
Universitat Politècnica de València

Cyber-security protection techniques to

mitigate memory errors exploitation

Author:

Héctor Marco Gisbert

Advisor:

Ismael Ripoll Ripoll

A thesis submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Engineering)

in the

Department of Computer Engineering

November 2015

http://www.upv.es/index-va.html
http://hmarco.org
http://personales.upv.es/iripoll
http://www.upv.es/entidades/DISCA/indexi.html

TECHNICAL UNIVERSITY OF VALENCIA

Abstract
School of Computer Engineering

Department of Computer Engineering

Doctor of Philosophy
(Computer Engineering)

Cyber-security protection techniques to mitigate
memory errors exploitation

by Héctor Marco Gisbert

Practical experience in software engineering has demonstrated that the
goal of building totally fault-free software systems, although desirable, is
impossible to achieve. Therefore, it is necessary to incorporate mitigation
techniques in the deployed software, in order to reduce the impact of latent
faults.

This thesis makes contributions to three memory corruption mitigation
techniques: the stack smashing protector (SSP), address space layout ran-
domisation (ASLR) and automatic software diversification.

The SSP is a very effective protection technique used against stack buffer
overflows, but it is prone to brute force attacks, particularly the dangerous
‘byte-for-byte’ attack. A novel modification, named ‘RenewSSP’, has been
proposed which eliminates brute force attacks, can be used in a completely
transparent way with existing software and has negligible overheads. There
are two different kinds of application for which RenewSSP is especially
beneficial: networking servers (tested in Apache) and application launchers
(tested on Android).

ASLR is a generic concept with multiple designs and implementations.
In this thesis, the two most relevant ASLR implementations of Linux have
been analysed (Vanilla Linux and PaX patch), and several weaknesses have
been found. Taking into account technological improvements in execution
support (compilers and libraries), a new ASLR design has been proposed,
named ‘ASLR-NG’, which maximises entropy, effectively addresses the frag-
mentation issue and removes a number of identified weaknesses. Further-
more, ASLR-NG is transparent to applications, in that it preserves binary
code compatibility and does not add overheads. ASLR-NG has been imple-
mented as a patch to the Linux kernel 4.1.

iii

http://www.upv.es/index-en.html
http://www.upv.es/entidades/ETSINF/indexi.html
http://www.upv.es/entidades/DISCA/indexi.html

iv Abstract

Software diversification is a technique that covers a wide range of faults,
including memory errors. The main problem is how to create variants, i.e.
programs which have identical behaviours on normal inputs but where faults
manifest differently. A novel form of automatic variant generation has been
proposed, using multiple cross-compiler suites and processor emulators.

One of the main goals of this thesis is to create applicable results. There-
fore, I have placed particular emphasis on the development of real prototypes
in parallel with the theoretical study. The results of this thesis are directly
applicable to real systems; in fact, some of the results have already been
included in real-world products.

UNIVERSIDAD POLITÉCNICA DE VALENCIA

Resumen
Escuela Técnica Superior de Ingenieŕıa Informática

Departamento de Informática de Sistemas y Computadores

Doctor en Filosof́ıa
(Ingenieŕıa Informática)

Técnicas de ciberseguridad para mitigar
la explotación de errores de memoria

por Héctor Marco Gisbert

La creación de software supone uno de los retos más complejos para el ser
humano ya que requiere un alto grado de abstracción. Aunque se ha avan-
zado mucho en las metodoloǵıas para la prevención de los fallos software, es
patente que el software resultante dista mucho de ser confiable, y debemos
asumir que el software que se produce no está libre de fallos. Dada la im-
posibilidad de diseñar o implementar sistemas libres de fallos, es necesario
incorporar técnicas de mitigación de errores para mejorar la seguridad.

La presente tesis realiza aportaciones en tres de las principales técnicas de
mitigación de errores de corrupción de memoria: Stack Smashing Protector
(SSP), Address Space Layout Randomisation (ASLR) y Automatic Software
Diversification.

SSP es una técnica de protección muy efectiva contra ataques de desbor-
damiento de buffer en pila, pero es sensible a ataques de fuerza bruta, en
particular al peligroso ataque denominado byte-for-byte. Se ha propuesto
una novedosa modificación del SSP, llamada RenewSSP, la cual elimina
los ataques de fuerza bruta. Puede ser usada de manera completamente
transparente con los programas existentes sin introducir sobrecarga. El Re-
newSSP es especialmente beneficioso en dos áreas de aplicación: Servidores
de red (probado en Apache) y lanzadores de aplicaciones eficientes (probado
en Android).

ASLR es un concepto genérico, del cual hay multitud de diseños e im-
plementaciones. Se han analizado las dos implementaciones más relevantes
de Linux (Vanilla Linux y PaX patch), encontrándose en ambas tanto de-
bilidades como elementos mejorables. Teniendo en cuenta las mejoras tec-
nológicas en el soporte a la ejecución (compiladores y libreŕıas), se ha prop-
uesto un nuevo diseño del ASLR, llamado ASLR-NG, el cual: maximiza

v

http://www.upv.es/index-es.html
http://www.upv.es/entidades/ETSINF/indexc.html
http://www.upv.es/entidades/DISCA/indexc.html

vi Resumen

la entroṕıa, soluciona el problema de la fragmentación y elimina las debili-
dades encontradas. Al igual que la solución propuesta para el SSP, la nueva
propuesta de ASLR es transparente para las aplicaciones y compatible a
nivel binario sin introducir sobrecarga. ASLR-NG ha sido implementado
como un parche del núcleo de Linux para la versión 4.1.

La diversificación software es una técnica que cubre una amplia gama de
fallos, incluidos los errores de memoria. La principal dificultad para aplicar
esta técnica radica en la generación de las “variantes”, que son programas
que tienen un comportamiento idéntico entre ellos ante entradas normales,
pero tienen un comportamiento diferenciado en presencia de entradas anor-
males. Se ha propuesto una novedosa forma de generar variantes de forma
automática a partir de un mismo código fuente, empleando la emulación de
sistemas.

Una de las máximas de esta investigación ha sido la aplicabilidad de los
resultados, por lo que se ha hecho especial hincapié en el desarrollo de pro-
totipos sobre sistemas reales a la par que se llevaba a cabo el estudio teórico.
Como resultado, las propuestas de esta tesis son directamente aplicables a
sistemas reales, algunas de ellas ya están siendo explotadas en la práctica.

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Resum
Escola Tècnica Superior d’Enginyeria Informàtica

Departament d’Informàtica de Sistemes i Computadors

Doctor en Filosofia
(Enginyeria Informàtica)

Tècniques de ciberseguretat per mitigar
l’explotació d’errors de memòria

per Héctor Marco Gisbert

La creació de programari suposa un dels reptes més complexos per al ser
humà ja que requerix un alt grau d’abstracció. Encara que s’ha avançat molt
en les metodologies per a la prevenció de les fallades de programari, és palès
que el programari resultant dista molt de ser confiable, i hem d’assumir que
el programari que es prodüıx no està lliure de fallades. Donada la impossi-
bilitat de dissenyar o implementar sistemes lliures de fallades, és necessari
incorporar tècniques de mitigació d’errors per a millorar la seguretat.

La present tesi realitza aportacions en tres de les principals tècniques
de mitigació d’errors de corrupció de memòria: Stack Smashing Protector
(SSP), Address Space Layout Randomisation (ASLR) i Automatic Software
Diversification.

SSP és una tècnica de protecció molt efectiva contra atacs de desborda-
ment de buffer en pila, però és sensible a atacs de força bruta, en particular
al perillós atac denominat byte-for-byte.

S’ha proposat una nova modificació del SSP, RenewSSP, la qual elimina
els atacs de força bruta. Pot ser usada de manera completament transparent
amb els programes existents sense introduir sobrecàrrega. El RenewSSP és
especialment beneficiós en dos àrees d’aplicació: servidors de xarxa (provat
en Apache) i llançadors d’aplicacions eficients (provat en Android).

ASLR és un concepte genèric, del qual hi ha multitud de dissenys i im-
plementacions. S’han analitzat les dos implementacions més rellevants de
Linux (Vanilla Linux i PaX patch), trobant-se en ambdues tant debilitats
com elements millorables. Tenint en compte les millores tecnològiques en el
suport a l’execució (compiladors i llibreries), s’ha proposat un nou disseny
de l’ASLR: ASLR-NG, el qual, maximitza l’entropia, soluciona el problema

vii

http://www.upv.es/index-va.html
http://www.upv.es/entidades/ETSINF/indexv.html
http://www.upv.es/entidades/DISCA/indexv.html

viii Resum

de la fragmentació i elimina les debilitats trobades. Igual que la solució
proposada per al SSP, la nova proposta d’ASLR és transparent per a les
aplicacions i compatible a nivell binari sense introduir sobrecàrrega. ASLR-
NG ha sigut implementat com un pedaç del nucli de Linux per a la versió
4.1.

La diversificació de programari és una tècnica que cobrix una àmplia
gamma de fallades, inclosos els errors de memòria. La principal dificultat
per a aplicar esta tècnica radica en la generació de les “variants”, que són
programes que tenen un comportament idèntic entre ells davant d’entrades
normals, però tenen un comportament diferenciat en presència d’entrades
anormals. S’ha proposat una nova forma de generar variants de forma
automàtica a partir d’un mateix codi font, emprant l’emulació de sistemes.

Una de les màximes d’esta investigació ha sigut l’aplicabilitat dels resul-
tats, per la qual cosa s’ha fet especial insistència en el desenvolupament de
prototips sobre sistemes reals al mateix temps que es duia a terme l’estudi
teòric. Com a resultat, les propostes d’esta tesi són directament aplicables
a sistemes reals, algunes d’elles ja estan sent explotades en la pràctica.

Acknowledgements

I would like to thank my advisor, Ismael Ripoll, for giving me the chance

to experience this exciting, four-year-long journey called a Ph.D. I will al-

ways remember your infinite patience and your unplayable advice. Thanks

for putting light into my darkness.

I will not forget many of the people I have met over these past few years,

some of whom are now good friends. They know to whom I am referring,

thank you.

Special thanks go to my girlfriend for her constant encouragement. With-

out her this thesis could have not been possible.

Last but not the least, I extend my gratitude to my family, especially to

my grandparents and my cousin, whom I think of as a brother – I thank all

of you.

To all those who in one way or another al-

ways have believed in me, I will be eternally

grateful to you.

thank you!

ix

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goals of the Thesis . 4

1.3 Contributions of the Thesis 5

1.3.1 RenewSSP: Renew Stack Smashing Protector 6

1.3.2 ASLR-NG: Address Space Layout Randomisation Next
Generation . 6

1.3.3 DRITAE: Automatic SW Diversification 7

1.3.4 Other Contributions 7

1.4 Thesis Outline . 7

I Stack Smashing Protector (SSP) 9

2 Preventing Brute Force Attacks against the SSP 11

2.1 Introduction . 12

2.1.1 Benefits of our proposal 13

2.2 Background & assumptions 13

2.2.1 Network server architectures 13

2.2.2 Stack-smashing protection (SSP) 14

2.3 Threats . 16

2.3.1 Full brute force attack 16

2.3.2 Byte-for-byte brute force attack 17

2.4 Proposed strategy . 17

2.4.1 Observations . 17

2.4.2 Renew canary at fork (RAF SSP) strategy 18

2.4.3 Illustrative examples 18

2.4.4 Special considerations 21

2.5 Implementation . 21

2.6 Statistical evaluation . 23

2.6.1 Bypassing only the canary 24

2.6.2 Bypassing SSP + ASLR + NX 26

xi

xii Contents

2.7 Experimental evaluation . 28

2.8 Discussion . 29

2.9 Conclusions . 30

3 SSPMD: Stack-Smashing Protection for Mobile Devices 33

3.1 Introduction . 34

3.1.1 Implementation challenges 34

3.1.2 Our contributions . 35

3.2 Overview of Android . 36

3.3 Threat Model . 37

3.3.1 SSP brute force attacks 38

3.3.2 SSP Direct disclosure 39

3.3.3 ASLR brute force attack 39

3.3.4 Summarising . 40

3.4 SSPMD . 41

3.5 SSPMD on Android . 42

3.5.1 Application launch . 43

3.5.2 Application termination 44

3.5.3 Exception handling . 44

3.5.4 Modifications to Zygote 45

3.5.5 Implementation discussion 45

3.6 Evaluation . 47

3.6.1 Verification of the implementation 47

3.6.2 Memory footprint . 48

3.6.3 Temporal overhead . 48

3.6.4 Portability . 49

3.6.5 Vulnerability coverage 50

3.7 Discussion . 51

3.8 Conclusions . 52

4 Method for Preventing Information Leaks in the stack-smashing
protector technique 53

4.1 Abstract of the Disclosure . 54

4.2 Background . 54

4.2.1 Known patent documents 55

4.2.2 Known patent application documents 57

4.3 Summary of the Invention . 58

4.4 Detailed Description of the Invention 59

4.5 List of references cited . 66

4.5.1 List of Patents . 66

Contents xiii

4.5.2 List of Patent Applications 67

4.6 Claims . 68

5 On the effectiveness of NX, SSP, RenewSSP and ASLR
against stack buffer overflows 73

5.1 Introduction . 74

5.2 Background and Terminology 75

5.2.1 Stack buffer overflow vulnerability 75

5.2.2 Types of server architecture 76

5.2.3 Protection techniques 77

5.2.4 Threats to protection techniques 77

5.2.5 Generic structure of an attack 80

5.3 Analysis of the protection techniques 82

5.3.1 Single process server 82

5.3.2 Inetd-based server . 83

5.3.3 Forking server . 84

5.3.4 Server summary . 88

5.4 Discussion . 89

5.5 Conclusions . 92

II Address Space Layout Randomization (ASLR) 95

6 On the Effectiveness of Full-ASLR on 64-bit Linux 97

6.1 Introduction . 98

6.2 ASLR Design . 99

6.2.1 PIC & PIE overview 102

6.3 Offset2lib: The Linux ASLR weakness 103

6.4 Building the Attack . 106

6.4.1 The vulnerable server 106

6.4.2 Steps to building the attack 107

6.4.3 Exploiting the server target 112

6.4.4 Other attack vectors 112

6.5 Countermeasures discussion 113

6.6 New Full-ASLR design . 114

6.7 Conclusion . 115

7 ASLR-NG: Address Space Layout Randomisation Next Gen-
eration 117

7.1 Introduction . 118

xiv Contents

7.2 System model and definitions 119

7.3 Growable objects: a critical review 121

7.3.1 Stacks . 122

7.3.2 The heap . 123

7.4 ASLR design weaknesses . 124

7.4.1 Non-full address randomised weakness 124

7.4.2 Non-uniform distribution weakness 124

7.4.3 Correlation weakness 125

7.4.4 Memory layout inheritance weakness 126

7.5 ASLR constraints and considerations 126

7.6 ASLR-NG . 127

7.6.1 Allocating object strategy 127

7.6.2 Addressing fragmentation 129

7.6.3 Algorithm . 130

7.6.4 Profile modes . 132

7.6.5 Fine grain configuration 133

7.7 Evaluation . 135

7.7.1 randomisation forms 135

7.7.2 ASLRA: ASLR Analyser tool 136

7.7.3 Absolute address entropy 138

7.7.4 Correlation in ASLR-NG 139

7.8 Conclusions and future work 140

III Diversification Through Emulation 141

8 DRITAE: Diversified Replication Infrastructure Through
Architecture Emulation 143

8.1 Introduction . 144

8.2 Background and challenges 146

8.2.1 Memory errors . 147

8.2.2 Protection mechanisms 148

8.2.3 Networking server weakness 149

8.3 DRITAE architecture . 150

8.3.1 Creation of variants 151

8.3.2 Execution of Variants 152

8.3.3 Memory error detection 153

8.3.4 Variant replacement strategy 154

8.4 Case study: Web server . 156

8.4.1 Building cross-compilers 157

Contents xv

8.4.2 Qemu emulator . 158

8.4.3 Detecting crashes . 159

8.4.4 Alternating among variants 161

8.5 Experimentation and results 162

8.5.1 Fault manifestation . 162

8.5.2 Protection against attacks 164

8.5.3 Spatial and temporal cost 165

8.6 Discussion . 167

8.7 Conclusions and future work 168

IV Conclusions 171

9 Conclusions 173

9.1 General conclusions . 173

9.2 Contributions . 173

9.2.1 Theoretical contributions 173

9.2.2 Contributions to open source 174

9.2.3 Vulnerabilities discovered 174

9.2.4 Patent . 175

9.2.5 Academic Publications 175

9.2.6 Software tools and prototypes 176

9.2.7 Honors & Awards . 176

9.3 Future work . 177

References 179

List of Figures

2.1 x86 Stack layout. 15

2.2 Stack evolution program changing the reference canary. . . . 19

2.3 Stack evolution of the code on listing 2.2. 20

2.4 Byte-for-byte vulnerability. 25

2.5 Success of an attack against both SSP and ALSR. 26

3.1 Android process tree. 36

3.2 Application active stack. 42

5.1 Fields of a fake request. 81

6.1 Saved IP: Hardcoded high bits. 108

6.2 Saved IP: Low bits from ELF. 109

6.3 Saved IP: Brute force bits. 110

7.1 Classic memory layout. 122

7.2 Distribution of mmapped objects on PaX. 125

7.3 ASLR-NG: A 50% example of a reserved area. 130

7.4 ASLR-NG: Profile mode examples. 134

7.5 ASLR analyser: Screenshot of PaX Heap (brk) 137

8.1 Mapping memory errors to the AVI model 147

8.2 Multi-process model for server architectures 149

8.3 Variant generation . 151

8.4 Approaches to virtualisation 153

8.5 Variants replacements policy 154

8.6 System prototype overview for the smartphone 157

8.7 Buildroot configuration menu interface 158

xvii

List of Tables

2.1 Standard SSP versus RAF SSP (c = 224, r = 28). 27

2.2 Performance overhead comparative. 29

3.1 Call sequences. 43

3.2 Reference-canaries with both techniques. 48

3.3 Cost of renewing the canary (µsec). 49

3.4 Android SSP vs. SSPMD summary. 51

5.1 Summary of symbols. 82

5.2 Inetd-based server summary. 83

5.3 Summary of the SSP-bff. 85

5.4 Summary of the SSP-bfb. 86

5.5 Summary of the SSP + ASLR full attack. 88

5.6 Summary of the most common systems and attacks. 89

5.7 Time cost for attacks in forking servers at 1000 trials/sec. . . 90

5.8 Attempts to bypass the protection techniques. 91

6.1 Security server options. 107

6.2 Offsets from executable to libraries 111

6.3 Offset2lib value on different systems. 111

7.1 Summary of randomisation forms. 119

7.2 ASLR-NG mode definition. 133

7.3 Comparative summary of features. 136

7.4 Comparative summary of bits of entropy. 138

8.1 Signals leading to a core dump 159

8.2 Number of attempts on different software faults. 163

8.3 Spatial and temporal overhead of the Web server. 167

9.1 List of vulnerabilities evaluated as security issues: CVEs. . . 175

xix

Acronyms

ABI Application Binary Interface

API Application Programming Interface

APT Advanced Persistent Threat

ARM Advanced RISC Machine

ART Android Runtime

ASLR Address Space Layout Randomisation

AVI Attack + Vulnerability → Intrusion

CDF Cumulative Distribution Function

CPU Central Processing Unit

CR Carriage Return

CVE Common Vulnerabilities and Exposures

CWE Common Weakness Enumeration

DEP Data Execution Prevention

DSA Dynamic Storage/memory Allocator

DoS Denial of Service

EGLIBC Embedded GLIBC

ELF Executable and Linkable Format

EMET Enhanced Mitigation Experience Toolkit

FTP File Transfer Protocol

GCC GNU Compiler Collection

GNU GNU’s Not Unix!

GOT Global Offset Table

xxi

xxii Acronyms

GPL General Public License

GPU Graphics Processing Unit

IP Instruction Pointer

ISR Instruction Set Randomisation

JNI Java Native Interface

JPEG Joint Photographic Experts Group

JRE Java Run-time Environment

LF Line Feed

LTS Long Term Support

MIPS Microprocessor without Interlocked Pipeline Stages

MMU Memory Management Unit

NX Non-executable

OS Operating System

PAE Physical Address Extension

PC Program Counter

PIC Position Independent Code

PID Process ID

PIE Position Independent Executable

PMF Probability Mass Function

PNG Portable Network Graphics

PPC PowerPC

PRNG Pseudo random Number Generator

PoC Proof of Concept

QEMU Quick EMUlator

RADIUS Remote Authentication Dial-In User Service

RAF SSP Re-new After Fork Stack Smashing Protector

RAM Random-Access Memory

RELRO RELocation Read-Only

Acronyms xxiii

ROP Return Oriented Programming

RenewSSP Re-new Stack Smashing Protector

SANS SysAdmin Audit, Networking and Security Institute

SDK Software Development Kit

SIS Single Unix Specification

SJLJ Setjmp/Longjmp

SPARC Scalable Processor ARChitecture

SSH Secure Shell

SSPMD Stack Smashing Protector for Mobile Devices

SSP Stack Smashing Protector

TLS Thread Local Storage

UID Unique IDentifier

USS Unique Set Size

VDSO Virtual Dynamic Shared Object

XOR eXclusive OR

Symbols

∞ Infinite.

µ Mean.

σ2 Variance.

C Number of entropy bits of the canary.

c Number of values that the canary can take, c = 2C .

k Number of trials.

n Number of random bytes of the canary.

R Number of entropy bits of the ASLR.

r Number of places where the ASLR can place a library/object, r = 2R.

xxv

Chapter 1

Introduction

1.1 Motivation

Rapid advances in all aspects of today’s information society, from techno-
logical support to economic models, have not been followed at the same
pace by the cybersecurity field, and so there is a growing gap between the
new solutions and functionality provided by software and hardware indus-
try players and the accompanying new vulnerabilities and security issues
created by them.

The more technological society becomes, the more exposed it is to cyberse-
curity problems. Recently, society passed the no-return point of technology
dependency, i.e. our way of life would now not be the same without the
internet and the ecosystem of smart devices and electronic services. Cy-
berspace is now a commodity that we need, in order to carry out most of
our daily activities, both in cyberspace itself and in the real physical world.

All of the benefits and improvements that technology provides can be
used against the society that uses it, if an attacker finds a way to do so,
and as a result cyberspace is now viewed as the fourth battlefield, complete
with new rules, new weapons and new actors. States are aware of this new
scenario and the new challenges that will arise as a result; furthermore, this
is not a hypothetical issue but a very real and urgent problem. Recently,
Matt Blaze [1] warned the U.S. congress about this issue:

Unfortunately, modern computing and communications technolo-
gies, for all their benefits, are notoriously vulnerable to attack by
criminals and hostile state actors. And just as the benefits of in-
creased connectivity and more pervasive computing will continue
to increase as technology advances, so too will the costs and risks
we bear when this technology is maliciously compromised. It is a
regrettable and yet time-tested paradox that our digital systems

1

2 Chapter 1. Introduction

have largely become more vulnerable over time, even as almost
every other aspect of the technology has, often wildly, improved.

Cybersecurity is a vast field of knowledge that covers all of the elements
of the information society, such as risk analysis, espionage, critical infras-
tructure, international cyber-crime, cryptography, defensive measures, etc.
This thesis focuses on the low-level technical aspects and mechanisms used
to protect the system from malicious attacks.

Ultimately, an attacker needs to exploit a bug or weakness in a target
system, in order to gain access to desired information or to gain the ac-
cess level required to operate a device. The CWE [2], maintained by the
MITRE, is a list of all known weaknesses and is continuously updated with
new ways to bypass security or abuse computer systems. Nonetheless, de-
spite the considerable amount of new weaknesses related to the internet
and distributed systems, added in recent years to the CWE list, the classic
and older “memory errors” are still a very dangerous and frequent family
of errors. In fact, according to SANS [3], buffer overflow is ranked as the
third most dangerous software error.

The objective of this thesis is to analyse and improve the defensive tech-
niques used to mitigate software memory errors.

Memory error is a generic term which refers to a wide range of program-
ming faults related to how a processor interprets the contents of the main
memory and what happens when that memory is misused or misinterpreted
by a program. It is important to differentiate the physical errors caused
by the underlying hardware (memory cells), due to electrical or mechanical
bugs, from the logical errors caused by incorrect coding. Essentially, the
root cause of a memory error is a programming error, and it is therefore not
related to hardware issues.

Despite the large amount of research effort expended on this subject,
there is currently no satisfactory solution to the memory error problem [4].
Obviously, the current situation is far better than, say, one or two decades
ago, because compilers are now able to analyse the code and detect, alert
and even generate the correct code for certain types of memory error. Most
of the new programming languages (Ada, Java, Python) try to hide the
complexity of memory management all at once, by avoiding direct memory
manipulation, which is an effective way to prevent most memory errors, al-
beit at a high cost in relation to expressiveness or overhead. Unfortunately,
not all memory errors can be detected or captured before the code is re-
leased. The last line of defence is formed by a set of mitigation techniques
that are active while the program is running, namely NX (Non-eXecutable),

Chapter 1. Introduction 3

SSP (Stack Smashing Protector) and ASLR (Address Space Layout Ran-
domisation), which do not remove the vulnerabilities per se but at least
make them harder to exploit.

These three mitigation techniques are very effective and easy to imple-
ment, and so most systems (Windows, Linux, Mac, Android, etc.) include
most of them or slightly modified versions thereof.

Most of the research effort focusing on the SSP and the ASLR techniques
was done during the early 2000s. Once the technique was consolidated and
proved to be effective, it was gradually introduced into products. Since then,
no major improvements have been proposed – either technical innovations
or better implementations –, since they are considered solid, stable and
well-settled solutions.

After more than ten years, ever-growing computation capacity and pro-
gramming models have advanced to the extent that the original require-
ments and conditions used to design these mitigation techniques are no
longer valid, and so proposed solutions have to be revisited and upgraded.

Most of the contributions of this thesis are derived from a simple but
powerful concept, namely diversification, which is the capacity of a system
to change or modify the value of certain parameters or interfaces that are
needed by an attacker to build a successful assault. It is important to
differentiate between occultation and diversification. In the former, also
known as ‘security through obscurity’, the design of the system is secret
or unknown to the attacker, while in the latter case the design is widely
known but the configuration or certain key data elements of the system
are not known by the attacker, because they change over time. Security
through obscurity is discouraged and not recommended [5].

Besides the classic process of the scientific method (observe, question,
make a hypothesis, make a prediction, test the prediction and generalise),
the following rules were added to the methodology for this thesis.

Practical results: I tried to avoid solutions which cannot be easily imple-
mented on current systems; therefore, any solutions or improvements
requiring important modifications to the application code, compilers,
libraries or operating system were discarded. Also, solutions intro-
ducing excessive overheads (temporal or spatial) were also rejected.

It is typically easier to define new solutions if we focus mainly on the
parameters and features that we wish to maximise (security, in our
case) and dismiss or treat as secondary factors any drawbacks that
may be involved, such as performance and complexity.

One of the premises was the urgency of the solutions. Although it is
interesting to develop very advanced and efficient solutions, given the

4 Chapter 1. Introduction

current situation in the cybersecurity field, ready-to-use solutions are
required now, rather than perfect solutions tomorrow.

Real demonstrators: Besides the required formal validation and verifica-
tion, the solutions presented herein were implemented and tested in
real systems.

Real-world devices are complex, and sometimes there are interactions
between elements that cannot be modelled properly, while certain in-
teractions may even remain hidden until they are unintentionally trig-
gered (as is the case with many security vulnerabilities). For example,
the performance of current processors can be disturbed by many subtle
and small changes, as seen in the Bulldozer cache aliasing problem [6].

Do not take for granted common assumptions: Since this thesis is
about mature and well-studied techniques, it was very important to
be as objective as possible and as distanced (i.e. not contaminated) as
possible by previously published conclusions and solutions, since exist-
ing solutions, although very smart and efficient, are based on premises
that were correct at the time when the conclusions were made, but
they may no longer be valid or applicable to current systems.

Therefore, rather than starting from existing technology and building
up from there, most of the work in this thesis consisted of questioning
and challenging that technology.

Although there are small differences in the computational model and ABI
(Application Binary Interface) programming between Linux, BSD, MacOS
and Windows, the core ideas behind the protection techniques studied in
this thesis are applicable to all of them. In order to avoid the burden of
dealing with the implementation details of each system, this thesis only uses
Linux as the development developing environment in which the new designs
are tested and validated. The results obtained herein can be transferred to
the other systems, with only minor technical customisations required.

1.2 Goals of the Thesis

The major goal of this thesis is to improve protection/mitigation techniques
used to guard against memory errors. In particular we are concerned with
the following issues:

Stack Smashing Protector: This covers a narrow range of memory er-
rors, i.e. only stack buffer overflows, but nonetheless it is very effective
against exploitation.

Chapter 1. Introduction 5

Unfortunately, SSP is prone to brute force attacks. Increases in net-
work bandwidth and the processing power of current systems have
reduced the time needed for these kinds of attack to be effective, and
there is an especially dangerous type of brute force attack called ‘byte-
for-byte’, which can bypass protection protocols in just a very few
number of trials, regardless of the processor’s word width (32 or 64
bits).

Address Space Layout Randomisation: This is a generic mechanism
which is difficult to exploit. Rather than providing protection against
a specific class of faults, the ASLR works as an additional problem
that must be solved by the attacker in order to execute a remote code,
typically via ROP [7] programming or ret2x [8].

Depending on how the ASLR has been designed and implemented, if
the attacker is able to acquire the address (via an info leak) of the
application, then most of the memory layout can be de-randomised –
in which case the ASLR can be considered defeated. This problem has
been shown in the chapter 6, but there are also other design problems
that also deserve better solutions.

Automatic SW Diversification: Software diversification has been used
as a mechanism to detect and recover from a large variety of software
errors (not only memory errors). It is viewed as the software version
of the well-known TRM (triple modular redundancy) [9] fault-tolerant
mechanism.

Conversely to hardware implementation, redundancy cannot be ob-
tained by just making an exact copy of the software, as is done when
then the technique is used in electronic systems, because all of them
will fail in exactly the same way. What is therefore required is to have
two or more ‘versions’ of the same program, all of which respond sim-
ilarly when there are no errors but which have a differentiated output
(manifests differently) in the case of an error.

How to generate strong diversification efficiently is an open issue that
is addressed in the thesis.

1.3 Contributions of the Thesis

The main contributions of this thesis are summarised as follows:

6 Chapter 1. Introduction

1.3.1 RenewSSP: Renew Stack Smashing Protector

1. A statistical analysis of the effectiveness of SSP, NX and ASLR
against local and remote attacks considers the combined protection of
the techniques as well as their individual effectiveness.

2. An improvement is made to the SSP, called renewSSP, which pre-
vents brute force attacks against the SSP technique itself. As a result,
the SSP is now much more effective. The technique can be used trans-
parently on production systems (by pre-loading a shared library) and
has no appreciable overheads.

A software patent has been requested to cover this new technology.

3. The software architecture of the Android OS relies on the Zygote pro-
cess, which acts as a fast application launcher. Unfortunately, this
solution has important security drawbacks. The renewSSP tech-
nique has been shown to be an effective solution for restoring the
security of the SSP on Android.

1.3.2 ASLR-NG: Address Space Layout Randomisa-
tion Next Generation

1. A new kind of weakness, called offset2lib, has been described.

2. A proof of concept for offset2lib weakness has been developed and
ranked as 1-day vulnerability (by PacketStorm Security).

3. The classic process memory layout model has been revisited, ques-
tioned and reworked, thus allowing for improvements to be made to
the current ASLR design.

4. A new version of the ASLR, called ASLR-NG, has been designed with
the following features:

• It does not suffer from offset2lib vulnerability.

• It defines several new forms (or dimensions) of entropy.

• It can use the full memory space entropy, which provides maxi-
mum randomness (and thereby maximum protection).

• It is binary-compatible with existing applications; in other words,
existing software does not need to be recompiled or modified in
order to gain benefits.

5. The new version has been implemented on the Linux kernel.

Chapter 1. Introduction 7

1.3.3 DRITAE: Automatic SW Diversification

A new diversification architecture, called DRITAE, which has the following
attributes:

1. Processor cross-compilation has been identified as a new mechanism
to produce binary diversification automatically: variants.

2. User mode emulation has been identified as a mechanism that can be
employed to run different variants on a single system. This way, most
of the state of the application can be maintained by the operating
system in a very efficient way.

3. A novel recovery strategy for network servers against attempts to ex-
ploit zero-day bugs.

4. A proof of concept monitor has been implemented which implements
the recovery strategy.

1.3.4 Other Contributions

During this thesis’ analysis of the technological state of the art (the Linux
kernel and other system software packages), several bugs and weaknesses
were found and reported to the authors. Also, these bugs were submitted
to MITRE for consideration as CVEs. A total of seven CVEs (common
vulnerabilities and exposures) were finally assigned, most of which are di-
rectly linked with the main research line of this thesis (application buffer
overflows, kernel bugs and missing glibc features), though there are other
CVEs related to privilege escalation or DoS.

1.4 Thesis Outline

This thesis is structured in three thematic parts, and each part is organised
in chapters which correspond to already published works or internal reports
that will be published shortly.

Part I is about the current state of the stack smashing protector tech-
nique, any weaknesses that threaten the protection technique itself and the
new renewSSP solution proposed and implemented to toughen the SSP.
Part II covers limitations of the ASLR design, such as Offset2lib, and pro-
poses a new design jointly with the new implementation named ASLR-NG.
Part III is about automatic software diversification and the new DRITAE
architecture, while the final part, Part IV, summarises and concludes and
then outlines future research work.

Part I

Stack Smashing Protector
(SSP)

9

Chapter 2

Preventing Brute Force Attacks

against the SSP

This chapter introduces the conditions that must be met when a program
renews the reference canary on a child process when a new process is forked.
The technique is referred to as ‘RAF’ (renew after fork) SSP.

The technique is generalised and ported to other systems in later chap-
ters.

Contents
2.1 Introduction . 12

2.1.1 Benefits of our proposal 13

2.2 Background & assumptions 13

2.2.1 Network server architectures 13

2.2.2 Stack-smashing protection (SSP) 14

2.3 Threats . 16

2.3.1 Full brute force attack 16

2.3.2 Byte-for-byte brute force attack 17

2.4 Proposed strategy 17

2.4.1 Observations 17

2.4.2 Renew canary at fork (RAF SSP) strategy . . 18

2.4.3 Illustrative examples 18

2.4.4 Special considerations 21

2.5 Implementation 21

2.6 Statistical evaluation 23

2.6.1 Bypassing only the canary 24

2.6.2 Bypassing SSP + ASLR + NX 26

2.7 Experimental evaluation 28

2.8 Discussion . 29

2.9 Conclusions . 30

11

12 Chapter 2. Preventing Brute Force Attacks against the SSP

2.1 Introduction

A decade ago, buffer overflows, especially stack-smashing, was the most
dangerous threat to computer system security. Over the last few years,
several techniques have been developed to mitigate the ability to exploit this
kind of programming fault [10, 11]. Stack-smashing protector (SSP), address
space layout randomisation (ASLR) and Non-eXecutable stack (NX) are
widely used in most systems, due to their low overheads, simplicity and
effectiveness.

Following the classic measure/counter-measure sequence, a few years af-
ter the introduction of each protection technique, a method to bypass or
reduce their effectiveness was introduced. The SSP can be bypassed using
brute force or by overwriting non-shielded data [12, 13], the ASLR can be
bypassed using brute force attacks [14] and the NX, which effectively blocks
the execution of injected code, can be bypassed using ROP (return-oriented
programming)[15]. In spite of many existing counter-measures, these tech-
niques are still effective protection methods, and in some cases they are the
only barrier against attacks, until software is upgraded to remove a specific
vulnerability.

Unfortunately, the forked and pre-forked networking server architectures
are particularly prone to brute force attacks, as all children processes in-
herit/share the same memory layout and the same canary as the parent
process. An attacker can try – in bounded time – all the possible values
of a canary (for SSP) and memory layouts (for ASLR) until the correct
ones are found. There is a very dangerous form of SSP vulnerability, called
byte-for-byte, which allows an attacker to try each byte of the canary inde-
pendently, which then allows one to find the value of the canary by carrying
out just a few hundred trials (the system is defeated in a matter of seconds).

We present a modification of the SSP technique which consists of setting
a new random value of the canary for each child process when the fork()
system call is invoked. The technique is called ‘RAF SSP’ (re-new after fork
SSP).

Re-randomising the canary has not been seriously considered [13], mainly
due to two factors: first, protection increases only by a factor of two, on
average, when compared with the standard SSP on a system with no other
protection techniques. And second, the complexity of the implementation
would not be worth the protection improvement.

The RAF SSP technique greatly increases (by several orders of mag-
nitude) the difficulty of an attack when the three protection techniques
(SSP+ASLR+NX) are employed, as is the case in most systems. Regard-
ing the problems that may cause a canary change on a running process,

Chapter 2. Preventing Brute Force Attacks against the SSP 13

we have identified that the error confinement that represents each forked
thread is also a de facto stack confinement which allows one to change the
value of the reference canary with no impact on the correct operation of a
process.

2.1.1 Benefits of our proposal

The main properties of the RAF SSP are:

• It can be used by just pre-loading a shared library. There is no need
to modify the source code of the networking servers, nor recompile the
application, nor modify system libraries or the compiler.

• It prevents brute force attacks against canary stack protection
mechanisms.

• The SSP byte-for-byte attack is no longer applicable to the RAF SSP.

• It multiplies the effectiveness of the combined protection of the SSP,
ASLR and NX techniques. On a standard 32-bit system the cost of
breaking a system takes 512 times more trials on average (from
223 trials to 232 on a 32-bit system).

• The overhead introduced is negligible.

The RAF SSP is especially useful for networked servers, but it is not
limited to them. We tested it on a complete Linux distribution by mod-
ifying the standard C library, with full functionality and no appreciable
performance penalty.

2.2 Background & assumptions

2.2.1 Network server architectures

Network server software architectures have been extensively studied and
analysed due to the importance of Web servers in the current network in-
frastructure. Attending to the processing model, we will focus on two basic
models, paying special attention to the robustness of each approach. A
complete list of the models is beyond the scope of this paper (see [16]).

Multi-thread: each connection is handled on a dedicated thread. Multiple
clients can be attended to concurrently with a low overhead. The main
drawback is that a crash in any thread may kill the whole server or put the

14 Chapter 2. Preventing Brute Force Attacks against the SSP

server into an inconsistent state. There is a single error confinement region,
namely the server process.

Multi-process: each connection is handled by a separate (child) process.
There are two variants. First is the forking server, where a child process
is created explicitly to serve each request. As soon as the client request is
finished, the child process exists. The server process is able to attend to
client requests at any time, except while the child is being created (while
forking). The other variant is the pre-forking server. Several sub-processes
are forked before any connections are handled (when the server starts).
Each child blocks a new connection, handles the connection and then waits
for the next connection. This removes the overhead of the fork() call at
the time of accepting a new connection. The crashing of a child process has
a limited impact on the operation of the server, and only the client that
caused/suffered the crash has a failure. The error confinement region for
this mode is isolated for each process.

A good compromise between performance and robustness (error confine-
ment) is the multi-process, multi-threaded hybrid used in Apache.

2.2.2 Stack-smashing protection (SSP)

The first proposal was presented in [17] and then improved over the years.
Without loss of generality, we will assume that the stack grows downwards,
i.e. to lower addresses. We will use the x86 architecture in our examples.

The SSP technique [18] is a compiler extension which adds a guard (the
canary) between the protected region of the stack and local buffers. Orig-
inally, the canary was placed right after the return address, since it was
the target of most attacks. Over the years, new attack strategies have been
developed (see section 2.3) which have encouraged some enhancements [19].
As of GCC v4.6.3, the stack-smashing protector consists of the following:

• Both the return address and the saved stack frame pointer are guarded
by the frame canary.

• Local variables are reordered so that buffers are located first (higher
addresses), and then below them sit the scalar variables and the saved
registers. This way, buffer overflows (which typically grow upwards)
will not overwrite scalar variables.

Figure 2.1 sketches the layout of a stack with two function frames. The
reference canary is represented as a small bird on the right-hand side, and
the frame canary is the bird on each frame. The compiler emits extra code

Chapter 2. Preventing Brute Force Attacks against the SSP 15

arg 3
arg 2
arg 1

return address
saved frame ptr

buffers

frame canary

saved reg 1
saved reg 2

arg 1
return address
saved frame ptr
frame canary
saved reg 1

Higher
addresses

Lower
addresses

reference canary%gs:0x14

Stack growth

function()'s
stack frame

function2()'s
stack frame

Figure 2.1: x86 Stack layout.

in the prologue and epilogue of each protected function, in order to initialise
and check the value of the canary.

The value of the canary is chosen such that it prevents, where possible,
the effective exploitation of a buffer overflow and detects the occurrence of
an overflow. Attending to these issues, two (XOR canaries are not included,
because they have more overheads than the other types and the same prop-
erties as random canaries) kinds of canary values have been proposed:

• Terminator value: this value is composed of different string termina-
tors (CR, LF, NULL and -1).

• Random value: this value is a random value selected during the process
initialisation phase. The attacker needs to know the actual value in
order to build the attack. As long as the value remains secret, the
attack will be prevented.

In most implementations, the canary value is a word with all of it bytes
randomised, except one that is zeroed.

Since the value of the canary is not a constant but a random value chosen
when the program starts, this value has to be stored somewhere in the
program memory (or in a dedicated processor register, if available). In
the x86 and x86-64 architectures the reference canary is stored in a special
data segment which is not accessible as a ‘normal’ variable and cannot be
overwritten or read.

The numerical examples provided in this paper refer to a GNU/Linux
x86 architecture.

16 Chapter 2. Preventing Brute Force Attacks against the SSP

2.3 Threats

In this section, rather than a detailed explanation on how to bypass the
SSP, we will present only the weaknesses of the stack canary that enable
the possibility of an attack. In [20], the author explains the process em-
ployed to remotely exploit a buffer overflow on systems equipped with these
techniques.

Basically, there are two ways to bypass the canary:

1. Overwriting the target data (return address, function pointer, etc.)
without needing to overwrite the frame canary.

2. Overwriting the frame canary with the correct value.

Obviously, data that are not guarded by the canary (exception handlers,
function pointers in data structures, etc.) are prone to other forms of buffer
overflow, but since our technique does not increase the coverage (detection
capability) of the basic canary technique but reinforces the protection of
the already protected items, we will focus on brute force attacks against the
canary value.

The second way to bypass the canary requires an attacker knowing the
actual value of the canary. Processes created with fork() are duplicates of
the calling process. Both parent and child have the same canary value. On
a forked server, where the service is attended to by children of the server
process, an attacker can build brute force attacks by guessing the value
of the canary as many times as needed.

Depending on the granularity of how the attacker can flood the buffer
(word or byte overflow), there are two different brute force attacks: full
brute force and byte-for-byte.

2.3.1 Full brute force attack

The frame canary word is overwritten on each trial. If the guessed word is
not correct, the child process detects the error and aborts. As a consequence,
the attacker does not receive a reply, which is interpreted as an incorrect
guess. The guessed value is discarded, and the attacker then proceeds with
another value until all the possible values have been guessed.

On most 32-bit systems the canary (word) has 3 random bytes plus one
zeroed. In the worst case, the number of trials is 224, and 223 = 8, 388, 608
on average. These figures may deter a remote attacker but not a local
attacker, which may still break the system in just a few hours.

Chapter 2. Preventing Brute Force Attacks against the SSP 17

2.3.2 Byte-for-byte brute force attack

If the attackers have fine-grained control over the number of bytes that over-
flow, then a byte-for-byte attack can be constructed. The attack consists of
overwriting only the first byte of the canary until the child does not crash.
All the values from 0 to 255 are tested sequentially until successful. The
last byte tested is the first byte of the canary. The remaining bytes of the
canary are obtained following the same strategy.

This kind of attack is very dangerous, because a system can be broken
after only 3×256 = 768 trials. For this reason, most canary implementations
set to zero one of the canary bytes (the most significant in x86) in order
to prevent ‘byte for byte’ attacks when the overflow is performed by string
copy functions.

2.4 Proposed strategy

The following section first describes the strategy idea. Below, is an exam-
ple of a stack evolution which is described in order to clarify the strategy.
Finally a brief of some special cases where the canary reference should be
changed carefully.

2.4.1 Observations

Our proposal is based on the following observations:

Observation 1. For most applications, especially networking servers, after
a fork() operation the child process executes a flow of code which ends
with an explicit call to the exit() system call. In other words, the child
process does not return from the function that started the child code.

Even those applications that do not end with an exit() after a fork(),
they do not suppose a problem because the canary is not checked when
returning to the parent functions in most cases.

We validated this observation by both 1) analysing the code of several
servers and 2) empirically, by running a complete GNU/Linux distribution
where processes that return after a fork are killed.

Observation 2. Each child process in a network server defines an error con-
finement region. That is, any error that occurs in relation in a child will
not affect the correct operation of the parent and sibling processes.

Observation 3. There is a single reference canary per process which is stored
in a protected area and initialised during process start-up. It is copied in
each stack frame between the saved stack frame and the buffers.

18 Chapter 2. Preventing Brute Force Attacks against the SSP

Observation 4. Integrity (comparing the frame canary against the reference
canary) is only checked at the end of each function, right before the returning
instruction.

Observation 5. Only the value of the frame canary of the current stack is
checked against the reference canary.

2.4.2 Renew canary at fork (RAF SSP) strategy

The renew canary at fork (RAF SSP) strategy involves renewing the value
of the reference canary of the child process right after it has been created
(forked). The new value is also a random value. Every child process has a
different reference canary.

From our observations 1 we know that the child code will not return ,and
so the stacked frame canaries will never be tested 5. Therefore, they do not
need to be updated.

Although it is not difficult to check whether or not a function ever returns,
most compilers provide the noreturn function attribute, which declares
a function as non-returning. The compiler generates more efficient code
and checks (at compile time) whether or not the function honours the de-
sired behaviour. It is advisable that this function, i.e. where the canary is
renewed, has this attribute.

When the attacker guesses an incorrect value, the child is killed by the
stack protector detection mechanism and a new child with a new canary is
started. As a result, brute force attacks cannot be built.

2.4.3 Illustrative examples

Example 1: Figure 2.2 represents the evolution of the code on listing 2.1.
Different canary values are represented by different colours. When a func-
tion is called, the stack frame is set up, copying the reference canary into
the frame canary (see stack state at time 1). Upon return, the frame canary
is compared with the reference canary, which is represented by a black dia-
mond with an equal sign inside. The renew canary() operation changes
only the reference canary, the stack is not modified (from time 3 to 4) and
it defines a point of no-return. The current function (foo() at time 4)
cannot return, since there will be a mismatch between the reference and the
frame canaries.

Note that the frame canary of the previous stacked frames keeps the old
reference canary value while the new frames have the new canary (times 5,
6 and 7). As long as the process never returns from those functions, it will

Chapter 2. Preventing Brute Force Attacks against the SSP 19

call foo call bar return

main()'s
frame

main()'s
frame

main()'s
frame

main()'s
frame

foo()'s
frame

foo()'s
frame

foo()'s
frame

bar()'s
frame

main()'s
frame

foo()'s
frame

main()'s
frame

foo()'s
frame

qux()'s
frame

main()'s
frame

renew_canary

=
yes

foo()'s
frame

call qux call bar return

yes

=
no

abort()

main()'s
frame

foo()'s
frame

qux()'s
frame

bar()'s
frame

main()'s
frame

foo()'s
frame

qux()'s
frame

=
yes

=

return returnTime

__stack_chk_fail()

RANDOM

Point of
no return

0 1 2 3 4 5 6 7 8

Figure 2.2: Stack evolution program changing the reference canary.

void foo(){ | void bar(){
bar(); | return;
renew_canary(); | }
qux(); |
return; //Fails |

} | void qux(){
| bar();

int main(){ | return;
foo(); | }
return 0; |

} |

Listing 2.1: Code example which
renew the reference canary.

not be a problem. Also, note that the same function (bar() on times 2 and
6) has different frame canaries when called with different reference canaries
and they return correctly in both cases.

If the function that changed the reference canary returns (time 8), there
will a canary mismatch, which in turn will result in a process abort.

Example 2: Figure 2.3 shows the state of the stack and the reference
canary on a forking server using the RAF SSP technique. All of the stack
frames used by a child have the same frame canary value, which is different
from the parent and from other children. Since each child process defines
an error confinement region, our strategy randomises the canary in each
confinement region.

In the case of a forking server, each client is attended to by a different
child process. Since the child always terminates after attending to the client,

20 Chapter 2. Preventing Brute Force Attacks against the SSP

call to
WaitClient()

return call to
fork()

server() server() server() server()

WaitClient

=
yes

server()

Attend()

server()server() server()

Attend()

foo()

bar()

server()

Attend()

=
yes

RANDOM

qux()

bar()

foo()

=
yes

=

1

2

1

3

4

5

6

=

server()

_exit()

Father loops to
the while

Child's code

renew
canary

call to
Attend()

calls & returns during
Attend() operation

return call to
exit()

Point of
no return

Figure 2.3: Stack evolution of the code on listing 2.2.

void server(){ | void Attend(){
... | foo();
while(1) { |

client=WaitClient(); | }
if (fork()==0) { | int foo(){ bar();
}
renew_canary(); |
Attend(); | int bar(){ qux();
}
_exit(); |

} | char qux(){};
} ...

Listing 2.2: Basic forking server example.

the canary is renewed on every connexion, regardless of whether or not it is
requested by a legal client or an attacker. On a pre-forked architecture, a
child is running and attending requests until it is killed (by the main server
process, to reduce the number of active processes, or because it has crashed
as a result of an attack).

Taking into account observation 4, the frame canary of a non-returning

Chapter 2. Preventing Brute Force Attacks against the SSP 21

function is never checked against the reference canary. Therefore, a non-
returning function can safely change the value of the reference canary. All
subsequent function calls (invoked from the non-returning function) will
use the new reference canary for building the stack frame. Upon returning,
the canary checks will match, because the reference canary and the frame
canary will be the same (assuming the stack has not been smashed).

2.4.4 Special considerations

The setjmp()/longjmp() library provides a control flow facility that
breaks the ‘normal’ control flow of functions, namely a call and return se-
quence. The setjmp() saves the stack context/environment in a variable
that can later be restored by the longjmp() function. This backward jump
does not involve any return operation and does not check the integrity of the
frame canaries, and so as a result it can be used safely. Nonetheless, if the
reference canary has been renewed between the time when the setjmp()
was called and when the longjmp() is invoked, then there will be a mis-
match between the reference canary and the stack-canary for the function
where the setjmp() was performed.

This special case can be addressed in two different ways:

• Do not return from functions that call setjmp(). This behaviour
can be forced by declaring that functions obey a noreturn com-
mand. Note that the function that uses setjmp() can call up nested
functions at any time, but it cannot return.

• A more robust and transparent solution consists of modifying the
struct where setjmp() saves the context/environment, by adding
a new field to store the value of the reference canary at the time the
setjmp() is called. Later, the longjmp() will restore the reference
canary value using the one that is being stored. With this solution
there is no limitation to control flow.

2.5 Implementation

Proof of concept for the proposal has been implemented as a shared library
which overrides the fork() call. The library is called libraf.so, and
the code for the library is in listing 2.3.

The fork() function, on listing 2.3, calls the native fork() function,
following which the reference canary of the child is renewed by calling the
renew rnd stack chk guard() function, which is basically a copy of the

22 Chapter 2. Preventing Brute Force Attacks against the SSP

library code used to set-up the canary. All but one bytes are random values
read from /dev/urandom, which is the same source of randomness as used
by the standard canary.

#ifdef __i386__
define THREAD_SET_STACK_GUARD(x) \

asm ("mov %0, %%gs:0x14" ::"r" (x) : "memory");
#elif defined __x86_64__
define THREAD_SET_STACK_GUARD(x) \

asm ("mov %0, %%fs:0x28" ::"r" (x) : "memory");
#endif
pid_t (*native_fork) (void);
static void __raf_fork_init(void) {

native_fork = dlsym(RTLD_NEXT, "fork");
if (NULL == native_fork) {

fprintf(stderr, "Error in ‘dlsym‘: %s\n",
dlerror());

}
}
static void renew_rnd_stack_chk_guard(void) {

union {
uintptr_t num;
unsigned char bytes[sizeof (uintptr_t)];

} ret;
const size_t ranb = sizeof(ret.bytes) - 1;
ret.num = 0;
int fd = __open("/dev/urandom", O_RDONLY);
if (fd >= 0) {

if (__read(fd, ret.bytes + 1, ranb) == ranb){
THREAD_SET_STACK_GUARD(ret.num);

}
__close (fd);

}
}
pid_t fork(void) {

pid_t pid;
if (native_fork==NULL) __raf_fork_init();
pid = native_fork();
if (pid == 0) renew_rnd_stack_chk_guard();
return pid;

}

Listing 2.3: RAF SSP implemented as shared library: libraf.so.

Although the compiler will not add stack protector code to any of its func-
tions, because they do not have local buffers (larger than 8 bytes), it is advis-
able to compile the shared library with the option -fno-stack-protector,
in order to be sure that the compiler does not add it; otherwise, the canary
renewal will be detected as a stack corruption and the program will be
aborted.

Chapter 2. Preventing Brute Force Attacks against the SSP 23

In order to use the new version of fork(), the server has to be launched
with the LD PRELOAD=libraf.so as follows:

$ LD PRELOAD=libraf.so apachectl start

Another way to include the proposal in a running system is by modifying
the standard C library. We tested the proposal by modifying the code of the
fork() function of the GNU eglibc. Nevertheless, for brevity, we describe it
here as a new library call, namely raf fork(). The modification basically
consists of calling the canary set-up code dl setup stack chk guard()
again, right after calling the fork.

void renew_canary(void) {
/* Renew the stack checker’s canary. */
uintptr_t stack_chk_guard =

_dl_setup_stack_chk_guard (NULL);
#ifdef THREAD_SET_STACK_GUARD
THREAD_SET_STACK_GUARD (stack_chk_guard);

#else
__stack_chk_guard = stack_chk_guard;

#endif
}
pid_t raf_fork (void) {

if (fork()==0) renew_canary();
return pid;

}

Listing 2.4: Implemented as a new service: raf fork()

The modification of the setjmp/longjmp family involves increasing the
size of the jmp buf array, to store the value of the current reference canary
at the setjmp (which is done with just one assignment instruction), and
then to restore it on the longjmp function.

2.6 Statistical evaluation

We analyse the protection provided by RAF SSP as both a stand-alone
technique and when combined with the ASLR and NX techniques. The
cost is measured as the number of attempts (trials) needed by the attackers
to bypass them. Since the NX technique prevents remote code injection,
in order to exploit stack smash vulnerability it is necessary to bypass the
canary plus the ASLR all at once, as presented in section 2.6.2. The unre-
alistic attack on the canary as a stand-alone technique has been included
for completeness.

24 Chapter 2. Preventing Brute Force Attacks against the SSP

Let k be the number of trials until the system is defeated, let c be the
number of different values that can take the canary and let r be the number
of different positions where the ASLR can place the code.

The system is broken when the secrets are correctly guessed. We are in-
terested in the probability distribution of the process defined as “the prob-
ability that the first success requires k number of trials”. Larger values of k
are good for defenders and bad for attackers.

The plots shown in Figures 2.4 and 2.5 are for a standard Ubuntu 32-bit
system, where the canary has 3 bytes (which gives a range of c = 224 values)
and the ASLR has 8 bits (256 values) of entropy. Note that the 256 values
of the ASLR entropy represent the worst case for the attackers, assuming
that only a mapped library (typically the libc) it is enough to build the
attack.

2.6.1 Bypassing only the canary

As described in section 2.3, there are two main ways to attack the canary:
full search and byte-for-byte.

Full search attack: Statistically, a brute force attack is described as “sam-
pling without replacement,” and since all the values have the same prob-
ability (1

c) it is modelled by uniform distribution with a support range of
[1, c] and a mean of c+1

2 .

When the RAF SSP is used, the attacker cannot launch a brute force
attack, because incorrect values cannot be discarded. The only strategy for
an attacker is to select a valid canary value (the value of which does not
matter) and keep trying the same value until the canary matches with the
one randomly chosen by the server. The attacker can change the value of
the tried canary, but it does not improve the chances of finding a match.
This trial process is described as “sampling with replacement” and is
modelled by a geometric distribution with a support range of [1,∞[and a
mean of c.

Standard SSP requires at most 224 trials1 to be sure that the canary
value is found, but with the RAF SSP it is impossible to cover all cases.
On average, the RAF SSP requires only twice as many trials to be broken.
Three times the mean is needed to have a 95% chance of breaking in.

Byte-for-byte attack: On a byte-for-byte attack, the process of finding
each byte is modelled as a uniform distribution whose mean is 256/2 and
support range is [1, 256]. The attack on the 3 (for 32-bit systems) or 7 bytes
(64-bit systems) is modelled as the sum of 3 or 7 uniform random variables,

1On a 32-bit Ubuntu.

Chapter 2. Preventing Brute Force Attacks against the SSP 25

respectively. Using the central limit theorem, the resulting distribution can
be approximated to a normal distribution with µ = 256n/2, where n is the
number of random bytes of the canary (n = log2(c)/8), with support of
[1, 256n].

When the RAF SSP is in situ, a byte-for-byte attack cannot be employed,
because any incorrect guess will trigger a renewal of the full canary (all the
bytes), which invalidates any previous correctly guessed byte. Therefore,
the attacker is forced to use sampling with replacement against the full
canary. Figure 2.4 compares the cumulative distribution function (CDF) of
the attack to a ‘byte for byte’ exploitable overflow using the standard SSP
and the proposed RAF SSP. The x-axis is logarithmic.

0.25

0.5

0.75

1

1 24 28 212 216 220 224 228

µ = 384 µ = 16× 106

P
ro

b
a
b
il
it

y
o
f

su
c
c
e
ss

Number of attempts

SSP

RAF SSP

Figure 2.4: Byte-for-byte vulnerability.

With standard SSP, the attacker needs at most 768 trials to break the
system (and 384 on average). With this figure, the standard canary tech-
nique provides weak protection for this kind of bug. On the other hand,
the RAF SSP disables the ability to split the attack into bytes, and so the
same attacker requires 224 = 16 × 106 trials on average to break it (it is a
geometric distribution with µ = c), which represents an improvement of
five orders of magnitude.

26 Chapter 2. Preventing Brute Force Attacks against the SSP

2.6.2 Bypassing SSP + ASLR + NX

In a real system, all of these three complementary techniques are used si-
multaneously. Therefore, in order to exploit the fault, the attackers must:

1. Bypass NX protection. NX prevents the execution of injected code,
and attackers are forced to ‘re-use’ the code already present in the
process by means of ROP programming.

2. Bypass SSP protection, which involves finding the actual value of the
canary.

3. Bypass ASLR protection, which requires knowing the absolute address
of the attacker’s code, i.e. the entry point of the ROP sequence.

The attackers have to prepare/program the ROP sequence off-line. If we
suppose that they know the code of the server, then only the address of the
entry point to the ROP sequence is unknown, and so the rest of the ROP
sequence is relative to that entry point.

It is important to note that both the ASLR and the canary techniques
have the same weakness on forking servers: all the children have the same
memory layout as well as the same canary value. Unfortunately, as far as
the authors know, there is not a simple method to re-randomise the ASLR
on forked children. We shall therefore assume that all the forked children

0.25

0.5

0.75

0.95
1

212 216 220 224 228 236

µ = 8× 106 µ = 4× 109

P
ro

b
a
b
il
it

y
o
f

su
c
c
e
ss

Number of attempts

SSP+ASLR
"

RAF SSP+ASLR
"

P (k) ' 0.004

Figure 2.5: Success of an attack against both SSP and ALSR.

Chapter 2. Preventing Brute Force Attacks against the SSP 27

Standard SSP RAF SSP

Trials to break in Trials to break in Mean increased
100% Mean 100% Mean by a factor of

SSP bfb 3× 28 3× 27 ∞ 224 43, 691
SSP full 224 223 ∞ 224 2
SSP bfb+ASLR 3× 28 + 28 29 ∞ 232 8, 388, 608
SSP full+ALSR 224 + 28 223 + 27 ∞ 232 512

Table 2.1: Standard SSP versus RAF SSP (c = 224, r = 28).

have the same ASLR value which allows the attacker to perform a brute
force assault. The attacker has to create a brute force (or a probabilistic)
attack to obtain the value of the two secrets: i) canary value and ii) ROP
entry address. Let r be the number of different values, where the ASLR
algorithm can map memory (i.e. the ASLR entropy).

We assume that the return address can only be overwritten if the canary
is known. That is, the server’s code always checks the canary first, and it
only returns from the function if it is correct. This behaviour allows the
attacker to split the attack into two phases: first the value of the canary is
found and then the value of the ROP entry address. A detailed analysis of
how the three techniques can be bypassed can be found in [20]. The attack
on the ASLR follows the same pattern as the attack on the canary – it is
a uniform distribution, sampling without replacement, whose mean is r/2
and support is [1, r].

Using standard SSP, the attack on the server is modelled as the sum of
two uniform distributions (which gives a trapezoidal distribution). If one of
the uniforms has a much larger support range than the other (c � r), as
in our case, the sum can be approximated by a simple uniform distribution
with a mean of (c+ r)/2 and a range of [2, c+ r − 1].

When the RAF SSP is used, it is not possible to split the attack, because
any incorrect guess (either a canary value or an ROP entry point) causes
a canary renewal2. Since c� r, it is possible to approximate the resulting
distribution to a geometric with a mean of c× r and support [2,∞[.

Figure 2.5 shows the success probability of an attack on a standard system
and when the RAF SSP technique is used on a real system. The x-axis is
logarithmic. When the RAF SSP is used, the cost of the attack is calculated
as the result of multiplying the cost of each part – the canary and the
ASLR, while in a normal system it is only the sum of each part. It takes

2A detailed analysis of attacker strategies and associated statistical distributions is
beyond the scope of this paper. It will be published in an upcoming paper.

28 Chapter 2. Preventing Brute Force Attacks against the SSP

at most 224 + 28 trials to break into a standard system, and the system
is destroyed with a 100% certainty. Using the RAF SSP technique, the
chances of breaking into the system using the same number of trials is only
0.004%. On average, as table 2.1 shows, a 32-bit system using the RAF
SSP requires 512 times more trials to break.

2.7 Experimental evaluation

The RAF SSP relies on the infrastructure of the standard SSP. Therefore,
it does not increase the runtime cost operation of the application except
when the fork operation is invoked. The temporal overhead can be reduced
to the cost of generating a random word every time the fork() system call
is made.

The temporal cost of renewing the reference canary is determined by
the renew randomly stack chk guard() function. The average cost of calling
this function one million times is 2µs on an Intel CoreTM 2 Duo CPU running
at 2.4Ghz.

Regarding spatial cost, the memory size of the application does not
increase, no new data structures are used and no new code is generated by
the compiler. In addition, no new data structures or buffers are needed in
the library, and only a few lines of code have to be included.

The RAF SSP was tested with the following network servers: apache2,
lighttpd, proftpd and samba. For the sake of brevity, we will describe herein
only the apache2 benchmarks.

We used the Apache (apache2-mpm-prefork) binary included in the Ubuntu
(12.04) distribution with the default configurations (listing 2.5) and the
Apache HTTP server benchmarking tool (ab) tool to generate the client
workload.

<IfModule mpm_prefork_module>
StartServers 5
MinSpareServers 5
MaxSpareServers 10
MaxClients 150
MaxRequestsPerChild 0

</IfModule>

Listing 2.5: Apache configuration parameters.

The ab tool was configured to perform requests 1KB, 10KB and 100KB
in size, and each size was tested with 10, 50 and 100 concurrent requests
(concurrency column). Each experiment consisted of 106 requests.

Chapter 2. Preventing Brute Force Attacks against the SSP 29

Latency Throughput
(ms) (KB/s)

Concurrency SSP RAF SSP SSP RAF SSP

1
K

B 10 0.094 0.093 12 12
50 0.097 0.097 12 12
100 0.097 0.098 12 12

1
0
K

B 10 0.095 0.095 104 104
50 0.099 0.099 101 100
100 0.102 0.101 98 99

1
0
0
K

B 10 0.135 0.135 725 723
50 0.142 0.143 690 683
100 0.164 0.164 598 596

Table 2.2: Performance overhead comparative.

Table 2.2 shows the average of each experiment. There are no signifi-
cant differences between standard and RAF SSP apart from the variability
introduced by the processor and operating system features. The small over-
head caused by RAF SSP is practically undetectable when analysing the
complete operation of the server.

We installed a modified version of the eglibc (with the RAF SSP enabled
at the fork) in a Ubuntu Linux distribution, and all the tested applications
worked correctly: all graphical services, several browsers, several text editors
(LibreOffice), Java Open JDK interpreter, etc.

2.8 Discussion

The sequence fork() + exec() provides a very robust security schema
because of strong decoupling between the parent and the children. The
exec call renews both the value of the canary and the addresses of the code
(ASLR). With respect to the canary, our technique is as powerful as calling
exec, albeit without the high overheads of the exec call.

Contrary to other approaches, where the canary is different in each stack
frame[21], our approach changes the canary for every error confinement
region. From the attacker’s point of view, the target stack frame is the one
that belongs to the faulty function; the rest of the stack frames are of no
interest to the attacker. On a network server, only the code executed by
the child sever is prone to attacks, and in that code the canary is always
re-randomised by the RAF SSP.

Our technique does not modify the coverage protection of the SSP tech-
nique. If a programming error can be exploited in such a way that the SSP

30 Chapter 2. Preventing Brute Force Attacks against the SSP

technique fails to detect it, then RAF SSP will fail, too. Nevertheless, if
stack-smashing is detected, then our modified system will also detect it and
make it more difficult to exploit.

Since the overhead of the RAF SSP occurs only at the fork call, the fewer
the forks done by the server, the lower the overhead. For example, a pre-
forked server has zero overheads as long as no new children are launched.
If the server’s children processes are being killed during an attack (due to
incorrect guesses regarding the brute force attack), then any new children
come fully equipped with newly randomised canaries. That is, the RAF
SSP acts only when it is effectively required to do so, while during normal
operations it has zero impact.

In the section 2.6.2 we evaluate the cost of an attack when the three most
common protection techniques are simultaneously employed, and we show
that combined effectiveness can be computed as the product of each one
because the attacks cannot be split. Since the canary is typically the first
barrier to be bypassed, the RAF SSP causes the same multiplicative effect
when combined with other techniques, as long as any incorrect trial on any
technique applied thereafter renews the canary, thus forcing the attacker to
start over again.

2.9 Conclusions

This paper considers the idea of renewing the canary at every new process
creation stage (at fork time), and not only when a new image is loaded
(at exec time). The current stack guard implementation generates a newly
random canary for every new process image, i.e. when the exec() is called.
All the child processes inherit the value of the canary from the parent. We
propose renewing the canary value for every child. This is especially effective
on multi-process networked servers where the main server forks processes
to concurrently attend several clients.

We believe that an inaccurate statistical understanding of the re-ran-
domisation effect may have discouraged other authors from considering the
benefits of this technique. We show that re-randomising the canary improves
protection against attacks several times over, particularly when combined
with other commonly used protection techniques, at negligible cost.

The new technique is called ‘RAF SSP’ (renew after fork stack-smashing
protector) and has the following properties:

• The RAF SSP strategy has a negligible overhead.

Chapter 2. Preventing Brute Force Attacks against the SSP 31

• The canary brute force attack, especially the byte-for-byte variant, is
no longer possible.

• While the attack on the standard SSP follows a uniform distribution,
the attack on the RAF SSP is a geometric distribution.

• The solution can be implemented by means of a preloaded share li-
brary, and so it does not require modifying the source code of the
server or recompiling it. Furthermore, neither the operating system
nor the system libraries require modifying.

• The RAF SSP has been validated with several network servers: apache2,
lighttpd, proftpd and samba, without modifying the source code or
recompiling.

Chapter 3

SSPMD: Stack-Smashing Protection

for Mobile Devices

This chapter analyses how the Android architecture jeopardises the effective-
ness of the SSP. The secrecy of the stack guard (canary) can be compromised
easily, because the same value is used by all Android applications. The RAF
SSP technique is adapted and validated for Zygote. A patch to the Android
source code is provided.

Contents
3.1 Introduction . 34

3.1.1 Implementation challenges 34
3.1.2 Our contributions 35

3.2 Overview of Android 36
3.3 Threat Model . 37

3.3.1 SSP brute force attacks 38
3.3.2 SSP Direct disclosure 39
3.3.3 ASLR brute force attack 39
3.3.4 Summarising 40

3.4 SSPMD . 41
3.5 SSPMD on Android 42

3.5.1 Application launch 43
3.5.2 Application termination 44
3.5.3 Exception handling 44
3.5.4 Modifications to Zygote 45
3.5.5 Implementation discussion 45

3.6 Evaluation . 47
3.6.1 Verification of the implementation 47
3.6.2 Memory footprint 48
3.6.3 Temporal overhead 48
3.6.4 Portability . 49
3.6.5 Vulnerability coverage 50

3.7 Discussion . 51
3.8 Conclusions . 52

33

34 Chapter 3. SSPMD: Stack-Smashing Protection for Mobile Devices

3.1 Introduction

A decade ago, buffer overflows, and particularly the variant known as stack-
smashing, was the most dangerous threat to computer system security. Over
the last few years, several techniques have been developed to mitigate the
possibility of exploiting this kind of programming fault [10, 11]. Stack-
smashing protection (SSP), address space layout randomisation (ASLR)
and No-eXecute (NX1) are widely used in most systems due to their low
overheads, simplicity and effectiveness. When these techniques are correctly
implemented they prevent or mitigate stack-smashing, execution of return-
2-x or ROP programming and code injection, respectively.

Unfortunately, it is not always possible to implement these techniques cor-
rectly. Just to mention a few examples2: the NX requires hardware support,
otherwise it cannot be efficiently implemented under some architectures, and
the ASLR is partially implemented (not all memory areas are randomised
or are randomised only at system boot) in many systems, including some
versions [22] of Android. One of the main problems affecting SSP (even in
systems where it is correctly implemented) is the byte-for-byte [20] attack.

A technique that is known to be effective, but which is nevertheless used
incorrectly provides a dangerous false sense of security that can be easily
exploited by attackers. The fault or weakness remains latent for a long
period of time, which in turn allows the attacker to prepare multiple assaults
and tools that effectively bypass barriers that are generally considered as
unbreakable (or properly settled).

SSP covers a narrow range of faults (compared with the ASLR), i.e.
only those faults related to stack-smashing, but it is very effective against
them [23], by detecting and aborting the process before the attacker can
redirect the control flow.

3.1.1 Implementation challenges

A great deal of research and investigation has been done regarding stack
smashing prevention during the last decade, especially on servers and desk-
top platforms. Unfortunately, none of the major smartphone platforms uses
it as initially designed. In essence, the same design and implementation of
the SSP technique as the one used in desktop and server systems should
carry over to mobile devices, but there is a key difference that makes the
SSP weaker on smartphone platforms: they have been optimised to reduce

1Also known as data execution prevention (DEP) or Write or eXecute (W∧X).
2It is beyond the scope of this paper to present an exhaustive list of improper or

partial implementations.

Chapter 3. SSPMD: Stack-Smashing Protection for Mobile Devices 35

application launch time, power consumption and memory footprint. These
optimisations have had a subtle impact on the execution of the applications
and have invalidated one of the SSP’s original assumptions: the value of the
canary is a secret random value which is different for each application.

Android applications are clones (or forked processes) of a single launching
process called Zygote. As a strategy to speed-up launch time and reduce
memory footprint, all applications share a large amount of Zygote’s process
state: libraries, the Dalvik virtual machine and some initialised data, which
unfortunately include the canary value. Therefore, all Android applications
use the same random canary value, which is initialised at boot time and is
not changed until the next reboot. This is an implementation weakness that
can be exploited, in order to bypass the SSP. It is important to differen-
tiate between Android applications, which use the Android framework (i.e.
libraries and services) and are written in Java, and native processes, which
are normal Linux processes, typically written in C/C++. The contributions
of this paper are related to Android applications.

3.1.2 Our contributions

A summary of the main contributions of this paper is as follows:

1. We show how the current Android architecture breaks some core as-
sumptions of the SSP, which in turn greatly reduces the effectiveness
of this protection technique.

2. A new stack-smashing protector for mobile devices (SSPMD) tech-
nique is proposed, based on RAF-SSP [24] concepts, which addresses
all the issues caused by the Android architecture.

3. The SSPMD prevents brute force attacks against the SSP and ASLR [25]
on stack buffer overflows for Android applications when relaunched
from Zygote.

4. Also, the SSPMD mitigates SSP vulnerability, presented by [26], due
to the incorrect usage of the Android pseudo-random number genera-
tor.

5. The SSPMD has been implemented and evaluated on Android 4.2.
The implementation shows that it can be implemented by adding five
lines of code.

6. The evaluation shows that the SSPMD has a negligible overhead.

36 Chapter 3. SSPMD: Stack-Smashing Protection for Mobile Devices

The rest of the paper is organised as follows. Section 3.2 provides specific
background information on Android, and the threats and vulnerabilities
caused by the Android framework in relation to the SSP technique are pre-
sented in section 3.3. Section 3.4 describes the proposed modification to the
SSP, to overcome the deficiencies identified, while the implementation of the
new technique (SSPMD) is presented in section 3.5. Section 3.6 evaluates
the implementation, and the paper finishes with a discussion on the general
applicability of the proposed technique and a number of conclusions.

3.2 Overview of Android

Android is an operating system, developed by Google, Inc., for mobile de-
vices. While it borrows a good deal of platform code from the Linux op-
erating system, its security model was built from the ground up, with the
assumption that the device would be running a variety of untrusted or
partially trusted applications. Isolation/protection between applications is
achieved by executing each one in a separate process with a different UID
per application. This can be seen as a different confinement memory area
per application. A vulnerability in one application should not affect any
others.

Daemon

Window mng
Package mng
Activity mng

Daemon

Dalvik VM

Application-n

Dalvik VM

. . .

Dalvik VM

Application-1

Dalvik VM

Contacts

Dalvik VM
. . .

Linux Kernel

init

Daemon

mediaServer

zygote

serviceManager

Dalvik VM

Home

fork()

fork()+exec()

Linux Process

Figure 3.1: Android process tree.

Android is built on top of the Linux kernel with some specific device
drivers and a “C” library for embedded devices, namely the Bionic library.
Android applications are written in Java and executed in the Dalvik virtual
machine (or ART, in recent versions, ≥4.4). The execution framework is
composed of a set of servers, most of which are written in Java, which
provide all kinds of high-level services to the applications.

Chapter 3. SSPMD: Stack-Smashing Protection for Mobile Devices 37

Regarding the SSP implementation in the Bionic library, it uses a fully
random canary (that is, all bytes of the canary are random values).

Zygote is an important Android process, used mainly to speed-up ap-
plication launch. It is initiated at boot time with commonly used, shared
libraries, application frameworks and the Dalvik virtual machine with some
classes and resources that applications will need. Next, it waits for com-
mands on a socket. When a new application is requested to be launched,
Zygote forks itself creating a new process and loading the application code
in the pre-warmed up virtual machine. Since most resources are already
loaded in Zygote, the application can immediately begin executing. And
thanks to the copy-on-write mechanism, most of the system resources are
shared until they are modified. Therefore, all processes forked from Zygote
(i.e. all Android Applications) use exactly the same copy of the system
classes and libraries as well as the same reference canary value.

3.3 Threat Model

The SSP is effective as long as the value of the canary is unknown to the
attacker. The variant of the SSP which zeroes one byte of the canary is also
effective against overflows caused by incorrect string operations, even if the
attacker knows the value of the canary, because the zero byte is interpreted
as the string terminator, which stops any form of overflow at that byte.
Nonetheless, the reduced range of values (224 on 32-bits systems), in tandem
with continuous advances in compiler analysis (i.e. GCC fortify features),
has made this type of canary less effective3.

We will focus on full-word random canaries: SSP is effective while its
value is unknown to an attacker, and any form of information leak is a
threat to the technique.

In this section, rather than a detailed explanation of how to bypass the
SSP (the reader is referred to [20]), we will focus on the SSP weakness that
affects Android systems.

As stated in the previous section, one of the key elements of the Android
architecture is Zygote, which is the parent of all Android applications. This
characteristic has the undesirable effect that all Android applications in-
herit the same reference canary value, which implies that any local Android
application knows the canary value of any other application.

There are basically two types of canary leakage: brute force attack and
direct observation.

3Note that it is risky to make this kind of statement, especially in the security field.
Therefore, it must be treated with caution and considered only in the current context.

38 Chapter 3. SSPMD: Stack-Smashing Protection for Mobile Devices

3.3.1 SSP brute force attacks

Different canary values are tried until the correct one is found. In order to
build a brute force attack, four conditions must be met:

1. The attacker must guess the secret.

2. The attacker has to be able to decide whether it is a correct or an
incorrect guess.

3. The guess can be repeated as many times as needed by the attacker.

4. The secret value must always be the same. That is, it must not
change during the attack, otherwise tried and failed values cannot
be discarded.

The first two conditions occur when there is a bug in the application and
the bug manifests in such a way that the second condition can be applied.

The third condition is typically given on forking and pre-forking network-
ing servers. In this case, the main server does not directly attend to client
requests, but instead it forks child processes which are in charge of attend-
ing to clients. Each child inherits the socket from the client as well as most
of the parent’s state, which includes the reference canary value. The opera-
tion of Zygote has the same problem as forking servers, but it is augmented
by the fact that not only the children of one single server share the same
reference canary value, but all Android applications of the phone have the
same value.

Also, considering that most users reboot a phone only when it is strictly
necessary [27] (perhaps due to flight regulations, when installing major soft-
ware releases, system hangs, run out of battery, etc.), the applications have
the same reference canary value for very long periods of time, which in-
creases exposure time.

At first glance, the fourth condition may seem to be a direct conse-
quence of the third one, but it is interesting to note that if the secret value
changes after a trial, then there is no way to build a brute force attack.
An example of an application that does not meet the last condition is the
SSH [28] suite, which improves its security by breaking this condition and
using the sequence fork() + exec() when launching new clients. In
x86 64 GNU/Linux most of the secrets (SSP and ASLR) are renewed after
an exec(), but the drawback is the high temporal cost of the exec()
operation.

Unfortunately, Android meets the fourth condition, even when the buggy
application is not automatically re-forked or re-launched – as in is the case
of a forking server – but id relaunched by the end-user manually.

Chapter 3. SSPMD: Stack-Smashing Protection for Mobile Devices 39

Depending on the granularity of how the attacker can flood the buffer
(word or byte overflow), there are two different brute force attacks that can
be applied to Android applications:

Full brute force: the frame canary word is overwritten on each trial. If
the guessed word is not correct, the application detects the error and aborts.
The guessed value is discarded, and then the attacker proceeds with another
value until all possible values have been guessed. The number of trials to

bypass the SSP is 232

2 = 2, 147, 483, 648 on average.

Byte-for-byte: this is a dangerous kind of brute force attack which
consists of overwriting only one byte of the canary in each trial until the
value of the target byte is found; the remaining bytes of the canary are
obtained by following the same strategy. The system can be defeated with,
at most, 4×256

2 = 512 trials, which is a fairly low number.

3.3.2 SSP Direct disclosure

Every application running on an Android phone knows the system canary
value, and so attackers can add a simple but useful ‘Trojanised’ applica-
tion [29] (examples of such apps are lantern, notes takers or simple but
appealing games) to ‘Google Play’, which sends to the attackers the value
of its own canary value, jointly with other useful information,for example
the ASLR memory map.Information can be sent directly from within the
Trojanised application to the commander computer. But there are more
subtle ways to do it, for example as a bug report which contains a stack
dump along with other process information.

Note that attackers can introduce legal applications which do not cause
any damage to the system or try to launch an attack on other applications
but just obtain local secret information. These applications only access their
own data and do not require highly suspicious phone permissions. Some
people care about the permissions granted to an application, but in this
case no Android permission other than internet communication is required
to release the system’s canary value.

3.3.3 ASLR brute force attack

The implementation of the ASLR on Android suffers from a weakness similar
to that of the SSP. Recently, a solution to this problem was proposed [30]
which consists in randomising the offsets of the libraries at system update
time. Even in the case of better ASLR implementations which randomise
per boot instead of per system update, Android applications inherit their
memory map from the Zygote process. This happens because the design of

40 Chapter 3. SSPMD: Stack-Smashing Protection for Mobile Devices

the Android system relies on this characteristic to reduce application launch
time.

Unfortunately the offset where the libraries are loaded and the canary
value are the same for all Android applications per boot, thereby allowing
attackers to build remote brute force attacks to bypass first the SSP and
later the ASLR.

3.3.4 Summarising

The execution environment in Android applications jeopardises the effec-
tiveness of the standard SSP technique.

• Weak security control in the Google Play store makes it relatively
easy to upload malicious applications, which in turn are installed by
careless users. Therefore, contrary to desktop and server systems, lo-
cal attacks on smart-phones (especially on Android) represent a main
attack vector.

• Current Android SSP implementation is completely useless against
local attacks, because the canary value is not a secret to local appli-
cations.

• Zygote, as well as other system applications (executed by the Dalvik
VM), has the same broken SSP implementation.

• Remote attacks that have to bypass the SSP on a target application
may first attack the weakest installed application, to obtain the canary
value, and then use the obtained value against the real target appli-
cation. This attack strategy makes exploitable some applications that
otherwise would not be vulnerable.

• There is a very long exposition time. Once an attacker obtains the
canary value, they can use it as long as the system is not rebooted,
which may be a fairly long period of time.

• The obtained canary value can even be used against applications in-
stalled after the canary value has been leaked.

• Stopping, restarting or re-installing the application, does not change
its canary value.

Chapter 3. SSPMD: Stack-Smashing Protection for Mobile Devices 41

3.4 SSPMD

The SSPMD relies on the same SSP infrastructure as already implemented
by Bionic and GCC, but the Zygote code is modified to renew the ref-
erence canary on the child process right after the new process
has been created (forked). It is important to note that the value of the
reference canary of Zygote is left unchanged, and only the reference canary
of the forked/cloned processes is modified.

In order to understand why this modification does not break the normal
operation of the application, the following observations shall be considered:

• In most applications, after a fork() operation, the child process
executes a flow of code which ends with an explicit call to the exit()
system call, i.e. the child process does not return to the main flow
of control but jumps to execute the specific child code, which in turn
ends with a call to exit().

• There is a single reference canary per process which is stored in a
protected/separated area and initialised during process start-up.

• Integrity (i.e. checking the frame canary against the reference canary)
is only done at the end of each function (or block of code), immediately
before the returning instruction.

• Only the value of the frame canary of the current stack is checked
against the reference canary.

The function where the canary is changed defines a ‘point of no return’.
To be more precise, once the reference canary has been changed, any at-
tempt to return from a function whose frame canary does not match the
new one will abort the process. In other words, it is possible to return to
previous functions once the reference canary has been changed, if – and only
if – those functions do not have a frame canary. Therefore, the real ‘point
of no return’ is defined by the first parent function, which effectively checks
the integrity of the stack. Considering that only functions that declare local
buffers are protected by the SSP, it may be possible to change the reference
canary and return back several functions, if the necessary conditions are
provided. This subtle detail in how exactly the SSP operates is important,
because it greatly simplifies the implementation of the SSPMD technique
on Zygote. Figure 3.2 shows graphically the division of the stack once the
reference canary has been changed.

The application can call and return to any function freely, but it cannot
return to the functions that called it originally.

42 Chapter 3. SSPMD: Stack-Smashing Protection for Mobile Devices

Zygote main()

Zygote func_b

. . .

RenewSSP()

Applic. func_n

Applic. func_c

Applic. func_b

Applic. func_a

Zygote func_m

. . .

Zygote's
stack
frames

Applic.'s stack
frames

Ref-canary

Point of no return
 for childrenApplic. func_d

Figure 3.2: Application active stack.

Non-local jumping (i.e setjmp/longjmp) is another form of control flow
which can disrupt the normal execution of a program. It is typically used as
an exception mechanism to jump or restore back multiple levels of function
calls, in order to continue from an initial safe state. Since longjmp() code
does not check the stack integrity of the current and the destination func-
tions, it can be safely used after a reference canary change. However, care
must be taken if the destination frame of the destination function (or the
previous stacked frames) contains frame canaries with the old value. The
way to solve this problem involves storing the value of the current reference
canary when the setjmp() is called, along with the rest of environment
information, and then restore the reference canary to its original value when
the longjmp() is later invoked. The value of the reference canary shall
be considered a part of the execution context, and since it is not guaran-
teed to be constant throughout the execution of the process, it should be
stored/restored when needed.

3.5 SSPMD on Android

This section analyses the specific needs of the Android platform when im-
plementing the SSPMD, and it also presents the code for the proposed
implementation.

In what follows we analyse the relationship between the application codes
with respect to previous Zygote executions:

Chapter 3. SSPMD: Stack-Smashing Protection for Mobile Devices 43

3.5.1 Application launch

There are three different phases involved in launching a new process: 1) pro-
cess creation, 2) binding application and 3) launching activity. We will focus
on the first one, because this is where the new application and the Zygote
code depart from each other and where the canary should be renewed.

During this first phase, the ActivityManagerService receives a star-
tActivity intent – if the process associated with the activity does not exist, it
sends to Zygote a request to create it via a connection socket; upon reception
of the request, Zygote forks a new process and instantiates the Activity-
Thread object, which starts the message loop by calling Looper. The next
step involves attaching the process to the specific application and then fi-
nally launch the activity by calling the onCreate() function, which is the
first call of the entire lifetime of the activity. We are only interested in the
path of code executed from the fork() to the beginning of the application
code.

The Zygote code that manages the creation of new processes is located in
the file libcore/dalvik/src/main/dalvik/system/Zygote.java, which
defines the Zygote class. This class provides, among others services, two
public static methods to handle the creation of new applications and ser-
vices: Zygote.forkAndSpecialize() and Zygote.forkSystemServer().
The sequence of calls from high-level functions to the instruction which per-
forms the system call (jumping to kernel code) is summarised in Table 3.1.

Lang Function name

Java Zygote.forkSystemServer()/forkAndSpecialize()

Java nativeForkSystemServer()/nativeForkAndSpecialize()

C++ . . .Zygote forkSystemServer()/Zygote. . .Specialize()

C++ forkAndSpecializeCommon()

C++ fork()

Asm fork()

Table 3.1: Call sequences.

These code sequences are executed once on the call sequence (by the
parent process) and twice when returning (both the parent and the child
process).

A detailed analysis of the code of these two sequences of calls shows that
none of these functions is SSP protected, because they do not declare any
local buffer. Therefore, it is safe to change the reference canary at any point
during the execution of this sequence. In the case that any them are pro-
tected by a canary, due to a future change in Android compilation options

44 Chapter 3. SSPMD: Stack-Smashing Protection for Mobile Devices

(e.g. compiler flags are changed to the more secure stack-protector-all

or stack-protector-strong4 flag), then they shall to be compiled with
the no-stack-protector flag. A simple modification of the build scripts
would fix this issue.

Once started, the application acts as a server that executes callbacks, and
so parent functions are never returned from them. This behaviour can be
viewed as if there are two separate stacks – as shown in Figure 3.2. The
upper part of the stack contains stack frames with the old canaries, and the
bottom part is the live stack of the application, which uses the new canary.

3.5.2 Application termination

During the normal execution of an Android application, the functions of the
old stack never retur. We analysed how the applications terminate, to find
out whether or not the application returns to the old functions.

Processes are activity containers, and their creation or destruction is con-
trolled by the kernel. Android’s execution model does not consider the
termination of an application by calling exit() explicitly, and its full life-
cycle is beyond the scope of this work, but for our purposes it is enough to
know that processes can terminated in either of the following two modes:

a) An application can call the method Process.killProcess() if the
process is part of the application, or it can be killed by others if
it has the ‘android.permission.KILL BACKGROUND PROCESSES’ per-
mission.

b) Some versions of Android used a queue that keeps track of which
applications have not been used. If the OS starts to run out of memory,
it will kill an application (according to some metrics).

In both cases, the process ends by means of a signal. It does not return
to any saved stack/environment, which meets SSPMD requirements.

3.5.3 Exception handling

Although Android is compiled using the C++ compiler, the code is mainly
‘C’-compatible. Fortunately, the exception handling of C++ (i.e. try-catch
blocks) is not supported by the Bionic library, which forces one to check

4stack-protector-strong is still a feature not available in the stable version
of the GCC compiler, as of writing this paper.

Chapter 3. SSPMD: Stack-Smashing Protection for Mobile Devices 45

errors and exceptions, by using explicit conditional constructions. There-
fore, the stack is never unwound, due to a raised exception. This restriction
causes the native code of Zygote (which is affected by the SSPMD) to be
very procedural and sequential. Also, there are no calls for the setjmp/-
longjmp functions. On the other hand, the Java side of Zygote uses all
the bells and whistles of the language, in which case exception handling is
compatible with the SSPMD.

3.5.4 Modifications to Zygote

Once the impact of SSPMD on Android has been analysed, the implemen-
tation is straightforward. We implemented the SSPMD for Android 4.2
(repository branch: android-4.2 r1) Jelly. We chose this version of An-
droid because it supports both smartphones and tablets.

The first step involves defining or giving access to a function which
changes (re-randomises) the reference canary. We can reuse the already im-
plemented function guard setup(), which initialises the reference canary
with a random number from /dev/urandom. Rather than exporting this
function we preferred to export a dedicated function (called renew ssp()),
for clarity.

The code added to the Dalvik machine required only one call to renew
the reference canary (renew ssp()) in the function forkAndSpecialize-

Common() located in the file dalvik system Zygote.cpp, as shown in list-
ing 3.1.

The function forkAndSpecializeCommon() is called from the functions
Dalvik dalvik system Zygote forkSystemServer() and Dalvik dalvik-

system Zygote forkAndSpecialize(). These functions are used to launch
new children for system services and general-purpose applications, respec-
tively.

3.5.5 Implementation discussion

The modifications introduced by the SSPMD are not architecture-dependent,
so there are no restrictions on using our proposal on other hardware sup-
ported by Android, such as MIPS or x86.

A key implementation issue is the source of random numbers. The func-
tion guard setup() reads four bytes from the /dev/urandom device. Uran-
dom then produces an unlimited stream of random bytes, using a pseudo-
random number generator, based on the internal entropy pool of Linux.
Although SSPMD consumes more random numbers than the SSP, it is only

46 Chapter 3. SSPMD: Stack-Smashing Protection for Mobile Devices

490 static pid_t forkAndSpecializeCommon(...)
491 {
... ...
553 dvmDumpLoaderStats("zygote");
554 pid = fork();
555
556 if (pid == 0) {
557 int err;
558 /* The child process */
559
560 #ifdef HAVE_ANDROID_OS

+++ renew ssp();
561 extern int gMallocLeakZygoteChild;
562 gMallocLeakZygoteChild = 1;
... ...
672 return pid;
673 }

Listing 3.1: dalvik/vm/native/dalvik system Zygote.cpp

four bytes per application, which can not be considered a dangerous drain
of entropy. Also, we need to note that this is the default consumption
rate on conventional systems, where applications are launched using the
fork()+exec() pair.

This implementation exports the renew ssp() symbol. This way, any
native application compiled against the new library will be able to call that
function at will. This function does not receive any parameter from the
user, so it is impossible to reset (or set to a known value) the value of the
reference canary. Therefore, security is not vulnerable when renewing the
value of the canary at any moment during the execution of the process, as
long as the already stacked stack canaries are not checked. A more general
discussion about how and why to change the reference canary can be found
in [24].

It is important to note that the old reference canary was used intensively
by Zygote before forking. That value was pushed and popped from the
stack multiple times while calling and returning from functions. Therefore,
the stack of the child may still contain a copy of that value. These garbage
values may reside in any location on the stack (downward or upward) and
may be observed by a malicious application. Since Zygote does not change
its own reference canary, the malicious application may be able to read
the current canary of Zygote, albeit not the reference canary of the rest of
the applications. The solution to this issue is to also change the value of
the reference canary on the Zygote after a new process has been created.
An analysis of how and where the canary of the Zygote shall be changed
is beyond the scope of this paper, but we shall mention here that it can

Chapter 3. SSPMD: Stack-Smashing Protection for Mobile Devices 47

be done by following a similar approach to the one used to protect the
applications.

Another interesting aspect to consider regarding the simplicity of the
implementation is that it does not change the logic of Zygote, which greatly
simplifies the maintainability on future versions.

3.6 Evaluation

The following aspects were evaluated: 1) the correctness of the modification,
2) overheads, both spatial and temporal, 3) portability and 4) effectiveness.

The correctness of the implementation was evaluated by running the sys-
tem and reading the values of the canaries for the Android applications in
both the original system and the one modified with the SSPMD. An over-
head is only created as a result of the cost of reading four random bytes
during application launch, and there are zero overheads during the execution
of the application.

The evaluation of SSPMD, i.e. its effectiveness, was analysed analytically,
by comparing the operation of the current implementation with the new
SSPMD. A detailed evaluation of the stack guard technique is beyond the
scope of this paper.

3.6.1 Verification of the implementation

The implementation was tested by reading the values of the reference ca-
naries on the original version of Android and then on the modified version.

The value of the reference canary can be read directly from the memory
of the process, through the /proc/<pid>/mem. Bionic, the reference canary,
is a global variable named stack chk guard. In our example, it is located
at the offset 0x4b228.

The results relating to executing the inspector program are listed in Ta-
ble 3.2. As expected, all of Zygote’s children have the same reference value
on a standard system but different values when using the SSPMD modifi-
cation.

Table 3.2 also shows the canaries of native processes (those not launched
by Zygote). In this case, the canaries are different because they are processes
with a new binary image loaded by an exec() syscall.

48 Chapter 3. SSPMD: Stack-Smashing Protection for Mobile Devices

Android application SSP SSPMD

zygote 0x7852ee0c 0x20cf270d
system server 0x7852ee0c 0xb2368f9d
com.android.phone 0x7852ee0c 0x96c40065
com.android.music 0x7852ee0c 0xc0a6c73c
com.android.mms 0x7852ee0c 0x34ff9aa8
com.android.launcher 0x7852ee0c 0x94ff1193
com.android.contacts 0x7852ee0c 0x61c22d06
com.android.calendar 0x7852ee0c 0x77cdb8a5
android.process.media 0x7852ee0c 0xe5f7ef65
/system/bin/sh 0xff0422c9 0xe95b0903
/system/bin/rild 0x7a0f3f72 0xb6b3e8d1
/system/bin/mediaserver 0xab5aa3f7 0x7c8879eb
/system/bin/keystore 0xae444921 0xc05866d3
· · · · · · · · ·

Table 3.2: Reference-canaries with both techniques.

3.6.2 Memory footprint

The implementation of the SSPMD relies on the already existing infrastruc-
ture of the SSP and needs neither global nor local stack frame additional
storage. Our implementation applies and exports the renew ssp() func-
tion, which is just a proxy to guard setup(), from bionic and adds a
single call to this function in Zygote code. The modified Zygote function is
not in the executable itself but in the shared library libdvm.so.

The amount of code added is so small that the default optimisation of
function alignment to a 32-byte boundary may hide the size of this addi-
tional code.

The size of the Dalvik virtual machine program is not increased at all
in the ARM processor, due to alignment padding, which means that the
SSPMD technique can be used on a mobile phone with zero memory over-
heads. And in the case of the x86, the global cost of the SSPMD is a total of
25 bytes. Note that this value is independent of the number of applications
executed in the phone.

3.6.3 Temporal overhead

The temporal overhead is caused by the call to renew the canary on the child
process after the fork operation, which is called only once per application.
The rest of the execution of the application has zero overheads.

Chapter 3. SSPMD: Stack-Smashing Protection for Mobile Devices 49

It is a continuously evolving sector in which devices are surpassed in a
matter of months. It is therefore pointless to try to find a representative
device for running performance tests, so we selected two phones according
to their availability, namely the Samsung Galaxy S4 mini and the Huawei
U8650 Sonic. Table 3.3 summarises the average cost of calling 10.000 times
the function renew ssp() on several devices.

Model Mean time

Tablet, Asus Nexus7-1B 13
Huawei U8650 Sonic 26
Samsung Galaxy s3-i9300 11
Samsung Galaxy S4 mini 38

Table 3.3: Cost of renewing the canary (µsec).

Although the S4-mini is faster than the Huawei U8650, it took 38 µs
versus the 26 µs of the Huawei U8650, because the kernel on that platform
implements the SELinux facility, which adds an extra overhead to each
system call, including the three calls (open() , read(), close()) needed
to read from /dev/urandom.

3.6.4 Portability

Although the implementation of the SSP is highly processor- and compiler-
dependent, the SSPMD is not. Fortunately, neither the compiler nor the
supporting library functions have to be modified, as all code modifications
have been done in ‘C’ and in the generic part of the libraries. No platform-
specific code has been added. Therefore, SSPMD is fully available to current
platforms (ARM, MIPS and x86) and will be automatically available on new
portings. Obviously, this transparency in the implementation greatly sim-
plifies the maintainability on new releases for the same platform. SSPMD
does not break any assumption or impose complex requirements or limita-
tions on the Android architecture.

The only limitation is that once the reference canary has been changed, it
is not allowed to return from previous stacked functions, if those functions
check the canary. It should be considered that it is extremely rare to return
back to the parent code after a fork() operation, and as far as the au-
thors know, child processes execute another flow of code which always ends
with a call to exit(). In order to validate this affirmation we conducted
an experiment which involved modifying the implementation of the Glibc
fork(), to always renew (on the child) the canary. A complete Ubuntu
13.10 distribution, using this library, was used seamlessly.

50 Chapter 3. SSPMD: Stack-Smashing Protection for Mobile Devices

Therefore, we can consider that the restriction required by SSPMD – that
child processes must not return to parent functions – is not a limiting or
an unacceptable requirement, because it is normal default behaviour fr all
analysed applications.

3.6.5 Vulnerability coverage

All the issues described in section 3.3 are settled by the SSPMD. The fol-
lowing is a brief discussion on each one and how the SSPMD addresses
them:

SSP brute force: it is impossible to implement a SSP brute force attack
against Android applications (non-forking servers) to bypass the canary,
since the canary is renewed on a per application basis when the SSPMD
is used. An application crash implies that a new process for the same
application has been launched, and consequently it has a different canary.
The only choice for the attacker is to try a probabilistic attack.

SSP byte-for-byte: it is interesting to note that the very dangerous SSP
byte-for-byte attack5 (because of the reduced number of trials) cannot be
used against the SSPMD on Android applications. In this case, the attacker
is faced with a full-word probabilistic attack, which is quite discouraging.

ASLR brute force: it is impossible to implement a stack buffer overflow
ASLR brute force attack against Android applications. When the SSPMD is
used, the SSP brute force attacks cannot be employed, because any incorrect
guess will re-launch the application and the canary will be renewed. In this
scenario the attacker is not able to perform a brute force attack against
the ASLR but a probabilistic attack against (“trial-and-test”) against both
secrets at once, which has also a multiplicative effect on the number of trials.
Therefore, the SSPMD protects against remote ASLR brute force attacks
on stack buffer overflows.

Direct disclosure: if an application has a vulnerability which allows one
to directly read the value of the canary, the obtained value can only be used
on the same application – and only until the application has been restarted.
Unlike current SSP, with SSPMD a crash in an application renders useless
the guessed value.

Local attacks: it is no longer possible to know the value of the canary
from another application running on the same system. Contrary to the
original SSP, which can be considered as a defeat technique when considering
local attacks, the SSPMD has the same level of effectiveness in relation to
local attacks as remote ones.

5Although byte-for-byte is a form of brute force attack, we have considered it sepa-
rately, due to its singularity.

Chapter 3. SSPMD: Stack-Smashing Protection for Mobile Devices 51

Weak randomness: the SSPMD mitigates the vulnerability caused by
generating the Zygote frame canary, before the PRNG of the Android kernel
is properly set-up [26]. By the time the applications are launched, the
quality of the PRNG has already been corrected, and so the SSPMD is an
effective workaround for this issue.

Table 3.4 summarises in a few words the achievements of the SSPMD
with respect to the current implementation.

Threat/Issue SSP SSPMD

SSP full brute force attack: Yes No
SSP byte-for-byte attack: Yes No
ASLR brute force (on stack): Yes No
Direct disclosure bypasses: All apps. The affected app.
Local attacks are: Trivial Same as remote
Canary exposed until next: Reboot App. relaunch

Table 3.4: Android SSP vs. SSPMD summary.

3.7 Discussion

It can be argued that Android applications are not native applications but
are instead byte code interpreted by Dalvik. Unfortunately, Android appli-
cations use native code through JNI. Note that the SSP technique is only
applicable to native code; in fact, many libraries are written in C/C++ and
export their services via JNI to Java applications. Some application parts
are written in C/C++, to overcome Java limitations, for example in or-
der to access system services that are not available otherwise (for instance,
to interact with POSIX pseudo-terminals), to speed-up critical parts or to
reuse existing C/C++ code. SSP protection takes place in all of this native
code, used by Android applications.

Another aspect to consider is the applicability of the SSPMD. Although
it may seem that the code in which the SSPMD is used must meet very
specific and somewhat odd conditions, a deep analysis of the code involved in
how the fork() syscall is typically used reveals that most real applications
meet those conditions by default. That is, the SSPMD can be used with
minor modifications to Zygote, because it has been coded following standard
programming patterns.

In [24], the authors carried out an experiment to test the impact of the
more general RAF-SSP technique on a full desktop system. The fork()

52 Chapter 3. SSPMD: Stack-Smashing Protection for Mobile Devices

function of the Glibc library was replaced by a custom fork() which al-
ways renews the reference canary on all children processes. A complete
Linux distribution, using the modified library, ran smoothly. We cannot
conclude that the RAF-SSP technique could be applied as a simple drop-in
replacement for the fork, but it is very likely that a simple inspection of the
code – and in some cases a small modification – would be sufficient for its
use.

The SSP technique is under active development. In the latest version of
Android, KitKat 4.4.4 r1, the initialisation of the canary has been moved
into the bionic core constructors. Also, regarding the GNU GCC suite,
Google recently implemented the stack-protector-strong, which repre-
sents a balance between performance and coverage.

The SSPMD technique can be considered as another defensive measure
which can be included in software, in a similar way to other measures such
as drop privileges, assertions, data canonisation, etc.

3.8 Conclusions

Stack buffer overflow is one of the most dangerous vulnerabilities in com-
puting, because when successfully exploited, it gives direct access to the
control flow of the program. Thanks to non-executable data, aligned with
the SSP and the ASLR mitigation techniques, the exploitable nature of this
type of vulnerability has been greatly reduced.

The SSP is a technique which covers a narrow range of vulnerabilities,
namely only those caused by stack buffer overflows that occur on vectors lo-
cated in the stack; however, it is very effective when correctly implemented.
The SSP technique relies on keeping secret the value of the stack guard
(canary), which is a random value that must be unknown from outside of
the application.

The Android architecture violates a key design principle of the SSP, in
that the canary must be a secret per individual application. The SSPMD
restores back the effectiveness of the original SSP by setting a different
canary for each Android application.

The SSPMD is not intrusive, in the sense that it can be implemented just
by adding one line of code in Zygote, and it is binary-compatible with all
current and future Android applications. That is, applications do not need
to be upgraded to benefit from this improved protection. Finally, the new
technique has been validated on a real platform.

Chapter 4

Method for Preventing Information

Leaks in the stack-smashing protector

technique

A generalisation of the renewSSP technique, described by following the rig-
orous and precise format of a patent request, is presented in this chapter.

The patent extends the scope of the renewSSP to define the conditions in
which the reference canary can be renewed transparently, and when and how
the canary can be renewed but must later be restored to continue the normal
execution of the process.

Contents
4.1 Abstract of the Disclosure 54

4.2 Background . 54

4.2.1 Known patent documents 55

4.2.2 Known patent application documents 57

4.3 Summary of the Invention 58

4.4 Detailed Description of the Invention 59

4.5 List of references cited 66

4.5.1 List of Patents 66

4.5.2 List of Patent Applications 67

4.6 Claims . 68

53

54 Chapter 4. Method for Preventing Information Leaks in SSP

4.1 Abstract of the Disclosure

A method for hardening the stack-smashing protector (SSP) technique,
which prevents information leaking from the protecting guard, is disclosed
herein. The reference stack guard secret value is renewed at one or more se-
lected time points during the execution of the application. The technique is
non-intrusive and has a negligible run-time cost (both spatially and tempo-
rally). The technique reuses the SSP infrastructure, and it does not need to
recompile code or modify the binary image of the application. The method
prevents any kind of brute force attacks against the SSP technique and most
info leaks affecting the canary guard.

4.2 Background

A decade ago, buffer overflows, especially stack smashing, were the most
dangerous threats to computer system security. Over the last few years,
several techniques have been developed to mitigate the ability to exploit this
kind of programming fault. Stack-smashing protector (SSP), address space
layout randomisation (ASLR) and Non-eXecutable (NX) are widely used in
most systems, due to their low overheads, simplicity and effectiveness.

Following the classic measure/counter-measure sequence, a few years after
the introduction of each protection technique, a method to bypass or reduce
its effectiveness was published. SSP can be bypassed using brute force
attacks or by overwriting non-shielded memory, the ASLR can be bypassed
using brute force and the NX, which effectively blocks the execution of
injected code, can be bypassed using ROP (return-oriented programming).
In spite of existing counter-measures, these techniques are still effective
protection methods, and in some cases they are the only barrier against
attacks until software is upgraded to remove the vulnerability.

Unfortunately, the forked and pre-forked networking server architectures
are especially prone to brute force attacks, as all of the children processes
inherit/share the same memory layout and the same canary as the parent
process. Consequently, an attacker can try – in bounded time – all possible
values of the canary (for SSP) and memory layouts (for ASLR) until the
correct ones are found. There is a very dangerous form of SSP attack,
called byte-for-byte, whereby the attacker tries each byte of the canary
independently, which permits him to determine the value of the canary
with just a few hundred trials, and as a result a system can be defeated in
just a few seconds.

Another area where the standard SSP technique is not as effective as
originally designed is the software architecture in which a single (launcher)

Chapter 4. Method for Preventing Information Leaks in SSP 55

process prepares the execution environment of the children applications by
pre-linking, pre-loading and setting up the runtime environment. This ar-
chitecture is typically used to speed up launch time and to reduce resource
usage. The canary value of the SSP (the secret) is inherited by all the
children processes, and so all of the children share the same secret. An
information leak, accidental or intentional, from any of the children may
therefore compromise the security its siblings or even the base system.

For the sake of clarity, we will assume that the stack grows downwards,
i.e. from higher to lower addresses, but the invention also applies to systems
which implement upward-growing stacks or any other way of protecting sen-
sitive data on the stack from vector (or other data) overflow, for example,
but not limited to, the stack protection technique disclosed in patent appli-
cation Ser. No. US 13/772,858.

The value of the canary is a random value computed during process ini-
tialisation. In order to bypass SSP protection, the attacker must know the
current canary value. Whilst the value remains kept secret, the attack will
be prevented by the SSP. In some implementations, the canary value is a
word with all bytes random except one, which is zeroed. The zero byte
is used to prevent the possibility of exploiting an error caused by incor-
rect string handling. Our invention is not limited by the way in which the
random value is computed.

Since the value of the canary is not a constant but a random value chosen
when the program starts, this value, called the ‘reference-canary’, has to
be stored somewhere in the program memory or in a dedicated processor
register, if available. For example, in x86-32 and x86-64 architectures the
reference canary is stored in a special data segment which is not accessible
as a normal variable and cannot be easily overwritten or read.

4.2.1 Known patent documents

US 6941473 B2, entitled ‘Memory device, stack protection system, computer
system, compiler, stack protection method, storage medium and program
transmission apparatus’, discloses a method that uses a guard value, or
canary, to protect both the return address and the previous-frame-pointer
from the local function buffers. This patent is an extension or adaptation
of the work presented in ‘Automatic Detection And Prevention Of Buffer
Overflow Attacks’, by Crispin CoWan, Calton Pu, David Majer, Heather
Hinton, Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Quan
Zhang, the 7th USENIX Security Symposium, San Antonio, Tex., January
1998, to protect the previous-frame-pointer. This innovation was later re-
fined by the ProPolice strategy, which arranges the content of the stack

56 Chapter 4. Method for Preventing Information Leaks in SSP

to avoid local scalar variables being overwritten by local buffers. None of
these improvements addresses the problem of canary value leaks, which is
the novelty of the present disclosure. US 6941473 B2 is hereby incorporated
by reference into the specification of the present invention.

US 6578094 B1, entitled ‘Method for preventing buffer overflow attacks’,
discloses a method involving a called procedure determining an upper bound
that may be written to a stack-allocated array/buffer, without overwriting
the stack-defined data. Before data are written to the stack, the upper
bound is checked, which thereby prevents overwriting said data. The present
method does not check for an upper bound before writing data to a stack.
US 6578094 B1 is hereby incorporated by reference into the specification of
the present invention.

US 7581089 B1, entitled ‘Method of protecting a computer stack’, dis-
closes a method of having two stacks: a normal stack and a second one to
which the return addresses are copied. Both stacks are automatically com-
pared and re-synchronised at each return. The present method does not use
a secondary stack, and the return address is not checked or validated. US
7581089 B1 is hereby incorporated by reference into the specification of the
present invention.

US 7660985 B2, entitled ‘Program security through stack segregation’,
discloses a method of having two stacks: a normal stack, which grows
downward, and an inverse stack, which grows upward. Items on the stack
data structure are segregated into protected (frame pointers and return ad-
dresses) and unprotected (function parameters and local variables) classes.
The present method uses a single stack and also does not modify the layout
of the stack. US 7660985 B2 is hereby incorporated by reference into the
specification of the present invention.

US 7086088 B2, entitled ‘Preventing stack buffer overflow attacks’, dis-
closes a method and system for preventing stack buffer overflow attacks by
encrypting return addresses prior to pushing them onto the runtime stack.
When an encrypted return address is popped off the runtime stack, the
computer system decrypts the encrypted return address, in order to deter-
mine the actual return address. The present invention does not alter the
return address. US 7086088 B2 is hereby incorporated by reference into the
specification of the present invention.

US 8631248 B2, entitled ‘Pointguard: method and system for protecting
programs against pointer corruption attacks’, discloses a method for pro-
tecting against pointer corruption by encrypting a pointer. The encrypted
pointer is decrypted before the pointer is used. The present invention is not
directed at encrypting pointers. US 8631248 B2 is hereby incorporated by
reference into the specification of the present invention.

Chapter 4. Method for Preventing Information Leaks in SSP 57

Both US 7467272 B2, entitled ‘Write protection of subroutine return ad-
dresses’, and US 8028341 B2, entitled ‘Providing extended memory pro-
tection’, disclose two methods of moving return addresses to the processor
and providing a method of write-protecting return addresses to make them
non-accessible. Both methods require the modification of the processor, or
the memory management unit (MMU), so that the execution platform has
the ability to lock (write-protect) very small blocks of memory. The present
method can be used with existing hardware. Both US 7467272 B2 and US
8028341 B2 are hereby incorporated by reference into the specification of
the present invention.

CN 1294468 C, entitled “Dynamic stacking memory management method
for preventing buffering area from overflow attacking” discloses a method for
preventing stack buffer overflows by dynamically adding a random number
of padding bytes between the stack buffers and the return address. So that
an attacker can not accurately determine the location of the return address.
The present invention does not modify the layout of the stack, and so it
can be used transparently on current systems. CN 1294468 C is hereby
incorporated by reference into the specification of the present invention.

4.2.2 Known patent application documents

Patent application US 2013/0219373 A1, entitled “Stack overflow protection
device, method, and related compiler and computing device”, discloses a
method of splitting the code of at least one function into code which contains
string manipulation (which is supposed to be prone to buffer overflows) and
code without that behavior. The stack protector guard is used only in
the region with the string operation, which is a clever way to reduce the
overhead on the stack protector technique, but it does not prevent against
guard leaks. Patent application US 2013/0219373 A1 is hereby incorporated
by reference into the specification of the present invention.

Patent application US 2004/0168078 A1, entitled ‘Apparatus, system and
method for protecting function return address’, discloses a method of pro-
tecting against stack overflow by storing the return address and the stack
pointer in a separate stack. The return address is evaluated before executing
the return, to check if it is a valid return address. No read or write function
is permitted on the separate stack, thereby making this second stack secure.
The method of US 2004/0168078 A1 guards against stack overwrite, which
requires extra memory space to back-up sensitive information (return ad-
dress and stack pointer). Patent application US 2004/0168078 A1 is hereby
incorporated by reference into the specification of the present invention.

58 Chapter 4. Method for Preventing Information Leaks in SSP

4.3 Summary of the Invention

The goal of the present invention is to overcome the deficiencies found in
stack-smashing protection (SSP) techniques.

When existing SSP techniques are employed in applications where multi-
ple processes share (inherit) the same canary value, the secrecy of the canary
may be treated by the dissemination of the secret canary among multiple
processes. A fault or information leak in any of the process that share the
same canary value may compromise the security of the whole system.

The present invention is applicable, but not limited to, networking ap-
plications in which several processes are used to attend to client requests
(forking and pre-forking architectures), and also execution platforms where
client applications are launched from a parent process which pre-loads li-
braries and prepares the execution environment of the children. One of
ordinary skill in the art will know other types of execution frameworks in
which the same canary value is also shared among different execution enti-
ties.

The present invention is also applicable to a single process that guards
against potential canary value leaks, by making the leaked canary value
useless.

The present invention is effective against canary leaks. For example, but
not limited to: all forms of brute force attacks against the canary, direct
information leaks, format string vulnerabilities, improper memory dumps
or malicious code that intentionally reveal the canary value.

The present invention identifies, in some embodiments, functions that are
relevant to protecting the secrecy of the canary value and how to effectively
change the value of the canary for said functions such that potentially stolen
information is useless to an attacker.

Although the present invention is directly related to the SSP technique,
when the disclosed invention is used in combination with other commonly
used protection techniques, such as ASLR and NX, it greatly increases by
several orders of magnitude the difficulty involved in building a successful
brute force attack.

The present invention is an advancement in the art of protecting appli-
cations from stack buffer overflow attacks by applying the following:

• It relies on the existing SSP infrastructure.

• It provides an effective protection mechanism against canary value
leaks. In particular, it is no longer possible to perform any kind of
brute force attack.

Chapter 4. Method for Preventing Information Leaks in SSP 59

• It preserves backward compatibility, because the layout and content
of the stack are not modified.

• It can be used on most applications and does not require one to either
modify or recompile the application code.

• It does not use extra memory space in most cases, or only a few
computer words in rare cases.

• It provides a solution that does not disrupt debuggers used in software
development cycles.

• The overhead introduced by the present invention is negligible.

4.4 Detailed Description of the Invention

In order to understand the operation of the disclosed invention, the following
general observations from the previous state of the art should be considered:

• Most applications, especially networking servers, after a fork opera-
tion, ensure that the child process executes a different flow of code
which ends with an explicit call to the exit system call. That is, the
child process does not return from the function that started the child
code.

• Each child process of a network server defines an error confinement
region. That is, any error that occurs in a child process does not affect
the correct operation of the parent or other sibling processes, as long
as the temporal and spatial isolation is honoured.

• Although there are several variants of the SSP technique, most im-
plementations use a single reference canary 100 per process, which is
saved in a protected area and initialised during the process start up.

• The reference canary 100 is copied in the stack frame 101 between
the return address and the buffers, known as the ‘frame canary’ 103.
Depending on some compilation optimisations, not all stack frames
are protected with a frame canary.

• Some SSP variants may implement slightly different versions of the
basic mechanism, which does not invalidate the applicability of the
disclosed invention.

60 Chapter 4. Method for Preventing Information Leaks in SSP

• Stack integrity (comparing the reference canary 100 with the frame
canary 103) is only carried out at the end of each function, or block of
code, immediately before the returning instruction or on leaving the
block of code.

• Only the value of the frame canary of the current stack frame is com-
pared with the reference canary.

The present invention consists of renewing the value of the reference ca-
nary of the process for selected functions, or blocks of code, during the
execution of the process. There is only one single reference canary for each
process. Our invention does not use a secondary stack to hold copies of the
frame canaries, and it relies on the same infrastructure as applied in the
SSP method.

Typically, there is at most one vulnerable function or vulnerable block of
code per process. It is quite odd to have multiple buffer overflow exploitation
functions in the same process. Therefore, from the point of view of the
attacker, there is only one frame canary to defeat, which is that of the
vulnerable function. Consequently, there is little benefit in randomising the
canary in any function apart from the vulnerable one.

There are some special functions where the reference canary can be re-
newed and not restored, following which the program can continue its ex-
ecution normally. An example of this type of function, but not limited to
it, is the code executed by child processes right after their creation (for
example, fork and clone), which matches the concept of error confinement
region. For example, each client request is attended by the child process of
a networking server when it is configured as a forking server.

Although it is possible to check manually that a function never returns,
most compilers provide the noreturn function attribute, which declares a
function as non-returning. The compiler generates more efficient code and
checks (at compile time) whether or not the function honours the desired
behaviour.

More generally, it is possible to renew the value of the reference canary at
any time during the execution of a program, as long as the reference canary
is restored to its previous value before the stack frames holding old canary
values are checked.

In what follows, the terms ‘function’ and ‘stack-frame’ are used inter-
changeably. The former is an active element, and the latter is the passive
data structure which supports function execution. Depending on the con-
text in which the term is used, it is more natural to use one or the other,
but in both cases it refers to the same concept.

Chapter 4. Method for Preventing Information Leaks in SSP 61

xxxxxxxxxxx

FIG. 2

103

Arguments

Return addr.

Frame ptr.

Local data

Arguments

Return addr.

Frame ptr.

Local data

Vector

xxxxxxxxxxx

xxxxxxxxxxx

100

101

102

101

102

Stack grows
downwards

Stack grows
downwards

FIG. 1

103

xxxxxxxxxxx

100

FIG. 1 and FIG. 2 outline the content of a typical stack in two different
forms: a detailed stack (FIG. 1) and a simplified stack (FIG. 2). FIG. 1
shows a stack with two frames 101, 102 filled with some example content
on each one: Arguments, Return addr., Frame Ptr., etc. The frame 101
has a frame canary value 103, and the frame 102 does not contain a frame
canary. The present invention only depends on the values of the reference
canary 100 and the frame canary 103. FIG. 2 shows the same stack as
FIG. 1 with two frames 101, 102, though only the frame canary 103 is
displayed. Those who are familiar with the state of the art will appreciate
that our invention can be used with other stack frame contents and layouts.

In the rest of this document, we will use the simplified stack representa-
tion.

Our invention does not impose any restrictions on which stack frames
shall be protected by a canary or which ones shall not be protected. Our
invention is independent of the exact implementation of the SSP, and it can
be used with any variant of the SSP.

62 Chapter 4. Method for Preventing Information Leaks in SSP

FIG. 3 FIG. 4 FIG. 5

xxxxxxxxxxx

~~~~
xxxxxxxxxxx

100401

yyyyyyyyyy

100

~~~~
xxxxxxxxxxx

xxxxxxxxxxx

301

xxxxxxxxxx

xxxxxxxxxxx

~~~~
xxxxxxxxxxx

yyyyyyyyyyy

100

501

503

401

yyyyyyyyyy

Referring to FIG. 3, FIG. 4 and FIG. 5, they represent the state of the
stack at three different points in time upon renewing the reference canary.
FIG. 3 represents the stack and the reference canary 100 and its value 301
before the reference canary is renewed. FIG. 4 represents the stack and the
reference canary 100 right after its value has been renewed 401 (from the
value 301 to the new one 401). FIG. 5 represents the state of the stack after
a new frame 501 has been created using the renewed reference canary. The
frame canary value 503 of the new frame 501 uses the renewed reference
canary value 401.

FIG. 6 to FIG. 11 represent the content of the stack for six different types
of function. The stack frames of the functions where the reference canary
100 is renewed are marked as dashed boxes 601, 701, 801, 901, 1001
and 1101. All figures represent the state of the stack after the reference
canary 100 has been renewed. Therefore, the frame canary of the functions
previous to the dashed as well as the dashed one contain the old canary



Chapter 4. Method for Preventing Information Leaks in SSP 63

  

xxxxxxxxxxx

yyyyyyyyyy

xxxxxxxxxx

~~

~~

~~

~~

~~

yyyyyyyyyy

605

601

100

608

609

607

FIG. 6

604

602

606
603

401

yyyyyyyyyy

  

yyyyyyyyyyy

xxxxxxxxxxx

yyyyyyyyyyy

xxxxxxxxxxx

~~

~~

~~

~~

~~

yyyyyyyyyyy

100

708

702

707

FIG. 7

701

704

703

705

706

value 301, if any, and posterior frame canaries have the renewed value 401,
if any.

FIG. 6 represents the content of the stack when a non-returning func-
tion, the dashed stack frame 601, has called some nested functions 602
to 604. Each nested stack frame may (602, 604) or may not (603) have
a frame canary. During the execution of the non-returning function 601,
called a ‘type 1’ function, the reference canary 100 can be renewed. The

  

yyyyyyyyyyy

xxxxxxxxxxx

yyyyyyyyyyy

~~

~~

~~

~~

~~

yyyyyyyyyyy

FIG. 8

801

802

803

804

805

100

806

  

yyyyyyyyyyy

xxxxxxxxxxx

yyyyyyyyyyy

~~

~~

~~

~~

~~

yyyyyyyyyyy

901 xxxxxxxxxxx

xxxxxxxxxxx

902

FIG. 9

100

903



64 Chapter 4. Method for Preventing Information Leaks in SSP

frame canary value of the following functions (said nested ones 602, 604)
will be the new reference canary value 401. These nested functions can
make normal returns, with 605 or without a 606 SSP canary value check.
They are also allowed to make non-local jumps 607 to functions within the
nested region. A type 1 function must not return to the parent caller 608.
Furthermore, neither type 1 nor its nested functions 602 to 604 can make
non-local jumps 609 to any parent function of this type 1 function.

FIG. 7 represents how our finding is used on ‘type 2’ functions. A type 2
function 701 does not return 708 but is allowed to make non-local jumps
702 from itself 701 or from a nested function 703 to a parent function
of said type 2 function. The destination function of the non-local jump
702 can be any function 704, for which none of its return-reachable 705
functions checks the frame canary value. Therefore, the functions that check
the old frame canary 701, 706 must not return 708, 707.

FIG. 8, shows how our finding is used on ‘type 3’ functions. A type 3
function 801 may return 802 but does not check the frame canary integrity
neither itself 801 nor on any return-reachable parent functions 803, 804.
Parent functions which check the frame canary 805 cannot return 806.

FIG. 9 represents how our finding is used on ‘type 4’ functions. A type 4
function 901 renews the reference canary 100 and eventually returns 902
by checking the frame canary. A type 4 function should save the original
value of the reference canary 301 in a designated location 903 and restore
it back (copy the old value from the saved reference canary 903 in the
reference canary 100) before the current frame canary is checked 902. The
original reference canary value must be saved by said type 4 function or any
of its parent functions.

The saved reference canary is represented as a global variable 903 for
clarity, but it is not limited to it. The saved reference canary may be saved
as a local variable, on a dedicated memory segment, on a processor register
or at any other retrievable location.

FIG. 10 shows how our finding is used on‘type 5’ functions. A type 5
function 1001 renews the reference canary and eventually returns 1002.
The stack check is not done by type 5 function, but there is at least one
parent function 1003 which checks the integrity of its stack 1004. The
parent function 1003 which checks stack integrity 1004 should restore the
reference canary to the original value, by copying the old value from the
saved reference canary 903 in the reference canary 100. In order to be
able to restore the reference canary, it has had to be saved, in a designated
location 903, before it is renewed. The original reference canary value must
be restored by said type 5 function or any of its parent functions up to the
function 1003 which checks the frame canary.



Chapter 4. Method for Preventing Information Leaks in SSP 65

  

yyyyyyyyyyy

xxxxxxxxxxx

yyyyyyyyyyy

~~

~~

~~

~~

~~

yyyyyyyyyyy

1001

xxxxxxxxxxx

1002

FIG. 10

903

100

xxxxxxxxxxx1003
1004

  

xxxxxxxxxxx

yyyyyyyyyyy

~~

~~

~~

~~

~~

yyyyyyyyyyy

1101
1106

1104

1107

FIG. 11

yyyyyyyyyyy

xxxxxxxxxxx

903

100

xxxxxxxxxxx

1102

1103

1105

FIG. 11 represents how our finding is used on ‘type 6’ functions. A type
6 function 1101 does not return to its caller 1106 but makes a non-local
jump 1107 from itself 1101 or from a nested function 1102 to a parent
function 1103, for which said parent function 1103 or a previous caller
function 1104 checks the integrity of its stack 1105. Next, the value of
the reference canary 100 has to be saved, in a designated location 903,
before renewing it at the type 6 function 1101 and restoring it back, before
returning from the function 1104 that has checked the frame canary.



66 Chapter 4. Method for Preventing Information Leaks in SSP

4
.5

L
is

t
o
f

re
fe

re
n

ce
s

ci
te

d

4
.5

.1
L

is
t

o
f

P
a
te

n
ts

C
it

ed
P

a
te

n
t

F
il
in

g
d
a
te

P
u
b
li
ca

ti
o
n

d
a
te

A
p
p
li
ca

n
t

T
it

le

U
S

6
5
7
8
0
9
4

B
1

M
a
r

2
,

2
0
0
0

J
u
n

1
0
,

2
0
0
3

In
te

rn
a
ti

o
n
a
l

B
u
si

n
es

s
M

a
ch

in
es

C
o
rp

o
ra

ti
o
n

M
et

h
o
d

fo
r

p
re

v
en

ti
n
g

b
u
ff

er
ov

er
fl
ow

a
tt

a
ck

s

U
S

6
9
4
1
4
7
3

B
2

J
a
n

3
0
,

2
0
0
1

S
ep

6
,

2
0
0
5

In
te

rn
a
ti

o
n
a
l

B
u
si

n
es

s
M

a
ch

in
es

C
o
rp

o
ra

ti
o
n

M
em

o
ry

d
ev

ic
e,

st
a
ck

p
ro

te
ct

io
n

sy
st

em
,

co
m

p
u
te

r
sy

st
em

,
co

m
p
il
er

,
st

a
ck

p
ro

te
ct

io
n

m
et

h
o
d
,

st
o
ra

g
e

m
ed

iu
m

a
n
d

p
ro

g
ra

m
tr

a
n
sm

is
si

o
n

a
p
p
a
ra

tu
s

U
S

7
0
8
6
0
8
8

B
2

M
ay

1
5
,

2
0
0
2

A
u
g

1
,

2
0
0
6

N
o
k
ia

,
In

c.
P

re
v
en

ti
n
g

st
a
ck

b
u
ff

er
ov

er
fl
ow

a
tt

a
ck

s

U
S

7
4
6
7
2
7
2

B
2

D
ec

1
6
,

2
0
0
4

D
ec

1
6
,

2
0
0
8

In
te

rn
a
ti

o
n
a
l

B
u
si

n
es

s
M

a
ch

in
es

C
o
rp

o
ra

ti
o
n

W
ri

te
p
ro

te
ct

io
n

o
f

su
b
ro

u
ti

n
e

re
tu

rn
a
d
d
re

ss
es

U
S

7
5
8
1
0
8
9

B
1

A
p
r

1
8
,

2
0
0
7

A
u
g

2
5
,

2
0
0
9

T
h
e

U
n
it

ed
S
ta

te
s

O
f

A
m

er
ic

a
A

s
R

ep
re

se
n
te

d
B

y
T

h
e

D
ir

ec
to

r
O

f
T

h
e

N
a
ti

o
n
a
l

S
ec

u
ri

ty
A

g
en

cy

M
et

h
o
d

o
f

p
ro

te
ct

in
g

a
co

m
p
u
te

r
st

a
ck

U
S

7
6
6
0
9
8
5

B
2

A
p
r

2
9
,

2
0
0
4

F
eb

9
,

2
0
1
0

A
t&

T
C

o
rp

.
P

ro
g
ra

m
se

cu
ri

ty
th

ro
u
g
h

st
a
ck

se
g
re

g
a
ti

o
n



Chapter 4. Method for Preventing Information Leaks in SSP 67

U
S

8
0
2
8
3
4
1

B
2

O
ct

2
7
,

2
0
0
9

S
ep

2
7
,

2
0
1
1

In
te

l
C

o
rp

o
ra

ti
o
n

P
ro

v
id

in
g

ex
te

n
d
ed

m
em

o
ry

p
ro

te
ct

io
n

U
S

8
6
3
1
2
4
8

B
2

O
ct

3
1
,

2
0
0
7

J
a
n

1
4
,

2
0
1
4

A
p
p
le

In
c.

P
o
in

tg
u
a
rd

:
m

et
h
o
d

a
n
d

sy
st

em
fo

r
p
ro

te
ct

in
g

p
ro

g
ra

m
s

a
g
a
in

st
p

o
in

te
r

co
rr

u
p
ti

o
n

a
tt

a
ck

s

4
.5

.2
L

is
t

o
f

P
a
te

n
t

A
p
p
li

ca
ti

o
n
s

C
it

ed
P

a
te

n
t

F
il
in

g
d
a
te

P
u
b
li
ca

ti
o
n

d
a
te

A
p
p
li
ca

n
t

T
it

le

U
S

2
0
0
3
/
0
1
7
7
3
2
8

A
1

M
a
r

1
3
,

2
0
0
3

S
ep

1
8
,

2
0
0
3

F
U

J
IT

S
U

L
IM

IT
E

D

M
et

h
o
d

a
n
d

a
p
p
a
ra

tu
s

fo
r

co
n
tr

o
ll
in

g
st

a
ck

a
re

a
in

m
em

o
ry

sp
a
ce

U
S

2
0
0
4
/
0
1
6
8
0
7
8

A
1

D
ec

2
,

2
0
0
3

A
u
g

2
6
,

2
0
0
4

B
ro

d
le

y
C

a
rl

a
E

.,
V

ij
ay

k
u
m

a
r

T
er

a
n
i

N
.,

H
il
m

i
O

zd
o
g
a
n
o
g
lu

,
K

u
p

er
m

a
n

B
en

ja
m

in
A

.

A
p
p
a
ra

tu
s,

sy
st

em
a
n
d

m
et

h
o
d

fo
r

p
ro

te
ct

in
g

fu
n
ct

io
n

re
tu

rn
a
d
d
re

ss

U
S

2
0
1
3
/
0
2
1
9
3
7
3

A
1

F
eb

2
1
,

2
0
1
3

A
u
g

2
2
,

2
0
1
3

In
te

rn
a
ti

o
n
a
l

B
u
si

n
es

s
M

a
ch

in
es

C
o
rp

o
ra

ti
o
n

S
ta

ck
ov

er
fl
ow

p
ro

te
ct

io
n

d
ev

ic
e,

m
et

h
o
d
,

a
n
d

re
la

te
d

co
m

p
il
er

a
n
d

co
m

p
u
ti

n
g

d
ev

ic
e



68 Chapter 4. Method for Preventing Information Leaks in SSP

4.6 Claims

What Is Claimed:

1. A method for protecting the SSP technique in a program against leak-
ing information regarding the value of the canary of said SSP tech-
nique. The method consists of renewing the reference canary at key
places in the code while the program is running. The method com-
prises the following steps:

(a) Prior to compilation, identify a function, or block of code, such
that the already stacked frame canaries are never checked after-
wards.

(b) For each of said identified functions, or blocks of code, it is pos-
sible to renew the reference canary. Comprising the following
steps:

i. Compute a new random number,

ii. Overwrite the reference canary with said new random num-
ber.

2. The claim 1 method, whereby:

(a) Said identified function, or block of code, does not return and

(b) Said identified function, or block of code, does not have nested
functions which make non-local jumps to a parent function of
said identified function or block of code.

3. The claim 1 method, whereby:

(a) Said identified function, or block of code, does not return and

(b) Said identified function, or block of code, does have nested func-
tions which make non-local jumps to a parent function of said
identified function, or block of code, and

(c) Neither the said parent function or block of code, nor none of its
return-reachable parent functions, or blocks of code, check the
canary value.

4. The claim 1 method, whereby:

(a) Said identified function, or block of code, may return and

(b) Said identified function, or block of code, does not check the
canary value and



Chapter 4. Method for Preventing Information Leaks in SSP 69

(c) None of the return-reachable parent functions, or blocks of code,
checks the canary value.

5. The claim 1 method, involving renewing the reference canary, whereby
said identified function, or block of code, is one of the initialising func-
tions of a new thread, task or process (fork, clone or equivalent).

6. The claim 1 method, involving renewing the reference canary, whereby
said identified function, or block of code, is a system call service rou-
tine.

7. The claim 1 method, involving renewing the reference canary, whereby
said identified function, or block of code, is the main loop of a worker
server.

8. The claim 1 method, involving renewing the reference canary whereby
said identified function, or block of code, which may be exposed to
attacks, including:

(a) Functions that handle user accessible data or

(b) Functions that use libraries or code from non-trusted sources or

(c) Functions that start the execution or interpretation or emulation
of code that is loaded as plugins.

9. The claim 1 method, involving renewing the reference canary whereby
said identified function, or block of code, which has an exception han-
dler code. Typically, these functions contain a ‘try-catch’ block of code
or save the stack context/environment from doing non-local jumps.

10. A method for protecting the SSP technique in a program against leak-
ing information regarding the value of the canary of said SSP tech-
nique. The method consists of renewing and restoring the reference
canary at key places in the code while the program is running. The
method comprises the following steps:

(a) Prior to compilation, identify a function, or block of code, such
that the already stacked frame canaries are checked afterwards.

(b) For each of said identified functions, or blocks of code, it is pos-
sible to renew and restore the reference canary. Comprising the
following steps:

i. Prior to renewing the reference-canary, store the current ref-
erence canary value into a designated location;

ii. Compute a new random number;



70 Chapter 4. Method for Preventing Information Leaks in SSP

iii. Overwrite the reference canary with said new random num-
ber;

iv. Before checking the canary value, the reference canary must
be restored, by copying the previously stored reference ca-
nary value back to the reference canary.

11. The claim 10 method, whereby:

(a) Said identified function, or block of code, may return and

(b) Said identified function, or block of code, checks the canary value.

12. The claim 10 method, whereby:

(a) Said identified function, or block of code, may return;

(b) Said identified function, or block of code, does not check the
canary value and

(c) At least one return-reachable parent function, or block of code,
of said identified function, or block or code, checks the canary
value.

13. The claim 10 method whereby:

(a) Said identified function, or block of code, does not return;

(b) Said identified function, or block of code, has at least a nested
function which makes a non-local jump to a parent function of
said identified function, and

(c) Said parent function, or block of code, or at least one of its
return-reachable parent functions, or blocks of code, checks the
canary value.

14. The claim 10 method, involving renewing the reference canary whereby
said identified function, or block of code, which has an exception han-
dler code. Typically, functions that contain a ‘try-catch’ block of code
or save the stack context/environment for doing non-local jumps.

15. The claim 10 method, involving renewing the reference canary whereby
said identified function, or block of code, is the main loop of a worker
server.

16. The claim 10 method, involving renewing the reference canary whereby
said identified function, or block of code, which may be exposed to
attacks, including:

(a) Functions that handle user accessible data;



Chapter 4. Method for Preventing Information Leaks in SSP 71

(b) Functions that use libraries or code from non-trusted sources or

(c) Functions that start the execution, interpretation or emulation
of code that is loaded as plugins.





Chapter 5

On the effectiveness of NX, SSP,

RenewSSP and ASLR against stack

buffer overflows

This chapter assesses the effectiveness of the three more common protec-
tion mitigation techniques: Non-eXecutable, stack-smashing protector and
address space layout randomisation.

The study indicates that the SSP technique is the most effective against
stack buffer overflows.

On forking servers, the ASLR technique is almost useless on 32-bit archi-
tectures, due to the limited entropy provided by the size of the address space.
This finding is the starting point for making improvements to the ASLR in
the following part of the thesis.

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . 74

5.2 Background and Terminology . . . . . . . . . . 75

5.2.1 Stack buffer overflow vulnerability . . . . . . . 75

5.2.2 Types of server architecture . . . . . . . . . . . 76

5.2.3 Protection techniques . . . . . . . . . . . . . . 77

5.2.4 Threats to protection techniques . . . . . . . . 77

5.2.5 Generic structure of an attack . . . . . . . . . . 80

5.3 Analysis of the protection techniques . . . . . 82

5.3.1 Single process server . . . . . . . . . . . . . . . 82

5.3.2 Inetd-based server . . . . . . . . . . . . . . . . 83

5.3.3 Forking server . . . . . . . . . . . . . . . . . . . 84

5.3.4 Server summary . . . . . . . . . . . . . . . . . 88

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . 92

73



74 Chapter 5. On the effectiveness of NX, SSP, RenewSSP and ASLR ...

5.1 Introduction

Over the last few years, a set of defensive techniques has been developed
to protect against malicious users. The security field is a very active, con-
stantly changing area, in which innovations and advances render technology
obsolete very quickly. Therefore, it is mandatory to periodically reassess the
effectiveness of these techniques. The requisites and constraints that were
previously considered when a technique was initially developed may be no
longer valid when applied to current systems, and some protection tech-
niques become outdated as a result of changes to the execution framework
or newly developed counter-attacks.

Stack-smashing protection [17], the renew stack-smashing protector [24],
address-space layout randomisation [31] and Non-eXecutable [32] are tech-
niques that mitigate the execution of malicious code. They do not remove
the underlying error which leads to vulnerability, but they do prevent or hin-
der exploitation of the fault. The key idea behind the first three techniques
(SSP, RenewSSP and ASLR) mentioned above is to introduce a secret that
must be known by the attacker in order to bypass it, while he NX technique’s
method involves restricting the execution capabilities of processes.

In this paper, the authors evaluate the effectiveness of each technique
when used both individually and when combined, in different execution
environments, by considering different error manifestations and different
exploitation techniques with respect to stack buffer overflow vulnerability.
According to SANS [33], it is the third most dangerous vulnerability in
current systems.

The main contributions of this paper are as follows:

1. A statistical characterisation of remote attacks launched against the
NX, SSP, RenewSSP and ASLR protection techniques and when used
in combination.

2. A detailed analysis of the time needed to break-in, and the probability
of success.

3. We identify the scenarios (executing framework, operating system,
etc.) which jeopardise the expected effectiveness of the classical tech-
niques (SSP and ASLR), due to information leaks.

4. The results show that the RenewSSP is a promising modification of
the SSP which makes the SSP robust against brute force attacks in
all scenarios.



Chapter 5. On the effectiveness of NX, SSP, RenewSSP and ASLR ... 75

This paper is organised as follows. Section 5.2 presents the background
and context involved in undertaking the statistical analysis: i) The anal-
ysed vulnerability; ii) The execution environment in which the programs
are executed; iii) The protection techniques under study; iv) Threats to by-
passing the protection techniques and v) The generic structure of an attack.
Section 5.3 presents a statistical analysis of the attacks, in which special
attention is given to the forking server, since it is the most widely used.
Section 5.4 evaluates the practical effectiveness of the techniques on current
systems. Finally, the concluding section summarises the contributions of
the paper and outlines the main findings.

5.2 Background and Terminology

The four techniques analysed herein are used with minor modifications in
most modern operating systems. Each operating system has its own par-
ticularities. In order to avoid excessive duplication, we have used only the
UNIX style (fork(),exec(), etc.) to refer to the way processes are created.
The conclusions, however, are applicable to the other systems.

5.2.1 Stack buffer overflow vulnerability

Stack buffer overflow vulnerability (also known as stack-smashing) occurs
when a program writes to a memory address on the program’s call stack
outside of the intended data structure – usually a fixed length buffer. Stack
buffer overflow bugs are caused when a program writes more data to a buffer
located on the stack than is actually allocated for that buffer, which most of
the times results in the corruption of adjacent data on the stack. When the
overflow is done accidentally (i.e. it is not malicious), the program behaves
improperly, due to data corruption, or executes illegal instructions which
trigger a program crash.

However, if the attacker is able to control the way the overflow is produced
(i.e. it is intentional), then it may take control of the execution flow of the
buggy program in such a way that they may execute arbitrary code. This
is illustrated in the listing 5.1, an example including memcpy() which shows
a trivial example of a stack buffer overflow.

The canonical method for exploiting a stack-based buffer overflow is to
overwrite the return address stored in the stack with a pointer to an at-
tacker’s selected direction.



76 Chapter 5. On the effectiveness of NX, SSP, RenewSSP and ASLR ...

void vuln_function(char *srcbuff, int lsrcbuff) {
char buff[48];
...
memcpy(buff, srcbuff, lsrcbuff);
...

}

Listing 5.1: Example function which has a stack buffer overflow.

5.2.2 Types of server architecture

The execution environment and architecture of the server have an impor-
tant impact on the effectiveness of each technique. Attending to the impact
of the protection techniques, we have identified three different server archi-
tectures.

Single process: A single process server is a program that attends to all
client requests. Attending to the internal architecture of the server,
we can distinguish three different sub-types: i) Sequential, ii) Even-
t-based and iii) Multi-thread. From the point of view of security,
all three sub-types exhibit the same behaviour. We assume that the
server crashes when an incorrect, fake request is received, and then
the service is stopped at once. There is little chance of breaking into
the server, but it is easy to perform a DoS attack.

Inetd: Every client request is attended to by a different process launched
from the server using the sequence fork()→exec(). A new process
image is loaded in memory, and so all the secrets used by the child
process during each client request are renewed.

We decided to use the inetd name, to honour the old network server
daemon. This sequence is also called self-re-execution, which is used
by the SSH suite.

Forking: The operation of a forking server is very close to that of the inetd,
but the child processes are in charge of directly attending to client
requests, that is, no new executable image is loaded using the exec()
call. Therefore, all the children have the same secrets as the parent
(except when the new RenewSSP technique is used). The behaviour
of these kinds of servers can be used by attackers to perform more
effective attacks.

Android applications belong to this ‘category’. All Android applica-
tions are child processes of the Zygote process. The difference with
respect to a conventional forking server is that although each child



Chapter 5. On the effectiveness of NX, SSP, RenewSSP and ASLR ... 77

executes the same Dalvik virtual machine, the application is different
on each one.

5.2.3 Protection techniques

Following is an overview of the four techniques analysed in this paper.

NX or DEP: Memory sections (pages) of the process, which contain code,
are marked as executable and read-only. On the other hand, those
areas containing data are marked as read/write and non-executable.
Processors must provide hardware support to check for this policy
when fetching instructions from main memory. Even if an attacker
successfully injects code into a writeable (not executable) memory
region, any attempt to execute this code will lead to a process crash.
This technique is also known as ‘W∧X’, because a memory page can
be marked as executable or writeable, but not both at the same time.

SSP: A random value, commonly known as a canary or a guard, is placed on
the stack, just below the saved registers, by the function prologue code.
This value is checked at the end of the function, before returning, and
the program aborts if the stored canary does not match its initial
value. Any attempt to overwrite the saved return address on the
stack will also overwrite the canary, which leads to a process crash to
prevent any intrusion.

ASLR: Whenever a new process is loaded in main memory, the operat-
ing system loads the different areas of the process (code, data, heap,
stack, etc.) at random positions in the virtual memory space of the
process. Attacks relying on precisely knowing the absolute address of
the injected code or a library function, such as ret2libc, are very
likely to crash the process (unless they know the memory map of the
target process), thus preventing a successful intrusion.

RenewSSP: This modification of the stack-smashing protector (SSP) tech-
nique renews the value of the reference canary of a process on any
‘non-returning’ function [24]. It is especially effective when used on
the child’s code, right after the new process is created with the fork()
or clone() calls.

5.2.4 Threats to protection techniques

Over the last few years, several strategies to bypass each protection tech-
nique have been developed [20, 34, 35]. Due to space limitations, only the



78 Chapter 5. On the effectiveness of NX, SSP, RenewSSP and ASLR ...

core of each attack strategy is presented herein. We do not consider attacks
based on information leaks other than the one that can be obtained from
stack buffer overflow vulnerability; other forms of information leak require
the existence of additional vulnerabilities and are beyond the scope of this
work.

Following is a brief description of the attacks considered in this paper.

NX/DEP: The Non-eXecutable bit (NX)/data execution prevention (DEP)
mechanism can be bypassed by using attacks that do not need to exe-
cute the injected code but reuse the already existing and mapped code
on the target application. There is a family of techniques referred
to as ret2* [36] and more generally the return-oriented programming
(ROP) technique [37]. ROP is a very effective technique for bypassing
the NX. As a result, an ASLR counter-measure was developed.

It is realistic to assume that modern attacks do not inject code but
use the ROP method. Therefore, from now on, we will assume that
NX bit protection is bypassed directly, following which security relies
on the effectiveness of the remaining techniques. It is important to
point out that although the NX is defeated by the ROP, it must not
be considered deprecated, and shall be maintained as far as the ASLR
is not 100% secure and the NX does not introduce any execution
overhead.

SSP-tat: SSP trial-and-test. If the canary value is replaced or renewed
after each trial, then the experiment is known as ‘sampling with re-
placement’, whereby the attacker can try at will, but it cannot discard
the already tested value.

SSP-bff: SSP brute force full. In order to perform this attack the target
service always has the same canary value and the service is restarted
automatically after any server crash. The attacker can try as many
times as required during the attack. On each trial, the attacker guesses
a different value of the canary until it matches. Since the canary value
is always the same on the server, the attacker can discard incorrectly
guessed values. Statistically, this is known as the ‘sampling without
replacement’ experiment. Typically, values are tested sequentially,
starting from zero and then rising up to the maximum value.

SSP-bfb: SSP byte-for-byte. If the manifestation of the error allows at-
tackers to overflow up to the desired byte with any value, then it is
possible to perform a byte-for-byte attack, which involves trying all
possible values for each byte sequentially. The code on listing 5.3 im-
plements the code of the attack [12],[38]. All values from zero to 255



Chapter 5. On the effectiveness of NX, SSP, RenewSSP and ASLR ... 79

for (k=0; k<c; k++)
if( OK == end_request_up_to_canary(k) )
break;

printf("Canary value: %d\n", k);

Listing 5.2: Brute force to the canary.

are tried sequentially until the correct value is found. The process
continues with the next byte until all the bytes have been found.

This method allows one to build very fast attacks. Unfortunately (for
the attacker) this possibility is quite odd.

RenewSSP-tat: RenewSSP trial-and-test. A brute force attack cannot be
employed against the RenewSSP, as pointed out by the authors in [24].
In this scenario the only attack strategy is trial-and-test against the
whole canary, independently of the type of server (single, inetd or
forking).

ASLR-bff: ASLR brute force full. To bypass the ASLR, the attacker needs
to know the absolute address at which the ROP ‘program’ starts [39].
If the memory map is the same in all the attacker trials, and the
attacker can perform as many trials as required, then it is possible
to build a brute force attack [35], that is, an experiment ‘without
replacement’.

ASLR-tat: ASLR trial-and-test. When the memory map of the server is
renewed after every trial (of after a failed trial), then the attacker

union {
unsigned char single_bytes[n];
unsigned int full_val;

} secret;
int idx, k=0;
for (idx=0; idx<n; idx++){

for (a=0; a < 256; a++){
if ( OK == send_request_up_to(idx, a) ){

secret.single_bytes[idx]=a;
k += (a + 1);
break;

}
}

}
printf("Secret value: %x\n", secret.full_val);
printf("Trials needed: %d\n", k);

Listing 5.3: Byte-for-byte attack.



80 Chapter 5. On the effectiveness of NX, SSP, RenewSSP and ASLR ...

can try different base address values until one matches. However, it
cannot discard already tested ones.

ASLR-one: ASLR one-shot. If there are one or more memory sections
of the server that are not randomised, attackers can use static (and
therefore known) areas to build the ROP sequence. For example, when
the code of the application (not the libraries) is not randomised, then
it is possible to build a one-shot attack with a probability of 95.6% in
x86, and 61.8% in x86 64, as shown by Roglia et al. [34]. This attack
is effective in all server architectures.

Another strategy employed to bypass the ASLR is by directly observ-
ing the memory map of the target. Most operating systems’ (Win-
dows, Android applications and the other major player OSs) libraries
are randomised only per boot time and shared between all applica-
tions. Any local user knows the ASLR secret. On these systems, the
ASLR is completely useless against a local attack.

GNU/Linux, which implements the position-independent code (PIC)
for libraries and when the executable is compiled with position-inde-
pendent executable (PIE), is not affected by ASLR-one attacks.

Another form of disclosure is through the information which some ap-
plications automatically report to the vendor provider (as debugging
information) after a crash, which could contain valuable information
that is useful to an attacker.

We will consider that the ASLR is bypassed with a ASLR-one when
there are enough gadgets to build the attack, according to [34], or
when it is a local attack on systems where ASLR randomisation is
only done at boot time.

5.2.5 Generic structure of an attack

In this work, we consider that the attackers have access to the following
information: i) Source code, ii) Compiler and built options and iii) The
execution environment of the target. The attacker can work off-line, using
an in-house replicated target, by testing and tuning the attack as long as
necessary before it actually starts.

The work that can be done off-line is considered to have no cost. That
is, it takes zero time to achieve. This is a realistic assumption (from the
defendant’s point of view), because the attack starts only when the server
is effectively attacked.

The attack consists of sending fake client requests, specially designed to
overflow a buffer. The faked client request can be seen as a string long



Chapter 5. On the effectiveness of NX, SSP, RenewSSP and ASLR ... 81

enough to flood the buffer with the following elements (figure 5.1):

Padding Canary Padding Return address ROP payload

Figure 5.1: Fields of a fake request.

Padding the canary: Extra bytes are inserted, to increase the length of
the request. The number of added bytes must be computed so that
the next field overwrites the stack canary exactly. The length of this
field can be accurately estimated off-line from the binary image of the
server and a few trials against the target server. Since the cost of
this part is relatively low, we will assume that the attacker knows this
value.

Canary: This field will overwrite the canary. In order to succeed, it is
necessary to know the actual value of the frame canary used in the
target server. The canary is commonly a word (4 or 8 bytes). Let C
be the entropy bits of the canary.

Padding the return: Typically it is a few bytes (4 or 8 depending on the
platform). We will assume that the attackers do not need to know
this value (to build an ROP).

Return address: Absolute entry point of the ROP code. The ROP code
is located in a section with execution rights. We will suppose that the
attacker must know the current memory layout of the server. Let R
be the entropy bits of the ASLR.

ROP payload: The injected ROP payload. This payload is basically a
list of gadget addresses. Gadgets are blocks of code located in relative
positions with respect to the ROP entry point. Therefore, once the
attacker knows the entry point of the ROP, the rest of the ROP pay-
load can be automatically adjusted with the appropriate offset. We
will assume that the attackers are able to both build the ROP and
adjust the resulting payload to the server memory layout, once the
entry point is known (i.e. the jump address). Therefore, no extra
information is required to build this field.

The grey fields of the request on Figure 5.1 can be filled by the attacker in-
specting server code off-line, though dark fields can only be obtained through
direct ‘interaction’ with the target. In most cases the attacker has a very
limited and controlled interaction path.

It can only submit a faked request and wait for the result. There are
basically only two possible values for the result:



82 Chapter 5. On the effectiveness of NX, SSP, RenewSSP and ASLR ...

Symbol Description

C entropy bits of the canary.
n number of entropy bytes of the canary (n = C/8).
c number of values that can take the canary (c = 2C).
R entropy bits of the ASLR for libraries.
r number of places where the library can be located (r = 2R).
k number of trials carried out by an attacker on a service.

Table 5.1: Summary of symbols.

1. The server returns an answer which is interpreted by the attacker as
a correct guess. That is, the fake request does not crash the server.

2. The server does not respond, which is interpreted as an incorrect guess.
The server should have crashed.

Depending on the architecture and execution environment of the server,
they interpret the result differently (success or failure) and will tune or
adjust the fake request.

5.3 Analysis of the protection techniques

This section analyses the protection mechanisms for each server type. The
probability of a successful attack is measured as the number of trials needed
to break into the system.

5.3.1 Single process server

The attacker has only one single trial (assuming that the server service is
not restarted by the administrator) on both the SSP and the ASLR. The
probability of breaking into the system is given by the Bernoulli distribution:

Pr(X = n) =

{
1− 1

cr if n = 0, ”failure”
1
cr if n = 1, ”success”

(5.1)

As the values of c and r are commonly large, there is little chance to
break in. Moreover, there is little interest in trying to break in unless other
vulnerabilities or info leaks are available (a notion which is beyond the scope
of this paper). This type of server has been included for completeness.



Chapter 5. On the effectiveness of NX, SSP, RenewSSP and ASLR ... 83

5.3.2 Inetd-based server

The attacker can carry out as many trials as needed. On each trial, they
have the same probability of success: 1

cr . There is no benefit to attacking
first the canary and then the return address, because there is no way to learn
from previous failures. The attack is SSP-tat jointly with the ASLR-tat.

Geometric

PMF 1
cr

(
1− 1

cr

)k−1

CDF 1−
(
1− 1

cr

)k
Mean µ = cr

Variance σ2 = 1−cr
cr

Trials for 100% =∞
95% ' 3 cr
50% ' 0.693 cr

0.2

0.4

0.5

0.6
0.63

0.8
0.86

0.95
1

0
.69cr

cr ' 2 cr k ' 3 cr

P
ro

b
a
b
il
it

y
o
f

su
c
c
e
ss

Number of attempts

1−
(
1− 1

cr

)k

Table 5.2: Inetd-based server summary.

This strategy is modelled as a Bernoulli trial experiment, in which k
trials are carried out with a success probability of 1

cr in any trial. We are
interested in counting the number of trials needed to get the first success,
which follows a geometric distribution defined for an infinite number of trials
in the range k ∈ [1,∞[. The probability that the kth trial will be the first
success is given by the PMF:

Pr(X = k) =
1

cr

(
1− 1

cr

)k−1

(5.2)



84 Chapter 5. On the effectiveness of NX, SSP, RenewSSP and ASLR ...

The cumulative distribution function (CDF) provides more valuable infor-
mation; rather than the probability of succeeding at exactly the kth trial,
we are interested in the probability of succeeding at any time up to the kth

trial. The CDF is defined as Pr(X ≤ k) and is given by:

Pr(X ≤ k) =

k∑
i=1

1

cr

(
1− 1

cr

)i−1

= 1−
(

1− 1

cr

)k
(5.3)

Since both secrets must be correctly guessed at once, the probability of
success at each trial is one out of c× r.

5.3.3 Forking server

The behaviour of these kinds of servers can be used by attackers to perform
more effective assaults. The rest of this section covers in detail how each
protection technique can be bypassed, both individually and when used in
combination.

5.3.3.1 SSP brute force full (SSP-bff)

It is assumed that the behaviour (success or failure) of the server can be
detected; for example, an incorrect guess closes the connection abruptly.

The probability that on the kth trial the attacker will try the correct value
is given by uniform distribution, with a PMF given by Pr(Xc = k) = 1

c .
Additionally, the cumulative distribution function (CDF) is the sum of the

PMF: Pr(Xc ≤ k) =
∑k
i=1

1
c = k

c . This distribution function is only ‘valid’1

in the range [0, k]. Table 5.3 is a summary of the attack against the whole
canary.

5.3.3.2 SSP byte-for-byte (SSP-bfb)

Note that overflows caused by most string manipulation functions cannot
be used to implement this attack, because a null byte is always copied at
the end.

Each brute force attack against a single byte can be modelled as a uni-
form distribution. The sum of several uniform distributions, n in our case,
is known as the ‘Irwin-Hall distribution’, which quickly (for n > 3) ap-
proximates – quite accurately for our purposes – to a normal distribu-
tion. The figure in Table 5.4 shows how the CDF changes in line with

1To be mathematically correct it should be said that its “support is”.



Chapter 5. On the effectiveness of NX, SSP, RenewSSP and ASLR ... 85

Uniform

Mean µ = c/2

Variance σ2 = (c− 1)/12
PMF 1/c
CDF k/c

Trials for 100% = c
95% = 0.95c
50% = c/2

0.2

0.4

0.5

0.6

0.8

0.95
1

0 k = c/2 k = c

P
ro

b
a
b
il
it

y
o
f

su
c
c
e
ss

Number of attempts

k
c

Table 5.3: Summary of the SSP-bff.

the length (number of bytes) of the canary. It is important to note that
regardless of the number of bytes, all CDFs reach the value of one when
a = 256×BYTES PER WORD. That is, in the worst case, they have to carry
out 256× BYTES PER WORD trials to break the canary.

A vulnerability of this type is very dangerous, as the canary can be ob-
tained in no more than 1 second, regardless of the word width of the archi-
tecture.

5.3.3.3 RenewSSP trial-and-test (RenewSSP-tat)

This attack strategy is modelled as a Bernoulli trial experiment, whereby
k trials are executed with a success probability of 1

c in any trial, while the
number of trials needed to break into the system is modelled as a geometric



86 Chapter 5. On the effectiveness of NX, SSP, RenewSSP and ASLR ...

Sum of n uniforms
' Normal when n > 3

Mean µ = 256n
2

= 256 log2(c)

2

Variance σ2 = (256−1)n
12

PMF ' 1√
2πσ2

e(−(x−µ)2/2σ2)

CDF ' 1
2

(
1− erf

(
k−µ√
2σ2

))
Trials for 100% = 2µ

95% = µ+ 1.645σ2

50% = µ

0

0.2

0.4

0.5

0.6

0.8

0.95
1

0 256 512 768 1024

P
ro

b
a
b
il
it

y
o
f

su
c
c
e
ss

Number of attempts

1 byte (n = 1)

2 bytes (n = 2)

3 bytes (n = 3)

4 bytes (n = 4)

Table 5.4: Summary of the SSP-bfb.

distribution. The summary is in Table 5.2, where the value of r = 1, since
in this case we are considering only bypassing the canary.

5.3.3.4 ASLR brute force full (ASLR-bff)

In forking servers, library mapping is inherited by all children. Therefore,
the ASLR-bff exhibits the same behaviour (distribution) as the attack on the
whole canary, i.e. a uniform distribution, by sampling without replacement.
The mean is r/2 and its range is [0, r]. Table 5.3 can be applied to the
ASLR-bff attack, by only changing the variable c by r.



Chapter 5. On the effectiveness of NX, SSP, RenewSSP and ASLR ... 87

5.3.3.5 SSP brute force full + ASLR brute force full (SSP-bff +
ASLR-bff)

Since it is possible to split the attack into two phases, we first attack the
canary and then the ASLR. When the whole word of the canary has to be the
attacked, the resulting distribution is the sum of two uniforms, where each
uniform has a different range of values: [0, c] for the canary and [0, r] for the
ASLR. The sum of two different uniforms gives a trapezoidal distribution.
If c = r, it becomes triangular. For simplicity, we will assume that c > r.
The PMF is given by:

Pr(X = k) =


k−2

(c−1)(r−1) for k ∈ [2, j + 1[
1
c−1 for k ∈ [r + 1, c+ 1[
c+r−k

(c−1)(r−1) for k ∈ [c+ 1, c+ r[

(5.4)

When the value of r is much smaller than that of c, as is the case on real
systems, the expression 5.4 can be approximated to a uniform distribution.

5.3.3.6 SSP byte-for-byte + ASLR brute-force-full (SSP-bfb +
ASLR-bff)

In this case it is also possible to split the attack to bypass first the SSP and
then the ASLR. The statistical distribution of the attack on the canary,
plus the ASLR, is given by the sum of the distributions of both random
variables. If the canary can be attacked with the SSP-bfb method, then it
can be computed as the sum of n+ 1 uniform variables (n of the SSP plus
the uniform of the ASLR-bff), where n is the number of unknown bytes of
the canary and R/8 is entropy bytes introduced by the ASLR. The result
is even closer to a normal distribution, the parameters for which are:

Mean µ = 256(n+R/8)
2

Variance σ2 = (256−1)(n+R/8)
12

5.3.3.7 RenewSSP trial-and-test + ASLR trial-and-test (Renew-
SSP-tat + ASLR-tat)

The attack strategy employed to bypass this combination of techniques is
similar to that used for the inetd server. There is no benefit to attack-
ing the canary first and then the ASLR, because there is no way to learn
from/discard previous trials. Each trial has the same probability of success:
1
cr . This strategy is modelled as a Bernoulli trial experiment, in which k



88 Chapter 5. On the effectiveness of NX, SSP, RenewSSP and ASLR ...

Trapezoidal
' Uniform when c/r > 256

Mean µ = c+r
2

Variance σ2 = c+r−2
12

PMF ' 1
c+r

CDF ' k
c+r

Trials for 100% = c+ r
95% = 0.95 (c+ r)
50% = 0.50 (c+ r)

0.2

0.4

0.5

0.6

0.8

0.95
1

0 c+r
2

c+ r

P
ro

b
a
b
il
it

y
o
f

su
c
c
e
ss

Number of attempts

c
j = 256
c
j = 16
c
j = 4
c
j = 2

Table 5.5: Summary of the SSP + ASLR full attack.

trials are carried out with a success probability of 1
cr in any trial. Equa-

tion 5.2 shows the probability mass function (PMF), while the cumulative
distribution function (CDF) is shown in equation 5.3.

5.3.4 Server summary

This section is a summary of the most relevant statistical parameters for
single, inetd and forking servers. The forking server is the most interesting
here, because it is widely used in real systems.

In real systems, NX, SSP or RenewSSP and ASLR are used simultane-
ously. Table 5.6 shows the distribution, mean, variance and trials required
to break the system with a probability of 100%, 95% and 50%. The same



Chapter 5. On the effectiveness of NX, SSP, RenewSSP and ASLR ... 89

Table 5.6, with the value of r = 1, represents the cost of the attacks when
the ASLR can be bypassed with the ASLR-one attack.

Trials for a prob. of:

Distrib. µ 100% 95% 50%

Single:
Single-Shoot

Bernoulli 1
cr − − −

Inetd:
SSP-tat+ASLR-tat

Geom. cr ∞ 3µ 0.693µ

Forking:
SSP-bff+ASLR-bff

Uniform c+r
2 2µ 0.95µ µ

Forking:
SSP-bfb+ASLR-bff

Normal 28n+r
2 2µ µ+ 1.645σ2 µ

Forking:
RenewSSP-tat+
ASLR-tat

Geom. cr ∞ 3µ 0.693µ

Forking:
RenewSSP-tat+
ASLR-one

Geom. c ∞ 3µ 0.693µ

Table 5.6: Summary of the most common systems and attacks.

5.4 Discussion

In order to evaluate the effectiveness of the NX, SSP, RenewSSP and ASLR,
we selected the most common server architectures and configurations. Cur-
rent systems are all protected by the three protection techniques NX, SSP
and ASLR. We also included the RenewSSP technique, which, although not
widely used currently, we expect will replace the original SSP in the near
future.

The cost is measured as the number of attempts (trials) needed by the
attackers to break into the system, summarised in Table 5.7.

The system is broken when the secrets are correctly guessed. The values
are calculated using the following parameters:

• The system configuration (processor, network, firewalls, etc.) allows
the attacker to perform 1000 trials per second.



90 Chapter 5. On the effectiveness of NX, SSP, RenewSSP and ASLR ...

Attack/Bypass 100% Mean

3
2
b

it
s

sy
st

. SSP-bff + ASLR-bff 4 Hours 2 Hours
SSP-bff + ASLR-one 4 Hours 2 Hours
SSP-bfb + ASLR-bff 1 sec < 1 sec
SSP-bfb + ASLR-one < 1 sec < 1 sec
RenewSSP-tat + ASLR-one ∞ 3 Hours
RenewSSP-tat + ASLR-tat ∞ 34 Days

6
4
b

it
s

sy
st

. SSP-bff + ASLR-bff 2.32 Myr 1.16 Myr
SSP-bff + ASLR-one 2.32 Myr 1.16 Myr
SSP-bfb + ASLR-bff 74 Hours 37 Hours
SSP-bfb + ASLR-one 1 sec < 1 sec
RenewSSP-tat + ASLR-one ∞ 1605.79 Kyr
RenewSSP-tat+ASLR-tat ∞ 431.05 Tyr

Table 5.7: Time cost for attacks in forking servers at 1000 trials/sec.

• The entropy of the SSP and RenewSSP is 24 and 56 bits for 32-bit
and 64-bit systems, respectively.

• The entropy of the ASLR is 8 and 28 bits for 32-bit and 64-bit systems,
respectively.

On systems which are regularly monitored by humans or by advanced event
correlation tools, the techniques are effective if the time required to bypass
them is longer than the reaction time. Protection for a few hours can give
defenders enough time to apply specific corrective measures. On stand-
alone, non-supervised systems, the system should resist in the order of years,
to be considered effective.

Table 5.8 is a more complete list of systems and attacks, including com-
binations that are no longer released but may be still operative.

The following list summarises the most important results of this evalua-
tion.

• The NX was rendered mainly obsolete, first by the family of ret2*
attacks and then by the ROP. Although it slightly increases the dif-
ficulty of building an exploit, since it is an un-expensive technique
(the check is performed by hardware: the MMU), it is still worthwhile
using it. Basically, there is no benefit in removing it from a system
where it is already implemented.

• In the inetd architecture, the combination of the three techniques (NX,
SSP and ASLR) is very effective, as it has a multiplicative effect.

This robust architecture is used by the SSH suite. Each connection re-
quest is handled with the following sequence of system calls: fork()→



Chapter 5. On the effectiveness of NX, SSP, RenewSSP and ASLR ... 91

32 bits 64 bits
Technique 100% Mean 100% Mean

In
e
td

b
a
se

d SSP-tat ∞ 1.2× 107 ∞ 5.0× 1016

ASLR-one 1× 100 0.5× 100 1× 100 0.5× 100

ASLR-bff ∞ 1.8× 102 ∞ 1.9× 108

SSP-tat+ASLR-one ∞ 1.2× 107 ∞ 5.0× 1016

SSP-tat+ASLR-tat ∞ 3.0× 109 ∞ 1.3× 1025

F
o
rk

in
g

b
a
se

d

SSP-bff 1.7× 107 8.4× 106 7.2× 1016 3.6× 1016

SSP-bfb 7.7× 102 3.8× 102 1.8× 103 9.0× 102

RenewSSP-tat ∞ 1.2× 107 ∞ 5.0× 1016

ASLR-one 1× 100 1× 100 1× 100 1× 100

ASLR-bff 2.6× 102 1.3× 102 2.7× 108 1.3× 108

SSP-full+ASLR-one 1.7× 107 8.4× 106 7.2× 1016 3.6× 1016

SSP-bff+ASLR-bff 1.7× 107 8.4× 106 7.2× 1016 3.6× 1016

SSP-bfb+ASLR-one 7.7× 102 3.8× 102 1.8× 103 9.0× 102

SSP-bfb+ASLR-bff 1.0× 103 5.1× 102 2.7× 108 1.3× 108

RenewSSP-tat+ASLR-one ∞ 1.2× 107 ∞ 5.0× 1016

RenewSSP-tat+ASLR-tat ∞ 3.0× 109 ∞ 1.3× 1025

Table 5.8: Attempts to bypass the protection techniques.

exec(sshd)→ do work→ exit(). This way, it receives all of the
randomisations the operating system can provide.

In 64-bit systems it is impossible to bypass, as the mean time is at
least 1,605,000 years with a probability of 95% in the best case for the
attacker. In 32-bit systems, although less effective, it is still provides
acceptable protection.

This architecture is not affected by brute force attacks. The dangerous
byte-for-byte type of attack cannot be employed by attackers, even
when vulnerability allows one to overwrite at byte granularity.

• Unfortunately, the forking server architecture greatly reduces the ef-
fectiveness of the protection, because it allows new exploitation strate-
gies:

– Split the attack of the SSP and the ASLR, which has an additive
effect rather than a multiplicative one.

– It is possible to launch brute force attacks on both the SSP and
the ASLR secrets.

– If the manifestation of the vulnerability allows overwriting at the
byte level, it is possible to make byte-for-byte attacks.

In forking servers, the protection techniques are only effective in 64-
bit systems when byte-for-byte cannot be employed. The byte-for-byte
attack renders useless the SSP, and the ASLR is not strong enough to
counter an assault on its own.



92 Chapter 5. On the effectiveness of NX, SSP, RenewSSP and ASLR ...

The RenewSSP technique restores the effectiveness of both the SSP
and the ASLR in forking servers. The attacker can no longer discard
tested values (i.e. brute force attacks cannot be made against the
SSP). Also, it is not possible to split the SSP-ASLR attack. Therefore,
the RenewSSP technique provides the same level of protection as that
offered by the inetd.

• Both SSP and the ASLR techniques are basically useless against local
attacks for Android applications, as all Android applications share the
same canary and memory maps.

This problem only affects Android applications, that is, those that
use the Dalvik virtual machine. On the other hand, native Android
processes enjoy one of the best sources of protection available2.

• The ASLR on Windows and bitten fruit OSs is implemented on a per-
boot basis, which greatly reduces effectiveness against local attacks,
as the attacker knows the layout of all the libraries.

5.5 Conclusions

In this paper the authors have reassessed the effectiveness of three mature
techniques, namely NX, SSP and ASLR, as well as the new RenewSSP
(strictly speaking, it cannot be considered a new technique but rather an
improvement to the standard SSP). The study has focused on stack buffer
overflow vulnerabilities, which is still one of the most serious security issues
in present-day computing.

Besides the direct exploitation of the buffer overflow, this paper consid-
ers the presence of multiple attack vectors, for example the possibility of
obtaining information from the target service, by using applications that
collect public data from within the same system. Another attack vector
considered is the weak implementation of the ASLR on most systems (Win-
dows, Android and others) resulting in the fact that all the applications
share the same library maps, which renders the ASLR useless in relation to
local attacks.

Although the NX/DEP was a revolutionary technique when initially de-
veloped, currently it has been rendered obsolete by new attack methods,
namely ret* and ROP. Our evaluation indicates that the ASLR on 64-bit
systems is an effective counter-measure against these new attacking strate-
gies, but it is not for 32-bit systems. SSP effectiveness is reasonably good

2As far as the current published state of the art is concerned.



Chapter 5. On the effectiveness of NX, SSP, RenewSSP and ASLR ... 93

for both 64-bit systems but it is rather weak for 32-bit architectures even
when it is combined with the ASLR.

Both techniques, ASLR and SSP, rely on keeping secret some internal
keys (the guard and the memory map for SSP and ASLR, respectively).
There is a lot of information shared by and handed down from the parent
to its children processes, and the fact that the normal policy applied when a
server process crashes is to restart the process automatically, this allows an
attacker to make brute force attacks. The more often the protection secrets
are renewed, the harder it will be for attackers to bypass them successfully.

Some systems (Android applications, Windows OSs and the bitten fruit
company OS) renew ASLR secrets once per boot, while GNU/Linux renew
them on a per-process (exec()) basis. The once per boot approach is not
robust against local attacks.

Our results show that the forking server architecture greatly reduces the
effectiveness of protection techniques, especially when the target system is
vulnerable to a dangerous byte-for-byte attack. When this type of vulnera-
bility is present in an application, the only solution is the recently proposed
extension to SSP, called ‘RenewSSP’.





Part II

Address Space Layout
Randomization (ASLR)

95





Chapter 6

On the Effectiveness of Full-ASLR on

64-bit Linux

We have identified a security weakness in the implementation of the ASLR
in GNU/Linux when the executable is PIE-compiled. A PoC attack is de-
scribed herein, in order to illustrate how this weakness can be exploited.
Our attack bypasses the three most widely adopted and effective protection
techniques: No-eXecutable bit (NX), address space layout randomisation
(ASLR) and stack-smashing protector (SSP). A remote shell is created in
less than one second.

Finally, after analysing different mitigation alternatives, we conclude that
a new ASLR design is needed.

Some preliminary ideas about a new ASLR design are also proposed, but
the completed and detailed analysis and its design are presented in the next
chapter.

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . 98

6.2 ASLR Design . . . . . . . . . . . . . . . . . . . . 99

6.2.1 PIC & PIE overview . . . . . . . . . . . . . . . 102

6.3 Offset2lib: The Linux ASLR weakness . . . . 103

6.4 Building the Attack . . . . . . . . . . . . . . . . 106

6.4.1 The vulnerable server . . . . . . . . . . . . . . 106

6.4.2 Steps to building the attack . . . . . . . . . . . 107

6.4.3 Exploiting the server target . . . . . . . . . . . 112

6.4.4 Other attack vectors . . . . . . . . . . . . . . . 112

6.5 Countermeasures discussion . . . . . . . . . . . 113

6.6 New Full-ASLR design . . . . . . . . . . . . . . 114

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . 115

97



98 Chapter 6. On the Effectiveness of Full-ASLR on 64-bit Linux

6.1 Introduction

Address space layout randomisation (ASLR) is a defensive technique which
randomises the memory address of software in an attempt to deter attack-
ers, which relies on knowing the location of an application’s memory map.
Rather than increasing security by removing vulnerabilities from the sys-
tem, in the same way that source code analysis tools [40] do, ASLR is a
prophylactic technique which tries to make it more difficult to exploit ex-
isting vulnerabilities.

The ASLR is commonly complemented by the well-known and widely
used stack-smashing Protector (SSP) and No-eXecute (NX)1 techniques.
When these three techniques are properly implemented on a system they
provide a strong defence against most memory error exploitation attempts.

Unfortunately, it is not always possible to implement these techniques
correctly, and it is beyond the scope of this paper to present an exhaustive
list of improper or partial implementations. What follow are therefore just
a few illustrative examples. The NX requires hardware support, otherwise
it cannot be efficiently implemented; several embedded processors lack NX
support, and current attacks do not execute the code injected [11]. ASLR
is a simple concept whereby all the addresses that the attackers may use to
build an exploit are unknown (hard to guess) to them, but a complete imple-
mentation (all sections located in random places) may cause compatibility
issues. Another limitation is the reduced range of addresses to allocate the
sections, as most 32-bit systems only have 8 bits of effective entropy. The
main problem with SSP comes from the small range of random values of
the canary on 32-bit systems [24].

A technique that is known to be very effective, but which is very often
improperly used, provides a dangerous false sense of security that can be
easily exploited by attackers. The fault or weakness remains latent for a
long period of time, which then enables the attackers to prepare multiple
strategies and tools that will effectively bypass barriers that are generally
considered as unbreakable (or properly settled), which is mainly true, except
on ‘improperly’ implemented systems.

The security offered by ASLR is based on several factors [14], including
how predictable the random memory layout of a program is, how toler-
ant an attack technique is to variations in memory layout and how many
exploitation attempts an attacker can practically make.

In this paper we analyse the effectiveness of address space layout randomi-
sation in multiple randomised instances of a single application. In particular

1Also known as data execution prevention (DEP) or Write XOR eXecute (W∧X).



Chapter 6. On the Effectiveness of Full-ASLR on 64-bit Linux 99

we implement a new attack based on a stack buffer overflow which can de-
feat the ASLR in less than 1 second on a machine running 64-bit Linux with
full ASLR.

The contributions of this paper are as follows:

1. A weakness disclosure of the ASLR in GNU/Linux.

2. An attack which takes advantage of the weakness successfully bypasses
the full ASLR GNU/Linux on a 64-bit system in less than 1 second.

3. Some preliminary ideas about a new ASLR design which is not vul-
nerable to our attack.

4. A discussion about preventative techniques against our attack.

The rest of this paper is organised as follows: the next section provides
an overview of the ASLR technique and the background needed to follow
the rest of the paper. In section 6.3 the weakness of the ASLR is presented,
and the PoC which exploits it is in section 6.4. Existing countermeasures to
mitigate the attacks that can use this weakness are discussed in section 6.5.
A new ASLR design is presented in section 6.6, and the paper finishes
with the compulsory Conclusion section, in which the main findings and
contributions are summarised.

6.2 ASLR Design

The core idea of the ASLR is to place all process sections (data, bss, heap,
text, libs, etc.) at random addresses. Rather than ‘random addresses’, it is
probably more accurate to define them as addresses that are unknown and
hard to guess.

Address space randomisation hinders some types of security attacks by
making it more difficult for an attacker to predict target addresses. For
example, attackers trying to execute return-to-libc attacks [41] must know
(or compute) the location of the target function. Other attackers trying to
execute shellcode injected into the stack, or other writeable and executable
sections, have to know the address where the code has been injected. In both
cases, the system obscures related memory addresses from the attackers, and
these values have to be guessed to bypass the ASLR successfully.

ASLR security is based upon the low probability of an attacker guessing
the locations of randomly-placed areas, and so the more entropy, the more
secure the system. There are three different entropy dimensions:



100 Chapter 6. On the Effectiveness of Full-ASLR on 64-bit Linux

1. Non-randomised sections. It is widely accepted that even a single non-
randomised section can be used by an attacker to defeat the ASLR.
Therefore, all sections must be randomised.

2. Range of entropy. The size or range of possible values where each
section can be located. The entropy range used to be different for
each type of memory. The larger the range, the better.

3. Relocation frequency. The frequency at which the sections are mapped.
Ideally, every process should have a custom memory space where all
the sections are located in different places with respect to previous
executions of the same executable, and with respect other concurrent
processes. The more frequent, the better.

On most systems, the initial implementations of the ASLR used to rely on
a shared library infrastructure. Therefore, the ASLR was initially applied
only to stack and libraries, which was very effective against direct return-
2-lib attacks. Advances in ROP (return-oriented programming) [15] and
related techniques have allowed attackers to build programs on almost any
section of code that is not randomised, which has stimulated the need for
a full implementation of the ASLR. As of the time of writing this paper,
there are still a number of systems that do not support full ASLR or treat
it as an optional extra.

The range of entropy is seriously limited by available virtual memory
space. It is almost impossible to have a ‘decent’ implementation on 32-bit
systems, since with only 256 possible values, it is considered almost useless
and a simple brute force attack can defeat the ASLR in a few milliseconds.
However, on 64-bit systems, the range is large enough to effectively discour-
age attackers unless another method to extract information from the target
process is available. Even in unrealistic attacks where the system does not
provide SSP and NX bit protection [42], the time taken to bypass the ASLR
oscillates between 1.7 hours and 34.1 hours.

The last source of entropy comes from the refresh frequency. This feature
is directly related to how shared libraries are handled and shared between
processes. If the shared libraries must be mapped on the same virtual
addresses in all the processes, then ASLR can only be done on a ‘per-
boot’ basis. That is, only the very first time that a library is loaded is it
randomly mapped, and so posterior processes must use the library at the
already mapped place. This sequence produces a single memory mapping of
libraries at the system level which is only renewed when the system reboots.

PaX published the first design and implementation of ASLR [31] in July
2001. The PaX project implementation is the most complete and advanced,
also providing kernel stack randomisation from October 2002 onward. It also



Chapter 6. On the Effectiveness of Full-ASLR on 64-bit Linux 101

continues to provide the most entropy for each randomised layout compared
to other implementations.

Two years after ASLR was invented and published as part of the Page EXec
(PaX) project, a popular security patch for Linux, OpenBSD became the
first mainstream operating system to support partial ASLR (and to activate
it by default) [43]. OpenBSD completed its ASLR support after Linux, in
2008, when it added support for PIE binaries [44].

Microsoft R© Windows Vista R© (released January 2007) was the first ver-
sion of Windows R© operating system to support ASLR [45]. Then all subse-
quent versions of Windows OS also supported ASLR [46]. There is a wide
range of implementations with different levels of entropy, depending on the
version and the security configuration: the Enhanced Mitigation Experi-
ence Toolkit (EMET), High Entropy ASLR or ForceASLR. For the purpose
of this paper, we are only interested in the relative positions where each
section of the program is loaded. Since all versions of Windows allocate
libraries on a per-boot basis, and the application executable is loaded at a
random position with respect to the already loaded libraries, our technique
does not apply to Windows.

Apple R© first introduced the randomisation of some library offsets in Mac
OS X R© v10.5 (released October 2007) [47]. However, because this initial
implementation was limited to only certain system libraries, it was naturally
unable to protect against many attacks that a full ASLR implementation
is designed to defeat. In Mac OS X Lion 10.7, Apple expanded its ASLR
implementation to also cover application code. Apple stated that “address
space layout randomisation (ASLR) has been improved for all applications.
It is now available for 32-bit apps (as is heap memory protection), making
64-bit and 32-bit applications more resistant to attack.”

As for OS X Mountain Lion 10.8, the kernel, as well as kexts and zones,
are randomly relocated during the system boot. As in the case of Windows,
all applications see a concrete library at the same address.

Linux employs the more advanced implementation of ASLR whereby li-
braries are compiled as position-independent code (PIC), which allows one
to share the same executable image among several processes and each pro-
cess can map the library at different addresses. As a result, ASLR imple-
ments ‘per-process’ randomisation. The numbers of bits used to randomise
the memory areas vary from one version to another. Default entropy is 28
bits for mmapped areas, while the PaX implementation operates with 35
bits of entropy (see Chapter 7 for more details), which is far more effective



102 Chapter 6. On the Effectiveness of Full-ASLR on 64-bit Linux

against full-word brute force2 attacks.

Only the code that has been compiled to be relocatable or to be position-
independent (PIC or PIE) can be randomised. Typically, only the exe-
cutables which are more exposed to attacks (such as Web browsers, system
commands and the like) are PIE-compiled. By default, application code
is compiled to be position-dependent. Several authors suggest that the
overheads introduced by PIE are reasonably low compared to the security
benefits. Executables compiled as PIE [48] can be loaded to any address,
and conversely to normal executables (i.e non-PIE), these kinds of executa-
bles can benefit from the ASLR infrastructure. In Linux they are loaded as
if they were another dynamic shared library.

6.2.1 PIC & PIE overview

Libraries can be relocated easily thanks to the strong effort made by operat-
ing system and compiler designers to reduce application memory footprints
by sharing the library code among all running processes. There are two
main approaches involved in sharing a library:

1. Load time relocation.

2. Position-independent code (PIC).

The first solution, load time relocation, is the fastest (on i386 and other
processors which lack instruction-relative addressing), but it forces one to
map the already loaded library in the same virtual addresses in all of the
subsequent processes that want to use (share) it. Basically, the first time
that a library is loaded, the system allocates a base address for it and
links/relocates the code of the library to work at the given addresses. The
next application that uses the library must place it at the already assigned
virtual directions. That is, all libraries are allocated at random offsets (cho-
sen at boot time), and all the applications share the same offsets. Library
code is modified to work on the designated addressed once loaded in RAM.
This is a problem on 32-bit systems due to the small range of addresses,
but it is not a big issue on 64-bit systems.

A more advanced and flexible solution is to generate code that does not
depend on the direction in which it is located but can be executed inde-
pendently at any position, namely PIC code. This code works with offsets
relative to the PC (program counter) rather than absolute addresses, and

2‘Full-word brute force’ refers to the fact that at each trial, the full word is guessed in
order to distinguish it from byte-for-byte brute force, where a single byte is guessed on
each trial.



Chapter 6. On the Effectiveness of Full-ASLR on 64-bit Linux 103

it can be loaded once in physical RAM and mapped at any virtual address
in each process. On the one hand, unlike in the x86 64, PIC code is slower
on the i386 family due to a lack of PC-relative addressing (detailed analysis
is beyond the scope of this paper), but on the other hand, code loaded in
RAM is exactly the same as code in the library file, which makes swapping
slightly more efficient.

PIC libraries can be freely loaded at any address and in any process.
Regarding security, the PIC mechanism provides a higher level of entropy,
because each process may have a different map. Linux effectively maps each
library in a different location for each process.

The last step in randomising application code involves randomising the
directions in which the application code is executed. Note that all of the pre-
vious mechanisms are the consequence of library sharing efforts. However,
application code, which is not shared, is compiled by default at absolute
addresses. The need to randomise the application code is only driven by
security requirements.

Non-PIE executables could contain enough gadgets to build very small
ROP programs which are able to de-randomise the base of the libc library
and then mount a return-to-lib(c) attack. Roglia et al. [34] showed two dif-
ferent attack strategies against non-PIE programs. The authors also con-
cluded that “[...] ASLR is really effective only when used in combination
with position-independent executables (PIE).” It is widely accepted that
when all sections as well as key data structures are randomised [49], ASLR
provides its maximum protection.

6.3 Offset2lib: The Linux ASLR weakness

This section describes a weakness in the design of the ASLR on GNU/Linux.
It is specific to GNU/Linux and does not affect Windows or Mac OS. Fur-
thermore, it is not a programming error on the code implementing the ASLR
but a weakness in the design. Fortunately, it can be easily fixed on 64-bit
systems, as seen in section 6.6.

The problem appears when an application is PIE-compiled. The exe-
cutable image is handled as if it were a shared library, that is, it is loaded
at a random location in memory. The GNU/Linux algorithm for loading
ASLR objects works as follows:

1. The first library is loaded at a random position.

2. The next ASLR object is located right below (lower addresses) the
previous object.



104 Chapter 6. On the Effectiveness of Full-ASLR on 64-bit Linux

All ASLR libraries are located ‘side by side’ in a single random place. In
the case of PIE applications, the application is also placed in this single-
random location. Therefore, an info leak of an address belonging to the
application is enough to de-randomise most of the memory map of the
application. Note that it is not necessary to have a leak of a GOT address
(after it has been properly initialised) but just the program counter of the
process.

7f36c6a07000-7f36c6bbc000 r-xp .../libc-2.15.so
7f36c6bbc000-7f36c6dbb000 ---p .../libc-2.15.so
7f36c6dbb000-7f36c6dbf000 r--p .../libc-2.15.so
7f36c6dbf000-7f36c6dc1000 rw-p .../libc-2.15.so
7f36c6dc1000-7f36c6dc6000 rw-p
7f36c6dc6000-7f36c6de8000 r-xp .../ld-2.15.so
7f36c6fd0000-7f36c6fd3000 rw-p
7f36c6fe5000-7f36c6fe8000 rw-p
7f36c6fe8000-7f36c6fe9000 r--p .../ld-2.15.so
7f36c6fe9000-7f36c6feb000 rw-p .../ld-2.15.so
7f36c6feb000-7f36c6fed000 r-xp /tmp/app-PIE
7f36c71ec000-7f36c71ed000 r--p /tmp/app-PIE
7f36c71ed000-7f36c71ee000 rw-p /tmp/app-PIE
7fffe4018000-7fffe4039000 rw-p [stack]
7fffe41b7000-7fffe41b8000 r-xp [vdso]

Listing 6.1: Memory map of an application compiled with PIE.

0
x
5
e
4
0
0
0

The weakness that we exploit is that the distances between the app-PIE
application and libraries are always the same in a concrete system. In order
words, the distance in bytes from where the application was loaded and
where the libraries are mapped is an invariant value in all executions. We
named this invariant distance offset2lib. It is possible to calculate off-
line the offset to each library. For instance, as shown in listing 6.1, from the
application text base to the libc text base the offset2lib is:

0x7f36c6feb000-0x7f36c6a07000 = 0x5e4000

The offset2lib is a constant value which may be slightly different on
each system. The value depends on the following:

• The set of libraries used by the application: depending on the
libraries used by the application, the distance between the application
base text and the target library could be higher or lower. This infor-
mation is contained in the executable and can be calculated off-line.



Chapter 6. On the Effectiveness of Full-ASLR on 64-bit Linux 105

Consequently, the number of libraries is known and is the same for all
systems.

• The version of the each library: when a new library version is
released it is an incremental modification of the previous one, and
typically it contains new features or security fixes. These modifications
could affect the resulting library size. Typically, different systems
use different versions of the libraries, which in turn will affect the
distance from where the application is loaded and where the libraries
are mapped. As a result, the specific version of a concrete library is
the same for all concrete systems.

Note that since the application is mapped at the beginning, its size does
not change the offset2lib value.

The offset2lib between the application and the libraries in non-PIE
processes is a random value; in fact, the position of the application is fixed
and known at compile time, and what would be needed by an attacker is
an address which points to an object or function to any library.

This weakness is especially dangerous because a leak of any address be-
longing to the application can be immediately used to defeat the ASLR.
As detailed in section 6.4, our attacker only needs to make a very simple
subtraction from the leaked address.

This weakness could be exploited in both 32- and 64-bit systems, but it is
particularly interesting for the latter, due to the high entropy introduced by
the ASLR on 64-bit systems, which makes it quite hard to use brute force
attacks in practice. A good implementation of the ASLR on 64-bit systems
may easily have more than 19 bits of entropy – a level of entropy which will
discourage most remote attackers.

Note that offset2lib can be exploited by attacks that rely on vulnerability
in the application code, not in the libraries or the operating system. As
cited by Steve McConnell [50], “A pair of studies performed [in 1973 and
1984] found that, of total errors reported, roughly 95% are caused by pro-
grammers, 2% by systems software (the compiler and the operating system),
2% by some other software, and 1% by the hardware. Systems software and
development tools are used by many more people today than they were in
the 1970s and 1980s, and so my best guess is that, today, an even higher
percentage of errors are the programmers’ fault.” Application code is prone
to containing programming errors, and therefore info leaks, which makes
the presented vulnerability more dangerous.



106 Chapter 6. On the Effectiveness of Full-ASLR on 64-bit Linux

6.4 Building the Attack

This section details the steps involved in building a successful attack to
bypass the ASLR x86 64 GNU/Linux by exploiting the weakness presented
in section 6.3.

Note that the following is only a demonstration example which takes
advantage of the ASLR weakness. Section 6.4.4 briefly describes other al-
ternatives used to build more ways of exploiting weaknesses.

Our attack against address-space layout randomisation successfully de-
feats the ASLR of a PIE-compiled application in just a few attempts, lo-
cally and remotely, while Shacham et al.’s attack [14] requires up to 2n

attempts, making the attack unfeasible for 64-bit architectures, or Roglia
et al.’s attack [34], which fails in the presence of PIE.

6.4.1 The vulnerable server

To demonstrate the feasibility of bypassing the ASLR, by exploiting our
finding, we built a vulnerable target server which was executed in Ubuntu
12.04.3 LTS Linux distribution, equipped with an x86 64 Intel Core i3-370M
CPU, clocked at 2.4 GHz and had 3072 MB of RAM.

We introduced a standard stack buffer overflow error, similar to those
recently found in the Nginx HTTP Server [51], Ultra Mini HTTPD [52] and
PostgreSQL [53, 54], into the target server. The server was implemented as a
standard forking server, where each client request is attended by a dedicated
child process. This architecture is widely used, due to its simplicity in
handling multiple concurrent clients, as well as its stability, security and
scalability.

The vulnerable function introduced in the server is shown in listing 6.2.
The overflow occurs when a buffer, str, larger than 48 bytes, is passed to
the vuln func(). It is naively copied into the local vector, buff, which
the overflows. Also, we consider that the vulnerable function is invoked with
the same data sent to the server by clients – attackers in our case. That
is, we assume that there is no intermediate cooking or modification of the
attacker data.

The server has been compiled and executed with the maximum possible
ASLR support from both the compiler and the operating system. Table 6.1
shows information about compilation flags as well as operating system con-
figuration and other protection mechanisms under which our server will be
executed.



Chapter 6. On the Effectiveness of Full-ASLR on 64-bit Linux 107

void vuln_func(char *str, int lstr){
char buff[48];
int i = 0;
...
for (i = 0; i < lstr; i++) {

if (str[i] != ’\n’)
buff[lbuff++] = str[i];

...
}

Listing 6.2: Server vulnerable function.

Parameter Comment Configuration

App. relocatable Yes -fpie -pie
Lib. relocatable Yes -Fpic
ASLR config. Enabled randomise va space = 2
SSP Enabled -fstack-protector-all
Arch. 64-bits x86 64 GNU/Linux

NX Enabled PAE or x64

RELRO Full -wl,-z,-relro,-z,now
FORTIFY Yes -D FORTIFY SOURCE=2
Optimisation Yes -O2

Table 6.1: Security server options.

Although bypassing the SSP technique, FORTIFY or RELocation Read-
Only (RELRO) are not our primary goals, since they can be bypassed with-
out extra complexity, but in the description of this example we decided to
enabled them in order to show a more realistic PoC.

As highlighted in listing 6.1, we added extra security flags to the server.
Concretely we added the -fstack-protectorall GCC flag, which pro-
tects not only functions with buffers larger than 8 bytes, but also every
function in the application or the GCC flag -wl,-z,-relro,-z,now, which
in turn removes the possibility of defeating the ASLR by overwriting GOT
entries [34].

6.4.2 Steps to building the attack

We structured the attack in five steps. Briefly, our attack starts by analysing
off-line the target application and its execution framework. Any missing
information (due to ASLR) is obtained via brute force, thanks to the forking
server architecture of the target. Once we have the full address of the
application, the base address of the application is calculated. The last step
involves acquiring the memory map of all the libraries.



108 Chapter 6. On the Effectiveness of Full-ASLR on 64-bit Linux

With the obtained information it is now easy to arm an ROP program to
get a remote shell. The complete on-line attack may take no more than 1
second.

Attack step 1: extract static information

Before going for the address of the target application, it is mandatory to
analyse the information that can be obtained off-line, as the result of the
analysis will guide and focus the way the attack is carried out. In some
cases, it may be possible to obtain some bits of the address off-line, which
could then be used to check that the target leaked address is correct (what
is expected) or to avoid leaking unnecessary parts of the address (which are
already known).

Figure 6.1: Saved IP: Hardcoded high bits.

Since in this attack we exploit a stack buffer overflow, we decided to
leak the saved IP (Instruction Pointer) of the function, called vuln func(),
which is in the stack as the return address of the current stack frame. At
first glance, this address might seem to be unknown (fully random), but it
is possible to set some high and low bits of the saved IP by just knowing
the way the processes are loaded in memory. Concretely, we know that
GNU/Linux, as shown in figure 6.1, sets the highest 24 bits to a known
value: 0x00007F.

Additionally, the address we are leaking (saved IP) is used to resume
the execution on the instruction following the subroutine call. Hence, by
disassembling the executable where the call was made, we can obtain the
low bits of the next address to be executed which is located right after the
assembler call vuln func instruction. As listing 6.3 shows, these bits
correspond with 0x12DF.

Since the executable has to be aligned to PAGE SIZE, which in the cur-
rent x86 64 GNU/Linux is 4096 bytes, then the 12 lower bits will not change
when the executable is randomly loaded into memory. By doing a simple
bit mask operation, we found that the 12 lowest bits are 0x2DF. The re-
sulting saved IP of setting both highest and lowest known bits is shown in
Figure 6.2.



Chapter 6. On the Effectiveness of Full-ASLR on 64-bit Linux 109

0000000000001063 <attend_client>:
1063: 55 push %rbp
1064: 48 89 e5 mov %rsp,%rbp
1067: 48 81 ec 60 04 00 00 sub $0x460,%rsp
106e: 64 48 8b 04 25 28 00 mov %fs:0x28,%rax
1075: 00 00
1077: 48 89 45 f8 mov %rax,-0x8(%rbp)
107b: 31 c0 xor %eax,%eax
..... ..... [CALLER PAGE OFFSET] .....
12d7: 48 89 c7 mov %rax,%rdi
12da: e8 1c fc ff ff callq efb <vuln_func>
12df: 48 8d 85 c0 fb ff ff lea -0x440(%rbp),%rax
12e6: 48 89 c7 mov %rax,%rdi
..... ..... [From the ELF] .....

Listing 6.3: Assembly dump of vulnerable server.

Attack step 2: brute forcing the return address

The next step consists of obtaining the remaining 28 random bits of the
saved IP address. To obtain these bits we made a fast brute force byte-for-
byte attack [20].

The second lowest byte is a ‘special byte’, because the lower four bits are
already known. So, to brute force this byte we fixed these four bits and
changed only the four highest ones per attempt. In the worst case it would
take only 24 = 16 attempts (0x2, 0x12, 0x22, 0x32 ... 0xF2).

The remaining three bytes were guessed by launching a standard byte-
for-byte attack. Note that in order to guess 28 bits we needed to perform
24+3∗28

2 = 392 attempts on average.

The vulnerable function in our server has a buffer size of 48 bytes, for
clarity. Assuming a more realistic scenario with a size buffer of 512 or even
1024 bytes, the length of the client request sent to the server will be around
196 or 392 Kbytes, respectively, which is a fairly small number of bytes
sent over the net. The temporal cost of the attack is determined by server
bandwidth.

Figure 6.2: Saved IP: Low bits from ELF.



110 Chapter 6. On the Effectiveness of Full-ASLR on 64-bit Linux

After executing the byte-for-byte attack we particularly obtained the
0x36C6FEC value. On this point we already knew the saved IP value.
Figure 6.3 shows the leaked application address that we obtained.

Figure 6.3: Saved IP: Brute force bits.

Note that the server was compiled with the stack smashing protector
enabled, which forced us to set correctly the stack canary value on every
overflow. The value of the canary must be obtained before proceeding to
brute forcing the saved IP address.

For clarity, we omitted attacking the SSP, but this protection mechanism
can be bypassed by following the same strategy as used to brute force attack
the 3 bytes of the saved IP address. Since the first byte is set to zero on

Ubuntu, on average it will take 7∗28

2 = 896 trials to obtain the canary value.
Adapting the attack to bypass the SSP, and assuming a buffer of 1024 bytes,
the size sent to the server would be approximately 896 Kbytes.

In our attack, the whole time taken to bypass both SSP and ASLR pro-
tection is still around 1 second, because the average number of bytes sent
to the server is ≈ 60 Kbytes (896 + 392 = 1288 attempts ∗ 48 bytes). The
attack will succeed at around 1 second in systems that are able to handle
enough concurrent requests and where there is a bandwidth of greater than
60 Kbytes/s.

Attack step 3: calculating the base application address

In this step we use the leaked address in the previous step to calculate the
executable base address. The formula to obtain the base address is:

App base = (savedIP & 0xFFF)-(CALLER PAGE OFFSET << 12)

where the savedIP is the return address value obtained in step 2. The
value of the CALLER PAGE OFFSET is the number of pages between the exe-
cutable base and the return address (the address right after the callq
which invoked vuln func).

In our example, shown in listing 6.3, the next instruction to the call is at
offset 0x12DF, which means that the next instruction lea is not on the first



Chapter 6. On the Effectiveness of Full-ASLR on 64-bit Linux 111

page but on the second one. Therefore, the value of CALLER PAGE OFFSET
is 1 (the second page). As a result we obtain the base address of the PIE-
compiled application, which is:

0x7F36C6fEB000 = (0x7f36C6FEC2DF & 0xFFF) - (1 << 12)

Attack step 4: calculating library offsets

The offset value from the base executable application to each mapped library
(offset2lib) depends on the size and the number of libraries in between.
In addition, some applications and libraries may request mmapped memory,
before loading the libraries. For instance, as showed in listing 6.1, from the
base base address of the application where the dynamic linker is loaded
there are two memory mapped areas:

[0x7f36c6fd0000 - 0x7f36c6fd3000]
[0x7f36c6fe5000 - 0x7f36c6fe8000]

The distance remains unchanged between different executions of the appli-
cation. Table 6.2 shows some of the offsets from the base of the application
to different libraries.

Library Version Distance in bytes

Dynamic linker 2.15 0x225000
Libc 2.15 0x5e4000

Table 6.2: Offsets from executable to libraries

These offsets are different, depending on the system, but measurements
show that the values of offset2lib are quite similar among this group.
Table 6.3 lists the values for different Libc versions in 64-bit systems on
some Linux distributions.

Distribution Libc version Distance in bytes

CentOS 6.5 2.12 0x5b6000
Debian 7.1 2.13 0x5ac000
Ubuntu 12.04 LTS 2.15 0x5e4000
Ubuntu 12.10 2.15 0x5e4000
Ubuntu 13.10 2.17 0x5ed000
openSUSE 13.1 2.18 0x5d1000

Table 6.3: Offset2lib value on different systems.



112 Chapter 6. On the Effectiveness of Full-ASLR on 64-bit Linux

Attack step 5: getting app. process mapping

The base address of any library can be calculated by just subtracting the
offset2lib of the given library from the base of the executable. For
instance, to calculate the Libc base address in our example we used the
base address of the application obtained in step 3 and the offset2lib for
the Libc obtained in step 4. The Libc base address for the Ubuntu 12.04
LTS is:

0x7F36C6A07000 = 0x7F36C6fEB000 - 0x5E4000

as can be verified in listing 6.1. At this point, the ASLR is defeated, and
we can repeat the operation to obtain any mapped library of the process.

6.4.3 Exploiting the server target

Although the goal of this paper is to bypass the ASLR, for completeness we
briefly describe how we used information to take a remote shell from the
vulnerable server.

We obtained the canary value and the base address of the Libc library
in previous steps, which allowed us to use the Libc code to build ROP
gadgets. In our experiments we found enough gadgets in the Libc 2.15 to
build an ROP sequence to execute commands. We built a small script that
automates defeating the ASLR and adjusting ROP. The script is able to
acquire a remote shell in less than 1 second in all cases.

6.4.4 Other attack vectors

The attack presented in this section is only a demonstration example of the
ASLR weakness presented in this paper. We believe that the ways to take
advantage of this weakness are only limited by attackers’ creativity.

In our attack we performed a small brute force attack against a part
of the saved IP address, but other approaches may be available, depend-
ing on the manifestation of the vulnerability. For instance, it could use
the printf(), the send() or write() library calls to leak an application
address by redirecting a pointer.

Some of these functions, such as send(), are very robust and gently
with incorrect parameters, which can be used to leak application addresses
without crashing the system. According to the manual page the process
will not crash upon attempts to read from unmapped process areas.



Chapter 6. On the Effectiveness of Full-ASLR on 64-bit Linux 113

These approaches open up the possibility of leaking application addresses,
without crashing the server. Therefore, exploitation is not restricted to
forking servers or the like.

6.5 Countermeasures discussion

Obviously, prevention is the best antidote, but as experience shows, it is
impossible to write any code that will be free of errors.

Fortunately, the combination of multiple protection techniques has an
multiplicative effect. For example, the leaking of an application address
may be used to bypass the ASLR and build the correct ROP sequence, but
the SSP may prevent it from redirecting the execution flow. In other cases,
the control flow can be redirected but the ASLR renders it useless.

The effectiveness of both ASLR and SSP techniques depends on keeping
secret some critical information. In the former case, the information is the
memory map of the target, and in the latter case it is the value of the
canary guard. In both cases, the more entropy, the harder it becomes to
guess them.

The entropy concept is quite generic. Typically, it is only associated with
the range of values associated with the secret, and it is measured as the
number of random bits of the address or the canary. For example, PaX
implements a stronger variant of ASLR which does (among other things)
exactly this point. On 64-bit x86 machines PaX’s ASLR implementation
operates with 35 bits of entropy compared to 28 bits on the default Linux
implementation.

Unfortunately, some attacks are not blocked by increasing this kind of
entropy. Vulnerabilities that are prone to byte-for-byte attacks are only
linearly (and not exponentially) improved when more bits of entropy are
added. In other words, byte-for-byte attacks are very effective, regardless
of the number of random bits to discover.

Nonetheless, there are other dimensions of entropy that must also be
considered. A recent example of another form of entropy was proposed by
Hector et al. [24]. The new technique, called renew-SSP, is a variant of the
classic SSP technique in which the value of the secret canary is renewed
dynamically at key places in the program. This way, the secret is refreshed
more often. Rather than refreshing/renewing the secret once per process, it
can be refreshed even once per loop. The technique is not intrusive, and it
can be applied by just pre-loading a shared library. The overhead, in this
instance, is almost negligible.



114 Chapter 6. On the Effectiveness of Full-ASLR on 64-bit Linux

Beyond the technical aspects, a critical issue to take into account when
using new protection techniques is backward compatibility. There is a large
amount of code which cannot be upgraded easily, because it is no longer
available or maintained. In addition, techniques which introduce a lot of
changes in the development process are hardly adopted. Fortunately, the
renew-SSP technique is transparent and easy to apply.

The vulnerability used in this paper, to illustrate the weakness of the
ASLR, is not exploitable when the renew-SSP technique is used. The same
executable image was used both on a standard system (which was defeated
in 1 second) and by pre-loading the renew-SSP shared library (would be
defeated in several centuries).

Re-randomising the ASLR dynamically at run-time seems to be a rather
difficult task. Once the program starts running, living objects (the ad-
dresses of structures and functions) refer to current mapping, and the more
references/pointers created, the more costly it will be to relocate all of those
living objects.

Fortunately, there is room for improvement which is both simple to im-
plement and transparent to existing code. The next section outlines a new
implementation of ASLR with more entropy.

6.6 New Full-ASLR design

Current implementations of ASLR operate on a per-group basis. There is a
group for mmapped areas, another group for the stack, one for the heap, the
executable image, etc. All areas in the same group are located side-by-side,
starting at a random address. We have designed a new Full-ASLR which is
not vulnerable to the attack presented in this paper.

For compatibility reasons it is advisable to implement the new design
as a new randomisation mode, configurable through /proc/sys/kernel/-

randomise va space, as the option number 3. Eventually, the proposed
implementation will replace the current one (number 2).

0 - No randomisation. Everything is static.

1 - Conservative randomisation. Shared libraries, stack, mmap(), VDSO
and heap are randomised.

2 - Full randomisation. In addition to elements listed in the previous
point, memory managed through brk() is also randomised.



Chapter 6. On the Effectiveness of Full-ASLR on 64-bit Linux 115

3 - Full randomisation, where all or selected elements can be individu-
ally randomised. The proposed new ASLR, named ‘ASLR-NG’, is
described in Chapter 7.

6.7 Conclusion

We have presented a new weakness in the current implementation of the
ASLR on 64-bit GNU/Linux systems which affects PIE-compiled executa-
bles. Applications compiled with PIE are considered to be more robust to
attacks, since, for instance, it is not possible to use return-2-* strategies.

We show that it is possible to de-randomise the ASLR, and so defeat it,
if an attacker can obtain an application program address. Previous attacks
required leaking a pointer belonging to a library. Since the application code
is more prone to containing programming bugs, our finding opens up the
possibility of exploiting a wider range of errors.

The weakness is illustrated with a detailed proof of concept attack against
a vulnerable server (which contains a classic stack buffer overflow), compiled
with all security options enabled and with the maximum level of protection.
Concretely, we implemented an attack which bypassed the three most widely
used and effective protection techniques, namely No-eXecutable bit (NX),
address space layout randomisation (ASLR) and stack-smashing protector
(SSP). Our attack bypassed the ASLR on a 64-bit GNU/Linux and obtained
a remote shell in less than second.

A review of the existing countermeasures that may mitigate the exploita-
tion of this weakness was presented. A holistic defence was considered not
only in relation to the ASLR, but also to how other techniques can be used
to avoid an attack.

Finally, we proposed an alternative design for the Linux ASLR which re-
moves the disclosed weakness, named ‘ASLR-NG’. In this ASLR-NG design,
all sections (anonymous maps, libraries, executable images, stacks, etc.) are
randomly placed, which adds a new level of entropy: the distance between
maps is also random. This new ASLR design removes the weakness and
thwarts our attack. The new design will be transparent to the applications
(no need to recompile the code), and only the Linux kernel shall be modified.

As a final conclusion to this work, despite the fact that there have been
great advances in many mitigation techniques, there are still programming
bugs (such as the one shown as PoC) that can be successfully exploited.
Therefore, it is essential to continue developing new techniques or improving
existing solutions.





Chapter 7

ASLR-NG: Address Space Layout

Randomisation Next Generation

A taxonomy of all of the elements and constraints that determine the ASLR
operation is presented in this chapter. Based on this complete view of the
problem a new ASLR design is proposed, called ‘ASLR-NG’, which out-
performs all current ASLR implementations in all aspects.

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . 118

7.2 System model and definitions . . . . . . . . . . 119

7.3 Growable objects: a critical review . . . . . . . 121

7.3.1 Stacks . . . . . . . . . . . . . . . . . . . . . . . 122

7.3.2 The heap . . . . . . . . . . . . . . . . . . . . . 123

7.4 ASLR design weaknesses . . . . . . . . . . . . . 124

7.4.1 Non-full address randomised weakness . . . . . 124

7.4.2 Non-uniform distribution weakness . . . . . . . 124

7.4.3 Correlation weakness . . . . . . . . . . . . . . . 125

7.4.4 Memory layout inheritance weakness . . . . . . 126

7.5 ASLR constraints and considerations . . . . . 126

7.6 ASLR-NG . . . . . . . . . . . . . . . . . . . . . . 127

7.6.1 Allocating object strategy . . . . . . . . . . . . 127

7.6.2 Addressing fragmentation . . . . . . . . . . . . 129

7.6.3 Algorithm . . . . . . . . . . . . . . . . . . . . . 130

7.6.4 Profile modes . . . . . . . . . . . . . . . . . . . 132

7.6.5 Fine grain configuration . . . . . . . . . . . . . 133

7.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . 135

7.7.1 randomisation forms . . . . . . . . . . . . . . . 135

7.7.2 ASLRA: ASLR Analyser tool . . . . . . . . . . 136

7.7.3 Absolute address entropy . . . . . . . . . . . . 138

7.7.4 Correlation in ASLR-NG . . . . . . . . . . . . 139

7.8 Conclusions and future work . . . . . . . . . . 140

117



118 Chapter 7. ASLR-NG: Address Space Layout Randomisation Next ...

7.1 Introduction

Address Space Layout Randomisation (ASLR) is a well-known, mature and
widely used protection techniquewhich randomises the memory address of
processes in an attempt to deter forms of exploitation which rely on knowing
the exact location of the process objects. Rather than increasing security by
removing vulnerabilities from the system, as source code analysis tools [40]
tend to do, ASLR is a prophylactic technique which tries to make it more
difficult to exploit existing vulnerabilities [55].

The security offered by ASLR is based on several factors [14], including
how predictable the random memory layout of a program is, how tolerant
an exploitation technique is to variations in memory layout and how many
attempts an attacker can make practically.

ASLR is a wide spectrum protection technique, in the sense that rather
than addressing a special type of vulnerability, as the renewSSP [24] does,
it jeopardises the programming code [23] of the attackers independently of
the vector [56] used to inject code or redirect the control flow. Similarly to
other mitigation techniques, the ASLR mitigates code execution attacks by
crashing the application, and so the attack is degenerated into a denial of
service.

The ASLR is an abstract idea which has multiple implementations [57–
60], though there are important differences in performance and security
coverage between them. We therefore need to make a clear distinction be-
tween the core concept of ASLR, which is typically described as something
which“introduces randomness in the address space layout of user space pro-
cesses” [4], and the exact features of each implementation.

Although the ASLR is more than 14 years old [31], there is still a lot
of work and innovations to be done, both on the design and the imple-
mentation. Google has added ASLR to Android 4.0, and PIE support on
4.1. Another area of active work is in the implementation of the KASLR
(Kernel ASLR), which loads kernel code and drivers or modules in random
positions [61].

The topic of this paper involves a new ASLR design for user processes.
The major contributions of this paper are as follows:

• Four different weaknesses are identified in the Linux and PaX ASLR
designs.

• ASLRA: a tool used to measure and analyse the quality of ASLR
entropy.



Chapter 7. ASLR-NG: Address Space Layout Randomisation Next ... 119

Feature Description
W

h
e
n Per-boot Every time the system is booted.

Per-exec Every time a new image is executed.
Per-fork Every time a new process is spawned.
Per-object Every time a new object is created.

W
h
a
t

Stack Stack of the main process.
LD Dynamic linker/loader.
Executable Loadable segments (text, data, bss, ...).
Heap Old-fashioned dynamic memory of the process: brk().
vDSO/VVAR Objects exported by the kernel to the user space.
Mmaps/libs Objects allocated calling mmap().

H
o
w

Partial VM A sub-range of the VM space is used to map the object.
Full VM The full VM space is used to map the object.
Isolated-object The object is randomised independently from any other.
Sub-page Page offset bits are randomised.
Bit-slicing Different slices of the address are randomised at different times.
Direction Topdown/downtop search side used on a first-fit allocation strategy.
Specific-zone A base address and a direction where objects are allocated together.

Table 7.1: Summary of randomisation forms.

• A new ASLR design, named ‘ASLR-NG’, which outperforms current
designs in all aspects.

• An implementation of ASLR-NG in the Linux kernel, showing that it
is a realistic replacement of current ASLRs.

• A novel solution for reducing fragmentation, without reducing entropy.

This paper is organised as follows: a brief taxonomy of the ASLR is
presented in section 7.2, followed by a critical analysis of the constraints
that have historically determined the design of the ASLR and which are the
root causes of the weaknesses presented in section 7.4. We then describe in
section 7.5 the constraints that must be taken into account when designing
a practical ASLR, and the new ASLR-NG is presented in section 7.6 and
evaluated in section 7.7. Section 7.8 concludes the paper.

7.2 System model and definitions

Depending on the exact implementation details there may be important dif-
ferences in the final operation and effectiveness of the ASLR, and so in order
to understand and compare these differences between ASLR implementa-
tions, it is necessary to have a detailed definition of all memory objects and
how they can be randomised.



120 Chapter 7. ASLR-NG: Address Space Layout Randomisation Next ...

In what follows, a memory object is classed as a block of virtual memory
allocated to a process, examples of which include the stack, the executable,
a mapped file, an anonymous map and the vDSO. For our purposes, the
size and the base address of each object are the most relevant attributes.

Several objects may be allocated together (in consecutive addresses) with
respect to a random address base, which will be referred to as the area or
as the zone. For example, in Linux, all objects allocated via the mmap()
system call are placed side by side in an area (mmap area).

ASLR entropy can be categorised, as shown in Table 7.1, into three main
dimensions: 1) When, 2) What and 3) How. The first dimension defines
how often randomisation takes place, the second determines which objects
are randomised and the last one defines how and how much the objects are
randomised.

Regarding the When dimension, the more frequent, the better, i.e. per-
exec randomisation is preferred to per-boot, and per-fork is better than per-
exec, etc. The entropy used to decide where an object is going to be placed
has been taken at boot, when a new image is loaded, etc. For example,
Linux ASLR randomises all objects per-exec, so once the process has been
created, all subsequent objects (mmap requests) are located side by side,
and so no new entropy is introduced.

The second entropy dimension is granularity (i.e. What is randomised),
whereby the more objects that are randomised, the better. Some security
researchers consider that if a single object (for example, the executable) is
not randomised, the ASLR can then be easily defeated. We will assume
that all objects are randomised, but when and how each one is randomised
may differ between implementations.

The way an object is randomised is defined by the last dimension: How.
It is possible to consider two sub-dimensions: 1) how many bits1 are random
and 2) what is the randomness between objects (inter-object). That is, the
absolute entropy of the object by itself and the conditional entropy between
objects.

Regarding how many bits of the address are randomised, there are two
forms: full-VM and partial-VM. Partial-VM is when memory space is
divided in disjointed ranges to generate random numbers for the addresses.
In Full-VM complete virtual memory space is used to randomise an ob-
ject. The requirements required to carry out a full-VM are analysed in the
next sections. As far as we know, current ASLR implementations only use
partial-VM randomisation.

1Historically, entropy has been measured in ‘numbers of bits’, but it would be more
accurate to consider distribution and its parameters.



Chapter 7. ASLR-NG: Address Space Layout Randomisation Next ... 121

The implementation of the ASLR relies strongly on the processor vir-
tual memory infrastructure (memory page), which greatly simplifies the
randomisation of page addresses. The sub-page randomisation form refers
precisely to randomising the bits that belong to page alignment. The other
four forms of entropy (isolated-object, bit-slicing, direction and specific-
zone) are presented and discussed in detail in the following sections.

7.3 Growable objects: a critical review

In this section we analyse the problems and limitations caused by growable
objects and the available techniques to make them more ASLR-compatible.

The Linux and PaX2 ASLR designs rely on the same core ideas, in that
they define four partial-VM areas: 1) stack, 2) libraries/mmaps, 3) exe-
cutable and 4) heap.

The classic memory layout was designed by considering that some zones
or objects are growable (main stack, thread stacks and heap). In order to
allow them to grow, they have to be placed within the extreme reaches of
virtual memory, far away from other objects, otherwise they will not grow
or, even worse, silent collision could occur.

Originally, the functionality of growable objects was a smart, simple and
efficiently solution for efficient memory usage. However, the use of threaded
applications and the possibility of adding dynamically new objects into the
memory space forced developers to reconsider the viability of these growable
areas. Today, growable objects are a source of numerous problems [62, 63],
but fortunately a set of advanced programming solutions has been developed
which removes the necessity of this type of object.

Growable objects impose strong limitations on ASLR design, and they
affect negatively the entropy of all objects. The situation gets even worse
when multiple growable objects are used in the application, as actually
happens with multiple thread stacks. The approach used in Linux, (see
Figure 7.1) involves placing each object as separately as possible from each
other, which forces to fix high bits of the addresses, thus degrading effective
entropy. Since the extremes of the virtual memory are already occupied,
libraries and mmaps are placed between the stack and the heap. Note
that a small shared library is automatically mapped by the kernel into
the address space of all user-space applications (vDSO). Therefore, both
static and dynamically linked (PIE or not) programs have a similar memory
layout.

2FreeBSD, HardenedGentoo and others use the PaX ASLR approximation.



122 Chapter 7. ASLR-NG: Address Space Layout Randomisation Next ...

stack

lib1

lib2

mmap files

heap

exec

LOW

HIGH
VM space

Figure 7.1: Classic memory layout.

Originally, PIE-compiled applications were loaded jointly with the li-
braries, but after the Offset2lib weakness [25] was identified, the PIE exe-
cutable was moved to lower addresses (Linux 4.1) and its own zone.

7.3.1 Stacks

There are two different kinds of stacks, namely the stack of the main process,
and the stack of the threads or clones (since both thread and cloned entities
handle stacks in a similar way, in what follows we will refer to them jointly
as ‘thread stacks’). The main stack is still considered and handled as a
growable object.

Initially, thread stacks were ‘set up’ to be growable. Flags MAP GROWSDOWN

and MAP GROWSUP were added to the mmap() request, to tell the kernel about
expected behaviour. Inevitably, these flags were removed [62] because of
security problems and intrinsic logical limitations.

Nowadays, thread stacks are treated as regular (non-growable) objects,
reserved with the maximum estimated size when the threads are created. By
default, the thread stack size is set to 8MB (in Debian and Ubuntu), but it
can be changed by using the RLIMIT STACK resource with the setrlimit()
system call. Note that the RLIMIT STACK value is used as the default thread
stack size rather than an upper limit.



Chapter 7. ASLR-NG: Address Space Layout Randomisation Next ... 123

A summary of the facilities provided by the compiler, to deal with grow-
able stack issues, is presented below:

• One or more protected pages (page guards) are placed at the end of
the thread stack. If the stack overflows, then the process receives a
SIGSEGV signal. This guard is further enforced by the GCC flag
-fstack-check, which emits extra code to access sequentially all the
pages of the stack, thus preventing overflowing by jumping over the
page guard.

• The split stack feature (GCC flag -fsplit-stack) generates code
to automatically continue the stack in another object (created via
mmap()), before it overflows. As a result, the process has discontinuous
stacks which will only run out of memory if the program is unable to
allocate more memory. This is an interesting feature for threaded
programs, as it is no longer necessary to calculate the maximum stack
size for each thread. This is currently only implemented in the i386
and x86 64 back-ends running in GNU/Linux.

• It is possible to ask the compiler to print stack usage information for
the program, on a per-function basis, using the -fstack-usage flag
and making an estimation of stack size.

Although these facilities are very helpful when dealing with stacks, in
practice most applications are able to work using default stack size (Google
Chrome(r), LibreOffice, Firefox, etc.). Only very demanding applications
have stack size issues, which are typically handled by slightly increasing the
RLIMIT STACK limit value. For example, Oracle(r) advises to set it to 10MB
when running its database.

7.3.2 The heap

When the process needs more heap memory, it calls the brk() system call
to move forward (higher addresses) the heap’s end. The brk() request may
fail if 1) there is not enough free memory contiguous to the existing heap,
because the end of the memory has been reached or because another object
is already in that address, or 2) the data segment limit has been exceeded,
as set by the RLIMIT DATA resource.

The heap is exclusively used by the standard C library to provide the dy-
namic storage allocation (DSA) service: malloc() and free(). Although
originally DSA algorithms relied exclusively on heap memory, current im-
plementations use multiple non-contiguous objects of memory requested by



124 Chapter 7. ASLR-NG: Address Space Layout Randomisation Next ...

mmap(). In fact, the GNU libc uses mmapped objects when the requested
size is larger than 128Kb.

The brk() service (i.e. the idea of a memory area close to the exe-
cutable that can grow at will) has been made obsolete by mmap function-
ality, marked as LEGACY in SUSv2 and removed in POSIX.1-2001.

7.4 ASLR design weaknesses

Current ASLR designs are influenced heavily by growable area requirements
and by compatibility misconceptions. We have identified the following weak-
nesses.

7.4.1 Non-full address randomised weakness

ASLR has been implemented by slightly shaking or moving randomly the
base address of objects with respect to the classic layout, where the main
stack is at the top, the executable is at the bottom, the heap follows the
bss segment and the mmap zone is located in between the heap and the
stack. Therefore, entropy that can be applied to each object is limited by
the range that they can be moved while preserving the previous sequence.
This affects the higher bits of the addresses [14].

Another constraint that reduces entropy is the unnecessary alignment
of some objects. Although alignment is mandatory in some cases (huge
pages, executable, libraries, etc.), there many are others in which this is not
required; for example, many private anonymous maps could have sub-page
entropy.

7.4.2 Non-uniform distribution weakness

The distribution of objects along the range should be as uniform as possible.
That is, all the addresses should have the same, or very similar, probability
of occurrence; otherwise, it would be possible to speed up attacks by focusing
on the most frequent (likely) addresses.

Figure 7.2 shows the output of the ASLRA (ASLR analyser) tool for the
libraries and mmap objects in PaX. As can be seen, the distributions of
these objects are far from uniform, because on i386 it follows a triangular
distribution and on x86 64 an Irwin-Hall with n = 3. In Linux, the heap is
the result of the sum of two random values, but since one of them is much
larger than the other, the impact on the distribution is almost negligible.
Hence, the final locations shall never be the sum of multiple random values.



Chapter 7. ASLR-NG: Address Space Layout Randomisation Next ... 125

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0  20  40  60  80  100

P
ro

b
a
b
ili

ty

Bins

Expected
i386

(a) i386

 0

 0.005

 0.01

 0.015

 0.02

 0  20  40  60  80  100

P
ro

b
a
b
ili

ty

Bins

Expected
x86_64

(b) x86 64

Figure 7.2: Distribution of mmapped objects on PaX.

7.4.3 Correlation weakness

Attacks launched to bypass the ASLR are becoming more and more sophis-
ticated; for instance, instead of attacking an object directly, the attacker
can de-randomise the object with low randomisation first, and then use it
to de-randomise the target object (the object which contains the required
gadgets or data). The idea that an object’s memory address leak can be used
to exploit another one was first demonstrated by Hector et al. [25] through
the offset2lib weakness. In that case, the executable was de-randomised
using a byte-for-byte attack [20] and then the libraries zone was calculated,
resulting in a very fast bypass of the ASLR.

In Linux and PaX, the heap and the executable are separated from each
other by a random value. A leak in the heap area not only compromises
the heap, but it also reveals information about the executable, because
there is less entropy distance from the executable to the heap (correlation
entropy) than the absolute entropy of the executable. Huge pages and the
objects in the mmap area are also correlated. Since huge pages have the
largest alignment, they have the lowest entropy, and attackers can build
correlation attacks by de-randomising huge pages first and then later the
libraries zones. For example, in PaX i386, instead of attacking the libraries
directly (16 bits), attackers can de-randomise huge pages (6 bits) and later
de-randomise the libraries zone from the huge page zones (10 bits). This
two-step attack takes 1088 = 210+26 ≈ 210 attempts, instead of 65536 = 216

involved in the direct attack on the library.

All mmapped objects are located together in the mmap area, which re-
sults in total correlation between all of them, but from a security point of
view, this is a weak design. MILS (multiple independent levels of securi-
ty/safety) criteria state that objects of different criticality levels must be
isolated. Google Chrome, for instance, is aware of this security issue and



126 Chapter 7. ASLR-NG: Address Space Layout Randomisation Next ...

has addressed it by implementing some form of user-land ASLR to map
JIT (just-in-time compiled code) objects in its own zone, which is separated
from the default mmap area. Note that JIT objects are an appealing target
for attackers [64].

7.4.4 Memory layout inheritance weakness

All child processes inherit/share the memory layout of the parent. This
is the expected behaviour, since children are an exact copy of the parent’s
memory layout. Unfortunately, though, from a security point of view, this is
not a desirable behaviour, because although new objects belong only to the
child process, their addresses can be guessed easily by parents and siblings.

This problem is especially dangerous on networking servers which use
the forking model. In Android, for instance, the situation is even worse,
because all of the applications are children of Zygote, and although the
siblings might not call the same mapping sequence, a malicious sibling can
predict future mmaps of any other. Therefore, the leakage of an object
in the library or mmap area exposes all objects in these areas (correlation
weakness) and also allows one to predict where future mmaps will be placed
– even between siblings (inheritance weakness).

7.5 ASLR constraints and considerations

The straightforward solution to solving most of the previous weaknesses is
to randomise each object independently over the full VM range. Although
this idea is quite intuitive [59], multiple practical issues must be addressed
properly, in order to achieve a realistic ASLR design. ASLR-NG has been
designed by taking into account the following issues:

Fragmentation: although, from the point of view of security, having ob-
jects spread all over the full VM space is the best choice, in some cases
it introduces prohibitive fragmentation, which is especially severe in
32-bit systems. Applications that request large objects or make a lot
of requests may fail randomly, so it is mandatory to have a mechanism
to address this fragmentation.

Page table footprint: a very important aspect that is underestimated is
the size of the process page table, because the more the objects are
spread, the bigger the page table. This is particularly important in
systems with low memory or with a high number of processes. Since



Chapter 7. ASLR-NG: Address Space Layout Randomisation Next ... 127

each application could have a different level of security, the ASLR de-
sign should allow for tuning the page table size versus object spread-
ing.

Growable areas: unfortunately, most applications still use growable areas
in some objects. In order to be compatible with these applications,
an ASLR must guarantee some form of compatible behaviour.

Homogeneous entropy: all objects should have the same amount of en-
tropy, in particular objects of the same type (for example, stacks);
otherwise, attackers will focus on the weakest link. Unfortunately,
none of the current designs meets this requirement.

Uniformly distributed: all objects should be uniformly distributed; oth-
erwise, attackers can design more effective attacks by focusing on the
most frequent addresses.

ASLR compatibility: the ASLR design should be backward-compatible
with existing applications. That is, if there is a trade off between
security and compatibility, then the design should allow for tuning
the application framework to meet application’s needs.

7.6 ASLR-NG

This section describes the proposed ASLR-NG, which addresses all the
weaknesses identified in section 7.4 as well as all of the constraints and
considerations presented in section 7.5.

In order to design the ASLR-NG, growable objects (main stack and heap)
must be bounded when they are created. If they need to grow, then dis-
contiguous solutions should be used or a larger bound (limit) must be set.
As presented in section 7.3, nowadays both the stack and the heap can be
handled as non-growable objects, which enables us to propose ASLR-NG.
The default value of the stack limit is 8MB, which fulfils the requirements
of most applications. More demanding applications can increase this limit.
ASLR-NG uses this value to reserve both stack memory and the initial heap.

7.6.1 Allocating object strategy

Two methods are available to allocate an object in ASLR-NG.

1) Isolated: the object is independently randomised using the full virtual
memory space of the process. Unlike current implementations, ASLR-NG



128 Chapter 7. ASLR-NG: Address Space Layout Randomisation Next ...

can use the full VM range to allocate an object, and as a result there no
order to the objects and it prevents any kind of correlation attack.

2) Specific-zone: objects of the same class are mapped together and
isolated from others. A specific-zone is defined by a base address and a
direction flag, both of which are initialised when the specific-zone is created
(see function new zone() in Listing 7.1). The base address is a random value
taken from the full VM space, and new objects are placed by following the
direction flag (toward higher or lower addresses) with respect to the base
address.

The main benefit of using specific-zones is that it reduces both frag-
mentation and page table footprint, which makes the ASLR practical and
realistic. Furthermore, specific-zones can be created according to MILS cri-
teria, in that objects of the same criticality level may be grouped together.
Criticality depends, among other factors, on the permissions and the kind
of data stored on the object. Following this rule, ASLR-NG defines five
specific-zones (depending on the configuration, see profile modes below):

Huge pages: placing all huge page objects in their own specific-zone re-
moves the correlation weakness between huge pages and mmapped
objects. This is a specially dangerous form of correlation weakness as
described in subsection 7.7.4.

Thread stacks: following the same criteria as the main stack, the thread
stacks are isolated from the rest of objects on their own specific-zone.

Read-write-exec objects: although these types of object are seldom used,
for example in JIT mapping, they are very sensitive; in fact, Google
implements custom randomisation in their Chromium browser for
these objects as part of its sand-boxing framework.

Executable objects: map requests with executable permission are grouped
in a specific-zone. This zone is mainly used to group library codes.

Default zone: any other objects that do not match previous categories are
allocated to this specific-zone.

In addition, applications can create custom specific-zones to isolate
sensitive data. For example, the credentials or certificates of a web
server can be isolated from the rest of the regular data. This mech-
anism can prevent a Heartbleed [65] attack by moving sensitive data
(certificates) away from the vulnerable buffer.



Chapter 7. ASLR-NG: Address Space Layout Randomisation Next ... 129

7.6.2 Addressing fragmentation

When virtual memory size is small, fragmentation is an issue, because the
more objects that are independently randomised, the more fragmented the
memory. In dynamic memory, the fragmentation problem is defined as [66]
“the inability to reuse memory that is free.”

There is no simple way to measure fragmentation, but the worst case
depend on: 1) the number of objects already allocated, 2) their size, 3) the
relative position of each one and 4) the size of the new request. If all objects,
n, are independently randomised, the worst case occurs when the allocated
objects are of one page size and they are evenly distributed along the whole
memory space. In this case, the maximum guaranteed size is approximated
by:

new obj size .
VM SIZE

n+ 1

On x86 64 fragmentation is not a issue because of the very large number
of mapped objects needed to cause an error. For example, a 1GB memory
request will not fail until 217 = 131072 objects have been mapped.

On the other hand, fragmentation is a real problem in 32-bit systems.
For example, a memory request of 25MB is not guaranteed after just 122
requests (of page size), while a request for 256MB may fail after mapping
just 12 objects, including the stack, vDSO, executable, heap, each library,
etc. Therefore, it is not practical to randomise each object independently
in 32-bit systems, without addressing the fragmentation issue.

ASLR-NG addresses this issue by reserving a range of virtual space, the
amount of which is specified as a percentage of the available VM size. When
a requested object does not fit into the non-reserved space, the allocation
algorithm automatically uses the reserved space, without degrading the en-
tropy of these objects and regardless of their size.

Figure 7.3 shows the result of allocating multiple objects in ASLR-NG.
Objects 1 and 3 fit into the non-reserved area, and so they are placed there,
but for objects 2 and 4, there are no free gaps to hold them on the non-
reserved area. In this case, the algorithm performs a top-down, first-fit
strategy. Note that objects allocated in the reserved area will ‘inherit’ the
entropy of the lowest object in the non-reserved area.

Although reserving a percentage of the VM will reduce the range for avail-
able randomisation, ASLR-NG uses a novel strategy to regain lost entropy,
whereby the reserved area is randomly placed at the top or the bottom of
the virtual memory space.



130 Chapter 7. ASLR-NG: Address Space Layout Randomisation Next ...

mmap 3

mmap 2

Executable

stack

libraries

Executable

stack

libraries

mmap 2

mmap 1

VM space

mmap 1

VM space

(a) Small mmap() (b) Large mmap()

R
es

er
ve

d
Executable

stack

libraries

Executable

stack

libraries

mmap 2

mmap 1

mmap 3

VM space

mmap 1

VM space

(c) Large mmap() (d) Large mmap()

mmap 4

MAX_VM

MIN_VM

LOW_ADDR

Figure 7.3: ASLR-NG: A 50% example of a reserved area.

For example, by reserving 50%, an attacker cannot know on which side
(top or bottom) the objects will be located, which forces them to consider
the whole VM space. As a result, there is no entropy penalty with this
strategy.

Only when the reserved area is larger than 50%, is there a small amount
of entropy degradation. The expression which relates the loss of entropy to
the percentage of reserved area is:

f(x) =

{
0, if x ≤ 50%

−1− log2

(
1− x

100

)
, otherwise

where x is the percentage of the reserved area, and f(x) gives the number
of bits that have to be subtracted from the total VM space entropy.

For example, reserving 50% on an i386, the largest guaranteed object is
1500MB and entropy is not reduced. If 2/3 of the VM space is reserved,
then it is possible to allocate an object up to 2GB in size, and at the cost
of reducing entropy by only 0.5 bits.

Therefore, the ASLR-NG design has both more entropy and less frag-
mentation.

7.6.3 Algorithm

When a process is created, the area reserved to avoid fragmentation is de-
fined by setting the variables min ASLR and max ASLR. This is the range



Chapter 7. ASLR-NG: Address Space Layout Randomisation Next ... 131

that will be used to allocate objects (allocation area).

new_zone(low, high, zone) {
zone.base = randomize_range(low, high);
zone.direction = randomize_range(low, high) <

zone.base ? TOPDOWN : DOWNTOP;
}
do_exec(){

...
reserved = VM_SIZE * percentage_reserved / 100;
min_ASLR = reserved * (rand() % 2);
max_ASLR = min_ASLR + VM_SIZE - reserved;
new_zone(min_ASLR, max_ASLR, mmap_base);
new_zone(min_ASLR, max_ASLR, huge_pages);
new_zone(min_ASLR, max_ASLR, thread_stacks);
...

}

Listing 7.1: ASLR-NG initialisation pseudo-code.

The direction of a specific-zone is a random bit with a probability of
pointing towards the middle of the allocation range inversely proportional
to the distance of the base address to the middle – the expression is in
Listing 7.1. In other words, if the base address is close to the border of the
allocating range, then the direction is more likely to point toward the other
side of the range. This way, objects will not accumulate at the borders of
the allocation area.

A detailed analysis of the distribution of the objects at the borders of
the allocation area is beyond the remit of this paper, but for now we can
say that the presented algorithm to determine the direction gives a fair
distribution along the whole range, with no accumulation areas (addresses
with higher probability), regardless of the number of objects in the zone
and the workload mix.

The algorithm employed to allocate an object works by first selecting a
value as a hint address, in order to place the object, and then to look for a
free gap in which to actually place the object. The algorithm is as follows:

1. Obtain the hint address and the direction:

• if it is to a specific-zone, then the hint address and the direction
are the ones from the specific-zone.

• if it is an isolated object, then the hint address is a random
value from the allocation range [min ASLR, max ASLR] and the
direction is top-down.



132 Chapter 7. ASLR-NG: Address Space Layout Randomisation Next ...

2. Look for a gap large enough to hold the request from the hint address
to the limit of the allocation area determined by the direction. If
found, then succeed.

3. Look for a gap large enough to hold the request from the hint address
to the limit of the allocation area determined by the reverse direction.
If found, then succeed.

4. Look for a gap large enough to hold the request from the full VM space,
starting from the allocation area and working towards the reserved
area. If found, then succeed.

5. Out of memory error.

Even if there is no reserved area, step 4 is necessary to guarantee that the
whole virtual memory is covered properly. For example, as illustrated in
the Figure 7.4.d, the gaps [ld.so ↔ mmap base] and [mmap base ↔ vDSO]
are not suitable for a large request, but the gap [ld.so↔ vDSO] can be used
if a global search is done.

7.6.4 Profile modes

The basic ASLR-NG design provides two possibilities for allocating each
object: isolated or in a specific-zone. From a security point of view, the
more isolated objects, the better, but there are multiple side effects that
should be carefully considered and balanced, as described in section 7.5. In
order to simplify the configuration of ASLR-NG, we provide four different
working modes or profiles. Each mode randomises each object using the
isolated or the specific-zone method. The four modes are summarised in
Table 7.2, and a representative example of each one is sketched in Figure 7.4.
Next is the design rationale for each mode:

Mode 1 - Concentrated: all objects are allocated in a single specific-
zone, which results in a compact layout. The number of entropy bits is not
degraded but only the correlation entropy between them. In other words,
the cost (if brute force were used) to obtain the address of an object is not
reduced by using this mode. The goal is to reduce the footprint of the page
table.

Mode 2 - Conservative: this mode is equivalent to that used in Linux
and PaX. The main stack, the executable and the heap are independently
randomised, while the rest (libraries and mmaps) are allocated in the mmap
specific-zone. Since the objects are randomised using the full allocation
range, ordering is not preserved; for example, the stack may be below the
executable.



Chapter 7. ASLR-NG: Address Space Layout Randomisation Next ... 133

Modes

Feature 1 2 3 4

Sub-page in ARGV 3 3 3 3

Randomise direction 3 3 3 3

Bit-slicing 3 3 3 3

Isolate stack, executable and heap 3 3 3

Specific-zone for huge pages 3 3

Randomise specific-zones per child 3 3

Sub-page in heap and thread stacks 3 3

Specific-zone for thread stacks 3

Specific-zone for read-write-exec objects 3

Specific-zone for exec objects 3

Isolate thread stacks 3

Isolate LD and vDSO 3

Isolate all objects 3

Table 7.2: ASLR-NG mode definition.

Mode 3 - Extended: this is an extension of the conservative mode,
with additional randomisation forms: 1) specific-zones for sensitive objects
(thread stacks, heap, huge pages, read-write-exec and only executable ob-
jects); 2) sub-page randomisation of the heap and thread stacks and 3)
per-fork randomisation.

This can be considered a very secure configuration mode which addresses
most of the weaknesses and sets a reasonable balance between security and
performance. Therefore, this should be the default mode on most systems.

Mode 4 - Paranoid: every object is independently randomised, and no
specific-zones are used. As a result, there is no correlation between any ob-
jects, which could even prevent future sophisticated attacks. It is intended
to be used on processes that are highly exposed, for example networking
servers, but should be carefully used when applied globally to all system
processes because of additional memory overheads.

7.6.5 Fine grain configuration

Each profile mode is defined by a set of features. The following Table 7.2
lists the ASLR-NG configuration options enabled on each mode.

Sub-page in ARGV: ASLR-NG randomises all the sub-page align bits.
Although the arguments/environment are in the stack area, the page align
bits of ARGV can be randomised.



134 Chapter 7. ASLR-NG: Address Space Layout Randomisation Next ...

stack thread3

stack thread3

stack thread3

stack thread1
Libc.so

mmap file a

Executable

stack

Heap (brk)

ld.so

vDSO

stack thread2

VM space

mmap_base

stack thread1

Libc.so
mmap file a

Executable

stack

Heap (brk)

ld.so

vDSO

stack thread2

VM space

stack thread1

Libc.so
mmap file a

Executable

stack

Heap (brk)

ld.so

vDSO

stack thread2

VM space

stack thread1

Libc.so

mmap file a

Executable

stack

Heap (brk)

ld.so

vDSO

stack thread2

VM space

(a) Concentrated (b) Conservative (c) Extended (d) Paranoid
LOW_ADDR

HIGH_ADDR

Figure 7.4: ASLR-NG: Profile mode examples.

Randomise direction: the direction of a specific-zone is re-randomised
for every new allocation. As a result, even libraries that typically are loaded
sequentially will have some degree of randomness, which is especially useful
in the concentrated profile, because it shuffles objects.

Specific-zone for huge pages: if enabled, ASLR-NG uses a different
specific-zone to map huge pages.

Specific-zone for thread stacks: If enabled, thread stacks are allo-
cated in a designated specific-zone.

Inter-Object to Stack, Executable and Heap: each one of these
objects is independently randomised, which is the default behaviour for
Linux and PaX. It was added to support the concentrated mode by disabling
it.

Randomise specific-zones per child: When a new child is spawned,
all specific-zones are renewed, which results in a different memory map
between the parent and the child, as well as any siblings among them.

Sub-page in heap and thread stacks: applies sub-page randomisation
to the thread stacks and the heap. This feature can also be used from
user-land on a per-object basis, by calling the mmap() with the new flag
MAP INTRA PAGE.



Chapter 7. ASLR-NG: Address Space Layout Randomisation Next ... 135

Isolate thread stacks: randomises thread stacks individually. This
feature can also be requested by using the MAP RND OBJECT flag when calling
mmap().

Isolate LD and vDSO: by enabling this feature, ASLR-NG loads these
objects individually instead of using the classic library/mmap zone.

Bit-slicing: enabling this feature, ASLR-NG generates a random num-
ber at boot time which is later used to improve the entropy of some objects
when they must be aligned, typically for cache aliasing performance. In-
stead of setting the sensitive bits to zero, they are set to the random value
generated at boot.

We have used the core idea of this novel randomisation form to address
a security issue in the Linux kernel 4.1, to increase entropy by 3 bits in the
AMD Bulldozer processor family [67].

Isolate all objects: all objects are independently randomised. The
leakage of any object cannot be used to de-randomise any other. This
feature can be used in very exposed or critical environments where security
is paramount.

7.7 Evaluation

This section compares ASLR-NG with Linux and PaX. Firstly, subsec-
tion 7.7.1 compares the main randomisation forms to identify the new fea-
tures introduced by the ASLR-NG. In subsection 7.7.3 the entropy bits for
32 and 64 bits in the x86 architecture are compared, and finally the corre-
lation entropy of the objects is presented.

7.7.1 randomisation forms

Linux and PaX provide very few randomisation forms, and furthermore they
do not generalise them either. For example, they do not provide sub-page
or inter-object randomisation for thread stacks.

ASLR-NG extends already used forms of entropy to most objects and
provides new forms to prevent correlation attacks [25]. It worth mentioning
the concept of specific-zones, which is a simple mechanism employed to
group together sensitive objects and isolate them from the rest. Table 7.3
summarises the main features of Linux, PaX and ASLR-NG.



136 Chapter 7. ASLR-NG: Address Space Layout Randomisation Next ...

Feature and forms Linux PaX ASLR-NG

Inter-object in stack, exec. and heap 3 3 3

Sub-page in main stack 3 3 3

Sub-page in ARGV and heap (brk) 3 3

Inter-object in LD and vDSO 3

Inter-object in thread stacks 3

Sub-page in thread stacks 3

Load libraries order randomised 3

Multiple specific-zone support 3

Randomise specific-zones per child 3

Bit-slicing randomisation 3

Sub-page per mmap request 3

Inter-object per mmap request 3

Uniform distribution 3

Full VM range 3

Table 7.3: Comparative summary of features.

7.7.2 ASLRA: ASLR Analyser tool

Although it is possible to analyse code and determine any entropy expected
from them, there are too many interactions and dependencies between the
code that generate random values and code that finally assigns the address
to the object. In fact, results from externally observed entropy have been
used to detect several defects in both Linux and PaX implementations [67–
69].

The PaX team developed a tool called paxtest (included in most Linux
distributions) to estimate, among other features, the entropy of objects.
It uses a custom ad hoc algorithm to guess effective entropy bits. This
algorithm has been designed assuming that the underlying distribution is
uniform with a power of 2 range. When these conditions do not hold, the
result is incorrect. Also, it does not provide basic statistical information
about the observed distribution. For example, PaX suffers from non-uniform
weaknesses (see section 7.4.2) on most mappings, which are not detected by
the paxtest, and entropy is overestimated.

We have developed ASLRA, a test suite, which can be used to measure
and analyse the entropy of objects. ASLRA is composed of two utilities: 1)
a sampler program, to collect the addresses of objects, and 2) an analyser
utility, to perform specific statistical analysis and display the results. Be-
sides the basic statistical parameters (range, mean, median and standard
deviation), the analyser calculates three different entropy estimators: flip-
ping bits, individual byte Shannon entropy and standard Shannon entropy.



Chapter 7. ASLR-NG: Address Space Layout Randomisation Next ... 137

Figure 7.5: ASLR analyser: Screenshot of PaX Heap (brk)

For our purposes, the most interesting entropy estimator is standard Shan-
non entropy, which is calculated by the following expression, where p(x) is
the estimated probability of the address x:

H(X) = −
∑
x∈X

p(x) log2 p(x)

The resulting entropy value is a good measure of dispersion or ‘surprise’,
but it must be interpreted with caution [70]. In most cases, it is an accurate
estimation of the cost of an attack, but only if it is a uniform distribution.
It is especially problematic for those distributions with a high kurtosis,
because the attacker can focus on a small range of values, thereby building
faster attacks. A detailed analysis of attacking strategies versus statistical
distributions is beyond the scope of this paper.



138 Chapter 7. ASLR-NG: Address Space Layout Randomisation Next ...

32-bits 64-bits
Object Linux PaX ASLR-NG Linux PaX ASLR-NG

ARGV 11 27 31.5 22 39 47
Main stack 19 23 27.5 30 35 43
Heap (brk) 13 23.3 27.5 28 35 43
Heap (mmap) 8 15.7 27.5 28 28.5 43
Thread stacks 8 15.7 27.5 28 28.5 43
Sub-page object - - 27.5 - - 43
Regular mmaps 8 15.7 19.5 28 28.5 35
Libraries 8 15.7 19.5 28 28.5 35
vDSO 8 15.7 19.5 21.4 28.5 35
Executable 8 15 19.5 28 27 35
Huge pages 0 5.7 9.5 19 19.5 26

Table 7.4: Comparative summary of bits of entropy.

7.7.3 Absolute address entropy

Absolute entropy is the effective entropy of an object when it is considered
independently.

Each ASLR has been tested in two different systems:

• 32-bits: a 32-bit x86 architecture, without PAE. Note that when an
i386 application is executed in a x86 64 system, the memory layout is
different. Our experiments are executed in a truly 32-bit system, and
so the virtual memory space available to any process is 3GB.

• 64-bits: a 64-bit x86 64 architecture. The virtual memory space
available for the user is 247 bytes.

Table 7.4 shows the measured entropy bits obtained in Linux, PaX and
ASLR-NG in both 32- and 64-bit systems. All the data presented in this
section are the result of running the sampler tool to collect a million samples
for each system. ARGV is the page in memory that hold the program
arguments.

Linux: In 32-bit systems, Linux provides only 8 random bits for most
objects, which is too low a value to be effective and can be considered
defeated. In 64 bits, although randomisation is higher for most objects,
there are still some objects (vDSO and ARGV) with much lower entropy,
which in turn may encourage attackers to use them.

Huge pages are less randomised, due to alignment constraints. In particu-
lar, in 32-bit systems, alignment resets those bits that the ASLR randomises,
and so huge pages are not randomised at all. Moreover, in 64-bit systems,



Chapter 7. ASLR-NG: Address Space Layout Randomisation Next ... 139

huge pages have 19 random bits, which gives some protection but still may
not deter local or remotely distributed attackers.

PaX/Grsecurity: In 32 bits, PaX provides much more entropy than
Linux in all objects. The libraries and mmapped objects have 15.72 bits of
entropy, in which case a brute force attack, at 100 trials per second, will
need a few minutes to bypass the PaX ASLR. The lowest randomised object
(but huge pages) is the executable. Surprisingly, its entropy is smaller than
in 64-bit Linux. The additional entropy bits of the ARGV, main stack
and heap are due to sub-page randomisation. The decimal values of the
mmapped objects are caused by non-uniform distribution – as explained in
section 7.4.2.

PaX is much better than Linux in 32 bits, but quite similar in 64 bits.

ASLR-NG: In 32 bits, libraries and mmapped objects have almost 20
bits of entropy, which is comparable with the minimum randomised objects
in 64-bit Linux (vDSO and ARGV). Because of the small VM space in 32
bits the entropy is intrinsically limited, but thanks to the ability of the
ASLR-NG to use the full address range to allocate any object, it increases
entropy by up to 20 more bits than Linux and 12 more than PaX. Although
ASLR-NG provides the highest randomisation for huge pages, the alignment
constraint (which resets the lowest 22 bits) only leaves the possibility of
randomising the highest 10 bits.

In 64 bits, ASLR-NG provides up to 15 more bits than Linux and 14 more
than PaX. Regarding huge pages, Linux and PaX have 1 million possible
places to load huge pages compared with the 67 million of ASLR-NG. This
increment in entropy, jointly with the specific-zone for huge pages, increases
the cost for an attacker to guess where they are placed and at the same time
prevents using them in correlation attacks.

Hence, ASLR-NG outperforms Linux and PaX ASLR in both 32- and
64-bit systems.

7.7.4 Correlation in ASLR-NG

ASLR-NG addresses correlation weakness by randomising objects and specific-
zones independently. Obviously, all the objects allocated in the same specific-
zone are correlated together, but they are uncorrelated in relation to other
specific-zones or objects.

The concentrated mode, by definition, is fully correlated to provide a
compact layout to systems with low resources. The conservative mode is
close to Linux and PaX but prevents using the stack, executable and heap
in correlation attacks.



140 Chapter 7. ASLR-NG: Address Space Layout Randomisation Next ...

In extended mode, ASLR-NG extends the conservative mode by five
specific-zones to isolate objects of different criticality levels. The paranoid
mode goes a step beyond, though, by removing the correlation between all
pairs of objects (no specific-zones are created), but as far as we know, ex-
ploiting the correlation between objects in the same category is not useful.
Typically, a single library contains enough gadgets to build ROP exploits,
and so it is not necessary to de-randomise other libraries.

7.8 Conclusions and future work

In this paper, we have shown that Linux and PaX ASLRs are weak, and
four weaknesses have been presented to demonstrate this point. We devel-
oped ASLRA, a tool to analyse ASLR implementation, which helped us
to identify and evaluate these weaknesses, and we also designed ASLR-NG,
a realistic ASLR which includes novel randomisation forms and maximises
entropy. We have shown the effectiveness of the ASLR-NG against mul-
tiple attack vectors (absolute and correlated attacks) and have developed a
working prototype in Linux 4.1 which demonstrates the feasibility of ASLR-
NG.

The main features of ASLR-NG are:

• Uses full memory space to randomise objects, which in turn provides
maximum entropy.

• A novel solution for reducing fragmentation, without reducing entropy.

• Objects containing sensitive information are automatically isolated.

• Sequentially loaded libraries are randomised.

• It provides strong protection against absolute and correlation attacks,
which effectively removes the four weaknesses previously identified.

Although in 64-bit systems ASLR-NG provides very strong protection,
in 32-bits the improvements made by ASLR-NG with respect to current
designs is more appealing because of the necessity of additional entropy.

ASLR-NG outperforms the PaX ASLR in all aspects, which as far as
we know is currently the best (most secure) design and implementation of
ASLR.



Part III

Diversification Through
Emulation

141





Chapter 8

DRITAE: Diversified Replication

Infrastructure Through Architecture

Emulation

Since memory error exploitation usually relies on highly specific processor
characteristics, the same exploitation rarely works on different hardware ar-
chitectures. This chapter proposes a novel strategy to thwart memory error
exploitation by dynamically changing, upon crash detection, the variant ex-
ecuting the networking server.

Required software diversification among variants is automatically gener-
ated using off-the-shelf cross-compilation suites, whereas hardware diversi-
fication relies on efficient processor emulation tools.

Contents
8.1 Introduction . . . . . . . . . . . . . . . . . . . . 144
8.2 Background and challenges . . . . . . . . . . . 146

8.2.1 Memory errors . . . . . . . . . . . . . . . . . . 147
8.2.2 Protection mechanisms . . . . . . . . . . . . . 148
8.2.3 Networking server weakness . . . . . . . . . . . 149

8.3 DRITAE architecture . . . . . . . . . . . . . . . 150
8.3.1 Creation of variants . . . . . . . . . . . . . . . 151
8.3.2 Execution of Variants . . . . . . . . . . . . . . 152
8.3.3 Memory error detection . . . . . . . . . . . . . 153
8.3.4 Variant replacement strategy . . . . . . . . . . 154

8.4 Case study: Web server . . . . . . . . . . . . . 156
8.4.1 Building cross-compilers . . . . . . . . . . . . . 157
8.4.2 Qemu emulator . . . . . . . . . . . . . . . . . . 158
8.4.3 Detecting crashes . . . . . . . . . . . . . . . . . 159
8.4.4 Alternating among variants . . . . . . . . . . . 161

8.5 Experimentation and results . . . . . . . . . . . 162
8.5.1 Fault manifestation . . . . . . . . . . . . . . . . 162
8.5.2 Protection against attacks . . . . . . . . . . . . 164
8.5.3 Spatial and temporal cost . . . . . . . . . . . . 165

8.6 Discussion . . . . . . . . . . . . . . . . . . . . . . 167
8.7 Conclusions and future work . . . . . . . . . . 168

143



144 Chapter 8. DRITAE: Diversified Replication Infrastructure ...

8.1 Introduction

Computer systems are under constant threat by hackers attempting to seize
unauthorised control for malicious ends. Memory errors have been around
for over 30 years and, despite research and development efforts carried out
by academia and industry, they are still included in the CWE SANS top
25 list of the most dangerous software errors [3]. Classically, they were
exploited by pursuing the remote injection of binary code into the target
application’s memory and then diverting the control flow toward the in-
jected code. Today, memory error exploitation has evolved into code-reuse
attacks, where no malicious code is injected and legitimate code is reused
for malicious purposes [15]. Interested readers can find in [71] a very de-
tailed analysis of the past, present and future of memory errors, and as the
authors conclude, “they still represent a threat, undermining the security
of our systems.”

Different approaches have been proposed and developed so far, in order
to eradicate or mitigate memory errors and their exploitation. The use
of safe languages [72] is maybe the most effective approach, since it re-
moves memory error vulnerabilities entirely. The idea consists of imposing
stronger memory models on programming languages, in order to increase
their safety. Other effective strategies for fighting against memory error in-
filtration rely on bounds checkers [73], which audit programs execution for
out-of-bounds accesses, or the deployment of countermeasures to prevent
overwriting memory locations [32], detecting code injections in the early
stages [74] or preventing attackers from finding, using or executing injected
code [75]. Commonly, these techniques rely on keeping secret key informa-
tion required by attackers to break the system’s protection. It must be also
noted that all of them lead protected systems or applications to crash in the
case of memory errors. Although not perfect, these solutions have shown
their usefulness in greatly reducing the success rates of attackers, which is
why they are nowadays incorporated in most computer systems [76].

The decision to abort an application, to hinder an attack, can be called
into into question, however, especially in the context of networking business-
critical services. It has been reported that the cost of one hour of downtime
for an airline reservation centre is about $89,000, while for eBay this figure is
about $225,000 and in the case of credit card authorisation the cost shoots
up to $6,450,000 [77]. In order to deal with this unavailability problem,
modern server-oriented architectures commonly make use of process-based
abstractions as error containment regions [78]. As a result, and despite the
crashing of a concrete process serving a particular request, the server may
continue to process ongoing and new requests.



Chapter 8. DRITAE: Diversified Replication Infrastructure ... 145

Another pending issue in existing crash-based protection techniques re-
lates to their inability to keep the confidentiality of secret key information in
the presence of brute force attacks. Depending on the protection technique
and how the targeted application is internally ‘architectured’, the number
of tries or guesses required to establish the secret varies; for instance, it
takes around 216 seconds to bypass the address space layout randomisation
mechanism included in an Apache server running on Linux [14]. Unfortu-
nately, this is too short a time to enable system administrators to deploy
any effective countermeasure.

In order to face the problem of brute force attacks, PaX developers group
recommendation relies on combining existing protection techniques with
a “crash detection and reaction mechanism” [31]. This approach could
be applied to any protection technique that causes the attack process to
crash (wrong guess in relation to secret key information), thus becoming
detectable. As already mentioned, nowadays very limited actions are usually
taken when brute force attacks are detected: either the service is shutdown,
accompanied by the subsequent economic cost, or it keeps running and an
alert is issued to administrators, who may not be able to intervene fast
enough to prevent a successful intrusion.

Diversification is an approach with a great deal of potential to build ef-
fective defences against attacks in general and brute force attacks against
Web servers in particular. Applied to systems development, diversification
can be seen as a system (or application) with at least two variants, plus
a decider which monitors results from variant execution, in order to make
decisions affecting their execution [79]. These variants are different versions
of the same application (coming from different designs and/or implementa-
tions) that, although being different, behave as expected from their specifi-
cation, i.e. they provide the same service as perceived by users. However,
differences existing among variants lead them to exhibit dissimilar sets of
vulnerabilities – and thus different degrees of sensitivity – against accidental
and malicious faults.

The proposal presented in this paper builds on the principle that the
exploitation of memory errors relies on highly specific processor charac-
teristics, so the same procedure rarely works on different hardware archi-
tectures. Obviously, diversifying the hardware also means diversifying the
considered software. Software diversification, i.e. the production of server
variants, will be achieved by using off-the-shelf, cross-compilation suites,
whereas hardware diversification relies on the emulation of different proces-
sor architectures. In this way, some vulnerabilities which manifest in a given
architecture could be removed just by changing the execution platform to
another particular architecture in which existing software faults no longer



146 Chapter 8. DRITAE: Diversified Replication Infrastructure ...

constitute a form of vulnerability. So, basically, a variant replacement pol-
icy is deployed when detecting a process crash issued as a result of memory
errors. The approach can be combined seamlessly with existing protection
techniques to complement a highly secure mechanism in the fight against
memory error exploitation.

The key contributions of this paper are as follows:

1. It proposes a multi-architecture variant system running on a single
platform, taking advantage of improvements in emulation support.

2. It employs off-the-shelf, cross-compilation toolchains as a diversifica-
tion technique.

3. A novel recovery strategy, after an attack attempt, is developed that
maintains service continuity while invalidating brute force attacks and
preventing the manifestation of some accidental faults.

4. The paper demonstrates, through two case studies, the effectiveness
and portability of the technique as well as low implementation costs
thanks to the reuse of already existing tools.

The rest of this paper describes this proposal in detail. Section 8.2 pro-
vides the background required to understand the problem tackled by this
solution. Section 8.3 details the DRITAE approach, whereas section 8.4
reports all practical aspects related to its deployment on a real Web server
running on two different platforms. The results produced by the evaluation
of the developed prototypes are presented in section 8.5 and discussed in
section 8.6. Finally, conclusions are provided in section 8.7.

8.2 Background and challenges

This section describes a number of vulnerabilities that commonly lead to
memory errors, already existing mechanisms developed to cope with this
problem and attacks that could be used to bypass these mechanisms and suc-
cessfully exploit existing vulnerabilities in the context of networking servers.
Finally, an identification of the common characteristics of presented vul-
nerabilities and attacks paves the way to defining a new architecture for
memory error prevention. Figure 8.1 maps the various notions introduced
in this section in relation to the well-known AVI (Attack + Vulnerability
→ Intrusion) model [80].



Chapter 8. DRITAE: Diversified Replication Infrastructure ... 147

Crash failure

Vulnerabilities:
buffer overflow, 
off-by-one,
integer underflow,
...

Protection techniques:
SSP, NX,  ALSR, ...

Attacks

Memory errors

Exploits

Security failures:
root shell,
db dump,

...

Figure 8.1: Mapping memory errors to the AVI model

8.2.1 Memory errors

Memory errors usually derive from the exploitation of vulnerabilities (de-
picted as a wall with holes in Figure 8.1) existing in a given application
caused by software faults introduced during its implementation. The most
common software faults leading to memory errors include off-by-one, integer
and buffer overflow vulnerabilities.

Off-by-one [81] vulnerabilities write one byte outside the bounds of al-
located memory, and they are often related to iterative loops iterating once
too often or common string functions incorrectly terminating strings. For
instance, the bug reported by Frank Bussed [82] in the libpng library al-
lowed remote attackers to crash an application via a crafted PNG image
that triggered an out-of-bounds read during the copying of error message
data.

Integer vulnerabilities [83] are usually caused by an integer exceeding
its maximum or minimum boundary values. They can be used to bypass
size checks or to allocate buffers to a size too small to contain the data
copied into them. A recent bug discovered in the libpng library did not
properly handle certain malformed PNG images [84], and it therefore al-
lowed remote attackers to overwrite memory with an arbitrary amount of
data, and possibly have other unspecified impacts, via a crafted PNG im-
age. Vendors affected included Apple, Debian GNU/Linux, Fedora, Gentoo,
Google, Novell, Ubuntu and SUSE, among others.

Buffer overflows [11] are caused by overrunning the buffer’s boundary
while writing data into said buffer, which allows attackers to overwrite data
that controls the program execution path and hijack control of the program



148 Chapter 8. DRITAE: Diversified Replication Infrastructure ...

to execute the attacker’s code instead of the process code. A recent stack-
based buffer overflow example can be found in the cbtls verify function in
FreeRADIUS, which causes server crashes and possibly executes arbitrary
code via a long ‘not after’ time stamp in a client certificate [85].

Over the last decade, different techniques have been developed to prevent
attackers from successfully exploiting these vulnerabilities, thus reducing
the chance of causing memory errors.

8.2.2 Protection mechanisms

The most effective protection techniques commonly used nowadays to fight
against memory errors, represented as a grid in Figure 8.1, comprise address-
space layout randomisation, stack-smashing protection, a non-executable bit
and instruction set randomisation.

Address space layout randomisation (ASLR) [31]. Whenever a
new process is loaded in main memory, the operating system loads different
areas of the process (code, data, heap, stack, etc.) in random positions
in the virtual memory space of the process. Attacks relying on knowing
precisely the absolute address of a library function, such as ret2libc, or
the already injected shell code, are very likely to crash the process, thereby
preventing successful intrusion.

Stack-smashing protection (SSP) [17]. A random value, commonly
known as a canary, is placed on the stack, just below the saved registers
from the function prologue. This value is checked at the end of the function,
before returning, and the program aborts if the stored canary does not
match its initial value. Any attempt to overwrite the saved return address
on the stack will also overwrite the canary and lead to a process crash, to
prevent intrusion.

The non-executable bit (NX), or “W⊕X” [32]. Memory areas
(pages) of the process not containing code are marked as non-executable,
so they cannot be written. On the other hand, those areas containing data
are marked as just writeable, so they cannot be executed. Processors must
provide hardware support to check for this policy when fetching instruc-
tions from main memory. Even if an attacker successfully injects code into
a writeable (not executable) memory region, any attempt to execute this
code will lead to a process crash.

Instruction set randomisation (ISR) [86]. This technique randomly
modifies the instructions (code) of the process, so they must be properly
decoded before being effectively executed by the processor. Successful bi-
nary code injection attacks will crash the process, as decoding the injected



Chapter 8. DRITAE: Diversified Replication Infrastructure ... 149

child

child

server

fork()

Clients

child

Server group of processes

Figure 8.2: Multi-process model for server architectures

code will not produce correct instructions. Unlike previous techniques, ISR
is less commonly used.

Despite the high levels of protection provided by these techniques, their
effectiveness is reduced significantly in the case of networking servers. Typ-
ically, the implementation of this type of server is crash-resilient (see crash
failure in Figure 8.1), which increases the availability of the provided ser-
vice; however, this makes them very sensitive to brute force attacks (note
the grid hole leading to security failures in Figure 8.1). The next section
focuses on this problem.

8.2.3 Networking server weakness

Traditionally, networking server architectures [87] have come in two main
packages: thread-based and process-based architectures.

Multi-threaded architectures associate incoming connections with sepa-
rate lightweight threads. These threads share the same space address – and
thus global variables and states. Furthermore, they require small amounts
of memory and provide fast inter-thread communication and response times,
thereby making them suitable for high-performance servers. However, mem-
ory errors on one thread may corrupt the memory of any other thread, re-
sulting in compromised threads accessing sensitive data from the rest of the
threads.

The compartmentalisation philosophy promoted in security manuals bet-
ter fits multi-process architectures. Incoming connections are handled by
separate child processes which are forked (created) by making an exact
copy of the memory segments of the parent process in a separate address
space (see Figure 8.2). Although performance suffers from the effects of



150 Chapter 8. DRITAE: Diversified Replication Infrastructure ...

larger memory footprints and heavyweight structures, these architectures
are more suitable for, and typically used in, highly secure servers [87].

Nevertheless, the common operation of multi-process servers makes them
vulnerable to different attacks because, since all the children have the same
secrets (ASLR offset, canary value, etc.) as the parent, a brute force attack
can be created.

ASLR provides little benefit for 32-bit systems, as there are only 8 random
bits for mmapped areas, and the secret can be guessed by brute force in a
matter of minutes [14].

Applications protected with SSP are vulnerable to buffer overflows in the
heap or via function overwrites and/or brute force attacks [12]. The most
dangerous vulnerabilities are those allowing a ‘byte-for-byte’ brute force
attack, which will compromise the system through 1024 attempts (32-bit
machine), such as the latest pre-auth ProFTPd bug [38].

The NX technique is easily bypassed by overwriting the return address
on the call stack, so instead of returning into code located within the stack,
it will return into a memory area occupied by a dynamic library [36]. Typ-
ically, the libc shared library is used, as it is always linked to the program
and provides useful calls to an attacker (such as system("/bin/sh") to get
a shell).

ISR is vulnerable to brute force attacks, like SPP, and also to attacks
that only modify the contents of variables in the stack or the heap, which
causes control flow changes or the logical operation of the program [86].

Although several techniques have been proposed to date, to prevent the
successful exploitation of memory errors, the truth is that all of them can
be bypassed one way or another. The next section focuses on how to com-
plement these mechanisms with an approach that can be used to improve
their resilience against brute force attacks.

8.3 DRITAE architecture

The core idea behind DRITAE consists of having the same application com-
piled for different processors and replacing the executable process when an
error is detected. Each variant is executed in sequential order on the same
host by a fast processor emulator. In the case of a malicious attack, since
code execution is highly processor-dependent, changing the processor that
runs the application greatly hinders attack success. The DRITAE architec-
ture has the following elements:

1. A set of cross-compiler suites for creating the set of variants.



Chapter 8. DRITAE: Diversified Replication Infrastructure ... 151

2. A set of emulators for running the variants.

3. An error detection mechanism which triggers variant replacement.

4. A recovery strategy which selects the variant that will be used once
an error has been detected.

This approach maintains service continuity while trying to fix a fault (in
the case that the fault does not manifest in one of the variants) or difficulties
caused by a malicious attack.

8.3.1 Creation of variants

Many diversification techniques are based on compiler or linker customisa-
tions for the automatic generation of variants [88]. Although eliminating
the need to manually rewrite the source code for diversification, deploying
the required customisations on different compilers/linkers, or introducing
new modifications, is costly and prone to new errors.

The proposed approach (see Figure 8.3) promotes the use of already ex-
isting cross-compilers to generate variants, one for each target architecture,
in an easy and effective way. Cross-compiler toolchains provide the set of
utilities (compiler, linker, support libraries and debugger) required to build
binary code for a platform other than the one running the toolchain. For
instance, the GNU cross-compiling platform toolchain is a highly portable
widespread suite which is able to generate code for almost all 32- and 64-bit
existing processors.

Cross-compiler
CPU N

Variant 1

libs

Variant N

libs

Cross-compiler
CPU 1

Libs A

. . .

. . .

Libs Z

Source
code

Figure 8.3: Variant generation

Just by compiling the application source code for different target proces-
sors, the particular architecture of each processor will provide variants with
a different:



152 Chapter 8. DRITAE: Diversified Replication Infrastructure ...

Endianness and instruction set, so raw data and machine code injected
by attackers will be differently interpreted;

Register set, thus changing the stack layout (on non-orthogonal architec-
tures);

Data and code alignment, so unaligned instructions and word data type
will raise an exception;

Address layout, which results in different positions for functions and main
data structures according to resulting code size and data layout and

Compiler optimisations, some generic and some processor-specific, re-
sulting in register allocation, instruction reordering or function re-
ordering.

Furthermore, most applications use the services provided by one or more
libraries which are linked during the compilation process. For instance, the
standard C library provides an interface to the operating system (system
calls), basic algorithms (string manipulation, maths function, sorting, etc.),
type definition, etc. As several implementations of the C library exist to
attain different goals, such as licence issues, small memory footprint, better
portability or multi-thread support, among others, by linking variants with
different libraries it is possible to i) gain a higher degree of diversification
among them and ii) get rid of specific software faults that are not present
in some libraries.

This form of binary diversification preserves the semantic behaviour of
each variant, it is easy to implement, because of the reuse of widely available
and tested software, and it provides strong differentiation between resulting
binaries.

8.3.2 Execution of Variants

Variants require a proper execution environment, including the operating
system API, a system calls convention, a processor instruction set and the
executable file format, to be run. The native variant, i.e. one compiled
for the physical processor and operating system hosting the server, will run
in the native execution environment. However, as the rest of the variants
have been built for different processors, it is necessary to create a virtual
execution environment in which to run them all.

Nowadays, there are two different virtualisation1 solutions (see Figures 8.4)
that can be used to build a complete execution environment: i) platform
emulation, where the emulator provides virtual hardware to execute the



Chapter 8. DRITAE: Diversified Replication Infrastructure ... 153

guest operating system managing the guest application, and ii) user mode
emulation, where the emulator provides both processor virtualisation and
operating system services, translating guest system calls into host system
calls that are forwarded to the host operating system.

Guest
application
(variant)

libs

Host OS

Platform
virtualizer

Guest OS

CPU+IO
emulator

Syscalls

(a) Platform

Guest
application
(variant)

libs

Host OS

User-mode
virtualizer

CPU
emulator

Syscall
translator

Syscalls

(b) User-mode

Figure 8.4: Approaches to virtualisation

User-mode emulation is a less common form of emulation but offers bet-
ter performance, since the operating system code is directly executed by
the host processor. The emulator loads the guest-executable code into its
process memory space, and then it is dynamically translated into host na-
tive code and system calls are emulated (converted from a guest format to
the host and back). Conceptually, user-mode emulation is very close to the
Java Run-time Environment (JRE), which is a software emulator employed
for running the Java virtual machine specification. The main difference
between user-mode emulation and JRE is that the former emulates real
processors and real operating systems, while the latter emulates the Java
virtual machine specification.

According to these benefits, this proposal promotes the use of user-mode
emulation to create the execution environment required for each variant.
Thus, variants should be compiled for the same operating system of the
host machine (or a compatible counterpart).

8.3.3 Memory error detection

DRITAE architecture relies on existing protection mechanisms (SSP, ASLR,
etc.) to crash the compromised process. A monitor will be in charge of



154 Chapter 8. DRITAE: Diversified Replication Infrastructure ...

detecting these crash-related events and triggering the established variant
replacement strategy according to the defined security policy.

It must be noted that, although those techniques were initially developed
to face malicious faults, they also provide good coverage for accidental faults,
like wild pointers. Accordingly, the accidental activation of software faults
leading to memory errors will also crash the process and give the system a
chance to deal with them accordingly.

The precise diagnosis of whether the problem is related to an accidental
or malicious fault and its precise origin (kind of attack), to define a more
specific reaction, is still an issue for further research.

8.3.4 Variant replacement strategy

The widely used multi-process architecture of networking servers provides an
ideal scenario for deploying different security policies for variant replacement
upon the detection of memory errors. The proposed policy consists of three
successive stages (see Figure 8.5):

1. High-performance service.

2. Fault avoidance.

3. Confuse the attacker.

V0 V1 Vn Vrand

Native
binary

Try to avoid failure
Confuse

the attaker

Normal mode Degraded mode

errorerror error
error
or     

request

timeouts/administratior

Figure 8.5: Variants replacements policy



Chapter 8. DRITAE: Diversified Replication Infrastructure ... 155

8.3.4.1 Stage 1: High-performance service

Initially, the service is provided by the native variant, directly running on
the host computer, and thus it is free from any overhead due to vir-
tualisation. When detecting a crash, the system will enter into a fault
avoidance mode.

8.3.4.2 Stage 2: Fault avoidance

In this second stage, the system assumes that an attack, or an accidental
software fault, exists which could again cause a crash on another child. In
order to try to hinder or even prevent the successful exploitation of the
memory error, the next variant to be executed will be selected from among
those with more architectural differences with respect to the previously
selected one. For instance, a buffer overflow by one byte is likely to cause
an error on the i386 architecture but not on the SPARC one, due to the
different way the processor registers are managed, Apache chunked-encoding
is exploitable on 32-bit processors but not on 64-bit Unix platforms [89]
or a busybox integer overflow [90] only affects big endian systems. After
changing the variant, the service will be running in a performance-degraded
mode due to processor emulation overheads. This performance penalty also
hinders attackers by slowing down the attacks, which gives valuable time to
administrators to fix the problem. If no new crashes occur during a given
period, the system could automatically revert to the native mode to increase
its performance, or it could require an explicit command from the system
administrator to do so. In the case of new process crashes, the system will
keep changing from one variant to another until all of them have been tried.
When no new variants are available, the system will assume it is under a
brute force attack and the fault is manifesting on all variants, which requires
a more aggressive replacement policy.

8.3.4.3 Stage 3: Confuse the attacker

The third stage focuses on confusing a possible attacker, in order to reduce
as much as possible information that could be retrieved from unsuccessful
exploitation attempts. In the case of keeping a sequential variant replace-
ment, although highly difficult and time costly, expert attackers may finally
guess the processor architecture of some variants and could develop some
form of exploitation to compromise the system. Accordingly, the proposed
policy relies on randomly selecting the next variant to be executed, which
makes it more difficult to launch a brute force attack. The policy to revert
to native mode is the same as in the second stage.



156 Chapter 8. DRITAE: Diversified Replication Infrastructure ...

Obviously, different policies should be defined according to the particu-
lar needs and resources available to each server, such existing variants or
diagnosis and detection capabilities, so they vary from one particular case
to another.

Since each request is redirected to a different variant independently, re-
gardless or whether or not they crash, brute force attacks are no longer
possible.

8.4 Case study: Web server

In order to prove the feasibility and portability of the DRITAE, an HTTP
server running on a computer and an smartphone has been chosen as a case
study.

The first hardware platform, selected as a representative of a common
platform for Web servers, consists of a computer running an Ubuntu 12.04.1
LTS operating system. The PC is equipped with an x86 64 Intel Core i3-
370M CPU, clocked at 2.4 GHz and with 3072 MB RAM.

The second target platform, selected to show the portability of DRITAE,
even to devices with limited resources, is a Samsung Galaxy S smartphone
running the Android 2.3.6 operating system. The smartphone is equipped
with a 1 GHz ARM Cortex A8 processor with 512 MB RAM and a PowerVR
SGX 540 GPU.

The busybox-httpd application [91] has been selected to provide the re-
quired networking service. It is a complex, fully featured application, widely
used on many platforms, including smartphones, routers and media play-
ers, running in a variety of POSIX environments such as Linux, Android
and FreeBSD, among others. The busybox application consists of a single
executable file that can be customised to provide a subset of over 200 utili-
ties specified in the Single Unix Specification (SIS) plus many others that a
user would expect to see on a Linux system, including the httpd Web server
considered in this case study.

The following sections describe in detail the particular instantiation of all
the elements required to deploy DRITAE, including variants created using
cross-compilation, processor emulation support, the detection mechanism,
the recovery strategy deployed for variant replacement procedure and the
security policy. It must be noted that the following implementation has been
seamlessly applied to both considered hardware platforms (PC and smart-
phone) albeit with minor changes. An overview of the concrete prototype
developed for the smartphone is depicted in Figure 8.6.



Chapter 8. DRITAE: Diversified Replication Infrastructure ... 157

SH4
httpd

server

fork()

Qemu

child

Qemu

child

Qemu

child

Qemu

PPC
httpd

server

fork()

Qemu

child

Qemu

child

Qemu

child

Qemu

Android

Monitor
(native arch.)

IP-tables

network

core dump
handling

?!?

Clients

Internet

child

child

server

fork() child

ARM (native)
httpd

MIPS
httpd

server

fork()

Qemu

child

Qemu

child

Qemu

child

Qemu

Figure 8.6: System prototype overview for the smartphone

8.4.1 Building cross-compilers

In order to build the binary images (httpd variants) for each target ar-
chitecture, a cross-compiling toolchain suite is required for each of them.
One possibility consists in downloading pre-compiled versions from differ-
ent projects or providers, which would not be flexible enough to achieve the
desired level of diversification. On the other hand, the required toolchain
suites could be built from the source code of each element (compiler, linker,
library and debugger) to acquire greater controllability when creating vari-
ants.

Although building a toolchain is quite tricky, due to the strong depen-
dence among elements, thanks to the buildroot project1 it is possible to
build (and customise) a GNU toolchain very easily. Buildroot uses the
same source code configuration tools as the Linux kernel, commonly known
as menuconfig, which presents a simple menu interface (see Figure 8.7) guid-
ing the user to configure code features while avoiding conflicting or incom-
patible options.

1Buildroot project: http://buildroot.net



158 Chapter 8. DRITAE: Diversified Replication Infrastructure ...

Figure 8.7: Buildroot configuration menu interface

Buildroot V2012.05 was selected for this case study and, according to
the target architectures, generation parameters were customised to build
the required cross-compilers: i) according to the host operating system the
selected Kernel Headers were “Linux 3.2.x kernel headers”, ii) considered
Target Architecture include the native ones, “x86 64” and “ARM”, and
some others with very different architectures, like “SPARC”, “i386”, “SH4”,
“MIPS”, and “PowerPC”, iii) the uClibc C library version was “uClibc
0.9.32.x”, and iv) as the selected version of the processor emulator does
not support “Native POSIX Threading (NPTL)” for all architectures, the
“linuxthreads (stable/old)” thread library implementation was used. The
remaining options were configured to be as similar as possible, in order to
perform an accurate comparative analysis.

8.4.2 Qemu emulator

Qemu [92] is a generic, open source and fast machine emulator and vir-
tualiser that uses a portable dynamic translator for various target CPU
architectures. Just as an example of its high quality and popularity, it is
the base of the Android emulator currently distributed within the Android
SDK. Besides the standard CPU emulation mode, Qemu implements user-
mode emulation, which can run a single program (process) in a complete
virtualised environment and constitutes the core of the DRITAE approach,
as described in section 8.3.2. User mode emulation is not limited to statically
compiled binaries, as it can also load dynamic libraries, thereby enabling
the direct execution (emulation) of most existing applications.

Combining user mode emulation with the Linux capability to run arbi-
trary executables (called binfmt misc), it is possible to run a guest binary



Chapter 8. DRITAE: Diversified Replication Infrastructure ... 159

executable (variant) as if it were a native one. Note that it is the operat-
ing system kernel and not a module of the command interpreter or another
user application which interprets the executable format. In fact, all variants
(regardless of the target processor) use the same operating system and can
access the same directory hierarchy and network interfaces. Thanks to this
form of emulation, it is not necessary to set up a complete virtual platform,
and variants are transparently and more efficiently executed as if they were
native processes.

8.4.3 Detecting crashes

The core dump facility of Linux (also available on many operating sys-
tems) was selected as a suitable tool for detecting the abnormal termina-
tion of variants. Core dumps are triggered by different signals (see Ta-
ble 8.1). The operating system infrastructure for dumping process core
images (/proc/sys/kernel/core pattern file) provides, since Linux 2.6,
facilities to send the core image to a crash reporter program along with
command-line information about the crashed process.

Although core dumps provide lots of useful information for diagnosing and
debugging programming errors, the proposed approach just requires a noti-
fication that the process has crashed, regardless of its cause (as previously
mentioned, this could be an enhancement requiring further research). The
core pattern file is configured (see Listing 8.1) to call a tiny shell script
log crashes.sh (see Listing 8.2) whenever any system process crashes.
This script will receive the PID of the crashed process (%p), the trigger-
ing signal (%s), the executable filename name (%e) and the time of dump

Signal Description

SIGQUIT Quit from keyboard
SIGILL Illegal instruction
SIGABRT Abort signal from abort(3)
SIGFPE Floating point exception
SIGSEGV Invalid memory reference
SIGBUS Bus error (bad memory access)
SIGTRAP Trace/breakpoint trap
SIGXCPU CPU time limit exceeded
SIGXFSZ File size limit exceeded
SIGIOT IOT trap. A synonym for SIGABRT

Table 8.1: Signals leading to a core dump



160 Chapter 8. DRITAE: Diversified Replication Infrastructure ...

(%t), following which it will append a single line containing the received
information into a file named /var/log/m/crashes.log.

echo "|/var/log/m/log_crashes.sh %p %s %e %t"
>/proc/sys/kernel/core_pattern

Listing 8.1: Command for configuring core pattern

The Linux inotify mechanism, which provides an efficient file system
events monitoring service, has been used to monitor when new entries are
written in the crashes.log file. This allows one to read new entries from
the file and consider only those caused by variant processes without over-
heads. Note that the monitor is compiled for the native architecture and
will be blocked (inactivated) until a new entry is written.

#!/bin/bash

pid=$1
signal=$2
ex_name=$3
time=$4

fcrash="/var/log/m/crashes.log"

echo "[$pid] [$signal] [$ex_name] [$time]" >> $fcrash

Listing 8.2: Saving core dump information into crashes.log

As the monitor is a critical component in this approach, it has been
designed so as to be simple and small, with the aim of minimising the
probability of introducing design or software faults. Another requisite was
to isolate the monitor from the application so that attackers would not
be aware of its presence and benefit from any communication channel to
interfere with it.

Contrary to other protection solutions, the monitor does not act as a
barrier between clients/attackers and servers or add new code or features
which attackers could exploit. The kernel facilities used to handle core files
enable the immediate detection of crashed variants, without modifications
to either the variants’ code or their configuration. Also, it is important
to note that it is a one-way communication channel with a very limited
and simple interface, which subsequently makes it extremely difficult to
successfully attack the monitor through this channel.



Chapter 8. DRITAE: Diversified Replication Infrastructure ... 161

8.4.4 Alternating among variants

Once the crash has been detected, the current variant shall be replaced
by another one according to the established replacement policy. The most
straightforward solution would be to stop (kill) all the processes (in the case
of a multi-process server) of the current variant and start up the next one.
However, this solution presents two important drawbacks: i) the failure of a
single server process serving a particular client is propagated to the rest of
the processes, and thus all ongoing connections are affected by the failure,
and ii) the service is unavailable until the next variant is up and running.

A less drastic solution can be implemented using kernel firewall facilities,
known as iptables, which allows a system administrator to customise the
tables provided by the Linux kernel firewall and the chains and rules it
stores. Using iptables, active connections are preserved for those server
processes that are working properly and can redirect the new connections
(clients) to the new selected variant, thus solving any µ-denial-of-service
(µ-DoS) or temporal service unavailability problems.

Following this approach, all variants are created and started as if they
were the actual server. Each variant is configured to listen for connections on
different ports (other than the external server port), which are blocked using
iptables to prevent external connections from directly accessing the variants.
The internal firewall is then configured to redirect incoming connections
from the service port to the active port of the current variant. When a
process of the current variant crashes, the policy of the recovery strategy
is applied to decide which will be the next variant, following which the
service port is redirected to the next variant port. A sample iptables rule
implementing this approach is shown in Listing 8.3.

Following the isolation design principle of the monitor, the variant selec-
tion procedure, implemented using the iptables facility, is an indirect mecha-
nism that benefits from the kernel IP routing tables. Variants are not aware
of the presence of the monitor and they are not modified in any way. In
this case, there is no communication channel through which attackers can
reach the monitor by accessing variants.

iptables -A PREROUTING -t nat -p tcp
--dport [service-port]
-j REDIRECT --to-ports [variant-port]

Listing 8.3: Firewall configuration to change the active variant

In this prototype, all variants are simultaneously launched when the ser-
vice is started. More advanced replacement and recovery policies enabled
by the kernel firewall facility are discussed in section 8.6.



162 Chapter 8. DRITAE: Diversified Replication Infrastructure ...

8.5 Experimentation and results

In order to assess the effectiveness of DRITAE, the prototypes considered
in the case study have been exposed to a number of exploitable vulnerabil-
ities, leading to memory errors. Results show the importance of properly
selecting hardware architectures to prevent the further exploitation of exist-
ing vulnerabilities, either because software faults no longer lead to memory
errors or because brute force attacks get confused. Finally, the temporal
and spatial overheads induced by the solution are analysed.

8.5.1 Fault manifestation

The exploitation of software faults leading to memory errors may present a
different manifestation according to the variant under execution, due to its
particular processor architecture. To illustrate this point, a buffer overflow
fault has been injected into the busybox httpd Web server (see Listing 8.4)
whereas, for the sake of clarity, off-by-one and integer underflow faults have
been manually injected into a standalone program (see Listing 8.5).

static int get_line(void) {
int count = 0;
char c;
char buffer[256]; // Injected code

...

...
strcpy(buffer, iobuf); // Injected code
return count;

}

Listing 8.4: Buffer overflow fault injected in busybox-httpd

The code injected into the httpd.c file, in the function get line(void)

(see Listing 8.4), constitutes a typical buffer overflow, similar to the one
found in Oracle 9 [93]. The URL of the HTTP request will be copied into the
added buffer but, as there is no length check, long URLs will flood the buffer
and cause a memory error. HTTP requests with increasing URL lengths
have been tested for each variant, and Table 8.2 lists the minimum length
required to crash the process. Results show that the SPARC architecture is
– by far – the most robust form of defence against that particular fault, so
it could be a good choice to prevent problems derived from buffer overflows.

The offByOne() function from Listing 8.5 line 1, inspired in one affecting
an FTP server [94], includes an offset-by-one software fault, since arguments
with a length of 128 will cause the strcpy() function to overflow the buffer
by just one byte (the appended ’\0’ char). Table 8.2 lists whether this fault



Chapter 8. DRITAE: Diversified Replication Infrastructure ... 163

void offByOne(char *arg) {
char buffer[128];
if(strlen(arg)>128) {
printf("Overflow\n");
exit(0);

}
strcpy(buffer, arg);

}

void intUnderflow(unsigned int len, char *src){
unsigned int size;
size = len - 2;
char *comment = (char *) malloc (size + 1);
memcpy (comment, src, size);

}

Listing 8.5: Code for off-by-one and integer underflow

manifests for two different variants created for each considered architecture:
one with the commonly used -O2 optimisation flag and the other with no
optimisations (-O0). The SPARC is again the most robust architecture, as
the fault does not crash the process, regardless of the selected optimisation
flags, whereas the SH4 architecture always crashes. It must be noted the
negative influence of compiler optimisations that, in general, produce less
robust variants.

The integer underflow software fault has been tested using a real-world
vulnerability [95] in a JPEG processing code. The code of the faulty
intUnderflow() function is shown on Listing 8.5 line 10. When 1 is passed
as the first parameter, the size variable has the value -1, which is inter-
preted as a large positive value (0xFFffFFff) in the third parameter of
the memcpy function (line 14) in a 32-bit architecture. This incorrect value
is then used to perform a memory copy into the buffer reserved by the

Off-by-one
Integer

underflow
Buffer

overflow
Variant -O2 flag -O0 flag bytes to crash

x86 64 Crash No crash Crash 68
i386 Crash No crash Crash 250
ARM Crash No crash No crash 62
MIPSEL No crash Crash No crash 258
SPARC No crash No crash Crash 1234
SH4 Crash Crash Crash 50
PPC No crash No crash Crash 70

Table 8.2: Number of attempts on different software faults.



164 Chapter 8. DRITAE: Diversified Replication Infrastructure ...

previous malloc(). The behaviour of a malloc() request for zero bytes
is implementation-dependent (some implementations return NULL, while
others return a pointer to the heap area). As shown in Table 8.2, only the
ARM and MIPSEL variants prevent the process from crashing.

8.5.2 Protection against attacks

The basic idea behind brute force attacks consists of making continuous
requests, trying all the possible values of an unknown secret (a memory
address or a random value, for instance), until the right value is found.
On systems equipped with ASLR, NX, and stack protector techniques, the
typical steps to build an attack are as follows:

1. Find out the offset to the canary on the stack. It can be estimated
accurately from the application image (we assume that the attacker
has got it), but it is common to verify the offset by testing sequentially
the position of the canary.

2. Find out the value of the canary (using brute force against the target).

3. Build the ROP2 sequence (based on the ELF). For simplicity, we will
assume that ROP gadgets come from the libc.

4. Find out the entry point of the ROP (using brute force against the
target).

Depending on the kind of error, not all of these steps are required; for
example, a memory error in the data segment can be exploited without
knowing the canary.

The final exploit string must have the correct values for all of the following
elements: canary value and offset, ROP sequence and entry point. Those
parts of the exploit that are not known by the attacker can be obtained
using brute force, by building partial exploitation up to the values that are
already known and then testing only the value that is missing. Any incorrect
value (or a partial string) is detected by the protection mechanisms and
the application is crashed. Since the protection mechanisms are applied
sequentially, the attacker is able to build a partial exploitation which only
affects one of these protections. Once the protection is bypassed, the next
one can be addressed.

Our solution nullifies the possibility of building exploitations in this way,
because the following basic assumptions no longer hold:



Chapter 8. DRITAE: Diversified Replication Infrastructure ... 165

• The active server target is not always the same, and so a fault can-
not be unequivocally interpreted as an incorrect value guess. Variants
may crash not only due to a wrong guess, but also due to different
memory layouts (invalid offsets) or endianness (invalid instruction/-
data format), for instance.

• Some software faults may not be found in certain variants (as pre-
viously discussed), which will be interpreted by exploitations as a
successful guess.

• Once an emulated variant is active, the performance of the server
is degraded due to the emulation overhead, which plays against the
attacker and increases the time required to guess the secret – in a
similar way to the GRKERNSEC BRUTE[96] option.

In [14], the authors show how the ASLR can be bypassed using a brute
force attack to find out the correct address for a return-to-libc. The pro-
posed exploitation succeeds, on average, in just 216 seconds. However, using
our technique, the current variant will be replaced when the monitor de-
tects a crash. In a variant with a different stack layout (the offset of the
return address) the attacker will be overwriting a wrong one, and so the
return address is not overwritten with the guessed value and consequently
the exploitation will never succeed.

The most dangerous way to bypass the SSP mechanism is by employing
the ‘byte for byte’ approach, whereas the most generic procedure consists
in a generic brute force attack [20]. In the first case, if attackers overwrite
individual bytes of the canary (secret), at most

(
256 · wordsize8

)
tries (1024

attempts for a 32-bit machine) are required to guess the right value, which
takes just a few seconds. For generic brute force attacks, attacks need to try
all the possible values of the secret (232 attempts at most for a 32-bit secret),
returning the first one that does not cause a crash. This kind of attack will
not be successful on the DRITAE architecture. After a variant is replaced,
the address being overwritten by the attacker is not that belonging to the
canary and thus it will wrongly assume that the secret has been accurately
guessed if the process does not crash. Alternatively, if it crashes (not related
to wrong guesses), the attack will keep erroneously discarding possible values.
From this point on, the next steps of the attack are completely useless.

8.5.3 Spatial and temporal cost

In spite of the great security benefits provided by DRITAE, there is also
a price to be paid in terms of spatial and temporal overheads, due to the
execution of multiple virtual environments.



166 Chapter 8. DRITAE: Diversified Replication Infrastructure ...

The spatial overhead refers to the amount of main memory consumed at
run time for each variant when it is interpreted by the processor emulator
(Qemu). This total amount of memory has three different components:
i) the size of the executable image of the variant, which depends on the
libraries selected for building the toolchain, the compiler optimisation flags
and the code density of the related architecture, ii) the size of Qemu’s
memory translation cache, where application code is dynamically translated
from the guest to the host architecture, and iii) the memory required by
Qemu itself. Note that native variants have no memory overheads, since
they are executed as if DRITAE has not been used.

The memory consumed by each variant has been estimated by means
of a set of pages that are unique to a process (‘unique set size’ - USS)
and been measured with the smem(8) tool. As both Qemu and variants are
statically compiled there is no shared memory other than those pages shared
between parent and children processes (all pages copied to children marked
as copy-on-write). Table 8.3 summarises the average USS memory for each
variant. Total memory used in the proposed implementation constitutes the
memory used by all running variants. By default, all variants are launched
but more conservative solutions can be used, where only the active and the
next variant are ready (launched).

The temporal overhead is introduced as a result of the emulation support
provided by Qemu when executing non-native variants. In the absence of
crashes, the native variant is executed without any temporal overhead. This
overhead has been estimated by means of the Apache HTTP server bench-
marking tool, which was configured to perform 100 simultaneous requests
for a total of 5,000 requests. Table 8.3 summarises the average latency and
throughput (from the user view point) obtained by the considered httpd
Web server when running the benchmark for each of the variants. It must
be noted that requests to the computer were made locally, which could be
considered as the best possible scenario, whereas requests to the smartphone
were made remotely, thus occurring in all the penalties related to wireless
networks, which could be considered as the worst possible scenario. The
time required for the monitor to detect a process crash and configure the
firewall is in the order of few microseconds, and so it is considered negligible
and not included in the table in which latency is expressed in milliseconds.



Chapter 8. DRITAE: Diversified Replication Infrastructure ... 167

Memory Latency Throughput
(KB) (ms) (KB/s)

Variant PC Phone PC Phone PC Phone

N
a
ti

v
e x86 64 36 – 0.18 – 6290 –

i386 32 – 0.26 – 4502 –
ARM – 32 – 9.8 – 120

Q
em

u

x86 64 408 400 2.23 55 529 21
i386 416 336 2.35 52 503 22
ARM 364 328 2.95 54 401 21
MIPSEL 364 308 3.22 60 368 19
PPC 404 346 8.02 118 147 10
SH4 428 356 4.96 77 239 15
SPARC 504 436 3.20 72 370 16

Table 8.3: Spatial and temporal overhead of the Web server.

8.6 Discussion

Successfully exploiting a memory error is not an easy task and cannot be
achieved by just anyone. However, due to the proliferation of popular web-
sites that act as a repository for existing attack strategies, even inexperi-
enced hackers may have a chance to succeed. According to their knowledge
and available resources, three basic types of attackers can be considered:
script kiddies, black hat hackers and advanced persistent threat (APT)
groups.

Most attacks come from script kiddies, or skiddies, who are non-expert
users that simply download and use already existing strategies that are
usually highly customised to target a very specific vulnerability on a given
architecture. Thus, unless the attack succeeds at the very first try (quite
unlikely, but there is always a chance), replacing the variant under attack
will prevent this kind of user from successfully causing memory errors.

The knowledge and experience required to be able to exploit a software
fault is only mastered by a few. Due to the complexity and the time required,
black hat hackers are usually specialised on a given platform (operating sys-
tem and architecture), and it is therefore very rare to find hackers able to
target multi-architecture platforms like the one proposed in this work. By-
passing the DRITAE solution would required developing a meta-exploit,
targeting multiple architectures, that could extract some valuable informa-
tion from the running variant. As long as the next variant is randomly
selected, it is rather unlikely that brute force attacks will succeed.



168 Chapter 8. DRITAE: Diversified Replication Infrastructure ...

Finally, APT groups are made up of a set of people with both the ca-
pability/knowledge/resources and the intent to persistently and effectively
break the security of a specific target. Even these groups, however, will be
severely delayed in achieving a successful attack, not only by the complex-
ity of developing a suitable exploit, but also due to the temporal overheads
induced by the emulation process that greatly delays the attack. This gives
administrators enough time to react and then deploy the countermeasures.

Following this line of thought, this technique should not be used as a
stand-alone mechanism but be integrated into the security policy of the
server. Whenever the server switches to degraded mode (a non-native vari-
ant is active), administrators shall be notified to deploy the most suitable
countermeasures.

Typically, successful brute force attacks are launched by compromising a
set of Internet-connected computers (zombies) that can collaborate in the
exploitation attempt (botnet). Distributed attacks are one of the most diffi-
cult to handle by common firewalls, due to the diversity of request sources.
As DRITAE does not take into account the source address of attackers, it
has the same effectiveness when facing single-node or botnet attacks.

Although the primary source of diversification is the use of cross-devel-
opment tools, it is also possible to create variants for native architectures
using different compilation flags, and it may even be interesting to create
some variants from former versions of the code.

Another possible improvement consists in adapting the policy for variant
replacement when able to diagnose the particular kind of attack and the
exploited vulnerability. In this way the most suitable architecture for facing
each exploitation attempt could be selected from the variants pool.

Likewise, a simple improvement – decreasing the induced spatial overhead
– could result in limiting launches to only two variants: the current and the
next.

8.7 Conclusions and future work

Nowadays, memory errors rank among the most dangerous software errors
despite vast research efforts made by academia and industry. Although
existing protection mechanisms constitute a formidable barrier to the suc-
cessful exploitation of memory errors by common hackers, these mechanisms
do not constitute an impassable obstacle to more capable and resourceful
opponents, such as black hat hackers and APT groups.

Thanks to protection mechanisms, most attacks are thwarted, albeit at
the cost of causing a server crash. The administrator can configure the



Chapter 8. DRITAE: Diversified Replication Infrastructure ... 169

service to either stop at once, with related economic losses, or to keep it
running, with an increasing likelihood of successful attacks. The work pre-
sented in this paper, relying on diversification, complements existing pro-
tection mechanisms with a detection and reaction approach that provides a
third possibility, less drastic and dangerous, to hinder and even prevent the
successful exploitation of memory errors while preserving service continuity.

Based on the fact that software faults leading to memory errors are highly
dependent on the considered hardware architecture (processor), our tech-
nique uses processor diversification as effective protection against most kinds
of attacks and accidental faults; in short, those attacks designed to target a
specific processor will not succeed. This will force attackers to build meta-
attacks for all the available target architectures, greatly hindering the possi-
bility of a real attack. Even if such a meta-attack was available, applying a
replacement policy in which the next variant is randomly selected prevents
attackers from obtaining useful information to bypass existing mechanisms.
The required processor diversification can be done in an efficient way thanks
to current advances in processor emulation techniques.

Contrary to most automatic diversification techniques which customise
the compiler or even the resulting executable binary, the use of cross-
toolchains provides a simple and powerful solution for software diversifi-
cation, with the benefit of using widely used and tested tools without any
modification. In this way, and combined with underlying hardware diver-
sification, existing software faults will manifest differently among variants,
and it may not even manifest at all in some of them.

The feasibility and portability of this secure approach have been proven by
deploying a HTTP Web server in two totally different scenarios: a personal
computer and a smartphone. Results show that common attacks against
existing protection mechanisms are effectively handled at the cost of de-
grading service performance due to processor emulator overheads. Service
degradation, which is usually considered as a negative, undesired side-effect,
also plays against attackers, as brute force attacks will be greatly delayed,
thus giving administrators the time required to react while still providing
the expected service.

The powerful capabilities provided by DRITAE open up a wide range of
different possibilities for further research. For instance, i) a deep study of
different hardware architectures from the perspective of how memory errors
manifest is required to characterise their robustness against exploitation
attempts, ii) precisely diagnosing the attack in a process could be of invalu-
able help in selecting the most suitable hardware architecture to hinder this
attack or even prevent its success, and iii) the variant replacement policy
could be tailored to fit the needs of particular services or scenarios.





Part IV

Conclusions

171





Chapter 9

Conclusions

9.1 General conclusions

This thesis has proposed several improvements to the designs of two of the
most effective and widely used security protection techniques: SSP and
ASLR, as well as a novel solution to the problem of automatic software
diversification. All of the initial goals that were envisioned when the thesis
work commenced have been fulfilled successfully.

In computer science, researchers focus mainly on new problems, new so-
lutions and new paradigms, as well as how get one step ahead of the current
state of the art. Furthermore, those solutions or techniques considered ‘ma-
ture’ do no receive enough attention. In this thesis, we took the risky path
of exploring mature, well-tested and widely used solutions, and we were able
to make significant advances in both theoretical and applied domains.

The dissemination of the results is not limited to academic papers only.
Some of the obtained results have been transferred to the industry – to open
source projects especially – in the form of contributed code, and a software
patent has also been presented to the USPTO1. In addition, research ef-
forts which resulted in discovering vulnerabilities have been acknowledged
as CVEs and published in multiple security advisory repositories, while
other results have been publicly published on two websites: the author’s
personal site and the group’s website.

9.2 Contributions

9.2.1 Theoretical contributions

• A new dimension of entropy for the reference canary in the SSP tech-
nique has been proposed which eliminates the possibility of bypassing

1USPTO: United States Patent and Trademark Office.

173



174 Chapter 9. Conclusions

the SSP technique using any kind of brute force attacks on forking
servers. This new solution is called ‘RenewSSP’.

• A detailed statistical study of the effectiveness of NX, SSP and ASLR
has been presented. The study shows that the combined use of Re-
newSSP with the other two protection techniques (NX and ASLR)
increases exponentially the level of protection against ASLR-targeted
brute force attacks.

• The classic memory process memory model (fixed zones and growable
areas) has been questioned, and a new memory layout model has been
proposed, which in turn allowed us to redesign the existing ASLR
technique.

• Multiple new dimensions of entropy have been proposed, which, jointly
with the new layout model, resulted in a new ASLR protection tech-
nique design called ‘ASLR-NG’.

ASLR-NG is fully backward-compatible with all existing applications.
The proposed ASLR algorithm is optimal in the sense that it provides
maximum entropy for the memory layout that the MMU supports.

• A new form of automatic software diversification based on cross-com-
pilers has been proposed (called DRITAE), which is simple to use,
robust, cost-effective and easy to maintain.

9.2.2 Contributions to open source

• [PATCH] mm/x86: AMD Bulldozer ASLR fix. [Linux 4.1]

• [PATCH] x86, mm/ASLR: Fix stack randomization on 64-bit systems. [Linux
4.0]

• [PATCH] Preventing offset2lib attack. [Linux 4.1]

• [PATCH] BZ #15754: CVE-2013-4788: PTR MANGLE does not initialise
to a random value for the pointer guard when compiling static executables.
[GNU C library 2.19]

• [PATCH] BZ #18928: Improper input validation of LD POINTER GUARD
of set-user-ID and set-group-ID programs. [GNU C library 2.22.90]

9.2.3 Vulnerabilities discovered

Table 9.1 is a list of the vulnerabilities that are classified as ‘security issues’
by MITRE, in which case they receive a CVE number. We should also
mention a few of the software errors found but not reported to the MITRE:



Chapter 9. Conclusions 175

Id Product Description Cause

CVE-2015-1593 Linux Kernel Reduced stack entropy Integer overflow
CVE-2015-1574 Email Android Denial Of Service Wrong data handling
CVE-2014-5439 sniffit Root shell Stack buffer overflow
CVE-2014-1226 s3dvt Root shell (II) Drop privileges failed
CVE-2013-6876 s3dvt Root shell (I) Drop privileges failed
CVE-2013-6825 DCMTK Privilege escalation Drop privileges failed
CVE-2013-4788 Eglibc Bypass pointer guard No pointer protection

Table 9.1: List of vulnerabilities evaluated as security issues: CVEs.

• The ‘paxtest’ tool, included in most Linux distributions, has two er-
rors: entropy is incorrectly measured, and certain addresses are incor-
rectly obtained.

• In the Linux kernel, the data segment size resource (RLIMIT DATA)
set by the setrlimit() system call is incorrectly tested. This matter
will be reported soon to the kernel list.

9.2.4 Patent

A software patent titled ‘Method for Preventing Information Leaks in the
Stack-Smashing Protector Technique’ was filed. It is currently under evalu-
ation(patent pending: application patent number 14341118).

9.2.5 Academic Publications

• Héctor Marco-Gisbert and Ismael Ripoll. On the Effectiveness of Full-
ASLR on 64-bit Linux ‘In-depth security conference’ November 2014,
(DeepSec 2014). PDF.

• Héctor Marco-Gisbert and Ismael Ripoll. On the effectiveness of
nx, ssp, renewssp and aslr against stack buffer overflows. In ‘13th
International Symposium on Network Computing and Applications’,
pages 145–152. IEEE, August 2014. ISBN 978-1-4799-5393-6.

• Héctor Marco-Gisbert and Ismael Ripoll. Preventing brute force at-
tacks against stack canary protection on networking servers. In ‘12th
International Symposium on Network Computing and Applications’,
pages 243–250, August 2013. doi: 10.1109/NCA.2013.12.

• Héctor Marco-Gisbert and Ismael Ripoll and David de Andrés and
Juan Carlos Ruiz. ‘Emerging trends in ICT security’, Elsevier Inc.

http://cybersecurity.upv.es/attacks/offset2lib/offset2lib-paper.pdf
http://dx.doi.org/10.1109/NCA.2013.12


176 Chapter 9. Conclusions

2013. Chapter 21, pp. 335–357. ISBN: 978-0-12-411474-6. doi:
10.1016/B978-0-12-411474-6.00021-9.

• Héctor Marco, Juan-Carlos Ruiz, David De Andrés and Ismael Ripoll.
Preventing Memory Errors in Networked Vehicle Services Through
Diversification ‘Proceedings of Workshop CARS (2nd Workshop on

Critical Automotive applications: Robustness & Safety)’ of the 32nd

International Conference on Computer Safety, Reliability and Secu-
rity, 2013.

9.2.6 Software tools and prototypes

During the work on the ASLR-NG, several tools were developed to analyse
and validate the work.

ASLR Sampler: An application for collecting statistical information about
all object mappings of the memory layout of processes.

ASLR Analyser: A powerful statistical tool employed to analyse data
collected by the sampler application. It calculates typical statistical
moments, makes several entropy estimations and calculates entropy
correlations between all objects.

ASLR Simulator: A fast virtual memory allocator, used as a test bench
during ASLR-NG design.

9.2.7 Honors & Awards

• The weakness of the ASLR design, jointly with a proof of concept ex-
ploitation code, was awarded by the Packet Storm Security bounty
program and qualified as a 1-day vulnerability. ASLR design had a
weakness that allowed attackers to de-randomize (i.e. effectively by-
pass the ASLR) shared objects (libraries) by pivoting from application
code. I named this weakness as Offset2lib. Packet-Storm-Advisory-
2014-1204-1.

• The solution to the Offset2lib weakness included in the Linux kernel
4.0, was rewarded by the Google Patch Reward Program.

• The novel bit-slicing ASLR randomization form, presented in chap-
ter 7 and applied in the Linux kernel 4.1, was rewarded by the Google
Patch Reward Program. This new randomization form solves a secu-
rity issue of the AMD Bulldozer processors.

http://dx.doi.org/10.1016/B978-0-12-411474-6.00021-9
http://packetstormsecurity.com/files/129399/Packet-Storm-Advisory-2014-1204-1-Offset2lib-Bypassing-Full-ASLR-On-64bit-Linux.html
http://packetstormsecurity.com/files/129399/Packet-Storm-Advisory-2014-1204-1-Offset2lib-Bypassing-Full-ASLR-On-64bit-Linux.html


Chapter . Conclusions 177

• A security issue which reduces the ASLR entropy of the stack on 64
bit architectures was discovered and fixed in Linux kernel 4.0. This
finding and its corresponding solution was rewarded by the Google
Patch Reward Program.

9.3 Future work

This thesis represents the current status of most of the completed and con-
solidated results of an ongoing research activity. There are several currently
active research issues, and just to mention a few:

• Contribute to the Apache project by fortifying servers using the Re-
newSSP technique.

• Include the ASLR-NG implementation on all processor architectures
supported by Linux. The current implementation can be considered a
‘proof of concept’, but it needs a lot of work and ‘iterations’ with the
Linux maintainers to make the code generic, robust and maintainable.

• Although ASLR-NG features are used transparently by most appli-
cations, with no need to modify or recompile the application code,
others require the intervention of the library (intra-page on extended
heap). The glibc may be modified to include these new features.

• Several helper tools have been developed during the analysis of the
ASLR. These tools have proved to be very useful, but unfortunately
they were developed to be used only internally and can not be dis-
tributed (no documentation, hard to configure, robust error handling,
etc.). It would be interesting to publish this software.

• The analysis tools developed during the design of the ASLR-NG can
be improved (made more user-friendly, robust and configurable) and
published as a replacement for tools distributed by the PaX team.

• Regarding the DRITAE architecture, it would be possible to imple-
ment a more robust solution by running multiple variants simulta-
neously, feeding each one with the very same inputs and comparing
the outputs for discrepancies. This software framework could be com-
pared to the classic TRM (triple modular redundant) solution, widely
used in hardware.

A preliminary prototype of this solution has already been implemented
(but not presented in this thesis, because it is still under development).





References

[1] Matt Blaze. Encryption technology and possible us policy responses.
US House of Representatives Committee on Government Oversight and
Reform Information Technology Subcommittee, April 2015.

[2] Common Weakness Enumeration (CWE), 2011. URL http://
cwe.mitre.org.

[3] CWE/SANS. Top 25 most dangerous software errors, 2011. URL
http://cwe.mitre.org/top25.

[4] Victor van der Veen, Nitish dutt Sharma, Lorenzo Cavallaro, and Her-
bert Bos. Memory errors: The past, the present, and the future.
In Proceedings of the 15th International Conference on Research in
Attacks, Intrusions, and Defenses, RAID’12, pages 86–106, Berlin,
Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-33337-8. doi:
10.1007/978-3-642-33338-5 5. URL http://dx.doi.org/10.1007/
978-3-642-33338-5 5.

[5] Karen Scarfone, Wayne Jansen, and Miles Tracy. Guide to general
server security. NIST Special Publication, 800:123, 2008. URL http:
//books.google.es/books?id=XcFZLwEACAAJ.

[6] Shared Level - 1 instruction - cache performance on
AMD family 15h CPUs, December 2011. URL http:
//developer.amd.com/wordpress/media/2012/10/
SharedL1InstructionCacheonAMD15hCPU.pdf.

[7] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage.
Return-oriented programming: Systems, languages, and applications.
ACM Transactions on Information and System Security (TISSEC), 15
(1):2, 2012.

[8] The advanced return-into-lib(c) exploits, December 2001. URL http:
//phrack.org/issues/58/4.html.

[9] Robert E Lyons and Wouter Vanderkulk. The use of triple-modular
redundancy to improve computer reliability. IBM Journal of Research
and Development, 6(2):200–209, 1962.

179

http://cwe.mitre.org
http://cwe.mitre.org
http://cwe.mitre.org/top25
http://dx.doi.org/10.1007/978-3-642-33338-5_5
http://dx.doi.org/10.1007/978-3-642-33338-5_5
http://books.google.es/books?id=XcFZLwEACAAJ
http://books.google.es/books?id=XcFZLwEACAAJ
http://developer.amd.com/wordpress/media/2012/10/SharedL1InstructionCacheonAMD15hCPU.pdf
http://developer.amd.com/wordpress/media/2012/10/SharedL1InstructionCacheonAMD15hCPU.pdf
http://developer.amd.com/wordpress/media/2012/10/SharedL1InstructionCacheonAMD15hCPU.pdf
http://phrack.org/issues/58/4.html
http://phrack.org/issues/58/4.html


180 References

[10] Yves Younan, Davide Pozza, Frank Piessens, and Wouter Joosen. Ex-
tended protection against stack smashing attacks without performance
loss. In In Proceedings of ACSAC, 2006.

[11] Aleph One. Smashing the stack for fun and profit. Phrack, 7(49), 1996.

[12] Bulba and Kil3r. Bypassing stackguard and stackshield. Phrack, 56,
2002.

[13] Gerardo Richarte. Four different tricks to bypass stackshield and stack-
guard protection. World Wide Web, 1, 2002.

[14] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. On the effectiveness of address-space ran-
domization. In Proceedings of the 11th ACM conference on Computer
and communications security, CCS ’04, pages 298–307, New York, NY,
USA, 2004. ACM. ISBN 1-58113-961-6. doi: 10.1145/1030083.1030124.
URL http://doi.acm.org/10.1145/1030083.1030124.

[15] Minh Tran, Mark Etheridge, Tyler Bletsch, Xuxian Jiang, Vincent
Freeh, and Peng Ning. On the expressiveness of return-into-libc attacks.
In Proceedings of the 14th international conference on Recent Advances
in Intrusion Detection, RAID’11, pages 121–141, Berlin, Heidelberg,
2011. Springer-Verlag. ISBN 978-3-642-23643-3. doi: 10.1007/978-3-
642-23644-0 7. URL http://dx.doi.org/10.1007/978-3-642-
23644-0 7.

[16] Benjamin Erb. Concurrent programming for scalable web architectures.
Diploma thesis, Institute of Distributed Systems, Ulm University, April
2012. URL http://www.benjamin-erb.de/thesis.

[17] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintongif, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and
Qian Zhang. Stackguard: Automatic adaptive detection and preven-
tion of buffer-overflow attacks. In Proc. of the 7th USENIX Security
Symposium, pages 63–78, Jan 1998.

[18] ’xorl’. Linux GLibC Stack Canary Values, 2010. URL
http://xorl.wordpress.com/2010/10/14/linux-glibc-
stack-canary-values/.

[19] H. Etoh. GCC extension for protecting applications from
stack-smashing attacks (ProPolice), 2003. URL http:
//www.trl.ibm.com/projects/security/ssp/.

http://doi.acm.org/10.1145/1030083.1030124
http://dx.doi.org/10.1007/978-3-642-23644-0_7
http://dx.doi.org/10.1007/978-3-642-23644-0_7
http://www.benjamin-erb.de/thesis
http://xorl.wordpress.com/2010/10/14/linux-glibc-stack-canary-values/
http://xorl.wordpress.com/2010/10/14/linux-glibc-stack-canary-values/
http://www.trl.ibm.com/projects/security/ssp/
http://www.trl.ibm.com/projects/security/ssp/


References 181

[20] Adam ’pi3’ Zabrocki. Scraps of notes on remote stack overflow
exploitation, November 2010. URL http://www.phrack.org/
issues.html?issue=67&id=13#article.

[21] Yong-Joon Park and Gyungho Lee. Repairing return address stack
for buffer overflow protection. In Proceedings of the 1st conference on
Computing frontiers, CF ’04, pages 335–342, New York, NY, USA,
2004. ACM. ISBN 1-58113-741-9. doi: 10.1145/977091.977139. URL
http://doi.acm.org/10.1145/977091.977139.

[22] Jon Oberheide. A look at ASLR in Android Ice Cream Sandwich 4.0,
Feb 2012. URL https://www.duosecurity.com/blog/a-look-
at-aslr-in-android-ice-cream-sandwich-4-0.

[23] Hector Marco-Gisbert and Ismael Ripoll. On the effectiveness of nx,
ssp, renewssp and aslr against stack buffer overflows. In 13th Inter-
national Symposium on Network Computing and Applications, pages
145–152. IEEE, August 2014. ISBN 978-1-4799-5393-6.

[24] Hector Marco-Gisbert and Ismael Ripoll. Preventing brute force at-
tacks against stack canary protection on networking servers. In 12th In-
ternational Symposium on Network Computing and Applications, pages
243–250, August 2013. doi: 10.1109/NCA.2013.12.

[25] Hector Marco-Gisbert and Ismael Ripoll. On the effectiveness of
full-aslr on 64-bit linux. In In-depth security conference, DeepSec,
November 2014. URL http://cybersecurity.upv.es/attacks/
offset2lib/offset2lib-paper.pdf.

[26] Yu Ding, Zhuo Peng, Yuanyuan Zhou, and Chao Zhang. Android
low entropy demystified. In IEEE International Conference on Com-
munications, ICC 2014, Sydney, Australia, June 10-14, 2014, pages
659–664, 2014. doi: 10.1109/ICC.2014.6883394. URL http://
dx.doi.org/10.1109/ICC.2014.6883394.

[27] Poll: How often do you reboot?, 2014. URL http://
www.androidcentral.com/poll-how-often-do-you-reboot.

[28] Damien Miller. Security Measures in OpenSSH, 2007. URL
http://www.openbsd.org/papers/openssh-measures-
asiabsdcon2007-slides.pdf.

[29] Adam Greenberg. SC Magazine: Trojanized Android apps
steal authentication tokens, put accounts at risk, April 2014.
URL www.scmagazine.com/trojanized-android-apps-
steal-authentication-tokens-put-accounts-at-risk/
article/342208/.

http://www.phrack.org/issues.html?issue=67&id=13#article
http://www.phrack.org/issues.html?issue=67&id=13#article
http://doi.acm.org/10.1145/977091.977139
https://www.duosecurity.com/blog/a-look-at-aslr-in-android-ice-cream-sandwich-4-0
https://www.duosecurity.com/blog/a-look-at-aslr-in-android-ice-cream-sandwich-4-0
http://cybersecurity.upv.es/attacks/offset2lib/offset2lib-paper.pdf
http://cybersecurity.upv.es/attacks/offset2lib/offset2lib-paper.pdf
http://dx.doi.org/10.1109/ICC.2014.6883394
http://dx.doi.org/10.1109/ICC.2014.6883394
http://www.androidcentral.com/poll-how-often-do-you-reboot
http://www.androidcentral.com/poll-how-often-do-you-reboot
http://www.openbsd.org/papers/openssh-measures-asiabsdcon2007-slides.pdf
http://www.openbsd.org/papers/openssh-measures-asiabsdcon2007-slides.pdf
www.scmagazine.com/trojanized-android-apps-steal-authentication-tokens-put-accounts-at-risk/article/342208/
www.scmagazine.com/trojanized-android-apps-steal-authentication-tokens-put-accounts-at-risk/article/342208/
www.scmagazine.com/trojanized-android-apps-steal-authentication-tokens-put-accounts-at-risk/article/342208/


182 References

[30] Hristo Bojinov, Dan Boneh, Rich Cannings, and Iliyan Malchev. Ad-
dress space randomization for mobile devices. In Proceedings of the
fourth ACM conference on Wireless network security, WiSec ’11, pages
127–138, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0692-
8. doi: 10.1145/1998412.1998434. URL http://doi.acm.org/
10.1145/1998412.1998434.

[31] Pax Team. PaX address space layout randomization (ASLR), 2003.
URL http://pax.grsecurity.net/docs/aslr.txt.

[32] Linda Dailey Paulson. New chips stop buffer overflow attacks. Com-
puter, 37(10):28–30, 2004.

[33] Mitre. CWE/SANS top 25 most dangerous software errors, 2011. URL
http://cwe.mitre.org/top25.

[34] Giampaolo Fresi Roglia, Lorenzo Martignoni, Roberto Paleari, and
Danilo Bruschi. Surgically returning to randomized lib(c). In Proceed-
ings of the 2009 Annual Computer Security Applications Conference,
ACSAC ’09, pages 60–69, Washington, DC, USA, 2009. IEEE Com-
puter Society. ISBN 978-0-7695-3919-5. doi: 10.1109/ACSAC.2009.16.
URL http://dx.doi.org/10.1109/ACSAC.2009.16.

[35] Jin Han, Debin Gao, and Robert H. Deng. On the effectiveness
of software diversity: A systematic study on real-world vulnerabili-
ties. In Proceedings of the 6th International Conference on Detec-
tion of Intrusions and Malware, and Vulnerability Assessment, DIMVA
’09, pages 127–146, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN
978-3-642-02917-2. doi: 10.1007/978-3-642-02918-9 8. URL http:
//dx.doi.org/10.1007/978-3-642-02918-9 8.

[36] Nergal. The advanced return-into-lib(c) exploits: PaX case study.
Phrack, 58, 2001.

[37] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage.
Return-oriented programming: Systems, languages, and applications.
ACM Trans. Inf. Syst. Secur., 15(1):2:1–2:34, March 2012. ISSN 1094-
9224. doi: 10.1145/2133375.2133377. URL http://doi.acm.org/
10.1145/2133375.2133377.

[38] NIST. Vulnerability Summary for CVE-2010-3867, September 2011.
URL http://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2010-3867.

[39] Eep Bhatkar, Daniel C. Duvarney, and R. Sekar. Address obfuscation:
an efficient approach to combat a broad range of memory error exploits.

http://doi.acm.org/10.1145/1998412.1998434
http://doi.acm.org/10.1145/1998412.1998434
http://pax.grsecurity.net/docs/aslr.txt
http://cwe.mitre.org/top25
http://dx.doi.org/10.1109/ACSAC.2009.16
http://dx.doi.org/10.1007/978-3-642-02918-9_8
http://dx.doi.org/10.1007/978-3-642-02918-9_8
http://doi.acm.org/10.1145/2133375.2133377
http://doi.acm.org/10.1145/2133375.2133377
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-3867
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-3867


References 183

In In Proceedings of the 12th USENIX Security Symposium, pages 105–
120, 2003.

[40] Jakub Jelinek. Object size checking to prevent (some) buffer overflows
(GCC FORTIFY), September 2004. URL http://gcc.gnu.org/ml/
gcc-patches/2004-09/msg02055.html.

[41] Hovav Shacham. The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86). In Proceedings of the
14th ACM Conference on Computer and Communications Security,
CCS ’07, pages 552–561, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-703-2. doi: 10.1145/1315245.1315313. URL http://
doi.acm.org/10.1145/1315245.1315313.

[42] Christian W. Otterstad. Brute force bypassing of ASLR on 64-bit
x86 GNU/Linux, November 2012. URL http://tapironline.no/
last-ned/1081.

[43] Theo De Raadt. Exploit Mitigation Techniques (updated to include
random malloc and mmap) at OpenCON 2005, 2005. URL http:
//www.openbsd.org/papers/ven05-deraadt/mgp00001.html.

[44] Kurt Miller. OpenBSD’s Position Independent Executable (PIE)
Implementation, 2008. URL http://www.openbsd.org/papers/
nycbsdcon08-pie/mgp00001.html.

[45] Mark Russinovich. Inside the windows vista kernel: Part 3, 2007.
URL http://technet.microsoft.com/en-us/magazine/
2007.04.vistakernel.aspx.

[46] Ollie Whitehouse. An analysis of address space layout randomization on
windows vista. Technical report, Symantec Advanced Threat Research,
2007. URL http://www.symantec.com/avcenter/reference/
Address Space Layout Randomization.pdf.

[47] Clint Ruoho. Aslr: Leopard versus vista, 2008. URL
http://www.laconicsecurity.com/aslr-leopard-versus-
vista.html.

[48] Alexander Gabert Ned Ludd. Hardened/Introduction to Position
Independent Code, 2013. URL http://wiki.gentoo.org/wiki/
Hardened/Introduction to Position Independent Code.

[49] Mathias Payer and Thomas R. Gross. String oriented programming:
When aslr is not enough. In Proceedings of the 2Nd ACM SIGPLAN
Program Protection and Reverse Engineering Workshop, PPREW ’13,

http://gcc.gnu.org/ml/gcc-patches/2004-09/msg02055.html
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg02055.html
http://doi.acm.org/10.1145/1315245.1315313
http://doi.acm.org/10.1145/1315245.1315313
http://tapironline.no/last-ned/1081
http://tapironline.no/last-ned/1081
http://www.openbsd.org/papers/ven05-deraadt/mgp00001.html
http://www.openbsd.org/papers/ven05-deraadt/mgp00001.html
http://www.openbsd.org/papers/nycbsdcon08-pie/mgp00001.html
http://www.openbsd.org/papers/nycbsdcon08-pie/mgp00001.html
http://technet.microsoft.com/en-us/magazine/2007.04.vistakernel.aspx
http://technet.microsoft.com/en-us/magazine/2007.04.vistakernel.aspx
http://www.symantec.com/avcenter/reference/Address_Space_Layout_Randomization.pdf
http://www.symantec.com/avcenter/reference/Address_Space_Layout_Randomization.pdf
http://www.laconicsecurity.com/aslr-leopard-versus-vista.html
http://www.laconicsecurity.com/aslr-leopard-versus-vista.html
http://wiki.gentoo.org/wiki/Hardened/Introduction_to_Position_Independent_Code
http://wiki.gentoo.org/wiki/Hardened/Introduction_to_Position_Independent_Code


184 References

pages 2:1–2:9, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-
1857-0. doi: 10.1145/2430553.2430555. URL http://doi.acm.org/
10.1145/2430553.2430555.

[50] Steve McConnell. Code Complete, Second Edition. Microsoft Press,
Redmond, WA, USA, 2004. ISBN 0735619670, 9780735619678.

[51] CVE-2013-2028. Nginx HTTP Server stack buffer overflow, July 2013.
URL http://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2013-2028.

[52] CVE-2013-5019. Ultra Mini HTTPD stack buffer overflow, July 2013.
URL http://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2013-5019.

[53] CVE-2014-0063. PostgreSQL Multiple stack-based buffer overflows,
February 2014. URL http://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2014-0063.

[54] CVE-2014-0065. PostgreSQL Multiple buffer overflows, February 2014.
URL http://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2014-0065.

[55] Hossain Shahriar and Mohammad Zulkernine. Mitigating program
security vulnerabilities: Approaches and challenges. ACM Com-
put. Surv., 44(3):11:1–11:46, June 2012. ISSN 0360-0300. doi:
10.1145/2187671.2187673. URL http://doi.acm.org/10.1145/
2187671.2187673.

[56] Jesus Friginal, David de Andrés, Juan Carlos Ruiz, and Pedro J. Gil.
Attack injection to support the evaluation of ad hoc networks. In 29th
IEEE Symposium on Reliable Distributed Systems (SRDS 2010), New
Delhi, Punjab, India, October 31 - November 3, 2010, pages 21–29.
IEEE Computer Society, 2010. ISBN 978-0-7695-4250-8. doi: 10.1109/
SRDS.2010.11. URL http://dx.doi.org/10.1109/SRDS.2010.11.

[57] J. Xu, Z. Kalbarczyk, and R.K. Iyer. Transparent runtime random-
ization for security. In Reliable Distributed Systems, 2003. Proceed-
ings. 22nd International Symposium on, pages 260–269, Oct 2003. doi:
10.1109/RELDIS.2003.1238076.

[58] Xun Zhan, Tao Zheng, and Shixiang Gao. Defending rop attacks using
basic block level randomization. In Software Security and Reliability-
Companion (SERE-C), 2014 IEEE Eighth International Conference
on, pages 107–112, June 2014. doi: 10.1109/SERE-C.2014.28.

http://doi.acm.org/10.1145/2430553.2430555
http://doi.acm.org/10.1145/2430553.2430555
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-2028
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-2028
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-5019
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-5019
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0063
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0063
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0065
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0065
http://doi.acm.org/10.1145/2187671.2187673
http://doi.acm.org/10.1145/2187671.2187673
http://dx.doi.org/10.1109/SRDS.2010.11


References 185

[59] Chongkyung Kil, Jinsuk Jim, Christopher Bookholt, Jun Xu, and Peng
Ning. Address space layout permutation (aslp): Towards fine-grained
randomization of commodity software. In Computer Security Appli-
cations Conference, 2006. ACSAC’06. 22nd Annual, pages 339–348.
IEEE, 2006.

[60] V. Iyer, A. Kanitkar, P. Dasgupta, and R. Srinivasan. Preventing over-
flow attacks by memory randomization. In Software Reliability Engi-
neering (ISSRE), 2010 IEEE 21st International Symposium on, pages
339–347, Nov 2010. doi: 10.1109/ISSRE.2010.22.

[61] Jake Edge. Kernel address space layout randomization, October 2013.
URL https://lwn.net/Articles/569635.

[62] Ulrich Drepper. Growable maps removal, August 2008. URL https:
//lwn.net/Articles/294001.

[63] Vincent Lefevre. Silent stack-heap collision under GNU/Linux,
July 2014. URL https://gcc.gnu.org/ml/gcc-help/2014-07/
msg00076.html.

[64] Chris Rohlf and Yan Ivnitskiy. Attacking clientside jit compilers. Black
Hat USA, 2011.

[65] The Heartbleed Bug, April 2014. URL http://heartbleed.com.

[66] PaulR. Wilson, MarkS. Johnstone, Michael Neely, and David Boles.
Dynamic storage allocation: A survey and critical review. In Hen-
ryG. Baler, editor, Memory Management, volume 986 of Lecture Notes
in Computer Science, pages 1–116. Springer Berlin Heidelberg, 1995.
ISBN 978-3-540-60368-9. doi: 10.1007/3-540-60368-9 19. URL http:
//dx.doi.org/10.1007/3-540-60368-9 19.

[67] Hector Marco-Gisbert and Ismael Ripoll. AMD Bulldozer
Linux ASLR weakness: Reducing entropy by 87.5%, March
2015. URL http://hmarco.org/bugs/AMD-Bulldozer-linux-
ASLR-weakness-reducing-mmaped-files-by-eight.html.

[68] Hector Marco-Gisbert and Ismael Ripoll. CVE-2015-1593 - Linux
ASLR integer overflow: Reducing stack entropy by four, January
2015. URL http://hmarco.org/bugs/linux-ASLR-integer-
overflow.html.

[69] Hector Marco-Gisbert and Ismael Ripoll. Linux ASLR mmap weakness:
Reducing entropy by half, January 2015. URL http://hmarco.org/
bugs/linux-ASLR-reducing-mmap-by-half.html.

https://lwn.net/Articles/569635
https://lwn.net/Articles/294001
https://lwn.net/Articles/294001
https://gcc.gnu.org/ml/gcc-help/2014-07/msg00076.html
https://gcc.gnu.org/ml/gcc-help/2014-07/msg00076.html
http://heartbleed.com
http://dx.doi.org/10.1007/3-540-60368-9_19
http://dx.doi.org/10.1007/3-540-60368-9_19
http://hmarco.org/bugs/AMD-Bulldozer-linux-ASLR-weakness-reducing-mmaped-files-by-eight.html
http://hmarco.org/bugs/AMD-Bulldozer-linux-ASLR-weakness-reducing-mmaped-files-by-eight.html
http://hmarco.org/bugs/linux-ASLR-integer-overflow.html
http://hmarco.org/bugs/linux-ASLR-integer-overflow.html
http://hmarco.org/bugs/linux-ASLR-reducing-mmap-by-half.html
http://hmarco.org/bugs/linux-ASLR-reducing-mmap-by-half.html


186 References

[70] ANNICK LESNE. Shannon entropy: a rigorous notion at the cross-
roads between probability, information theory, dynamical systems and
statistical physics. Mathematical Structures in Computer Science, 24, 6
2014. ISSN 1469-8072. doi: 10.1017/S0960129512000783. URL http:
//journals.cambridge.org/article S0960129512000783.

[71] Victor van der Veen, Nitish dutt Sharma, Lorenzo Cavallaro, and Her-
bert Bos. Memory errors: The past, the present, and the future. In
In the Proceedings of the 15th International Symposium on Research in
Attacks Intrusions and Defenses (RAID), September 2012.

[72] B. A. Wichmann. Requirements for programming languages in safety
and security software standards. Comput. Stand. Interfaces, 14(5-6):
433–441, dec 1992. ISSN 0920-5489. doi: 10.1016/0920-5489(92)90009-
3. URL http://dx.doi.org/10.1016/0920-5489(92)90009-3.

[73] Marc Brünink, Martin Süßkraut, and Christof Fetzer. Boundless
memory allocations for memory safety and high availability. In Pro-
ceedings of The 41st Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN 2011), pages 13 –24,
Los Alamitos, CA, USA, June 2011. IEEE Computer Society. doi:
10.1109/DSN.2011.5958203.

[74] Kevin Z. Snow, Srinivas Krishnan, Fabian Monrose, and Niels Provos.
Shellos: Enabling fast detection and forensic analysis of code in-
jection attacks. In USENIX Security Symposium. USENIX Associ-
ation, 2011. URL http://dblp.uni-trier.de/db/conf/uss/
uss2011.html#SnowKMP11.

[75] Babak Salamat, Todd Jackson, Gregor Wagner, Christian Wimmer,
and Michael Franz. Runtime defense against code injection attacks
using replicated execution. IEEE Transactions on Dependable and
Secure Computing, 8:588–601, 2011. ISSN 1545-5971. doi: http:
//doi.ieeecomputersociety.org/10.1109/TDSC.2011.18.

[76] Ryan Riley, Xuxian Jiang, and Dongyan Xu. An architectural ap-
proach to preventing code injection attacks. IEEE Trans. Dependable
Secur. Comput., 7(4):351–365, oct 2010. ISSN 1545-5971. doi: 10.1109/
TDSC.2010.1. URL http://dx.doi.org/10.1109/TDSC.2010.1.

[77] David A. Patterson. A simple way to estimate the cost of
downtime. In Proceedings of the 16th USENIX conference on
System administration, LISA ’02, pages 185–188, Berkeley, CA,
USA, 2002. USENIX Association. URL http://dl.acm.org/
citation.cfm?id=1050517.1050538.

http://journals.cambridge.org/article_S0960129512000783
http://journals.cambridge.org/article_S0960129512000783
http://dx.doi.org/10.1016/0920-5489(92)90009-3
http://dblp.uni-trier.de/db/conf/uss/uss2011.html#SnowKMP11
http://dblp.uni-trier.de/db/conf/uss/uss2011.html#SnowKMP11
http://dx.doi.org/10.1109/TDSC.2010.1
http://dl.acm.org/citation.cfm?id=1050517.1050538
http://dl.acm.org/citation.cfm?id=1050517.1050538


References 187

[78] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu, and
A. Gupta. Hive: fault containment for shared-memory multiproces-
sors. SIGOPS Oper. Syst. Rev., 29(5):12–25, dec 1995. ISSN 0163-5980.
doi: 10.1145/224057.224059. URL http://doi.acm.org/10.1145/
224057.224059.

[79] Jean-Claude Laprie, Christian Béounes, and Karama Kanoun. Def-
inition and analysis of hardware- and software-fault-tolerant archi-
tectures. Computer, 23(7):39–51, jul 1990. ISSN 0018-9162. doi:
10.1109/2.56851. URL http://dx.doi.org/10.1109/2.56851.

[80] Paulo E. Verissimo, Nuno F. Neves, Christian Cachin, Jonathan Poritz,
David Powell, Ives Deswarte, Robert Stroud, and Ian Welch. Intrusion
tolerant middleware: The road to automatic security. IEEE Security
and Privacy, 4(4):54–62, 2006.

[81] Jack Koziol, David Litchfield, Dave Aitel, Chris Anley, Sinan Eren,
Neel Mehta, and Riley Hassel. The Shellcoder’s handbook: Discovering
and Exploiting Security Holes. Wiley Publishing Inc., 2006. ISBN
978-0764544682.

[82] NIST. Vulnerability Summary for CVE-2011-2501, July 2011.
URL http://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2011-2501.

[83] David Brumley, Tzi cker Chiueh, Robert Johnson, Huijia Lin, and
Dawn Song. Rich: Automatically protecting against integer-based vul-
nerabilities. In In Symp. on Network and Distributed Systems Security,
2007.

[84] NIST. Vulnerability Summary for CVE-2011-3026, September 2012.
URL http://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2011-3026.

[85] NIST. Vulnerability Summary for CVE-2012-3547, November 2012.
URL http://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2012-3547.

[86] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Coun-
tering code-injection attacks with instruction-set randomization. In
Proceedings of the 10th ACM conference on Computer and commu-
nications security, CCS ’03, pages 272–280, New York, NY, USA,
2003. ACM. ISBN 1-58113-738-9. doi: 10.1145/948109.948146. URL
http://doi.acm.org/10.1145/948109.948146.

http://doi.acm.org/10.1145/224057.224059
http://doi.acm.org/10.1145/224057.224059
http://dx.doi.org/10.1109/2.56851
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-2501
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-2501
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-3026
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-3026
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-3547
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-3547
http://doi.acm.org/10.1145/948109.948146


188 References

[87] Benjamin Erb. Concurrent programming for scalable web architectures.
Diploma thesis, Institute of Distributed Systems, Ulm University, April
2012. URL http://www.benjamin-erb.de/thesis.

[88] Babak Salamat, Todd Jackson, Gregor Wagner, Christian Wimmer,
and Michael Franz. Runtime defense against code injection attacks
using replicated execution. IEEE Trans. Dependable Sec. Comput., 8
(4):588–601, 2011.

[89] CERT. Advisory CA-2002-17 Apache Web Server Chunk Handling Vul-
nerability, June 2002. URL http://www.cert.org/advisories/
CA-2002-17.html.

[90] Thorsten Glaser. busybox: integer overflow in expression on big endian.
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=635370, July 2011.

[91] Bruce Perens. Busybox. http://www.busybox.net, 1996.

[92] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In
USENIX Annual Technical Conference, FREENIX Track, pages 41–
46. USENIX, 2005.

[93] CERT. Advisory CA-2002-08 Multiple Vulnerabilities in Or-
acle Servers, September 2002. URL http://www.cert.org/
advisories/CA-2002-08.html.

[94] NIST. WFTPD Pro Server denial of service, May 2004.
URL http://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2004-0342.

[95] Microsoft Security Bulletin. Buffer overrun in JPEG pro-
cessing (GDI+) could allow code execution, September 2004.
URL http://technet.microsoft.com/en-us/security/
bulletin/ms04-028.

[96] Grsecurity kernel patches, 2013. URL http://grsecurity.net/.
http://grsecurity.net/.

http://www.benjamin-erb.de/thesis
http://www.cert.org/advisories/CA-2002-17.html
http://www.cert.org/advisories/CA-2002-17.html
http://www.busybox.net
http://www.cert.org/advisories/CA-2002-08.html
http://www.cert.org/advisories/CA-2002-08.html
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2004-0342
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2004-0342
http://technet.microsoft.com/en-us/security/bulletin/ms04-028
http://technet.microsoft.com/en-us/security/bulletin/ms04-028
http://grsecurity.net/
http://grsecurity.net/

	1 Introduction
	1.1 Motivation
	1.2 Goals of the Thesis
	1.3 Contributions of the Thesis
	1.3.1 RenewSSP: Renew Stack Smashing Protector
	1.3.2 ASLR-NG: Address Space Layout Randomisation Next Generation
	1.3.3 DRITAE: Automatic SW Diversification
	1.3.4 Other Contributions

	1.4 Thesis Outline

	I Stack Smashing Protector (SSP)
	2 Preventing Brute Force Attacks against the SSP
	2.1 Introduction
	2.1.1 Benefits of our proposal

	2.2 Background & assumptions
	2.2.1 Network server architectures
	2.2.2 Stack-smashing protection (SSP)

	2.3 Threats
	2.3.1 Full brute force attack
	2.3.2 Byte-for-byte brute force attack

	2.4 Proposed strategy
	2.4.1 Observations
	2.4.2 Renew canary at fork (RAF SSP) strategy
	2.4.3 Illustrative examples
	2.4.4 Special considerations

	2.5 Implementation
	2.6 Statistical evaluation
	2.6.1 Bypassing only the canary
	2.6.2 Bypassing SSP + ASLR + NX

	2.7 Experimental evaluation
	2.8 Discussion
	2.9 Conclusions

	3 SSPMD: Stack-Smashing Protection for Mobile Devices
	3.1 Introduction
	3.1.1 Implementation challenges
	3.1.2 Our contributions

	3.2 Overview of Android
	3.3 Threat Model
	3.3.1 SSP brute force attacks
	3.3.2 SSP Direct disclosure
	3.3.3 ASLR brute force attack
	3.3.4 Summarising

	3.4 SSPMD
	3.5 SSPMD on Android
	3.5.1 Application launch
	3.5.2 Application termination
	3.5.3 Exception handling
	3.5.4 Modifications to Zygote
	3.5.5 Implementation discussion

	3.6 Evaluation
	3.6.1 Verification of the implementation
	3.6.2 Memory footprint
	3.6.3 Temporal overhead
	3.6.4 Portability
	3.6.5 Vulnerability coverage

	3.7 Discussion
	3.8 Conclusions

	4 Method for Preventing Information Leaks in the stack-smashing protector technique
	4.1 Abstract of the Disclosure
	4.2 Background
	4.2.1 Known patent documents
	4.2.2 Known patent application documents

	4.3 Summary of the Invention
	4.4 Detailed Description of the Invention
	4.5 List of references cited
	4.5.1 List of Patents
	4.5.2 List of Patent Applications

	4.6 Claims

	5 On the effectiveness of NX, SSP, RenewSSP and ASLR against stack buffer overflows
	5.1 Introduction
	5.2 Background and Terminology
	5.2.1 Stack buffer overflow vulnerability
	5.2.2 Types of server architecture
	5.2.3 Protection techniques
	5.2.4 Threats to protection techniques
	5.2.5 Generic structure of an attack

	5.3 Analysis of the protection techniques
	5.3.1 Single process server
	5.3.2 Inetd-based server
	5.3.3 Forking server
	5.3.4 Server summary

	5.4 Discussion
	5.5 Conclusions


	II Address Space Layout Randomization (ASLR)
	6 On the Effectiveness of Full-ASLR on 64-bit Linux
	6.1 Introduction
	6.2 ASLR Design
	6.2.1 PIC & PIE overview

	6.3 Offset2lib: The Linux ASLR weakness 
	6.4 Building the Attack
	6.4.1 The vulnerable server
	6.4.2 Steps to building the attack
	6.4.3 Exploiting the server target
	6.4.4 Other attack vectors

	6.5 Countermeasures discussion
	6.6 New Full-ASLR design
	6.7 Conclusion

	7 ASLR-NG: Address Space Layout Randomisation Next Generation
	7.1 Introduction
	7.2 System model and definitions
	7.3 Growable objects: a critical review
	7.3.1 Stacks
	7.3.2 The heap

	7.4 ASLR design weaknesses
	7.4.1 Non-full address randomised weakness
	7.4.2 Non-uniform distribution weakness
	7.4.3 Correlation weakness
	7.4.4 Memory layout inheritance weakness

	7.5 ASLR constraints and considerations
	7.6 ASLR-NG
	7.6.1 Allocating object strategy
	7.6.2 Addressing fragmentation
	7.6.3 Algorithm
	7.6.4 Profile modes
	7.6.5 Fine grain configuration

	7.7 Evaluation
	7.7.1 randomisation forms
	7.7.2 ASLRA: ASLR Analyser tool
	7.7.3 Absolute address entropy
	7.7.4 Correlation in ASLR-NG

	7.8 Conclusions and future work


	III Diversification Through Emulation
	8 DRITAE: Diversified Replication Infrastructure Through Architecture Emulation
	8.1 Introduction
	8.2 Background and challenges
	8.2.1 Memory errors
	8.2.2 Protection mechanisms
	8.2.3 Networking server weakness

	8.3 DRITAE architecture
	8.3.1 Creation of variants
	8.3.2 Execution of Variants
	8.3.3 Memory error detection
	8.3.4 Variant replacement strategy

	8.4 Case study: Web server
	8.4.1 Building cross-compilers
	8.4.2 Qemu emulator
	8.4.3 Detecting crashes
	8.4.4 Alternating among variants

	8.5 Experimentation and results
	8.5.1 Fault manifestation
	8.5.2 Protection against attacks
	8.5.3 Spatial and temporal cost

	8.6 Discussion
	8.7 Conclusions and future work


	IV Conclusions
	9 Conclusions
	9.1 General conclusions
	9.2 Contributions
	9.2.1 Theoretical contributions
	9.2.2 Contributions to open source
	9.2.3 Vulnerabilities discovered
	9.2.4 Patent
	9.2.5 Academic Publications
	9.2.6 Software tools and prototypes
	9.2.7 Honors & Awards

	9.3 Future work

	References


