CTSim [17]. An equilinear fan-beam configuration with a fan-beam angle of 20.25° 
was simulated. Projection data contain 400 views acquired over 360° and each view contains 512 rays. The measures 
of these models were 35.16 cm x 35.16 cm with a pixel dimension of 6.86 mm. An image of the phantom is shown 
in Fig. 6. The simulated dimensions of the phantoms and matrix implementations are based on the CT scanner of the 
Hospital Ch'nico Universitario of Valencia which is a CT-Simulator Metaserto with a Kermath tomography system 
attached. 



6.2. Figures of Merit 

The assessment of the image quality has been made by comparing the reconstructed images to the simulated 
phantom using several Figures of Merit. The selected Figures of Merit have measured the main characteristics of the 
images such as the error of the reconstruction from the original images, the correlation between the phantom and 
the reconstructed images, the ratio between reconstructed images and the noise, which is approximated as the error 
between the phantom and the images, and the contrast and homogeneity observed between local areas of the images. 
The most significative Figures of Merit for studying these aspects have been the following: 

• Root Mean Square Error (RMS), 

1 N 

RMS = - Y \\x" -xf\\ 
1=1 

where N is the number of pixels, x° is the original phantom image and xr is the reconstructed image. 
• Correlation Coefficient (CC), 

N 
1 E ( * f - * ° ) 
i i—i 

CC = — — 

where the xr and x° are respectively the mean pixel value of the reconstructed and original images and the axr and 
axo are their standard deviation values. 

• Signal-to-Noise Ratio (SNR), 
N 

SNR: 
Ell* 
i = i 

o,,2 

N 

E 
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where the noise component is approximated as the squared difference between the original phantom and the 
reconstructed image pixels. 
Contrast is defined on specific regions of interest (ROI) by, 

\ L B - L A \ 
Contrast = 

\LB + LA\ 

where L a and L b represent respectively the average pixel value in ROI A and ROI B. 
CV is defined on each ROI by, 

c y = ^ R D I 

x R O I 

where the standard deviation and the mean pixel value are calculated from ROI A or ROI B. 

RMS, CC and SNR yield a global indicator and Contrast and CV show the behavior in local regions, ROI A and 
ROI B. The location of the selected ROIs are indicated by dashed ellipses in Fig. 6. Figures of Merit compare the 
original phantom in Fig. 6 to the reconstructed images without any filtered procedure. 

7. Results 

The reconstruction provided by the polar pixel model and the square pixel model have been compared in two 
aspects, matrix efficiency and image quality. Both matrices have been implemented for the geometry of a real CT 
scanner with a configuration of 512 rays. The most outstanding features of these implementations are summarized in 
Table 1. 

As can be seen in Table 1, polar pixel matrix and square pixel matrix have similar sparsity, but the polar pixel 
configuration requires a higher number of pixels than its equivalent square pixel one. Despite the increment in the 
pixel number, the polar grid model makes possible a more compact SM design and allows us to reduce the number 



Fig. 6. Shepp-Logan phantom of 5 1 2 x 5 1 2 pixels. This model has been generated by means of the Open Source Computed Tomography Simulator 
package, CTSim [17]. 

Table 1 
The main features of the polar pixel SM and square pixel SM implementation for the specific scanner geometry of the Hospital CUnico Universitario 
of Valencia CT-Simulator (512 rays' configuration) 

SM features Polar pixel Square pixel 

Sparsity (%) 0.2746 0.3627 
Pixel number 1 135 201 262144 
Non-zero elements 1596106 194738 088 
Size 24.35 Mb 2903.6 Mb 
Symmetry reduction factor 800 4 
Time of generation 4 s 18 h 45 min 3 s 
Time of reconstruction 3 min 3 s 4 min 19 s 
Time of visualization 3 s 0 s 

The experimental values are given by means of a Pentium 4 CPU 3.2 GHz of 32 bits and 2 GB RAM. 

of non-zero elements needed. Therefore, the polar pixel model has a smaller size SM whose generation time is only 
4 s. SM usually is computed only once and it is stored and loaded each time that it is needed. However, if the time 
of generation is highly reduced, SM can be calculated on-the-fly, if and only if the elements are necessary [19]. 
The effectiveness of this option depends on the elements needed on each measurement, but this is the most efficient 
alternative without loss of information and allows a flexible model in which the SM adapts to changes easily. The use 
of symmetries in the reconstruction algorithm for the polar pixel model does not affect the efficiency of the algorithm 
iterations because it is performed using two simple permutation matrices. In fact, the reconstruction time of the polar 
pixel case is 1 min 4 s per iteration faster than the square pixel matrix due to the fact of avoiding the computation of 
much more elements than the square pixel matrix. Table 1 shows that the more complex polar pixel model allows us 
a more computational efficiency than the square pixel configuration in storage, time of SM generation and time per 
iteration. A sample of the reconstructed images of the Shepp-Logan phantom are shown in Fig. 7 for the iteration 
number 50. Fig. 8 shows that both reconstructed images are highly similar and both of them are very close to the 
original phantom. The reconstructed images have smoother transitions than the original phantom but the transitions 
of the reconstructed images are getting sharper with iterations. Despite these transitions in the reconstructed images, 
the quality of the reconstruction has enough quality to discriminate the most important areas of the phantom with a 
few iterations. 

The reconstruction quality provided by both matrices has been measured by means of Figures of Merit from the 
reconstruction of simulated phantoms. Fig. 9(a) and (b) shows the average RMS and the CC as a function of iteration 
number. These graphs show that there are negligible differences between the polar pixel model and the square pixel 
model reconstructions in quality. Nevertheless, from the iteration number 20, the reconstructed images in both cases 
are highly similar to the original phantom with regard to a small error and a good correlation with the original phantom. 
On the contrary, Fig. 9(c) shows that results of SNR are better in the square pixel reconstruction than in the polar pixel 
model, mainly from the iteration number 30. A higher SNR implies that the level of the reconstructed images are 
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Fig. 7. Iteration number 50 of the Shepp-Logan phantom by means of the polar pixel model (Fig. (a)) and the square pixel model (Fig. (b)). 
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Fig. 8. The figure shows superposed profiles of the two reconstructed images in Fig. 7(a) and (b) and the original Shepp-Logan phantom (Fig. 6). 

much more predominant than the noise which can exist in the reconstruction. The polar pixel reconstruction SNR 
is progressing in a stable SNR until iteration number 65 and then SNR is becoming worse with iterations while the 
square pixel reconstruction SNR is maintained in a stable ratio. Fig. 9(d) shows the contrast between ROI A and 
ROI B and it can be seen that the contrast tends to 0.7 and it grows with iterations to the same level in both models. 
Fig. 9(e) and (f) shows CV for the ROI regions as a function of iteration number. In both ROIs, the variation increases 
monotonically as a function of iteration number. CV evaluation shows that the homogeneity of the ROI regions is 
better in the polar pixel model than in the square pixel model, specially for the ROI B case. Finally, we can show in 
the complete Fig. 9 that the two approaches seem to provide enough quality images and their RMS, CC, SNR, contrast 
and CV of the polar pixel model reconstructed images are quite similar to the square pixel model ones. 

8. Discussion and conclusions 

The polar pixel model is more complex than the traditional square pixel one, because it has polar pixel arrangements 
from circular sectors that require a higher number of pixels than the equivalent square pixel one and needs a 
visualization procedure. However, the polar pixel model allows us to take advantage of all the natural symmetries of 
the scanner geometry. Actually, the final number of needed elements is fewer than the square pixel model. Therefore 
the generation time of the SM is highly reduced to only a few seconds. 

The polar pixel model becomes a more compact SM that implies a faster reconstruction algorithm than the square 
pixel model. Since the procedure to take advantage of the model symmetries is carried out using only two simple 
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Fig. 9. Figure of Merit of the Shepp-Logan reconstruction from the polar pixel model and the square pixel model implementations on several 
iterations. 

matrices of reflection and rotation, the polar pixel model does not add a high complexity to the reconstruction 
algorithm. 

The visualization procedure developed takes a few seconds to convert the polar pixel images to square pixel and 
does not need any precalculated information for the conversion. Moreover, this procedure provides quality images 
avoiding polar artifacts. 

The Figures of Merit obtained from the reconstruction of the Shepp-Logan phantom shows that the polar pixel 
model provides a quality image with similar mean error, correlation, signal-noise ratio, contrast and local variation 
than the square pixel approach. 



Finally, we conclude that the polar pixel model is more efficient than the square pixel model for real scanner 
geometry implementation conditions and the accuracy of the reconstructed images is equivalent to the square pixel 
model reconstructed images. 

The evaluation of the reconstruction methods using real measurements with noise and a 3D scanner geometry will 
be part of our study. Moreover, the temporary measures provided by the MLEM algorithm has an important reduction 
due to the employment of the polar pixel model but, the time per iteration is still too high for practical applications. 
Therefore, an optimized implementation of the MLEM or alternative reconstruction strategies will be part of our work 
in the near future. 
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