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Abstract

he increasing adoption of process-aware information systems (PAIS)

together with the high variability in business processes has resulted
in collections of process families. These families correspond to a busi-
ness process model and its variants, which can comprise hundreds or
thousands of different ways of realizing this process. Managing process
variability in this context can be very challenging, labor-intensive, and
error-prone.

Motivated by this challenge, several approaches enabling process
variability have been developed. However, with these approaches PAIS
engineers usually are required to model and manage all the elements
of a process family one by one and ensure its correctness by their own.
This can be tedious and error-prone especially when a process family
comprises hundreds or thousands of process variants. For example,
PAIS engineers need to be aware of each variation and dependence of
each process variant. Thus, there is a need of methods that allow PAIS
engineers to model process variability more explicitly, especially at a
level of abstraction higher than the one provided by the existing process
variability approaches. However, how process variability is represented
is critical for defining these methods (e.g., what language constructs
are used to model process variability). In this context, using modeling
patterns (reusable solutions to a commonly occurring problem) is a
promising way to address these issues. For example, patterns have been
proved as an efficient solution to model individual business processes.



The objective of this thesis is to enhance the modeling of variability
in process families through change patterns. For such purpose, first, we
conduct a systematic study to analyze existing process variability ap-
proaches regarding their expressiveness with respect to process variabil-
ity modeling as well as their process support. Thus, we can identify the
core set of variability-specific language constructs. In addition, based
on the obtained empirical evidence, we derive the VIVACE framework,
a complete characterization of process variability which comprises also a
core set of features fostering process variability. VIVACE enables PAIS
engineers to evaluate existing process variability approaches as well as
to select that variability approach meeting their requirements best. In
addition, it helps process engineers in dealing with PAISs supporting
process variability.

Second, based on the identified language constructs, we present a
set of 10 change patterns for process families and show how they can
be implemented in a process variability approach. In particular, these
patterns support process family modeling and evolution and ensure pro-
cess family correctness by automatically introducing and deleting mod-
eling elements. In order to prove their effectiveness and analyze their
suitability, we applied these change patterns in a real scenario. More
concretely, we conduct a case study with a safety standard with a high
degree of variability. The case study results show that the application
of the change patterns can reduce the effort for process family modeling
by 34% and for evolution by 40%. In addition, we have analyzed how
PAIS engineers apply the patterns and their perceptions of this applic-
ation. Most of them expressed some benefit when applying the change
patterns, did not perceived an increase of mental effort for applying the
patterns, and agreed upon the usefulness and ease of use of the patterns.



Resumen

a creciente adopcién de sistemas de informacion dirigidos por pro-
L cesos de negocio (PAIS, segin sus siglas en inglés) y la alta variabil-
idad en dichos procesos, han dado lugar a la aparicion de colecciones de
familias de procesos. Estas familias estan constituidas por un modelo de
proceso de negocio y sus variantes, las cuales pueden comprender entre
cientos y miles de diferentes formas de llevar a cabo ese proceso. Mod-
elar y gestionar la variabilidad de los procesos en este contexto puede
resultar muy dificil , laborioso, y propenso a errores.

Por este desafio se han desarrollado distintas soluciones que per-
miten la gestion de esta variabilidad en los procesos de negocio. Sin
embargo, los ingenieros que trabajan con PAIS al utilizar estas solu-
ciones deben crear y gestionar uno por uno todos los elementos de las
familias de procesos y asegurar ellos mismos su correccién. Esto puede
ser tedioso y propenso a errores, especialmente cuando las familias estan
compuestas de multiples variantes. Por ejemplo, los ingenieros deben
ser conscientes de todas las variaciones y dependencias de todas las
variantes. Por ello, son necesarios nuevos métodos que permitan a los
ingenieros de PAIS modelar la variabilidad de los procesos de una man-
era mas explicita, sobre todo a un nivel de abstraccién mas alto del
proporcionado hasta ahora por dichas soluciones. Sin embargo, para
definir estos nuevos métodos resulta clave como se representa la variab-
ilidad (ej.: qué primitivas se utilizan para modelar la variabilidad en los
procesos). En este contexto, el uso de patrones de modelado (soluciones



reutilizables a un problema recurrente) resultan una solucién promete-
dora. Por ejemplo, los patrones resultan eficaces para modelar y ges-
tionar procesos de negocio individuales.

El objetivo de esta tesis es mejorar el modelado de la variabilidad
en las familias de procesos a través del uso de patrones de cambio. En
primer lugar, hemos llevado a cabo un estudio sistemético con el fin
de analizar las soluciones existentes que gestionan la variabilidad en los
procesos, asi como el soporte que estas proporcionan. De esta forma,
hemos identificado y analizado cuédl es el conjunto basico de primitivas
especificas para representar la variabilidad. Ademads, basandonos en
la evidencia empirica obtenida, hemos derivado el marco de evaluacién
VIVACE, el cual recoge las primitivas de variabilidad y un conjunto
bésico de caracteristicas que favorecen la variabilidad en los procesos.
Asi, VIVACE conforma una completa caracterizacién de la variabilidad
en los procesos de negocio. Asimismo, VIVACE permite a los ingenieros
de PAIS evaluar las soluciones que permiten gestionar la variabilidad
en los procesos, asi como seleccionar la solucién que se ajuste mejor
a sus necesidades. Finalmente, VIVACE también puede ayudar a los
ingenieros a gestionar PAISs que den soporte a esta variabilidad.

En segundo lugar, basdndonos en las primitivas identificadas, hemos
definido 10 patrones de cambio para familias de procesos y cémo pueden
ser implementados. Estos patrones ayudan al modelado y a la evolucién
de familias de procesos y ademas son capaces de garantizar la correccién
de la propia familia permitiendo la insercién y el borrado automatico de
elementos. Para probar su efectividad y analizar su idoneidad, hemos
aplicado estos patrones de cambio en un escenario real. En concreto,
hemos realizado un caso de estudio con un estandar de seguridad con un
alto nivel de variabilidad. Los resultados de este caso demuestran que
la aplicaciéon de nuestros patrones de cambio puede reducir el esfuerzo
para el modelado de familias de procesos en un 34% y en un 40% para
su evolucién. Ademads, hemos analizado cémo los ingenieros de PAIS
aplican los patrones y sus percepciones de esta aplicacion, obteniendo
como resultado que la mayoria de ellos encontré beneficios al aplicarlos.
Ademsds, no percibieron un aumento en el esfuerzo mental necesario y
estuvieron de acuerdo en su utilidad y facilidad de uso.



Resum

a creixent adopcié de sistemes d’informacié dirigits per processos de
L negoci (PAIS, segons les seues sigles en angles) i l’alta variabilitat en
eixos processos, han donat lloc a la aparicié de col-leccions de families
de processos. Estes families es formen d’'un model de procés de negoci
i les seues variants, les quals poden comprendre entre cents i milers de
diferents formes de dur a terme eixe procés. Modelar la variabilitat dels
processos en este context pot resultar molt dificil , laborids, i propens
a errors.

Per aquest desafiament s’han desenvolupat diverses solucions que
permeten la gestié d’aquesta variabilitat en els processos de negoci. No
obstant, els enginyers que treballen amb PAIS quen utilitzen aquestes
solucions han de crear i gestionar un a un tots els elements de les families
de processos i assegurar ells mateixos la seua correccié. Aixod pot ser
tediés 1 propens a errors especialment quan les families es componen
de multiples variants. Per exemple, els enginyers han de ser conscients
de totes i cadascuna una de les variacions i dependencies de totes les
variants. Per quest motiu, son necessaris nous metodes que permeten
als enginyers de PAIS modelar la variabilitat dels processos de man-
era més explicita, sobretot a un nivell d’abstraccié més alt del fins ara
proporcionat per les solucions actuals. No obstant, per a definir aques-
tos meétodes resulta clau com es representa la variabilitat (ex.: quines
primitives s’utilitzen per a modelar la variabilitat en els processos). En
aquest context, 1"is de patrons de modelatge (solucions reutilitzables



a un problema recurrent) resulten una solucié prometedora. Per ex-
emple, els patrons han sigut provats eficagment per modelar i gestionar
processos de negoci individuals.

L’objectiu d’aquesta tesi és millorar el modelatge de la variabilitat
en les families de processos a través de 1'is de patrons de canvi. En
primer lloc, hem dut a terme un estudi sistematic per a analitzar les
solucions existents per a gestionar la variabilitat en els processos, aixi
com el suport que aquestes proporcionen. D’aquesta manera, hem iden-
tificats i analitzat quin és el conjunt basic de primitives especifiques per
a representar la variabilitat. A més, basant-nos en ’evidéncia empirica
obtinguda, hem derivat el marc d’evaluacié VIVACE, el qual arreplega
les primitives de variabilitat i un conjunt basic de caracteristiques que
afavoreixen la variabilitat en els processos. Aixi, VIVACE conforma
una completa caracteritzacié de la variabilitat en els processos de ne-
goci. Aixi mateix, VIVACE permet als enginyers de PAIS avaluar les
solucions per a gestionar la variabilitat en els processos, aixi com selec-
cionar la solucié que s’ajusta millor a les seues necessitats. Finalment,
VIVACE també pot ajudar als enginyers a gestionar PAISs que donen
suport a aquesta variabilitat.

En segon lloc, basant-nos en les primitives identificades, hem definit
10 patrons de canvi per a families de processos i com poden ser im-
plementats. Aquestos patrons ajuden al modelatge i a I’evolucié de
families de processos i garanteixen la correccié de la propia familia per-
mitint la insercié i eliminacié automatica d’elements. Per a provar la
seua efectivitat i analitzar la seua idoneitat, hem aplicat els patrons de
canvi en un escenari real. En particular, hem realitzat un cas d’estudi
amb un estandard de seguretat amb un alt nivell de variabilitat. Els
resultats de aquest cas demostren que l'aplicacié dels nostres patrons
de canvi poden reduir I'esfor¢ per al modelatge de families de processos
en un 34% i en un 40% per a la seua evolucié. A més, hem analitzat
com els enginyers de PAIS apliquen els patrons i les seues percepcions
d’esta aplicaci6. Com a resultat, la majoria d’ells va trobar beneficis
al aplicar-los. A més, no van percebre un augment en ’esfor¢ mental
necessari i van estar d’acord en la seua utilitat i facilitat.
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Introduction

Information Systems (ISs) constitute software systems that deal with
a large number of business requirements. These requirements can be
referred either to functional features that describe the core functional-
ities of the system, and to non-functional features such as performance
or scalability. This amount of requirements has driven organizations
to describe and manage ISs in a more structured and systematic way
[Sharp & McDermott, 2001], which has lead towards a new generation of
ISs named Process-Aware Information Systems (PAISs) [Dumas et al.,
2005].

Generally, a PAIS constitutes an IS that manages, analyzes, and
executes operational processes which involve requirements, people, ap-
plications services, and business data [Dumas et al., 2005]. Examples of
PAISs include workflow management systems (e.g., ADEPT2 [Reichert
et al., 2005], YAWL [van der Aalst & ter Hofstede, 2003]), enterprise
resource planning systems (e.g., SAP R/3 [SAP-Business-Suite, 1992]),



2 Introduction

case management systems (e.g., FLOWer [Dumas et al., 2005], and
PHILharmonicFlows [Kiinzle & Reichert, 2011]). As opposed to tra-
ditional ISs, a PAIS separates the process logic from the executed code
by representing this logic in terms of a process model [Weske, 2007]. In
particular, process models describe the business processes at a rather
high level of abstraction providing the schema for the execution of the
system [Weske, 2007]. In general, process models are embedded in a
process lifecycle comprising analysis, design, configuration, enactment,
diagnosis, and evolution [Weske, 2007]. In addition, they may serve
as a basis for facilitating communication between stakeholders, process
analysis, simulation, and visualization [Reichert & Weber, 2012].

However, in today’s dynamic business world, the success of an or-
ganization increasingly depends on its ability to adapt to changes in
its environment [Reichert & Weber, 2012]. Examples of these changes
refer to new emerging regulations, market evolution, changes in cus-
tomer behavior, and process improvement. This has led organizations
to accumulate related process models in order to support these changes
[Dijkman et al., 2012]. Related process models are typically referred as
process model variants (process variants for short) [Reichert & Weber,
2012]. Process variants pursue the same or a similar business objective
(e.g., product sale) and can have activities (and their ordering con-
straints) in common. Nevertheless, process variants differ in their ap-
plication context (e.g., regulations to comply with in different countries
or the type of product to deliver) [Reichert & Weber, 2012; Dijkman
et al., 2012; Ayora et al., 2015]. Some activities may be relevant only
for certain application contexts. All the context factors causing process
variability are typically known at design time [Reichert & Weber, 2012].

A collection of related process variants is denoted as a process family.
In practice, a process family may comprise hundreds or thousands of
process variants [Reichert & Weber, 2012]. In the automotive industry,
for example, we found a process family dealing with vehicle repair and
maintenance in a garage, which comprises more than 900 process vari-
ants [Hallerbach et al., 2010a]. These process variants share common-
alities (i.e., process fragments shared by all process variants), but also
show country- and vehicle-specific variations. In turn, [Li, 2010] reports
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on more than 90 process variants for handling medical examinations in a
hospital. Finally, consider check-in procedures at airports [Ayora et al.,
2015]. Even though this process is similar irrespective of the airport the
passenger departs from and the airline flying with, numerous variations
exist depending on distinguished factors such as the type of passenger
(e.g., unaccompanied minors, handicapped people, or people carrying a
pet), the type of check-in (e.g., online or at the counter), or the type
of luggage (e.g., fragile or overweight). The complete description of the
check-in process can be found in Appendix A. We will use this process
as running example throughout the thesis.

All these processes illustrate the variability that a process family
may have due to its heterogeneous application context. Trying to model
and maintain each process variant of such process families from scratch
would be too cumbersome and costly for organizations [Weber et al.,
2011]. Modeling properly the variability involved in process families
constitutes, therefore, a fundamental challenge for every PAIS. In this
context, this thesis attempts to help in this problem.

The rest of the chapter is organized as follows. Section explains
the purpose of this thesis. Section details the problems that this
thesis addresses. Section introduces the goals defined for this thesis.
Section introduces the research methodology that has been followed
in the development of the thesis. Section explains the context in
which this thesis has been performed. Finally, Section gives an
overview of the structure of this document.

1.1 Motivation

In order to efficiently and effectively manage process families, organ-
izations have been interested in modeling (capturing) common pro-
cess knowledge only once and making it reusable in terms of a ref-
erence process model (reference process for short) [Reichert & Weber,
2012]. Along this trend, a multitude of reference processes have been
developed in various domains. Examples include ITIL processes for
IT service management [Hochstein et al., 2005], SAP reference pro-
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cesses for organization resource management [Mendling et al., 2008],
and medical guidelines for patient treatment [Lenz & Reichert, 2007].
Usually, these reference processes are described in a graphical way using
a process modeling language like Business Process Modeling Notation
(BPMN) [BPMN, 2011} or Event-driven Process Chain (EPC) [ARIS,
1990]. Such languages include collections of primitives (e.g., activities
and gateways) to represent reference processes but they do not provide
proper support for explicitly describing process variations [Reinhartz-
Berger et al., 2010; de la Vara et al., 2010].

Motivated by this shortcoming, several approaches enabling pro-
cess variability along the process lifecycle have been developed. That
is, approaches allowing for the analysis, design, configuration, enact-
ment, diagnosis, and evolution of process families [Puhlmann et al.,
2006; Rosemann & van der Aalst, 2007; Hallerbach et al., 2010a]. In
these approaches, process variants are defined in terms of a configurable
process model, which represents a complete process family." By treat-
ing variability as a first class citizen, these configurable process models
contribute to avoiding model redundancies, fostering model reusability,
and reducing modeling efforts [Hallerbach et al., 2010a]. For example,
Figure illustrates a configurable process model for the the check-in
process (cf. Appendix A). This configurable model is represented in
terms of the Configurable EPC (C-EPC) approach [Gottschalk et al.,
2007].

However, modeling and evolving process families and ensuring their
correctness can be very challenging due to their size and complexity.
PAIS engineers need assistance for such purpose [Reichert & Weber,
2012; Ayora et al., 2015]. Once an approach is selected (e.g., C-EPC),
PAIS engineers have to manually model and manage all the elements of
a configurable process model one by one and ensure its correctness by
their own [Hallerbach et al., 2010a]. This can be tedious and error-prone
especially when a configurable process model represents a process family
comprising a high number of process variants [Hallerbach et al., 2010a;
Reichert & Weber, 2012]. For example, PAIS engineers need to be aware

"'We use the terms configurable process model and process family synonymously
throughout the thesis.
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Figure 1.1: Configurable process model of the check-in process in C-EPC

of each variation and dependence of each process variant. However,
there is a lack of efficient methods to deal with process variability in an
explicit manner, especially at a level of abstraction higher than the one
provided by the existing process variability approaches [Ayora et al.,
2015].

Methods for explicitly dealing with process variability cannot be
defined arbitrarily [Ayora et al., 2013]. How process variability is rep-
resented becomes critical. That means, for example, to identify what
language constructs are commonly used to capture variability in a con-
figurable process model [Ayora et al., 2013]. However, although sev-
eral attempts to describe and characterize process variability modeling
have been made (e.g., [Mechrez & Reinhartz-Berger, 2014; Aiello et al.,
2010]), none of them identify these constructs. Further, the imple-
mentation and application of these methods are crucial factors as well
[Reichert & Weber, 2012]. For example, if these methods are defined
purely in a theoretical way, their realization and materialization cannot
be proved. In addition, if their application is too time-consuming and
difficult for modeling large configurable process models, they will not
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be suitable. Thus, in order to prove their reality and effectiveness, such
methods should be implemented and applied in real scenarios to ana-
lyze their suitability. In addition, the way PAIS engineers interact with
these methods is also a relevant factor for determining their successful
adoption. If PAIS engineers do not have a positive attitude towards
these methods and are not willing to use them, their adoption will be
hindered as well.

The use of modeling patterns (i.e., reusable solutions to a com-
monly occurring problem [Weber et al., 2008]) is a promising way to
address these issues. For example, a language-independent and em-
pirically grounded set of adaptation patterns has been proposed for
the modeling and management of (individual) process models [Weber
et al., 2008]. Adaptation patterns not only allow creating and modify-
ing process models at a high level of abstraction, fostering model qual-
ity by ensuring correctness-by-construction, but also provide system-
atic means for realizing change operations in a process models [Déhring
et al., 2011]. Further, adaptation patterns have served as basis for
implementing changes in different stages of the process lifecycle; e.g.,
process model creation [Gschwind et al., 2008], process configuration
[Hallerbach et al., 2010a], process instance change [Dadam & Reichert,
2009; Marrella et al., 2011], process model evolution [Dadam & Reichert,
2009; Kiister et al., 2010; Zhao & Liu, 2013], model refactoring [Weber
et al., 2011], change reuse [Aghakasiri & Mirian-Hosseinabadi, 2009],
model comparison [Kiister et al., 2008], and change analysis [Giinther
et al., 2006]. However, although adaptation patterns are well suited
for creating and managing individual process models, they are not suf-
ficient to cope with process variability in an explicit manner [Ayora
et al., 2012a]. They are not accurate for dealing with the specific com-
plexity that process variability introduces [Ayora et al., 2013].

1.2 Problem Statement

The modeling of process variability is not a closed research topic. The
work presented in this thesis attempts to enhance variability mod-
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eling in PAISs through change patterns. For such purpose, we
state the following research questions:

RQ1. What language constructs are used to model variability in pro-
cess families?

RQ2. What change patterns are needed to model variability in process
families?

RQ3. How can the change patterns for process families be implemen-
ted?

RQ4. To what extent do the change patterns for process families im-
prove the modeling of configurable process models?

These research questions are analyzed and answered in the following
sections.

1.3 Thesis Goals

As stated above, the main goal of this thesis is to enhance variability
modeling in PAISs through change patterns. This goal has been divided
in different sub-goals in order to answer the presented research questions
above. In the following, we summarize these sub-goals.

First of all, regarding research question 1, one of the sub-goals of
this thesis is to study in-depth the process variability domain in order to
identify how process variability is actually modeled. More precisely, we
want to systematically analyze existing process variability approaches
regarding their expressiveness with respect to process variability model-
ing as well as their support along the process lifecycle. In this context,
we can identify the language constructs that are used to represent pro-
cess variability. In addition, based on the empirical evidence provided
by this study, we derive the VIVACE framework. Besides the iden-
tified variability-specific language constructs, this framework also com-
prises a core set of features fostering process variability. Thus, VIVACE



8 Introduction

provides a characterization of process variability. In addition, VIVACE
shall also allow for the systematic assessment and comparison of ex-
isting process variability approaches. Finally, VIVACE enables PAIS
engineers to select for example that variability approach meeting their
requirements best as well as help them in dealing with PAISs support-
ing process variability (e.g., to model or implement PAIS supporting
process variability).

Regarding research question 2, another sub-goal of this thesis is
to provide a set of generic patterns specifically tailored for modeling
process variability. For such purpose, our change patterns for process
families (CP4PF) are derived based on the variability-specific language
constructs obtained from the previous sub-goal of the thesis. More con-
cretely, CP4PF allow inserting, deleting, and modifying such constructs.
In addition, our CP4PF are intended to ensure process family correct-
ness, speed up the modeling process, and reduce the effort needed for
such purpose by providing systematic means for introducing and delet-
ing modeling elements.

In turn, regarding research question 3 of this thesis, we want to
illustrate how CP4PF can be realized. We do not only provide a theor-
etical and generic definition of the defined patterns, but also show how
they can be implemented in a well-established approach for modeling
configurable process models (i.e., Configurable EPC (C-EPC) [Gott-
schalk et al., 2007]). This implementation allows us to show that the
proposed patterns support process variability management and can en-
sure process family correctness by inserting and deleting automatically
modeling elements. For example, a pattern can facilitate the insertion
of the function Drop off bulk luggage in the model of Figure 1.1. In par-
ticular, a PAIS engineer would indicate the position of the function in
the model, and the implementation of the pattern would automatically
take all the rest of necessary actions for correct insertion.

Finally, research question 4 is aimed to show how CP4PF im-
prove the modeling of process variability in configurable process models.
First, in order to provide evidence that CP4PF are a feasible approach
for modeling variability, we conduct a case study with a safety standard,
which represents a process family with a high degree of variability. In
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addition, in this case study we prove that CP4PF provide a consider-
able effort reduction needed for creating a configurable process model
in comparison with three state-of-the-art approaches. Thus, configur-
able process models are modeled more efficiently when using CP4PF.
Second, to complement the validation, we explore how PAIS engineers
experience the application of CP4PF. More precisely, we implement the
patterns in the Cheetah Ezperimental Platform [Pinggera et al., 2010]
and study how PAIS engineers apply CP4PF, what is the impact of
pattern application, and how PAIS engineers perceive pattern useful-
ness and ease of use. If PAIS engineers do not have a positive attitude
toward CP4PF, their adoption will be hindered.

This thesis can be considered as a reference for implementing PAISs
being able to effectively modeling process variability. First, we expect
the VIVACE framework to be applied to various process variability
approaches as well as related tools in order to assess their suitability
with respect to process variability modeling. In this vein, the framework
is expected to support organizations and PAIS engineers in deciding
which process variability approach suits best to their needs. Second,
the CP4PF are intended to be used for the modeling of process families.
More precisely, since change patterns are based on the set of variability-
specific language constructs, our CP4PF may be used, for instance, for
creating new configurable process models or evolving existing ones. In
addition, the results of the case study show that CP4PF are able to
reduce the effort needed for modeling high-variable process families.
Finally, PAIS engineers also find advantages in using CP4PF and have
a positive attitude toward adopting them, which confirms the benefits
of our patterns.

1.4 Research Methodology

In order to perform the work of this thesis, we have carried out a re-
search project following the design methodology described in [Vaishnavi
& Kuechler, 2004]. This design methodology was proposed for perform-
ing research in information systems. It involves the analysis of the use
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and performance of designed artifacts to understand, explain and, very
frequently, to improve on the behavior of aspects of information sys-
tems. Examples of such artifacts are system design methodologies and
languages. In the case of this thesis, the designed artifacts are the char-
acterization of process variability (i.e., the VIVACE framework) as well
as the change patterns for process families (CP4PF).

The design methodology consists of a cycle of 5 process stages: (1)
awareness of the problem, (2) suggestion, (3) development, (4) evalu-
ation, and (5) conclusion (cf. Fig 1.2). In the following, we describe
each stage in detail.

Stages Outputs

Awareness of

Pro| |
" the problem posa ‘
Suggestion Tentative ‘
88 design
Circunscription l
Knowledge Development Artifact ‘
contribution

Evaluation Measurements‘

|

Conclusion

Facts learned ‘

Behavior for
further
research

VAN R R

Figure 1.2: Design methodology cycle

Awareness of the problem: The awareness of a problem may come
from multiple sources (e.g., new developments in industry or in a ref-
erence discipline, reading in an allied discipline). The output of this
stage is a proposal, formal or informal, for a new research effort. In this
thesis, the outputs of this stage refer to: (1) problem motivation, (2)
research questions, and (3) review of the state of the art.
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Suggestion: This stage follows immediately behind the proposal and
is intimately connected with it. The output of this stage is the tentative
design, which is an integral part of the proposal and must be targeted
at it. This stage is an essentially creative step wherein a new artifact is
envisioned based on a novel configuration of either existing or new and
existing elements. In the context of this thesis, the outputs of this stage
refer to: (1) thesis goals and (2) backgrounds of the proposed solution.
Development: The tentative design is further developed and imple-
mented in this stage in order to produce an artifact. Implementa-
tion techniques will vary depending on the artifact to be constructed.
The implementation itself may not involve novelty beyond the state-of-
practice for the given artifact; the novelty is primarily in the design,
not in the construction of the artifact. In the context of the thesis, the
outputs of this stage refer to: (1) the VIVACE framework and (2) the
definition and implementation of CP4PF.

Evaluation: Once the artifact has been constructed, it is evaluated
according to criteria that are always implicit and frequently made ex-
plicit in the proposal. This stage contains an analytic activity in which
measurements are usually taken about the behavior of the artifact. The
results of the evaluation stage and additional information gained in the
construction and running of the artifact are brought together and fed
back to another round of suggestion (cf. circumscription arrow in Fig-
ure 1.2). In the context of this thesis, the outputs of this stage refer to:
(1) the case study and (2) the validation with PAIS engineers.
Conclusion: This stage constitutes the end of a research. The results
of this research are not only documented at this stage, but the know-
ledge gained is categorized as either facts learned or as behavior that
serves as basis of further research. Awareness of the problem changes
after conclusion thanks to the gained knowledge (cf. knowledge contri-
bution arrow in Figure 1.2). In the context of this thesis, the outputs of
this stage refer to: (1) contributions, (2) future work, (3) publications,
and (4) the thesis itself.
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1.5 Thesis Context

This thesis has been developed in the context of the research cen-
ter Centro de Investigacion en Métodos de Produccion de Software
(PROS)~ of the Universitat Politécnica de Valéncia®. The work of this
thesis has been developed in the context of the following research pro-
jects:

EVERYWARE: Construcciéon de Software Adaptativo para la Integ-
racion de Personas, Servicios y Cosas usando Modelos en Tiempo
de Ejecucién. CICYT project referenced as TIN-2010-18011.

The goal of EVERYWARE is to develop information systems that
combine a set of available services (offered by an environment) to
support the functionality required by end users. In many cases,
this functionality is variable depending on the needs of the users.
In this project, our CP4PF help to face the modeling of business
processes reflecting this changing functionality.

SMART ADAPT: Desarrollo de Software Adaptativo en un Mundo
Inteligente. Retos Tecnolégicos en el d&mbito de la Ingenieria Di-
rigida por Modelos. MINECO project referenced as TIN2013-
42981-P.

One of the challenges of SMART ADAPT is to provide a frame-
work to allow the self-evolution of models. In this context, the
use of CP4PF contributes to ensuring the automatic evolution of
these models. In addition, CP4PF guarantee the proper evolution
of the models by ensuring model correctness.

2yww.pros.upv.es
Swww.upv.es
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1.6 Thesis Structure

The remainder of this thesis is organized as follows:

Chapter 2: introduces the main research areas that are related to this
work in order to provide a basic background for understanding
the overall thesis.

Chapter 3: reviews the most relevant existing works related to the
thesis. Their analysis is necessary to determine the current state
of research and practice.

Chapter 4: presents the VIVACE framework. VIVACE is resulted
from an systematic study of the process variability domain. Thus,
it constitutes a complete process variability characterization. In
addition, VIVACE enables for the systematic assessment and com-
parison of process variability approaches.

Chapter 5: presents the set of change patterns for modeling of process
families (CP4PF). In particular, CP4PF are described, illustrated,
and provided with implementation details.

Chapter 6: reports how we put CP4PF into practice in a real and
industrial scenario. It describes a case study performed with a
safety standard as a feasibility proof of CP4PF. In addition, we
measure the effort needed to apply the patterns in a real scenario,
which is compare with three state-of-the-art approaches in order
to determine the advantages of using CP4PF.

Chapter 7: details the validation with PAIS engineers in order to ana-
lyze the impact of CP4PF as well as how PAIS engineers experi-
ence their application.

Chapter 8: summarizes the main conclusions that can be drawn as a
result of the development of this thesis. It describes the contri-
butions that have been made, discusses the impact of the thesis,
and presents the future work that could be performed.
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Background

his thesis deals with the enhancement of process variability mod-

eling through the use of change patterns. In order to describe its
specific domain, the thesis is placed in the intersection of three research
areas: Business Process Modeling, Software Variability Modeling, and
Software Patterns (cf. Figure 2.1). That is, this thesis relies on the
different concepts and techniques from these areas. In this chapter, we
introduce these concepts and techniques in order to clarify the found-
ations in which our work relies on and provide a basic background for
understanding the overall thesis.

The rest of the chapter is organized as follows. Section 2.1 introduces
the concepts that support business processes modeling. In turn, Section

describes the main concepts of software variability modeling. Section

outlines the pattern-based techniques used for the development of
software. Finally, Section concludes the chapter.
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Business Software
Process Varibility
Modeling Modeling

Software
Patterns

Figure 2.1: Research areas involved in this thesis

2.1 Business Process Modeling

Nowadays, the modeling of business processes is a very common practice
in organizations. It plays a major role both in industry and academia,
helping organizations to be competitive and to achieve their business
goals [Indulska et al., 2009].
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According to [Weske, 2007], a business process is defined as “a set of
activities performed in coordination in an organizational and technical
environment”. Analyzing this definition, a business process defines what
(activities) shall be done, how it shall be done (coordination), and by
whom (organizational and technical environment). In this context, busi-
ness process models (also named process schemas) constitute the main
artifacts for representing the respective business processes. A business
process model (process model for short) is used within organizations for
communication and learning purposes, for decision support about pro-
cess development and design, for control and decision support during
process execution, and for analysis of information technology support
[Aguilar-Savén, 2004].

Basically, process models are defined from the basic primitives from
the metamodel depicted in Figure . These primitives allow for
modeling the functional, behavioral, organizational, informational, tem-
poral, and operational perspectives of a business process [Curtis et al.,
1992; Melao & Pidd, 2000; Korherr, 2008; Reichert & Weber, 2012;
Jablonski & Bussler, 1996; Lanz et al., 2010, 2012].

e The functional perspective specifies the decomposition of a busi-
ness process into units of work, i.e., it represents the activities
that may have to be performed to reach a particular business ob-
jective [Curtis et al., 1992]. An atomic activity is associated with
a single action, whereas a complex activity refers to a sub-process
or, more precisely, a sub-process model. In Figure 2.2, this per-
spective is represented by entities activity, atomic activity, and
complex activity.

e The behavioral perspective captures the behavior of a process model
and hence reflects the control flow between its activities. The lat-
ter defines the order of the activities as well as the constraints for
their execution. This perspective is represented by entities control
connector (i.e., gateway) and control edge (i.e., arrows) in Figure

'This metamodel has been adopted from [BPDM, 2014].
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Figure 2.2: Process metamodel adopted from [BPDM, 2014]

The organizational perspective represents the different actors or
roles involved in a process model that are in charge of execut-
ing particular process activities (i.e., humans or systems). This
perspective is represented by entity role in Figure

The informational perspective covers data and data flow, i.e., it
represents the informational entities (e.g., data objects) consumed
(i.e., used as input for activity execution) or produced (i.e., as out-
put resulting from activity execution) during process execution.
This perspective is represented by entity data object in Figure

The temporal perspective covers temporal constraints restricting
the execution and scheduling of activities; e.g., the time an activ-
ity may be started or completed, a message arrived, a deadline
expired, or an error occurred. This perspective is represented by
entity event in Figure
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e The operational perspective refers to the implementation of atomic
process activities, i.e., the application services (e.g., web services,
electronic user forms) to be invoked when these activities are star-
ted. For a particular atomic activity, different implementations
may exist. At enactment time, one of them is then dynamically
selected and bound to the execution of this activity. This per-
spective is represented by entity operation in Figure

In general, process models are embedded in a process lifecycle com-
prising different phases (cf. Figure 2.3) [Weske, 2007; Bridgeland &
Zahavi, 2008; Aguilar-Saven, 2004]. These phases include: Analysis €
Design, Configuration, Enactment, Diagnosis, and Evolution.

sis & Desig,7

P.,(‘a\‘l

uo!le.mﬁ\,}“d)

Figure 2.3: Business process lifecycle

During the analysts and design phase, based on domain require-
ments, relevant (emerging or existing) process information is gathered,
analyzed, consolidated, and represented in terms of process models.
These models are also validated and verified based on various techniques
(e.g., simulation, correctness checks). In turn, during the configuration
phase, the process model is enhanced with technical information that
facilitates its execution (e.g., information about the enactment system).
Once this configuration is completed, process instances can be enacted.
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A process instance represents a concrete case in the operational busi-
ness of an organization [Weske, 2007]. Thus, the process enactment
phase encompasses the actual execution of the business process. Mon-
itoring techniques are used in this phase in order to gather relevant
information and data about the process instances’ enactment. Later, in
the diagnosis phase, this gathered information is analyzed in order to
identify problems and to find process aspects that can be improved (e.g.,
bottlenecks). Finally, the identified improvements as well as emerging
requirements (e.g., changes in the business context) can lead to the evol-
ution of the process models. This may also entail the ability to change
process instances accordingly (i.e., the ones being executed). Process
evolution may be incremental (i.e., only requiring small changes of the
implemented process) as for continuous process improvements, or be re-
volutionary (i.e., requiring radical changes) as in the context of process
innovation or process re-engineering [Reichert & Weber, 2012].

There are two types of process models: (1) business-oriented process
models and (2) workflow models [La Rosa, 2009]. Business-oriented pro-
cess models are high-level models used for analyzing the domain require-
ments at the early stages of the lifecycle (i.e., the analysis and configura-
tion stages). In general, these models provide a basis for communication
among relevant stakeholders, and as such they must be unambiguous
as well as intuitive. In turn, workflow models are designed for process
automation. They are typically obtained by refining business-oriented
process models with information that is relevant for implementation.
Their execution is supported by a workflow management system.

Both types of process models are created by means of a graphical
notation named business process modeling language. For example, for
creating business-oriented process models, the most representative lan-
guage are: Event-driven Process Chains (EPC) [SAP-Business-Suite,
1992], UML Activity Diagrams [UML, 2007], and Business Process
Modeling Notation (BPMN) [BPMN, 2011]. In turn, for workflow
models, the main languages are: the Web Services Business Process
Execution Language (WS-BPEL or BPEL) [WS-BPEL, 2004] and Yet
Another Workflow Language (YAWL) [van der Aalst & ter Hofstede,
2003]. Some of these languages have appeared in academia and adop-
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ted later in industry (e.g., BPMN), whereas others have been initially
defined for industrial purposes and improved by means of academic re-
search (e.g., EPC). However, the common characteristics of all these
languages is their capability for representing the sequence of activities
of a business process, the involved stakeholders and the data or messages
interchanged between them [La Rosa, 2009]. Since these languages have
been developed with specific purposes, a “universal” language for busi-
ness process modeling does not exist. Only BPMN has been standard-
ized by the OMG consortium [OMG, 1989] since it contains notational
information and execution semantics (e.g., BPMN 2.0).

2.2 Software Variability Modeling

During the last decade, variability modeling has become a hot topic
[Schmid & John, 2004; Cetina et al., 2009; Alférez et al., 2014]. In
the context of information systems, variability modeling is referred to
representing the capability to change of a software system [Geyer &
Becker, 2002]. One of the main interests on variability modeling comes
from the field of Software Product Lines (SPLs) [Pohl et al., 2005].

SPLs encompass the creation and management of similar software
products (products’ families) for a particular domain. Most organiza-
tions build software within a few domains, repeatedly building system
variants within those domains. This is achieved by defining only once
the common product functionalities (i.e., shared by all family mem-
bers) and combining them with a set of variation points. A variation
point is an identifier of one or more locations in a product at which the
variation will occur [Pohl et al., 2005]. By explicitly defining variation
points, time, effort, cost and complexity of software creation and main-
tenance are reduced [Krueger, 2013].

In general, a SPL can be described in terms of four concepts (cf. Figure

).

e Software asset inputs. A set of software assets (e.g., require-
ments, source code, test cases, and documentation) that can be
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Figure 2.4: Main concepts of software product lines

configured and composed in different ways in order to create all of
the products. To obtain the different products, assets may be op-
tional and also they can be configured in different ways to provide
different behavior.

e Decision model. Decisions describe optional and variable char-
acteristics for the products (i.e., variation points). Each product
is uniquely defined by its decisions.

e Production mechanism and process. A set of prescribed rules
is used for composing and configuring each product from the soft-
ware asset inputs, i.e., product decisions are used to determine
which software asset inputs are used and how they are configured.

e Software product outputs. The set of all products that can
be produced in a product line from the software assets inputs and
the existing decision model.

Three main processes are involved in SPLs: Domain Engineering
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(DE), Application Engineering (AE) and Management [Bosch et al.,
2001]. During DE, the variability of a SPL is defined and common
and variable domain artifacts are developed (i.e., the decision model is
created). During AE, individual products are developed by selecting
and configuring shared artifacts and, where necessary, adding product-
specific extensions (i.e., the production mechanism and process is per-
formed). Finally, during management, organizational issues are handled
in order to obtain the products (e.g., by giving resources).

Recently, a number of methods and techniques for managing SPLs
have been defined [Bayer et al., 2006]. In this thesis, we highlight two of
them regarding their ability to model variability. The first one refers to
Software Configuration Management (SCM) [Pressman, 2001}, a meth-
odology for controlling and managing a product family. Work on SCM
has led to models and languages to capture how a set of available options
impacts upon the way a software system is built from a set of assets.
These options conform the variable parts of the system. FExamples of
SCM languages are the Adele Configuration Manager [Estublier & Cas-
allas, 1994] and the Proteus Configuration Language [Tryggeseth et al.,
1995]. The second method, and the most studied one, refers to feature
models [Schobbens et al., 2006]. These models are tree-structures used
to describe a set of products in terms of their features. A feature corres-
ponds to a logical unit of behavior or functionality by which different
products can be distinguished and defined (i.e., features represent vari-
ation points). It can be mandatory (the feature is always used in the
product) or optional (the feature can be used in the product). In addi-
tion, a feature can be bound to other features via inclusion and exclusion
constraints and it can be decomposed into a set of sub-features. The
limit of sub-features that a feature can have is determined by logical
relationships. The AND relationship indicates that all the sub-features
must be selected. In turn, the XOR relationship indicates that only
one sub-feature can be selected. Finally, the OR relationship indic-
ates that one or more sub-features can be selected. This OR can be
further specified with an [n..m] cardinality [Czarnecki & Antkiewicz,
2005], where n indicates the minimum and m indicates the maximum
number of allowed sub-features. In addition, it is possible to define the
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features that are included in the product by default. A configuration
of a feature model specifies then a valid scenario in terms of features
selected /deselected, i.e. a scenario that complies with the defined con-
straints. This configuration represents the configuration of the product
in the software product line. Figure shows an example of a generic
feature model.

Feature 1

ﬂ

Feature 2 Feature 3
P i e
Feature 4 Feature 5 Feature 6 Feature 7
Feature 8 Feature 9 Feature 10 Feature 11 Feature 12 Feature 13 Feature 14

\ L A [y

l <includes>: J ‘

<excludes

<<includes>>—— Mandatory feature
[n..m] <<excludes>>—— Default feature
Cardinalities OR XOR Constraints Optional feature

Figure 2.5: Generic feature model

2.3 Software Patterns

Another actual hot topic in information systems refers to the use of pat-
terns for modeling software. Patterns were initially introduced in 1977
as an architectural (building) concept [Alexander et al., 1977]. But it
was in 1989 when patterns were applied for the first time for software de-
velopment [Fowler, 1997; Beck & Cunningham, 1987]. Since that year,
there has arisen several definitions of the term ’pattern’ [Martin, 2000;
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Riehle & Ziillighoven, 1996; Appleton, 1997; Gabriel, 1996]. However,
in this thesis we consider the definition provided by Martin in [Martin,
2000] since it is the most commonly used. For Martin, a software pattern
is defined as a “general reusable solution to a commonly occurring prob-
lem within a given context”. These software patterns constitute common
practices in software development. In addition, software patterns need
to be based on empirical observations (i.e., being demonstrable in prac-
tice).

Depending on the abstraction level they refer [Fernandez, 1998],
patterns can be classified as:

e Organizational patterns, oriented to describe the structure of
an organization.

e Architectural patterns, oriented to define the architectural
structure of a system.

e Idioms, oriented to a given programming language.

e Analysis patterns, oriented to help in the conceptual modeling
of the system.

e Design patterns, oriented to describe design constructs while
designing the system.

2.3.1 Organizational patterns

Organizational patterns constitute solutions for describing structures
of relationship which help an organization to achieve its goals [Coplien
& Harrison, 2005]. These patterns are inspired by analyzing multiple
professional organizations and finding common structures in their social
networks [Coplien & Harrison, 2005]. Organizational patterns can be
divided into four groups (cf. Figure 2.0):

e Patterns for project management. They point to the initial design
of an organization.
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Figure 2.6: Set of organizational patterns

organization once it is up and running.
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e Patterns for the organizational style. They shape the “style” of
an organization and provide a good foundation for tailoring an
organization to its business and market.

e Patterns for people and code. They help an organization in align-
ing the people (e.g., developers) and code structures properly.

The fundamental process for applying an organizational pattern in
an organization is:

1. Find the weakest part of the organization.

2. Find a pattern that is likely to strengthen it.
3. Apply the pattern.

4. Measure the improvement or degradation.

5. If the pattern improved things, go to step 1 and find the next
improvement; otherwise, undo the pattern and try an alternative.

Finally, organizational patterns capture the foundations of the agile
software development movement. In particular, they have inspired the
creation of parts of Scrum [Schwaber, 2004 and of Eztreme Program-
ming [Beck, 1999]. For a complete description of organizational pat-
terns, we refer to [Coplien & Harrison, 2005].

2.3.2 Architectural patterns

Architectural patterns are well-established problem-solution pairs to ar-
chitectural problems that occur in a given context and are affected by
it [Coplien & Alexander, 1996]. The software architecture of a system
comprise the set of structures needed for reasoning about the software
components of a systems, their properties, and their relations [Avger-
iou & Zdun, 2005]. An architectural pattern does not only document
“how” to solve an architectural problem, but also “why” it needs to be
solved (i.e. the rationale behind the solution) [Bass, 2007]. In addition,
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architectural patterns help to document the architectural design de-
cisions, facilitate communication between stakeholders through a com-
mon vocabulary, and describe the quality attributes of a software system
as restrictions that must be fulfilled [Buschmann et al., 2007].

Architectural patterns can be classified according to the different
architectural views of a system [Clements et al., 2002]. An architectural
view is a representation of a system from the perspective of a related set
of its components. Thus, an architectural pattern defines the types of
components, properties, and relationships that work together to solve a
particular problem from a certain view. The existing views are:

e The layered view. It deals with how a system, as a complex hetero-
geneous entity, can be decomposed into interacting components.
Examples of architectural patterns in this view are: layers and
indirection layer.

e The data flow view. It deals with the data streams that are suc-
cessively processed or transform by the components of a system.
Examples of patterns in this view are: batch sequencial and pipes
and filters.

e The data-centered view. It deals with multiple components of a
system that access a central data repository. Examples of pat-
terns in this view are: shared repository, active repository, and

blackboard.

e The adaptation view. It deals with how a system can adapt its own
behavior /components at evolution time. Examples of patterns in
this view are: microkernel, reflection, and interceptor.

o The language extension view. It deals with how a system provides
an abstraction layer for the computing infrastructure. Examples
of patterns in this view are: interpreter, virtual machine, and
rule-based system.

e The user interaction view. It deals with the components of the
user interface of a system that are shown at runtime. Examples of
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patterns in this view are: model-view-controller and presentation-
abstraction-control.

e The component interaction view. It deals with how individual
components exchange messages, but keeping their autonomy. Ex-
amples of patterns in this view are: explicit invocation, implicit
invocation, client-server, peer-to-peer, and publish-subscribe.

e The distribution view. It deals with how to distribute the com-
ponents of a system in a network. Examples of patterns in this
view are: broker, remote procedure calls, and message queuing.

2.3.3 Idioms

Idioms constitute the lowest-level patterns since they depend on a spe-
cific implementation technology such as a programming language (e.g.,
C++, Java) [Coplien, 1997]. In general, an idiom refers to a syntactical
shortcut that does something not immediately obvious from the code
itself but which is used often enough that other programmers recognize
its meaning. For example, the structure i += 1 in Java is obvious
for a Java programmer, but could be a mystery to a non-expert in
Java. Idioms are not restricted to any programming paradigm and can
be defined for example for object-oriented programming (e.g., Java),
functional programming (e.g., Haskell) [Gibbons, 2010], aspect-oriented
programming (e.g., AspectJ) [Lesiecki, 2005], and special-purpose pro-
gramming (e.g., SQL) [Tropashko & Burleson, 2007].

Finally, some programmers argue that data structures such as queues,
linked lists, trees, graphs, or stacks constitute idioms as well. Although
they may seem more primitive as compared to more high level patterns
(e.g., architectural patterns), data structures define (non-obvious) solu-
tions to store data and process them. The same could be stated to the
entity class since it constitutes a template for managing objects (e.g.,
creation, implement behavior).
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2.3.4 Analysis patterns

Analysis patterns capture an abstraction of a situation that can often be
encountered in software modeling. They were defined by Fowler in 1997
based on empirical observations [Fowler, 1997]. An analysis pattern
can be represented as a group of related, generic objects (metaclasses)
with stereotypical attributes (data definitions), behaviors (method sig-
natures), and expected interactions defined in a domain-neutral manner
that represent a common construction in business modeling. In general,
analysis patterns facilitate the transformation of the domain require-
ments of a system into a conceptual model. Since an analysis pattern
may be relevant to many domains, they are very valuable for promoting
reuse among the systems. In particular, there are six groups of analysis
patterns whose names come from the domain patterns were observed
the first time (cf. Figure 2.7). In this thesis, we outline analysis pat-
terns very briefly. For a complete description of analysis patterns, we
refer to [Fowler, 1997].

e Patterns for accountability. They describe relationships that define
responsibilities between the parties of a system.

e Patterns for observations and measurements. They are used for
recording facts.

e Patterns for referring to objects. They focus on indexing for re-
ferring objects in an exact way.

e Patterns for inventory and accounting. They focus on accounting,
describing how a network of accounts can form an active account-
ing system.

e Patterns for planning. They depict the relationship between stand-
ard plans and one-off plans, and how to plan and record the use
of resources.

e Patterns for trading. They focus on trading in situations where
prices are fluid and we need to understand how these price changes
affect the profits.
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Analysis Patterns
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Figure 2.7: Set of analysis patterns

Figure shows an example of an analysis pattern. More precisely,
it shows the party pattern of the accountability category. This pattern
is applied when people and units of an organization have similar features
or responsibilities. The solution provided by the pattern lies on creating
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a type party as a supertype of person and organization.
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Figure 2.8: Analysis patterns: Accountability - Party pattern

2.3.5 Design patterns

Design patterns gained popularity after the book of the so-called “Gang
of Four” |Gamma et al., 1995]. Unlike analysis patterns, design patterns
are formalized best practices that can be used to solve common problems
when designing a system in an object-oriented way. A design pattern
has four essential parts: a statement of the context where the pattern is
useful, the problem that the pattern addresses, the forces that play in
forming a solution, and the solution that resolves those forces. There are
23 design patterns classified in three groups based on their functionality
(cf. Figure 2.9). In the following, we summarizes these patterns. For
a complete description of design patterns, we refer to [Gamma et al.,
1995].

e Creational patterns. They deal with the initialization and con-
figuration of classes and objects. More precisely, these patterns
abstract the creation process of the instances of the classes of the
model.

o Structural patterns. They deal with decoupling the interface and
the implementation of classes and objects. More precisely, these
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Figure 2.9: Set of design patterns

patterns focus on how classes and objects are used to compound

bigger structures.

e Behavioral patterns.

among societies of classes and objects.

They deal with the dynamic interaction

More precisely, these

patterns describe the algorithms and assignation of responsibil-

ity among the existin

Figure

g objects.

shows an example of a design pattern. In this case, it

shows the facade pattern. This pattern is aimed to provide a unified
interface for a set of interfaces. In this way, the unified interface facil-
itates the interaction with the other interfaces reducing the complexity
of the system and its dependencies.

Design patterns differ from analysis patterns in three ways [Fernan-

dez, 1998]:

e Design patterns relate to system implementation and are focused
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Figure 2.10: Design patterns: Structural - Facade pattern

on typical design aspects (e.g., user interfaces, objects’ creation,
and basic structural properties).

e Design patterns can be applied to any system (e.g., all systems
have user interfaces or need to create objects).

e Analysis patterns depend on the specific system and their se-
mantics describe aspects of this system or its application domain.

2.4 Conclusions

The purpose of this chapter is to provide an introduction to the found-
ations and the basic background of the research areas this work relies
on. We have described the different concepts and techniques of three
areas: Business Process Modeling, Software Variability Modeling and
Software Patterns. This thesis is related with these areas since we aim
to provide a set of change patterns (i.e., software patterns area) specific-
ally tailored for modeling variability (i.e., software variability modeling
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area) in process families (i.e., business process modeling area). Thus,
much of the techniques introduced here are used as a basis in this thesis.
In the following, we provide an overview of existing approaches closely
related to the described research areas as well as to the goals of this
thesis.
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nce we have analyzed in Chapter 2 the main research areas in which

this thesis relies on, in this chapter we analyze existing approaches
closely related to these areas as well as to the goals of this thesis. Fig-
ure illustrates the research areas and their subareas (intersections),
where each of the analyzed approaches is placed. More precisely, we
identify three subareas: Business Process Variability Modeling, Software
Variability Modeling Patterns, and Business Process Modeling Patterns.
Relevant approaches in these subareas are analyzed and discussed in this
chapter.

The rest of the chapter is organized as follows. Section describes
approaches related to the modeling of business process variability. Sec-
tion outlines the main patterns that are used for modeling variability
in software systems. In turn, Section introduces patterns that sup-
port changes in business process modeling. In Section we discuss the
difference between the existing approaches and the work of this thesis.
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Finally, Section 3.5 concludes the chapter.

Business

Business Al Software
Variahi lity 8 o
Process Modeling Varibility

Modeling Modeling

Business Software
Process Variahi lity
Modeling Modeling
Patterns Patterns

Software
Patterns

Figure 3.1: Research areas involved in this thesis and their intersecting sub-
areas
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3.1 Business Process Variability Modeling

The co-existence of multiple variants of the same business process model
is a widespread phenomenon in contemporary organizations. These
process variants pursue the same or similar business objective sharing
certain commonalities (e.g., process fragments), while at the same time
having differences due to their use in the different application context
(e.g., certain fragments may be relevant for only some of the process
variants depending on the application context) [Dijkman et al., 2012;
Soffer, 2005; van der Aalst & Basten, 2002].

A collection of related process variants constitutes a process fam-
ily [Reichert & Weber, 2012]. Applying conventional business process
modeling approaches (cf. Section 2.1) to process families requires either
(1) to model each variant separately or (2) to model multiple variants
together [La Rosa et al., 2013]. In the first case, the result is a signific-
ant redundancy (i.e., duplication of process fragments) as the variants
have much in common. In the second case, the complexity of the con-
solidated model grows rapidly and it becomes difficult to analyze and
maintain individual variants [La Rosa et al., 2013].

Motivated by this observation, process variants are typically defined
in terms of a configurable process model, which represents a complete
process family [Reichert & Weber, 2012]. In particular, a configur-
able process model eliminates model redundancies by representing the
commonalities of different process variants only once. Furthermore, it
fosters model reuse since variant particularities can be shared among
multiple variants [La Rosa et al., 2009a].

3.1.1 Process perspectives

Like business process models, in the configurable process models, the
functional, behavioral, organizational, informational, temporal, and op-
erational can be observed. In general, all these perspectives may be sub-
ject to variation. For example, in respect to the functional perspective,
consider Variants 4-6 of the check-in process (cf. Appendix A). De-
pending on the type of passenger, the set of activities to be performed
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may differ; e.g., Assign seat for UM in the context of unaccompan-
ied minors, Assign seat for handicapped in the context of handicapped
passengers, or Assign seat for regular passengers. In turn, regarding
the behavioral perspective, the control flow of the check-in process dif-
fers for example in the model part preceding activity Print boarding
card; e.g., activities Provide information about accommodation and Fill
in ESTA form are only performed if the passenger is traveling to the
US, but shall be omitted otherwise. Thus, there exist two options in
the control flow of the process; i.e., either to perform the activities or to
skip them. In turn, variations in the organizational perspective is found
when the check-in can be performed by passengers using a web system
(cf. Variants 1-2 in Appendix A), whereas check-in at the counter is
performed by airline staff (cf. Variants 4-6). In addition, depending on
the type of check-in, the resulting boarding card either is an electronic
or a paper-based document, which refers to variability in respect to the
informational perspective. In respect to the temporal perspective, the
availability of the check-in service is delimited from 23 (cf. Variants
1-3) to 3 (cf. Variants 4-6) hours before departure, depending on the
type of check-in. This is represented using different start events. Fi-
nally, regarding the operational perspective, the implementation of the
Print boarding card activity differs depending on the type of check-in;
i.e., online, counter, or with self-servicing machine.

3.1.2 Process lifecycle

Configurable process models also follow the phases of the process li-
fecycle (cf. Figure 2.3). In the context of process variability, at the
analysis and design phase, process variants are defined in terms of a
configurable process model, which must be verified and validated. In
this case, verification means that it needs to be ensured that all pro-
cess variants that may be derived from the configurable process model
are syntactically correct and sound (e.g., no deadlocks or livelocks). In
turn, validation shall ensure that the configurable process model prop-
erly reflects the semantics of all business processes. In order to derive
a specific process variant from the configurable process model, at the
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configuration phase, an individualization as well as a selection procedure
are performed based on the respective application environment (i.e., ap-
plication context) in which a process variant shall exist [La Rosa et al.,
2009a]. Then, this individualized (and selected) process variant is de-
ployed to the target process engine for its enactment. Figure 3.2 depicts
the transitions from the analysis and design of a process family to the
enactment of a process variant instance.
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Figure 3.2: From process family definition to process variant enactment

At enactment time, it needs to be guaranteed that process variants
are executed according to the configured process variant model [van der
Aalst et al., 2010b; Hallerbach et al., 2009; Ayora et al., 2012a]. In ad-
dition, this phase covers configuration decisions that may only be made
during enactment time (i.e., dynamic configurations) [Angles et al.,
2013; Murguzur et al., 2014]. Even though configuration is partially
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performed at enactment time, soundness should be ensured at design
time. Another aspect to take into account during this phase refers to
dynamic re-configurations, i.e., to switch from the current process vari-
ant to another [Soffer, 2005; van der Aalst & Basten, 2002]. In this
case, sophisticated exception handling techniques are necessary (e.g., to
abort instances that are no longer needed [Reichert & Weber, 2012]).
Accordingly, monitoring techniques are required to provide accurate
information about the current execution state of the process variant
instance. The monitored data is then used in the diagnosis phase to
identify possible model optimizations that, in turn, will guide the evol-
ution of the family. This evolution may be referred to evolving (i.e.,
modifying) a single process variant or to evolve the schema of a process
family, which results in a new process family (i.e., to evolve the config-
urable process model) [Ayora et al., 2012a]. In this context, co-existing
schema versions of a configurable process model may have to be main-
tained. This means that conflicts between single process variants which
have been individually evolved, and the evolution of the configurable
process model need to be handled.

3.1.3 Process variability approaches

Recently, a number of approaches to create configurable process models
have emerged. By treating variability as a first class citizen, process
variability approaches avoid model redundancies and foster model re-
usability [Reichert & Weber, 2012]. In general, these approaches allow
representing a configurable process model either in a single artifact or in
a set of related artifacts [Ayora et al., 2015]. Using a single artifact, all
process variants and related aspects (e.g., commonalities of the process
variants, variant-specific parts, configuration constraints, and applica-
tion context) are included in a single model. On the contrary, using a
set of related artifacts these aspects are defined separately in different
models. In the following, we provide an overview of specific approaches
for both methods.

First, regarding the use of a single artifact, hiding & blocking oper-
ators have been defined to configure a process variant by making unob-
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servable (i.e., hiding) or disabling (i.e., blocking) those execution paths
that are not included in the variant [Schunselaar et al., 2012]. Another
approach refers to the use of configurable nodes. These nodes repres-
ent variation points to which different alternatives can be assigned. In
addition, configuration constraints (named configuration requirements)
restrict the combination of allowed alternatives [Yao & Sun, 2012]. Con-
figurable nodes have been used in combination with conventional process
modeling languages such as EPC and YAWL [Gottschalk et al., 2007].
In addition, configurable nodes can be used to define variability at any
process perspective (e.g., organizational, informational) [La Rosa et al.,
2011]. Another approach to capture process variability in a single arti-
fact refers to the use of temporal logic [Groefsema et al., 2011]. That is,
processes are defined as directed graphs combined with logic formulae,
which represent configuration constraints. Further, annotated models
is also an approach used to represent process variability. Annotations
(e.g., stereotypes, labels) are included in the configurable process model
to accommodate variability. Annotations have been defined for BPMN
[Frece & Juric, 2012; Dohring et al., 2011] and for EPC [Reijers et al.,
2009; Becker et al., 2004]. In addition, meta-model extensions for UML
Activity Diagrams [Moon et al., 2008; Saidani & Nurcan, 2014; Koloko-
lov et al., 2014; Marcolino et al., 2014] and BPEL [Lazovik & Ludwig,
2007] have been proposed in order to realize configurable process mod-
els. In the same vein, multiplicity indicators can be also attached to
modeling elements (e.g., activities) to denote the possible lowest and
upper-most numbers of variants these elements may have in a process
family [Reinhartz-Berger et al., 2010]. Finally, a hierarchical indexing
structure to capture variability at the business goal level has also been
proposed [Derguech et al., 2010]. In this hierarchical representation,
a variation point is a business goal that has more than one way (i.e.,
business variant) to be achieved.

Second, when a process family is represented in different artifacts,
it is typically defined in terms of a base model, a set of variable process
fragments, a set of rules to define when the variable process fragments
are used in the base model, and the definition of an application context
determining when these rules are applied. Thereby, the base model
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is specified using a conventional business process modeling language
(e.g., BPMN). However, different policies may be applied when defining
this base process model, e.g., setting the latter to the most frequently
used process variant or to the process model having minimum average
edit distance to the rest of process variants of the family [Li et al.,
2011]. Concerning the three other artifacts, different techniques for
defining them exist. For representing variable process fragments, for
example, features models (from software product lines) [Alférez et al.,
2014; Montero et al., 2008; Schnieders & Puhlmann, 2007; Czarnecki
& Antkiewicz, 2005] or goal models [Lapouchnian et al., 2007; Angles
et al., 2013] can be used. In addition, variable process fragments may
be defined based on a set of process model components [Sakr et al.,
2011], a wvariant list [Meerkamm & Jablonski, 2011], or a set of pre-
specified change operations [Hallerbach et al., 2010b; Lu et al., 2009].
In turn, the rules for adapting the base model may rely on techniques
such as business rules [Kumar & Yao, 2012], process model queries [Sakr
et al., 2011], and non-functional constraints [Lapouchnian et al., 2007].
Finally, ontologies, semantic rules, questionnaire models, and context
analysis methods may be used for defining the application context of
process variants [Alférez et al., 2014; Yao et al., 2012; La Rosa et al.,
2009b; Santos et al., 2012; de la Vara et al., 2010].

Regarding lower-level representations of process families, it is also
possible to define process variability by coding an algorithm [Tealeb
et al., 2014]. In addition, event logs are also used to identify commonal-
ities between processes of different organizations [Buijs & Reijers, 2014].
Further, declarative specifications can also be used with the same pur-
pose [Jiménez-Ramirez et al., 2015]. However, these approaches are out
of the scope of this thesis since we focus exclusively on process models.

Several empirical evaluations of process variability approaches have
been conducted [Ayora et al., 2015]. Case studies are the most fre-
quent method and have been conducted in different domains such as
egovernment [Gottschalk et al., 2009], logistic [Lonn et al., 2012], risk
management [Scherer & Sharmak, 2011], smart cities [Murguzur et al.,
2013],and retail [Pascalau & Rath, 2010]. Regarding other types of
evaluations, the Goal/Question/Metric method is used to evaluate how
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good the design of a configurable process model is [Alférez et al., 2014].
In turn, [Reijers et al., 2009] reports on the benefits that practitioners
found after they interacted with a configurable process model. Simil-
arity metrics to measure the complexity (e.g., size) of a configurable
process model are used in [Vogelaar et al., 2011]. Mapping patterns to
compare different process variability approaches in terms of complexity
(e.g., size of resulting models) are also used in [Baier et al., 2010].

3.2 Software Variability Modeling Patterns

Patterns have also been applied to model software product lines since
they can reduce time, cost, and effort (cf. Section 2.3). Up to our
knowledge, there are two main sets of patterns that allow modeling
variability in product lines: (1) single, multiple, and option patterns
[Keepence & Mannion, 1999], and (2) patterns for evolving event-based
systems [Tragatschnig et al., 2013].

3.2.1 Single, Multiple, and Option patterns

In [Keepence & Mannion, 1999], authors have developed a method for
building product family models using a set of predefined patterns to
model family variations. The method starts by analyzing existing user
requirements from systems within the product family and identifying
the discriminants. Three types of discriminants are used: single discrim-
inants (i.e., mutually exclusive features), multiple discriminants (i.e.,
optional features that are not mutually exclusive), and option discrim-
inants (i.e., single optional features that might or might not be used).
These discriminants and their three associated patterns (cf. Figure 3.3)
are used and combined to produce a unified family model that includes
all commonality and variation across the family.

1. Single adapter pattern. The single discriminant can be modeled
as an inheritance hierarchy in which generic features are modeled
in a base class and specific features are modeled as mutually ex-
clusive subclasses (i.e., only one subclass can be instantiated in a
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product). Virtual functions are used in the base class for access-
ing the methods in the subclasses so other model parts can refer
to instances of this base class without knowing which subclass a
given product will use. The single adapter pattern is implemented
using the singleton design pattern (cf. Figure part 1).

. Multiple adapter pattern. The multiple discriminant is modeled

in the same way as a single discriminant, i.e., as an inheritance
hierarchy with a base class and specific subclasses. However, in
this pattern, more than one subclass can be instantiated in any
single system. To access methods in a particular subclass, each
subclass instance is identified by a name, which is stored in a
collection (cf. Figure part 2).

. Option pattern. The option discriminant is modeled by creating

two associated peer classes: Class A and B. The associated classes
must have a [0-1] relationship on at least one end. For example,
in Figure part 3, Class B is an optional class with Class A.
Class A does not assume that Class B exists, and therefore can
be reused whether or not Class B is reused. The option pattern
can also be applied to “related-to” and “aggregation” associations
[Keepence & Mannion, 1999].
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Figure 3.3: Single, multiple, and option patterns
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The single, multiple, and option patterns have been put into prac-
tice for modeling product families in the spacecraft mission-planning
domain. The resulting family encapsulates all the variability of the do-
main without restricting its family [Keepence & Mannion, 1999]. In
addition, authors guaranteed that using the patterns simplifies the pro-
cess of building complex models that support variability. However, they
also claimed that quantifying the costs of applying the patterns is dif-
ficult since it depends on more than one technique.

3.2.2 Patterns for evolving event-based systems

In general, the implementation of a particular change in an event-based
system involves executing relevant actions (e.g., adding or removing
components, enabling or disabling components, or altering the compon-
ents’ inputs or outputs) while taking into account the consequences of
these actions (e.g., other components might be affected by these actions)
[Cleland-Huang et al., 2003]. The use of patterns to deal with changes in
event-based systems is investigated in [Tragatschnig et al., 2013, 2014].
In an event-based system, an actor (i.e., component) is totally unaware
of the others and is indirectly triggered by particular events emitted
by other components, which leads to a high degree of flexibility. In
the context of event-based systems, there are no prescribed execution
descriptions and the constituent actors and their relationships can be
arbitrarily changed at any time |[Tragatschnig et al., 2014]. Related
actors are encapsulated in logical groups named ezecution domains.

In order to deal with the complexity and the large degree of flexib-
ility of event-based systems, system evolution is managed at different
levels of abstraction. More precisely, instead of code statements, funda-
mental abstractions for describing primitive actions are used to modify
the system at the low-level. On top of these actions, a set of high-
level abstractions are described in terms of change patterns. Figure
presents these primitive actions and patterns.

A proof-of-concept implementation of these change patterns has
been developed. More precisely, authors estimate the necessary effort
(in number of statements) for manually implementing a change on an
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Primitive action

add (a)

remove (a)
setTarget (a, d)
set (a,p)
setDomain (a,d)
add (p,events)
remove (p,events)
replace (p,events)
replace (p,e,e’)

Pattern
Insert (x)
Delete (x)

Move (x,y,z)

Replace (x,y)
Swap (x,y)

Parallelize (x,y)

Description

It adds the actor a to the execution domain

It removes the actor a from the execution domain

It sets the target of the execution domain d for an actor a
It sets a new port p for the actor a

It sets the execution domain d for actor a

It adds a set of events to port p

It removes a set of events from port p

It replaces all events of port p with another set of events
It replaces event e of port p with event e’

Description

It adds an actor x in the current execution domain

It removes the actor x from the current execution domain
It moves the actor x in a way that the actor y will become
predecessor and the actor z will become successor of x,
respectively

It substitute the actor x by the actor y

Given an actor x that precedes an actor y, this pattern will
switch the execution order between x and y

It enables the concurrent execution of two actors x and y

that are performed sequentially before
It migrates an actor x from an execution domain d to

Migrat d,d
igrate (x, d, ') another execution domain d’

Figure 3.4: Primitive actions and patterns for evolving event-based systems

event-based system and compare these results to the defined actions
and change patterns. Results shows that describing changes using the
defined change patterns is about 11% of the effort compared to the effort
needed to implement each change manually. Using the change patterns,
there are roughly 9 times less statements needed in comparison to per-
form each change individually [Tragatschnig et al., 2013]. These results
demonstrate the benefits of using change patterns.

3.3 Business Process Modeling Patterns

The ability to efficiently deal with process change has been identified as
one of the critical success factors for any PAIS [Lenz & Reichert, 2007].
The high complexity and cost of change management are considered as
a major concern when modeling business processes [Reichert & Weber,
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2012]. To overcome this problem and make PAIS better comparable,
two types of patterns have been introduced: workflow patterns [van der
Aalst et al., 2003] and patterns for business process change [Reichert &
Weber, 2012].

3.3.1 Workflow patterns

Workflow patterns aim at delineating the fundamental requirements
that arise during business process modeling on a recurring basis and
describe them in an imperative way. In particular, workflow patterns
provide a thorough examination of some perspectives that need to be
supported by a business process modeling language (i.e., control flow,
data, resource, time, and exception handling). In addition, workflow
patterns are defined independently of specific workflow technologies
and modeling languages. Thus, they are intended to be used for ex-
amining the suitability of a particular process language for a particular
project and for assessing relative strengths and weaknesses of various
approaches to process specification. In addition, workflow patterns help
in implementing certain business requirements in a particular PAIS and
serve as a basis for language and tool development [van der Aalst et al.,
2003]. In the following, we describe existing workflow patterns for each
process perspective.

Control flow patterns characterize the range of control flow con-
structs that might be encountered when modeling and analyzing work-
flows [van der Aalst et al., 2003]. There exist forty control flow patterns
classified in eight groups (cf. Figure 3.5).

e Patterns for basic control flow. They describe elementary aspects
to specify activities and their ordering.

e Patterns for advanced branching and synchronization. They char-
acterize more complex branching and merging concepts which
arise in business processes. Although relatively commonplace in
practice, these patterns are often not directly supported or even
able to be represented in many commercial offerings.
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Control Flow Patterns
Advanced Branching and Synchronization
Basic Control Flow CFP6: Multi-Choice
CFP7: Structured Syncronizing Merge
CFP1: Sequence CFP8: Multi-Merge
CFP2: Parallel Split CFP9: Structured Discriminator
CFP3: Synchronization CFP28: Blocking Discriminator
CFP4: Exclusive Choice CFP29: Cancelling Discriminator
CFC5: Simple Merge CFP30: Structured Partial Join
CFP31: Blocking Partial Join
CFP32: Cancelling Partial Join
Iteration CFP33: Generalised AND-Join
CFP37: Local Syncronizing Merge
CFP10: Arbitrary Cycles CFP38: General Syncronizing Merge
CFP21: Structured Loop CFP41: Thread Merge
CFP22: Recursion CFP42: Thread Split
Multiple Instance Termination
CFP12: Multiple Instances without Syncronization CFP11: Impl‘ic~it Term‘inat‘ion
CFP13: Multiple Instances with a priori Design-Time Knowledge CFP43: Explicit Termination
CFP14: Multiple Instances with a priori Run-Time Knowledge
CFP15: Multiple Instances without a priori Run-Time Knowledge Trigger
CFP34: Static Partial Join for Multiple Instances
CFP35: Cancellin Partial Join for Multiple Instances CFP23: Transient Trigger
CFP36: Dynamic Partial Join for Multiple Instances

State-based

CFP16: Deferred Choice

CFP17: Interleaved Parallel Routing
CFP18: Milestone

CFP39: Critical Section

CFP40: Interleaved Routing

CFP24: Persistent Trigger

Cancelation

CFP19: Cancel Task

CFP20: Cancel Case

CFP25: Cancel Region

CFP26: Cancel Multiple Instance Activity
CFP27: Complete Multiple Instance Activity

Figure 3.5: Overview of existing control flow patterns

e Patterns for iteration. They deal with capturing repetitive beha-
vior in a workflow (e.g., loops, cycles). These patterns are divided
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in internal and external interactions depending on the elements
that interact in the workflow.

e Patterns for multiple instances. They describe situations where
there are multiple threads of execution active in a process model
which relate to the same activity (and hence share the same im-
plementation definition). Multiple instances can arise in three
situations: (1) an activity is able to initiate multiple instances
of itself, (2) a given activity is initiated multiple times as a con-
sequence of it receiving several independent triggers (e.g. as part
of a loop), and (3) a set of activities share the same implementa-
tion definition (i.e., overlapping executions).

e Patterns for termination. They deal with the circumstances under
which a workflow is considered to be completed.

e Patterns for triggering. They deal with the external signals that
may be required to start certain tasks.

e Patterns state-based. They reflect situations for which solutions
are most easily accomplished in process languages that support
the notion of state. In this context, this state includes the broad
collection of data associated with the execution of each process in-
stance, including the status of various activities as well as process-
relevant working data (e.g., activity and instance data elements).

e Patterns for cancellation. They deal with the concept of activity
cancellation where enabled or active instances are withdrawn.

Workflow data patterns aim to capture the various ways in which
data is represented and utilized in workflows [Russell et al., 2004a].
Workflow data patterns are classified in four groups referred to how
data is characterized in workflows (cf. Figure 3.0).

e Patterns for data visibility. They relate to the extent and manner
in which data elements can be viewed by various components of
a workflow process.
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DP15:
DP16:

DP17

DP26

Workflow Data Patterns

Data Visibility

DP1:
DP2:
DP3:
DP4:
DP5:
DP6:
DP7:
DP8:

Task Data

Block Data

Scope Data

Multiple Instance Data
Case Data

Folder Data

Workflow Data
Environment Data

External Data Interaction

Task to Environment — Push-Oriented
Environment to Task — Pull-Oriented

: Environment to Task — Push-Oriented
DP18:
DP19:
DP20:
DP21:
DP22:
DP23:
DP24:
DP25:

Task to Environment — Pull-Oriented
Instance to Environment — Push-Oriented
Environment to Instance — Pull-Oriented
Environment to Instance — Push-Oriented
Instance to Environment — Pull-Oriented
Workflow to Environment — Push-Oriented
Environment to Workflow — Pull-Oriented
Environment to Workflow — Push-Oriented

: Workflow to Environment — Pull-Oriented

Internal Data Interaction

DP9: Task to Task

DP10: Block Task to Sub-Workflow Decomposition
DP11: Sub-Workflow Decomposition to Block Task
DP12: to Multiple Instance Task

DP13: from Multiple Instance Task

DP14: Instance to Instance

DP27:
DP28:
DP29:
DP30:
DP31:
DP32:
DP33:

DP34:
DP35:
DP36:
DP37:
DP38:
DP39:
DP40:

Data Transfer

Data Transfer by Value — Incoming

Data Transfer by Value — Ongoing

Data Transfer — Copy In/Copy Out

Data Transfer by Reference — Unlocked
Data Transfer by Reference — With Lock
Data Transformation — Input

Data Transformation — Output

Data-based Routing

Task Precondition — Data Existence
Task Precondition — Data Value
Task Postcondition — Data Existence
Task Postcondition — Data Value
Event-based Task Trigger
Data-based Task Trigger
Data-based Routing

Figure 3.6: Overview of existing workflow data patterns

Patterns for data interaction. They focus on the manner in which
data is communicated between active elements within a workflow.

Patterns for transfer data. They consider the means by which the
actual transfer of data elements occurs between workflow compon-
ents and describe the various mechanisms by which data elements
can be passed across the interface of a workflow component.

Patterns for routing data. They characterize the manner in which
data elements can influence the operation of other aspects of the
workflow, particularly the control flow perspective.
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Workflow resource patterns describe how resources can be rep-
resented and utilized in workflows [Russell et al., 2004b]. A resource
is considered an entity capable of doing work. This is usually assigned
to the resource in the form of work items, each of which describe an
integral unit of work that the resource should undertake. A resource is
classified as either human or non-human (e.g., equipment). A human
resource is typically a member of an organization that usually has a
specific position in this organization. As a consequence, resources may
have a number of associated privileges, which determine what they can
actually do. Workflow resource patterns are classified in seven groups
referred to how resources are presented in workflows (cf. Figure 3.7).

e Patterns for creation. They correspond to limitations on the man-
ner in which a work item may be executed. They are specified at
design time, usually in relation to a task, and serve to restrict the
range of resources that can undertake work items that correspond
to the task. They also influence the manner in which a work item
can be matched with a resource that is capable of undertaking it.
For all of these patterns it is assumed that there is an associated
organizational model which allows resources to be uniquely iden-
tified and that there is a mechanism to distribute work items to
specific resources identified in the organizational model. As cre-
ation patterns are specified at design time, they usually form part
of the process model which describes a business process.

e Patterns for pushing. They characterize situations where newly
created work items are proactively offered or allocated to resources
by the system. These may occur indirectly by advertising work
items to selected resources via a shared work list or directly with
work items being allocated to specific resources. In both situations
however, it is the system that takes the initiative and causes the
distribution process to occur.

e Patterns for pulling. They correspond to the situation where in-
dividual resources are made aware of specific work items, which
require execution, either via a direct offer from the system or indir-
ectly through a shared work list. The commitment to undertake
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Workflow Resource Patterns
Creation Push

RP1: Direct Distribytio-n . RP12: Distribution by Offer — Single Resource

RP2: RoIe-Based.Dls.trlb.unon RP13: Distribution by Offer — Multiple Resources

RP3: Deferrgd letrlbutlon RP14: Distribution by Allocation — Single Resource

RP4: Authon?atlon X RP15: Random Allocation

RP5: Separation of Duties RP16: Round Robin Allocation

RP6: Instance Handling RP17: Shortest Queue

RP7: Retain Familiar RP18: Early Distribution

RP8: Capability-Based Distribution RP19: Distribution on Enablement

RP9: History-Based Distribution RP20: Late Distribution

RP10: Organizational Distribution

RP11: Automatic Execution Detour

Pull RP27: Delegation
RP28: Escalation
RP21: Resource-Initiated Allocation RP29: Deallocation
RP22: Resource-Initiated Execution — Allocated Work Item RP30: Stateful Reallocation
RP23: Resource-Initiated Execution — Offered Work Item RP31: Stateless Reallocation
RP24: System-Determined Work Queue Content RP32: Suspension-Resumption
RP25: Resource-Determined Work Queue Content RP33: Skip
RP26: Selection Autonomy RP34: Redo
RP35: Pre-Do
Auto-Start
Visibility

DP36: Commencement on Creation
DP37: Commencement on Allocation DP40: Configurable Unallocated Work Item Visibility
DP38: Piled Execution DP41: Configurable Allocated Work Item Visibility
DP39: Chained Execution

Multiple Resource

DP42: Simultaneous Execution

DP43: Additional Resources

Figure 3.7: Overview of existing workflow resource patterns

a specific task is initiated by the resource itself rather than the
system.” Generally this results in the work item being placed on
the specific work list for the individual resource for later execu-

!Note that the distinction between push and pull patterns is identified by who
allocates the work items.
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tion although in some cases, the resource may elect to commence
execution on the work item immediately.

e Patterns for detouring. They refer to situations where work item
distributions that have been made for resources are interrupted
either by the system or at the instigation of the resource. As a
consequence of this event, the normal sequence of state transitions
for a work item is varied. There is a number of possible impacts
on a work item, depending on its current state of progression and
whether the detour was initiated by the resource with which the
work item was associated or by the system. Detouring patterns
are defined for each one of these impacts.

e Patterns for auto-start. They relate to situations where execution
of work items is triggered by specific events in the lifecycle of
the work item or the related process definition. Such events may
include the creation or allocation of the work item, completion
of another instance of the same work item or a work item that
immediately precedes the one in question.

e Patterns for wvisualization. They classify the various scopes in
which work item availability and commitment are able to be viewed
by resources.

e Patterns for multiple resources. They focus on many-to-many cor-
respondences between the resources and work items in a given al-
location execution (i.e., multiple resources working on the same
work item). Unfortunately, contemporary management systems
(e.g., ADEPT2 [Reichert et al., 2005]) do not properly support
these patterns [Russell et al., 2004b]. This is a pity since for more
complicated activities people tend to work in teams and collab-
orate to jointly execute work items. Moreover, there is also a
lack of consideration for work items that require access to mul-
tiple non-human resources (e.g. plant and equipment, fuel, and
consumables) in order to proceed.

Time patterns constitute solutions for representing commonly oc-
curring temporal constraints. Time patterns are classified in four groups
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based on their semantics (cf. Figure 3.8).

Time Patterns

Durations and Time Lags

Variability
TP1: Time Lags between two Activities
TP2: Durations TP8: Time-dependent Variability
TP3: Time Lags between Arbitrary Events

Restricting Execution Times

Recurrent Process Elements

TP4: Fixed Date Elements

TP5: Schedule Restricted Elements TP9: Cycle Elements
TP6: Time-based Restrictions TP10: Periodicity
TP7: Validity Period

Figure 3.8: Overview of existing time patterns

e Patterns for time duration and lags. They provide support for ex-
pressing durations of different granularities (i.e., activities, activ-
ity sets, processes, or sets of process instances) as well as time
lags between activities or—more generally— between process events
(e.g., milestones).

e Patterns for restricting execution times. They allow specifying
constraints regarding possible execution times of single activities
or entire processes (e.g., activity deadlines).

e Patterns for time wvariations. They provide support for express-
ing time-based variability during process execution (e.g., varying
control flow depending on temporal aspects).

e Patterns for recurrent process elements. They express temporal
constraints in connection with recurrent activities or process frag-
ments (e.g., cyclic flows and periodicity).

Exception handling patterns are used for changing the state of a
process instance (i.e., its behavior) and its related elements (e.g., work
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items) [Russell et al., 2006]. Exception handling patterns are classified
in two groups depending on the level on which the exception is produced
(cf. Figure 3.9).

Exception Handling Patterns

Work Item Level

EP1: Continue Offer

EP2: Reoffer

EP3: Force-fail Withdrawn Offer

EP4: Force-complete Withdrawn Offer
EP5: Continue Allocation

EP6: Reallocate

EP7: Reoffer Withdrawn Allocation

EP8: Force-fail Withdrawn Allocation

EP9: Force-complete Withdrawn Allocation
EP10: Continue Execution

EP11: Restart

EP12: Reallocate after Halted Execution
EP13: Reoffer after Halted Execution

EP14: Force-fail after Halted Execution
EP15: Force-complete after Halted Execution

Instance Level

EP16: Continue with instance execution
EP17: Remove current instance execution
EP18: Remove all instances

Figure 3.9: Overview of existing exception handling patterns

e Patterns for handling exceptions at work item level. They focus on
dealing with exceptions in the assignment of resources to the work
items. There is a multitude of ways in which these exceptions can
be handled although the specific details will depend on the current
state of execution of the work item (e.g., fail, complete).

e Patterns for handling exceptions at instance level. They allow
dealing with exceptions that occur in the context of the execution
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of a process instance. They define how the instance should be
managed in an overall sense, particularly in regard to other work
items that may currently be executing or will run at some future
time.

3.3.2 Patterns for business process change

In order to create a process model, different approaches can be pur-
sued. One involves the use of change primitives. Change primitives are
edit operations that work on single process model elements (e.g., add
node, add edge, move node, remove node, remove edge)
[Reichert & Weber, 2012]. The disadvantage of designing process mod-
els with change primitives is, that soundness and data flow correctness
cannot be guaranteed for models with three or more activities and has to
be checked after model generation. Soundness is given if the model does
not contain any dead activities and the option for a proper completion
is guaranteed [Reichert & Weber, 2012].

Another approach for model creation comprises the application of
change patterns [Weber et al., 2008]. Change patterns are high-level
change operations, which impose pre- and post-conditions to guaran-
tee the development of a sound and correct process model. These
pre- and postconditions are particularly necessary upon conducting ad-
hoc changes by end-users and become even more important if software
agents execute these changes automatically during enactment time.
Change patterns are derived from a set of change primitives, providing
a higher level of abstraction [Reichert & Weber, 2012]. They combine
a set of change primitives and offer correctness-by-construction [Weber
et al., 2008], which ensures, that only certain high-level changes can
be applied to a process model, upholding a sound and correct state.
Change patterns for model creation are divided into two major categor-
ies: adaptation patterns and patterns for changes in predefined regions.
Thereby, adaptation patterns support structural process adaptations,
whereas patterns for changes in predefined regions allow for built-in
flexibility. In the following, we describe each category of patterns in
detail.
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Adaptation patterns allow users to structurally modify a process
schema at the type or instance level by using high-level change oper-
ations (e.g., to add an activity in parallel to another one) instead of
low-level change primitives (e.g., to add a single node or to delete a
single control flow edge). The use of a set of pre- and post-conditions
with these high-level operations allows to guarantee soundness when
applying the respective operations [Weber et al., 2008; Dadam & Reich-
ert, 2009]. They can be applied along the entire process lifecycle (i.e.,
process analysis, design, configuration, enactment, diagnosis, and evol-
ution) and do not have to be pre-planned, i.e., the region to which
adaptation patterns may be applied can be chosen dynamically. Hence,
adaptation patterns are well suited for realizing process changes at both
design and enactment time. Like design patterns in software engineer-
ing, change patterns aim at reducing complexity by raising the level of
abstraction for expressing changes [Gamma et al., 1995]. Generally, ad-
aptation patterns can be applied to the whole process schema, i.e., the
region to which the adaptation pattern is applied can be chosen dynam-
ically. Therefore, adaptation patterns are well suited for dealing with
exceptions or for coping with the evolving nature of business processes
[Weber et al., 2008]. However, note that when working with adaptation
patterns, process models need to be block-structured. A process model
features a block-structure [Reichert & Weber, 2012], if it is composed
of blocks (single-entry single-exit fragments), which can be nested, but
must not overlap. A total of 14 adaptation patterns are classified in five
groups (cf. Figure ):

e Patterns for adding/deleting fragments. These allow for the inser-
tion (AP1) and deletion (AP2) of process fragments at a specific
point in a given process schema.

e Patterns for moving/replacing fragments is supported by adapta-
tion patterns AP3 (Move Process Fragment), AP4 (Replace Pro-
cess Fragment), AP5 (Swap Process Fragment), and AP14 (Copy
Process Fragment).

e Patterns for adding/deleting process levels. These allow for adding
or removing levels of hierarchy (i.e., subprocesses). Thereby, the
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Adaptation Patterns

Adding/Deleting Fragments Moving/Replacing Fragments
AP1: Insert Process Fragment AP3: Move Process Fragment
AP2: Delete Process Fragment AP4: Replace Process Fragment

AP5: Swap Process Fragment
AP14: Copy Process Fragment
Adding/Deleting Levels
Change Transition Conditions
AP6: Extract Sub Process
AP7: Inline Sub Process AP13: Update Condition

Adapting Control Dependencies

AP8: Embed Process Fragmentin a Loop

AP9: Parallelize Activities

AP10: Embed Process Fragment in Conditional Branching
AP11: Add Control Dependency

AP12: Remove Control Dependency

Figure 3.10: Overview of existing adaptation patterns

extraction of a sub process from a process schema is supported by
AP6, whereas the inclusion of a sub process into a process schema
is supported by AP7.

Patterns for adapting control dependencies. These refer to 5 pat-
terns: embed an existing process fragment in a loop (APS8), par-
allelize a process fragment (AP9), embed an existing process frag-
ment in a conditional branch (AP10), and add/remove control
dependencies (AP11, AP12).

Patterns for change transition conditions. These refer to AP13
(Update condition) which allows changing transition conditions
in logical decisions (e.g., XOR gateways).
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Two general design choices are valid for the 14 adaptation patterns:
(1) be applied at the process type and/or process instance level and (2)
be applied on a process fragment (e.g., an atomic activity, an encapsu-
lated sub process, or a hammock). If an adaptation pattern is supported
at the process type level, the graphical editor of the PAIS should allow
users to edit a process schema at design time using the respective pat-
tern. If no pattern support is provided, process schema changes have
to be conducted at a low level of abstraction using change primitives
[Weber et al., 2008]. If a respective pattern is, in turn, supported at the
process instance level, changes of single instances can be accomplished.

Patterns for Changes in Predefined Regions allow for bet-
ter dealing with uncertainty by deferring decisions regarding the exact
control flow to enactment time. Instead of requiring a process model
to be fully specified prior to execution, parts of the model can remain
unspecified. In contrast to adaptation patterns, whose application is
not restricted a priori to a particular process part, patterns for changes
in predefined regions define constraints concerning the parts of a pro-
cess schema that can be changed or expanded. Thus, the application
of these patterns has to be anticipated at build-time. This can be ac-
complished by defining regions in the process schema where potential
changes may be performed during enactment time. As process schema
changes or process schema expansions can only be applied to these pre-
defined regions, respective patterns are less suited for dealing with ar-
bitrary exceptions [Dadam & Reichert, 2009]. Instead they allow for
dealing with situations where, due to uncertainty, decisions cannot be
made at build-time, but have to be deferred to enactment time. Figure

summarizes existing patterns for changes in predefined regions.

There exist four patterns for changes in predefined regions. These
four patterns differ regarding the parts that can remain unspecified
resulting in a different degree of freedom during enactment time.

e Late Selection (PP1). It allows deferring the selection of the im-
plementation of a particular activity to enactment time. Prior
to execution only a placeholder activity has to be provided, the
concrete implementation is selected during enactment time either
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Patterns for Changes to Predefined Regions

PP1: Late Selection of Process Fragments
PP2: Late Modeling of Process Fragments
PP3: Late Composition of Process Fragments
PP4: Multi-Instance Activity

Figure 3.11: Overview of existing patterns for changes in predefined regions

based on predefined rules or on user decisions.

e Late Modeling (PP2). It offers more freedom and allows for model-
ing selected parts of the process schema at enactment time. Prior
to execution only a placeholder activity has to be provided, its
implementation is model during enactment time.

e Late Composition of Process Fragments (PP3). It enables the
on-the-fly composition of process fragments from the process re-
pository (e.g., by dynamically introducing control dependencies
between a predefined set of fragments). There is no predefined
plan, but the process instance is created in an ad-hoc way by se-
lecting from the available activities in the repository. In addition,
constraints may be defined, which have to be considered while
composing a process fragment.

o Multi-Instance Activity (PP4). It allows for deferring the decision
on how often a specific activity should be executed during en-
actment time. PP4 not only constitutes a change pattern, but a
workflow pattern as well since it allows for the creation of multiple
activity instances during enactment time [van der Aalst et al.,
2003]. The decision of how many instances are created can be
based either on knowledge available at design time or on some
knowledge gained at enactment time (cf. Section 2.1).
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Table summarizes the main properties of the two major pattern
categories for dealing with business processes.

. Patt i h
Adaptation patterns atternis in ¢ ar.lges
to predefined regions
Structural
process yes no
change
Anticipation
no yes
of change
Change re-
stricted to o o
predefined Y
region
Application Una@ticipated ex- Addre'ss uncer'tf.iinty by
area ceptions, unfore- deferring decisions to
seen situations enactment time

Table 3.1: Summary of the change patterns for business processes

3.4 Discussion

In this chapter we have described the most relevant approaches closely
related to the work of this thesis. First, we have analyzed existing
approaches that deal with process variability modeling. Using a hetero-
geneous set of techniques (e.g., configurable nodes), there exist plenty of
process variability approaches that allow creating and managing config-
urable process models. However, these approaches are primarily focused
on providing different formats for representing configurable processes
(e.g., represent the concept of configurable node), instead of systemat-
izing how to create and evolve configurable process models using the
approaches (e.g., methodology). With the current process variability
approaches, PAIS engineers usually are required to manually model
and manage all the elements of a configurable process model one by
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one and ensure its correctness by their own. This can be both a tedi-
ous and error-prone task especially when a configurable process model
represents a process family comprising a high number of process vari-
ants. For example, PAIS engineers need to be aware of each variation
and dependence of each process variant. In this thesis, on top of these
approaches, we define a set of change patterns that enable the model-
ing and management of configurable process models at a higher level
of abstraction than the one provided by existing process variability ap-
proaches. Used in combination with any process variability approach,
our set of patterns are intended to speed up the modeling process and
reduce the effort needed for such purpose. Even though the multiple
definitions of the term ’pattern’ (cf. Section 2.3), we consider this thesis
as a pattern-based approach since we provide a reusable solution for
modeling process families. In particular, our change patterns can be
classified as design patterns (cf. Section ) since they can be used
to solve common problems when defining a process family. In addition,
since they are based on the results obtained from a systematic literature
review, our patterns are empirically grounded.

Regarding other use of patterns, in this chapter we have also ana-
lyzed how patterns have been applied for modeling software product
families. In the analyzed approaches, patterns have been proved as
a feasible approach to reduce modeling efforts. This results coincide
with the benefits that we envision for our set of patterns. Further, we
have examined workflow patterns that make PAISs better comparable.
Respective patterns provide means for analyzing the expressiveness of
process modeling tools and languages in respect to different workflow
perspectives (e.g., resources or data). In the same vein, we have re-
vised patterns for dealing with changes in business process models (i.e.,
adaptation patterns and patterns for better dealing with process uncer-
tainty). Although all these patterns are well suited for product families
and single process models, they are not sufficient to cope with the com-
plexity that process variability introduces. Thus, our set of patterns
complement existing work since we cover variability-specific needs for
process families.

Furthermore, as well as existing patterns in the context of busi-
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ness processes (i.e., workflow patterns and patterns dealing with pro-
cess model changes) can be used for PAIS comparison, there is a lack
of methods for comparing PAIS including process variability. This en-
tails that PAIS engineers should select the proper process variability
approach based on their previous experience and knowledge. In this
thesis, we also fill this gap by providing a broad characterization of pro-
cess variability. We perform an in-depth and systematic study of ap-
proaches enabling process variability in order to provide a clear picture
of process variability and identify the main aspects of existing process
variability approaches. Then, based on this empirical evidence we de-
rive a framework named VIVACE, which shall allow for the systematic
assessment and comparison of existing process variability approaches.

3.5 Conclusions

This chapter presents the most relevant approaches closely related to
the work of this thesis. As discussed previously, the thesis complements
these approaches. In the following, we describe in detail our in-depth
and systematic study of the process variability domain. This study help
us to provide a broad characterization of process variability.
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VIVACE: Process Variability
Characterization

he modeling of process variability is a way of capturing common

process knowledge and reusing it in terms of configurable process
models. For creating such models, several approaches have been defined
(cf. Section 3.1). However, with these approaches, PAIS engineers are
required to manually model and manage all the elements of a configur-
able process model one by one, which can be tedious and error-prone
especially with large process families (e.g., thousands process variants).
For example, PAIS engineers need to be aware of each variation and
dependence of each process variant. Thus, more efficient methods that
allow PAIS engineers to model process variability at a level of abstrac-
tion higher than the one provided by the existing process variability
approaches are needed.

In this context, the use of modeling patterns [Weber et al., 2008]
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is a promising solution. However, a set of patterns specifically tailored
for modeling process variability cannot be defined arbitrarily. How pro-
cess variability is represented in existing approaches becomes critical
for such definition. That means, for example, to identify what lan-
guage constructs are used to capture variability in a configurable pro-
cess model. However, although several attempts to describe and char-
acterize process variability modeling have been made (e.g., [Mechrez &
Reinhartz-Berger, 2014; Aiello et al., 2010]), none of them identify these
constructs.

In this chapter, we deal with this issue by studying in-depth the
process variability domain. For such purpose, we conducted a system-
atic study to analyze existing process variability approaches regarding
their expressiveness with respect to process variability modeling as well
as their process support. This study was performed as a systematic
literature review over the process variability domain. Thus, we could
identify the specific language constructs used to represent process vari-
ability. In addition, in this study we decided to consider all the phases
of the process lifecycle (cf. Section 2.1) since process variability model-
ing, as described in previous chapters, is involved in several phases such
as analysis and design phase, enactment, and evolution (cf. Sections
and 3.1). As a result, apart from the language constructs, we are able
to derive a complete characterization of process variability along the
process lifecycle. This characterization is aggregated in the VIVACE
framework. In particular, VIVACE can support PAIS engineers in (1)
defining new process variability approaches, (2) improving their com-
munication, (3) evaluating existing process management technologies
enabling process variability, (4) selecting which of the approaches meets
PAIS engineers’ requirements best, and (5) dealing with (e.g., modeling,
implementing) a PAIS that will effectively support variability along the
process lifecycle.

More concretely, this chapter presents VIVACE and the essential
aspects of the systematic study that allow understanding how it was
obtained. For a complete description of the performed study, we refer to
Appendix B. The rest of the chapter is organized as follows. Section
describes the research questions we defined in order to characterize the
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process variability domain. Section 4.2 presents the VIVACE framework
and describes each of its aspects in detail. Section illustrates the
way VIVACE can be applied in practice. Section 4.5 compares VIVACE
with other process variability characterizations. Finally, Section
concludes the chapter.

4.1 Research Questions Formulation

A systematic study (in terms of a systematic literature review) is a
means of identifying, evaluating, and interpreting relevant data in a
specific area through a replicable, scientific, and transparent approach,
which reduces the probability of any bias [Kitchenham & Charters,
2007]. To conduct such a study with respect to process variability, we
designed a protocol following the guidelines, procedures, and policies
proposed by Kitchenham in [Kitchenham & Charters, 2007]. According
to the latter, this protocol described the formulation of the research
questions, the search string, the data sources chosen for performing the
search, the identification of inclusion and exclusion criteria, the quality
assessment questions, the selection of studies’, the method for extract-
ing the data from the selected studies, and the way how the obtained
data shall be analyzed (cf. Appendix B).

The overall goal of our systematic study was to analyze relevant
papers regarding their expressiveness for modeling process variability
and their support for handling process variability along the process life-
cycle. To perform such analysis we investigated the following six issues,
which allows us to better classify and characterize each relevant paper.
First of all, since there exists no standard language for modeling process
variability, we were interested in identifying what process modeling
languages have been used for this purpose. Second, as literature refers
to various techniques for creating configurable process models
[Ayora et al., 2012a], we were interested in providing an overview of the
way these techniques are used. Third, in order to allow assessing the
expressiveness of existing approaches for modeling process variability

In the given context, a study refers to a retrieved paper.
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(and serve as a basis for our change patterns), we wanted to identify
a core set of variability-specific language constructs frequently
used by these approaches. Fourth, since variability may concern dif-
ferent process perspectives, we wanted to provide insights into the
perspectives covered by existing process variability approaches. Fifth,
in order to assess the practical applicability of existing process variab-
ility approaches, we were interested in identifying the available tools
supporting these approaches. Sixth, we wanted to create an in-depth
understanding of variability support features (e.g., to verify and
validate process variants) that foster process variability along the dif-
ferent phases of the process lifecycle. Seventh, to assess the level of
maturity of existing process variability approaches, we further investig-
ated whether and—if so—how these approaches have been empirically
evaluated. Finally, we analyzed the domains in which existing process
variability approaches have been applied. In this context, we considered
the following research questions:

e RQ1. What underlying business process modeling languages are
used for modeling process variability?

e RQ2. Which techniques are used for representing process variab-
ility in a configurable process model”?

e RQ3. What language constructs are provided for representing
process variability in a configurable process model?

e RQ4. Which process perspectives are covered by languages that
enable the modeling of process variability?

e RQ5. What tools exist for enabling process variability?

e RQ6. What variability support features are provided for fostering
process variability in all phases of the process lifecycle?

e RQ7. Have existing process variability approaches been evalu-
ated? If so, how does this evaluation look like?

2Remember that related process variants are defined in terms of a configurable
process model, which then represents a complete process family.
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e RQ8. In which domains have existing process variability ap-
proaches been applied?

To answer these questions, we subjectively elaborated a search string
using keywords we derived based on our in-depth knowledge of the topic
and taking the defined research questions into account. This string was
applied to relevant data sources to find studies related to the topic (i.e.,
process variability). These queries resulted in a total of 4947 studies,
which were filtered based on a set of inclusion/exclusion criteria and
a set of questions to assess their quality. Overall, this resulted in 63
primary studies, which are summarized in Table Each of these
studies is associated with a unique identifier (i.e., Study ID), which is

used in the following to refer to the respective studies.

Study ID

Study ID

S1-Alférez et al. [Alférez et al., 2014]

S2-Bucchiarone et al. [Bucchiarone et al.,
2013]

S3-Kumar et al. [Kumar & Yao, 2012]

S4-Frece et al. [Frece & Juric, 2012]
S5-Santos et al. [Santos et al., 2012]

S6-W. Yao et al. [Yao et al., 2012]

S7-Q. Yao et al. [Yao & Sun, 2012]
S8-Ognjanovic et al. [Ognjanovic et al.,
2012]

S9-Groner et al. [Groner et al., 2012]

S10-Boffoli et al. [Boffoli et al., 2012]

S11-Schunselaar et al. [Schunselaar et al.,
2012]
S12-Groefsema et al.
2011]

S13-Déhring et al. [Déhring et al., 2011]
S14-Park et al. [Park & Yeom, 2011]
S15-Nguyen et al. [Nguyen et al., 2011]

S16-Pascalau et al. [Sakr et al., 2011]
S17-Meerkamm et al. [Meerkamm &
Jablonski, 2011]

S18-Derguech et al. [Derguech et al., 2010]

[Groefsema et al.,

S33-Czarnecki et al. [Czarnecki & An-
tkiewicz, 2005]

S34-Becker et al. [Becker et al., 2004]

S35-van der Aalst et al.
et al., 2012]

S36-Li et al. [Li et al., 2011]

S37-Weber et al. [Weber et al., 2011]
S38-Derguech et al. [Derguech & Bhiri,
2011]

S39-Yahya et al. [Yahya & Bae, 2011]

S40-Koetter et al. [Koetter et al., 2011]

S41-Groner et al. [Groner et al., 2011]
S42-van der Aalst et al. [van der Aalst
et al., 2010a]

S43-La Rosa et al. [La Rosa et al., 2010]

S44-Mahmod et al. [Mahmod & Chiew,
2010]

S45-Gottschalk et al.
2008]

S46-Thomas et al. [Thomas, 2008]
S47-Koschmider et al.  [Koschmider &
Oberweis, 2007]

S48-Mendling et al. [Mendling et al., 2006]

S49-Recker et al. [Recker et al., 2006]

S50-Reinhartz-Berger et al.
Berger et al., 2005]

[van der Aalst

[Gottschalk et al.,

[Reinhartz-
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S19-Hallerbach et al.
2010b)]

S20-de la Vara et al.
2010]
S21-Reinhartz-Berger et al.
Berger et al., 2010]
S22-Acher et al. [Acher et al., 2010]
S23-Reijers et al. [Reijers et al., 2009]

S24-La Rosa et al. [La Rosa et al., 2009b]

[Hallerbach et al.,
[de la Vara et al.,

[Reinhartz-

S25-La Rosa et al. [La Rosa et al., 2011]

S26-Montero et al. [Montero et al., 2008]

S27-Moon et al. [Moon et al., 2008]
S28-Gottschalk et al. [Gottschalk et al.,
2007]

S29-Lapouchnian et al.
et al., 2007]
S30-Schnieders et al. [Schnieders & Puhl-
mann, 2007]
S31-Lazovik et al.
2007]

S32-Lu et al. [Lu et al., 2009]

[Lapouchnian

[Lazovik & Ludwig,

S51-Déhring et al. [Déhring et al., 2014]
S52-Derguech et al. [Derguech et al., 2012]

S53-Lénn et al. [Lonn et al., 2012]

S54-Bulanov et al. [Bulanov et al., 2011]
S55-Vogelaar et al. [Vogelaar et al., 2011]
S56-Reinhartz-Berger et al. [Reinhartz-
Berger & Sturm, 2012]

S57-Scherer et al. [Scherer & Sharmak,
2011]

S58-Pascalau et al.
2010]

S59-Baier et al. [Baier et al., 2010]
S60-Gottschalk et al. [Gottschalk et al.,
2009]

S61-La Rosa et al. [La Rosa & Mendling,
2009

S62-Schnieders et al. [Schnieders & Weske,
2007]

S63-Giese et al. [Giese et al., 2007]

[Pascalau & Rath,

Table 4.1: Final list of primary studies

During the selection process, we organized these 63 primary studies
in three groups:

1. Studies describing process variability approaches: S1 - S34.
2. Studies describing process variability support features: S35 - S50.

3. Studies describing solely empirical evaluations of process variab-
ility approaches: S51 - S63.

Each of the 63 primary studies was deeply analyzed with the goal
to answer the defined research questions. The obtained results are ag-
gregated in the VIVACE framework.
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4.2 The VIVACE Framework

This section presents the VIVACFE framework. The latter aggregates
the results we gathered in the context of the defined research questions
(cf. Section 4.1). Hence VIVACE draws a complete characterization of
process variability support. It refers to (1) the process variability mod-
eling language, (2) the techniques provided for building a configurable
process model, (3) the process perspectives covered, (4) the variability-
specific language constructs, (5) the features supporting process vari-
ability in the different phases of the lifecycle, (6) tools implementing
process variability approaches, (7) empirical evaluations performed, and
(8) their application domains (cf. Figure 1.1).

In the following, we present each of the aspects of VIVACE separ-
ately.

4.2.1 Languages for Modeling Business Process Variab-
ility

We first present the analysis related to RQ1 ( What underlying business
process modeling languages are used for modeling process variability?).
In order to answer this research question, we analyzed the group of stud-
ies describing process variability approaches (i.e., S1-S34). In particular,
these studies referred to the expressiveness of existing approaches with
respect to the modeling of process variability. In this section, we focus
on the languages they use as basis for modeling process variability.

Figure shows the distribution of the 34 studies according to the
modeling languages they use for representing both the commonalities
(i.e., process fragments shared by all process variants) and wvariations
of the members of a process family (i.e., the process variants).

As can be seen, 17 studies are conceived to be independent of a
particular process modeling language; i.e., S1, S3, S5, S9, S10, S15, S18,
S19, S20, S22, S24, and S28-S33. For example, these studies propose
the use of feature models, ontologies, rules, or hierarchical indexing
structures in order to capture and model process variability. In turn,
respective approaches can be used in combination with any process
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The VIVACE framework

Modeling language used to represent process variability

Technique used for building the configurable process model

Method for modeling the process family

Process perspectives covered

LC1 Configurable Region
o LC2 Configuration Alternative
SPECIfiC I\ ~3 " onfiguration Context Condit
language onfiguration Context Condition
constructs | LC4 Configuration Constraint
LC5 Configurable Region Resolution Time

Variability-

Analysis & Design phase

F1.1 Modeling a configurable process model
F1.2 Verifying a configurable process model and its related
process family

F1.3 Validating a configurable process model
F1.4 Evaluating the similarity of different process variants
F1.5 Merging process variants

Configuration phase
F2 Configuring specific regions of a process variant out of a

Variability configurable process model
support |Enactment phase
features F3.1 Configuring specific regions of a process variant at

enactment time

F3.2 Dynamically re-configuring an instance of a process variant
at enactment time

Diagnosis
F4 Analyzing a collection of process variants
Evolution

F5.1 Versioning of a configurable process model
F5.2 Propagating changes of a configurable process model to
already configured process variants

Tool implementation

Empirical evaluation

Application domain

Figure 4.1: The VIVACE framework
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Figure 4.2: Distribution of studies S1-S34 according to the process modeling
language used

modeling language (e.g., BPMN, EPC, or UML Activity Diagrams)
for properly representing process variability.

On the contrary, the other 17 studies propose approaches that ex-
tend existing (process) modeling languages with specific constructs for
modeling process variability, or that design proprietary languages for
this purpose. In particular, 11 studies propose conceptual extensions of
existing process modeling languages such as BPMN (i.e., S4, S8, S13,
S16, S26), EPC (i.e., S21, S23, S25, and S34), and UML Activity Dia-
gram (S14, S27) in order to enable the explicit modeling of process vari-
ability. In turn, 6 studies either make use of languages such as Directed
Graphs (S11 and S12) or OWL [OWL, 2009] (S6), which are common
in other fields, or they propose proprietary languages developed for the
modeling of process variability; i.e., CApLang (S2), PVOSM (S7), and
POPM (S17).

4.2.2 Techniques for Modeling Process Variability in a
Configurable Process Model

We now consider RQ2 ( Which techniques are used for representing pro-
cess variability in a configurable process model?). We identified two
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techniques that may be used to model process variability (cf. Figure
4.3). In particular, these techniques either allow capturing the entire
process family (i.e., all process variants) in a single model artifact (i.e.,
single artifact technique) or in a set of related model artifacts (i.e.,
multi-artifact technique). The latter may represent different aspects of
the process family, e.g., commonalities of the process variants, variant-
specific parts, configuration constraints, and application context. In or-
der to answer RQ2, again we analyze the 34 studies describing process
variability approaches (i.e., S1-S34). In particular, these studies refer
to the expressiveness of existing approaches regarding the modeling of
process variability.

Single artifact technique Multi-artifact technique

Figure 4.3: Distribution of studies S1-S34 according to the process variability
modeling technique used

The single artifact technique has been realized by various studies
based on different methods (cf. Figure 4.4). The latter include hiding
& blocking (S11), configurable nodes (S7, S25, and S28), and logic for-
mulae (S12). Furthermore, annotations for BPMN (S4 and S13), labels
for EPC (S23 and S34), and meta-model extensions for UML Activity
Diagrams (S27) and BPEL (S31) have been proposed in order to realize
configurable process models. Finally, multiplicity indicators (S21) and
a hierarchical indexing structure (S18) constitute two specific methods
for representing a configurable process model in terms of a single arti-
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fact. Note that all these methods enrich the configurable process model
with additional information (e.g., configuration constraints) in order to
guide users when deriving process variants.

In turn, the multi-artifact technique has been realized in the follow-
ing studies: S1, S3, S5, S6, S8, S9, S10, S14-S17, S19, S20, S22, S24,
S26, 529, S30, S32, and S33. Basically, approaches using this technique
represent a process family in terms of four different modeling artifacts.
The latter include a base model, a set of wvariable process fragments,
rules for adapting the base model through adding/deleting the variable
process fragments, and an application context determining when these
rules apply. Thereby, the base model is specified using a particular
business process modeling language (e.g., BPMN). However, different
policies may be applied when defining a base process model, e.g., setting
the latter to the most frequently used process variant or to the process
model having minimum average edit distance to the process variants of
the process family [Li et al., 2011].

Concerning the three other artifacts (i.e., variable process fragments,
rules to adapt the base model, and application context), different meth-
ods for defining them exist (cf. Figure 4.1). In turn, these methods are
based on specific techniques from various fields (e.g., software product
lines, semantic web, and requirements engineering), or they are expli-
citly designed for the process variability approach at hand. For rep-
resenting variable process fragments, for example, features models, as
known from software product lines, can be used (cf. studies S1, S8, S9,
S10, S14, S15, S22, S26, S30, and S33). In turn, in the requirements
engineering field, S29 refers to goal models that may be applied to rep-
resent variability at a high level of abstraction. Finally, variable process
fragments may be defined based on a set of process model components
(S16), a variant list (S17), or a set of pre-specified change operations
(S19 and S32).

In turn, the rules for adapting the base model may rely on meth-
ods such as business rules (S3) and process model queries (S16). The
approach described by study S29, for example, uses non-functional con-
straints for deriving process variants.
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Figure 4.4: Distribution of studies S1-S34 according to the single and multi-
artifact method used

Finally, for defining an application context, studies S1 and S6 use on-
tologies (described in the OWL language) and semantic rules. In turn,
S24 uses a questionnaire model for defining the application context of
each process variant. Finally, S5 and S20 redefine a contezt analysis
method from a business process perspective in order to analyze context
properties.

Note that study S2 has not been considered in the above classifica-
tion since it describes process variability at the program code level, i.e.,
S2 does not use process models to represent process variability. Thus,
it cannot be classified in any of the described techniques due to the
absence of a configurable process model.
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4.2.3 Language Constructs for Process Variability

Regarding RQ3 (What language constructs are provided for represent-
ing process variability in a configurable process model?), we identi-
fied five variability-specific language constructs: configurable region,
configuration alternative, configuration context condition, configuration
constraint, and configurable region resolution time. These constructs
abstract from concrete process variability approaches since they are
defined at a higher level of abstraction. In the following, we describe
the identified variability-specific language constructs and illustrate them
along the check-in process (cf. Appendix A). Note that for obtaining
these constructs, again we only analyze studies describing process vari-
ability approaches (i.e., S1-S34).

e Configurable Region Language Construct (LC1): A configurable
region corresponds to a region of a configurable process model
for which different configuration choices exist, depending on the
application context. Studies supporting language construct LC1
include S1-S5, S7-S23, and S25-S34.

Example 1 (Configurable Region). Regarding the check-in
process (cf. Appendix A), activity Pay extra fee is only per-
formed if the luggage has overweight. Otherwise, it is skipped.
Consequently, at the respective position of the configurable pro-
cess model, there exist two choices depending on the weight of the
luggage; i.e., either perform the activity or skip it. Accordingly,
the respective position of the configurable process model consti-
tutes a configurable region.

e Configuration Alternative Language Construct (LC2): A configur-
ation alternative corresponds to a particular configuration choice
that may be selected in the context of a specific configurable region
(LC1). In general, respective alternatives may refer to any pro-
cess perspective; i.e., the functional, behavioral, organizational,
informational, temporal, and operational perspectives (cf. Sec-
tion 2.1). The studies that support this construct include S1-S5,
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S7-S23, and S25-S34. However, note that they do not support
configuration alternatives with respect to all process perspectives.

Example 2 (Configuration Alternative). Several configura-
tion alternatives exist for the check-in process. Regarding the be-
havioral perspective, for example, before performing activity Print
boarding card, each activity that may be performed or skipped
constitutes a configuration alternative, e.g., activity Fill in ESTA
form. Concerning the organizational perspective, there exist dif-
ferent roles that may perform the Print boarding card activity, i.e.,
the passenger himself via the web system, the self-servicing ma-
chine, or the airline personnel at the check-in counters (i.e., each
role constitutes a configuration alternative). The configuration
alternatives related to the informational perspective refer to the
different types of boarding cards resulting from the check-in pro-
cess (e.g., electronic versus paper-based). Finally, configuration
alternatives of the temporal perspective refer to the start events
“23 hours before departure” or “3 hours before departure”.

Configuration Context Condition Language Construct (LC3): A
configuration context condition defines the conditions under which
a particular configuration alternative (LC2) of a configurable re-
gion (LC1) shall be selected. Studies that consider this construct
include S1, S2, S5, S6, S8, S13-S15, S19, S20, S24, S28, S30, S33,
and S34.

Example 3 (Configuration Context Condition). Before
activity Print boarding card will be performed in a check-in pro-
cess (cf. Appendix A), different alternatives exist. For example,
activity Fill in ESTA form is only performed if the passenger is
traveling from EU to US. In this case, the configuration context
condition “flight destination” determines whether or not this activ-
ity will be performed.
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e Configuration Constraint Language Construct (LC4): A config-
uration constraint is defined as a restriction regarding the selec-
tion of configuration alternatives (LC2). Respective constraints
are based on semantic restrictions to ensure the proper use of the
defined configuration alternatives (e.g., exclusion or inclusion rela-
tionships). The studies supporting this language construct include
S2, S5-S10, S12, S14-S17, S19, S21, S22, S24-S29, and S31-S33.

Example 4 (Configuration Constraint). Regarding the check-
in process, activity Localize assistance to accompany passenger
shall be performed when handicapped passengers check-in. Ac-
cordingly, a configuration constraint is or needs to be introduced
in the configurable process model to express that this activity shall
be only performed if the passenger is a handicapped person. Oth-
erwise, the activity shall be skipped.

e Configurable Region Resolution Time Language Construct (LC5):
The configurable region resolution time allows modelers to dis-
tinguish between configurable regions (LC1) whose configuration
either depends on the initial or the current context of a process
instance (i.e., configuration or enactment time). Studies support-
ing this construct include S15, S28 and S32.

Example 5 (Configurable Region Resolution Time). Re-
garding the check-in process, the process variant specifying the
online check-in may be configured at configuration time by select-
ing the activities referring to the web system role. However, the
activity related to the overweight luggage (i.e., Pay excess fee)
is only performed if the passenger places the luggage at the desk
scales. In this case, the decision whether or not this activity will
be performed is postponed to enactment time.

Figure summarizes which studies supported which variability-
specific constructs. As shown, configurable regions (LC1) and configur-
ation alternatives (LC2) were supported by 32 (out of 34) studies. In
turn, configuration context conditions (LC3) were covered by 15 studies,
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while 24 studies considered the definition of configuration constraints
(LC4). Finally, only 3 studies allowed specifying the configurable region
resolution time (LC5).

Interestingly, only 2 studies covered the entire set of the language
constructs we identified (i.e., LC1-LC5): S15 and S28. In turn, 7 studies
covered four language constructs (e.g., LC1, LC2, LC3, LC4); i.e., S2,
S5, S8, S14, S19, S32, and S33. Altogether, Figure confirms the
high relevance of the five language constructs in respect to the explicit
modeling of process families and the variability inherent to them.

Studies supporting the language construct

[ LC1 Configurable Region S1-S5, S7-S23, S25-S34
‘Variability- LC2 Configuration Alternative S1-S5, S7-S23, S25-S34
o ) . " S1, S2, S5, S6, S8, S13-S15, S19, S20, S24,
‘ I;sgﬁg;ce LC3 Configuration Context Condition S28, 530, 533, S34
] . ; S2, S5-S10, S12, S14-S17, S19, S21, S22, S24-
‘constructs LC4 Configuration Constraint S20, $31-533
| LC5 Configurable Region Resolution Time |S15, S28, S32

Figure 4.5: Variability-specific language constructs and studies supporting
them

4.2.4 Covered Process Perspectives

This section describes the analysis in respect to research question RQ4,
which refers to the process perspectives covered (Which process per-
spectives are covered by languages that allow for the modeling of process
variability?). For answering RQ4, we re-analyzed the studies describing
process variability approaches (i.e., S1-S34).

As illustrated by Figure 4.6, the most frequent process perspectives
covered by existing process variability approaches are the functional
and behavioral ones. As shown, 33 studies considered both process
perspectives; i.e., the respective approaches define process variability in
respect to the control flow perspective (i.e., S1-S24 and S26-S34). In
turn, the informational perspective was only considered by 7 studies
(i.e., S3, S4, S15, S17, S25, S32, and S34) and the organizational one
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by 5 studies (i.e., S3, S17, S22, S25, and S34). Finally, none of the
identified studies considered variability of the temporal or operational
perspective.
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Figure 4.6: Distribution of studies S1-S34 according to the process perspect-
ives covered

As can be seen in Figure 4.6, most studies solely cover variability
with respect to control flow (i.e., the functional and behavioral per-
spectives). However, studies S3, S17 and S34 are more complete cov-
ering four perspectives (i.e., functional, behavioral, organizational, and
informational). Finally, studies S4, S15, S22, and S32 at least cover 3
different perspectives (e.g., functional, behavioral, and informational).

4.2.5 Existing Tools for Managing Process Variability

This section deals with the analysis of RQ5, which refers to available
tools providing support for process variability (i.e., What tools exist for
enabling process variability?). For answering research question RQ5,
we analyzed the studies describing process variability approaches (i.e.,
S1-S34) and variability support features (i.e., S35-S50). In particular,
these studies might refer to available tool implementations.

We found 41 tools for managing process variability. Out of them,
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however, only 10 were available online; i.e., these tools can be down-
loaded from websites (including manuals and tutorials); i.e., S2, S11,
S13, S22, S24-S26, S28, S29, and S33. Figure. lists these tools.

Furthermore, we observed that until 2013 most tool implementations
constitute proof-of-concept prototypes not yet ready for industrial ad-
option; i.e., they were developed with the goal to validate the feasibility
of the proposed approaches. Besides this, the kind of tool differs, de-
pending on the objective of the respective study. In detail, existing
implementations provide graphical editors for modeling process vari-
ability (S29), model transformations that allow generating the entire
family of process variants from a feature model (S26), and extensions
of existing process modeling languages for explicitly representing vari-
ability (S5, S13). In some studies, these implementations are realized
as an Eclipse plug-in (S1, S8, S15, S25, S27, S28) or a proprietary Java
tool (S3 and S24).

Other implementations integrate existing tools for realizing a par-
ticular process variability approach. Examples include S6, S9 and S33,
which implement a set of plug-ins to integrate a feature model editor
with the Protege tool, a transformation from BPMN to Description
Logic, and Rational Software Modeler, respectively. Finally, other pro-
cess variability approaches are implemented by extending commercial
BPM suites such as ARIS Architect (S19, S23), IBM Rational Software
Architect (S30), and WebSphere BPEL4WS (S31).

4.2.6 Variability Support Features

This section summarizes the variability support features extracted in
the context of RQ6 ( What variability support features are provided for
fostering process variability in all phases of the process lifecycle?). For
answering this research question, we analyzed studies describing pro-
cess variability approaches (i.e., S1-S34) and variability support features
(i.e., S35-S50). We organize the features along the phases of the process
lifecycle (cf. Section 2.1).
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Study ID Reference
S2 soa.fbk.eu/node/218
S11 www.promtools.org/promé/
S13 www.markus-doehring.de/phd/index.php?option=com_content&view=article&id=59&Itemid=63

S22 modalis.polytech.unice.fr/softwares/manvarwor
S24 www.processconfiguration.com/download.html
S25 www.processconfiguration.com/download.html

S26 www.eclipse.org/m2m/atl/atiTransformations/#FM2BPMN
S28 www.yawlfoundation.org/

S29 https://se.cs.toronto.edu/trac/ome/wiki

S33 gp.uwaterloo.ca/fmp2rsm

Last accessed: October, 2015

Figure 4.7: Downloading links of available tools

Phase I: Analysis & Design

In the analysis € design phase, a process family is designed, modeled,
validated, and verified using a particular process variability approach.
In this context, language constructs such as the ones introduced in Sec-
tion are provided in order to specify and represent the common as
well as the variable parts of the process variants of a process family in a
configurable process model. Relevant features identified for this phase
are as follows:

Feature F1.1 (Modeling a configurable process model). Tool
support is needed for designing a configurable process model that repres-
ents an entire process family (i.e., the collection of all process variants).
In this context, we must consider all language constructs introduced
(cf. Section ) as well as appropriate tool support for them. Since
graphical process models are usually more comprehensible than non-
graphical ones [Weske, 2007], in addition, graphical editors, navigation
features, and visualization support are required to facilitate the creation
of such models. Studies S1, S3, S4, S6, S7, S9, S10, S12-S23, S25-S28,
and S30-S34 provide various techniques supporting this feature.

Feature F1.2 (Verifying a configurable process model and

its related process family). Efficient techniques are needed in order
to ensure that configurable process models are syntactically correct and
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behaviorally sound.” This means, it must be guaranteed that solely
syntactically correct and behaviorally sound process variants can be
derived from a configurable process model. The verification may be
accomplished during the creation of the configurable process model or
latter. Feature F1.2 is considered by studies S23, S32, S35, S40, S41,
S48, and S49.

Feature F1.3 (Validating a configurable process model).
Techniques are needed for validating the semantic correctness of config-
urable process models. In particular, it must be ensured that a config-
urable process model properly covers all relevant variants of a business
process. Again, such a validation may be accomplished during the cre-
ation of a configurable process model or afterwards. Studies S42 and
546 use logic formulas to address this issue.

Feature F1.4 (Evaluating the similarity of different process
variants). In order to reduce modeling efforts, techniques for determ-
ining the similarity between related process variants are needed. Before
adding a process variant to a process family, for example, it needs to be
checked whether a similar process variant already exists. This is crucial
in order to avoid redundancies and duplications. Studies S32, S44 and
S47 provide methods and algorithms for this purpose.

Feature F1.5 (Merging process variants). In order to avoid
mode redundancy and foster model reusability, techniques for integrat-
ing (i.e., merging) a collection of related process variants in a configur-
able process model are needed. Corresponding techniques are provided
by studies S11, S23, S38, S39, and S43. Usually, a configurable process
model resulting from their application covers the behavior of all pro-
cess variants merged. In addition, reversibility techniques that allow
deriving any of the input process variants from the configurable process
model through individualization are useful as well. Studies S11, S38
and S43 describe methods for realizing such reversibility; i.e., they en-
sure the traceability of each variant after having performed the merging
process.

3Regarding a sound process, all activities may be executed in the context of at
least one process instance and no deadlocks or livelocks may occur.
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Phase II: Configuration

The goal of the configuration phase is to derive an executable process
variant (i.e., a member of the process family) through a configuration
of the configurable process model. This is denoted as individualization
process. Furthermore, the resulting process variant then needs to be
deployed on the enactment system (e.g., workflow management system).
We identified Feature F2 for this phase:

Feature F2 (Configuring a process variant out of a configur-
able process model). In general, tools should provide sophisticated
user interfaces. Furthermore, proper techniques for retrieving the cur-
rent application context and deriving an appropriate process variant for
it are required. On one hand, algorithms for checking the syntactical
correctness and soundness of configured process variants as well as their
conformance with the specified configuration constraints (cf. Section

) are required. For example, inclusion (exclusion) constraints may
enforce (exclude) configuration alternatives with respect to a specific
configurable region. In particular, users should be prohibited from de-
riving invalid process variants, e.g., by informing them about constraint
violations. On the other hand, techniques enabling a high level of ab-
straction are required when specifying a particular application context;
i.e., the configuration of a particular process variant should be accom-
plished at a high level of abstraction. Furthermore, the process variant
resulting from a configuration (i.e., individualization) procedure should
be graphically displayed to users. This feature is supported by stud-
ies S1, S8-S11, S14, S15, S17, S21-S26, S28-S30, S33, S34, S41, and
S50 based on different techniques for configuring a process variant. For
example, studies 524 and S25 provide a questionnaire model (i.e., form-
based questionnaire) that allows individualizing a configurable process
model by answering questions about the respective application context.
Another well-known configuration technique is provided by feature mod-
els (e.g., S41 and S50). The latter map features to configuration altern-
atives; i.e., when a feature is selected, the configurable process model
becomes configured automatically. Other techniques we discovered with
respect to the support of the configuration phase include configuration
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algorithms (e.g., S8 and S23), goal models (S29), and decision tables
(510). Figure illustrates abstract examples of these techniques. To
be more precise, it depicts a questionnaire model (part A), a feature
model (part B), a goal model (part C), and a decision table (part D).

C — Goal model D — Decision table

B — Feature model

A- Questionnaire model

C1: f1 XOR f2
c2f1> 13 |
C3: 3 XOR f4 XOR 15 i [© optional feature @ mandatory feature]

: I I
I I
! I I
| ) oy |
| Goal |
: | Y ’\AND |m€ XXX
| + I |sc XX
el | s
I I [2
2 f4 | F X[ X
ez X | (o)1 Bl
51 | = <
I I
! I
I

-
|
~ tuae] |

Figure 4.8: Example of configuration techniques

Phase III: Enactment

During the enactment phase, instances of a (configured) process vari-
ant may be created, started and executed. In this context, it should
be possible to dynamically configure or re-configure a process vari-
ant if required [Ayora et al., 2012al; i.e., to switch from one process
variant to another during enactment time. Note that such dynamic
(re-)configuration might become necessary due to contextual changes
occurring during enactment time [Alférez et al., 2014]. However, a
dynamic (re-)configuration must be accomplished in a controlled and
robust manner. For example, automated re-configurations of a sound
process variant instance should always result in a sound process vari-
ant instance again. Note that this differs from ad-hoc changes as sup-
ported in adaptive PAISs [Reichert & Weber, 2012]. Usually, ad-hoc
changes correspond to unplanned dynamic changes, whereas a dynamic
re-configuration switches the execution of a process instance from its
current variant model to another pre-specified one. In detail, we ob-
served the following features for the enactment phase:
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Feature F3.1 (Configuring specific regions of a process vari-
ant at enactment time). Certain configuration decisions can solely
be made at enactment time when required data becomes available. In
order to address this issue, late modeling techniques [Reichert & Weber,
2012] for configuring process variants at enactment time are provided by
S4, S5, S13, and S32. This feature is illustrated by Figure 4.9: A part of
the process variant (indicated as activity X) is deemed to be of dynamic
nature. In particular, X is defined based on a set of activities (i.e., C, D,
E, F, G, and H) and a corresponding set of constraints restricting their
use (presented as logic formulas in Figure 1.9). During enactment time,
for a given process variant instance, X may be concretized based on
available context data or user decisions. For the given scenario, Figure

shows a particular design of the process for which X is substituted
by a process fragment composed out of activities G and H. Note that
this substitution is valid in terms of the prescribed constraints (e.g., G
and H exclude each other).

CD)
O~{AF-{BI{X}-1)-O B O-AERY o $H10
+ Configuration at L”””M/‘

Constraints enactment time
CADAE
GxorH

Figure 4.9: Configuring a specific region of a process variant at enactment
time

Example 6 (Configuring specific regions of a process variant
at enactment time). Whether or not a passenger carries overweight
luggage is not known until she arrives at the counter. Hence, the Pay
extra fee activity may only be selected when enacting instances of the
respective process variant.

Feature F3.2 (Dynamically re-configuring an instance of a
process variant at enactment time). For a particular instance of a
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process variant, it might become necessary to dynamically switch its ex-
ecution from the current process variant model to another pre-specified
one. Such dynamic re-configurations might be required, for example,
to react to contextual changes [Reichert & Weber, 2012]. Studies S1,
S2, S12, and S19 provide techniques that support this advanced fea-
ture. Figure illustrates it for a process variant instance that is
dynamically re-configured to another variant model (i.e., the execution
of activity F substitutes the one of activities C, D and E).

Instance | on process variant 1: Instance | on process variant 2:

\

f A |
Voo i i v oA
O (B o110 O~{A-{B}-{F+
i &) i Dynamic =

. re-configuration
vCompleted A Activated

Figure 4.10: Dynamically re-configuring an instance of a process variant

Example 7 (Dynamically re-configuring an instance of a pro-
cess variant at enactment time). Regarding the check-in process,
changes of the passenger status might require dynamic variant switches.
For example, consider a passenger not having entered her frequent flying
number when buying the ticket and therefore being initially treated as
a regular customer. When providing the frequent flying number later,
a switch to another process variant needs to be performed.

Phase I'V: Diagnosis

In the diagnosis phase, a collection of configured process variants is
analyzed to learn from the configuration settings made at design and
enactment time.

Feature F4 (Analyzing a collection of process variants).
Techniques for learning from the configuration settings chosen when
configuring the process variants at design or enactment time are needed;
i.e., by analyzing the structure as well as the behavior of a given collec-
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tion of process variants, an improved configurable process model might
be obtained. Studies providing support for this advanced feature in-
clude S36 and S45.

Phase V: Evolution

This phase deals with the ewvolution of a process family and the con-
figurable process model representing its members in order to cope with
changing and evolving requirements. Examples of such evolutionary
changes include the addition of new process variants (i.e., variants that
cannot be configured out of the configurable process model so far), the
removal of existing ones (i.e., process variants that must no longer be
configured), and the modification of existing process variants to increase
their quality (e.g., to improve model comprehensibility). In order to en-
able such an evolution, a configurable process model must be changed
accordingly. In this context, we identified the following features:

Feature F5.1 (Versioning of a configurable process model).
Techniques allowing for the co-existence of different versions of the same
configurable process model are needed, particularly in the context of
long-running processes. For example, study S46 presents a method
using version-graph models to support this feature. Figure shows
four versions of a configurable process model and the associated version
graph to manage them.

Feature F5.2 (Propagating changes of a configurable pro-
cess model to already configured process variants). When chan-
ging a process fragment in a configurable process model, which is com-
mon to several process variants, the changes must be propagated across
all (already configured) process variants in order to maintain overall
consistency of the process family and to reduce maintenance efforts.
Techniques for propagating changes of a configurable process model to
already configured process variants are described in studies S3 and S37.
Figure illustrates this feature.
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Configurable process model - version 1:

Configurable process model - version 2:

Version graph:
model - version 1
model - version 3

AandB

Insert X after F Insert Z after D
Insert G after Y Insert Y after |
Configurable process model - version 3: Configurable process model - version 4:

Figure 4.11: Versioning of a configurable process model

Configurable process model - version 1: Configurable process model - version 1.1:

Insert X after A
Insert Y after C

O~{A}{B}~E}{1}-0 (93 O~(AHEI-BE-{1)-0
Propagating the changes

QM (10 to already configured 0 (10

process variants

Figure 4.12: Propagating changes between configured process variants
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Figure summarizes the identified variability support features and
presents the primary studies supporting them. Note that, in addition
to these variability support features, well known features for managing
single (i.e., individual) process models are applicable in the context
of process families as well. As example consider algorithms measur-
ing process model similarity [Dijkman, 2008; Dijkman et al., 2011a] or
techniques enabling process model refactorings [Dijkman et al., 2011b].
Both might improve the management of process families as well [Reich-
ert & Weber, 2012]. This work excludes such standard features since it
focuses on variability-specific language constructs and support features.

[ Studies supporting the feature

Analysis & Design phase

S1, S3, S4, S6, S7, S9, S10, S12-S23,

F1.1 Modeling a configurable process model S25-528, $30-534
F1.2 Verifying a configurable process model and its related process family | S23, S32, S35, S40, S41, S48, S49
F1.3 Validating a configurable process model S42, S46

F1.4 Evaluating the similarity of different process variants S32, S44, S47

F1.5 Merging process variants S11, S23, S38, S39, S43

Configuration phase
F2 Configuring specific regions of a process variant out of a configurable S1, S8-S11, S14, S15, S17, S21-S26,

Variability process model 528-530, S33, S34, S41, S50
fs’el;lzgroe:; Enactment phase
F3.1 Configuring specific regions of a process variant at enactment time S4, S5, S13, S32
F3.2 Dynamically re-configuring an instance of a process variant at S1, S2, S12, 519

enactment time

Diagnosis phase

F4 Analyzing a collection of process variants S36, S45
Evolution phase

F5.1 Versioning of a configurable process model S46

F5.2 Propagating changes of a configurable process model to already S3, 537

configured process variants

Figure 4.13: Variability support features and studies supporting them

4.2.7 Empirical Evaluation of Process Variability Approaches

This section describes the results for RQ7, which refers to empirical
evaluations existing until 2013 in the context of process variability (i.e.,
Have existing process variability approaches been evaluated? If so, how
does this evaluation look like?). For answering this research question, we
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analyzed studies describing process variability approaches (i.e., S1-S34)
and empirical evaluations of these approaches (i.e., S51-S63).

We found that two different methods have been applied to empir-
ically evaluate process variability approaches: case studies and exper-
iments (cf. Figure ). Case studies constitute the most popular
method applied in the context of 12 studies (i.e., S28, S51-54, S56, S57,
S58, and S60-S63). Furthermore, 4 studies deal with experimental val-
idations (i.e., S1, S23, S55, and S59). Study S1 uses the Goal-Question-
Metric method to evaluate the design of a configurable process model.
In turn, S23 reports on interviews with practitioners after they interac-
ted with a configurable process model. In turn, study S55 uses similarity
metrics to cope with the complexity (e.g., size) of configurable process
models. Finally, S59 provides mapping patterns to compare two process
variability approaches (i.e., S23 and S28) in terms of complexity (e.g.,
size of the resulting models).

12

10

4
2 -
0

Case study Experiment

Figure 4.14: Methods applied to empirically evaluate process variability ap-
proaches

It is noteworthy that there only exist few concrete evaluations of
process variability approaches. In turn, this indicates a lack of empirical
evaluations of existing process variability approaches, which have not
matured to the level of general industrial adoption yet (e.g., regarding
scalability and usability).
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4.2.8 Application Domains

This section gives insights into RQS8, which refers to the domains in
which existing process variability approaches have been applied (i.e.,
In which domains have existing process variability approaches been ap-
plied?). For this purpose, we analyzed studies describing process vari-
ability approaches (i.e., S1-S34) and empirical evaluations of these ap-
proaches (i.e., S51-S63). We observed that process variability approaches
have been applied to different domains. The latter include e-government
(S12, S28, S53, S54, S55, and S60), retail (S10, S16, and S58), finance
(S23), automotive industry (S2), healthcare (S17 and S61), and film
production (S24 and S25). Note that this list only includes those do-
mains for which there exists a clear evidence that the process variability
approach is applied to real business processes; i.e., we do not considered
domains for which fictitious processes are described.

4.2.9 Aspects Cutting Across VIVACE Aspects

The aspects of VIVACE described in the previous sections are not com-
pletely independent from each other. This section analyzes the relations
among the results.

First, the analysis made in the context of research questions RQ1
and RQ2 reveals that many of the language-independent process variab-
ility approaches rely on a multi-artifact technique for building configur-
able process models. This applies to 14 out of 17 language-independent
process variability approaches: S1, S3, S5, S9, S10, S15, S19, S20, S22,
S24, 529, S30, S32, and S33.

Second, the multi-artifact technique (RQ2) enables a broader sup-
port of the variability-specific language constructs identified (RQ3).
Most process variability approaches relying on a multi-artifact tech-
nique (e.g., S1, S14, and S15) support three or more of these language
constructs. This may be explained by the fact that the use of additional
artifacts allows defining broader aspects of a configurable process model;
e.g., configuration context conditions or configuration constraints.

Third, it is noteworthy that the identified language constructs (RQ3)



96 VIVACE: Process Variability Characterization

are mainly supported with respect to the functional and behavioral pro-
cess perspectives (i.e., control flow) (RQ4). This is plausible since the
most supported variability-specific language constructs (i.e., configur-
able region and configuration alternative) are related to the control flow
of the process.

Fourth, tool support available for a particular process variability
approach (RQ5) does not entail an empirical evaluation of the respective
approach (RQT7). Although tools may facilitate the evaluation of an
approach, only 3 process variability approaches (i.e., S1, S23 and S28)
have been both implemented and empirically evaluated.

4.3 VIVACE in Practice

Like other frameworks [Sinnema et al., 2006; Aiello et al., 2010], VI-
VACE is intended to systematically assess and compare process vari-
ability approaches with respect to their expressiveness and the features
provided for the support of process variability in the different phases
of the process lifecycle. In order to illustrate the way VIVACE can
be applied in practice, we exemplarily assess selected process variabil-
ity approaches. In detail, the latter include C-EPC (S28) (cf. Section

), Provop (S19) (cf. Section ), and PESOA (S30) (cf. Section

). We select these approaches since they are (1) well established
and highly cited, (2) there exists a mature tool support for them, and (3)
they represent variability using different techniques (cf. Section ).
For each selected approach, based on VIVACE we provide a general
description, discuss its expressiveness with respect to process variabil-
ity modeling, and assess its lifecycle support for process variability. As
evaluation criteria, we consider the results gathered in the context of
the presented research questions (cf. Section B.1).

For both, variability-specific language constructs (cf. Section )
and variability support features (cf. Section ), we differentiate
between no support [-], partial support [+/-], and full support [+]. In
addition, regarding the process perspectives supported (RQ4), we use
codes to indicate the perspectives covered by the approach: behavioral
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(B), functional (F), organizational (O), informational (I), temporal (T),
and operational (Op). In this vein, we use these codes for Language
Construct LC2 (i.e., configuration alternative) in order to indicate the
process perspectives it covers. Finally, we summarize evaluation results
in Section

4.3.1 Applying VIVACE to Configurable EPC

General description. A possible way of realizing a configurable pro-
cess model is to enrich a process model with configurable nodes. A
modeling language supporting this approach is C-EPC (i.e, Configur-
able EPC). C-EPC extends an existing process modeling language (i.e.,
EPC) by introducing configurable elements. In particular, this allows
merging the behavior of all valid process variants in one and the same
artifact, i.e., the configurable process model corresponds to one artifact
(single artifact technique). Configurable nodes have been introduced for
other process modeling languages as well (e.g., YAWL [van der Aalst
& ter Hofstede, 2003]). Figure illustrates the use of C-EPC in the
context of the check-in process (cf. Appendix A). Configurable nodes
are depicted with a thicker line. We do not add intermediate events
between functions in order to keep the size of the configurable process
model as small as possible. This helps us mitigate possible undesirable
effects on understandability and likelihood of errors due to model size
[Mendling et al., 2010]. In addition, practitioners recommend not to in-
clude events between functions in EPC for the sake of simplicity [ARIS-
Community, 2010]. Thus, the configurable nodes correspond to process
fragments with single entry and single exit (i.e., SESE fragment). They
may have two different forms. On one hand, the SESE fragment may
consist of a splitting configurable connector, immediately followed by
a set of branches representing configuration alternatives, and a join-
ing configurable connector; i.e., the configurable connectors delimit a
configurable region (e.g., Configurable region 1 in Figure ). Al
ternatively, the SESE fragment may consist of a configurable function
(e.g., Configurable region 2 in Figure ), which may be configured
as ON (i.e., the function shall be kept in the configured process model),



98 VIVACE: Process Variability Characterization

OFF (i.e., the function shall not be included in the configured process
model), or OPT (i.e., the function shall be conditionally included in
the configured process model deferring the decision about its execution
to enactment time). In turn, SESE fragments representing the different
configuration options are included as branches between two configurable
connectors (e.g., Localize assistance to accompany passenger in Config-
urable Region 1 in Figure 1.15). Further, note that the application
context is represented separately from the configurable process model
in a questionnaire model [La Rosa et al., 2009b]. Note that the latter
is not depicted in Figure 4.15 due to lack of space. Finally, semantic
constraints with respect to the configuration of configurable functions
and connectors (e.g., mutual exclusion, inclusion) may be specified in
terms of configuration requirements linked to the configurable nodes.
For example, Configuration Requirement 1 in Figure 4.15 states that
the configurable function Fill in unaccompanied form is only included if
SEQ1D is selected in XOR1; i.e., activity Assign seat for UM is selected.

XOR1 = SEQ1b
Check-in Identi
available passenger -
Configuration Requirement 2.~ .~
(XOR1 = SEQ1b) v (XOR1= @]
SEQIc) > OR3 = AND

Configuration Requirement 1. D Confi ® C T Configurationsy /7,
Fill UM form='ON' > ~ @]}.__ function OR connector XOR connector | Requirement ven

(FiTn UM Provide info about
form accommodation

SEQIE™ &’seola

Configuration Requirement 4

Fill UM form = ‘ON' >
ORS =

Configurable region 2
S

Drop off bulkf |
luggage ||

===

Configuration Requirement 3:
XOR1 = SEQIc > ©
XORS = SEQSb

Localize assistance to
accompany passenger
e

Configuration Requirement 5:

“Provide info about accommodation” = ON —)@

“Fill in ESTA form” = ON

Figure 4.15: Configurable process model of the check-in process (in C-EPC
notation)

Process variability expressiveness. Regarding the identified
variability-specific language constructs presented in Section 4.2.3, in C-
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EPC, a configurable region (LC1) is specified in terms of a configurable
connector or function (LC1 [+]). In turn, a configuration alternative
(LC2) corresponds to a SESE fragment that may either be included as
a branch between two configurable connectors (e.g., Localize assistance
to accompany passenger in Configurable Region 1 in Figure ) or
excluded. Basically, configuration alternatives consider the functional
and behavioral perspectives. In addition, extended support with re-
spect to the organizational and informational perspectives is provided
[La Rosa et al., 2009b] (LC2 [F, B, O, I]). In turn, configuration con-
text conditions (LC3 [+]) are represented separately in a questionnaire
model (see [La Rosa et al., 2009b]). A configuration constraint is spe-
cified in terms of a configuration requirement. The latter may be linked
to the configurable nodes that delimit the configurable region to which
the respective configuration alternatives belong (LC4 [+]); e.g., Con-
figuration Requirement 1 in Figure . Finally, configurable region
resolution time is supported since configurable functions can be con-
figured to OPT, deferring their configuration to enactment time when
the context information becomes available (LC5 [+]); e.g., configurable
function Pay excess fee in Figure

Process variability support. The C-EPC approach has been im-
plemented in a toolset called Synergia, which provides a number of vari-
ability support features as well [Synergia, 2009]. In particular, Synergia
supports the creation of a configurable process model using a graphical
editor. Moreover, it allows defining the context of a configurable pro-
cess model using configuration requirements (F1.1 [+]). Further, the
Synergia toolset provides a mapper tool that can be used to verify a
configurable process model and its related process family [Rosa, 2009]
(F1.2 [+]). In addition, it is possible to validate configured process mod-
els using C-EPC Validator [Mendling, 2008] (F1.3 [+]). No support is
provided for measuring the similarity between process variants (F1.4 [-
|), whereas sophisticated merging techniques are presented in [La Rosa
et al., 2010] (F1.5 [+]). The configuration of process variants is suppor-
ted by a questionnaire-based approach, which has been implemented
in the Quaestio tool [Rosa, 2009]. By answering a set of questions, do-
main experts are assisted and guided in configuring configurable process
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models and hence in deriving a specific process variant (F2.1 [+]); i.e.,
domain facts (answers) are mapped to configuration choices. Config-
uration at enactment time and dynamic re-configuration of a process
variant are not considered; once the configuration of a C-EPC model
is finished, the resulting process model variant is deployed and cannot
be changed anymore (F3.1 [-], F3.2 []). In turn, support for optim-
izing process variant models is provided in [Gottschalk et al., 2008]
(F4.1 [+]). No explicit support exists for handling different versions
of a configurable process model or propagating model changes to pro-
cess variants (F5.1 [-], F5.2 [-]). In addition, the C-EPC approach has
been empirically evaluated in a case study [Lonn et al., 2012]. Finally,
C-EPC has been applied to business processes from different domains
(e.g., e-government and film production).

4.3.2 Applying VIVACE to Provop

General description. In Provop, a pre-specified base process model
(base process for short) is adjusted to the given application context
through a sequence of model changes; i.e., context-specific structural
adaptations are applied in order to derive a particular process variant
from a configurable process model in Provop [Hallerbach et al., 2010a,
2009]. Furthermore, a base process may be specified with any process
modeling language; i.e., Provop provides a language-independent ap-
proach.

Figure illustrates how the check-in process family can be rep-
resented in Provop. In particular, the configurable process model can
be represented through several artifacts (i.e., multi-artifact technique).
The top of Figure depicts the base process based model out of
which the process variants can be configured. Figure further shows
the structural adaptations (i.e., change options) that may be applied in
isolation or combination to this base process when configuring a partic-
ular process variant. In Provop, configurable regions of the base process
are specified by a SESE fragment, delimited by two adjustment points
(i.e., black diamonds). For example, in Figure a configurable re-
gion comprises the process fragment delimited by adjustment points A
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and B. In turn, a configuration alternative is specified in terms of a
change option, which includes (1) a list of atomic change operations
modifying a configurable region of the base process and (2) a context
rule that defines the context conditions under which the change opera-
tions shall be applied (e.g., Option 1 in Figure ). The application
context is specified in terms of context rules, which include a set of con-
text variables and their values specifying the conditions under which a
configuration alternative (i.e., a change option) shall be chosen (e.g.,
Option 2 shall be applied if the passenger is a handicapped person). All
context variables and their allowed values are gathered in the context
model (cf. Figure ). Finally, semantic constraints (e.g., mutual ex-
clusion or inclusion) may be specified between two change options in
the option constraint model; e.g., if Option 2 is applied, Option 3 shall
be excluded (cf. Figure ).

Base model A B C D F G H
Identify Assign Print Drop off regular § _
passenger seat boarding card luggage ¢ Adjustment point

Change options (i.e., atomic sequences of change operations)

=l B [N
A 2 A B o A B
< |INSERT| Assign seat = |INSERT| Assign seat for [PELET! Assign
B g | = |
P presr E—‘ N STXT RULE (static)
O [ Static):
+ form ||E X*F F ' type = UM v _type= HAN
AND =G
Localize assintance to .
[ ot accompany passenger i Option constraint model
AND - i = |
Print duplicate boarding CTXT RULE (static): | " . . "
card for the relative IF passenger_type = HAN i \OPIIOH 2 -—excludes— Option 3 H
CTXT RULE (static): ‘
B ype= UM | = | Context model
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51" 13 Provide o abour) [ Firin 5 2, [ Donoruk | | | [passencer ype [ADULT, U, HAN
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Figure 4.16: Provop model of the check-in process

Process variability expressiveness. In Provop, a configurable
region is specified in terms of a SESE fragment of the base process, de-
limited by two adjustment points (LC1 [+]). In turn, a configuration
alternative (LC2) is specified in terms of a change option. These al-
ternatives may be defined with respect to the control flow perspective,
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i.e., behavioral and functional perspective (LC2 [F, B]). In turn, con-
figuration context conditions can be specified in terms of context rules
(LC3 [+]), while configuration constraints are specified as constraints
between change options in the option constraint model (LC4 [+]). Fi-
nally, Provop does not allow for the specification of the configurable
region resolution time (LC5 [-]).

Process variability support. The Provop approach has been im-
plemented in a proof-of-concept prototype based on the ARIS Business
Architect tool [Reichert et al., 2009]. The creation of a configurable
process model is supported by a graphical editor, wh