Available online at www.sciencedirect.com Proced |a

. ScienceDirect Corpputer
ELSEVIER Procedia Computer Science 00 (2009) 000-000 S cience

www.elsevier.com/locate/procedia

World Conference on Innovation and Software Development

Materialization of BTA database using open source software

Jose Martinez-Llario®, Francisco Ruiz-Lopez®*, Eloina Coll®

AInstituto de Restauracion del Patrimonio, Universitat Politécnica de Valéncia, Camino de Vera s/n. 46022 Valencia, Spain

Abstract

Along this article we are going to explain how to create a new spatial database applying a wide spectrum data model using open
source software and free tools, so that every interested user will be able to apply BTA data model completely cost free. This data
model is ready to store cartographical information for scales similar to 1:5.000 or 1:10.000. We are going to use specific software
that allows to control almost every aspect of this data model, both features represented and quality constraints.

Keywords: BTA; data model; cartography; open source; phenomena; JASPA; Kosmo; PostgreSQL; free.

1. Introduction

Some years ago the Specialized Committee of Cartographic Norms started the development of one new data
model with very wide application field, the BTA[1].

This data model is designed to store cartographic data at scales between 1:5.000 and 1:10.000, although it can be
used with similar scales.

It is also designed to store topographic cartography of almost every region of Spain; it means there many
potential users, like Public Administrations or enterprises.

Moreover, the mentioned data model stores extra alphanumerical attributes of those geometries, becoming an
interesting starting point to set up a powerful Geographical Information System at free cost.

Furthermore, this paper is an outline about how to do it with free and open source software. So increases
considerably the potential market. The costs to set up this database ready to do spatial analysis with cartographic
datasets highly interoperable are just the derived of the specialists technicians who manage it, not licenses or things
like that.

For further information about this topic with commercial software please check [2] and [3].
2. Software used
JASPA[4] just released its 0.1 version last year, and PostGis has an extended experience under development and

is now in its release 1.5.2, however along this paper we are going to work with JASPA by some interesting points.
This software is written in JAVA, manages relational databases, brings spatial functions to help us with advanced

Jose Martinez-Llario / Procedia Computer Science 00 (2012) 000-000

spatial analysis and the developer team works in the same investigation cluster.

Although there are other solid options available like PostGis we will choose JASPA because gives to us more
freedom to develop tools to satisfy our own needs using Java.

Developing tools for PostGis environment is much more difficult to us because our team is composed mainly by
cartographers and geodesy engineers, so our knowledge about programming is not strong enough to face an
advanced PostGis customization.

For the visualization issues we are going to use Kosmo which is another open source software and it has proved
working properly with those data bases.

As before, there are other options available, like Quantum GIS, however we consider Kosmo 2.0 the best option
nowadays.

2.1. Remarkable properties of the software

As we can see in the attached image (Fig.1), Jaspa is developed following the directions of the Open Geospatial
Consortium [5], and International Standard Organization. This is a guarantee of interoperability and standardization.

l JASPA

UMN

Kosmo
Mapserver

GeoTools +
I TS

| | u |
IPDstgreSQL | H2 ‘ | HSQLDB

Spatial
indexing

RDBMS Topology 0GC-1S0

Fig. 1. Schematic JASPA components.

Jaspa, unlike PostGis, is ready to work with different relational databases, like PostgreSQL[6], H2DBJ[7] and the
support for HSQLDB[8] is being implemented actually.

Also uses GeoTools for projections, working with reference systems, KML management, etc. and JTS[9] (Java
Topology Suite), the API which allows the use of spatial analysis to our data.

Jaspa implements some topology rules too but is not fully supported yet, this face is under development although
is expected in the future.

The powerful map server developed by the University of Minnesota, UMN Mapserver is used as a graphical
frontend.

The spatial indexing is a very powerful and interesting characteristic of Jaspa, although it is only available with
PostgreSQL databases.

3. Creation of the database

3.1. First steps

First of all we have to remark that all the controls and instructions made to the database are done with SQL
sentences on the shell.

Secondly, we are going to create a new data base to store all the information. The sentence should be like
“createdb -U username databasename”, and then, after that, we have to add the spatial Jaspa functionalities with

Jose Martinez-Llario/ Procedia Computer Science 00 (2012) 000-000

“createdb -U username -T jaspatemplate databasename”.

Once these steps are done we can enter to the database to start the real work.

In our case we decided to use PostgreSQL as relational database manager so we will have the advantage of
spatial indexing after the creation of the layers. Of course we have to create indexes and initialize them, if not it will
work like if we would not done it.

3.2. Database structure

The figure 2 shows different elements available inside the database.
Domains, constraints and indexes are available for the entire database, and are common elements which can be
used by the tables, spatial tables and views. Within a schema there are views and standard and spatial tables.

3.3. Schemas definition

Due to the complexity of this data model we are going to create schemas to simulate the families of the BTA
phenomena catalogue.

The main reason for creating those schemas is to maintain the tables ordered.

A PostgreSQL schema is an aggregation of tables for representing common features. The data model considers
eight families.

3.4. Domains definition

Once this step is finished we are not going to create the tables, because although we could do that and after that
add the domains to the tables is much better create the domains before and use them at the moment of the table
creation.

To create a domain we will use the following sentence “create domain domainname as datatype [default
expression] [restrictionl, ..., restrictionk]”.

If we take a look on the phenomena catalogue of the BTA data model we will see the large amount of domains
particular for each phenomenon in the catalogue.

There are two kinds of domains, general domains, which have only one definition and are common for every
phenomenon (like language domain) or particular domains, that could have the same name between phenomena but
do not consider the same allowed values (like field kind for a waste depot or for a lightweight construction).

Because of that we have to distinguish between those domains for fields with the same name but which belong to
different phenomena.

We suggest using the same name for the domain that the field name. For instance, “Waste depot” has
phenomenon code 0050 inside the BTA, and the kind field name is “Tipo”, so we recommend create the domain
named “0050 Tipo”.

Using the phenomenon’s code before the field name we order implicitly the domains to maintain the database as
much ordered as possible.

The order is extremely important working with BTA because there are more than 200 domains to create, if we do
not do that the database will be chaotic.

Of course we can modify or erase existent domains in the database in case of need, look up the documentation
website for more information.

3.5. Constraints definition

As a consequence of working with those RDBMS we are able to establish different constraints to guarantee some
relations between elements inside the database. The manager system of the database is the responsible of the
maintenance and force to follow the rules.

It is advisable to create constraints with clear names to avoid mistaken uses. Typical constraints are primary key,
check, not null, etc. Using them we are guaranteeing the quality in the database.

The constraints used to be the same for all the fields of a family, even for the database, like the constraints for the

Jose Martinez-Llario / Procedia Computer Science 00 (2012) 000-000

geometry field in the spatial tables.

The same way than happens with domains, we can alter tables adding constraints after the creation, but due to the
large amount of tables we sincerely recommend to create it first, analyzing the requirements of the future spatial
tables and prepare them before, to avoid mistakes.

To create a constraint we will use the following sentence, where the name is optional “[constraint
constraintname] {domain-constraint | column-constraint | table-constraint}”.

3.6. Tables definition

Once the domains, the schemas and the constraints are created, we are ready to start creating the spatial tables
which represent the phenomena of the catalogue.

We will create spatial tables inside the schemas, and following a notation as much mechanic and clear as possible
to be able to identify the layer easily once the database is ready.

There are two possible ways to do this task. The first is based in the capability of storing multiple geometry
columns, so for each phenomenon we will create only one table, with as many geometry columns as possible
representations has the phenomenon.

For instance the phenomenon “Road”, at the table 1 we can see the fields created and the name of this spatial
table “0027 Road”. Road has polygonal and lineal representation, so it will need both geometry columns
“GeometrylD” and “Geometry2D”. The remaining fields are common for all those elements, so they appear only
once.

We have to be cautious, because the 1D elements should have their own attribute values, that might differ from
the superficial geometries. In this case we have to fill the geometry column with “No applicable” value in order to
maintain the consistency.

Table 1. First option to create spatial tables for phenomena. Consider all the geometries together in one table.

Table 0027_Road Domain
GEOMETRY2D geometry -
LOCATION geometry -
STATUS Text YES
TITULARITY Text YES
COMPETENCES Text YES
TRAMKIND Text YES
FUNCTIONALCLASSIF Text YES
LANGUAGE Text YES
NAME Text NO
ROADCODE Text NO

The other option is to split the geometries in tables depending on its dimension.

We recommend use the phenomenon code followed by the dimension of the geometry contained in the table.

From our experience we recommend do the second way, because although we have much more tables and the
names are longer, nowadays there are not too many GIS software ready to work with tables which have more than
one geometry column. And the existent software usually crashes so until powerful software appears, we will split
the tables in with that methodology.

3.7. Defining indexes
To enhance the performance of the database it is highly recommendable to create spatial indexes, because when

the amount of data stored and managed becomes big the performance of the database system decays strongly.
Creating indexes is a very easy task and it should be done once, because the database system cares for its

Jose Martinez-Llario/ Procedia Computer Science 00 (2012) 000-000

maintenance.

To create an index we use the following SQL sentence: “create index indexname on tablename using Gist
(Stpgbox(geometrycolumn));”.

The same way than before, it is recommendable to associate the spatial index with the involved phenomenon
table code.

4. Conclusion

Once the database is ready we have the BTA data model complete but empty, this is the moment to create a
backup and share it with other interested people because all this work can be done once and reuse the database
always.

The best way to export the database is using SQL files.

Finally the remaining task is to fill the data model with the geometries and the database is complete and ready to
use.

Jaspa has demonstrated a good performance and flexibility with the required tasks. There is no appreciable
difference between this database and commercial GIS databases.

Jaspa with PostgreSQL is ready to guarantee the quality standards, proceedings and requirements that BTA data
model demands. Moreover it allows the customization, showing itself as a powerful tool ready to work and cost free.

SQL provides extra functionalities and customization possibilities that no other GIS commercial software
available could achieve.

Acknowledgement

This project is a part of the research project “MOCAIDE”, Creation and cartographic feeding of spatial data
infrastructures at the Local Administration trough a data model integrating cadastre, urban planning and historic
heritage, with reference CSO2008-04808 and financed by the CICYT and European funds.

References

1. BTA Data model website, http://www.csg-cnc.es/web/cnccontent/bta.html

2. Ruiz, F., Coll, E.: Produccién de Cartografia 1:5.000 ICV en formato BTA. Universidad Politécnica de Valencia, Valencia (2010)

3. Ruiz, F., Coll, E., Martinez-Llario, J.: Analisis y estructura de una Geodatabase BTA para su utilizacién en la Administracion Local. JIDEE
2010 - Jornadas Ibéricas de la Infraestructura de Datos Espaciales, Lisboa (2010),
http://www.idee.es/resources/presentaciones/JIIDE10/ID414_Analisis_y_estructura_de_una_Geodatabase BTA.pdf

4. JASPA, http://forge.osor.eu/projects/jaspa/

5. OGC Website, http://www.opengeospatial.org/

6. PostgreSQL, http://www.postgresql.org/

7. H2DB Website http://www.h2database.com/html/main.html

8. HyperSQL Java Database, http://hsqldb.org/

9. Java Topology Suite, http://www.vividsolutions.com/jts/JTSHome.htm

http://www.vividsolutions.com/jts/JTSHome.htm

