Android real-time audio communications over local

wireless

Romdn Belda, Pau Arce, Ismael de Fez, Francisco Fraile and Juan Carlos Guerri

Instituto de Telecomunicaciones y Aplicaciones Multimedia,
Universitat Politécnica de Valéncia,

8G Building - access D - Camino de Vera s/n - 46022 Valencia (Spain)

Corresponding author: robelor@iteam.upv.es

Abstract

This paper describes an Android mobile application that
allows voice communications through short-range wireless
networks, mainly Bluetooth and Wi-Fi. The application is
able to replicate as close as possible the behavior of a two-
way radio device. The application is designed to receive
audio streams from multiple devices simultaneously and
to send them. The main design considerations of the ap-
plication, such as audio recording and playing, audio cod-
ing or data transmission, are explained through the paper.

Keywords: Wireless networks, Android, data transmis-
sion, audio coding.

1. Introduction

Application distribution platforms for mobile devices, such
as the App Store or the Android Market, have promoted
the appearance of an ever-increasing number of applica-
tions, drastically changing the landscape of the market. Al-
though Apple pioneered this change, the convenience of
the Android platform for both device manufacturers and
application developers has established the Android Market
as one of the most relevant application distribution plat-
forms. Due to the fast growing number of Android termi-
nals worldwide, application developers target this platform
seeking for a massive number of potential users.

There are many different categories of applications such
as games, infotainment or access to social networks.
Users can even find applications that supersede the na-
tive communication applications of the phone, such as
messaging, audio or video communications. The success

of this kind of applications highlights the fact that al-
though phones allow users to text or call each other,
there are many use cases for which the native communi-
cation applications just do not fit.

Regarding voice communications, there are different use
cases traditionally addressed by other kinds of devices dif-
ferent from mobile phones. Two-way radio transceivers
allow peers to establish a voice communication without
needing additional infrastructure, provided that the de-
vices are in range. This is very convenient in different sce-
narios, especially where there is no coverage of cellular
networks or just when users cannot afford maintaining
an ongoing call alive for unlimited periods of time. Smart-
phones have great connectivity thanks to technologies
such as Wi-Fi or Bluetooth, but they are not provided
with voice applications allowing users to use them as
two-way radios with these technologies. This is the ob-
jective of the application hereby presented, Android In-
tercom: turn Android terminals into two-way radios using
their connectivity capabilities in the best way possible.

The rest of the paper is structured as follows: the next
section explains the main design considerations of the
developed application, putting special emphasis on the
different wireless networks. Section 3 explains the main
characteristics of the Android Intercom application. Fi-
nally, some conclusions are presented.

2. Design considerations

This section describes the different design considerations
taken into account during the development of the appli-
cation. Specifically, the next subsection shows the general

Waves - 2012 - year 4/ISSN 1889-8297

o A low level API represented by AudioTrack and Au-
dioRecord classes. These classes are Java wrappers of
the “libmedia” built-in native API.

Smartphones have great connectivity but they lack of
direct real time voice communication.

architecture of the system, in which the main blocks of
the application are presented: audio recording and play-
ing, audio coding and data transfer. These blocks are ex-
plained in the following subsections.

2.1 Architecture

Fig. 1 shows a general architecture of an audio transmission
application. It shows a typical chain of an audio flow. Firstly,
audio is digitalized and recorded. Later, the recorded data
are usually packetized in samples of 20 or 30 ms. These
samples are encoded to minimize the transmission bit rate
and finally are transmitted. In the developed application,
data transmission is made through wireless networks,
mainly Bluetooth and Wi-Fi. When the audio samples arrive
at the listener device, the samples pass by an audio de-
coder, which decode the data and send them to an audio
player module where the audio is reproduced.

_/4 Audio Record HAudio Encoder
Data

Transmission
Qe{ Audio Play HAudio Decoder

Figure 1. System architecture.

The application hereby presented is bidirectional, that is,
the different devices work as transmitters and as re-
ceivers. The figure shows a typical transmission from one
device to another.

Moreover, Fig. 1 also reflects the main points to take into
account in the development of the application. Firstly, the
audio recording and playing blocks allow to capture and
playback audio, respectively. Audio needs to be encoded
and then decoded through the corresponding blocks and
finally, the audio must be transmitted over a channel. An
extended analysis of each block is given below.

2.2 Audio recording and playing

In the development of the audio recording and playing
blocks, it must be taken into account that in Android the
major part of applications run on a dedicated instance of
the Dalvik Java Virtual Machine (JVM). This characteristic
makes applications very sensitive to Garbage Collector
pauses, and that is why all Android multimedia Applica-
tion Programming Interface (API) actually relies on native
code [1].

Regarding audio, there are two Java-level APIs available:

e A high level API represented by MediaPlayer and
MediaRecorder classes. This APl has been built for en-
coding [2], decoding and accessing media content.
However, this APl does not provide methods to access
streams in a real-time manner, which makes it unfea-
sible to develop applications that require real-time
audio processing.

Furthermore, two additional multimedia APIs have been
added on newer Android versions. They are native APIs
and are based on popular cross-platform multimedia sys-
tems. The APIs are:

e OpenSL ES™ 1.0.1. Starting from Android API-level 9.
e OpenMAX AL™ 1.0.1. Starting from Android API-
level 14.

These native APIs are targeted to applications that mostly
run native code. Before these libraries appeared, appli-
cations like games, which usually run native code such
as Open GL, had to control audio from Java code instead,
which resulted in unnecessary overhead.

All mentioned audio APIs work over the sound driver sys-
tem. But there is no direct access to the sound system. In
fact, there was no a standardized sound system. Only the
latest Android version (Ice Cream Sandwich) has estab-
lished ALSA (Advanced Linux Sound Architecture) as the
default sound system.

The lack of a good audio system from the beginning has
caused the fragmentation of sound implementations,
most of them with very poor performance regarding
sound latency matters [3]. As Android developers explain
at last Google I/0 [4], most of the latency is introduced
by drivers and chipsets. Therefore, the solution to the
problem is likely to come in the form of a porting guide
for manufacturers, rather than a software patch.

The application presented in this paper uses the Java low-
level audio API, since native APIs do not noticeably im-
prove the latency. At this point, the API allows to record
and playback unencoded audio waveforms represented
in pulse-code modulation (PCM) format. For the applica-
tion under study, the characteristics of the recorded audio
are: 8 kHz sampling frequency, 16 bits per sample and a
single channel.

Furthermore, as the objective of the application is to
cover as much as possible use cases, three methods for
activating audio recording and sending have been devel-
oped: static, manual and automatic. The first one consists
of an audio amplitude threshold that sends any sound
that is higher than the selected threshold. This threshold
is selectable by the user at any time by dragging the
marker. The second one is a push to talk (PTT) mechanism
that uses volume or headset buttons to activate audio
recording and sending. The last input method analyzes
audio samples, background noise and instantaneous am-
plitude in order to detect human voice. With any of these
three methods, the application is able to reduce both
noise and bandwidth usage. As the application could be
used in a wide variety of use cases, the suitability of each
method will depend on the specific situation.

ISSN 1889-8297/Waves - 2012 - year 4

2.3 Audio Coding

The main goal of coding a media stream is to reduce the
amount of transmitted data making the most of the intrin-
sic characteristics of the media (e.g. correlation between
contiguous samples). On the other hand, wireless technolo-
gies used for local communications offer bandwidth rates
that are more than enough to transmit several uncom-
pressed audio streams. In this scenario, the question of
power consumption arises: there is a trade-off between
data compression, which reduces dramatically the band-
width needed, and the processing consumption of the en-
coding and decoding processes.

Moreover, another matter to take into account is the use
of wireless communications and coverage ranges. Blue-
tooth and Wi-Fi dynamically change their transmission
rate based on the signal to noise ratio. This entails that
the transmission rate is the lowest at the border of the
coverage area.

There are many codecs successfully compiled for and
used on the Android platform. Due to the Java and JVMs
characteristics, it is much more efficient to use C or C++
codec versions through JNI (Java Native Interface) code.
In this project, we use Speex [5], a widely-used open
source audio codec for voice applications. Speex can gen-
erate constant or variable bit rates but the variable mode
requires the use of floating point arithmetic, which is not
usually present on mobile device processors.

Table 1 shows the available Speex encoder modes. A de-
scription of the resulting audio quality, as well as the
computational costs, is given for each mode.

We are using audio coding for this application due to the
perspective of a better performance on coverage borders
and the low latency added by the coding and decoding
process on mid-range device, usually less than 5 ms.
When using the Speex codec we have to choose a mode
that entails the quality level. As shown in Table 1, Speex
mode 5 gives a good audio quality, compression rate and
algorithm complexity.

2.4 Data transfer

As mentioned above, the application uses Bluetooth and
Wi-Fi as wireless networks to carry out data transmis-
sions. Each one of these networks has its own character-
istics and implementation details, which are discussed in
latter sections. In both cases it is necessary to define a
protocol to transport the encoded audio and control the
management messages. For this task we use Protocol
Buffer [6]. This is a compiler that generates Java or C++
code from a protocol definition language. An example of
how an audio packet is defined in Protocol Buffer lan-
guage is shown below.

message AudioMessage {
message AudioSample {
required int32 seq_number = 1;
required bytes audio = 2;
1
required int32 user_id = 1;
repeated AudioSample audio_sample = 2;

}

This code is used to serialize and parse to and from binary
streams. It defines a packet with a 32-bit identification
(user_id) and an undefined number of audio samples
(audio_sample), which in turn is composed by a sequence
number (seq_number) and the audio bytes (audio).

Using Protocol Buffer as shown allows us to define a
complete protocol seamlessly, optimized and extensible.

2.4.1 Bluetooth

Implementing a two-way radio application over Blue-
tooth [7] for Android devices presents many challenges.
Firstly, Android devices need to be discoverable in order
to pair devices and for that it is required that the user
owning the device to discover sets it in discoverable
mode. This is necessary for Android versions previous to
4.0, where there is an option to set the device into al-
ways-discoverable mode. From now on, we will suppose
that all devices that want to communicate over Bluetooth
are already discovered and paired. If the target device is
not paired it is possible to access the system Bluetooth

Mode Quality Bit rate (bps) mflops | Quality/description
0 - 250 0 No transmission (DTX)
1 0 2 150 6 Vocoder (mostly for comfort noise)
2 5950 9 Very noticeable artifacts/noise, good intelligibility
3 3-4 8 000 10 Artifacts/noise sometimes noticeable
4 5-6 11 000 14 Artifacts usually noticeable only with headphones
5 7-8 15 000 11 Need good headphones to tell the difference
6 9 18 200 17.5 Hard to tell the difference even with good headphones
7 10 24 600 14.5 Completely transparent for voice, good quality music
8 1 3950 10.5 Very noticeable artifacts/noise, good intelligibility

Table 1. Speex modes characteristics.

Waves - 2012 - year 4/ISSN 1889-8297

Android Intercom allows placing real-time calls over
Bluetooth and Wi-Fi.

settings from the settings section of the application to
pair them. These needs to be taken into account in the
design of the user interface, so that the process of estab-

lishing a connection is as simple as possible.

Pairing is necessary for establishing secure connections.
Secure connections were the unique possibility on An-
droid versions 2.3.3. Since that version it is possible to
establish unsecured connections to unpaired devices but
those devices still need to be discoverable and the feature
of being always discoverable, as commented before, it is
only present starting at Android 4.0. To keep compatibil-
ity with the mayor number of devices only secured con-

nections are used by the application.

Once the devices are paired, the only Bluetooth profile
that is available in the public API is the Bluetooth Serial
Port Profile (SPP). The Bluetooth SPP provides a RFCOMM
connection. A RFCOMM connection provides a reliable
transmission, error detection and flow control, which are
not well fitted for time dependent data. Note that it
would have been preferable to be able to access to Ad-
vanced Audio Distribution Profile (A2DP). AD2P is based
on Generic Audio/Video Distribution Profile (GAVDP) and
allows the distribution of high quality real-time audio

streams.

To reach a good performance on real-time voice commu-
nications, a queue system on transmission and reception
has been developed to avoid RFCOMM real-time draw-

backs as much as possible.

Android App Bluetooth Stack

: o
2 Bluetooth <{
o Feeder @)
£ o~
s Thread N
=]

a

Blocking

Android App

Bluetooth
Reader
Thread

Dropye

Figure 2. Bluetooth communication queues.

Fig. 2 shows the four kinds of queue used. Bluetooth
Output Queue (BOQ) and Bluetooth Input Queue (BIQ)
are system gueues that cannot be controlled at applica-
tion layer. These queues are designed to avoid undesir-

able effects of the RFCOMM protocol.

Regarding the other two queues, in a favorable transmis-
sion scenario, Bluetooth links offer much more bandwidth
than needed. In this scenario, Application Output Queue
(AOQ) and Application Input Queue (AIQ) are only acting
as an audio record and playing jitter reduction/avoidance
buffers.

When Bluetooth links become weak BIQ empties and
BOQ fills because the audio encoder bit rate is higher
than the connection capacity. In this scenario, samples
added to the BOQ cannot be removed and will be trans-
mitted if the Bluetooth stack does not fire a time out ex-
ception. Consequently, the AOQ will be filled and will
drop samples in a First In First Dropped (FIFD) manner. As
pointed out above, encoding audio will help to avoid get
into this situation because of the considerably narrower
bandwidth needed by it.

When the Bluetooth links become strong again stored
samples from the BOQ and from the AOQ will arrive to
the receiver in a burst because, as we have already said,
Bluetooth links offer much more bandwidth than the re-
quired by a coded audio stream. On the receiver side, the
Bluetooth reader thread will try to keep the BIQ as empty
as possible and will drop any sample that has arrived out
of time. Typically, the samples are stored at BOQ.

After a sample burst all the queues but the AIQ are in its
initial state. To adjust the size of AlQ the pitch of the sam-
ple consumer player can be modified in order to let it act
as a jitter buffer.

2.4.2Wi-Fi

Real-time communications are very sensitive to packet
delay and jitter. Usually, when losses occur, it is better to
ignore lost audio frames, or even drop stale packets, than
just wait for retransmissions. In this sense, transport pro-
tocols that are not connection-oriented are more suitable
for this kind of transmissions. Within the TCP/IP protocol
stack, UDP is able to encapsulate audio packets without
providing any retransmission mechanism, which would
cause interruptions and undesired effects in a real-time
communication. Nevertheless, it is worth noting that
MAC layer in Wi-Fi communications, which uses 802.11
standard, has its own mechanism for acknowledging
packets at lower level, so additional considerations have
to be taken into account, as explained below.

Moreover, commercial devices do not present a homoge-
neous behavior regarding the way they manage UDP pack-
ets. Most of them block incoming broadcast traffic, and
those who admit broadcast packets cannot receive them
in standby mode. This is due to the energy-saving mecha-
nism of the modern smartphones, which switch the wire-
less card almost off while the device is locked and the
screen is off. Android version 3 and above provides the
functionality to maintain the wireless card fully operative
even though the screen is off. Anyway, experimental tests
have shown that this issue occurs only when receiving and
there is no difficulty when sending broadcast packets.

ISSN 1889-8297/Waves - 2012 - year 4

Broadcast messages are commonly used for discovering
peers in the same network and for broadcasting general
information about the nodes. Sometimes, broadcast traf-
fic (or multicast) is used in point-to-multipoint commu-
nications (from one to several). In order to solve the
aforementioned problems of broadcast packets attached
to the heterogeneity of commercial smartphones, we
have designed a hybrid unicast-broadcast communication
mechanism, which detects at first if the device supports
broadcasting.

Mainly, the developed system consists of two phases:
peer discovering and audio communication. The neigh-
bor discovering process uses broadcast packets unless the
device does not manage to find any node in the network.
In that case, unicast scanning starts to find new peers.
Every user must be able to listen to other users in the net-
work so audio communication should be carried out
using broadcast packets to profit the point-to-multipoint
nature of the system. However, another mechanism is
needed for those devices that cannot receive broadcast
traffic. Therefore, these devices inform of these limita-
tions in the discovering process so other nodes can be
aware. Broadcast audio communication will be used be-
tween those nodes that support it whereas unicast audio
communication will be used for those nodes that do not.
Regarding packet acknowledgement in Wi-Fi networks,
unicast and broadcast transmissions differ. The former is
acknowledged through ACK packets at MAC layer, re-
gardless of the transport protocol used. In contrast, the
latter cannot use acknowledgements due to the point-
to-multipoint nature of broadcast transmissions. This fact
motivates the use of a redundancy mechanism against
losses for broadcast packets, but not for unicast trans-
missions. In this sense, a Forward Error Correction (FEC)
mechanism has been implemented, which adds parity in-
formation to the transmitted data. Therefore, every
broadcast packet transports an audio frame and two par-
ity frames that could be potentially used to correct any
previous lost audio frame.

3. Android Intercom Application

3.1 Wireless scenarios

There are two scenarios for the application based on the
wireless technology to use: the Bluetooth scenario and
the Wi-Fi scenario. Both of these approaches have their
advantages and disadvantages.

On the Bluetooth scenario devices have to select the
other devices to connect to. The need of selecting the
devices to connect faces up to the two-way radio con-
cept but it is enforced by the Bluetooth needs of discov-
ering and pairing. For performance reasons the total
number of devices interconnected on Bluetooth mode is
limited to three. This limit has been obtained experimen-
tally using the Google Nexus One as test device. On tests,
four devices have never been able to talk simultaneously
without causing voice interruptions.

Android Intercom is being successfully used by thou-

sands of users worldwide.

Once every device has selected the others the application

should handle all events of the Bluetooth connections to
seamless control connection losses, discoveries and recon-
nections. When a user wants to speak the others every
sample should be sent to each device connected to.

Figure 3. Bluetooth scenario.

On the other hand, the Wi-Fi scenario is more similar to
a two-way radio channel where the BSSID replaces the
radio channel. Also, broadcast Wi-Fi packets are more
suitable for one-to-many communications than many
one-to-one. The limit of the wifi scenario is farther than
our device limit. It has been tested with up to ten devices
simultaneously without problems.

Figure 4. Infrastructure Wi-Fi scenario.

There are two Wi-Fi scenarios depending of the working
mode. On the infrastructure mode every packet is trans-
mitted through the access point (Fig. 4). On ad-hoc Wi-Fi
mode there is no access point and devices communicate

Waves - 2012 - year 4/ISSN 1889-8297

directly (Fig. 5). Despite its versatility, Android platform seg-
regates the ad-hoc mode and only few commercialized de-
vices support it. Mesh networking on ad-hoc Wi-Fi mode
has been discarded because of its power consumption is-
sues [8].

Figure 5. Ad-hoc Wi-Fi scenario.

3.2 Android Intercom

The developed application has been published on Google
Play (the most popular online store for Android applica-
tions), with the name of “Android Intercom”, and has
reached more than 50.000 downloads since its publica-
tion. The local scope of communications limits its use
cases in number but greatly improve its value when there
is not Internet access. Motorcycle helmet-to-helmet com-
munications, in-building communications and baby mon-

itoring are the top three use cases based on the number
of feedback comments received. Fig. 6 shows three
screenshots from the application. In Bluetooth mode (Fig.
6a) users have two channels available to create point-to-
point connections to other users. Wi-Fi mode let users
find other devices in the same network and talk to them
all together (Fig. 6b). Both modes show the audio record-
ing level and threshold, depending on the algorithm of
voice detection employed. Moreover, through the micro-
phone preferences screen (Fig. 6¢), users can adjust the
sensitivity of the microphones connected to the device
(e.g. built-in, mini-jack, Bluetooth), since each kind of mi-
crophone has its own variability.

The application can be downloaded free of charge at
Google Play store. The QR code on the Fig. 7 contains
the url of the download page.

Figure 7. QR code to access the download page at
Google Play store

None05

. Select Device

Speaker

Fi:comm_wrt120n

Speaker Speaker

Audio Threshold

Audio Threshold

Audio Threshold

(a)

(o)

Figure 6. Android Intercom application: Bluetooth mode screen (a), Wi-Fi mode screen (b) and microphone preferences

screen (c).

ISSN 1889-8297/Waves - 2012 - year 4

4. Conclusions

In this paper we have presented the key points of the de-
velopment of an Android application for real-time audio
communication over local-range wireless technologies.
Furthermore, we have discussed about design consider-
ations and technical problems that emerge when imple-
menting algorithms and communication protocols in
real-world devices. Thus, we have developed workaround
solutions for efficient voice transmission over Bluetooth
and Wi-Fi with the tools that Android public APIs offer.
The developed application is being successfully used by
thousands of users worldwide and for many different use
cases. Following improvements will include Wi-Fi Direct
as emerging wireless communication technology. As
mentioned, Android has avoided using p2p networking
through ad hoc wireless networks. Instead, it has pro-
moted using the new Wi-Fi Direct specification, which
enables p2p relationships. On each relation, one of the
peers is acting as access point and the other as a normal
client. This new approach to p2p wireless networking is
very promising for our application, which will improve us-
ability and simplicity.

References

[11 M. Song, W. Xiong and X. Fu, “Research on Architec-
ture of Multimedia and Its Design Based on Android, "
in Proc. of Int. Conf. on Internet Technology and Ap-
plications, Wuhan, China, Aug. 2010.

[2] Android Codecs, available: http://developer.an
droid.com/guide/appendix/media-formats.html

[3] Android issue 3434, available: http://code.goo
gle.com/p/android/issues/detail?id=3434.

[4] Google I/0 2011: Fireside Chat with the Android
Team, available: http:/youtu.be/gfiYUL2exT8.

[5] P. Srivastava, K. Babu and T. OSV, “Performance Evalua-
tion of Speex Audio Codec for Wireless Communication
Networks,” in Proc. Wireless and Optical Commu-
nications Networks 2011, Ghaziabad, India, 2011.

[6] G. Kaur and M.M. Fuad, “An Evaluation of Protocol
Buffer,” in Proc. of IEEE SoutheastCon 2010, pp. 459-
462, Charlotte-Concord, NC, USA, Mar. 2010.

[71 M.J. Mordn, R. Lugue, E.Casilari and A. Diaz-Estrella,
“Minimum delay bound in Bluetooth transmissions
with serial port profile,” IET Electronic Letters, pp.
1099-1100, Vol.44, no.18, 2008.

[8] A. lera, A. Molinaro, S. Y. Paratore, G. Ruggeri and A.
Zurzolo, “Making a mesh router/gateway from a
smartphone: Is that a practical solution?,” Ad Hoc
Networks, pp. 1414-1429, Vol.9, 2011.

Biographies

Roman Belda was born in Alzira
(Valencia), Spain. He received the
Computer Science degree from the
Universidat Politecnica de Valéncia
(UPV), Valencia, Spain, in 2004. He
is currently working towards the
M.S. in telematics at UPV. He also
currently works as a Researcher at
the Multimedia Communications
research group (COMM) of the Institute of Telecommu-
nications and Multimedia Applications (iTEAM). His areas
of interest are mobile applications and multimedia trans-
mission protocols.

Pau Arce was born in Valencia,
Spain. He received the Telecommu-
nications Engineering degree and
the M.S. degree in Telematics from
the Universitat Politecnica de Valéen-
cia (UPV), Valencia, Spain, in 2005
and 2007, respectively. Currently,
he works as a researcher at the In-
stitute of Telecommunications and
Multimedia Applications (iTEAM) UPV, where he is work-
ing toward the Ph. D. degree. His research interests in-
clude multimedia QoS, routing on wireless ad hoc
networks and performance evaluation of computer sys-
tems.

Ismael de Fez was born in Valen-
cia, Spain. He received the Telecom-
munications Engineering degree
and the M.S. degree in Telematics
from the Universitat Politécnica de
Valéncia (UPV), Valencia, Spain, in
2007 and 2010, respectively. Cur-
rently, he is a Researcher at the
Multimedia Communications re-
search group (COMM) of the Institute of Telecommuni-
cations and Multimedia Applications (iTEAM), UPV, where
he is working toward the Ph. D. degree. His areas of in-
terest are file transmission over unidirectional environ-
ments and file encoding.

Waves - 2012 - year 4/ISSN 1889-8297

Francisco Fraile was born in Mur-
cia, Spain. He obtained a degree in
Telecommunication Engineering
from the Universitat Politécnica de
Valéncia (UPV) and the M. Sc. De-
gree in microwave engineering
from the University of Gavle in
2004. Since then, until 2010, he
has worked as a Research Engineer
for the Swedish company Interactive TV Arena. In 2006,
he joined the Multimedia Communications research
group (COMM) of the iTEAM Institute, UPV, where he is
working toward his doctoral studies as an industrial Ph.D.
student. His area of interest focuses on networked elec-
tronic media.

Juan Carlos Guerri was born in
Valencia. He received his M.S. and
Ph. D. (Dr. Ing.) degrees, both in
telecommunication engineering,
from the Universitat Politécnica de
Valencia (UPV), in 1993 and 1997,
respectively. He is a professor in the
E.T.S. Telecommunications Engi-
neering at the Universitat Politec-
nica de Valéncia, where he leads the Multimedia
Communications research group (COMM) of the iTEAM
Institute. He is currently involved in research and devel-
opment projects for the application of multimedia to in-
dustry, medicine, education, and communications.

ISSN 1889-8297/Waves - 2012 - year 4

