
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://dx.doi.org/10.1109/JSEN.2012.2210037

http://hdl.handle.net/10251/57846

Institute of Electrical and Electronics Engineers (IEEE)

Bueno Martinez, A.; Suárez Álvarez, I.; Abargues, R.; Sales Maicas, S.; J. MARTÍNEZ-
PASTOR (2012). Temperature Sensor Based on Colloidal Quantum Dots PMMA
Nanocomposite Waveguides. IEEE Sensors Journal. 12(10):3069-3074.
doi:10.1109/JSEN.2012.2210037.



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

1

 
Abstract—In this work integrated temperature sensors based on active nanocomposite planar waveguides are presented. The 

nanocomposites consist of cadmium selenide (CdSe) and cadmium telluride (CdTe) quantum dots (QDs) embedded in a 
polymethylmethacrylate (PMMA) matrix. When the samples are heated in a temperature range from 25 ºC to 50 ºC the waveguided 
photoluminescence of QDs suffers from a strong intensity decrease, which is approximately quadratic dependent with temperature. 
Moreover, the wavelength peak of the waveguided emission spectrum of CdTe-PMMA shows a blue shift of 0.25 nm/ºC, whereas 
remains constant in the case of CdSe-PMMA. A temperature resolution of 0.05 ºC is obtained. QDs-waveguides have great potential 
for the development of photonic sensors because of their integration, multiplexing and roll-to-roll fabrication capabilities. 
 

Index Terms—Temperature sensor, colloidal quantum dots, nanocomposites, PMMA. 
 

I. INTRODUCTION 

ECENTLY, there is a huge interest in developing a great variety of integrated photonic devices because of their application 
in fields like telecommunication and sensing. For this purpose, colloidal quantum dots (QDs) are a very attractive material 

as an active medium to be integrated in photonic devices. These nanostructures join the three-dimensional confinement of the 
wave function, characteristic from QDs, with the feasibility of chemical methods, able to achieve nanocrystal radii from 1 nm to 
10 nm with size dispersion as low as 6 % [1], [2]. Since the size of the QDs is very small, the separation of the electronic states is 
much greater than thermal energy and the emission of the QDs in colloidal solution turns to be temperature independent. 
Moreover, QDs allow the possibility of tuning their emission wavelength by changing the size, but also the base material, 
without modifying the surface chemistry. Then, the appropriate choice of two or more different QDs provides multi-wavelength 
(or multi-‘color’) operation, which is a very potential and attractive feature since it allows the possibility of multiplexing in 
wavelength several optical sensors [3]. 

During the last decade, many researchers have studied the use of fluorescent QDs in biological applications (as labels in 
bioanalysis and diagnostics, tags for proteins and DNA immunoassays or compatible labels for in-vivo imaging studies [4]-[7]) 
since they can modify their surface by conjugation with the appropriate biomolecules. Moreover, chemical sensors had been also 
developed since a desired selectivity can be obtained by chemically tailoring the outer surface of the QDs. For instance, a 
selective ion probe was developed for sensing Zn2+ and Cu2+ cations [8] and a sensor for explosive molecules such as TNT or 
nitrobenzene was presented [9].  

In order to achieve the integration of the properties of QDs into optoelectronic devices, a common approach is to incorporate 
them into a host material. These multicomponent materials are known as nanocomposites. Walker et al. first characterized the 
temperature response of the photo-luminescence (PL) of colloidal QDs immobilized inside a polylaurylmethacrylate (PLMA) 
matrix [10] proving the suitability of QDs as temperature references for PL-based sensing applications. Other authors have also 
reported the use of different host polymers such as polystyrene (PS) [11] or polymethylmethacrylate (PMMA) [12] to embed 
QDs, and even coupling the light with the aid of optical fibers [13]. All these works use the PL of QDs as the sensing parameter, 
but none of them integrate the PL response into an optical waveguide, which is the key step to develop a temperature sensor into 
a photonic device. 

In this paper, we present a temperature sensor based on the temperature-dependent response of the waveguided PL of CdSe 
and CdTe QDs embedded into PMMA thin films. We describe the fabrication process of planar waveguides based on QDs and 
present the experimental setup carried out in order to perform temperature tests. Finally we show the temperature 
characterization of waveguided PL in both CdSe-PMMA and CdTe-PMMA waveguides from 25 to 50 ºC. Peak intensity of the 
waveguided PL shows a decreasing quadratic behavior in both waveguides. Between both nanocomposites, CdTe-PMMA 
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Fig. 4. Experimental setup carried out in order to perform temperature experiments with CdSe-PMMA and CdTe-PMMA waveguides. 

 
resistor used had an electrical resistance of 22 KΩ and dimensions of 5 mm x 15 mm . The temperature on the top of the resistor 
was obtained by a PT100 electrical sensor with a resolution of 0.1 ºC and controlled by a CAL9300 (CAL Controls) temperature 
controller. 

 A microscope objective collects the light at the output of the waveguide and focuses it to the detection system. It was 
mounted in a three-dimensional positioning system with micrometric resolution in order to improve the light coupling from the 
waveguides. Collimated PL light is finally focused with a semi-cylindrical lens to a multimode optical fiber attached to the 
entrance slit of a spectrometer (StellarNet EPP2000). This spectrometer is capable to acquire a spectrum in the range from 256 
nm to 1100 nm with a resolution of 0.5 nm. The PL spectra were recorded by the spectrometer was recorded by a specific control 
software running in a personal computer. 

 

IV. RESULTS AND DISCUSSION 

In a first step, a reference PL spectrum was recorded at room temperature (25 ºC) in the QDs-PMMA waveguides. The 
waveguided PL spectrum exhibit some differences compared to the PL spectrum of the nanocomposite due to the guiding effect 
through the sample. The propagating light in the waveguide can experience a reabsorption phenomenon, leading to a blue shift 
and a broadening of the waveguided PL spectrum [15]. In the CdSe-PMMA waveguide a 30 nm blue shift in the PL peak and a 
FWHM of 52 nm is measured. In CdTe-PMMA the waveguided PL spectrum was centered at 540 nm and had a FWHM of 38 
nm. 

 

 
Fig. 5. Photoluminescence spectra recorded from the CdSe-PMMA waveguide at each setting temperature. 

 

 
Fig. 6. Photoluminescence spectra recorded from the CdTe-PMMA waveguide at each setting temperature. 
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Fig. 7. Temperature dependence of wavelength shift and FWHM of PL spectrum. 

 
Then, the waveguides were placed on the top of the ceramic resistor and the samples were heated in steps of 5 ºC up to a 

maximum temperature of 50 ºC. The PL spectra from the CdSe-PMMA waveguide at each setting temperature are depicted in 
Fig. 5. As it can be seen, the PL intensity strongly decreases with increasing temperature of the sample. There is no appreciable 
shift in the PL peak wavelength and a clear broadening of 7.6 nm from 25 ºC to 50 ºC, as it can be observed in Fig. 7. The CdTe-
PMMA waveguide was placed on top of the ceramic resistor in an identical procedure as the previous sample. A similar strong 
decrease of the PL intensity is observed when the sample is heated from 25 ºC to 50 ºC, as shown in Fig. 6. Nevertheless, the PL 
spectrum of the CdTe-PMMA waveguide experiences a broadening of 14.9 nm and a blue shift of 6.2 nm (Fig. 7).  

The CdSe-PMMA waveguide shows a negligible shift (within a range of ± 0.5 nm) whereas in the CdTe-PMMA waveguide 
an overall blue shift of 6.2 nm is measured, which means a shift rate of -0.25 nm/ºC. Regarding to the FWHM of the PL 
spectrum, both materials exhibit an increase. In the case of the CdSe-PMMA waveguide the broadening increase is 7.6 nm and 
nearly double, 14.9 nm, in the case of the CdTe-PMMA waveguide, corresponding to broadening rates of 0.3 nm/ºC and 0.6 
nm/ºC respectively. Since colloidal QDs (dropped cast layers) exhibit typically a smooth wavelength red shift with temperature, 
the different waveguided PL measured from 25 ºC to 50 ºC can be mainly attributed to the variations of the optical (refraction 
index) and morphological (film roughness) properties of PMMA matrix depending on the working temperature [20]. The PMMA 
stability is assured since there is not weight loss at temperatures below 165 ºC and its elastic regime is up to 195 ºC [21]. 
Moreover, any degradation of the material through the temperature cycles repeated during several days has not been observed. 
Concerning the cross-sensitivity with humidity, it is well known that both oleate-capped QDs and PMMA are hydrophobic. 
Therefore, water absorption by the nanocomposite is estimated to be very low. Thus, it is expected that humidity does not 
influence the measurements under the conditions of our experiment. 

 Although the temperature range studied is far away from the glass transition temperature of PMMA (around 105 ºC), heating 
can provoke the migration of the nanocrystals or even the modification of the QD’s surface, leading to a decrease of the PL 
intensity. In fact, it has already been demonstrated the decrease of PL in CdSe-PMMA [22], [23] and in CdSe/ZnS polystyrene 
composites [11] upon heating. This is explained by the strain induced in the QDs due to the thermal expansion of the polymer 
chains. Indeed, in these works the decrease of PL is accompanied by a broader FWHM and a red shift of the emission peak. In 
this case, CdSe-PMMA does not have any shift, whereas CdTe-PMMA shows a blue shift. However, in this case the waveguided 
PL is influenced as well by the waveguide properties (thickness, refractive index, losses…). 
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Fig. 8. Experimental data and quadratic fit in CdSe-PMMA and CdTe-PMMA planar waveguides. 
 

The refractive index of polymers decreases with temperature at a rate of 10-4/ºC [20], [22], thus when the sample is heated 
long wavelength modes are to be expected at cut-off, dealing to a blue shift in the spectra. Also, since a waveguide can propagate 
more quantity of modes at shorter wavelengths, it is reasonable that this effect should be stronger in the CdTe-PMMA 
waveguide. 

Fig. 8 shows the experimental data of the PL peak intensity versus temperature for both CdSe-PMMA and CdTe-PMMA 
waveguides. Quadratic fits of these data have been applied, obtaining polynomial expressions of PL(%) = 0.058·T (ºC)2 – 7.87·T 
(ºC) + 260.33 for the CdSe-PMMA waveguide and PL(%) = 0.13·T (ºC)2 – 13.18·T (ºC) + 349.53 for the CdTe-PMMA 
waveguide. The correlation coefficients obtained are 0.9978 for the CdSe-PMMA waveguide and 0.9973 for the CdTe-PMMA 
waveguide, showing an excellent fit of the experimental data. These polynomial coefficients state a higher temperature 
sensitivity of the CdTe-PMMA waveguide. The sensitivity in both waveguides depends on the working temperature due to the 
decreasing quadratic dependence of the PL intensity. In the lower temperatures range (25-40º) the highest performance is 
achieved. In this case , the curve can be approximated by a linear function with slopes of -4.9 % per ºC and -6.7 % per ºC in the 
CdSe-PMMA and CdTe-PMMA waveguides respectively. On the other hand, the lowest performance is achieved in the highest 
temperature range (40-55 ºC), where the curve shows a quadratic decrease. The sensitivities obtained in this region are -2.1 % 
per ºC and -0.5 % per ºC in the CdSe-PMMA and CdTe-PMMA waveguides respectively. The best temperature resolution is 
achieved in the lower temperature range, where the sensitivity of the sensor is higher. Taking into account this parameter and the 
precision of the spectrometer, the best temperature resolution of this set-up is estimated as 0.05 ºC. 
 

V. CONCLUSION 

In this work, the feasibility of a temperature sensor based on nanocomposite waveguides is demonstrated. The recent advances 
in colloidal QDs fabrication make the photonic integration of these nanostructures in polymer hosts possible. As the surrounding 
media varied from the colloidal solution to a polymer matrix, the PL spectrum is temperature dependent due to guiding and 
reabsorption effects of light travelling through the waveguide. 

Temperature sensors based on CdSe and CdTe QDs incorporated in PMMA were characterized. The waveguides were heated 
in the range from 25 ºC to 50 ºC and the temperature characterization of the waveguided PL shows a decrease in its intensity 
with quadratic temperature dependence. It is interesting to note that CdTe-PMMA waveguide presents more sensitivity and also 
its wavelength peak suffers from a temperature dependence of 0.25nm/ºC, whereas remains constant for the CdSe-PMMA. The 
possibility of wavelength multiplexing these sorts of integrated sensors allows a great number of temperature measurement 
applications. 
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