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Interpolation subspaces of L1 of a vector measure and norm

inequalities for the integration operator

J.M. Calabuig, J. Rodŕıguez, and E.A. Sánchez-Pérez

Abstract. Let m be a Banach space valued measure. We study some domina-

tion properties of the integration operator that are equivalent to the existence

of Banach ideals of L1(m) that are interpolation spaces. These domination

properties are closely connected with some interpolated versions of summing

operators, like (p, θ)-absolutely continuous operators.

1. Introduction

Let (Ω,Σ) be a measurable space, X a Banach space and m : Σ→ X a vector

measure. For 1 ≤ p <∞, let Lp(m) be the Banach lattice of all p-integrable func-

tions with respect to m. The domination properties (i.e. vector norm inequalities)

of the integration operator I : L1(m)→ X, f 7→
∫

Ω
f dm, are directly related to the

structure of L1(m) and determine the existence of some characteristic subspaces.

From this point of view, the existence of Lebesgue subspaces of L1(m) has recently

been studied in [2] (cf. [10, Section 3.4 and Chapter 6]): geometric or summability

properties of I (namely, p-concavity on Lp(m) or positive p-summability on L1(m))

are shown to characterize either the inclusions Lp(m) ↪→ Lp(ν) ↪→ L1(m) or the

order isomorphism L1(m) ' L1(ν), for some control measure ν of m.

The aim of this paper is to continue this research by showing which vector norm

inequalities for I characterize the inclusion of some special Calderón-Lozanovskii

lattice interpolation spaces in L1(m). Our results can be applied to analyze the

inclusion of such subspaces in a broad class of Banach lattices by means of the
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well-known representation technique via vector measures (cf. [10, Chapter 3]). In

particular, we center our attention in the following problem (left open in [2, p.31]):

find a domination property of I which is equivalent to the existence of a control

measure ν of m and 0 ≤ θ < 1 such that

(Lp(ν), Lp(m))θ ↪→ L1(m),

where (Lp(ν), Lp(m))θ is the Calderón-Lozanovskii lattice interpolation space of

Lp(m) and Lp(ν). We will show that the requested domination property of I is a

concavity-type property which we call (p, θ)-concavity (Theorem 2.3). At the end of

the paper we analyze some summability properties related to (p, θ)-concavity, like

the largely studied (p, θ)-absolute continuity (see [7, 9] and the references therein).

Along this line, in Theorem 2.8 we prove that the positive (p, θ)-absolute continu-

ity of I has the same structural consequences on L1(m) than its non-interpolated

version (i.e. positive p-summability), namely: L1(m) is order isomorphic to the L1

space of a non-negative scalar measure.

Terminology. Unexplained terminology can be found in our standard refer-

ences [3, 4, 6]. All our linear spaces are real. Given a Banach space Z, the symbol

Z ′ stands for the topological dual of Z and the duality is denoted by 〈·, ·〉. We write

BZ to denote the closed unit ball of Z. The norm of Z is denoted by ‖·‖Z if needed

explicitly. A Banach space E is called Banach function space over a finite measure

space (Ω,Σ, µ) if E is a linear subspace of L0(µ) such that: (i) if f ∈ L0(µ) and

|f | ≤ |g| µ-a.e. for some g ∈ E, then f ∈ E and ‖f‖E ≤ ‖g‖E ; (ii) the character-

istic function χA of each A ∈ Σ belongs to E. Then E is a Banach lattice when

endowed with the µ-a.e. order. We write B+
E to denote the intersection of BE with

the positive cone E+ of E.

Let E and F be two Banach function spaces over a finite measure space

(Ω,Σ, µ). Given 0 ≤ θ ≤ 1, the Calderón-Lozanovskii lattice interpolation space

(E,F )θ is the Banach function space over (Ω,Σ, µ) made up of all h ∈ L0(µ) for

which there are e ∈ E and f ∈ F such that |h| = |e|1−θ|f |θ, endowed with the

norm

‖h‖(E,F )θ = inf
{
‖e‖1−θE ‖f‖θF : |h| = |e|1−θ|f |θ, e ∈ E, f ∈ F

}
.

We write F ↪→ E if the ‘identity’ mapping is a well-defined operator (i.e. linear

continuous map) from F to E. In this case, we have F ↪→ (E,F )θ ↪→ E. The

space (E,F )θ is sometimes denoted by E1−θF θ and coincides with the complex

interpolation space [F,E]1−θ under mild assumptions on E and F . For detailed

information on Calderón-Lozanovskii spaces, we refer the reader to [1] and [8].

Throughout the paper (Ω,Σ) is a measurable space, X is a Banach space and

m : Σ → X is a (countably additive) vector measure. A control measure of m

is a non-negative scalar measure ν on (Ω,Σ) such that ν(A) = 0 if and only if

‖m‖(A) = 0, where ‖ · ‖ stands for the semivariation of m. We fix a Rybakov
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control measure µ of m, that is, a control measure of the form µ = |〈m,x′0〉| with

x′0 ∈ BX′ , cf. [4, p. 268]. For each x′ ∈ X ′, we write 〈m,x′〉 to denote the

scalar measure defined by 〈m,x′〉(A) := 〈m(A), x′〉 for all A ∈ Σ. A Σ-measurable

function f : Ω → R is m-integrable if it is integrable with respect to 〈m,x′〉 for

every x′ ∈ X ′ and, for each A ∈ Σ, there exists a vector
∫
A
f dm ∈ X such that

〈
∫
A
f dm, x′〉 =

∫
A
f d〈m,x′〉 for all x′ ∈ X ′. Given 1 ≤ p < ∞, the space Lp(m)

is the Banach function space over (Ω,Σ, µ) made up of all (equivalence classes of)

functions f such that |f |p is m-integrable, endowed with the norm

‖f‖Lp(m) := sup
x′∈BX′

(∫
Ω

|f |pd|〈m,x′〉|
) 1
p

.

For the basic properties of this space, we refer the reader to [5] and [10, Chapter 3].

The mapping I : L1(m) → X given by I(f) :=
∫

Ω
f dm is an operator which is

usually called integration operator.

We recall that each functional ϕ ∈ L1(m)′ can be represented as ϕ(f) =∫
Ω
fh dµ for some h ∈ L1(m)×. The Köthe dual L1(m)× of L1(m) is the Ba-

nach function space over (Ω,Σ, µ) made up of all h ∈ L0(µ) such that fh ∈ L1(µ)

for every f ∈ L1(m). Given h ∈ L1(m)×, if the scalar measure h dµ on (Ω,Σ) de-

fined by A 7→
∫
A
h dµ is a control measure of m, then L1(h dµ) is a Banach function

space over (Ω,Σ, µ) and we have L1(m) ↪→ L1(h dµ).

2. (p, θ)-concave integration operators

Definition 2.1. Let E be a Banach function space over (Ω,Σ, µ) and let Y

be a Banach space. We say that an operator T : E → Y is (p, θ)-concave (where

1 ≤ p <∞ and 0 ≤ θ < 1) if there is a constant K > 0 such that(
n∑
i=1

∥∥T (hi)
∥∥ p

1−θ
Y

) 1
p

≤ K

∥∥∥∥∥∥
(

n∑
i=1

|fi|p‖gi‖
θp

1−θ

) 1
p

∥∥∥∥∥∥
E

whenever hi, fi, gi ∈ E satisfy |hi| = |fi|1−θ|gi|θ for every i = 1, 2, . . . , n.

Notice that (p, 0)-concavity is just the usual notion of p-concavity.

Remark 2.2. Every (p, θ)-concave operator is pθ-concave in the sense of [11].

We stress that an operator T : E → Y is pθ-concave if and only if it factorizes

through a specific real interpolation space, see [11, Theorem 3.7].

Theorem 2.3. Let 1 ≤ p < ∞ and 0 ≤ θ < 1. The following statements are

equivalent:

(a) The integration operator I : Lp(m)→ X is (p, θ)-concave.

(b) There exist C > 0 and h0 ∈ B+
L1(m)′ such that∥∥∥∥∫

Ω

v dm

∥∥∥∥
X

≤ C
(∫

Ω

|f |ph0 dµ

) 1−θ
p

‖g‖θLp(m)
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whenever v, f, g ∈ Lp(m) satisfy |v| = |f |1−θ|g|θ.

(c) There is h0 ∈ B+
L1(m)′ such that h0 dµ is a control measure of m and

(Lp(h0 dµ), Lp(m))θ ↪→ L1(m).

(d) There is a control measure ν of m such that

L1(m) ↪→ L1(ν) and (Lp(ν), Lp(m))θ ↪→ L1(m).

Proof. (a)⇒(b). Let K > 0 be a constant like in Definition 2.1 applied to

the integration operator I : Lp(m)→ X.

Given finitely many vi, fi, gi ∈ Lp(m), i = 1, . . . , n, such that |vi| = |fi|1−θ|gi|θ,
let us consider the function Φ : B+

L1(m)′ → R defined by

Φ(h) :=

n∑
i=1

∥∥∥∥∫
Ω

vi dm

∥∥∥∥
p

1−θ

−Kp

∫
Ω

(
n∑
i=1

|fi|p‖gi‖
θp

1−θ
Lp(m)

)
h dµ.

Clearly Φ is w∗-continuous on the w∗-compact set B+
L1(m)′ , so it attains its infimum

at some hΦ ∈ B+
L1(m)′ . We claim that Φ(hΦ) ≤ 0. Indeed, for each h ∈ B+

L1(m)′ ,

the inequality Φ(hΦ) ≤ Φ(h) implies∫
Ω

(
n∑
i=1

|fi|p‖gi‖
θp

1−θ
Lp(m)

)
h dµ ≤

∫
Ω

(
n∑
i=1

|fi|p‖gi‖
θp

1−θ
Lp(m)

)
hΦ dµ.

Therefore

(2.1)

∥∥∥∥∥∥
(

n∑
i=1

|fi|p‖gi‖
θp

1−θ
Lp(m)

) 1
p

∥∥∥∥∥∥
p

Lp(m)

=

∥∥∥∥∥
n∑
i=1

|fi|p‖gi‖
θp

1−θ
Lp(m)

∥∥∥∥∥
L1(m)

=

= sup
h∈B+

L1(m)′

∫
Ω

(
n∑
i=1

|fi|p‖gi‖
θp

1−θ
Lp(m)

)
h dµ ≤

∫
Ω

(
n∑
i=1

|fi|p‖gi‖
θp

1−θ
Lp(m)

)
hΦ dµ.

On the other hand, since I : Lp(m)→ X is (p, θ)-concave, we have(
n∑
i=1

∥∥∥∥∫
Ω

vi dm

∥∥∥∥
p

1−θ

X

) 1
p

≤ K

∥∥∥∥∥∥
(

n∑
i=1

|fi|p‖gi‖
θp

1−θ

) 1
p

∥∥∥∥∥∥
Lp(m)

,

which combined with (2.1) yields

n∑
i=1

∥∥∥∥∫
Ω

vi dm

∥∥∥∥
p

1−θ

X

≤ Kp

∫
Ω

(
n∑
i=1

|fi|p‖gi‖
θp

1−θ
Lp(m)

)
hΦ dµ,

and so Φ(hΦ) ≤ 0, as claimed. Notice also that Φ is convex (in fact, it is affine).

It is easy to check that the collection of all Φ’s as above is a convex cone

in RB
+

L1(m)′ . An appeal to Ky Fan’s Lemma (cf. [3, Lemma 9.10]) ensures the

existence of h0 ∈ B+
L1(m)′ such that Φ(h0) ≤ 0 for every function Φ as above. In

particular, if v, f, g ∈ Lp(m) satisfy |v| = |f |1−θ|g|θ, then∥∥∥∥∫
Ω

v dm

∥∥∥∥
p

1−θ

X

≤ Kp

(∫
Ω

|f |ph0 dµ

)
‖g‖

θp
1−θ
Lp(m)
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and taking C := K1−θ we have∥∥∥∥∫
Ω

v dm

∥∥∥∥
X

≤ C
(∫

Ω

|f |ph0 dµ

) 1−θ
p

‖g‖θLp(m).

This completes the proof of (a)⇒(b).

(b)⇒(c). Since Lp(m) ↪→ Lp(h0 dµ), we have

Lp(m) ↪→ (Lp(h0 dµ), Lp(m))θ ↪→ Lp(h0 dµ).

We divide the proof of (b)⇒(c) into several steps.

Step 1.- Condition (b) yields

‖m(B)‖X ≤ C

(∫
B

h0 dµ

) 1−θ
p

‖χΩ‖θLp(m) ≤ C

(∫
A

h0 dµ

) 1−θ
p

‖χΩ‖θLp(m)

for every B ⊂ A in Σ. Hence h0 dµ is a control measure of m.

Step 2.- Fix an arbitrary simple function v. We claim that

(2.2) ‖v‖L1(m) ≤ C‖v‖(Lp(h0 dµ),Lp(m))θ .

Let f ∈ Lp(h0 dµ) and g ∈ Lp(m) such that |v| = |f |1−θ|g|θ. Choose sequences

(fn) and (gn) of simple functions such that |fn| ↗ |f | and |gn| ↗ |g| µ-a.e. Define

vn := |fn|1−θ|gn|θ for every n ∈ N, so that vn ↗ |v| µ-a.e. We next show that

(2.3) ‖vn‖L1(m) ≤ C‖fn‖1−θLp(h0 dµ)‖gn‖
θ
Lp(m) for all n ∈ N.

To this end, take any ξ ∈ L∞(µ). Since the functions vnξ, fnξ, gnξ ∈ Lp(m) satisfy

|vnξ| = |fnξ|1−θ|gnξ|θ, condition (b) yields∥∥∥∥∫
Ω

vnξ dm

∥∥∥∥
X

≤ C
(∫

Ω

|fnξ|ph0 dµ

) 1−θ
p

‖gnξ‖θLp(m) ≤

≤ C
(∫

Ω

|fn|ph0 dµ

) 1−θ
p

‖gn‖θLp(m) = C‖fn‖1−θLp(h0 dµ)‖gn‖
θ
Lp(m).

Bearing in mind that

‖vn‖L1(m) = sup
ξ∈BL∞(µ)

∥∥∥∥∫
Ω

vnξ dm

∥∥∥∥
X

,

cf. [10, (3.64)], inequality (2.3) follows at once. Now, since

‖vn‖L1(m) → ‖v‖L1(m), ‖fn‖Lp(h0 dµ) → ‖f‖Lp(h0 dµ), ‖gn‖Lp(m) → ‖g‖Lp(m),

we can take limits in (2.3) to infer that ‖v‖L1(m) ≤ C‖f‖1−θLp(h0 dµ)‖g‖
θ
Lp(m). As

f ∈ Lp(h0 dµ) and g ∈ Lp(m) are arbitrary functions satisfying |v| = |f |1−θ|g|θ,
inequality (2.2) holds true.

Step 3.- The space (Lp(h0 dµ), Lp(m))θ is order continuous, cf. [8, Lemma 20],

and so the subspace S made up of all simple functions is dense in (Lp(h0 dµ), Lp(m))θ.

Fix v ∈ (Lp(h0 dµ), Lp(m))θ and let (vn) be a sequence in S such that

‖vn − v‖(Lp(h0 dµ),Lp(m))θ → 0.
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Then ‖vn − v‖Lp(h0 dµ) → 0 and so, by passing to a further subsequence, we can

assume without loss of generality that vn → v µ-a.e. (by Step 1, h0 dµ has the same

null sets as m). On the other hand, by Step 2, the ‘identity’ mapping S → L1(m)

is continuous (with norm less than or equal to C). Thus, (vn) is a Cauchy sequence

in L1(m) and so there is w ∈ L1(m) such that ‖vn−w‖L1(m) → 0 and, in particular,

‖vn − w‖L1(h0dµ) → 0. Hence v = w ∈ L1(m) and ‖vn − v‖L1(m) → 0. Moreover,

we have ‖v‖L1(m) ≤ C‖v‖(Lp(h0 dµ),Lp(m))θ . This shows that

(Lp(h0 dµ), Lp(m))θ ↪→ L1(m)

and the proof of (b)⇒(c) is finished.

(c)⇒(d) is obvious.

(d)⇒(c). Observe that if ν is a control measure of m such that L1(m) ↪→ L1(ν),

then the positive linear mapping f 7→
∫

Ω
f dν is continuous on L1(m) and so there

is 0 < h ∈ L1(m)′ such that
∫

Ω
f dν =

∫
Ω
fh dµ for all f ∈ L1(m), hence ν = h dµ.

Finally just consider h0 = h/‖h‖L1(m)′ ∈ B+
L1(m)′ in order to obtain the result since

h0dµ is a control measure of m and Lp(h0dµ) = Lp(hdµ) = Lp(ν).

(c)⇒(a). Let K > 0 be a constant such that ‖v‖L1(m) ≤ K‖v‖(Lp(h0 dµ),Lp(m))θ

for every v ∈ (Lp(h0 dµ), Lp(m))θ. Take finitely many functions vi, fi, gi ∈ Lp(m),

i = 1, . . . , n, satisfying |vi| = |fi|1−θ|gi|θ. Then each vi ∈ (Lp(h0 dµ), Lp(m))θ and

n∑
i=1

∥∥∥∥∫
Ω

vi dm

∥∥∥∥
p

1−θ

≤
n∑
i=1

‖vi‖
p

1−θ
L1(m) ≤ K

p
1−θ

n∑
i=1

‖vi‖
p

1−θ
(Lp(h0 dµ),Lp(m))θ

≤

≤ K
p

1−θ

n∑
i=1

(
‖fi‖1−θLp(h0 dµ)‖gi‖

θ
Lp(m)

) p
1−θ

= K
p

1−θ

n∑
i=1

‖fi‖pLp(h0 dµ)‖gi‖
θp

1−θ
Lp(m) =

= K
p

1−θ

n∑
i=1

(∫
Ω

|fi|ph0 dµ

)
‖gi‖

θp
1−θ
Lp(m) = K

p
1−θ

∫
Ω

n∑
i=1

|fi|p‖gi‖
θp

1−θ
Lp(m)h0 dµ ≤

≤ K
p

1−θ

∥∥∥∥∥
n∑
i=1

|fi|p‖gi‖
θp

1−θ
Lp(m)

∥∥∥∥∥
L1(m)

= K
p

1−θ

∥∥∥∥∥∥
(

n∑
i=1

|fi|p‖gi‖
θp

1−θ
Lp(m)

) 1
p

∥∥∥∥∥∥
p

Lp(m)

.

Therefore, the integration operator I : Lp(m)→ X is (p, θ)-concave. �

Remark 2.4. Our previous theorem generalizes [2, Theorem 2.3], where we

proved that I : Lp(m)→ X is p-concave if and only if there is a control measure ν

of m such that Lp(m) ↪→ Lp(ν) ↪→ L1(m). In this case, for each 0 ≤ θ < 1 we have

Lp(m) ↪→ (Lp(ν), Lp(m))θ ↪→ Lp(ν) ↪→ L1(m).

However, there are cases where Lp(ν) 6↪→ L1(m) and (Lp(ν), Lp(m))θ ↪→ L1(m)

for some Rybakov control measure ν of m, as in the following example.

Example 2.5. Let Ω := [0, 1] with the Lebesgue σ-algebra Σ and consider

the vector measure m : Σ → L2[0, 1] given by m(A) := χA. Then the Lebesgue
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measure λ is a Rybakov control measure of m and the ‘identity’ mapping is an

isometric isomorphism between L1(m) and L2[0, 1]. Then:

(i) (L3/2[0, 1], L3/2(m))1/2 ↪→ L1(m).

(ii) L3/2(ν) 6↪→ L1(m) for any Rybakov control measure ν of m.

Proof. (i) Fix v ∈ (L3/2[0, 1], L3/2(m))1/2 arbitrary. Take functions f ∈
L3/2[0, 1] and g ∈ L3/2(m) = L3[0, 1] satisfying |v| = |f |1/2|g|1/2. Hölder’s inequal-

ity yields∫
Ω

|v|2 dλ =

∫
Ω

|f ||g| dλ ≤

≤
(∫

Ω

|f |3/2 dλ
) 2

3
(∫

Ω

|g|3 dλ
) 1

3

= ‖f‖L3/2[0,1]‖g‖L3/2(m),

hence v ∈ L1(m) = L2[0, 1] and ‖v‖L1(m) ≤ ‖v‖(L3/2[0,1],L3/2(m))1/2
.

(ii) Let ν be any Rybakov control measure ν of m. Then there is h ∈ BL2[0,1]

such that ν = |〈m,h〉|. Notice that 〈m,h〉(A) = 〈m(A), h〉 =
∫
A
h dλ for all A ∈

Σ, so ν = |h| dλ. Take A ∈ Σ with λ(A) > 0 such that h is bounded on A,

that is, for some b > 0 we have |h(t)| ≤ b for all t ∈ A. The restrictions of λ

and ν to the trace σ-algebra ΣA := {A ∩ E : E ∈ Σ} on A are denoted by λA

and νA, respectively. An easy computation shows that each f ∈ L3/2(λA) belongs

to L3/2(νA) and ‖f‖L3/2(νA) ≤ b2/3‖f‖L3/2(λA). Now we argue by contradiction.

Suppose that L3/2(ν) ↪→ L1(m). Then there is C > 0 such that each f ∈ L3/2(λA)

belongs to L2(λA) and ‖f‖L2(λA) ≤ Cb2/3‖f‖L3/2(λA). Hence the ‘identity’ mapping

is an isomorphism between L3/2(λA) and L2(λA), a contradiction. �

Remark 2.6. Actually the same proof of part (ii) gives

(ii)’ L3/2(ν) 6↪→ L1(m) for every control measure ν of m with L1(m) ↪→ L1(ν).

Hence, the integration map I : L3/2(m)→ X is not 3/2-concave. However I must

be (3/2, 1/2)-concave (and in fact (3/2, θ)-concave for all θ ≥ 1/2).

The same kind of arguments can provide more examples in the setting of

Lorentz spaces Lp,q[0, 1].

Definition 2.7. Let T : Z → Y be an operator between Banach spaces.

(i) T is called (p, θ)-absolutely continuous (where 1 ≤ p <∞ and 0 ≤ θ < 1)

if there is a constant K > 0 such that

(2.4)

n∑
i=1

∥∥T (zi)
∥∥ p

1−θ
Y
≤ K sup

z′∈BZ′

n∑
i=1

∣∣〈zi, z′〉∣∣p∥∥zi∥∥ θp
1−θ
Z

for every z1, . . . , zn ∈ Z, n ∈ N.

(ii) If Z is a Banach lattice, then T is called positive (p, θ)-absolutely contin-

uous if there is K > 0 such that (2.4) holds for every z1, . . . , zn ∈ Z+,

n ∈ N.
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Notice that for θ = 0 the notion of (positive) (p, θ)-absolutely continuous op-

erator coincides with that of (positive) p-summing operator.

The following result is an extension of [2, Theorem 2.7].

Theorem 2.8. Let 1 ≤ p < ∞ and 0 ≤ θ < 1. The following statements are

equivalent:

(a) I : L1(m)→ X is positive (p, θ)-absolutely continuous.

(b) I : L1(m)→ X is positive p
1−θ -summing.

(c) L1(m) is order isomorphic to the L1 space of a non-negative scalar mea-

sure.

Proof. (b)⇔(c) follows from [2, Theorem 2.7].

(a)⇒(b). Let K > 0 be as in Definition 2.7. Fix f1, . . . , fn ∈ L1(m)+. For

each r1, . . . , rn ∈ BL∞(µ) we have

n∑
i=1

∥∥∥∥∫
Ω

firi dm

∥∥∥∥
p

1−θ

X

≤ K sup
h∈BL1(m)′

n∑
i=1

∣∣∣∣∫
Ω

firih dµ

∣∣∣∣p ∥∥firi∥∥ θp
1−θ
L1(m) ≤

≤ K sup
h∈BL1(m)′

n∑
i=1

(∫
Ω

fi|h| dµ
)p ∥∥fi∥∥ θp

1−θ
L1(m) ≤

(∗)
≤ K sup

h∈BL1(m)′

(
n∑
i=1

(∫
Ω

fi|h| dµ
) p

1−θ
)1−θ ( n∑

i=1

∥∥fi∥∥ p
1−θ
L1(m)

)θ
,

where (∗) follows from Hölder’s inequality. Taking into account that

‖fi‖L1(m) = sup
r∈BL∞(µ)

∥∥∥∥∫
Ω

fir dm

∥∥∥∥
X

,

cf. [10, (3.64)], we obtain

n∑
i=1

∥∥fi∥∥ p
1−θ
L1(m) ≤ K sup

h∈BL1(m)′

(
n∑
i=1

(∫
Ω

fi|h| dµ
) p

1−θ
)1−θ ( n∑

i=1

∥∥fi∥∥ p
1−θ
L1(m)

)θ
and therefore

n∑
i=1

∥∥fi∥∥ p
1−θ
L1(m) ≤ C sup

h∈BL1(m)′

n∑
i=1

(∫
Ω

fi|h| dµ
) p

1−θ

,

where C = K1/(1−θ). It follows that

n∑
i=1

∥∥∥∥∫
Ω

fi dm

∥∥∥∥
p

1−θ

≤
n∑
i=1

∥∥fi∥∥ p
1−θ
L1(m) ≤

≤ C sup
h∈BL1(m)′

n∑
i=1

(∫
Ω

fi|h| dµ
) p

1−θ

≤ C sup
h∈BL1(m)′

n∑
i=1

∣∣∣∣∫
Ω

fih dµ

∣∣∣∣
p

1−θ

.

Consequently, the integration operator is positive p
1−θ -summing.
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(b)⇒(a). Just bear in mind that for each f ∈ L1(m) and h ∈ B+
L1(m)′ we have∣∣〈f, h〉∣∣ p

1−θ =
∣∣〈f, h〉∣∣p∣∣〈f, h〉∣∣ θp1−θ ≤

∣∣〈f, h〉∣∣p∥∥f∥∥ θp
1−θ
L1(m).

The proof is over. �
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