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1. Introduction & Objectives 
 

1.1. Motivation 
 

Independent Component Analysis (ICA) is a technique used since middle 80s, and due 

to all its applications, it has been a common research topic. Simplifying the concept, 

with the ICA technique we can separate multivariate additive signals. Despite that there 

are other methods to do so, ICA can do it without knowing nothing (or barely nothing) 

of the signals and context.  

Along this thesis the basic algorithm for Independent Component Analysis will be 

explained. It is called FastICA and was invented by Aapo Hyvärinen as a simply and 

versatile algorithm with a scheme of fixed-point iterations. This means an algorithm that 

search the convergence of a vector with iterations, similar to the Newton’s method.  

This technique is not that simple though, the mathematic and theoretical background is 

quite complex. But in order to understand how the algorithm works, all of the concepts 

will be explained step by step.  

As has been said before, there are a lot of applications: biomedical, image processing, 

CDMA communications, etc. But the goal of this report is to talk about how to apply 

the FastICA algorithm to solve the Blind Source Separation. Specifically to the audio 

signals separation.  

The problem is as follows: we are going to have two speakers and two microphones, 

each microphone will record a mix of the two sources. The goal is to use ICA to 

separate the sources.  

 

1.2. Abstract 

 

Part 2 

The problem and the scenario are presented. The characteristics of the plot and its main 

equation will be showed. This is the starting point of the whole process.  

Part 3 

Independent Component Analysis techniques are quite complex. It is necessary to know 

the mathematics principles that are used. The measurement of gaussianity and its 

fundamental relation with ICA is explained. 
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Part 4 

In this section the actual FastICA algorithm is explained. The theoretical part is used to 

do so, and the section includes the pseudocode and the flow diagram for an easy 

understanding.  

Part 5 

After using the algorithm the results must be analyzed. In this part the quality of the 

separation is analyzed, this is made by comparing the original signals with the signals 

obtained with the FastICA algorithm.  

Part 6 

At the end of the document a conclusion can be reached. Also there is a brief 

explanation about other applications besides the audio separation. 

 

1.3. Notation 

 

𝑥 scalar 
𝒙 vector 
𝑿 matrix 
𝒙𝑖 
𝑥𝑖𝑗  

the ith vector of the matrix 𝑿 
the component of the row i and the column j of the matrix 𝑿 

𝑋 A continue variable 
 

 

1.4. Objectives of the thesis  

 

Basically, the main objective of this thesis is the study of the basics of Independent 

Component Analysis and the FastICA. Then this algorithm will be applied as a solution 

of the Blind Source Separation. To reach the main objective, there are another minority 

objectives. 

 Describe the theory and mathematical background of the Independent 

Component Analysis basics. 

 Describe the scenario and its characteristics.  

 Create a virtual scenario of the Cocktail Party Problem and simulate it. 

 Check the results and make an analysis of them 
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2. Problem Description 
 

2.1. Description of the problem 

 

Returning to the goal, the objective is to solve the Cocktail Party Problem. First of all, 

this concept have to be defined. This concept was used for the first time by Colin 

Cherry, a cognitive scientist, in 1953. He defines the Cocktail Party Effect, which is the 

capacity to focus in one specific conversation in a, for example, cocktail party.  

So, the Cocktail Party Problem is the situation in which we are in a party with a lot of 

conversations at the same time and we want to separate those conversations. The human 

being is able to do that by nature, but we want to solve this with recorded signals.  

The separation of the individual sources is known as the Blind Source Separation 

(BSS). In this context, blind means that we barely know anything about the source 

signals.  

 

2.2. Characteristics of the scenario 

 

In real life, we can have hundreds of different scenarios with the Cocktail Party 

Problem. But may be the one described in the paper called ‘Convolutive BSS of Short 

Mixtures by ICA Recursively Regularized Across Frequencies’ is the simplest one.  

This scenario consists of a room with two speakers and two microphones. This is, in 

fact, the simplest scenario we can find. So, at the end we will have two different signals, 

and each signal will record a different mix of the two speakers. In the Fig.1 we can see a 

scheme of the room’s scenario. Note: the height of the room is also 5 m.  
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Fig.1: The virtual scenario 

 

As we can see in Fig.1 each microphone records the signals with different amplitude 

because of the distance. So, the microphone 1 will record the source 1 louder than the 

microphone 2.  

Obviously, the original source signals will not be the same that the signals recorded by 

the microphones, because the room is acting as a filter. Each room has its impulse 

response depending on the size, reverberation, etc.  

For make the problem simply we are going to suppose a low reverberation time, 

simulating with a T60 of 300ms. This is because (as is explained later) FastICA have 

troubles with high reverberations. 

 

2.3. Simulation of the scenario 

 

The simulation of the room will be made with a Matlab package developed, in which is 

implemented the image-source method (ISM). With this method, the decay of the sound 

can be calculated with the size and the acoustic characteristics of the room. This 

package has been developed by Eric A. Lehmann, a Swiss researcher of the Swiss 

Federal Institute of Technology (ETHZ). 

Using this package, the size of the room and the desired reverberation time, we can 

simulate both microphones. At the end of the simulation we will have a matrix of two 
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vectors, and each vector contain the information of one microphone. These vectors have 

the audio information sampled with a frequency of 44100 Hz. 

These two vectors are the starting point of the ICA algorithm. For now on, we will call 

the microphone signals 𝑿, being 𝑿 a matrix with a size Number of Samples x 2. 

The number of samples will depend of the length (in seconds) of the audio files.  

 

2.4. System equation of ICA 

 

Now, the main equation of the problem have to be written. Until now we have two 

microphones with their recorded signals, 𝒙1 and 𝒙2. We also have our incognita, the 

speaker’s signals, called 𝒔1 and 𝒔2. As we know, 𝒙𝑖 are weighted sums of 𝒔𝑖 with a 

coefficients that are dependents on the distance between speakers and microphones. 

Knowing that, our equation system will be the following: 

𝒙1 = 𝑎11𝒔1 + 𝑎12𝒔2 (1) 

𝒙2 = 𝑎21𝒔1 + 𝑎22𝒔2 (2) 

This system can be written as a matrix equation: 

𝑿 = 𝑨𝑺 (3) 

Of course we only know the matrix 𝑿, in order to solve the Blind Source Separation, we 

need to know the matrix 𝑨, called the mixing matrix. Then, and only then, we will be 

able to obtain 𝑺 with the next operation: 

𝑺 =  𝑨−𝟏𝑿 (4) 

For now on, the matrix 𝑨−𝟏 will be called 𝑾.  

 

3. Independent Component Analysis 
 

Before start explaining the fundaments of Independent Component Analysis the key 

idea of the algorithm must be clear. The goal of FastICA is to found the matrix W by 

maximizing the non-gaussianity. This is based in the central limit theorem, which said 

that a sum of any random variables give a normal distribution. So, if the algorithm 

search for non-gaussianity it can find the de-mixing matrix.  
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3.1. Conditions in ICA 

 

The variables of the Independent Component Analysis have to comply a series of 

conditions in order to work correctly. In this section we will see the restrictions in ICA. 

 

 

3.1.1. Statistical Independence 

 

We can say that the main condition of this technique is to work with variables that are 

statistically independent. This can be obvious, but for a good understand of the theory 

we must define what statistical independence is.  

Imagine two vectors with random coefficients, x and y. We can approximate an easy 

definition, saying that, if knowing a value of x doesn’t give us information about y the 

vectors are independents. We will have this in the majority of the scenarios, with two 

different physical measures, with speech and noise, etc. This is why ICA is so powerful, 

it can be applied in a lot of contexts.  

We can approximate a mathematical definition using the probability density functions 

(pdf). Let’s define the probability density of x and y: 𝑝𝑥(𝑥)  and  𝑝𝑦(𝑦). We can be sure 

that x  and y are independent if: 

𝑝𝑥,𝑦(𝑥, 𝑦) = 𝑝𝑥(𝑥)𝑝𝑦(𝑦) (5) 

That is to say, if the joint pdf of the variables are factorable then they are independent.  

 

3.1.2. Non-Gaussian distributions 

 

Other restriction of ICA is that the variables must not have gaussian distributions. We 

need to know that ICA uses the information of the high order cumulants of the 

probability density function. In a gaussian function from the second moment, the 

cumulants are equals to zero.  

In statistics, the cumulants gives us an alternative to calculate the statistical moments of 

any probability distribution. Along this document we will work with the third and fourth 

moment, which are the skewness and the kurtosis. 
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3.2. Preprocessing the Independent Components 

 

Before start talking about the actual algorithm and the ICA technique, we must now a 

few things about how to treat the variables. For an optimal use of ICA, we have to give 

a preprocessing to our signals. 

 

 

3.2.1. Centering the variables 

 

Along this thesis, we assume that the independent components have zero mean. This is 

for simplify the implementation and the theory of the algorithm, but normally this isn’t 

true.  

Fortunately, we can force the variables to have zero mean easily. Is as easy as center the 

variables as follows: 

𝒙′ = 𝒙 − 𝐸{𝒙} (6) 

Being x the original signal and 𝒙′ the same signal with zero mean. Of course, this 

transformation doesn’t affect the estimation of the mixing matrix 𝑨.  

 

3.2.2. Whitening the variables 

 

We have talked about that the independence is necessary but, also a uncorrelated space 

is needed. We must force a transformation for this to happen, this is typically called 

whitening or sphering.  

Uncorrelatedness is not the same as independence. Two variables are uncorrelated when 

its covariance is zero 

𝑐𝑜𝑣(𝒙, 𝒚) = 𝐸{(𝒙 − 𝐸{𝑥})(𝒚 − 𝐸{𝑦})} = 0 (7) 

Since we will work with a matrix system, we have to make the covariance matrix of the 

vectors 𝒙1and 𝒙2 equal to the identity matrix 𝑰. Mathematically, the definition of the 

covariance matrix is as it follows 

𝑪𝑥 = 𝐸{(𝒙𝟏 − 𝐸{𝒙1})(𝒙1 − 𝐸{𝒙1})𝑇} (8) 

 

As we say before, the variables should have zero mean, so is obvious that 𝐸{𝒙1} = 0. 

According to that, we can say that a variable is uncorrelated if 



11 
 

𝑪𝑥 = 𝐸{𝒙1𝒙1
𝑇} = 𝑰  (9) 

Whitening would do that possible, with the following linear transformation 

𝒛1 = 𝑽𝒙1 (10) 

Being 𝒛1the whitened signal, 𝒙1 the original signal (with zero mean) and 𝑽 a 

transformation matrix. There are various methods to do so, a good idea is to use 

Principal Components Analysis (PCA). Due to this thesis is not about PCA, we only 

will see the basics of this technique. Depending of the field of application PCA can be 

named in different ways, we will use the eigenvalue decomposition (EVD).  

As a starting point we will define 𝑬 = (𝑒1 … 𝑒𝑛) as the matrix whose columns are the 

eigenvectors of  𝑪𝑥. And 𝑫 = 𝑑𝑖𝑎𝑔(𝑑1 … 𝑑𝑛) the diagonal matrix of the eigenvalues of 

𝑪𝑥. The eigenvalue decomposition can be always done if the matrix is diagonalizable. It 

consists in apply the EVD technique in the covariance matrix. 

𝑪𝒙 = 𝐸{𝒙1𝒙1
𝑇} = 𝑬𝑫𝑬𝑻 (11) 

Then, the whitening matrix would be the following one 

𝑽 = 𝑬𝑫
−1

𝟐⁄ 𝑬𝑻 (12) 

The matrix 𝑫
−1

𝟐⁄  can be calculated with  𝑫
−𝟏

𝟐⁄ = 𝑑𝑖𝑎𝑔(𝑑1

−1
2⁄

… 𝑑𝑛

−1
2⁄

). 

 

3.3. Measuring Nongaussianity 

 

There are different ways to calculate the ICA model, like Maximum Likelihood 

Estimation or the Minimization of Mutual Information. These are a very well-studied 

and used methods, despite that, for the goal of this thesis I will explain ICA by 

Maximization of Nongaussianity. This is the core of the FastICA algorithm.  

In this section we will see important definitions for measuring the gaussianity of an 

independent component and the basics of this method.  

For the Maximization of Nongaussianity we need to measure in some way the 

gaussianity of the independent components. This can be made in different ways, in this 

section kurtosis and negentropy will be explained. Depending of the method we use, the 

FastICA algorithm will be different. At the end of the section the choice of the 

algorithm will be made.  
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3.3.1. With kurtosis 

 

We need to know how the gaussianity of a component is measured. This can be made 

with kurtosis, which is, a way to measure the form of the probability density function. 

Kurtosis allows us to view and study the concentration of data around of the average µ. 

In common words, a high kurtosis means a high concentration of samples surrounding 

µ. Graphically, this is a distribution with the center forming a spike. Formally, the 

kurtosis can be expressed as 

𝛽2 =
𝜇4

𝜎4
=

𝐸[(𝒙 − 𝐸[𝒙])4

(𝐸[(𝒙 − 𝐸[𝒙])2])2
 (13) 

Where 𝜇4 is the fourth central moment of the expectation and 𝜎4 is the square of the 

standard deviation. Despite this is the formal definition, the kurtosis is commonly 

expressed as the relation of the fourth cumulant (𝜘4) and the square of the second 

cumulant (𝜘2
2).  

𝛾2 =
𝜘4

𝜘2
2 =

𝜇4

𝜎4
− 3 (14) 

This is equal to the fourth central moment of the expectation divided by the square of 

the standard deviation minus three. This is because three is the kurtosis value of a 

normal distribution. Doing this, the coefficient 𝛾2 will be zero for the normal 

distribution and then we will have a reference.  

So, taking a normal distribution as a reference, any distribution can be classified as 

leptokurtic, platykurtic or mesokurtic. In a leptokurtic distribution the kurtosis is higher 

than zero, in a platykurtic is less than zero and mesokurtic means that the distribution is 

normal. 

 

Leptokurtic  𝛽2 > 3 𝛾2 > 0 

Mesokurtic 𝛽2 = 3 𝛾2 = 0 

Platykurtic  𝛽2 < 3 𝛾2 <  0 
 

 

In the Fig. 2 we can see a comparative with different kurtosis. 
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Fig 2: Platykurtic, Leptokurtic and Mesokurtic distributions 

 

For ICA, sometimes, we work with the absolute value of the kurtosis. Because if we 

only want to know that the distribution is not gaussian, we don’t need the sign. If the 

kurtosis is not null is not gaussian, and the higher the less gaussian is.  

Despite this method is easy to implement, may be it is not the best for measuring 

Nongaussianity. It is known that kurtosis doesn’t work well with outliers, namely, with 

irregular distributions or with variables with atypical values. This is why we will study 

another measure, the negentropy. 

 

3.3.2. With negentropy 

 

We can know how gaussian is a distribution measuring its entropy. This is a basic 

concept of the information theory, and it means that the more random a component is, 

the higher is its entropy. The entropy of a discrete variable is defined as follows 

𝐻(𝒙) = ∑ 𝑃(𝑥𝑖)𝐼(𝑥𝑖) = − ∑ 𝑃(𝑥𝑖) log𝑏 𝑃(𝑥𝑖) (15)
𝑖𝑖

 

The base of the logarithm can change depending of the unit of the entropy we want. The 

common value (for computer applications) is two. We can relate entropy of a random 

vector with its density 𝑝𝑦(𝜼) with the next equation 

𝐻(𝒙) = − ∫ 𝑝𝒚(𝜼) log 𝑝𝑦(𝜼)𝑑𝜼 (16) 

For us, is important to know that a gaussian distribution has the highest entropy. Then, 

it’s obvious that we can use entropy for the measuring. Graphically if the entropy is low 

the probably distribution will have a spike form and vice versa. 

The calculation is similar to the kurtosis, we must have a reference to gaussian 

distribution with negentropy. This can be made defining negentropy as 
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𝐽(𝒙) = 𝐻(𝒙𝑔𝑎𝑢𝑠𝑠) − 𝐻(𝒙) (17) 

Where 𝒙𝑔𝑎𝑢𝑠𝑠 have the same covariance matrix as 𝒙. With this definition, we reference 

the variable 𝒙 to the normal distribution.  

Negentropy is a powerful way to measure the gaussianity, but the inconvenient is that is 

more complex than kurtosis. This is because we need to calculate the probability density 

function of the variables. Fortunately there are approximations for calculate the 

negentropy. 

 

3.4. Approximating negentropy  

 

In this section methods for approximate negentropy will be studied.  

 

3.4.1. By cumulants 

 

This is the classic method for estimate the negentropy, it is based in the use of higher-

order cumulants. The idea is to use an expansion series from the probability density 

function. With this expansion we will be able to approximate the probability density 

only with the cumulants. For the explanation of this method we are going to suppose a 

variable with null mean and variance equals to one. Let’s assume too that the pdf of the 

variable is almost the normal distribution 

𝜑(𝜉) =
1

𝜎√2𝜋
𝑒

−
1
2

(
𝜉−𝜇

𝜎
)

2

(18) 

And as I said before, µ is equal to zero and 𝜎 is one. So the probability density of x is as 

it follows 

𝜑(𝜉) =
𝑒−

𝜉2

2

√2𝜋
 (19) 

Now, the expansion we are going to use is named as Gram-Charlier expansion, in honor 

to Carl Charlier and Jørgen Pedersen Gram. According to them, the polynomials are 

equal to the derivatives of the probability density function  

𝛿𝑖𝜑(𝜉)

𝛿𝜉𝑖
= (−1)𝑖𝐻𝑖(𝜉)𝜑(𝜉) (20) 

Where 𝐻𝑖 are the Hermite polynomials. It is important to know that these polynomials 

are orthogonal, so they form an orthonormal system. Then, we can apply the Gram-

Charlier expansion to calculate the pdf in a similar way as we would apply a Taylor 
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expansion. Obviously, the expansion has infinite components, but we only are interested 

in the first three ones.  

𝑝𝑥(𝜉) ≈ 𝜑(𝜉) (1 + 𝜅3(𝑥)
𝐻3(𝜉)

3!
+ 𝜅4(𝑥)

𝐻4(𝜉)

4!
) (21) 

This Taylor similar expansion is possible because the probability distribution of 𝑥 is 

near to the normal distribution. As a reminder, the idea is that the gaussianity is given 

by the third and fourth cumulants. We already know the fourth cumulant which is the 

kurtosis. The third cumulant is called skewness  

𝜅3(𝑥) = 𝐸{𝑥3} (22) 

𝜅4(𝑥) = 𝐸{𝑥4} − 3 (23) 

At this point, we can insert the expansion into the definition of the entropy. Don’t 

confound 𝐻(𝑥), the entropy, with 𝐻𝑖(𝜉) which are the Hermite polynomials. 

𝐻(𝑥) ≈ − ∫ 𝑝𝑥(𝜉) log 𝑝𝑥(𝜉) 𝑑𝜉 (24) 

Is a complex equation, but we have to recall that the cumulants of 𝑥 are really small, 

because its pdf is nearly the gaussian.  Because of that, we can approximate the 

expansion of above with the following transformation 

log(1 + 𝛼) ≈
𝛼 − 𝛼2

2
 (25) 

Applying that, and substituting 𝑝𝑥(𝜉) in the definition of the entropy, we have the 

following approximation 

𝐻(𝑥) ≈ − ∫ 𝜑(𝜉) (1 + 𝜅3(𝑥)
𝐻3(𝜉)

3!
+ 𝜅4(𝑥)

𝐻4(𝜉)

4!
) [

(log 𝜑(𝜉) + 𝜅3(𝑥)
𝐻3(𝜉)

3!
+ 𝜅4(𝑥)

𝐻4(𝜉)
4!

− (𝜅3(𝑥)
𝐻3(𝜉)

3!
+ 𝜅4(𝑥)

𝐻4(𝜉)
4!

)2)

2
] (26) 

This long equation can be simplified using algebra, which gives us the next expression 

𝐻(𝑥) ≈ − ∫ 𝜑(𝜉)𝑙𝑜𝑔𝜑(𝜉)𝑑𝜉 −
𝜅3(𝑥)2

2 × 3!
−

𝜅4(𝑥)2

2 × 4!
 (27) 

 

Operating that we can reach a simple definition of negentropy, more computationally 

simple than the first one (17) 

𝐽(𝑥) ≈
1

12
𝐸{𝑥3}2 +

1

48
𝑘𝑢𝑟𝑡(𝑥)2 (28) 

We can easily see a problem with this approximation of the negentropy. It uses the 

kurtosis and, as we saw before, we may have problems with outliers. That’s why we 
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will use another approximation for our algorithm. It is possible to calculate negentropy 

with the expectation. This is what we will see in the next section 

 

3.4.2. By Nonpolynomial Functions 

 

We are going to talk about a method based on the approximation of the maximum 

entropy. Let’s imagine that we have a series of expectations of 𝑥  

∫ 𝑝(𝜉) 𝐹𝑖(𝜉)𝑑𝜉 = 𝑐𝑖 ;  for  𝑖 = 1, … , 𝑛  (29) 

This expression means that we have calculated the expectations of any function 𝐹𝑖. 

Normally, these functions aren’t polynomials. Due we can’t calculate the maximum 

entropy analytically, we have to approximate the maximum entropy density 𝑝0. For this 

approximation, we have to make the same assumption as in the previous section, 𝑝(𝜉) is 

similar to the gaussian density. We need to consider that our variable 𝑥 has variance 

equal to one and zero mean as well. 

We also will consider that the functions 𝐹𝑖 form an orthonormal system, they are 

orthogonals between each other. Mathematically, the maximum entropy density is 

defined as 

𝑝0(𝜉) = 𝐴𝑒(∑ 𝑎𝑖𝐹𝑖(𝜉))𝑖  (30) 

Where A and 𝑎𝑖 are constants dependents of 𝑐𝑖, to see this we only need to substitute 𝑝0 

in the integral of above. Because the density is similar to the gaussian model, we can do 

a similar assumption as in the previous section, 𝑎𝑖 are small because the exponential of 

𝑝0(𝜉) is similar to the gaussian exponential. Then, we can apply an approximation of 

the exponential function and say that, approximately, 𝑝0(𝜉) is 

𝑝̂(𝜉) = 𝜑(𝜉) (1 + ∑ 𝑐𝑖𝐹
𝑖(𝜉)

𝑛

𝑖=1

) (31) 

Taking 𝑐𝑖 = 𝐸{𝐹𝑖(𝜉)}. Now, we can insert 𝑝̂(𝜉) in the definition of the entropy 

𝐻(𝑥) ≈ − ∫ 𝑝𝑥(𝜉) log 𝑝𝑥(𝜉) 𝑑𝜉 (32) 

And taking the same transformation as before (25).  

After the Taylor expansion and algebraic operations, we finally reach an approximation 

for the negentropy. 

𝐽(𝑥) ≈
1

2
∑ 𝐸{𝐹𝑖(𝑥)}2

𝑛

𝑖=1

(33) 
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With this expression we have a measure for nonguassianity, because 𝐽(𝑥) will be zero if 

𝑥 has a gaussian distribution. Now is really important how we choose the calibrating 

functions 𝐹𝑖. We said before that they must be nonpolynomial functions, but we must 

take account of other properties.  

The expectation of the function should be easy to calculate and strong to outliers. By 

definition 𝑝0 is integrable, that’s why the function should not increase fast. The choice 

of the functions has been studied by different people, and there are specific functions 

that work well. 

 Let’s say that we use two functions, 𝐺1 and 𝐺2where the first one is odd and the second 

one is even. So, the odd can measure the asymmetry and the even how gaussian is the 

distribution. One may thing that this can be made measuring the skewness and the 

kurtosis but, as we say before, these cumulants are not optimal for measuring 

negentropy. We can reflex this example transforming the definition of 𝐽(𝑥) of above 

with the functions 𝐺1 and 𝐺2. After mathematic operations: 

𝐽(𝑥) ≈ 𝑘1(𝐸{𝐺1(𝑥)})2 + 𝑘2(𝐸{𝐺2(𝑥)} − 𝐸{𝐺2(𝜈)})2(34) 

Where 𝑘1and 𝑘2 are constant values and 𝜈 is a gaussian variable with gaussian 

distribution.  

And if we only use one function, the approximation of the negentropy will be as in the 

next expression 

𝐽(𝑥) ∝ [𝐸{𝐺(𝑥)}] − 𝐸{𝐺(𝜈)}]2 (35) 

The question now is: which functions should we choose? The experts in this field give 

us recommended functions that have proved to work good. The next examples are quite 

good for our purpose.  

𝐺1(𝑥) =
1

𝑎1
log cosh 𝑎1𝑥 (36) 

𝐺2(𝑥) = −𝑒
(

−𝑥2

2
)
 (37) 

With 𝑎1being an integer constant with possible values from one to two. Normally it 

takes the value one.  

 

At this point we are able to measuring the Nongaussianity of our components with 

negentropy. But now, we must use this technique to an ICA algorithm. 
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4. Blind Source Separation with ICA 
 

In this chapter we are going to see the fundamentals of the FastICA algorithm, which is 

the simplest and most versatile. It works with the measurement of negentropy.  

 

4.1. Fixed-Point Algorithm with negentropy 

 

4.1.1. Estimating the iteration 

 

For an easy explanation of this algorithm, first we are going to suppose that we only 

apply it to one component. The idea of the FastICA algorithm is to find the direction in 

which the projection 𝒘𝑻𝒛 of the vector 𝒘 has the maxim nongaussianity. This 

measurement will be done with the negentropy.  

We search the nongaussianity because when the vector reaches that we have the key to 

separate the signals. This is because the central limit theorem, the more gaussian the 

combination is the less separated the signals are. 

As the name says, this algorithm is based in iterations for catching the maxim 

nongaussianity. It’s similar to the famous Newton’s iteration method.  

We already have seen that an approximation to negentropy can be calculated with the 

expectation, in this case, of the projection 𝒘𝑻𝒛. We must recall that 𝒛 is a whitened 

variable, so the variance of 𝒘𝑻𝒛 will be equal to one. This also means that the norm of 

𝒘 must be always one.  

The basic fixed-point iteration is the following one. 

𝒘 ← 𝛾𝐸{𝒛𝑔(𝒘𝑇𝒛)} (38) 

𝒘 ← 𝒘/∥ 𝒘 ∥    (39) 

Where 𝑔 is the derivate function of 𝐺 and 𝛾 = 𝐸{𝐺(𝒘𝑇𝒛)} − 𝐸{𝐺(𝝊)} is a constant 

with 𝝊 as a gaussian variable. This would be the iteration in the loop until the projection 

𝒘𝑇𝒛 converges. The constant 𝛾 would give us an adaptation quality factor, but this is 

only used in gradient based algorithms. In our iteration algorithm, the coefficient  𝛾 will 

be omitted because with the normalization it disappears.  

We have a problem with this iteration, though. The convergence will be not as good as 

with the kurtosis method, because the properties of the nonpolynomial functions. That’s 

why we must adapt this iteration. We can modify the equation if we multiply both sides 

with a, let’s say, 𝛼 factor. 
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𝒘 = 𝐸{𝒛𝑔(𝒘𝑇𝒛)} (40) 

↓ 

(1 + 𝛼)𝒘 = 𝐸{𝒛𝑔(𝒘𝑇𝒛)} + 𝛼𝒘 (41) 

The coefficient 𝛼 is just a factor for regulate and control the convergence, in this thesis 

it is taking equal to one. Now, we have to find an appropriate coefficient for the 

algorithm. We are searching the maxima of the expectation 𝐸{𝒛𝑔(𝒘𝑇𝒛)} with the 

condition that the norm of 𝒘 must be equal to one. According to Lagrange, this maxima 

is obtained when the Lagrange’s gradient is equal to zero. 

𝐹 = 𝐸{𝒛𝑔(𝒘𝑇𝒛)} + 𝛼𝒘 = 0 (42) 

For solve this problem we can use the Newton’s iteration method, that will give us the 

maxima of the Lagrangian gradient. The gradient will be the following one 

𝛿𝐹

𝛿𝒘
= 𝐸{𝒛𝒛𝑇𝑔′(𝒘𝑇𝒛)} + 𝛼𝑰 (43) 

Note: As a reminder, 𝑰 is the identity matrix. 

Now we can simplify considerably the gradient. We can do the next assumption because 

the properties of the statistical expectation. 

𝐸{𝒛𝒛𝑇𝑔′(𝒘𝑇𝒛)} ≈ 𝐸{𝒛𝒛𝑇}𝐸{𝑔′(𝒘𝑇𝒛)} (44) 

And because 𝒛 is a whitened variable, it’s obvious that 𝐸{𝒛𝒛𝑇} = 𝑰. Then we can 

simplify the expression 

𝐸{𝒛𝒛𝑇𝑔′(𝒘𝑇𝒛)} ≈ 𝐸{𝑔′(𝒘𝑇𝒛)}𝑰 (45) 

So, the gradient becomes the next expression 

𝛿𝐹

𝛿𝒘
=  𝐸{𝑔′(𝒘𝑇𝒛)}𝑰 + 𝛼 (46) 

At last, the Newton’s iteration of the gradient will be the following one 

𝒘 ← 𝒘 −
[𝐸{𝒛𝑔(𝒘𝑇𝒛)} + 𝛼𝒘]

𝐸{𝑔′(𝒘𝑇𝒛)} + 𝛼
  (47) 

This is not the final iteration, though. We can simplify the expression by 

multiplying 𝐸{𝑔′(𝒘𝑇𝒛)} + 𝛼 in the both parts. That will give us the final result (after 

some algebraic operations) 

𝒘 ← 𝐸{𝒛𝑔(𝒘𝑇𝒛) − 𝐸{𝑔′(𝒘𝑇𝒛)}𝒘} (48) 

Actually, this is the fixed-point iteration that we will use in the FastICA algorithm.  
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Now, we have to define the function 𝑔. We already know that this function is the 

derivate of 𝐺in the definition of the negentropy 𝐽(𝑥). The derivatives of the suggested 

functions 𝐺1and 𝐺2are the followings ones. 

𝑔1 = tanh(𝑎1𝑥) ; 𝑔2 = 𝑥𝑒
−𝑥2

2   (49) 

And graphically, where 𝑔1 is the blue one and 𝑔2 the red one. 

 

And we also need the second derivate for the iteration algorithm. The result of that give 

us the following available functions for 𝑔′ 

𝑔1
′ = 𝑎1(1 − 𝑡𝑎𝑛ℎ2(𝑎1𝑥)) (50) 

𝑔2
′ = (1 − 𝑥2)𝑒

−𝑥2

2  (51) 

And we can see its graphics in the next image, with 𝑔1
′ as the blue one and 𝑔2

′ as the red 

one. 

 

 

4.1.2. Algorithm for the iteration 

 

At this point we already know the preprocessing of the signal, how the iteration is and 

which functions should we use. Then, we can write our algorithm.  

Let’s recapitulate: first we must center and whiten our recorded signal. A vector can be 

initialized (e.g. randomly) to find the inverse of the mix matrix. After that the itineration 

will start, and it won’t stop until the vector converges.  

For monitor if the vector converges, we can look at the absolute value of the dot-

product of the actual vector and the vector of the past iteration.  

This process can be draw in form of a flow diagram.  
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Fig. 3: Flow diagram of the iteration for one component 

And the pseudocode of the algorithm is the next one 

 

 



22 
 

Of course, this algorithm only gives us one single component. For reach the goal, we 

need to calculate the two independent components (the two speakers). We are not able 

to that with this algorithm. Fortunately, we can use a similar algorithm (using this 

iteration and negentropy) to solve the problem. This would be studied in the next 

section. 

 

4.2. Fixed-Point Algorithm for many components 
 

At this point we are able to calculate one single component of any uncorrelated system 

using negentropy as a measure of nongaussianity. But we always will have several 

components, in our case we have two. We may think in doing the algorithm as many 

times as components we have, but this will be not correct.  

We must remember that the vectors of the un-mixed matrix, 𝑾, are orthogonal between 

each others. This is because the space has been whitened, recall that we do that to force 

the uncorrelatedness between the components. To respect this orthogonality, we must 

implement the iteration algorithm with an orthogonalization before compute the next 

iteration.  

 

4.2.1. Orthogonalization with the Gram-Schmidt method 

 

This method was developed by the mathematics Jørgen Pedersen Gram and Erhard 

Schmidt. They defined an algorithm to build an orthonormal system with independent 

vectors.  

To explain the algorithm mathematically let’s imagine two vectors, 𝒗 and 𝒖 with the 

next projection 

𝑝𝑟𝑜𝑗𝒖(𝒗) =
〈𝒗, 𝒖〉

〈𝒖, 𝒖〉
𝒖  (52) 

This is the orthogonal projection of 𝒗 over 𝒖. Normally we will have a series of vectors 

𝒗1 … 𝒗𝑛, then (according to Gram and Schmidt) the projections of 𝒖1 … 𝒖𝑛 can be 

calculated as it follows 

        𝒖1 = 𝒗1                      𝒆1 =
𝒖𝟏

∥ 𝒖1 ∥
  (53) 

                          𝒖2 = 𝒗2 −
〈𝒗𝟐, 𝒖1〉

〈𝒖𝟏, 𝒖𝟏〉
𝒖1              𝒆2 =

𝒖𝟐

∥ 𝒖2 ∥
  (54) 

                              𝒖3 = 𝒗3 −
〈𝒗𝟑, 𝒖1〉

〈𝒖𝟏, 𝒖𝟏〉
𝒖1 −

〈𝒗𝟑, 𝒖2〉

〈𝒖𝟐, 𝒖𝟐〉
𝒖2           𝒆3 =

𝒖𝟑

∥ 𝒖3 ∥
  (55) 
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Where 𝒆 is the orthonormal vector. Of course, we can generalize this series 

𝒖𝑘 = 𝒗𝑘 − ∑
〈𝒗𝒌, 𝒖𝑗〉

〈𝒖𝒋, 𝒖𝒋〉

𝑘−1

𝑗=1

𝒖𝑗                 𝒆𝑘 =
𝒖𝑘

∥ 𝒖𝑘 ∥
  (56) 

Now, let’s apply this method to our iteration algorithm. In our context, we will have 𝑝 

independent components with their 𝒘𝑝 vectors. Imagine that we have calculated any 

component 𝒘𝑝, and the algorithm is calculating the next vector 𝒘𝑝+1. Then, after each 

iteration (for the estimation of 𝒘𝑝+1) the vector has to be orthogonalized. After this 

iterations, we have the projections (𝒘𝑝+1
𝑇 𝒘𝑗)𝒘𝑗, where 𝑗 is the previous estimated 

vector.  

Then, the algorithm for the orthogonalization in the FastICA will be the next one 

1. 𝑝 ← 1 

2. Initialize 𝒘𝑝 

3. Apply the iteration algorithm 

4. Orthogonalize 

𝒘𝑝 ← 𝒘𝑝 − ∑(𝒘𝑝
𝑇𝒘𝑗)𝒘𝑗

𝑝−1

𝑗=1

  

5. 𝒘𝒑 ← 𝒘𝒑/∥ 𝒘𝒑 ∥ 

6. If 𝒘𝑝 hasn’t converge, apply the iteration algorithm again 

7. 𝑝 ← 𝑝 + 1 

 

 

 

 

 

 

 

4.2.2. FastICA Algorithm 

 

We have already said that FastICA is the simplest and versatile algorithm for solve the 

Blind Source Separation. This method works with the measurement of independence 

with nongaussianity. There are variants of this algorithm, because there are different 

ways to measure the gaussianity.  

All the theory and the steps have been explained along this document, but let’s make a 

brief summary. This is our starting point 

𝑿 = 𝑨𝑺 (57) 
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Where the matrix 𝑿 has n vectors 𝒙𝑛. Then we must to center and whiten the data to 

have a whitened distribution. We will need a loop with many rounds as components we 

wanted to estimate. In each loop the iteration algorithm will be computed. This 

algorithm will calculate the vector 𝒘𝑝 with iterations until the vector converges. After 

that the orthogonalization will be done. This process will be repeated until the algorithm 

have found all the components. At this point we will have the matrix 𝑾, formed by all 

the vectors. At the end we can do a simple operation to get back the original signals. 

𝑺 =  𝑾𝑿  (58) 

 

The flow diagram of the FastICA algorithm is the following one 

 

Fig. 4: Flow diagram of the FastICA algorithm for many components 
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And it can be written with the following pseudocode 

 

 

 

 

At the end of the computation the original signals will be recovered with the matrix 𝑾. 

5. Analysis & Results 
 

In this section the results will be analyzed after apply the FastICA algorithm to the 

mixed signals. Then we will be able to compare the recovered signals with the original 

ones.  

 

5.1. Original Signals 

 

The Cocktail Party Problem is commonly related with speech signals, a lot of people 

talking at the same time. That’s why speech signals have been selected for the 

experiments with the FastICA algorithm.  
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These signals have been subtracted of a radio program called ‘Podcast Reload’, and they 

are just speech signals. These signals have been cut and treated with Adobe Audition 

because it allows to see the wave form and its spectrum. 

The first signal, 𝒔1, is represented in the next wave form. 

 

 

Fig. 5: Wave form of the original signal 1 

And its spectrum is the following one 

 

Fig. 6: Spectrum of the signal 

As we can see the energy is focused around the low and middle frequencies, despite that 

the human voice is rich in harmonics that can reach the 3000 or 3500 Hz. Of course, this 

will depend if a woman or a man is talking. Specifically, this wave form belongs to an 

adult man.  
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Secondly we have the other original signal 𝒔2 with its wave form 

 

Fig. 7: Wave form of the original signal 2 

And its spectrum can be visualized in the next figure. 

 

 

 

Fig. 7: Spectrum of the signal 

Both spectrums are quite similar because they are just speech signal, without music or 

loud noise.  
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5.2. Simulation of the room 

 

With the signals selected, the acoustical parameters of the room can be simulated. As 

has been said before, the simulation can be made with a specific Matlab package. It has 

a series of functions that allow us to simulate the speakers, the microphones and the 

frequency response of the room.  

The function obtains the frequency response of the room with the parameters of the 

volume, area and absorption coefficient. Also, it takes account of the distance and 

inclination of the speakers and the microphones.  

It has been chosen a low reverberation time because FastICA is not robust versus high 

reverberations. So, the reverberation time of the virtual room is 300 ms.  

At the end of the process we will have the microphone signals, which are the mix of the 

two speakers. All the signals are monophonic in a way that an audio signal equals to a 

vector in the Matlab workspace.  

We can see the wave form of the mix signals in the following figures. 

 

 

Fig. 8: Signal of the microphone 1 
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Fig. 9: Signal of the microphone 2 

 

Graphically the signals are quite similar because the microphones are near. These two 

signals will be the inputs for the FastICA algorithm. And after the execution the mixing 

matrix and the de-mixed signals will be available.  

The results are detailed in the next section. 

 

5.3. Recovered signals 

 

In this section the quality of the recovered signals will be studied. With the mixed 

signals in the Matlab workspace, the algorithm has been run and we can analyze the 

characteristics of the obtained signals and compare them with the original ones.  

In the next plot the wave form of the recovered signal s1 can be seen. 
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Fig. 10: Wave form of the recovered signal S1 

Visually, the wave form is almost the same as the original. Despite that, the signal 

doesn’t sound equal because the problems of the algorithm with reverberation. This can 

be checked by looking at its spectrum.  

 

 

Fig. 11: Spectrum of the recovered signal S1 

If we compare it with the Figure. 6 (the spectrum of the original signal s1) we can see 

tiny differences. In the original spectrum the energy was only focused in the middle 

frequencies, while in the recovered signal there are much energy in all the frequencies. 

This is because the noise that has been generated due the reverberation of the room.  

In common words, the new signal sounds like hear a voice through a metal pipe. It’s a 

normal side effect in almost all the noise reduction methods.  

Next, we will check the second recovered signal.  
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Fig. 12: Wave form of the recovered signal S2 

As happen with the signal 1, the wave form of the signal 2 is practically the same as its 

original. But if we look at the spectrum, the same effect as in the previous signal will be 

found.  

 

Fig. 13: Spectrum of the recovered signal S2 

There is more energy than in the original signal, once again because the reverberation. 

Despite this phenomenon the results are quite good if we listen to them, the separation 

is complete, there is nothing mixed in the recovered signals.  
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6. Conclusion & Future Work 
 

6.1. Conclusion 

 

In this thesis the FastICA algorithm (using negentropy) and the results with a virtual 

scenario have been studied in detail. From those results we can approximate some 

conclusions.  

The first assumption is about the FastICA algorithm. As it has been said before, it is the 

simplest algorithm to perform the Blind Source Separation. The relation between 

simplicity and quality is quite good. Most of the others ICA algorithms are 

computationally more complicated, but the result is of course better.  

Possibly the best thing about the ICA techniques is its versatility. Unlike other methods, 

with ICA any kind of signals can be computed. The only requirement that the signals 

must have is statistical independence. The type and characteristics of them don’t matter. 

This is why there are a lot of applications and fields of study related with Independent 

Component Analysis.  

 

6.2. Other Applications 
 

Until now only the audio separation has been explained, but the amount of applications 

is huge. The brain imaging applications are really common too. Normally, the 

researchers apply ICA to electroencephalography and magnetoencephalography (EEG 

and MEG). In this kind of biomedical techniques a lot of mixed signals are measured 

and there are needed methods like ICA.  

Telecommunications is also a common field of application. Specifically the CDMA 

communications may work with Blind Source Separation. CDMA are normally use for 

radio broadcasting or for mobile communications, among other applications.  

There are other minority applications such as financial applications or face recognition.  
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6.3. Future Work 

 

At this point is clear that FastICA is the basic algorithm, but if we want better results 

and advanced techniques other algorithms are needed. There is a lot of future work for 

the investigation and implementation of ICA algorithms. The next step will be study the 

same scenario of this thesis but taking account of the noise.  

The noisy ICA is actually the model that we would find in real-life scenarios. All the 

measurements have some kind of noise: because the physical noise on the microphones, 

the background noise of the room, etc. That’s why is important to study theoretically 

and mathematically the noisy ICA. 

The simplest solution to this consist in using noise reduction techniques before apply 

the ICA algorithm. But this isn’t always possible, because sometimes the noise is too 

loud or invulnerable to noise reduction techniques. Then a new model for ICA is 

needed, and this is quite more complicated that the one which has been explained in this 

thesis.  

Also, there are another kind of approaches to Independent Component Analysis. To 

continue this field of study, the techniques that work in the frequency domain must be 

studied. There are methods such as the one described in the paper ‘Convolutive BSS of 

Short Mixtures by ICA Recursively Regularized Across Frequencies’. The method that 

is explained here is really robust versus reverberation and noise, is a great algorithm for 

Blind Source Separation. Of course the complexity is high, because it works with 

Fourier analysis in frequency domain.  
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