
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://dx.doi.org/10.1016/j.cherd.2010.04.015

http://hdl.handle.net/10251/57369

Elsevier

Barceló Rico, F.; Gozálvez Zafrilla, JM.; Diez Ruano, JL.; Santafé Moros, MA. (2011).
Modelling and control of a continuous distillation tower through fuzzy techniques. Chemical
Engineering Research and Design. 89(1):107-115. doi:10.1016/j.cherd.2010.04.015.



Modelling, control and optimization of a continuous

distillation tower through fuzzy techniques
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Abstract

This paper presents a methodology for the design of a fuzzy controller ap-
plicable to continuous processes based on local fuzzy models and velocity
linearizations. It has been applied to the implementation of a fuzzy con-
troller for a continuous distillation tower. Continuous distillation towers can
be subjected to variations in feed characteristics that cause loss of prod-
uct quality or excessive energy consumption. Therefore, the use of a fuzzy
controller is interesting to control process performance.

A dynamic model for continuous distillation was implemented and used
to obtain data to develop the fuzzy controller at different operating points.
The fuzzy controller was built by integration of linear controllers obtained
for each linearization of the system. Simulation of the model with controller
was used to validate the controller effectiveness under different scenarios.

The results showed that the fuzzy controller was able to keep the tar-
get output in the desired range for different inputs disturbances, changing
smoothly from a predefined target output to another. The developed tech-
niques are applicable to more complex distillation systems including more
operating variables.
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1. Introduction.

This paper presents a methodology for the design of a fuzzy controller
applicable to continuous processes. The controller is based on a fuzzy model
describing the plant dynamics that is previously calculated using experimen-
tal or model data. In this case, the technique has been applied to the control
of a continuous distillation tower.

Continuous distillation is one of the most used separation processes in
the processing of large amount of products. This makes it a highly energy-
consuming operation [12]. Usually, distillation towers are designed for a feed
stream of constant characteristics and classic control (PI or PID controllers)
is used to change the operation parameters in order to achieve the specifi-
cations required for the products. However, there are some problems that
make this approach inefficient: Distillation control is difficult because of its
usually nonlinear, non-stationary, interactive, and is subject to constraints
and disturbances [10]. For example, feed streams can be subjected to impor-
tant variations in flow, composition or energy state. Therefore, to control
the top and bottom compositions of a distillation column can be a difficult
task due to the presence of control-loop interactions and nonlinearities [6].

An efficient control system adaptable to different situations would assure
product quality and minimize energy expenses [9], [8].

New approaches to control, other than classic linear controllers, can im-
prove system performance. The most common of the advanced approaches
is the use of nonlinear multivariable models. However, the nonlinear models
tend to become rigorous and computationally intensive as the process be-
havior becomes more complex [6]. Other approaches, like control based in
neural networks, have interesting properties, like generality of model struc-
ture, capacity of learning from experimental data and expressing the process
non-linearities and calculation speed [5]. Control based on fuzzy modelling
is an alternative to neural network based control that also shows some of
these characteristics. Fuzzy control has been satisfactorily applied to many
complex systems of different fields of science and engineering characterized
by significant nonlinearities and/or noise. Any static or dynamic system
that makes use of fuzzy sets is called a fuzzy system. In addition to their
universal function approximation capabilities, fuzzy models resemble human
reasoning processes, providing the readability of the obtained representations
[13]. Fuzzy models can therefore be validated by experts and incorporate ad-
ditional qualitative or imprecise information that engineers or operators may
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have about the system.
A fuzzy model is usually automatically developed from experimental data

by a rule extraction method based on genetic algorithms, neural networks,
templates or clustering techniques [1], [3]. However, in the case of distillation,
the results provided by dynamic models are very accurate and can be used
instead of experimental data. Therefore, a grey box approach, combining
basic knowledge about the system and black box models, has been considered
more suitable for this work. The final model built in this way consists of a
set of local models (one for each rule) at different operating points, and it
avoids fuzzy interpolation problems by means of velocity-based linearization
[7], [2].

The second section of this report briefly describes the equations of the
dynamic distillation model and their implementation. The third and fourth
sections present the theory of the fuzzy controller and the methodology used
to build it for an example case. The fifth section shows the criteria used
to choose the optimum variable to perform the control. Finally, in the last
section, a discussion of the performance of the fuzzy controller for the example
case is presented.

2. Dynamic Model for Continuous distillation

Distillation towers are multi-stage separation units conceived to separate
feeds into streams enriched in components of different volatility. The separa-
tion is achieved when a vapour and a liquid stream tend to thermodynamic
equilibrium when are put in contact in the separation stages (trays).

Figure 1 shows a schematic representation of the tower and the streams
flows between its different stages i. The stages are numbered increasingly
from top to bottom: 1 is the condenser, 2 to N-1 are the trays and N is
the reboiler. Every stream is defined by their flow, molar fractions of j

components and enthalpy. Thus, a feed entering to stage i is defined by
Fi, zi,j and hFi. The liquid and vapour streams exiting from the stage i

are defined by Li , xij, hLi and Gi, yi,j, hGi respectively. A duty heat,
qN , is supplied to the reboiler in order to generate the vapour stream. The
vapour stream moves upwards exchanging components with the descending
liquid stream, and the vapour is progressively enriched in the most volatile
components. Consequently, the liquid stream will be enriched in the less
volatile ones. To generate a saturated liquid stream, a heat duty q1 must
be removed from the vapour in the condenser. This stream is divided into a
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product stream and a stream recycled back to the column. The recirculation
is determined by the reflux ratio, R , defined in (1), which constitutes one of
the main operation variables.

Figure 1: Scheme of the continuous distillation tower from basic principles

R =
L1

D
(1)

For every stage i, non-stationary balances of total amount of moles Mi,
moles of each component j and energy can be established (2-4). These equa-
tions constitute the basis to obtain the dynamic model of the system [12],
[11].

dMi

dt
= Li−1 − Li + Gi+1 − Gi + Fi (2)

d (Mi · xi,j)

dt
= Li−1 · xi−1,j − Li · xi,j + Gi+1 · yi+1,j − Gi · yi,j + Fi · zi,j (3)
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d (Mi · hLi)

dt
= Li−1 ·hLi−1−Li ·hLi +Gi+1 ·hGi+1−Gi ·hGi +Fi ·hFi + qi (4)

Substitution of (2) into (3) and (4) leads to the time derivatives of com-
position and enthalpy (5, 6).

dxi,j

dt
= M−1

i ·

[

Li−1 · xi−1,j + Fi · zF,i + Gi+1,j · yi+1,j+
+ (Gi,j − Gi+1,j − Li−1 − Fi) · xi,j − Gi,j · yi,j

]

(5)

dhL,i

dt
= M−1

i ·

[

Li−1 · hL,i−1 + Fi · hF,i − Li · hL,i + Gi+1 · hG,i+1 + qi−

−Gi · hG,i + hL,i · (Li−1 + Fi−1 − Li + Gi−1 − Gi)

]

(6)
Assuming that there is enough contact time in each stage, the exiting

phases will be close to equilibrium. So, using a thermodynamic model for the
mixture, the vapour composition can be expressed as a function of the liquid
composition. Besides, for a saturated liquid, the enthalpy and temperature
depend exclusively on the liquid composition, hence we can express:

dhLi

dt
=

∑

j

∂hL

∂xj

∣

∣

∣

∣

xi,j

·
dxi,j

dt
(7)

Our aim is to relate the stream flows and the molar fractions in the liquid
that remain as the only state-variables of the problem. To have a unique
vector W representing all the unknown internal flows, an index operator
n(i,k) is defined for each stage i so that for indices k=0 to 4 stand for the
streams Fi, Gi, Li−1, Gi+1 and Li respectively.

n (i, k) = 4 · (i − 1) + k (8)

Additionally, an operator sign(k) is defined as (-1) for the output streams
and (+1) for the input ones. Thus, combination of equations (5-7) yields to:

3
∑

k=1

ae
n(i,k) · Wn(i,k) = qi − ae

n(i,0) · Wn(i,0) (9)

where,
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ae
n(i,k) = hn(i,4) − hn(i,k) + sign (k)

∑

j

[

∂hL

∂xj

∣

∣

∣

∣

xi,j

·
(

xn(i,k),j − xi,j

)

]

(10)

Additional equations are necessary to completely determine the stream
flows. These equations can be obtained by expressing the liquid density as a
function of the liquid composition and considering constant volume of liquid
Vi as the liquid overflows in each stage:

dMi

dt
= Vi

dρ

dt
= Vi

∑

j

∂ρ

∂xj

∣

∣

∣

∣

xi,j

·
dxi,j

dt
(11)

Thus, the latter equation leads to following relationship:

4
∑

k=1

av
n(i,k) · Wn(i,k) = −av

n(0,k) · Wi,0 (12)

where,

av
n(i,k) = −1 +

sign (k)

ρ
(

~xn(i,4)

)

∑

j

[

(

xn(i,k),j − xi,j

) ∂ρ

∂xj

∣

∣

∣

∣

xi,j

]

(13)

Equations (9) and (12) constitute a linear system to solve the unknown
internal flows as a function of the liquid composition. The coefficients of the
system can be rearranged as a banded matrix. As this matrix is usually bad-
conditioned, the Moore-Penrose pseudoinverse was used to solve the system
of equations.

Therefore, the set of differential equations (5) can now be solved to obtain
the evolution of the state-variables of the system. A multi-step stiff solver
(Adams-Bashforth-Moulton PECE) was used to compute the tower dynamics
as a function of feed, Fi, reflux ratio, R, and reboiler heat duty, qN .

3. Velocity-Based Fuzzy Control of a Continuous Distillation Pro-
cess

A suitable modelling and identification of a system is essential for con-
troller design. In our case, fuzzy identification adjusts those models to avail-
able data sets, and the local error of a number of local models that represent
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the system in a region is preferred to the usual approach of minimizing the
global prediction error [4].

The identification of fuzzy models needs to establish a model structure for
a subsequent parameter identification step [13], as occurs in all identification
procedures. This second identification step can be easily done, for example,
by least mean squares if the system is linear in parameters [1]. This is our
case, because input and output variables, and antecedent fuzzy membership
functions A (interpretable as validity regions for local descriptions in a set of
operating points) will be provided by experts, and rule consequents will be
affine models following Takagi-Sugeno structure described by:

Ri : If (x is Ai) then
(

yi = aT
i · x + bi

)

i = 1, 2, ..., k
(14)

where ai is a vector of parameters, and bi is a scalar. The model out-
put y will be the convex combination of the consequents by means of its
membership functions µi:

y =

k
∑

i=1

µi(x) · yi

k
∑

i=1

µi(x)

(15)

Although the fuzzy model structure showed in (14) and (15) can give
accurate results for prediction purposes, when the final goal is process control,
a better approach overcoming interpolation problems caused by the terms bi

is the use of velocity-based models [7], [2]. These result from the substitution
of (14) by its incremental form (16) where offset term is avoided.

Ri : If (∆x is Ai) then
(

∆yi = ∆aT
i · ∆x

)

i = 1, 2, ..., k
(16)

A controller will be then designed for each rule, leading to the modelling
and control structures outlined in Figures 2 and 3.

In order to give theoretical framework for the proposed controller design
technique, it is going to be applied as it was a classic gain scheduling con-
troller [7]. A possible approach to gain scheduling requires following the
subsequent steps [2]:
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Figure 2: Outline of suggested structure for modelling

1. Determine a Linear Parameter Varying model of the non-linear system
based on the linearization of the system at different operating points
and integrating them, for example, by interpolation.

2. Calculate a Linear Controller for each linearization of the system and
then integrate the controllers (for example, in the same way as the lin-
earization), then obtaining a Non-Linear Controller.

3. Evaluate the control performance through simulation.

In our case, the proposal is that, once the operating points are given
by the expert, a fuzzy model in the form of (15) with rules as (16) will be
tuned using experimental data. A model defined with this structure is a
combination of purely linear (not affine) models, then matching the first step
in the gain scheduling approach.

Next step will be the design of a linear (using classic techniques) controller
for each rule consequent (i.e, each linearization or local model). The combi-
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Figure 3: Outline of suggested structure for control

nation of all the controllers will be done using the same formula (15) used
in the fuzzy modelling, but substituting local model output by local control
action. In this way, a non-linear controller is designed as in the second step
of the gain scheduling approach.

Performance can be tested via simulations, and a complete example is
presented in the next section.

4. Fuzzy-Model Results and Validation

The control system can be built using data from a real system. How-
ever, dynamic distillation models are accurate enough and can be used to
generate data avoiding experimental cost. As an application example, a dy-
namic distillation model as described in section 2 has been used to obtain
the necessary data to implement the fuzzy controller for a distillation of a
mixture methanol-water. Parameters of the column are summarized in table
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Table 1: Characteristics of the distillation column

Parameter Nomenclature Value (Unities)
Number of trays N 10
Feed tray position Fi 6
Tray volumen Vi 0.064 (m3)
Condenser volumen VC 0.4 (m3)
Reboiler volumen VR 0.4 (m3)

Table 2: Inputs (steps) applied to the simulator

Input Nomenclature Small step Big Step
Heat of reboiler qN ±7.5% ±15%
Enthalpy hF ±7.5% ±15%
Reflux R ±2.5% ±5%

(1). Both the model and the simulator (next section) where used to test the
capability of the fuzzy controller under a set of scenarios.

The input disturbances applied are summarized in table (2). It can be
seen that the changes (in percentatge) applied to q and hF are the same,
while for R are smaller. This is due to the fact that bigger changes made the
system unstable, as this in an input that affects very much to the composition
of the products of the process. The analysis of the results by experts yielded
to the following conclusions:

• a positive increment in the inputs F and zF causes a positive increment
on x10,

• a positive increment in hF , qN , and R causes a negative increment on
x10,

• a positive increment in zF and qN causes a positive increment on x1,

• a positive increments in F , hF and R causes a negative increment on
x1,

• the system response is similar to a first order system with a time con-
stant of the system for each input at each working point for each output
variable, and
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Table 3: Operating points for the system under study

Point F (kmol ∗ s−1) zF hF (kJ ∗ kmol−1) qN(kJ ∗ s−1) R

P1 0.217 0.36 11000 1878 1
P2 0.217 0.46 11000 1878 1
P3 0.217 0.26 11000 1878 1
P4 0.217 0.36 20000 1878 1
P5 0.217 0.36 11000 2744 1
P6 0.217 0.36 11000 1100 1

• a set of six operating points (defined as combinations of F , zF , hF , qN ,
and R) are the most common for system operation, and are summarized
in Table 3.

Then, a set of 5 models (one for each input/output pair) for each point
(and then 30 systems for each output) was developed. As far as F and zF

are usually constant and that the most important output of the system is
x1, (and the control of product composition x1 will modify x10), a simplified
input-output view (including possible control variables as inputs) of these
small models is devised in Figure 4. This set of first order systems will be
integrated with the fuzzy structure proposed in the previous section.

Figure 4: Scheme of the continuous distillation tower from simple black box model point
of view

Equation (17) shows the G general single input single output linear dis-
crete first order system (input u, output y, and instant k) placed at the
consequent of each rule:

G =
k

z − τ
→ yk = τ · yk−1 + k · uk (17)
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That will be used in its incremental form:

∆yk = τ · ∆yk−1 + k · ∆uk (18)

Therefore, the fuzzy system considered 5 inputs (F , zF , hF , qN , R) in
order to indicate the operating point in what the tower is working, and
5 more inputs ( F , zF , hF , qN , R) to indicate the increment that it was
applied to each input, and finally one more input to indicate the previous
output (yk−1). Rule selection was carried out for the first five inputs, and the
other ones were used to calculate the value of the output. As the systems in
this case just depend on one input, the coefficients for the others are zero.
The behaviour obtained for the models was very good for the whole operation
systems, being the modelling error lower than 5 × 10−5%. As an example,
the model performance around the operating point 5 is shown in Figure 5,
but results are similar for the whole operating space.

Once the model was available, the controller could be designed. In this
case it was a simple pole-zero for each rule consequent, following for its
combination the structure of Figure 4. In fact, one controller was designed
for each submodel and then the total model was built for all the controllers
joined in a fuzzy system. The general incremental control equation is:

∆uk =
(p − τ)

k
· ∆yk +

(1 − p)

k
· ∆rk (19)

where p is the chosen pole.
From a practical point of view, the controller can be applied to keep the

target output in the desired range if unexpected disturbances occur in the
feed. The controller must also be applied to set x1 at a value of interest, and
changed it to another one if necessary. It can be reached operating on one of
these: qN , hF or R. System feedback response is shown in Figures 6, 7 and 8
in several operating points (Table 4). The reference is set in percentage and
is the same for each operating variable in all points. It is important to select
a reference which is within the control boundaries of the operating variables.s

Figures 6, 7 and 8 show how the control by different variables leads to
very good results in all cases in spite of the different characteristics of the
controlled variable. The settling time is different for each of them as well
as the dynamics of the controlled signal (x1), but for a control variable all
the controlled signals are similar, even when the operating points are very
different. Besides, all control variables perform accurately enough even in
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Figure 5: Models of molar fraction x1 versus time (in seconds) at the operating point 5.
From top left to bottom right, variations of x1 for disturbances in F , zF , hF , q, and R.

points that are not exactly the operating points for which the controllers
were designed. This is a good property of this type of controllers.

The advantage of having different control variables meeting the same re-
quirements is that its effectiveness can be checked from different points of
view (for example: economical, resources availability, etc.) and the deci-
sion on what control variable must be used can change from time to time
depending on external factors.
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Table 4: Operating points where the control has been applied

Point F (kmol ∗ s−1) zF hF (kJ ∗ kmol−1) qN(kJ ∗ s−1) R

OP1 0.217 0.43 15000 2079 1
OP2 0.217 0.32 12000 2426 1
OP3 0.217 0.28 19000 1473 1
OP4 0.217 0.36 14000 1600 1

5. Control applied to physical model

Once the set of models has been built and the set of controllers tested
with the models and proved their performance, the next step is to apply the
set of fuzzy controllers to the simulator of the plant, as this has a slightly
different behaviour of the model built and therefore, the performance of the
controller might be different over the simulator than over the model.

To apply the controller to the simulator it has to be taken into account
that the output and inputs for this are absolute and not by increments as
they were for the model (Velocity-based model and controller, equation 16).

Figure 9 shows the control applied to the simulator in operating point
PC1 = [ 0.217 0.36 15000 1878 1 ], which is a point between P1 and
P4. It can be seen how the control performs very well in spite of the speed
and dynamics of the controlled signal x1.

It has been said that the speed of feeding is constant as well as the com-
position of this feeding in this kind of processes. Nevertheless, it can happen
that the composition has some perturbations due to small impurities of the
product. This can highly modify the effects of the control. Thus, to check
the performance of the fuzzy controller when perturbations are present in
the composition different variations in composition Co have been introduced.
Figure 10 shows how the control makes the signal come back to the reference,
even when a perturbation of 10% is present in Co.

It has to be said that control variables hF and qN are not suitable to
control the composition of x1 when big perturbations are present in Co. They
can only control up to perturbations of 0.1%. This is due to dynamics of the
composition of the products when this variables are modified. On the other
hand, the modification of the variable R has an immediate response on the
output composition. This makes possible the control of x1 even when big
perturbations are present.
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Figure 6: Control of molar fraction x1 versus time (in seconds) for different positive and
negative steps using hF as control variable.

It can be seen how the control (with and without perturbations) performs
well but it is quite slow. The reason for this is the size of the column,
described in Table 1. It can be seen how the intermediate plates are quite
big while the reboiler and the reflux compartments are even bigger. This
makes the control signals be effective but slow. Nevertheless the controller
has shown a good performance and in a smaller column the issue of the speed
of the controlled product would be avoided.
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6. Optimization

As shown in Figure 4 and described through all the text, the control can
be performed by 3 different inputs. That allows the election of one of them
attending to the chosen criteria.

These criteria could be imposed by two methods. One is the consideration
of the availability of the resources needed to perform the control. The other
is by the reach of each variable in the output level. For the hF and qN ,
variables a heat source is needed, whereas a cooling source is needed for the
R control input case.

As well as the reach of the qN is the smallest one (±0.05% in the example
described here) it limits the control by means of this variable. The reach
of the control by the other two variables is bigger (±0.5%), allowing a big
performance zone.

However, given that all the resources are available and the control could be
built by any of the three control input, the selection criterion is, industrially
attending, economic. As far as all the controls perform well, the cheaper one
will be the chosen. Anyway, it is not only the cost of the application what
should be studied, but also the benefits from production.

To apply heat to the stream feed or to the reboiler is more expensive than
to subtract heat from the condenser, but the amount of product decreases
when R input gets reduced.

The prices of fuel to get a heat source or the cooling water to perform the
refrigeration must be updated from the market, as well as the price of the
distillate to be sold. Therefore, not too many results can be exposed, but
several conclusions can be drawn:

• When control is applied by hF or qN variables, the amount of product
varies even if R is not modified, but this relation is no direct.

• Control by R is always the cheaper one looking at application price.

• The amount of product varies directly with R changes.

• In all cases applied in the example case, control by R is the most
profitable one, because the amount of product is not very different but
the application price is much smaller than when control is performed
by the other variables.
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However, as said before, generalizations cannot be stated from these par-
ticular conclusions. In each case, the study must be performed again, due to
price changes and amount of product obtained.

7. Conclusions

A velocity-based fuzzy control has been applied to a binary distillation
simulated by a dynamic model. The necessary data were obtained using a
dynamic distillation model that uses feed characteristics (enthalpy state),
reflux ratio, and reboiler heat duty as inputs. The model was also useful to
validate the efficiency of the fuzzy controller.

The final control structure consisted of a set of 5 local control models that
were able to change the reflux ratio and heat duty either of the reboiler or of
the feed stream in order to meet effectively the specified product quality for a
wide range of feed variation. The results showed that the fuzzy controller was
able to allow changes from a predefined output composition x1 to another,
and the controller also was capable to keep the target output in the desired
range. The developed techniques are liable to be applied to more complex
distillations. It was also seen that the variable to perform the control could
be chosen in most of industrial cases, either by the availability of each one
of the control variables or by economic reasons.

8. Acknowledgements.

The authors acknowledge the partial funding of this work by the projects:
Regional Government Project GVPRE/2008/108, and National Projects DPI2007-
66728-C02-01 and DPI2008-06737-C02-01.

References

[1] R. Babuska. Fuzzy Modeling and Identification. PhD thesis, Delft Uni-
versity of Technology, Delft, The Netherlands, 1996.

[2] Navarro J. L.; Sala A. Dı́ez, J. L. Control por planificación de ganan-
cia con modelos borrosos. Revista Iberoamericana de Automática e In-
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Figure 7: Control of molar fraction x1 versus time (in seconds) for different positive and
negative steps using qN as control variable.
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Figure 8: Control of molar fraction x1 versus time (in seconds) for different positive and
negative steps using R as control variable.
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Figure 9: Control of molar fraction x1 versus time (in seconds) for simulator using qN .
System with no perturbations
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Figure 10: Control of molar fraction x1 versus time (in seconds) for simulator using R.
System with a perturbation in Co at t=12000
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