
Abstract

One of the current techniques proposed for multiple
transmit and receive antennas wireless communication
systems is the use of error control coding and iterative
detection and decoding at the receiver. These sophisti-
cated techniques produce a significant increase of the
computational cost and require large computational
power. The use of modern computer facilities as multi-
core and multi-GPU (Graphics Processing Unit) processors
can decrease the computational time required, represent-
ing a promising solution for the receiver implementation
in these systems.

In this paper we explain how iterative receivers can im-
prove the performance of suboptimal detectors. We also
introduce a novel parallel receiver scheme based on a hy-
brid computing model where CPUs and GPUs work to-
gether to accelerate the detection and decoding steps;
this design comes to exploit the features of the GPU

NVIDIA Kepler architecture respect to the previous one
in order to optimize the communication system perform-
ance.

Keywords: MIMO, ID-BICM, Multi-core/ Many-core,
LDPC, Turbo Decoding.

1. Introduction

Multiple-input multiple-output (MIMO) communications
systems make use of multiple transmit and receive an-
tennas to improve data rate by increasing the channel ca-
pacity and spectral efficiency compared to single
input-single output (SISO) systems.  It is clear that MIMO

has had a huge impact on wireless communication and

has been adopted by many modern wireless standards,
such as IEEE 802.11n [1] or 3GPP LTE [2]. However, the
advantages provided by these systems are achieved at the
expense of a higher cost of computation, making essen-
tial the implementations of MIMO systems with lower
computational cost.

On the other hand, error control coding is necessary to
improve reliability of practical systems. Therefore, a good
combination of detection and decoding MIMO schemes
has drawn attention in recent years. With the publication
of the landmark paper on trellis-coded modulation
(TCM) of Ungerboek [3] modulation and coding were
combined into a single entity to obtain better perform-
ance in digital communications. Subsequently with the
introduction of BICM, scheme proposed by Zehavi [4],
coding and modulation are optimized separately. His
scheme increases the time diversity of coded modulation
and therefore improves the performance of TCM over
Rayleigh fading channels; however over nonfading
Gaussian channels, degradation occurs [5].

In [6] Li and Ritcey applied the turbo decoding principle
to BICM, known as BICM with iterative decoding (ID-

BICM). In this scheme, extrinsic information is calculated
for each bit after the first pass, interleaved and then fed
back to the demodulator as a priori information on the
channel received symbols. ID-BICM significantly outper-
forms the TCM over both with less computational com-
plexity [5].

This scheme has received attention in wireless communi-
cations due to its power and bandwidth efficiency. Indeed,
these advantages have motivated the extension of ID-

BICM to MIMO systems [7][8]. Clearly, the study of MIMO
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ID-BICM systems is important in the nowadays investiga-
tion for the current research on decoding, however the im-
plementation difficulties that arise when using these
techniques are complex and thus it is necessary to develop
efficient algorithms capable of running on high perform-
ance computers, such as multi-core systems and GPUs.

The number of scientific contributions and research proj-
ects related to the use of GPUs as general purpose com-
puters (GPGPUs) and multi-core processors has
significantly increased. The simultaneous use of these two
architectures allows fully exploiting the resources of the
machine and reducing the response time of high compu-
tational cost problems. This approach is currently used, for
example, in numerical linear algebra libraries as MAGMA

[9] or CULA [10]. GPUs are powerful tools and represent
a quantitative leap in the development of high perform-
ance hardware. Last year NVIDIA launched its new Kepler
architecture designed to maximize computational perfor-
mance with superior power efficiency, by offering new fea-
tures to optimize and increase parallel workload execution
and therefore offering much higher processing power than
the previous Fermi architecture. The new architecture pres-
ents relevant improvements that make hybrid computing
easier, and very appropriate for a wider set of problems. 

This paper aims to provide an efficient parallelization
scheme of the receiver implementation in MIMO ID-

BICM systems using current computers as multi-core and
multi-GPU systems. The proposed scheme tries to take
advantage of the new innovations offered by Kepler ar-
chitecture. Below, we describe two of the most important
features of the new architecture used in our paper (see
[11] for a detailed description):

Hyper-Q: Enables multiple CPU cores to launch work on
a single GPU simultaneously, thereby dramatically increas-
ing GPU utilization and reducing CPU idle times. While
the Fermi architecture could support 16 concurrent kernels
launches, all of them ending up in the same hardware
work queue that put them in a semi-serial state, the new
Kepler offers a 32 work queue hardware managed by
CUDA Work Distributor (CWD). The main advantage of
the CWD is that it can support running kernels from dif-
ferent CUDA streams or even from multiple threads within
a process but because they are independent, operations
in one stream will not delay the execution of the rest of
the streams.

Dynamic parallelism: It allows the GPU to self-schedule
and self-generate new workloads based on programmer
parameters without the need of intervention from the
CPU. Any kernel can launch another kernel and can cre-
ate the necessary streams, events, and dependencies

needed to process additional work without the need for
host CPU interaction. This feature should allow a larger
variety of parallel workloads to be converted to GPU pro-
cessing including those with nested loops or basic re-
quired serial control tasks.

The rest of the paper is organized as follows. Section 2
introduces the main concepts of MIMO ID-BICM; two
channel decoders are reviewed and a scheme of iterative
receiver is proposed. In section 3 we show how to paral-
lelize the receiver for MIMO ID-BICM communication
systems on multi-core and many-core architectures. Fi-
nally, main conclusions are reported in section 4.

2. General Scheme MIMO ID-BICM

In this section we recall the model of MIMO ID-BICM

systems, which is composed of nT transmit antennas and
nR receive antennas. A block diagram of this scheme is
shown in Fig. 1. 

In the transmitter, the information bits b are encoded
using an error-correction code, such as turbo codes or
LDPC (Low Density Parity Check Codes). The coded bits
are then passed through an interleaver ᴨ and mapped to
symbols which are split into nT transmit antennas.
Thereby a complex signal s=(s1, …, snT )

T is sent, where
each vector component is a symbol si taken from a con-
stellation � of size l�l=M. The baseband equivalent model
for the received vector over a Gaussian channel is given by

Where H is the channel matrix formed by nR× nT com-
plex value entries characterized as zero-mean and unit-
variance complex independent Gaussian random
variables. The transmitted signal s is perturbed with ad-
ditive white Gaussian noise n.  

At the receiver, the detector uses the received vector y
and the known channel matrix H to calculate the relia-
bility information of transmitted coded bits in form of real
valued log-likelihood ratios (LLRs).
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We provide an efficient parallel implementation of the
MIMO ID-BICM receiver that takes advantage of cu-
rrent  multi-core and many-core processors, as multi-
GPUs.

Figure 1. MIMO ID-BICM block diagram.

y = Hs+n (1)

(2)Lj,b = ln P(xj,b= 0/y)
P(xj,b= 1/y)



in this system model xj,b denotes the b-th bit in symbol sj.
Using the max-log approximation [10], the LLR can be
calculated as:

where � j,b denotes the set of symbol vectors for which
the b-th bit in symbol sj equals c. The term -log P{s} is it-
eratively calculated using the a priori information pro-
vided by the decoder (in the first iteration, this
information is zero). Further details about the reliability
information provided by the detector can be found in
[10]. Next, these values are de-interleaved and used by
the channel decoder to calculate their own log-likelihood
ratios. The extrinsic information about each coded bit
provided by the decoder is fed back as a priori informa-
tion for the detector in the next iteration of the receiver.

The use of soft detection in MIMO BICM systems can
substantially improve their performance with respect to
the use of hard detection.  Soft-output requires the com-
putation of the LLR for every bit. The calculation of these
values suffers from an exponential increase in the com-
plexity with the number of antennas and the constella-
tion size; thus the exact calculation of the LLRs has a
very high computational cost. In response to this, numer-
ous alternatives of suboptimal demodulators have been
proposed in the literature [12, 13, 14]. A common solu-
tion is to calculate approximated LLRs.

One way to reduce the complexity is to perform the cal-
culation of (3) using a list of candidates to obtain an ap-
proximation of the LLRs, thus:

where L is the candidate list, being a reduced set of all
possible transmitted vectors. The size of the candidate
list l l offers a trade-off between performance and com-
plexity. Next section will show one of the procedures that
have been implemented to obtain the list.

In summary, in MIMO ID-BICM the soft detector esti-
mates the bits that are mapped into the transmit vector
and provides information about how reliable these es-
timates are. This supplementary information is ex-
ploited by a channel decoder to achieve better
decoding performance. Moreover, the performance is
further improved using iterative receiver structures
where the detector and the decoder exchange infor-
mation during certain number of iterations (Niter). This
parameter provides a trade-off between complexity
and performance.

2.1 Channel coding
Practical wireless communication schemes utilize channel
codes such as convolutional, Turbo or Low-Density Par-
ity-Check (LDPC) codes. The purpose of channel coding
is to reduce the bit error rate. In our implementation the
specific channel coding considered has been the Turbo
Codes (TC). Currently, our purpose is to use the channel
encoder LDPC codes together with the idea of list de-
coding. Next, we provide a brief description of LDPC and
TC.

2.1.1 LDPC codes
LDPC codes allow communicating effectively very close
to the Shannon capacity limit of the channel and at a low
complexity in a wide range of communications systems.
Today LDPC decoders are strong competitors to turbo
codes and are even used in many standards, such as
DVB-S2 [15], WiMax [16] or WiFi [17].  

LDPC codes are linear block channel codes with sparse
(matrix with few ones in comparison to the number of
zeros) parity-check matrix H. A convenient way to de-
scribe an LDPC code is in terms of its factor graph (Tan-
ner graph). Tanner introduced an effective graphical
representation for LDPC codes which helps to describe
the decoding algorithm. The graph is a bipartite graph
meaning that the nodes are separated into two sets. On
one side we can find variable nodes cj, and on the other
side the graph has nodes called check nodes fi. The two
types of nodes are connected if the element  hij of H is
equal to 1. In Fig. 2 an example of Tanner graph is shown
associated with the check equation and the parity check
matrix of equation (5), where the rows are the check
nodes and the columns represent the variable nodes.

These codes achieve a remarkable performance with it-
erative decoding based on belief propagation; decoding
details can be found in [18]. Furthermore, this idea of it-
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Figure 2. Tanner graph of a linear block code parity-
check matrix H.

(3)

(4)

(5)

Lj,b = �2
1

[mins�� j,b
{ y-Hs 2- log P{s}}

-mins�� j,b
{ y-Hs 2- log P{s}}]

(0)

(1)

(c)

Lj,b = �2
1

[mins�£ � j,b
{ y-Hs 2- log P{s}}

-mins�£ � j,b
{ y-Hs 2- log P{s}}]

(0)

(1)

^

c0 c1 c2 c3 c4 c5 c6 c7
0 1 0 1 1 0 0 1 f0 
1 1 1 0 0 1 0 0 f1
0 0 1 0 0 1 1 1 f2
1 0 0 1 1 0 1 0 f3

H =

f0  = c1 +c3 +c4 +c7
f1  = c0 +c1 +c2 +c5
f2  = c2 +c5 +c6 +c7
f3  = c0 +c3 +c4 +c6



erative decoding can be combined with the list decoding
concept introduced by Elias [19]. In this type of decoding
the idea is to generate a list of codewords containing the
closest codewords to the received vector opposed to sin-
gle decoding that returns a single codeword.

2.1.2 Turbo Codes
One of the most used channel codes are convolutional
codes, with the decoding strategy based on the Viterbi
algorithm. The advantages of convolutional codes are
used in turbo codes [20] which are the specific channel
coding scheme considered in this work.

The structure used in turbo encoders is shown in Fig. 3.
The turbo encoder uses two Recursive Systematic Con-
volutional (RSC) codes to encode the same input bits,
with an interleaver Π between the encoders.

The first encoder operates on the input bits, represented
by b, while the second encoder operates on the input bits
which have been permuted by the interleaver. The output
then is represented by c=(c(1),c(2),c(3)). If the input frame
b is of length k and the output frame c of length n, then
the encoder rate is R=k/n. 

At the receiver the general structure of an iterative turbo
decoder is shown in Fig. 4. Two decoders are linked by
interleavers in a structure similar to the encoder. In our
case the decoder receives as input the LLRs of the re-
ceived sequence. 

These LLRs are the soft output of the previous detector
and provide information to the decoder about the relia-
bility of each bit in the sequence. In the first iteration, the
first decoder takes only the values from the detector and
produces a soft output. The soft output from the first en-
coder is then used as additional information for the sec-

ond decoder, which uses this information with the de-
tector output to calculate its own estimate of the data
bits. In the second iteration the first decoder decodes
again, but now with additional information about the
value of the input bits provided by the output of the sec-
ond decoder in the first iteration. This cycle is repeated
until certain condition is reached, achieving an improve-
ment in the Bit Error Rate at each new iteration.

2.2. The proposed generation of candidates
It has been discussed previously that, due to the compu-
tational complexity in the calculation of the exact LLRs,
one of the alternatives is the use of a list with possible can-
didates to calculate an estimate of these values. The can-
didate list can be generated using several techniques such
as list sphere decoder, lattice reduction or bit flipping.

As we can see in Fig. 5 and it is detailed below in our im-
plementation, we have calculated the values in (3) by bit
flipping technique. 

In this scheme the Zero-Forcing (ZF) detector is imple-
mented. Hard output MIMO detectors are alternatives to
soft demodulators that provide decisions for the coded bits
but they do not supply reliability information. ZF is a linear
detector which provides sub-optimal performance but of-
fers significant computational complexity reduction with tol-
erable performance degradation. The performance of this
algorithm can be improved by using nonlinear techniques
as detection with successive interference cancellation (SIC).
The idea of our implementation is to use this simple detec-
tor with low complexity and to improve the performance
of the whole system by means of a feedback stage.

In the first iteration a ZF-SIC [21] provides an estimate
of the symbols vector that was broadcast ŝZF_SIC. From
this estimate, the bit-flipping module generates an initial
candidate list and the LLRs values are calculated from
this list using (4). The candidate list is stored for subse-
quent iterations and the soft outputs are passed to the
decoder. In the following iterations the bit-flipping mod-
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Figure 3. Turbo encoder with rate 1/3.

Figure 4. Turbo decoder scheme.

Figure 5. Receptor scheme implemented.

In MIMO ID-BICM the soft detector estimates the bits that
are mapped into the transmit vector and provides infor-
mation about how reliable these estimates are. This extra
information is exploited by iterative channel decoders to
improve its error performance. 



ule takes the solution provided by the detector in the pre-
vious step as its starting point. The new list calculated is
added to the initial list and the LLRs values are calculated
now from all candidates. 

As discussed before, one way of generating the candi-
date list is to flip some bits of the hard solution. The bit
flipping module in Fig. 5 takes the output of ZF-SIC de-
modulator as a starting point in the first iteration whereas
for the following iterations it takes the output of the de-
coder. In this manner, additional log2 M branches are con-
sidered at each level adding new candidates as it is
shown in Fig. 6. The figure represents an algorithm for a
4 x 4 MIMO system with QPSK symbols, where the bits
of the initial hard solution are ŝ =[10 11 01 00].

Each of these additional branches has one bit flipped
with respect to its original hard symbol. Thus additional
branches are obtained by flipping each bit and after that,
these new branches are completed using SIC path until
the bottom is reached. This operation is repeated for
each level and finally the candidate list is obtained by
adding the calculated paths to the initial hard solution.
In Fig. 7 we see the performance in terms of bit error rate
(BER) of the proposed scheme compared to the same

scheme without feedback and to the ZF-SIC hard detec-
tor. Results obtained from simulation using a 4 x 4 MIMO

scheme and 16-QAM modulation have been depicted.
The channel code is a turbo code with rate 1/3 and a
block length of 10 000 bits.  

It can be clearly observed that the hard detector ZF-SIC

is outperformed when channel coding is added to the sys-
tem. Thus, the curve ZFCODED implements the scheme
shown in Fig. 5, but without feedback between decoder
and detection. We can see how the suboptimal perform-
ance of the hard detector (with a reduced computational
cost) is improved due to the feedback when soft informa-
tion is exchanged between the detector and the decoder.

As a future work, the channel decoder as Iterative List
Decoding of LDPC Codes [22] is going to be imple-
mented and the list provided by the decoder will be used
for calculating the LLRs values for subsequent iterations.

3. Parallel implementations

Next, we will detail the most important aspects of the
proposed parallel scheme, emphasizing the benefits we
would get if we use a multi-core processor with two
GPUs NVIDIA Kepler as accelerators.

The proposed GPU implementation will be composed of
two CUDA kernels: the first one is the detector kernel and
the second one is the decoder kernel. Although in Fig. 8
the bit interleaver and de-interleaver appear as independ-
ent modules we will assume that the de-interleaver is part
of the detector and the interleaver is part of the decoder.
These modules must be implemented and optimized in
order to improve the performance of the CUDA code, for
example using shared and constant memories (faster than
global memory) to store work variables in order to acceler-
ate the access to this data. We already have implemented
a soft-output fixed sphere decoder and LDPC decoder in
CUDA [23, 24] that can be used as alternatives.

In Fig. 8 it can be observed that the CPU is in charge of
dividing the flow of symbols stored in a buffer in different
codewords. For example if we are using codewords of
Length= 4320 bits and 16-QAM modulation, the             =
1080 symbols correspond to the first codeword (CW1),
the following 1080 symbols correspond to the second
codeword (CW2) and so forth. 

The CPU can create as many threads (MPI or OpenMP) as
cores it has. Each codeword will be processed by one of
these cores (threads), so by using Hyper-Q every thread will
create a CUDA stream individually producing a separate
connection between CPU and GPU, as shown in Fig. 9.
This model offers high benefits due to the fact that multiple
processes can share the GPU and increase its occupancy. 

For each codeword, CPU copies its symbols in the global
memory of the GPU. At this point the process of detect-
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Figure 6. Generating the candidate list.

Figure 7. BER performance for different MIMO receivers.

4320
log2 16



ing and decoding symbols begins. These algorithms are
also implemented to make efficient use of the many
threads of the GPU. As mentioned previously these im-
plementations are already optimized using shared mem-
ory in order to accelerate the access to this data. However,
we cannot use shared memory to store the LLRs calcu-
lated at the output of the bit interleaver/de-interleaver,
because the shared memory cannot be passed between
kernels, since the contents of a shared block are defined
within an execution block of threads only.

Following our strategy of parallelization, we will use dy-
namic parallelism that allows the GPU to generate new
work for itself, synchronize on results, and control the

scheduling, all without involving the CPU. As shown in
Fig. 10 when the detector kernel has finished, new child
threads can be launched and spawned by adapting to
the work needed in the decoder process. When the de-
coder kernel is completed a new detector step is exe-
cuted by the original threads with the new LLRs values,
if the number of iterations is smaller than Niter (see sec-
tion 2). With this new feature, the system CPU can then
be freed up for additional tasks, and can use this time to
transform LLRs to bits or symbols ( b̂i=1 if Lbi>0 and
b̂i=0  if Lbi<0).

4. Conclusions 

The use of multi-core and many-core architectures for the
efficient implementation of MIMO receivers represents a
good alternative for the implementation of these systems
due to its computational complexity. Therefore, in this
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Figure 8. High-level parallel architecture overview for the considered MIMO ID-BICM receiver.

Figure 9. Hyper-Q working with CUDA Streams: In the Fermi model shown on the left, only codewords (CW3, CW4)
and (CW6, CW7) can be decoded concurrently due to intra-stream dependencies caused by the single hardware work
queue. The Kepler Hyper-Q model allows all streams to decode simultaneously using separate work queues.

Our design exploits the maximum occupancy of the GPU
since multiple words can be decoded in parallel through
separated queues allocated at each CUDA stream



paper we have proposed a hybrid general scheme of a
MIMO BICM iterative receiver. Our design allows the
maximum occupancy of the GPU since we can decode
multiple words in parallel through separate queues for
each CUDA stream. In addition, our receiver model
makes use of all the resources available in the system and
can simultaneously run code on the CPU and the GPU.

In this paper iterative detection and decoding scheme for
MIMO systems with error control coding have also been
analyzed. We have proposed feedback using a single de-
tection scheme, showing better performance in terms of
BER than the same scheme without feedback. The
method iterates the channel decoder and a soft detector
is able to find a set of candidates from which the esti-
mated LLRs values can be computed. This scheme can
be applied to any type of error control code; in this paper
we have explained the two most commonly used types
of codes in wireless communication, showing results ob-
tained with turbo code simulations. However, further
work using LDPC codes with list decoding is currently
being implemented in our simulations.
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