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ABSTRACT:

The abandonment of agricultural plots entails a low economic productivity of the land and a higher vulnerability
to wildfires and degradation of affected areas. In this sense, the local government of Galicia is promoting new
methodologies based on high resolution images in order to classify the territory in basic and generic land uses.
This procedure will be used to control the sustainable management of plots belonging to the Land Bank. In this
sense, this paper presents an application study for maintaining and updating land-use/land-cover geospatial
databases using parcel-oriented classification. The test is performed over two geographic areas of Galicia, in the
northwest of Spain. In this region, forest and shrublands in mountain environments are very heterogeneous, with
many private unproductive plots, some of which are in a high state of abandonment. The dataset is made of high
spatial resolution multispectral imagery, cadastral cartography, employed to define the image objects (plots), and
field samples, which were used to define evaluation and training samples. A set of descriptive features is
computed quantifying different properties of the objects, i.e. spectral, texture, structural, and geometrical.
Additionally, it is tested the effect on the classification and updating processes of the historical land use as a
descriptive feature. Three different classification methodologies are analyzed: linear discriminant analysis,
decision trees and support vector machine. The overall accuracies of the classifications obtained are always
above 90%, and support vector machine method is proved to provide the best performance. Forest and
shrublands areas are especially undefined, so the discrimination between these two classes is low. The results
enable to conclude that the use of automatic parcel-oriented classification techniques for updating tasks of land-
use/land-cover geospatial databases, is effective in the areas tested, particularly when broad and well defined
classes are required.
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1. Introduction

An efficient territory management and monitoring requires the regular use of land use/land cover (LU/LC)
geospatial databases. The accuracy and the reliability of these databases is a crucial issue for decision-making
tasks. The high dynamism of some geographic areas and the need of periodical updating of the information
contained in the geospatial databases entail a high economic cost, which makes difficult to update the
information with the appropriate frequency. In this sense, digital image classification techniques contribute to
automate the processes of LU/LC geospatial database updating and could substantially reduce the field visits and
the costs at production level, enabling to improve the updating frequency (El Kady and Mack, 1992; Dadhwal et
al., 2002). Early studies were focused on pixel based analysis of the images (Homer et al., 2004). However,
higher applicability of digital image processing techniques has been reached using object-based approaches,
which require the definition of objects to divide the territory. An object is defined as a group of pixels with
common characteristics created by means of a determined segmentation criterion (Blaschke, 2010). The
segmentation method employed is key in the descriptive feature extraction process because the resultant objects
will differ depending on the algorithm and parameters selected. Parcel-based image classification is a particular
object-based classification case that uses cartographic limits to create the objects. This is a suitable methodology
for anthropogenic environments such as rural areas, allowing to easily integrate remotely sensed data derived
information with LU/LC geospatial databases. This technique has been widely employed in several works
(Arikan, 2004; De Wit and Clevers, 2004; Walter, 2004; Peled and Gilichinsky, 2004; Ruiz et al, 2009).
Although first approaches used medium spatial resolution multispectral imagery acquired with Landsat (Petit and
Lambin, 2002) or ASTER (Perveen et al., 2008) platforms, or combining these images with other data such as
SPOT (Cohen and Shoshany, 2000; Ormeci et al., 2010) or radar (Dupas, 2000, Del Frate et al., 2008), sensors
with higher spectral and particularly spatial capabilities, such as IKONOS (Peled and Gilichinsky, 2010),
QuickBird (Walsh et al., 2008), or airborne cameras (Walter, 2004; Tansey et al., 2009; Zaragozi et al., 2011)
permitted to achieve more detailed analysis. Additionally, the integration with three-dimensional information
acquired with aerial laser scanner systems increases the accuracy of the results (Walter, 2005; Hermosilla et al.,
2010).

The periodic updating and quality maintenance of the information contained in LU/LC geospatial databases may
support the control of the appearance of neglected lands. Abandoned lands reduce the economic productivity and
increase the vulnerability to wildfires and degradation in the affected areas. In this sense, this paper presents the
results of a preliminary study regarding to the suitability of the employment of parcel-based image classification
techniques for LU/LC geospatial database updating in Galicia (Northwest of Spain). In this region, forest and
shrublands in mountain environments are very heterogeneous, presenting many private unproductive plots, some
of them in a high state of abandonment (Diaz-Manso and Ferradans-Nogueira, 2011). The regional government
is promoting new methodologies based in high resolution images in order to classify the territory in basic and
generic land uses, with the goal of creating and maintaining a LU/LC geospatial database. This database will
allow for planning specific actions for a sustainable management of neglected plots, including the creation of a
Land Bank of Galicia (Banco de Terras de Galicia). This study aims to define and evaluate a productive
methodology based on parcel-based classification of high-resolution images, for updating a generic LU/LC
geospatial database. Object-based classification applied to update agricultural and forest plots can be focused on
different thematic levels. In this case, generic classes would provide operative information for discriminating
between productive and unproductive plots. Three different classification methods are compared: decision trees,
linear discriminant analysis and support vector machine. Additionally, the effect on the classification and
updating process of the historical land-use contained in the geospatial database is tested.

2. Material and methods

2.1. Study areas and data

The study has been performed on two local administrative areas (comarcas) of Galicia: Baixo Miflo and A Limia
(see Figure 1). The first one is located in the Atlantic coast of the province of Pontevedra, and is mainly covered
by forest, agricultural crops and vineyards. The administrative area of A Limia is located in the province of
Ourense and presents large areas of agricultural crops, forest and shrublands.



Fig. 1 Location of Galicia in Spain (a) and Location of the analyzed administrative regions (comarcas) in Galicia

(b)

The images employed were available through the Spanish National Plan of Aerial Orthophotography (PNOA).
These images have a spatial resolution of 0.25 m/pixel and 4 spectral bands: red (R), green (G), blue (B) and
near infrared (NIR). The images of A Limia were acquired between May and July of 2007, and those of Baixo
Mifio during the same months of 2008. The imagery was already ortho-rectified and geo-referenced,
panchromatic and multispectral bands fused, mosaicking and radiometric adjustments applied, as a part of the
PNOA programme. After preliminary tests, and considering the classes used in this study, 0.5 m/pixel spatial
resolution proved as good performance as 0.25 m/pixel. Consequently images were resampled by using bilinear
interpolation in order to facilitate and to improve the operativeness of the descriptive feature extraction process.

Cartographic boundaries to define the final objects (plots) were obtained from the National Land Parcel
Information System (SIGPAC), a geospatial database oriented to agriculture management. The plots represent a
continuous area of land within a plot for a single agricultural use, being the total number of plots 468,721 in A
Limia and 255,347 in Baixo Miflo. Additionally, field sampling segments collected in the same date that the
images employed for each region were available. These segments have square shape with side sizes of 350 or
500 meters. Figure 2 shows the distribution of field samples in both areas. In order to confer coherence to the
automatic feature extraction process, which requires a minimum plot surface, plots with a surface lower than 60
m® were rejected from the tests. Besides, SIGPAC plots with very large dimensions were also excluded
(representing images with more than 9,000,000 pixels), due to the RAM memory limitations for processing the
per plot feature extraction algorithms.
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Fig. 2 Distribution of field sampling data in A Limia (a) and Baixo Mifio(b)

A number of generic classes for both regions were defined: Buildings, Forest, Shrublands and Arable and crop
lands. Due to the definition accuracy presented by the classes regarding to roads and rivers in the SIGPAC, these
classes were transferred directly from the geospatial database. Arable and crop lands class includes also
pastures, being built up by aggregation of three sub-classes, differencing the vegetation level of a plot: no
vegetation, medium vegetation and cultivated field. Besides, some additional classes were defined in order to
adapt the legend to the particular conditions of each region. Thus, a Water layer class was defined in A Limia to
classify new flooded areas not registered in the SIGPAC database. In Baixo Mifio, the additional Vineyards and
Greenhouse classes were defined. Examples of the defined classes are shown in Figure 3. In the region of A
Limia, most of the training samples were selected from the register of field segments available from the SIGPAC
project, being adequate in number and spatial distribution (Figure 2a). Since the sampling polygons did not
coincide with the SIGPAC plots limits (Figure 4), the assignation of samples to each class was manually done.
Additional samples were added by photointerpretation in order to avoid a low representation of some classes,
particularly Water layers, Forest and Shrublands. As in the region of Baixo Mifio, the number of field samples



was substantially lower (see Figure 2.b), the training samples were mainly selected using photointerpretation
techniques, and using the field registers as ancillary data.

Fig 4 Example of the geometric differences between field sampling polygons inside a segment (a) and SIGPAC
plots (b)

2.2. Descriptive feature extraction

The use of efficient features is essential for accurate classification. At this point, every plot was independently
processed to extract descriptive features characterising the current land use. The features were computed using
the object-based description software FETEX 2.0 (Ruiz et al., 2011). Four feature categories were defined:
spectral, textural, structural and shape features. Additionally, the effect of the use of ancillary data by
considering the historical land-use was tested.

Spectral features provide information about the spectral response of objects on the visible and near infrared
regions of the electromagnetic spectrum, which is related to land cover types, state of vegetation, soil
composition, construction materials, etc. These features are particularly useful in the characterization of
spectrally homogeneous objects, such as herbaceous crops or fallow fields. Mean and standard deviation were
computed as features from bands NIR, R, G, and also from the Normalized Difference Vegetation Index
(NDVI).

Texture features inform about the spatial distribution of the intensity values in the image, being useful to
quantify properties such as heterogeneity, contrast or uniformity related to each object (Ruiz et al., 2004). These
properties are clearly related to the LU/LC inside an object. For every object, the following features proposed by
Haralick et al. (1973) based on the grey level co-occurence matrix (GLCM) were computed: contrast,



uniformity, entropy, variance, covariance, inverse difference moment, and correlation. This information was
completed with the kurtosis and skewness, which depict the first order distribution of values of the histogram of
an object, and the mean and the standard deviation of the edgeness factor for each plot (Laws, 1985). The
edgeness factor represents the density of edges in a neighbourhood. These features were computed from the red
band.

Structural features were derived form the semivariogram. The semivariogram curve quantifies the spatial
associations of the values of a variable, and measures the degree of spatial correlation between different pixels in
an image. This is a particularly suitable tool in the characterization of regular patterns. The multidirectional
semivariogram representing each object is obtained by computing the mean of the semivariograms calculated in
six directions, ranging from 0° to 150° with a step of 30° (Balaguer-Beser et al., 2011). Afterwards, each
semivariogram curve is filtered using a Gaussian kernel with a stencil of 3 positions, in order to smooth its shape
and to reduce experimental fluctuations. Several structural descriptive features were computed considering the
singular points of the semivariogram, such as the first maximum, the first minimum, the second maximum, etc.,
all being described in detail in Balaguer et al. (2010).

Shape features inform about the complexity in the shape of the objects. They contribute to differentiate polygons
with specific shapes. Several standard features were extracted for each object: compactness, shape index, fractal
dimension, area and perimeter.

Finally, the historical land use, contained in the SIGPAC geospatial database, was included as a qualitative
descriptive feature in order to evaluate its effect in the classification and change detection steps.

2.3. Classification methods

In order to optimize the process and to analyze the performance of different classification methods, three
classification tests were carried out over the data sets from the two areas, based on decision trees, linear
discriminant analysis (LDA), and support vector machine (SVM).

2.3.1. Decision trees

A decision tree is a set of organized conditions in a hierarchical structure, in such a way that the class assigned to
an object can be determined following the conditions that are fulfilled from the tree roots (the initial data set) to
any of its leaves (the assigned class). The algorithm employed in this study is the C5.0 (Quinlan, 1993), widely
used to deduce decision trees for classifying images (Zhang and Liu, 2005).

The process of building a decision tree begins by dividing the collection of training samples using mutually
exclusive conditions. Each of these sample subgroups is iteratively divided until the newly generated subgroups
are homogeneous, i.e., all the elements in a subgroup belong to the same class. These algorithms are based on
searching partitions to obtain purer data subgroups, which are less mixed than the previous group where these
come from. For each possible division of the initial data group, the impurity degree of the new subgroups is
computed, and the condition which gives the lower impurity degree is chosen. This is iterated until the division
of the original data into homogeneous subgroups is carried out by using the gain ratio as splitting criterion. This
criterion employs information theory to estimate the size of the sub-trees for each possible attribute and selects
the attribute with the largest expected information gain, that is, the attribute that will result in the smallest
expected size of the sub-trees.

Objects were classified using 10 decision trees, by means of the boosting multi-classifier method, which allows
for increasing the accuracy of the classifier. The methodology followed by the boosting to build the multi-
classifier is based on the assignment of weights to training samples. After each tree construction, the vector of
weights is adjusted according to the model performance. In this way, samples erroneously classified increase
their weights, whereas the weights of correctly classified samples decrease. Thus, the model obtained in the next
iteration will give more relevance to the samples erroneously classified in the previous step (Hernandez-Orallo et
al., 2004). After the construction of the decision tree set, a class is assigned to each object considering the
estimated error in the construction of each tree.

2.3.2. Linear discriminant analysis

LDA is a multivariate statistical technique that has been described as similar to multiple regression analysis
where the dependent variable is categorical, and the independent variables are continuous and are used to
determine the class to which the objects belong (Huberty, 1994; Everitt and Dunn, 2001). The objective is to find
the linear relationships between the continuous variables that better discriminate between the defined groups.



The criterion to decide the variables entering into the definition of the discriminant function is to minimize the
value of the Wilk's Lambda that is defined as the quotient between the variance inside the groups (classes) and
the overall variance. The overall variance of a variable can be expressed as the sum of the variance inside the
groups and the variance between groups. Thus, the value of the quotient defined by Wilks’ Lambda represents
the proportion of the overall variability due to the differences occurred inside the groups. According to this
interpretation, a variable is chosen when it minimizes the Wilks’ Lambda value, i.e., the observed differences
between the values of the discriminant functions are caused by the differences between groups, not by internal
differences.

After defining the acceptance criterion, the variable selection is done stepwise. Firstly, the most discriminative
variable is selected by independently assessing each variable by using an F test, which in this case is a function
of Wilks’ Lambda value (4) as is described in the expression:

(=2 l—Aj
g-1 A

where 7 is the number of elements (objects) and g the number of groups (classes). The fist variable selected is
the one minimising the Wilks’ Lambda value, i.e., the one providing the highest and significant £ value. In the
second step, the selected variable is combined with each of the remaining variables, choosing the most
discriminative (highest significant value of F). In this case, as a variable is added into a model were there are

already other features, the F value is computed according to the expression:
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where s is the number of variables in the model, and 4, and 4., are Wilks’ Lambda values before and after the
addition of the new variable, respectively. F represents the increment in the discrimination after the addition of
the new variable, with respect to the total value obtained with the variables previously included in the model.
Subsequent variables are selected in a similar manner. The variable addition process stops when no variable out
of the model fulfil the acceptance criterion.

2.3.3. Support vector machine

The support vector machine is a set of supervised learning methods used for classification and regression
analysis developed by Vapnik (1998). They model non-linear class boundaries in high dimensional feature
spaces by means of kernel functions and regularization. For classification, according to van der Linden et al.
(2010), SVM delineate two classes with an optimal separating hyperplane to the training data in the
multidimensional feature space. A good separation is achieved by the hyperplane with the largest distance to the
nearest training data points of any class. For linearly not separable classes, the original finite-dimensional space
is mapped into a much higher-dimensional space by a kernel function, where the new data distribution enables a
better fitting of a linear hyperplane. The parameterization of a support vector classifier requires the selection of
the kernel function parameter and a regularization parameter. To define the optimal separating hyperplane is
necessary to solve a quadratic optimization problem. As a result, one vector of weights is obtained for each
training data vector. Only the training data vectors with non-zero weight are needed to define the optimal
separating hyperplane, i.e. the support vectors. In remote sensing applications, the Gaussian radial basis function
kernel proved to be effective:

K(x,x,)=exp(-glx—x,[)

where g is the width of the Gaussian kernel function. A regularization parameter (C) controls the trade-off
between the maximization of the margin between the training data vectors and the margin errors; limiting the
influence of individual training data vectors. To search for adequate values of g and C a two-dimensional grid
search with internal validation was done.

SVM is only directly applicable for two-class problems. To be applied in multi-class problems is necessary to
reduce the multiclass problem into multiple binary classification problems. The one-versus-one approach was
used. In this approach, several SVM classifiers are trained for separating all possible class pairs. To assign the



multi-class decision, the values of the decision functions of the support vector classifier were transformed into
binary probabilities and class probabilities were estimated by pairwise coupling. Then, the class with the highest
probability was selected. These procedures were carried out with the imageSVM software (Rabe at al., 2010).

2.4. Accuracy assessment

The accuracy of the different classification tests was assessed using leave-one-out cross-validation, in order to
maximize the efficiency in the number of samples. This method uses a single observation from the original
sample set as validation data, and the remaining observations as training data, iterating until each observation in
the sample set is used once as validation data. From the confusion matrix, the user’s and producer’s accuracies
per class were computed, that respectively measure the commission and omission errors (Congalton, 1991). In
addition, a specific confusion index was defined to quantify the particular confusion between a pair of classes.
This index is computed as the sum of their mutual errors divided by the total objects from that pair of classes.
Confusion index value ranges from O (absence of per-class-pair errors) to 1 (all the objects of both classes
considered are misclassified).

In a standard process of LU/LC geospatial database updating, the class assigned to a parcel in the classification
process is compared to the land use contained in the original database. As the land uses defined in the database
were different to the employed in the classification, they were grouped to produce a direct correspondence
between land use types, allowing for their comparison and detection of possible changes. The differences
between them register the potential LU/LC changes produced in the territory, but also the errors produced in the
classification. In the updating process, correctly classified cases can be divided in two categories: coincidences
and detected changes. Coincidences occur when equal land use is assigned in the classification, reference data
and database. A detected change occurs when the classification land use is correctly assigned meanwhile the land
use appearing in the database is wrong. The sum of the percentage of coincidences and detected changes is equal
to the overall accuracy of the classification. Updating errors can be divided in two respective categories:
detectable and undetectable errors. A detectable error is produced when a mistaken land use is assigned in the
classification and differs to the one which is contained in the database. An undetectable error occurs when the
land use assigned in the classification process and the one contained in the database are the same but incorrect.
The accumulation of detected changes and detectable errors composes the number of plots to review in the
updating process (Recio et al., 2011). The effect of the addition of historical land-use as a feature in the
classification was tested using decision trees as classifier, since this method can directly handle discrete variables
as descriptive features, without requiring the use of other strategies such as dummy variable definition.

3. Results and discussion

3.1. Classification analysis

The classification overall accuracy values obtained considering the different methods are shown in Table 1. In
both study areas the use of SVM provided the highest values, meanwhile decision trees and LDA methods
reached similar overall accuracies.

Table 1 Overall accuracies obtained using different classification methods

Method A Limia  Baixo Mifio

Decision trees 91.4 89.2
LDA 88.2 91.6
SVM 95.0 96.3

The analysis of the per-class user’s and producer’s accuracies shows that in A Limia (Figure 5) and in Baixo
Mifio (Figure 6) LDA and decision trees classification methods, respectively, produced unbalanced values for
certain classes. Generally, in both study areas, the highest error rate occurred between the classes Arable and
crop lands with Shrublands, and Shrublands with Forest due to the similar spectral and textural responses of
Shrublands and Forest. Additionally, in Baixo Miflo main confusions were produced between Greenhouse with
Buildings and Arable and crop lands classes. The use of SVM noticeably mitigate the errors given in the classes,
and enable to reach user’s and producer’s accuracies higher than 90% in most of the classes.
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Fig. 5 Comparison of A Limia per-class user’s (a) and producer’s (b) accuracies using different classification
methods
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Fig 6 Comparison of Baixo Mifio per-class user’s (a) and producer’s (b) accuracies using different classification
methods

Many of the errors detected especially occurred between classes Shrublands and Forest. Since there was a
particular interest to discriminate between these two classes in order to improve the detection of neglected plots,
a deeper analysis of these errors was done by means of the mutual confusion index. The values reached
employing the different classification methods for the classes Shrublands and Forest are shown in Figure 7. In
both study areas the error pattern was similar, existing a higher confusion rate when LDA method was used.
With this methodology, the error rate between both classes was especially remarkable in the study area of A
Limia. Decision trees and, especially, SVM markedly produced a decrease of this confusion. Figure 8 shows
details of the thematic representation of the classification in both study areas.
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Fig. 8 Details of the thematic representation of the classifications in A Limia (a) and Baixo Mifio (b)

In general, a fact that introduce errors in the classification process in both areas of study was related with the size
and shape of the plots. Some polygons, particularly in Baixo Mifio, presented extremely long and narrow shapes



(Figure 9.a) or very small area, making difficult the extraction of meaningful descriptive features. In contrast,
plots with large dimensions normally presented mixed land uses (Figure 9.b). A possible alternative to face this
problem is to apply segmentation algorithms and then classify the generated sub-objects. Similarly, since the
analyzed regions were mainly rural areas, some built-up zones were contained in plots mixed with vegetation
(Figure 9.c). In this sense, the introduction of a post-processing step to filter or control improbable changes could
reduce this type of errors, improving the classification accuracy of the classes involved. Other problems were
related to the visual interpretation of the classes. In the training sample selection process, partially done through
photointerpretation, the visual discrimination between forest and shrubland was sometimes difficult (Figure 9.d).
Besides, the class Shrublands presents a significant internal heterogeneity in the area of Baixo Mifio. Finally,
since the regions of study were significantly large, those LC/LU classes having a very low representation were
not considered in the classification legend.

Fig. 9 Examples of cases that difficult a correct classification: narrow plots (a); mixed land-use (b); mixed built-
up plots (c); mixed forest and shrublands (d)

3.2. Effect of using historical land-use as a descriptive feature

When the historical land use contained in the SIGPAC geospatial database is added as descriptive feature in the
classification, the overall accuracy values experiment an increase of about 3% in both study areas (see Table 2).
Consequently, the producer’s and user’s accuracies of the classes presenting higher confusion degree increased.
The highest number of errors was still produced between Arable and crop lands and Shrublands, and Shrublands
and Forest.

Table 2 Comparison of overall accuracies with and without considering the historical land-use as a descriptive
feature

Features A Limia  Baixo Mifio
Image derived 91.4 89.2
Image derived +

Historical land use s 92.9

The specific distribution of cases produced in the updating process for the study area of A Limia is shown in
Figure 10. Assuming a thematic updating of land use contained in the SIGPAC, the detected changes without
historical land-use was 5% versus 3.3% considering this information as a feature. Detectable errors without using
historical land-use represented 6.2% against 1.4% when it was used. The addition of the historical land-use
produced that the number of plots to be revised, i.e. possible detected changes (sum of detected changes and
detectable errors) was reduced to 4.7%, against 11.2% without using it, but also the proportion of detected
changes was also notably reduced. In addition, the historical land-use consideration produced that the
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undetectable errors of change detection process were practically doubled (from 2.4% to 4.3%). This is caused by
the significance acquired by the historical land use feature in the rule creation process, due to the presence of a
large number of training samples with same historical and actual land uses. This leads to the classification of a
significant number of plots with changes attending to their historical land use. Consequently, these parcels
become undetectable errors since no change is detected when comparing the classification result to the outdated
database used to extract the old use as descriptive feature. This means that even when the use of the historical
land use as descriptive feature produces an actual improvement of the classification accuracy, in a LU/LC
geospatial database updating process the undetectable errors are noticeably increased.

24%
6.2%

a b

Legend: [l Coincidences [l Detected changes [7] Detectable errors llUndetectable errors

Fig. 10 Distribution of coincidences, changes and errors in the study area of A Limia without considering (a) and
considering (b) the historical land use contained in the SIGPAC geospatial database as descriptive feature

4. Conclusions

A methodology for generic LU/LC geospatial database creation and updating based on a plot-based classification
approach using high resolution multispectral images is presented and analysed. The classification process is
based on the combination of several descriptive features derived from images, plot shape and historical land-use
information. The analysis has been focused on detecting neglected use of agricultural and forest plots, in order to
control and monitor the correct use of the plots. The Land Bank of Galicia intermediates between owners and
potential users for a productive reutilization of the land. This information will be useful to define cost-effective
control procedures that minimise field visit tasks and allowing for a systematic monitoring of the territory.

The highest overall accuracy values were reached using SVM classification method. This methodology enabled
to obtain the most balanced per-class accuracies. Main classification errors were given in the discrimination
between forest and shrublands areas, because of the complexity and mix of these cover types in the landscape. In
fact, some problems were found to differentiate between these classes by means of photointerpretation.

The addition of the historical land use contained in the LU/LC geospatial database to be updated as a descriptive
feature produced and improvement of the classification accuracy, reducing the errors, but also significantly
increasing the undetectable errors, which is not advisable for the processes of LULC geospatial database
updating. In general terms, the results obtained in this study showed a high capability of the object-based image
classification techniques as a supporting tool for updating and managing LC/LU information.
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