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Piezometric error derived from some demand lumped
models in water distribution
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Abstract. Allocation of the internal demand in a line to the end nodes of the line
may help reduce the size of the mathematical model of a water distribution network
(WDN). Such a reduction is desirable as it allows hydraulic simulations at a lower
computational cost. Moreover, this reduction is inevitable in the case of WDN
models of large cities, due to its size, which require huge amounts of computational
resources. However, such simplified models are not at zero cost, since they produce
various errors in the calculations. In this contribution we provide a calculation
mechanism that allows the engineers responsible for the hydraulic model of a
WDN to know the errors in terms of piezometric head produced by allocating the
internal demands of a line to the end nodes of the line.
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1. Introduction

Today, with the widespread use of Geographic Information Systems (GIS),
models containing up to hundreds of thousands of pipes [3] are built.

Currently, it is possible to build detailed models of a WDN in its entirety.
However, even ignoring the aspects related to the uncertainty - something
that is not realistic, such models produce massive amounts of data, and re-
quire sophisticated computational tools and efficient mechanisms to reasonably
interpret the results obtained.
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Frequently, some simplifications are performed without further insight.
One such simplification consists in the allocation of the internal demand of
a line to its end nodes [1, 2], since the consideration of every one of the
consumption points would imply the inclusion of an equal number of points
in the calculation model. In a large WDN, this would amount to consider
hundreds of thousands of calculation points, which may be an insurmountable
impediment to build the network model so that calculations may be efficiently
performed, and the results obtained reasonably interpreted.

In [2] we have analyzed the errors produced by the most common ap-
plication of this simplification: the so-called 50% rule, which systematically
allocates half of the internal demand of a line to its end nodes. In this con-
tribution we provide a calculation mechanism to estimate the magnitude of
the error in terms of pressure head inside the line, which derives from such
lumped model.

In view of the results, the analyst will have a criterion for deciding whether
the approximate representation is sufficient or, on the contrary, it is necessary
to include some intermediate point of the line into the pool of the model
calculation points to obtain a more accurate representation.

2. Problem statement

Let’s consider a single line associated with some internal consumption under
steady state condition. The characteristics of the line are: length: L; diameter:
D; upstream head (boundary condition at the upstream node): H0; friction
factor: f ; and inflow: Qin. Let’s consider an arbitrary consumption scenario
associated with two characteristics: total demand in the line with regard to
line inflow, and specific distribution of the demand along the line. Let’s as-
sume that the flow consumed within the line (total in-line demand) represents
a percentage of the line inflow through the upstream end 0. If this fraction
is represented by FQ, 0 < FQ ≤ 1, the gross demand in the line is given by
the expression Qd = FQQin. Let’s now consider a demand distribution on the
line whose accumulated demand is given by a function Q (x) = Qdq (x), where
q (x) is the accumulated demand ratio, a function defined in [0, L] increas-
ing monotonically from 0 to 1. Finally, let FQd be the factor that allocates
a fraction of the line distributed demand, Qd, to its upstream end. Thus,
the demand allocated to this upstream node is Q0 = FQdQd. As a result,
Ql = Qin −Q0 is the flow rate through the line.

In [3] we have shown that if q (x) corresponds to demands dk at points
xk, with 0 < x1 < x2 < . . . < xn−1 < xn < L, such that d1 + . . . + dn = Qd,
then to get the same piezometric value at L using both the lumped and the
distributed model of demands, the value of FQd must be
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where

µi = di/Qd, µ0 = 0, λi = xi/L, λ0, λn+1 = 1, for i = 1, . . . , n.

Note that µi represents the demand ratio withdrawn at xi, the consump-
tion point in the line that is at relative distance λi from 0.

3. Piezometric discrepancy when using the proposed formula

The reduction of the model size using this lumped demand model is at the
price of accepting some piezometric head errors at the inner points of the line.

In the (real) case of a discrete demand along the line, the maximum dis-
crepancy occurs at one of the points xk, since the real HGL

HR (FQ, xi) = H0 −KLQ2
in
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is a decreasing concave upwards polygonal, and the calculated HGL

HC (FQd, x) = H0 −KxQ2
in (1− FQdFQ)

2

is a straight line. Then, the problem reduces to identify the first xk0 for which
the next section of the polygonal has a slope equal to or lower than the slope
of the HGL for the lumped model (if equal, all the points between xk0 and
xk0+1 will provide the maximum since the mentioned section of the polygonal
and HC (FQd;x) runs parallel between both points):

Find the first point xk0 such that

(
1− FQ

(
k0∑
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µi

))2

≤ (1− FQdFQ)
2 .

This problem may be rewritten as

Find the first point xk0 such that
∑k0

i=1
µi ≥ FQd. (2)

These calculations are straightforward and be easily organized, for exam-
ple in a standard worksheet.
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4. Conclusions

This research focuses on the study of the maximum head point discrepancy
associated with the concentration of a distributed demand in a line. We use a
formula, (1), derived in [2], that performs such a distribution between the end
nodes of the line with zero error at L. Note that other allocations produce
bigger errors, in general. Calculations are straightforward and involve direct
methods easy to apply for example using a very simple worksheet.

If not satisfied with the obtained results from the lumped model for one
line, the expert, using these results, may include in the model one additional
point of the line, obviously the one where the maximum head discrepancy
occurs, given by (2). This divides the line into two new lines to which the
same criteria may be applied. Also, including an interior point of one line into
the model may be useful in the case that a line is fed by both ends.
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