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Abstract

Precise knowledge of fuel conditions is important to predict fire hazards and to simulate fire growth and intensity
across the landscape. We present a methodology to retrieve and map forest canopy fuel and other forest structural
parameters using small-footprint full-waveform airborne Light Detection and Ranging (LiDAR) data. Full-
waveform LiDAR sensors register the complete returned backscattered signal through time, and can describe
physical properties of the intercepted objects. This study is undertaken in a mixed forest dominated by Douglas-fir,
occasionally mixed with other conifers in northwest Oregon (United States). We extracted two sets of LiDAR
metrics using pulse detection and waveform modeling and then constructed a number of predictive models using
forward stepwise multiple linear regression. The resulting models explained approximately 80% of the variability
for many of the canopy fuel and forest structure parameters: aboveground biomass (R*=0.84), quadratic mean
diameter (R*=0.82), canopy height (R*=0.79), canopy base height (R?>=0.78), and canopy fuel load (R?=0.79). The
lowest performing models included basal area (R=0.76), stand volume (R*=0.73), canopy bulk density (R>=0.67),
and stand density index (R’=0.66). Our results indicate that full-waveform LiDAR systems has promise to
systematically characterize the structure and canopy fuel loads of forests, which may enable accurate fire behavior

forecasting that in turn supports the development of prevention and planning policies.

Short summary
Knowledge of fuel conditions is critical to accurately forecast fire behavior. We present a methodology to estimate
forest canopy fuel parameters using small-footprint, full-waveform, Light Detection and Ranging (LiDAR) airborne

data in a mixed forest region of northwest Oregon (US).
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1. Introduction

Wildland fire is a principal disturbance that influences and changes vegetation composition, structure and function
by selectively favoring certain species and creating conditions for new species to invade. As a result, fire shapes the
landscape mosaic and influences biogeochemical cycles such as carbon and nutrient cycles (Mooney et al., 1981;
Agee, 1996; Flannigan et al 2000). Fire behavior depends on weather, topography and fuels. When the specific
characteristics of each of these factors are known, the behavior of fire can often be predicted (Agee, 1996). As a
result, a number of mathematical models have been developed to predict, quantify and map fire spread, such as

FARSITE (Finney, 2004) and BehavePlus (Andrews, 2009).

An accurate knowledge of fuel conditions is key to predicting spatial fire hazard and to simulate fire growth and
intensity across the landscape (Keane et al., 2001), as well as help develop prevention and planning strategies, as
fuel constitutes a primary component of fire risk. Of the required characteristics for these mathematical models, fuel
is also arguably the most complex, as it depends on the physical characteristics of both living and dead biomass,
particularity in the crown. This in turn contributes to the spread, intensity and severity of wildland fire (Anderson
1982). Canopy fuel load, canopy height, canopy bulk density, and canopy base height are all characteristics of forest
fuel and control crown fire spread and are thus common inputs into fire behavior models (Keane et al., 2001; Cruz et
al., 2003). Canopy fuel load is the amount of fuel in the canopy layer potentially available for combustion. Canopy
height influences wind trajectory and wind speed reduction (Finney, 2004) which affects the distance that embers
can be lofted (Chuvieco et al. 2003). Canopy bulk density quantifies the fuel in the canopy layer per unit of volume
and affects the rate of spread of fire from tree to tree (Chuvieco et al. 2003; Scott and Reinhardt, 2001). Canopy base
height is the vertical distance between the ground and live canopy fuel layers and it is critical for determining if
ground surface fires can reach tree crowns (Scott and Reinhardt, 2001; Cruz et al., 2003). In addition to canopy
characteristics influencing the rate and spread of fire through the tree crowns, the forest canopy also plays a critical
role in the type, amount, and distribution of understory vegetation which is also an important field component (Cruz

et al., 2003).

Canopy fuel attributes, however, are difficult to estimate and map and are most often acquired through detailed field

programs, undertaken by fire professionals, requiring significant field effort (Arroyo et al 2008). Due to the
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difficulty and cost of acquiring these intensive field measurements, remote sensing is increasingly being applied to
retrieve data for these models (Chuvieco and Salas, 1996; Reich et al., 2004). Initially, optical remote sensing
imagery was the first technology employed for wildland fire hazard mapping (Chuvieco and Congalton; 1989) yet,
although this technology enables discrimination of fuel loads and types at broad spatial scales (Wilson et al., 1994;
Riafio et al., 2002; Chuvieco et al, 2002; Chuvieco et al, 2004; Falkowski et al., 2005), it is limited in its ability to
retrieve information about the vertical structure and distribution of the vegetation due to canopy obstruction (Keane

etal., 2001).

LiDAR (Light Detection And Ranging) offers significant new opportunities to map vegetation structure. LIDAR
acquires detailed three-dimensional data using a series of laser pulses, and their subsequent return from the surfaces
they strike (Hippenstiel and Brownson, 2012). In addition to estimating vegetation height, LIDAR enables a much
more complete description of the vertical structure of the vegetation (Wagner et al., 2008), and it has been
successfully used in a range of forest applications (van Leeuwen and Nieuwenhuis, 2010). The most common type
of LiDAR systems available to resource managers are small-footprint discrete systems, which digitize the return
pulse into a small number of three dimensional coordinates usually coinciding with the return of the first and last
energy components and some intermediate energy peaks (Hall et al., 2005). The past decade has seen an increased
use of discrete return data for applications such as forest structural variable estimation (Koetz et al., 2006, Kim et
al., 2009; Sumnall et al., 2012) and tree species classification (Reitberger et al., 2008; Neuenschwander et al, 2009;
Heinzel and Koch 2011). The small (0.2-3 m) footprint provided by these LIDAR systems makes the data highly
suitable to predicting and mapping fuel map attributes for fine scale simulations of fire growth and behavior (Keane
et al., 2001). As a result of this, LIDAR has been used to retrieve a range of forest fuel metrics such as canopy fuel
weight, canopy base height, canopy bulk density, canopy height, and crown dimension (Riafio et al., 2003, 2004,
2007; Morsdorf et al., 2004; Andersen et al., 2005; Skowronski et al, 2007; Erdody and Moskal, 2010; Skowronski

etal, 2011, Zhao et al., 2011; Peterson and Nelson 2011; Gonzalez-Olabarria et al., 2012).

Since discrete LIDAR returns are unable to provide complete information along the full path traveled by the emitted
pulse, discrete LiDAR has some limitations when characterizing the structure of the canopy and its different

vegetation layers. In contrast, full-waveform LiDAR sensors are able to register the complete returned backscattered
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signal through time. The analysis of the returned waveform should enable researchers to more fully describe the
physical properties of the intercepted objects since the amplitude of the waveform at any height is proportional to
the amount of reflective material intercepted at that height, the orientation of that material, and its reflectance (Hyde
et al., 2005). In this paper, we propose and evaluate a methodology to use small-footprint full-waveform LiDAR-
derived metrics to retrieve forest canopy fuel parameters using data collected over a Pacific Northwest conifer

forest.

2. Study area and data

Data acquired for this research came from the Panther Creek Cooperative Research Project (Flewelling and
McFadden, 2011), which is intended to develop a suite of LiDAR applications for forest managers and currently
involves over forty researchers and land managers representing federal, state and local agencies, landowners, a

LiDAR provider, universities, and consultants.

2.1. Study area

Panther Creek is a 2,258 ha forested watershed located in the east side of the coastal mountain range in Yamhill
County, Oregon (Figure 1). Elevation ranges from 100 to 700 m (see study area topography in Figure 2.b). The
dominant species is Douglas-fir (Pseudotsuga menziesii), which covers more than half of the total forested area,
occasionally mixed with other conifers, such as western hemlock (Tsuga heterophylla), western red cedar (Thuja
plicata) and grand fir (4bies grandis), or deciduous species such as red alder (Alnus rubra) and bigleaf maple (Acer
macrophyllum). see Figure 2.c). Other shrub vegetation can also be found in patches (dogwood, cascara, etc.). Tree
heights are up to 60 m. The ecoregion classification is “Cascade mixed forest”. Management intensity throughout

the study area has been highly variable, with different planting densities, and both thinned and unthinned regimes.

2.1. LiDAR data

Full waveform LiDAR data were collected on July 15, 2010 by Watershed Sciences, Inc. using a Leica ALS60
sensor mounted in a Cessna Caravan 208B. The system acquired data at a 105 kHz pulse rate, flown at an average of
900 m above ground level, with a scanning angle of £14° from nadir. The returned waveforms were recorded in 256

bins with a temporal sample spacing of 2 ns, and a beam footprint size of approximately 0.25 m. This configuration
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yielded a pulse density of >8 points/m”. The study area was surveyed with opposing flight line side-lap of >50%
(=>100% overlap) to reduce laser shadowing and increase surface laser painting. Aircraft position was recorded with
a frequency of 2 Hz by an onboard differential GPS unit. Aircraft altitude was measured 200 times per second (200
Hz) as pitch, roll, and yaw from an onboard inertial measurement unit (IMU). LiDAR data were distributed in LAS
1.3 format (ASPRS, 2010). In addition to the full-waveform data a Digital Terrain Model (DTM) was provided by
Watershed Sciences, Inc. based on last return pulses, with a documented Root-Mean-Square Error (RMSE) error

using 33 GPS ground control points of 0.19 m (see DTM in Figure 2.b).

2.2. Field data

A total of 84 circular plots with 16 m radius were located within the study site. Plots were located on Bureau of
Land Management or City of McMinnville land or on land held by other large landholders (see Figure 2.a). A
significant fraction of the plots were located to sample a wide range of canopy depths. Plot positions were
determined to an accuracy lower than 0.3 m in horizontal and vertical locations using Trimble R-8 GNSS Receivers
and Leica TPS 800 total stations. All trees (conifer and hardwood stems) with diameter at breast height (DBH) of

2.5 cm or greater were identified, numbered and tagged (Table 1).

From the field data two groups of plot-level parameters were computed. The first group describes the basic forest
inventory and structural properties of the forest: aboveground biomass, basal area, quadratic mean diameter (QMD),
stand density index (Reineke, 1933), and Volume. Aboveground biomass was estimated using allometric equations
based on DBH and tree height. Species specific allometric equations derived by Standish et al. (1985) were used,

with biomass computed for each individual component and summed (Gholz et al.1979).

The second set of derived parameters was related to canopy fuels and consisted of canopy height, canopy base
height, canopy bulk density, and canopy fuel load. Canopy bulk density was computed assuming a uniform vertical
distribution of fuels by dividing the canopy fuel load by the canopy depth (Reinhardt and Crookston, 2003). Canopy
depth was estimated as the mean crown length over all trees on the plot (Cruz et al. 2003), where crown length is the

difference between tree height and height to live crown. Canopy fuel load was computed as the total amount of
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biomass in the canopy fuel layer per unit surface area. Table 2 summarizes the forest structural and canopy fuel

parameters of the 84 plots in the Panther Creek study area.

3. Methods

While small-footprint full waveform airborne LiDAR systems are relatively new, large-footprint full-waveform
LiDAR sensors, such as the airborne SLICER and LVIS or the spaceborne GLAS instrument, have been collecting
data for over a decade. These data have been applied to vegetation (Lefsky et al., 1999, Drake et al., 2002; Harding
and Carabajal 2005) as well as to some canopy fuel studies (Ashworth et al 2010, Garcia et al., 2012). Although
these large footprint sensors are limited by their footprint size (10-70 m), which prevents detailed forest structure to
be retrieved (Listopad et al., 2011), analysis of data acquired from these sensors has resulted in a number of
approaches being developed for processing full-waveforms and deriving descriptive metrics. Two basic approaches
are pulse detection and waveform modeling (Mallet and Bretar, 2009). Pulse detection extracts a large number of
echoes from the waveforms themselves, creating a very dense point cloud. The second approach, denoted waveform
modeling, involves undertaking a spatio-temporal analysis of the return waveform, which enables extraction of
detailed geometric and radiometric information from each waveform. In our methodology, full-waveform data are
initially pre-processed using both approaches. After pre-processing, a set of descriptive metrics is derived, which are
used as input variables for the predictive models of the forest structure and canopy fuel parameters. Finally, the
accuracy of these models is assessed, and maps representing the canopy fuel properties of the study area are

produced (see methodology scheme in Figure 3).

3.1. Data pre-processing

An initial noise assessment was performed to suppress background noise within each waveform. Waveforms were
then smoothed and any remaining noise removed using a Gaussian filter, with a kernel size defined by the Full
Width at Half Maximum (Duong, 2010). Once the noise was suppressed, a local maxima peak detection filter was
applied to each waveform to obtain the point cloud retrieving the height and intensity from the intensity peaks,
which are produced when intercepting reflective material such as canopy (Vaughn et al., 2012). The DTM was used
to define the ground and to normalize the point cloud, deducting the influence of the terrain from the height of the

points.
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The waveform modeling based metrics were derived from a transformed dataset consisting of synthetic composite
waveforms that simulate the vertical profile of vegetation for a given location. This methodology, similar to the
applied by Buddenbaum et al. (2013), aims to integrate the non-vertical waveforms registered from different flight
trajectories, and partitions the vertical aboveground space into regular voxels (0.25 x 0.25 x 0.30 m) corresponding
to the approximate footprint size and the distance traveled by the pulse in a single temporal sample. First, each
waveform record was spatially located using the information contained in the raw LiDAR file files, and then each
waveform record was normalized by computing the difference between its height and the terrain height at that
position. Each intersected voxel, by a given waveform track, was then filled with the maximum waveform amplitude
value registered within it. The maximum value was used in order to preserve the significance of the major returns of
the real waveforms in the composited waveforms. The composite waveforms were retrieved by extracting the

information contained in the vertical column of voxels over a specific location.

3.2. Descriptive metrics

3.2.1. Pulse detection based metrics

From the normalized point cloud, obtained from the waveform peak location, a set of per-plot statistical descriptors
of the height distribution were calculated: mean, standard deviation, range, kurtosis, and skewness, including the
25" 50™ 75™ and 100™ height percentiles. In addition, an analogous set of descriptors was computed from the
intensity values, which are related to spectral reflectance of the observed target (Ahokas et al., 2006). A 1 x 1 m
canopy elevation model was also produced from the maximum height value. Then, the mean, standard deviation,
range, kurtosis, and skewness were extracted for each plot. A summary of the variables used in the analysis is shown

in Table 3.

3.2.3. Waveform modeling based metrics

In addition to the pulse based LiDAR metrics, a number of additional descriptors have been developed to retrieve
forest structural parameters from the analysis of the composite LiDAR waveforms (see the comprehensive
compilation performed by Duong; 2010)). Metrics derived included: height of median energy (HOME), waveform

distance, height to median ratio, number of peaks, roughness of outermost canopy, front slope angle, return
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waveform energy, and vertical distribution ratio (VDR). Several of these metrics were initially developed using
large-footprint waveform sensors. However, the use of the metrics at finer scales provided by small-footprint data
has been shown to be successful, and most of the variables can readily be used to describe within crown — rather
than within stand canopy — variations (Neuenschwander et al, 2009, Heinzel and Koch 2011; Hofle et al., 2012;
Neuenschwander 2012; GuangCai et al., 2012).HOME is defined as the distance from the ground to the waveform
centroid, which is the position where the return energy above the DTM is divided into two equal parts. Previous
research has shown that HOME describes the vertical arrangement of canopy elements and the degree of canopy
openness (Drake et al., 2002). Waveform distance is the distance from the waveform begin to the ground and it is
usually related with the tree height. Height to median ratio is computed as HOME divided by waveform distance.
This metric is sensitive to changes in the canopy (Drake et al., 2002). The number of peaks detected is related to the
number of height levels intersected by the waveform. The roughness of outermost canopy is defined as the distance
from the waveform beginning to the first peak, which is usually considered as the peak of canopy. This metric
describes the spatial organization of plant surfaces within the canopy. Front slope angle is the vertical angle of the
vector from waveform begin and the first peak, and it is related to the variability of the upper canopy (Ranson et al.,
2004). Return waveform energy represents the total received energy and describes the surface characteristics. The
plots were characterized by the mean and standard deviation of these metrics. Finally, VDR is computed as the
difference between the canopy height and HOME, divided by the canopy height (Neuenschwander, 2012). Table 4

compiles the metrics based on waveform modeling.

3.3. Definition of predictive models

To reduce the number of LiDAR variables a preliminary selection was performed using the Akaike Information
Criterion (AIC), which is a measure of relative model fit that numerically expresses the amount of information
provided by each variable, and statistically determines the number of parameters in an equation (Akaike, 1974).
Thus, variables were sequentially selected until the AIC was minimized, obtaining a reduced set of predictive
variables. These variables were then used in a forward stepwise multiple linear regression to determine the
independent variables that significantly (p-value < 0.05 required) contribute to the model. The best model was
determined by progressively adding independent variables that minimize the residual mean square, maximizing the

coefficient of determination R”. To avoid unrealistic over-fitting of the regression results the criterion of including a
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low number of predictive variables was followed, so a maximum of three independent variables were added into the
multiple linear regression models. Once models were developed, a leave-one-out cross-validation technique was
employed for evaluation purposes. Prediction models were assessed using adjusted coefficients of determination R?,
Root-Mean-Square Error (RMSE), normalized RMSE (nRMSE) computed as the RMSE divided by the range of
observed values, and coefficient of variation (CV) defined as the ratio of RMSE and the mean of the observed
values. Finally, maps representing predicted canopy fuel parameters were created by applying the models to the data

for the whole study area.

4. Results

The models developed are shown in Table 5, and Figure 4 shows scatterplots of the plot-level field-based observed
vs. LIDAR-based predicted variables with linear fits and prediction confidence intervals (0=0.05). Figure 5 shows
the maps for two of the canopy fuel parameters estimated: canopy bulk density (Figure 5.a) and canopy base height

(Figure 5.b), at a 30 m resolution.

Overall, the forest structure parameters are well predicted, with more than 80% of the variability of aboveground
biomass (R*=0.84) and quadratic mean diameter (R>=0.82) explained. Predictive models for basal area (R*=0.76)
and volume (R?=0.73) had a slightly lower performance. The lowest coefficient of determination was for stand
density index (R*=0.66). The nRMSE values are very similar for all the structure parameters, ranging from 0.09 to
0.12. The lowest CV was for quadratic mean diameter (17%), whereas the rest of parameters had CV’s of 23% or
greater. Models developed for most of the canopy fuel parameters also explained significant amounts of variance,
for example canopy height (R*=0.79), canopy base height (R*=0.78) and canopy fuel load (R*=0.79), all producing
similar nRMSE values (0.09-0.10). The CV however is more variable, ranging from 0.17 to 0.25, the highest value
corresponding to canopy base height, the model for which clearly produces an overestimation of this parameter, as
shown in Figure 4.g. The lowest model performance is for canopy bulk density (R*=0.67), which resulted in both the
highest nRMSE (0.13) and CV (38%) values. Analyzing the scatterplot for this parameter (Figure 4.h) some outliers

can be observed corresponding to significant under prediction of the highest observed canopy bulk density values.
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Analyzing the nature of the predictive metrics used by the various multiple regression models we observe that three
of them (volume, canopy base height, canopy bulk density) combine descriptors based on both the pulse detection
and waveform modeling, and two of them (quadratic mean diameter, canopy height) just utilized waveform
modeling based metrics. The remaining models simply used descriptors derived from the pulse detection. Among
the pulse detection based metrics, metrics describing the average height computed both from the normalized point
cloud and from the CHM, are the most frequently used by the models, followed by height percentiles (25 and 50)
and descriptors of the shape of a probability distribution of the heights (kurtosis and skewness). According to these
models, the intensity value does not play an important role in describing the forest structure, and it is not used for
estimating any canopy fuel parameters. Among the waveform modeling based metrics the mean and standard

deviation of HOME, waveform distance, and height to median ratio, were selected in the predictive models.

5. Discussion

A methodology for estimation of structure and canopy fuel load variables based on metrics obtained from small-
footprint waveform LiDAR data has been described and evaluated. Analogous work has been reported using discrete
LiDAR data with different degrees of success, in different ecological areas, forest structure, and species, such as
Mediterranean (Riafio et al., 2004; Gonzalez-Olabarria et al., 2012), boreal (Peterson and Nelson, 2011), pine
barrens in New Jersey (Skowronski et al., 2011), old growth pine in Texas (Zhao et al., 2011), or Eastern Cascade
dry forests (Erdody and Moskal, 2010) and coastal coniferous forest (Andersen et al., 2005). The latter two are the
geographically closest and likely the most similar to this study. In our case, however, markedly more variability
existed within the canopy spatial distribution, having higher mean and standard deviation of the fuel parameters
compared to the other studies. This variability, which may hinder define more accurate models, is due to the

heterogeneous age class distribution, as a consequence of forest management activities such as thinning practices.

The canopy base height estimation model is similar (R>=0.78) to that derived by Andersen et al., (2005) and Erdody
and Moskal, (2010) (R*=0.77), and higher than that reported by other authors (ranging between 0.54 (Gonzalez-
Olabarria et al., 2012) and 0.72 (Zhao et al., 2011). The adjusted coefficient of determination for canopy height
(R?=0.79) is significantly lower than previous studies (Andersen et al., 2005; Erdody and Moskal, 2010; Zhao et al.,

2011), who reported R” values in the range 0.89-0.98. The result obtained for canopy bulk density (R*=0.67) is

11



288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

comparable with those reported by Peterson and Nelson (2011) or Zhao et al. (2011), however, this parameter has
been estimated to a high degree of accuracy in other studies (Riafio et al., 2004; Andersen et al., 2005; Erdody and
Moskal, 2010; Skowronski et al., 2011), with R* values greater or equal to 0.80. Our study site has an average
canopy fuel load (48.8 t/ha) considerably higher than that reported for other sites. The predictive model obtained for
this parameter (R°=0.79) explains more variability than those reported by Zhao et al.,, 2011 (R’=0.47) and
Skowronski et al., 2011 (R*=0.71), but slightly less than those provided by Andersen et al., 2005 and Erdody and
Moskal, 2010, with 0.86 and 0.87 respectively. This diversity in results is likely due to the intrinsic differences in
forest structure, and denotes the possible benefit of stratifying the forest before obtaining fuel estimation models.
However, this can be difficult in some areas with a mixed distribution of species and varying management practices

over the time.

The modeled canopy bulk density (Figure 5.a) and canopy base height (Figure 5.b) maps show the distribution of
these two fuel parameters over the study area. The canopy bulk density is highest in areas with tallest coniferous
stands that have not been harvested. Additionally, canopy bulk density, canopy fuel loading and canopy base height
increase along riparian buffers left intact during harvesting activities (see Figure 2.c). Patterns in canopy fuel
distributions are mostly driven by the stand structure parameters including stand height and stand density, which in
turn are largely determined by land management that varies markedly across the Panther Creek study area. For
example, the lowest canopy height and lowest canopy fuel parameters are all located within stands that have recently
been clear cut, including areas along streams and some riparian buffers. The absence of defined structure within
these stands hinders the correct estimation of the canopy fuel parameters. The results confirm that predictive models
performed more accurately in areas with young and mature trees (as opposed to regrowth), especially in stands
subject to thinned regimes, characterized by consistent stand height, moderate canopy density, and homogeneous

spatial distribution.

Full-waveform LiDAR data provide valuable information regarding the full path travelled by the laser pulse, which
allows to the derivation of a very dense point cloud from the waveform intensity peaks and, moreover, to model the
returned signal to retrieve spatio-temporal information. These results show that the use of these methodologies based

on small-footprint waveform LiDAR data are suitable to accurately describe forest canopy fuel properties, providing
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input variables to mathematical models that predict, quantify and map fire spread. Thus, a correct and systematic
characterization of both, structure and canopy fuel loads of the forests, enables a more accurate fire behavior

forecast that supports the development of policies for wildland fire prevention and planning.
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473 Figure 2. Graphical description of the study area: (a) color-infrared aerial ortho-image showing the location of the
474 field plots, (b) digital terrain model, and (c) vegetation strata. Source: Prepared by the authors on the basis of data
475 supplied by Panther Creek Cooperative Research Project.
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481 Figure 4. Plot-level observed vs. predicted values: a) aboveground biomass, b) basal area, ¢) quadratic mean
482 diameter, d) stand density index, e) volume, f) canopy height, g) canopy base height, h) canopy bulk density, i)
483 canopy fuel load. Solid line represents the linear fitting and dotted lines are the prediction confidence intervals
484  (a=0.05).
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487 Figure 5. Maps resulting of applying the models to the study area for two of the canopy fuel parameters (a) canopy
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Table 1. Field measurements collected for trees within the plots.

Live or estimated to be dead.

Diameter at breast height

Total Height to the highest green point.

Height-to-live-crown defined as:
- Conifers: the point on the bole with live branches on 3 quadrants of the bole.
- Hardwoods: the average height (on the bole) to live foliage.

Indicator for trees that are leaning over 10 degrees.

Indicator for trees with broken tops.

Indicator of trees forked above or below DBH.

Horizontal distance from plot center to tree face.

Azimuth from plot center to tree face.
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491
492 Table 2. Summary statistics of per-plot forest structural and canopy fuel parameters in Panther Creek study area
493 (n=84).

Variable Code (unit) Min Max Mean St. deviation
Aboveground biomass AGB (t/ha) 30.8 924.2 310.4 202

Basal area BA (m*/ha) 1.8 102.7 46.4 22.8
Quadratic mean diameter QMD (m) 5.3 69.1 33.2 13.6

Stand density index SDI 23.3 586.3 288.3 115.6
Volume V (m’) 15.7 841.2 361.9 171.5
Canopy height CH (m) 431 48.42 22.90 8.92
Canopy base height CBH (m) 0 37.1 13.5 7.3

Canopy bulk density CBD (kg/m®) 0.019 0.406 0.136 0.084
Canopy fuel load CFL (t/ha) 1.8 107.2 48.8 23.7
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494
495 Table 3. Symbols used for the pulse detection based metrics

Symbol Metric

CHM,, Average of the CHM height distribution

CHM, Standard deviation of the CHM height distribution

CHMRange Range of the CHM height distribution

CHMk urtosis Kurtosis of the CHM height distribution

CHMgiewness Skewness of the CHM height distribution

H, Average of the normalized point cloud height values

H, Standard deviation of the normalized point cloud height values

HRange Range of the normalized point cloud height values

Hiurtosis Kurtosis of the normalized point cloud height values

Hgrewness Skewness of the normalized point cloud height values

Hpys 25" percentile of the normalized point cloud height values

Hbpso 50™ percentile of the normalized point cloud height values

Hpss 75™ percentile of the normalized point cloud height values

Hpioo 100™ percentile of the normalized point cloud height values

I, Average of the normalized point cloud intensity values

Iy Standard deviation of the normalized point cloud intensity values
| IRange Range of the normalized point cloud intensity values

Txurtosis Kurtosis of the normalized point cloud intensity values

TsKewness Skewness of the normalized point cloud intensity values

Ipos 25" percentile of the normalized point cloud intensity values

Ipso 50™ percentile of the normalized point cloud intensity values

Ip75 750 percentile of the normalized point cloud intensity values

Ip100 100™ percentile of the normalized point cloud intensity values
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Table 4. Symbols used for the waveform modeling based metrics

Symbol Metric

HOME, Average of height of median energy

HOME, Standard deviation of height of median energy
WD, Average of waveform distance

WD, Standard deviation of waveform distance
HTMR, Average of height to median ratio

HTMR, Standard deviation of height to median ratio
NP,s Average of number of peaks

NP, Standard deviation of number of peaks
ROUGH, | Average of roughness of outermost canopy
ROUGH, | Standard deviation of roughness of outermost canopy
FS, Average of front slope angle

FS, Standard deviation of front slope angle

RWE, Average of return waveform energy

RWE, Standard deviation of return waveform energy
VDR Vertical distribution ratio
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500

Table 5. Predictive models and accuracy assessment results.

Variable (unit) | Model Adjusted R° | RSME | nRSME | CV

AGB (t/ha) - 73.48 +20.828 x Hy + 74.754 X Ixurtosis T 10.133 X CHMKgurtosis 0.84 79.04 0.09 0.25
BA (mz/ha) - 4.865 + 7.532 x H,, -2.906 x Hpso-1.303 x CHM,, 0.76 10.89 0.11 0.23
QMD (m) 2912 +1.157 x WD, -1.257 x HTMR,, + 2.452 x HTMR, 0.82 5.64 0.09 0.17
SDI 42.786 +43.281 x H, - 19.246 x Hpso- 7.310 x CHM,, 0.66 65.72 0.12 0.23
V(m) 65.044 + 7.617 x CHMKuriosis + 18.568 x HOME,, - 9.466 x HTMR, 0.73 86.37 0.10 0.24
CH (m) 3.323 +1.069 x HTMR,, - 1.509 x HOME; + 3.465 X WD, 0.79 4.00 0.09 0.17
CBH (m) 0.377 - 2.135 X Hgkewness + 0.435 X Hppst+ 0.854 X WD, 0.78 3.34 0.09 0.25
CBD (kg/m) - 0.0157 - 0.008 x CHM, + 0.005 x HOME, + 0.014 x HOME, 0.67 0.051 0.13 0.38
CFL (t/ha) -5.5+7.847 x Hy - 3.035 x Hpso — 1.325 x CHM,, 0.79 860.63 | 0.10 0.22

29




