

	

Doctoral Thesis

Achieving Non-intrusive

Interoperability between

Models for Involving Users

in Modeling Tasks

María Francisca Pérez Pérez
November 2015

Supervisors:

Dr. Pedro José Valderas Aranda

Dr. Joan Fons i Cors

Achieving Non-intrusive Interoperability between Models for Involving Users

in Modeling Tasks

This report was prepared by
María Francisca Pérez Pérez

Supervisors:
Dr. Pedro José Valderas Aranda (Universitat Politècnica de València)

Dr. Joan Fons i Cors (Universitat Politècnica de València)

Dissertation Committee:
Dr. Jordi Cabot Sagrera (INRIA - École des Mines de Nantes)

Dr. Antonio Ruiz Cortés (Universidad de Sevilla)

Dr. Vicente Pelechano Ferragud (Universitat Politècnica de València)

iii

ACKNOWLEDGEMENTS

Many people have played in a way or another an important role during

these years of hard work to reach the completion of this thesis journey.

Firstly, I would like to express my sincere gratitude to my thesis advisors, Dr.

Pedro Valderas and Dr. Joan Fons, for their patience, advice, and insightful

comments. Their guidance helped me in all the time of research and writing

of this thesis.

Furthermore, I am grateful to Dr. Vicente Pelechano for enlightening me

the first glance of research and gave me access to the research group with its

research facilities. Without his support it would not be possible to conduct

this research. I also want to express my gratitude to Prof. Óscar Pastor for

his advices, for always having a smile for me, and for showing me the funniest

side and challenges of being the header of a big research center as the ProS

is.

Also, I would like to thank the external members of my thesis committee,

Dr. Jordi Cabot and Dr. Antonio Ruiz for taking time out from their busy

schedules and for their valuable comments. In addition to the committee in

charge of evaluating this thesis and my two thesis advisors, this thesis was

reviewed by two external reviewers, Dr. Francisco José García and Dr. Luis

Olsina, so I also want to thank their comments and suggestions.

I also owe a great deal of gratitude to a number of other friends and

colleagues at the ProS - both past and present. I have learned a great deal

from all of them and they gave me the opportunity to know different cultures

v

vi

and perspectives. Those especially deserving of a mention include Dr. Carlos

Cetina, Dr. Giovanni Giachetti, Dr. Pau Giner, Dr. Beatriz Marín, and

Dr. Estefanía Serral, who were my lab-mates. Thanks for the fun, support

and the good times we spent inside and outside the lab. Lastly, I must also

show my gratitude to the Universidad San Jorge and all my colleagues of

the Escuela Politécnica Superior for their encouragement to finish this thesis.

I feel privileged to work there because I am surrounded by motivated and

marvelous people.

I want to thank my parents, Kathy and Ángel, for bringing me into

this world and for supporting me unconditionally in the pursuits of my

life. Thanks Dad for showing me the amazing world of computers and other

electronic devices since I saw you work with them in my childhood. Thanks

Mom for being there whenever and whatever I need since I was born. And,

of course, thank you both for your love and constant support in all maters of

life. Your confidence in me has enhanced my ability to get through it all.

I would also like to express my thanks to the rest of the family and friends

for their constant support, encouragement, and comprehensiveness even the

distance and the hard work make me miss some important events and enjoy

their company less than I would. I wish to sincerely thank Marcela Ruiz.

Marcela is an inexhaustible source of emotional support and the best fun

stuff. I feel very fortunate that thanks to this thesis journey I had the chance

to meet her, learn a lot from her, and share exciting adventures.

Last but not the least, I would like to thank my partner in life Carlos.

I have been so lucky having him during this journey. His love, bullet-proof

patience, support, and encourage is giving me all that I need, and more

happiness and experiences than I could have ever imagined.

ABSTRACT

Model-Driven Development (MDD) promotes models as the cornerstone in

the software development process, thereby displacing source code as the

development process’s main feature. Although this model-centric schema

claims advantages over traditional software development (e.g., the code could

be automatically generated from the models), it does not have the level of

adoption that has been expected.

The literature review reveals a broad agreement in the fact that end-users

may develop and adapt systems themselves but the complexity in modeling

standards and the lack of modeling skills prevents their active involvement

in modeling tasks of existing MDD processes. To overcome this, end-users

should be provided with different modeling languages that use concepts, which

fit their particular skills, context and needs.

This challenge is the main goal of this thesis, which is addressed by

combining the End-user Development and the Model-Driven Development

fields. This work starts with the involvement of end-users into the modeling

tasks using a tool-supported visual modeling language that allows end-users

to select and customize system features of pervasive systems using closer

concepts for them. Afterwards, this thesis shows the necessity of enriching

existing MDD processes for supporting the development of a new generation

of software systems (e.g., smart health) that require expertise in a variety of

domains. Consequently, different types of users (e.g., scientists, engineers and

end-users) must actively participate in the description of model fragments

vii

viii

that depend on their expertise using a different modeling language. Thus,

users are able to collaborate to obtain a unified system description. At

this point, it becomes necessary to provide mechanisms that transforms

models fragments from one modeling language to another, delimits which

model fragments are described by a different user, and integrates those model

fragments.

To provide this, the presented approach encompasses variability manage-

ment in a novel way to enable collaborative modeling by supporting both

the selection of model fragments of the system that may be described using

a different modeling language, and the integration of those model fragments

once they are described. Furthermore, interoperability mechanisms bridge

two different modeling languages in a non-intrusive way with the structure

of models by transforming the description of gaps. Thus, our proposal could

enrich models of existing MDD processes with model fragments that have

been described using a different modeling language, which could make users

feel confident to adopt models for describing domain-specific content and

could help to adopt MDD processes.

The proposal has been validated in three case studies from different levels

of complexity and domains: smart home systems, web information systems,

and biomechanical protocols. The results have proven the applicability and

feasibility of our approach to actively involve different types of users (end-

users with software professionals, domain experts with software development

experts, and doctors with biomedical engineers, respectively) in model

descriptions of existing MDD processes using a different modeling language.

RESUMEN

En el Desarrollo de Software Dirigido por Modelos (DSDM) los modelos son la

piedra angular del proceso de desarrollo de software, desplazando así al código

fuente como artefacto principal. Aunque este enfoque centrado en modelos

ofrece ventajas sobre el desarrollo de software tradicional (por ejemplo, la

generación de código de forma automática a partir de los modelos) no tiene

el nivel de adopción esperado.

La literatura científica revela un amplio acuerdo en el hecho de que los

usuarios finales puedan ellos mismos desarrollar y adaptar los sistemas pero

la complejidad de los estándares de modelado y la carencia de habilidades

de modelado impide su participación activa en procesos DSDM existentes.

Para lograrlo, los usuarios finales deben disponer de lenguajes de modelado

diferentes con conceptos adaptados a sus habilidades, contexto y necesidades.

Este desafío es el objetivo principal de esta tesis que se aborda combinando

las ideas del desarrollo orientado al usuario final y el DSDM. Este trabajo

comienza involucrando usuarios finales en tareas de modelado con una

herramienta que les proporciona un lenguaje de modelado visual para

seleccionar y personalizar características de un sistema pervasivo utilizando

conceptos familiares para ellos. Después, esta tesis motiva la necesidad

de enriquecer procesos de DSDM existentes para soportar el desarrollo de

una nueva generación de sistemas software (por ejemplo, salud inteligente)

que requieren conocimientos especializados en una variedad de dominios.

Consecuentemente, diferentes tipos de usuarios (por ejemplo, científicos,

ix

x

ingenieros y usuarios finales) deben participar activamente en la descripción

de fragmentos de modelos que dependen de su experiencia utilizando un

lenguaje de modelado diferente. De este modo, los usuarios pueden colaborar

para obtener una descripción del sistema unificada. En este punto, es

necesario proporcionar mecanismos que transformen e integren los fragmentos

de un lenguaje de modelado a otro y delimiten qué fragmentos se describen

por un usuario diferente.

Para proporcionar esto, la propuesta presentada utiliza la gestión de

variabilidad de forma novedosa para permitir modelado colaborativo selec-

cionando fragmentos de un modelo del sistema que pueden ser descritos

utilizando un lenguaje de modelado diferente y, la integración de esos

fragmentos una vez que hayan sido descritos. Además, la propuesta utiliza

mecanismos de interoperabilidad para conectar dos lenguajes de modelado

diferentes transformando la descripción de los fragmentos de una manera no

invasiva con su estructura. Por tanto, nuestra propuesta puede enriquecer los

modelos de procesos DSDM existentes con fragmentos de modelos que han

sido descritos con un lenguaje diferente y esto, podría hacer que los usuarios

se sientan seguros al adoptar modelos para describir contenido de dominio

específico y podría ayudar a adoptar procesos DSDM.

La propuesta ha sido validada en tres casos de estudio con diferentes

niveles de complejidad y dominios: sistemas para el hogar inteligente,

sistemas de información web y protocolos biomecánicos. Los resultados han

demostrado la aplicabilidad y viabilidad de nuestra propuesta para involucrar

diferentes tipos de usuarios (usuarios finales con profesionales de software,

expertos en el dominio con expertos en desarrollo de software y, médicos

con ingenieros biomédicos, respectivamente) en descripciones de modelos de

procesos DSDM existentes utilizando un lenguaje de modelado diferente.

RESUM

En el Desenvolupament de Programari Dirigit per Models (DPDM) els models

són la pedra angular del procés de desenvolupament de programari, desplaçant

així al codi font com a artefacte principal. Encara que aquest enfocament

centrat en models ofereix avantatges sobre el desenvolupament de programari

tradicional (per exemple, la generació de codi de forma automàtica a partir

dels models) no té el nivell d’adopció esperat.

La literatura científica revela un ampli acord en el fet que els usuaris finals

puguen ells mateixos desenvolupar i adaptar els sistemes però la complexitat

dels estàndards de modelatge i la falta d’habilitats de modelatge impedeix la

seua participació activa en processos DPDM existents. Per a aconseguir-ho,

els usuaris finals han de disposar de llenguatges de modelatge diferents amb

conceptes adaptats a les seues habilitats, context i necessitats.

Aquest desafiament és l’objectiu principal d’aquesta tesi que s’aborda

combinant les idees del desenvolupament orientat a l’usuari final i el DPDM.

Aquest treball comença involucrant usuaris finals en tasques de modelatge

amb una eina que els proporciona un llenguatge de modelatge visual que

permet als usuaris finals seleccionar i personalitzar característiques d’un

sistema pervasiu utilitzant conceptes familiars per a ells. Després, aquesta

tesi motiva la necessitat d’enriquir processos de DPDM existents per a

suportar el desenvolupament d’una nova generació de sistemes programari

(per exemple, salut intel·ligent) que requereixen coneixements especialitzats

en una varietat de dominis. Conseqüentment, diferents tipus d’usuaris (per

xi

xii

exemple, científics, enginyers i usuaris finals) han de participar activament

en la descripció de fragments de models que depenen de la seua experiència

utilitzant un llenguatge de modelatge diferent. D’aquesta manera, els usuaris

poden col·laborar per a obtenir una descripció del sistema unificada. En

aquest punt, és necessari proporcionar mecanismes que transformen i integren

els fragments d’un llenguatge de modelatge a un altre i delimiten quins

fragments es descriuen per un usuari diferent.

Per a proporcionar açò, la proposta presentada utilitza la gestió de

variabilitat de forma nova per a permetre modelatge col·laboratiu seleccionant

fragments d’un model del sistema que poden ser descrits utilitzant un

llenguatge de modelatge diferent i, la integració d’aqueixos fragments una

vegada que hagen sigut descrits. A més, la proposta utilitza mecanismes

d’interoperabilitat per a connectar dos llenguatges de modelatge diferents

transformant la descripció dels fragments d’una manera no invasiva amb la

seua estructura. Per tant, la nostra proposta pot enriquir els models de

processos DPDM existents amb fragments de models que han sigut descrits

amb un llenguatge diferent i açò, podria fer que els usuaris se senten segurs en

adoptar models per a descriure contingut de domini específic i podria ajudar

a adoptar processos DPDM.

La proposta ha sigut validada en tres casos d’estudi amb diferents

nivells de complexitat i dominis: sistemes per a la llar intel·ligent, sistemes

d’informació web i protocols biomecànics. Els resultats han demostrat

l’aplicabilitat i viabilitat de la nostra proposta per a involucrar diferents

tipus d’usuaris (usuaris finals amb professionals de programari, experts en

el domini amb experts en desenvolupament de programari i, metges amb

enginyers biomèdics, respectivament) en descripcions de models de processos

DPDM existents utilitzant un llenguatge de modelatge diferent.

CONTENTS

1 Introduction 2

1.1 Motivation . 4

1.2 Problem Statement . 7

1.3 Thesis Goals . 8

1.4 The Proposed Solution . 9

1.5 Research methodology . 12

1.6 Thesis Context . 13

1.7 Thesis Structure . 13

2 Background 16

2.1 End-User Development . 17

2.1.1 Definition . 18

2.1.2 Initiatives . 20

2.2 Model Driven Development . 25

2.2.1 Definition . 25

2.2.2 Initiatives . 26

2.2.3 Domain-Specific Languages 28

2.2.4 Meta-modeling . 31

2.2.5 Interoperability of Models 34

2.3 Variability Management . 38

2.3.1 Definition . 38

2.3.2 Features for managing the variability of products 39

xiii

CONTENTS xiv

2.3.3 Models for managing the variability of products 42

2.4 Conclusions . 44

3 State of the Art 48

3.1 Analysis Criteria . 49

3.2 Approaches for Involving Users 53

3.3 Approaches for Achieving MDD Interoperability 77

3.4 Discussion and Conclusions . 93

4 Addressing the Involvement of Users 100

4.1 Identifying the phases of MDD processes and issues 101

4.2 Collaborative Modeling . 103

4.3 Overview of this work . 109

4.4 Validation . 115

4.5 Conclusions . 116

5 Involving End-users in Modeling Tasks 118

5.1 Identification of User Skills and their Software Activities 119

5.2 Identification of Guidelines to Involve Users in Modeling Tasks 121

5.3 Applying the identified guidelines and interface design deci-

sions to pervasive systems . 125

5.4 Conclusions . 137

6 Achieving the Involvement of Users in Modeling Tasks with

Heterogeneous Modeling Languages 140

6.1 Supporting collaborative modeling using variability models . . 141

6.2 The Medem method . 146

6.3 The Specification Phase . 148

6.4 The Execution Phase . 152

6.5 Conclusions . 156

CONTENTS xv

7 Medem Tool Support 160

7.1 Supporting model transformations in Steps 1-2 162

7.2 Supporting variability management in Step 3 164

7.3 Supporting integration of models in Steps 5 and 7 168

7.4 Example of usage: integrating ER and CD model descriptions . 169

7.5 Conclusions . 172

8 Evaluation of the Proposal 174

8.1 PervML - Pantagruel Case Study 175

8.2 UIM - Sketcher Case Study . 180

8.3 Bioengineering Kinematic - Medical Protocol Case Study 184

8.4 Conclusions . 192

9 Towards the Efficient Specification of the Interoperability

Mechanisms 196

9.1 Model Transformations By-Example 197

9.2 Medem-on-demand . 200

9.3 Tool Support . 205

9.4 Application and discussion . 208

9.5 Conclusions . 214

10 Conclusions and Future Work 216

10.1 Contributions . 217

10.2 Assessment and Future Work . 220

10.3 Publications . 224

10.3.1 Relevance of the publications 225

10.4 Projects Directed . 227

10.5 Final Conclusion . 227

Bibliography 229

LIST OF FIGURES

1.1 Research methodology followed in this thesis. 12

2.1 Overview of meta-modeling conceptual architecture 32

2.2 Overall MDD approach . 33

2.3 Overall hybrid approach for model transformations 36

2.4 A feature model example to specify variants of watches 41

2.5 A CVL model example to specify variants of watches 43

3.1 PiP pervasive environment and UI control panels 53

3.2 a CAPpella user interface . 56

3.3 Examples of different magnetic poetry arrangements 59

3.4 The Capture & Access Magnetic Poetry interface 60

3.5 Accord Toolkit editors . 64

3.6 An spreadsheet paradigm example that provides feedback

using colors . 68

3.7 The Alice programming environment before the world has been

played . 70

3.8 Panto example of translating natural language queries to

SPARQL queries . 73

3.9 Snapshot of BaVeL implementation. Validation mechanisms

in terms users can interpret . 77

3.10 A select SQL statement embedded in Java 79

3.11 Example UML model extended 85

xvii

LIST OF FIGURES xviii

3.12 Guerra et al. interoperability general scheme 87

3.13 Interoperability between two tools that describe use case

diagrams . 87

3.14 Configuration of multi product lines: no integration tools (left)

and Invar approach (right) . 91

4.1 Classic approach of a MDD process 101

4.2 A highly simplified view of collaborative modeling: current

state of practice (left) and our approach (right) 104

4.3 Different stages of the collaborative modeling process 108

4.4 Overview of our proposal . 111

4.5 Main building blocks of our approach 114

5.1 The spectrum of software-related activities 121

5.2 The initial approach for involving end-users in modeling tasks . 126

5.3 Application of the approach using features 127

5.4 Models for the SPL . 131

5.5 Defining the initial configuration 132

5.6 An example of the initial configuration of the smart home . . . 134

5.7 Open-option interface for describing a new service 136

6.1 Base-Variation-Resolution Approach 143

6.2 Modeling varibility with CVL . 144

6.3 Our envisioned proposal using CVL 146

6.4 Steps of Medem during its specification and execution 147

6.5 Example of collaborative modeling between class diagram

model descriptions and relationship model descriptions 154

7.1 Overview of the technological decisions that support the steps

of Medem and how they are related 162

LIST OF FIGURES xix

7.2 A fragment of the weaving model for the CD-ER example . . . 163

7.3 Snapshot of CVL variability model once a gap is automatically

created by selecting model elements in the CD editor 166

7.4 Snapshot of the Medem toolkit prototype 170

7.5 Integrating ER and CD model descriptions 171

8.1 Snapshots of PervML and Pantagruel 179

8.2 Snapshots of UIM and Sketcher 181

8.3 Snapshots of Bioengineering Kinematic Analyzer and Medical

Protocol . 185

8.4 The Medical Protocol meta-model 188

9.1 Steps of Medem-on-demand during its specification and execution203

9.2 Snapshot of the Medem-on-demand toolkit 208

9.3 Choosing between Medem and Medem-on-demand 215

LIST OF TABLES

3.1 Template for showing the most relevant features of each approach 52

3.2 PiP. Summary of its most important features 55

3.3 CAPpella. Summary of its most important features 58

3.4 CAMP. Summary of its most important features 61

3.5 The Accord toolkit. Summary of its most important features . 65

3.6 Alfred. Summary of its most important features 67

3.7 The spreadsheet paradigm. Summary of its most important

features . 69

3.8 The Whyline. Summary of its most important features 71

3.9 PANTO approach. Summary of its most important features . . 75

3.10 BaVeL approach. Summary of its most important features . . . 78

3.11 Voelter and Solomatov approach. Summary of its most

important features . 81

3.12 Giachetti approach. Summary of its most important features . 84

3.13 Guerra et al. approach. Summary of its most important features 86

3.14 Klar et al. approach. Summary of its most important features 88

3.15 Kappel et al. proposal. Summary of its most important features 90

3.16 Invar approach. Summary of its most important features 93

3.17 Summary of the state of the art by showing the analyzed features 95

6.1 Relation between Medem and CVL concepts 151

xxi

LIST OF TABLES 1

9.1 Summary of total and non-used correspondences in the weaving

model using Medem and Medem-on-demand in the three case

studies . 212

Chapter 1

INTRODUCTION

This thesis addresses the involvement of users in modeling tasks by

bringing the fields of End-user Development (EUD) and Model Driven

Development (MDD) with the purpose of sharing knowledge in MDD

processes from heterogeneous modeling languages.

Despite MDD is an established approach for developing software systems

using models as the main ingredient of the development process, it has not

been widely adopted [1, 2]. Nowadays, access to sophisticated models is

restricted to a select few since users, who participate in software projects,

face barriers and challenges (e.g., steep learning curves, arduous concepts

and user interfaces) that make the adoption of models hard for them [1].

Furthermore, sharing knowledge in MDD processes continues to be a

major challenge [3] even though it becomes necessary to develop a new

generation of software systems, for example, smart health and intelligent

transportation systems, that requires expertise in a variety of domains.

Consequently, different types of users (e.g., scientists, engineers and end-

users) must actively participate and collaborate describing different system

aspects to obtain a unified software artifact [4] even they have different skills,

2

Chapter 1. Introduction 3

they often use different approaches and tools, and MDD processes have little

effective support of collaborative modeling mechanisms to determine which

concerns of the system rely on a different user [1].

Hence, the involvement of users in modeling tasks is not a closed research

topic even though it is essential [5]. Users are often interviewed or in other

ways heard [6] but they often lack the skills to transform their domain

knowledge in models, which prevents that users are able to participate

themselves in modeling tasks. Therefore, it is necessary to find ways to

allow users to customize models themselves according to their particular skills,

context and needs [1]. Thus, users could feel confident to adopt models, which

could help to use MDD processes by the software industry as expected [1].

In this work, EUD brings the identification of both user skills and

guidelines. The guidelines recommend the use of modeling languages that are

closer to users’ skills and specific modeling tools for actively involving users

in modeling tasks [7, 8]. A closer modeling language may use concepts in

which users are familiar and comfortable with in order to lower their barriers

in the description of domain-specific content [7].

In order to address the active involvement of users in modeling tasks,

we start with the involvement of end-users in an existing MDD process for

developing pervasive systems by providing a tool-supported visual modeling

language, which applies the EUD guidelines that are identified in this work.

Thus, end-users are involved in modeling tasks by selecting and customizing

system features. Next, we detected that the selection and customization of

system features could limit the expressiveness of users, who may need to work

on sophisticated and completed system descriptions. Then, we support the

involvement of users by using a closer modeling language and integrating their

descriptions into a modeling project of a MDD process. Therefore, different

users actively participate in modeling tasks and share their knowledge to

1.1. Motivation 4

obtain a modeling project that unifies all descriptions.

To reach this, we propose a method that combines non-intrusive interopera-

bility, and variability mechanisms in a novel way to enable the description

of model fragments using a different modeling language. By non-intrusive,

we mean that the method does not modify the structure of modeling

languages (meta-models). On the one hand, interoperability mechanisms

solve the connection of model descriptions that are performed from different

modeling languages by means of model transformations. On the other

hand, variability mechanisms enable collaborative modeling scoping the user-

dependent participation by allowing both the selection of model fragments as

gaps of the system that may be described using a different modeling language,

and the integration of those model fragments once they are described to obtain

a unified system description.

The rest of this chapter is organized as follows: Section 1.1 motivates

this thesis work. Section 1.2 states the problem that this thesis resolves.

Section 1.3 defines the goals for this work. Section 1.4 describes the approach

proposed in this thesis to fulfill the detected goals. Section 1.5 introduces

the research methodology that has been followed. Section 1.6 explains the

context in which the work of this thesis has been performed. Finally, Section

1.7 gives an overview of the structure of this thesis.

1.1 Motivation

MDD [9] is a software development paradigm that proposes using machine-

readable models at various levels of abstraction as its main artifacts. The key

idea is to automatically transform highly abstract models into more concrete

ones from which an implementation can be generated in a straightforward

way. Models are used to build software, thereby displacing source code

1.1. Motivation 5

as the development process’s main feature. The main benefits of models

are that they enable reuse at the domain level, reduce costs by using an

automated process, and increase the longevity of software solutions [9].

Models are expressed with a general purpose language or with a Domain-

Specific Language (DSL) [10] and they describe concerns that refer from

architecture to behavior, and also refer non-functional concerns such as

security.

In this model-centric schema, modeler experts (from now onward mod-

elers) usually carry out the description of concerns in models because they

have the knowledge to express them by using specific technology such as

modeling tools. Nevertheless, the description of concerns may also require

the involvement of users from the very beginning [11, 12] since they know the

domain and their needs to address a concrete problem.

For example, in the building domain, architects carry out the design of

maps for a new customized house. Architects have the knowledge to describe

engineering concerns in maps such as the design of the load girders but

architects need the collaboration of a user to design a house that fulfills user’s

needs (e.g., a study room with a big window). Similarly, this example can

be transferred to the description of concerns in models of a software system.

Users may not be familiar with software engineering concerns, DSLs, and

modeling tools but users have the knowledge about the problem domain [13].

The literature [6] reveals a broad agreement in the fact that it is important

and useful to involve users in the construction and modification of models. In

particular, end-users are generally neither skilled nor interested in adapting

their systems at the same level as modelers but it is very desirable to empower

end-users to adapt systems at a level of complexity that is appropriate

to their individual skills and situations. This is the main goal of End-

user Development (EUD) [14]: empowering end-users to develop and adapt

1.1. Motivation 6

systems themselves.

Over the past quarter-century, considerable effort has been directed by

researchers to involve end-users in the development of software systems.

Currently, most end-users have become familiar with the basic functionality

and interfaces of computers. However, developing new applications that

effectively support end-users’ goals still requires considerable expertise in

programming that cannot be expected from most people [14]. Thus, one

fundamental challenge for the coming years is to develop environments that

allow end-users to develop or modify their own systems [14].

In the particular case of modeling tasks of MDD processes, the involve-

ment of users is not a closed research topic even though it is essential [5] to

the system success [15], industrial settings reveal a broad agreement in the

fact that it is important and useful [16], and it could help to achieve a wider

adoption of MDD processes in the industry [1, 4]. As introduced above,

it is very important involving end-users in system conceptual descriptions

because end-users have the knowledge about the problem domain [13]. In

addition, end-users are more likely to successfully adopt and use the result

if they are involved as partners in the design [17]. Nevertheless, involving

users is a difficult task because they often lack modeling skills to deal with

the complexity of current standard modeling concepts and tools to transform

their domain knowledge in models as modelers do.

To overcome this complexity, users should be involved in modeling tasks

using modeling concepts and tools that fit their particular skills, context and

needs, but this emerges the necessity of exchange information among models

of heterogeneous modeling languages in order to integrate users’ descriptions

into a common modeling project. Hence, model interoperability mechanisms

are needed to involve users in modeling tasks of MDD process using a different

modeling language that is closer to users’ skills, and specific tool support is

1.2. Problem Statement 7

also needed to allow users to participate themselves in model descriptions.

These mechanisms may be domain-independent, and non-intrusive with the

structure of models.

Model interoperability mechanisms is a growing trend [18] and it can

provide several benefits, i.e., existing modeling languages can be used as

complementary alternatives to perform the modeling tasks from different

domains (such as system design, business processes, etc.), from different users

(such as project managers, system designers, domain experts, etc.), and from

different software representations that could have a different abstraction level

(such as a visual language that helps the description of models). However,

most modeling languages are not designed to interoperate with other modeling

languages, which makes them isolated alternatives.

There are approaches such as [19, 20, 21] that achieve interoperability

to perform modeling tasks from two different modeling languages. However,

these approaches are focused on transformations from an entire model to

another model, and these approaches do not provide collaborative modeling

mechanisms to determine in which model concerns users may be involved.

1.2 Problem Statement

The interoperability between models of different modeling approaches for

actively involving users in modeling tasks and integrating their descriptions in

a modeling project, which unifies all descriptions in a non-intrusive way, is not

a closed research topic. The above motivation indicates that some problems

still need to be considered. The work presented in this thesis attempts to

solve these problems, which can be stated by the following three research

questions:

Research question 1. What user skills and software development activi-

1.3. Thesis Goals 8

ties are identified and which ones are going to be supported in modeling

tasks?

Research question 2. How should users be involved in modeling tasks in

an understandable way for them and what issues may be faced?

Research question 3. How should models interoperate to support users’

descriptions from a different modeling approach in a non-intrusive and

collaborative way?

These research questions are analyzed and answered in the following

section.

1.3 Thesis Goals

The main goal of this thesis is to involve users in modeling tasks by enabling

them to describe model fragments with a different modeling language and

integrating users’ descriptions into a modeling project of a MDD process

in a non-intrusive way with the structure of such models. Thus, users can

collaborate themselves, and they are guided in the creation or modification

of model descriptions in order to obtain a unified modeling project, which is

enriched with interoperability and collaborative modeling mechanisms.

First of all, regarding research question 1, one of the goals of this work is

to involve end-users in modeling tasks of an existing MDD process. To achieve

this, it is necessary to review the EUD field to identify the different skills

that end-users can have on the basis of the development activities in order to

establish the ones that this thesis supports. Furthermore, it is necessary to

review the EUD field to identify a set of guidelines that make the participation

of end-users easier in the description of system behavior in order to apply

them for lowering barriers of end-users in modeling tasks of an existing MDD

1.4. The Proposed Solution 9

process for developing pervasive systems. Thus, end-users can be actively

involved in modeling tasks of this process in order to get a system description

that fits their needs.

Regarding research question 2, another goal of this work to involve

different types of users (e.g., scientists, engineers and end-users) in modeling

tasks of a MDD process using a different modeling language. Thus, users are

able to work on sophisticated system descriptions and avoid dealing with the

description of engineering concerns and with complex concepts and modeling

tools. To achieve this, it is necessary to identify both the phase of the MDD

process in which different types of users may be actively involved and the

issues that may be faced in order to propose a method that tackles them.

Regarding research question 3, one of the goals of the present work

is to provide mechanisms that: (1) scope the user-dependent participation

by delimiting which model fragments of the system should be described

using models of a different modeling language, (2) translate model fragments

from one modeling language to another for enabling interoperability between

different modeling approaches, and (3) integrate those model descriptions

into a unified modeling project in order to enrich models with descriptions

of different types of users. These mechanisms may be non-intrusive (i.e.,

without affecting the structure of modeling languages), tool-supported, and

domain-independent to favor their application in existing modeling languages

of different domains.

1.4 The Proposed Solution

The solution that is proposed in this thesis enables that different types of

users collaborate in modeling tasks by describing themselves model fragments

using a different modeling language in a non-intrusive and collaborative way.

1.4. The Proposed Solution 10

Specifically, the solution provides the following contributions:

1. The identification of different user skills and guidelines that the

literature follows in order to involve end-users in software development

activities, and their application for lowering barriers of end-users in the

description of domain-specific content in models of an existing MDD

process for developing pervasive systems. Since this existing MDD

process requires skills to be involved in modeling tasks that most end-

users lack, the application of the identified guidelines provides a tool-

supported visual modeling language, which allows end-users to describe

system properties that depend on them in models by selecting and

customizing system features.

2. A method, Medem, which empowers different types of users with

more expressiveness by supporting their involvement using a different

modeling language, and integrates users’ descriptions into the models of

a MDD process by combining collaborative and modeling mechanisms.

On the one hand, collaborative modeling mechanisms enable the

selection of model fragments in a common modeling project to identify

them as gaps. The description of these gaps is carried out by a user

using a different modeling language. To make this feasible, variability

mechanisms are used in a novel way to manage the creation and

description of such gaps, which delimit the users’ participation. On

the other hand, users are provided with a customized view of the model

fragments that they have to complete by themselves using a different

modeling language. In this context, the use of model transformations is

the cornerstone [22, 23, 24] of solving the connection among models of

different modeling approaches. Therefore, users describe the gaps using

a language closer to their knowledge, do not deal with complex concepts

1.4. The Proposed Solution 11

and complex modeling tools, and are guided in modeling tasks.

3. A model-based and variability-based implementation that sup-

ports Medem using a variability model to manage gaps; and model

queries, a weaving model and model-to-model transformations to

achieve non-intrusive interoperability. This is supported in a trans-

parent way to the users once a modeler initializes it.

The advantages of the proposed solution are the following:

1. Users are able to participate in modeling tasks using a modeling

language according to their particular skills. This could make them

confident to adopt models and lower barriers in the description of

domain-specific content [7], which could promote the wider adoption

of MDD processes.

2. Different modeling languages are able to interoperate in order to obtain

the full description of a software system.

3. Users can be focused on describing concerns of the software system

that depend on their knowledge rather than describe the entire software

system.

4. The structure of the modeling languages is not modified. Thus, the

proposed solution can be applied to existing modeling languages.

Finally, we conclude with the empirical validation of the proposed

solution by applying three case of studies in order to involve different types

of users (end-users and software professionals; domain experts and software

development experts; and doctors and biomedical engineers) in different

domains (smart home systems, web information systems, and biomechanical

protocols, respectively), which have different levels of complexity. As a result,

Medem has proven its applicability and feasibility.

1.5. Research methodology 12

1.5 Research methodology

In order to perform the work of this thesis, we will apply a research project

following the design methodology for performing research in information

systems as described by [25] and [26]. Design research involves the analysis of

the use and performance of designed artifacts to understand, explain and, very

frequently, to improve on the behavior of aspects of Information Systems [26].

The design cycle consists of 5 process steps: (1) awareness of the problem,

(2) suggestion, (3) development, (4) evaluation, and (5) conclusion. The

design cycle is an iterative process; knowledge produced in the process

by constructing and evaluating new artifacts is used as input for a better

awareness of the problem.

Following the cycle defined in the design research methodology, we started

with the awareness of the problem (see Figure 1.1): we identified the problem

to be resolved and we stated it clearly.

Step 1 Step 2 Step 3 Step 4 Step 5

Problem
awareness

Solution of
suggestion

State of
the art
review

Identification of
users’ skills

Identification of
guidelines to involve

users

Design of
the proposal

Development
of tools Validation Conclusions

Figure 1.1: Research methodology followed in this thesis.

Next, we performed the second step that is comprised of the suggestion

of a solution to the problem, and we compared the improvements that this

solution introduces with already existing solutions. To do this, the most

relevant approaches were studied in detail. Once the solution to the problem

was described, we plan to develop and validate it (steps 3 and 4). These two

steps will be performed in several phases (see Figure 1.1).

1.6. Thesis Context 13

Finally, we analyzed the results of our work in order to obtain several

conclusions and to provide some insights about further research (step 5).

1.6 Thesis Context

This thesis has been developing in the context of the research center Centro

de Investigación en Métodos de Producción de Software of the Universitat

Politècnica de València. The work that has made the development of this

thesis possible is in the context of the following research government projects:

• SESAMO: Construcción de Servicios Software a partir de Modelos.

CYCIT project referenced as TIN2007-62894.

• EVERYWARE: Construcción de Software Adaptativo para la Inte-

gración de Personas, Servicios y Cosas usando Modelos en Tiempo de

Ejecución. CYCIT project referenced as TIN2010-18011.

Moreover, this thesis has been developing in the context of the Universidad

San Jorge in conjunction with a full-time Lecturer position since 2012.

1.7 Thesis Structure

This thesis is comprised of ten chapters in total, which are organized as

follows:

Chapter 2: Background. This chapter introduces the main fields to

provide the reader a basic background for understanding the overall thesis

work. In particular, this chapter presents End-User Development, Model

Driven Development and Variability Management.

Chapter 3: State of the Art. This chapter presents the most well-

known approaches for involving users in software development activities and

1.7. Thesis Structure 14

achieving MDD interoperability. To conclude, these approaches are compared

with this work.

Chapter 4: Addressing the Involvement of Users. This chapter identifies

the phase of the MDD process in which different types of users may be

actively involved and the issues that may be faced in that phase. This chapter

also shows the current practice in collaborative modeling, and overviews our

envisioned approach through variability management.

Chapter 5: Involving End-users in Modeling Tasks. This chapter

identifies different user skills and guidelines that the literature suggests in

order to propose a solution that involves end-users in modeling tasks of

an existing MDD process for developing pervasive systems by means of

customizing system features using a tool-supported visual modeling language.

Chapter 6: Achieving the Involvement of Users in Modeling Tasks with

Heterogeneous Modeling Languages. This chapter argues the necessity of

involving different types of users in modeling tasks and providing them

with more expressiveness in order to obtain a unified system description.

In addition, this chapter presents our proposed solution for supporting

collaborative modeling from a different modeling language.

Chapter 7: Medem Tool Support. This chapter presents the technological

decisions that support the main building blocks of our proposed solution

(interoperability and variability mechanisms).

Chapter 8: Evaluation of the Proposal. This chapter presents three case

studies in different domains and levels of complexity (smart home systems,

web information systems, and biomechanical protocols) and the application

of the proposed solution for each one in order to involve different types of

users in modeling tasks.

Chapter 9: Towards the Efficient Specification of the Interoperability

Mechanisms. This chapter shows an extension of the proposed solution

1.7. Thesis Structure 15

that constitutes our ongoing work to achieve an efficient specification of

the interoperability mechanisms. This chapter also shows the technological

decisions to support this extension, and the application of the extension in

the same three case studies to compare and discuss the results.

Chapter 10: Conclusions and Future Work. This chapter concludes by

summarizing the main contributions, results and publications of this thesis

work. In addition, this chapter provides some insights about further work.

Chapter 2

BACKGROUND

This thesis work relies on the fields of End-user Development, Model

Driven Development, and Variability Management. In order to

clarify the foundations of these fields, different concepts and techniques are

introduced in this chapter.

First, the main concepts of End-user Development are presented. End-

user Development aims to allow users, who are non-professional software

developers, to develop or modify their own applications. In addition,

representative techniques and metaphors of the End-user Development

literature are overviewed to show how users can be involved in the description

of system behavior.

Second, the main concepts of Model Driven Development are presented.

Model Driven Development is a paradigm where models are becoming the

new programming code to specify software products. The specification can

be carried out using a general-purpose language or a DSL, which is specifically

designed to a certain domain or a specific concern of a software system.

Here, meta-modeling play an important role since the structure of models

(concepts, relationships, and constraints) is defined in a model, which is

16

2.1. End-User Development 17

called meta-model. Moreover, meta-models are needed for the creation of

model transformations, code generation, and tool integration.

Finally, the main concepts of Variability Management are presented since

variability management aims to efficiently manage a range of products by

specifying variable elements on them.

The remainder of this chapter is structured as follows: Section 2.1

introduces the main concepts and techniques of End-user Development.

Section 2.2 introduces the main concepts of Model Driven Development,

Domain-Specific Languages, meta-modeling, and interoperability of models.

Section 2.3 presents Variability Management, its activities and facets. Section

2.4 concludes the chapter.

2.1 End-User Development

The fundamental aim of End-User development(EUD) [27] is to empower

users to gain more control over their computers by involving them in a

development process. To make this involvement useful, users often have to

adapt these applications to their specific needs. Adaptation may assume

many forms ranging from simple forms such as changing preference settings

of applications, to more complex forms such as writing filtering rules for email

applications or defining formulas for spreadsheets.

It is very important for users to actively participate in the development

process because they have the knowledge about the problem domain [13].

Only the users of an application, not the developers of that application, can

decide on how to deal with all the information that depends on the domain or

their preferences. Therefore, application developers can no longer anticipate

all the needs of users [28]. This discrepancy between what application

developers can build and what individual users really need can be addressed

2.1. End-User Development 18

with EUD.

2.1.1 Definition

The term EUD is relatively new, but it stems from the field of End-User

Programming (EUP) [28]. The shift from “programming” to “development”

reflects the emerging awareness that, while the process of adapting a computer

to the needs of a user may include some form of programming, it certainly

is not limited to it. In that sense, most of the research questions from EUP

carry over to EUD because of the widened scope of EUD new issues need to

be explored. The EUD relevance is to potentially cover large segments of the

population including most users of traditional computer applications but also

of information technology associated with ubiquitous computing.

Users are generally neither skilled nor interested in adapting their systems

at the same level as software professionals. However, it is very desirable to

empower users to adapt systems at a level of complexity that is appropriate

to their individual skills and situations. This is the main goal of EUD:

empowering users to develop and adapt systems themselves.

Then, the most common definition for EUD is the following [14]:

End-User Development is a set of activities or techniques

that allow people, who are non-professional software

developers, at some point to create or modify a software

artifact.

Some existing research addresses this issue [14] , casting users as software

professionals with the systems they are using. This clash between the two

cultures becomes particularly evident when the system requires users to

perform development activities [13].

EUD could lead to a considerable competitive advantage (economic)

2.1. End-User Development 19

of involve users as particular domain experts since users may be able of

dynamically changing environments [29]. In addition, the increasing amount

of software embedded within consumer and professional products also points

a need of enabling EUD.

EUD is important for allowing full participation of citizens in the emerging

Information Society. The Information Society enables access through a variety

of interaction devices ranging from small mobile phones to large flat screens.

However, the creation of content and the modification of the functionality

are difficult for non-professional programmers, resulting for many sectors of

society in a division of labor between those who produce and those who

consume. EUD has the potential to counterbalance these effects.

Lieberman et al. [14] think that over the next few years, the goal of

Human-Computer Interaction (HCI) will evolve from just making systems

easy to use to making systems that are easy to develop. By now, most people

have become familiar with the basic functionality and interfaces of computers.

However, developing new or modifying applications that effectively support

users’ goals still requires considerable expertise in programming that cannot

be expected from most people. Therefore, it is a challenge for the coming

years the development of environments that allow users to develop or modify

their own applications.

The emerging research field of EUD integrates different threads of discus-

sion from Human Computer Interaction (HCI), Software Engineering (SE),

computer supported cooperative work (CSCW), and artificial intelligence

(AI). Concepts such as tailorability, configurability, end-user programming,

usability, visual programming, natural programming, and programming by

example already form a fruitful base, but they need to be better integrated,

and the synergy between them more fully exploited.

2.1. End-User Development 20

2.1.2 Initiatives

The potential for designing a system that performs the wrong action and

seriously annoys users is quite high [30]. Thus, the main goal for a system is

to place it in the hands of users, so they can build and configure the system

to do what they want when they want it. EUD well-accepted initiatives seek

to achieve this main goal. Next, three techniques and three metaphors are

described as follows:

Techniques:

Natural Programming. It is an application of the standard user-centered

design process to the specific domain of programming languages and

environments [31].

Myers et al. [31] claims that the premise of this approach is that

programmers will have an easier job if their programming tasks are made

more natural. By “natural”, they mean “faithfully representing nature or

life”, which here implies it works in the way people expect. By “natural

programming” they are aiming for the language and environment

to work the way that non-programmers expect. Thus, the Natural

Programming goal is to make possible for people to express their ideas

in the same way they think about them.

The Natural Programming design process, that treats usability as a

first-class objective, follows these steps:

1. Identify the target audience and the domain, that is, the group

of people who will be using the system and the kinds of problems

they will be working on.

2. Understand the target audience, by studying the actual language,

techniques, and thinking they naturally use when trying to solve

2.1. End-User Development 21

problems. This includes an awareness of general HCI principles as

well as prior work in the psychology of programming and empirical

studies. When issues or questions arise that are not answered by

the prior work, conduct new user studies to examine them.

3. Design the new system based on this information.

4. Evaluate the system to measure its success, and to understand

any new problems the users have. Redesign the system based on

this evaluation, and then reevaluate it, following the standard HCI

principle of iterative design.

Natural Programming has significant importance for EUD since it

provides a methodology model that can be followed by other developers

and researchers when designing their own languages and environments.

Myers et al. [31] believe this will result in more usable and effective

tools that allow both end-users and professionals to write more useful

and correct programs.

Programming By Example. It is also called Programming by demon-

stration because the user demonstrates examples of the desired behavior

to the computer [32]. Programming By Example (PBE) was introduced

by Smith in the mid-seventies [33] and it consists of demonstrating

desired computational behavior via concrete examples by the end-users,

rather than in the form of abstractions (eg., programming code) [34].

Originally Programming By Example was aimed solely at single desktop

environments but recently a number of researchers have started to

explore how these ideas might be applied to digital homes, made up

of distributed embedded computers (usually integrated into household

appliances).

Currently most end-user programming tools for pervasive applications

2.1. End-User Development 22

are based on a procedural programming metaphor and require that

the user mentally manipulate constructions, which would be familiar to

most programmers (e.g., albeit in a graphical or macro form) thereby

placing a significant cognitive load on the user.

Programming By Example systems have two levels of representation

[35]:

1. The GUI level. This level features familiar windows, icons, and

menus. For instance, in a word processing application, such as

Word, this level represents content directly manipulated by users

with such operations as the typing of new text, the formatting of

text, and the use of cursor keys to navigate through a document.

2. The program level. This level captures user manipulations directly

into programs so users can replay them. In Word, this level

incorporates Visual Basic. User manipulations are recorded

as Visual Basic scripts; users then assign scripts to keyboard

commands or to user-defined toolbar commands.

Programming By Example can be used as a mixed-initiative for active

learning. The mixed-initiative approach uses agents and graphical

widgets to obtain input from a user in order to both help a recognizer

improve its recognition ability and to resolve ambiguity. Similarly,

active learning systems make queries to the user or perform experiments

to gather data that are expected to maximize performance. Active

learners demonstrated significant decreases in the amount of data

required to achieve the equivalent performance of passive learners [30].

As mentioned before, Programming By Example is not the only

approach available to involve end-users but Dey et al. [30] believe that

Programming By Example offers long-term potential for supporting

2.1. End-User Development 23

dynamic and complex behaviors. This is because Programming By

Example allows end-users to build context-aware behaviors in a situated

manner that would otherwise be too complex or time consuming to

build.

Although Programming By Example is an interesting technique to

empower end-user to customize their systems, it is not a widespread

technique. This is because it represents a radical departure from what

it is known as programming. The conservatism of the programming

community is the biggest obstacle to widespread Programming By

Example use [32].

Visual Programming. Visual Programming (VP) refers to any system that

allows the user to specify a program in a two (or more) dimensional

fashion [36]. VP uses information in a format that is closer to he user’s

mental representations of problems, which allow data to be processed in

a format closer to the way objects are manipulated in the real world. It

seems clear that a more visual style of programming could be easier to

understand and generate for humans, especially for non-programmers

or novice programmers [37]. Moreover, the use of graphics tends to

be a higher-level description of the desired actions (often emphasizing

issues of syntax and providing a higher level of abstraction) and

therefore, it may make the programming task easier even for professional

programmers. Also, some types of complex programs, such as those that

use concurrent processes or deal with real-time systems, are difficult to

describe with textual languages, so graphical specifications may be more

appropriate.

Metaphors.

Jigsaw Metaphor [12]. It is based on the familiarity evoked by the notion

2.1. End-User Development 24

and the intuitive suggestion of assembly by connecting pieces together.

Essentially, the jigsaw metaphor allows users to connect components

and compose various arrangements through a series of left-to-right

couplings of pieces. Constraining connections in a left to right fashion

also provides users with the sense of a pipeline of information flow. The

Jigsaw metaphor is a rule-based metaphor.

Magnetic Poetry [38]. It consists of small, flexible individual magnets,

each of which has a word printed on it. Users can combine the words

into “poem” or statements to a variety of effects. Magnetic poetry sets

often have a theme or topic, such as “love” or “computers” and contain

words related to that theme, the resulting poems are geared towards

that topic.

Butler [11]. It promotes the interaction of the user and the system by means

of instructing a butler. The input modality is a spoken dialogue with

the system. For example, if the user wants turn on the kitchen light,

the user had to tell a butler: “switch on the kitchen light” and then,

the system switch on the kitchen light. Previously, the user have to

program the butler actions and, when the system is in run-time, the

user should remember some basic information to use the system like a

butler. The Butler metaphor is a rule-based system.

It is important to highlight that most EUD tools, which involve users

in programming tasks, are currently based on metaphors [34], which require

users to mentally manipulate constructs that they are familiar with.

2.2. Model Driven Development 25

2.2 Model Driven Development

Model Driven Development (MDD) [9] is a recent paradigm that leds a

dramatic change in the software development process since models have

become the main artifact in the development [39]. Consequently, models

are becoming the new programming code in a process that is driven by model

specifications and by transformations among models. Thus, it is obtained the

artifact implementation.

Model Driven Architecture (MDA) is a framework for software develop-

ment proposed by the Object Management Group (OMG) in 2001[40] (i.e.,

MDA is a concrete realization of MDD). The OMG is a consortium of software

vendors and users form industry, government, and academia. The notion of

Model Driven Engineering (MDE) emerged later as a paradigm generalizing

the MDA approach for software development [41].

2.2.1 Definition

MDD and MDA are changing the development process of software since their

main distinguishing feature is to establish models as products rather than

programming code. Models are defined as follows [40]:

A model of a system is a description or specification of that

system and its environment for some certain purpose. A

model is often presented as a combination of drawings and

text. The text may be in a modeling language or in a natural

language.

Models are present throughout the software development course of

understanding, design, construction, deployment, operation, maintenance

and modification. As stated by Agrawal [42]:

2.2. Model Driven Development 26

“the models are not merely artifacts of documentation, but living

documents that are transformed into implementations. This view

radically extends the current prevailing practice of using UML:

UML is used for capturing some of the relevant aspects of the

software, and some of the code (or its skeleton) is automatically

generated, but the main bulk of the implementation is developed

by hand. MDA, on the other hand, advocates the full application

of models, in the entire life-cycle of the software product.”

Therefore, the goal of these approaches is to automatically translate

models (an abstract specification of the system) into a fully functional

software product. The major advantage of this is that models could be

both less sensitive to the chosen technology (platform-independent) and much

closer to the problem domain with regard to the most popular programming

languages [43].

2.2.2 Initiatives

Models have been used for a long time in the software development

field. Ranging from formal and executable specification languages (like

OBLOG [44], TROLL [45] or OASIS [46]), to the most accepted notations

(like UML [47]) and processes (like RUP [48]) models are present in the

software development area.

Stuart Kent [41] defines Model Driven Engineering (MDE) by extending

MDA with the notion of software development process (that is, MDE emerged

later as a generalization of the MDA for software development). MDE refers

to the systematic use of models as primary engineering artifacts throughout

the engineering lifecycle. Kurtev provides a discussion on existing MDE

processes [49] (refer to [50, 51] for a specific approach). In general, these

2.2. Model Driven Development 27

approaches introduce concepts, methods and tools [52]. All of them are based

on the concept of model, meta-model, and model transformation.

Model Driven Architecture (MDA) is a concrete realization of MDD. MDA

classifies models into two classes: Platform Independent Models (PIMs) and

Platform Specific Models (PSMs) [40]. A PIM model is a view of a system

that contains no specific information to the platform, or the technology that

is used to realize it. On the contrary, a PSM is a view of a system that

contains details of the particular type of platform that is used. Doing so, the

definition of platform becomes fundamental, which is defined as [40]:

“A platform in general is a set of subsystems/technologies that

provide a coherent set of functionality through interfaces and

specified usage patterns that any subsystem that depends on

the platform can use without concern for the details of how the

functionality provided by the platform is implemented.”

Although the contribution of MDA has been critical, other initiatives

under different descriptive terms have pushed on the Model-Driven Software

Development (MDSD) direction. These initiatives (or specific paradigms)

highlight distinct aspects and/or follow specific strategies for applying MDSD.

The following are remarkable examples of these initiatives.

Automatic programming. According to Balzer [53], who is considered the

initiator of the modern automatic programming paradigm, automatic

programming is based on the use of methods and tools that support the

acquisition of high level of abstraction specifications, their validation

and the generation of executable code. He was focused on the

generation of efficient implementations, since the hardware resources

(CPU power, memory size, etc.) were limited. Therefore, he proposes a

semi-automated (interactive) translation approach which facilitates the

2.2. Model Driven Development 28

specification of optimizations by human developers.

Generative Programming. This paradigm was proposed by Czarnecki in

his PhD Thesis [54] although the term was coined by Eisenecker in

[55]. In Eisenecker words, Generative Programming “is a comprehen-

sive software development paradigm to achieving high intentionality,

reusability, and adaptability without the need to compromise the run-

time performance and computing resources of the produced software”.

It uses techniques like generic programming, and domain-specific

languages.

In general, MDSD initiatives promote a paradigm of reuse and automa-

tion. This emerges through the extensive use of models and model transfor-

mations, which replaces cumbersome (and usually repetitive) implementation

activities. In this way, model-driven approaches improve development

practices by accelerating them.

2.2.3 Domain-Specific Languages

Domain-specific languages (DSLs) play a key role in several of the MDSD

approaches that have been presented above. A DSL is defined as follows

[56, 57]:

A DSL is a programming language or executable specification

language that offers, through appropriate notations and

abstractions, expressive power focused on, and usually

restricted to, a particular problem domain.

DSLs are not a new topic, for example, a DSL for programming

numerically-controlled machine tools, was developed in 1957-1958 [58]. On

the last years, the current stress on MDSD has focused the interest of both

2.2. Model Driven Development 29

academy and industry on this kind of languages. Examples of DSLs abound,

including well-known and widely-used languages such as LATEX, YACC,

Make, SQL, and HTML. As state by [56], the older programming languages

(Cobol, Fortran, Lisp) all came into existence as dedicated languages for

solving problems in a certain area (business processing, numeric computation,

and symbolic processing, respectively).

DSLs are tightly related to the Domain Engineering. In words of Tolvanen

[59], the main focus of Domain Engineering is finding and extracting domain

terminology, architecture and components. It is important to note that two

points of view when dealing with the domain concept can be considered, as

highlighted by Simos [60].

Conceptual domain. From this point of view, a domain is a set of

interrelated real-world concepts. For instance, the health-care domain

contains concepts like medical center, patient, disease, medicament, etc.

As another example, the industrial factory domain contains concepts

like stock, supplier, client, worker, etc.

Systems domain. From this point of view, a domain is characterized

by a set of systems that share some common features [60]. These

systems usually address a common problem area and conceivably

share a common solution structure. In this case, we can talk about

the expert systems domain, the database-based systems domain, the

control/monitoring systems domain, the software games domain, etc.

Note that a software system can be seen as the combination of both a

conceptual domain and a system domain. For instance, we can find experts

system for health-care and control/monitoring systems for industrial factories,

but also exists expert systems for industrial factories and control/monitoring

2.2. Model Driven Development 30

systems for health-care. Specific languages exist both for conceptual domains

and systems domains.

Many benefits can be found in the literature about using DSLs. For

instance, according to [56, 58].

• DSLs offer substantial gains in expressiveness since it is tailored to a

specific problem domain.

• DSL programs are concise, and they can be reused for different purposes.

• DSLs enhance productivity, reliability, maintainability, and portability.

• DSLs embody domain knowledge, and thus enable the conservation and

reuse of this knowledge.

• DSLs allow validation and optimization at the domain level.

Nevertheless, some drawbacks have been also identified about using

DSLs. These drawbacks are related to the associated costs (for designing,

implementing and learning the DSL) and the specific nature of the language

(possible lack of expressiveness and/or loss of efficiency).

Some researchers and the EUD community claims the use of DSLs with

visual notations seems to be the best option since visual languages have

demonstrated to be more intuitive and easier to use than other options like

textual languages [7]. This is known as Domain-Specific Visual Languages

(DSVL), which are contingent on making similar tools and concepts for visual

languages. Thus, the gap between the mental model of the user and the

concepts of the DSVL are lower, and DSVLs can be understood by a wide

audience. As a result, DSVLs can lower the initial hurdle to adoption [61].

2.2. Model Driven Development 31

2.2.4 Meta-modeling

Meta-modeling is one of the most important techniques of MDD [62] since it

is used for producing meta-models. For example, meta-models are needed for

dealing with construction of Domain-Specific Languages (DSLs). Moreover,

meta-models are needed for the creation of model transformations, code

generation, and tool integration. A meta-model is defined as follows [63]:

A meta-model is a model that defines the language for

expressing a model.

The meta-model contains an abstract description of the structure of

models by including the concepts, how these concepts are related, and

constraints that have to be respected in the domain (abstract syntax). In

order to create models, the concepts of the meta-model have to be represented

(whether graphical or textual) using a concrete syntax in a model editor.

Figure 2.1 shows an overview of the meta-modeling architecture. Note

that, as the right-side of the figure shows, this distinction corresponds to

the usual distinction between concrete and abstract syntax. It is important

the distinction between abstract and concrete syntax because just the meta-

model (abstract syntax) is used as basis for dealing with interoperability

among models, code generation, and model transformations.

The upper-left side of Figure 2.1 shows, the presentation of the models in

a model editor interface (e.g. textual, tree-like, or diagrams) while the models

are located at the logic of the bottom-left side of the figure. In addition, the

logic shows the model processor to refer all the tasks related with handling

models (e.g. code generation, or model transformations). This module is

based on the ideas expressed in [64, 22] and represents any task whose input

or output is a model. For instance, when a user requests a model to be

transformed to another one. Also, the white arrow shows the connection

2.2. Model Driven Development 32

among the presentation, the model and its meta-model, whereas that the

shadow arrow shows the connection between the model (and also the meta-

model) with the model processor.

Lo
gi

c

Model Processor

Pr
es

en
ta

tio
n

(Meta) Model

Model editor interface

Tree-like Textual Diagrams
Concrete

syntax

Model
transformation

Code
generation

Model Weaving

Abstract
syntax

Figure 2.1: Overview of meta-modeling conceptual architecture

In order to define a meta-model, a meta-modeling language (defined by

a meta-meta-model) and its tools are required. Meta-models have a class-

instance relationship with models, which each model is an instance of a meta-

model. This is also known as a model conforms to its meta-model, when the

model uses the concepts that were defined in the meta-model, and it fulfills the

meta-model relationships and cardinality constraints. This definition process

belongs to the four-layered architecture designed by MOF [63].

Figure 2.2 shows the overall organization of an approach for defining a

DSL and connections among the Modeler expert (from now onward modeler,

who represents a role with modeling skills) and elements. Moreover, the

upper side of the figure shows the distinction between the specification and

execution phases. This distinction is based on the ideas expressed in [65]

which divide the process into the specification of the DSL and its use by

2.2. Model Driven Development 33

creating models, respectively.

builds the
model

designs

Modeler Expert

Transformation
rules

Ma

creates

1

2

3

Specification Execution

4 translates

MMa

Ma
editor

Input/Modeler action
Transformation output

Figure 2.2: Overall MDD approach

For example, a simple meta-model for describing smart home systems can

be specified by the Modeler expert using the meta-modeling tools, with a

class given a name, Service and a number of attributes, such as name and

description. The representation (graphical or textual) of the meta-model

concepts (concrete syntax) is shown in an editor, which is the interface of the

Modeler expert. The editor can be automatically generated by meta-modeling

tools taking as input the specification of the abstract and concrete syntax (see

Figure 2.2(1)). Then, the Modeler expert specifies the model processor tasks

(i.e., transformation rules as Figure 2.2(2) shows). Next, the Modeler expert

builds a modela that conforms the MMa using the Ma editor (see Figure

2.2(3)). For example, the Modeler expert uses the editor to create a model

(as an instance of the previous meta-model), usually in the execution, with

a service with the name KitchenLightsOn, and the description: this service

2.2. Model Driven Development 34

switches on the light located in the kitchen. At the end, the editor stores

the Modeler expert ’s description in the modela and it can be processed. For

example, transformation rules can be performed in order to translate the Ma

(see Figure 2.2(4)).

2.2.5 Interoperability of Models

In a MDD process, the system description can be collected in different

models [22] in order to provide complementary alternatives to perform the

modeling tasks. According to the IEEE Standard Computer Dictionary [66],

interoperability is defined as follows:

Interoperability is the ability of two or more systems

or components to exchange information and to use the

information that has been exchanged.

Interoperability of models can provide several benefits [18], i.e., existing

modeling languages can be used as complementary alternatives to perform

the modeling tasks from different domains (such as system design, business

processes, etc.), from different roles (such as project managers, system

designers, domain experts, etc.), and from different software representations

that could have a different abstraction level (such as a visual language that

helps the description of models). For this reason, it is necessary that different

models interoperate in order to exchange system descriptions.

In order to support the interoperation of different models, the Modeler

Expert has to develop a battery of model transformations [22, 51] to connect

them. Thus, a source model that conforms to a meta-model can be translated

into a target model that conforms to a different meta-model. The use of

model transformations is a useful and efficient way of solving the connection

of models to interoperate [22, 23, 24].

2.2. Model Driven Development 35

Many specialized solutions and approaches for model transformations

exist [65], ranging from: textual [67, 68] to visual [69, 68, 70]; declarative [69,

70] to imperative through hybrid [67, 68]; and semi-formal [67, 68] to

formal [69, 70]. This work is focused on a hybrid approach since it is the

most followed by the most adopted languages [22] and it becomes popular

and useful tools in research and industry [71].

Figure 2.3 shows the overall organization of a hybrid approach for

model transformations. In particular, the figure shows elements and their

connections for achieving interoperability of models that conform different

meta-models and they are described from different users, who each one

represents a user with different knowledge and skills. The left side shows

the required input to the specification of model transformations: a meta-

model and an editor for the source and target model. The center side shows

the specification of mechanisms for supporting the transformation from a

source model to a target model, whereas the right side shows the execution

to build and modify models. Next, we explain the steps of this approach

corresponding to the different numbers shown in the figure.

Step 1. First, the Modeler Expert designs the schema mapping. The

schema mapping relates elements between two heterogeneous Meta-

Models. For example, Meta-Modela that describes the structure of a

DSLa (see MMa in Figure 2.3) and Meta-Modelb that describes the

structure of a DSLb (see MMa in Figure 2.3). The relationships are

based on some semantic similarity of the concepts and are usually

called correspondences. These correspondences are usually stored in

a special kind of called the Weaving model. There are many previous

works such as [72, 73, 74, 24] that design a Weaving model to bridge

concepts between two heterogeneous Meta-Models in order to provide

tool interoperability. The weaving model is designed before the system

2.2. Model Driven Development 36

source

builds the
model

designs

Modeler Expert UserA UserB

Transformation
rules

Weaving Model
Ma

creates
Mb

modifies
the model

target

1

2

3 5

Specification Execution

4 translates

Input

MMa

Ma
editor

Mb
editor

MMb

Input, Modeler/User action
Transformation output

Figure 2.3: Overall hybrid approach for model transformations

description is carried out, so correspondences are established from

each concept of the Meta-Modela to concepts (one or more) of the

target Meta-Modelb. Note that only only those concepts that have

any correspondence in the weaving model will be translated. Therefore,

this step may require that the Modeler Expert spends some effort in

stabling all the correspondences between meta-models, specially if the

source meta-model has a high number of concepts.

Step 2. Once the weaving model is designed, the Modeler Expert takes as

input the weaving model for creating transformation rules. Trans-

formation rules can be extracted into a textual language (i.e., the

Atlas Transformation Language [67]) to be executed in a specific

transformation engine. Thus, the transformation rules are used to

transform the models (see Ma in Figure 2.3) conforming to the input

meta-model (MMa) into the model (see Mb in the figure) conforming

2.2. Model Driven Development 37

to the output meta-model (MMb). Although there are approaches such

as [39, 75, 76] that seek the improvement of modelers’ productivity by

reducing the specification effort of model transformations by means of

semi-automatic approaches and generic model transformations, model

transformations are mostly created manually and adhoc [76].

Step 3. In the execution, the Usera builds a modela (see Ma in Figure 2.3)

conforming to the Meta-Modela using a modela editor. Usera represents

a user who has knowledge in Meta-Modela concepts and how the Meta-

Modela concepts are represented (concrete syntax).

Step 4. Once the modela is built, the transformation engine automatically

translates the entire source modela to a target modelb conforming to

the Meta-Modelb by using the transformation rules that were previously

created in Step 2.

Step 5. Finally, the Userb may check and modify the modelb. Userb

represents a user who could have different skills with regard to Usera

since Userb has knowledge in different concepts (Meta-Modelb concepts)

and the representation of those concepts in the modelb editor.

Note that the specification of both the weaving model and transformation

rules is a challenging task [39] that demands the most Modeler Expert ’s

time and effort. The specification of the weaving model (Step 1) is

mostly manual [76] and its development time increases as the number of

transformations grows due to the number and complexity of the meta-model

concepts [39]. The specification of the transformation rules (Step 2) is often

semi-automatic to reduce the development time [39] but it may also require

manual refinements.

2.3. Variability Management 38

2.3 Variability Management

Over the decades, variability has become increasingly important in software

engineering. Whereas software systems originally were relatively static, this

is no longer acceptable for contemporary software systems [77].

Therefore, the necessity for modeling variability of software systems has

been realized recently [78, 79] to efficiently manage a range of products by

specifying their variable elements. For this reason, Software Product-Line

Engineering (SPLE) [80, 81, 82] has gained significant attention over the

recent years. It is claimed that SPLE provides a promising way to develop

a large range of software-intensive systems faster, better, and cheaper [81].

Variability Management is a fundamental activity in SPLE [83]. It is also

considered one of the key feature that distinguishes SPLE from other software

development approaches or traditional software reuse approaches [84].

2.3.1 Definition

Variability refers to the ability of an artifact to be configured, customized,

extended, or changed for use in a specific context [85]. Whereas variability

management is defined as follows [86]:

Variability Management is the set of activities aimed to

cover the creation and support of differences in versions of

reference processes.

Variability Management encompasses the activities of explicitly repre-

senting variability in software artifacts throughout the life cycle, managing

dependencies among different variabilities, and supporting the instantiations

of those variabilities [87]. Specifically, Variability Management activities

are divided in two phases throughout the life cycle: domain engineering

and application engineering. Domain engineering covers variability modeling

2.3. Variability Management 39

(identification, implementation and maintenance of variable elements in a

model). Application engineering is responsible for making specific choices

for the variable elements (resolution). An automated model transformation

translates the resolution to the implementation. Thus, a specific product is

obtained.

Two important concepts related to variability are variation points and

variants. Variation points are locations in the design or implementation

at which variation will occur, and variants are the alternatives that can be

selected at those variation points [88].

There are two facets [79] in modeling variability. First, there are

approaches that use feature models to describe variability of products. For

example, Voelter and Groher [89] specify a feature model that describes the

identification of variants and the combinations of features that produce valid

variants in the domain engineering activity, and they select among a fixed

number of predefined features to obtain a specific product in the application

engineering activity. Second, the variability identified in products must have

models that describe them. For example, Haugen et al. [90] propose the

Common Variability Language (CVL) to specify gaps (placement fragments)

as variants in a model in the domain engineering activity, and they fulfill those

gaps in the application engineering activity by describing them in models

(replacement fragments) that fit into gaps. The next subsections present

these two facets in modeling variability and their concepts in detail.

2.3.2 Features for managing the variability of products

Since its first introduction in 1990 [91], feature modeling has been the most

popular technique to model commonality and variability of products of a

product line [92]. In fact, feature modeling has been become in the de facto

standard for modeling software product lines. Commonalities and variabilities

2.3. Variability Management 40

are modeled from the perspective of product features. Thus, a feature model

represents the information of all possible products of a software product line

in terms of features and relationships among them as a hierarchically arranged

set.

To start with, there are basic feature models [93], which their concepts

support the creation of variants and relationships among variants. Figure

2.4 depicts a simplified basic feature model that shows how features are

used to specify variants of watches. This example is inspired by an existing

example [94]. The basic feature model concepts are described as follows:

• Feature. It is a product component that can be captured as common

or variant. For instance, the Display feature.

• Mandatory. It is a relationship that includes a child feature in

which feature parent appears. In the example, the Display feature is

mandatory for watches.

• Optional. It is a relationship that a child feature can be optionally

included in which its parent feature appears.

• Alternative. It is a relationship that only one child feature can be

selected when its parent is part of the product. In the example, only

one of the child features of Display can be selected.

• Or. It is a relationship that one or more child features can be selected

when its parent is part of the product. In the basic feature model of

Figure 2.4, whenever Logical watch is selected, Alarm clock, WorldTime

or both can be selected.

In addition, a basic feature model can be extended to contain the following

cross-tree constraints between features:

2.3. Variability Management 41

Watch

Display Logical
watch

AlarmClock WorldTime X022

AlarmClock1 AlarmClock2

X234 X032

Feature
Mandatory Or

Alternative

Figure 2.4: A feature model example to specify variants of watches

• Requires. It is a relationship that implies the inclusion of a feature B

if a feature A that requires B is selected.

• Excludes. It is a relationship that implies the exclusion of a feature B

if a feature A is selected. Therefore, both features cannot be selected

in the same product.

Moreover, feature models can be extended with cardinalities to introduce

new concepts as follows:

• Feature cardinality. It is a relationship with lower and upper bound

denoted [n,m] that determines the number of instances of the feature

that can be part of a product. This is a generalization of the above

described Mandatory ([1,1]) and Optional ([0,1]) relationships.

• Group cardinality. It is a relationship with lower and upper bound

denoted <n,m> that determines the number of child features that can

be part of a product when its parent feature is selected. For example,

a group cardinality that is equivalent to the Alternative relationship

described above is <1,1>.

2.3. Variability Management 42

Besides, it is sometimes necessary to extend feature models to include

more information about features such as cost required to support the feature.

These models are attributed feature models. These attributes can be used

to specify extra-functional information and they should consist at least of a

name, domain and a value according to most proposals [93].

The main advantage of feature models is that they provide a clear overview

of the variability and commonalities within a system. Nevertheless, feature

models limit the expressiveness [95] in the application activity since feature

models can only provide a bounded selection of features to obtain a product.

2.3.3 Models for managing the variability of products

In this facet of modeling variability using models to describe variation points

rather than features, two approaches are distinguished [96, 90]:

• Annotating the base model by means of extensions to the base

modeling language. The advantage of this approach is that it

marks those model elements in which variation may occur, while

the disadvantage is that base models are intimated with variability

specifications.

• Using a separate variability language. Thus, variability models

can be produced after the DSL is put into production without any

modification to the DSL itself or the supporting tools. Since the

variability is represented in separated models, more than one set of

variation points and resolution rules can be expressed for each base

model (this model is also known as variability model). For example,

the project MoSiS there is a language CVL (Common Variability

Language) [97] for modeling variability that follows the separate

language approach.

2.3. Variability Management 43

CVL is a proposal sent by IBM, Thales, Fraunhofer FOKUS and TCS for

the OMG Common Variability Language (CVL) [97] Request For Proposal

(RFP), the CVL concepts are described in a nutshell.

Figure 2.5 shows an equivalent CVL model for the watch example above

presented. The concepts of the variability model are the following:

• Placement fragment. Any model element or set of model elements

that are variation points (gap). In the watch example, a Placement

fragment for the Alarm clock is created in order to set it as variable.

Variability model

Placement
fragment (gap)

Placement
replacement

(gap
description)

Resolution element

Figure 2.5: A CVL model example to specify variants of watches

• Replacement fragment. A model element or a set of model elements

(gap description) that can be used as variant for a Placement fragment.

In the example, an alternative Alarm clock (AlarmClock1) is created as

2.4. Conclusions 44

Replacement fragment. Moreover, more Replacement fragments can be

created to set more Alarm clock variants (AlarmClock2).

• Substitution. A link between a placement and a replacement. This

link also stores boundaries, which indicate other model elements that

are inside or outside each fragment (placement or replacement). For

instance, a Substitution is created to link the Alarm clock Placement

fragment with the AlarmClock2 Replacement fragment.

• Resolution. The specific replacement choices for placements. In the

example, the watch is set to have the AlarmClock2 alarm clock, so a

Resolution element is created to store this choice for the Alarm clock

Placement fragment.

The reader is referred to [94, 98] for a detailed description of CVL concepts.

2.4 Conclusions

The goal of this chapter was to provide a brief introduction to the existing

background in which this work is built on. End-user Development

addresses the discrepancy between what application developers can build

and what users really need by means of their involvement in the creation

or modification of software artifacts. Model Driven Development is a

paradigm to develop programs based on models rather than programming

code, which improve the development practices by accelerating them. Varia-

bility Managament is a set of activities for representing alternatives in a

range of products, which provides a promising way to develop the software

systems faster, better, and cheaper.

2.4. Conclusions 45

Acronyms You Need

EUD: End-User Development is a set of activities or techniques that promote

the involvement of users, who are non-professional software developers, to create

or modify a software artifact.

VP: Visual Programming uses information in a format that is closer to users’

mental representations of problems. Thus, the information could be easier to

understand and generate for users.

OMG: The Object Management Group is an international, not-for-profit

industrial consortium that creates and maintains software interoperability

specifications.

MDA: The Model-Driven Architecture is a set of OMG standards that enables

the specification of models and their transformation into other models and

complete systems.

MDD: Model Driven Development is an emerging paradigm for software

construction that uses models to specify programs, and model transformations

to synthesize executables.

MM: a Meta-Model contains an abstract description of the structure of models

by including the concepts, how these concepts are related, and constraints that

have to be respected.

XMI: The XML Metadata Interchange is an OMG standard for exchanging

metadata information via Extensible Markup Language (XML). The most

common use of XMI is as an interchange format for UML models, although it

can also be used for serialization of models of other languages (meta-models).

DSL: A domain-specific language is a programming language or executable

specification language that offers, through appropriate notations and

abstractions, expressive power focused on, and usually restricted to, a particular

problem domain.

2.4. Conclusions 46

DSVL: A Domain Specific Visual Language is a DSL with visual notations,

which have demonstrated to be more intuitive and easier to use than other

options like textual languages.

SPLE: A Software Product Line Engineering is a set of software-intensive

systems that share a common, managed set of features satisfying the specific

needs of a particular market segment or mission and that are developed from

a common set of core assets in a prescribed way.

CVL: The Common Variability Language expresses variability in a language

independently of the base modeling language. This base-model can be a DSL

as well as a general purpose languages like UML.

Chapter 3

STATE OF THE ART

S
ome modeling approaches target application scopes which are intimately

related to users’ everyday activities. However, users cannot be involved

in modeling tasks even though they are the ones who best know the

expected functionality in a concrete domain. This is because users must

have certain software development skills to capture every important aspect

of their software system through models and primitives that Modeler experts

usually use. For example, both PervML [99] and Habitation [100] are MDD

processes that target the services of smart home systems using DSLs that

can only be designed by Modeler experts due to the required knowledge

of technologies (i.e., UML, Action Semantic Language (ASL), or Object

Constraint Language(OCL)).

Giving users ways to easily customize behavior in well-specific domains, or

customize their own tools to develop their daily work activities is important

and it is a complicated matter, especially in modeling approaches in which

models are used as main artifacts and their construction may require skills

that some involved parties lack.

This chapter analyses approaches found in the literature by classifying

48

3.1. Analysis Criteria 49

them in two categories that are related to the goals of this work. The

first category includes approaches for involving users in the creation or

modification of a software artifact in the pervasive systems domain and

different ones since the first goal of this work is to provide mechanisms that

involve end-users in modeling tasks. The second category includes approaches

for achieving interoperability between modeling approaches since the second

and third goals of this work seek to use different modeling approaches to

involve different types of users.

The rest of this chapter is organized as follows: Section 3.1 presents

the analysis criteria that classifies and analyzes the approaches found in the

literature. Section 3.2 and Section 3.3 analyze the approaches for involving

users and achieving MDD interoperability, respectively. Finally, Section

3.4 summarizes and discusses the analyzed approaches, and concludes the

chapter.

3.1 Analysis Criteria

This section explains the classification criteria and features that we have

considered relevant to manage and analyze approaches found in the literature.

In order to manage and classify the approaches, we identify two categories as

follows:

1. Involving Users. It includes approaches that follow EUD techniques

and metaphors.

2. Achieving MDD Interoperability. It includes approaches that

achieve interoperability of models.

In order to analyze each approach, we consider the following relevant

features according to the different challenges confronted in this thesis:

3.1. Analysis Criteria 50

• Regarding the challenge of involving users to develop or modify their

own applications:

– User participation: it indicates whether users, who are non-

professional software developers, create or modify a software

artifact at some point.

– System-aided: it points out if the system aids users throughout

the creation or modification of a software artifact and an example

of how the approach achieves it. For instance, guiding users

with wizards that show the steps that they may follow, automatic

software creation, etc.

– Technique: it indicates the technique that has been used to

involve users.

• Regarding the challenge of involving users in modeling tasks:

– Model-based: it indicates whether the approach is driven by

models to specify the software artifact.

– Modeler experts vs users: it shows who participates in the

description of models (modeler experts, users or both).

• Regarding the challenge of achieving non-intrusive interoperability

between models of heterogeneous modeling approaches:

– Different modeling approaches: it shows whether the ap-

proach interchanges model descriptions with a different modeling

approach.

– Interoperability mechanisms: it describes if the interchange of

information is performed among models of heterogeneous modeling

approaches and how. For instance, an intermediate artifact

3.1. Analysis Criteria 51

(such as a weaving model) is used to support the interchange of

information.

– Intrusive with MM: it indicates whether the interoperability

mechanisms require that the structure of models (Meta-Models) is

modified in order to interchange information.

– Collaborative modeling mechanisms: it indicates if the

approach provides a process where a number of people (modeler

experts, users or a combination) actively contribute to the creation

of a model.

– Tool support: it shows if the interoperability mechanisms are

supported by tools, or by contrast, are presented at the theoretical

level.

The information about each feature is outlined using the template of

Table 3.1. In case that a feature is not supported or there is not published

information, the X character will be shown. By contrast, if the feature is

supported, the Y character will be shown. In addition, this table also shows

the following features:

• Application Domain: it points out whether the approach has to be

applied in some specific domain, or if it is domain independent.

• Application Process: it indicates if a process is provided for the

application of the approach in different ones.

• Limitations: it summarizes the specific limitations of each approach.

As recommended by [101], manual and automated methods were used to

make a selection of approaches in papers of leading journals and relevant

conferences. The inclusion criteria was to: 1) be at least in one of the

3.1. Analysis Criteria 52

User Participation

System-aidedEUD

Technique

Model-based
Modeling

Modeler experts vs

users

Different modeling

approaches

Interoperability

mechanisms

Intrusive with MM

Collaborative M.

Mechanisms

Interoperability

Tool support

Application

Domain

Application

Process

Limitations

Table 3.1: Template for showing the most relevant features of each approach

two categories of the classification criteria (involving users by following EUD

techniques/metaphors and achieving MDD interoperability), and 2) present

two or more features that are relevant to the different challenges confronted

in this thesis.

The next two subsections describe the approaches found according to

the identified categories and the features above explained. Each approach

is summarized using the template.

3.2. Approaches for Involving Users 53

3.2 Approaches for Involving Users

Since users are the “owners” of the problem, many approaches have arisen for

involving them at some point of the development process. The majority of

these approaches are focused on implementing an EUD technique or metaphor

that were described in the previous chapter. Next, some relevant examples

are presented.

Pervasive Interactive Programming (PiP) [34] follows the Program-

ming by Example technique presented in the previous chapter. It

employs a “show-me-by-example” approach allowing non-technical users

to “program” their environment to suit their particular needs. PiP

provides a platform that utilizes the physical user space as the

programming environment. All the user needs to do, is simply to

show the system the required functional behavior by demonstrating the

required physical actions within the environment (see left side of Figure

3.1).

Figure 3.1: PiP pervasive environment and UI control panels

PiP has been inspired by the ease in which people perform daily routine

tasks (eg. switching on the lights when a room gets dark, muting the

TV sound when a telephone rings, etc). The approach finds a way of

programming that is natural and imitates familiar practices as much as

possible, without the need for the users to follow a set of rigid logical

sequences of actions. The communication between PiP, the user and

3.2. Approaches for Involving Users 54

the environment is via an eventing mechanism.

PiP is based on the concept of a MAp. A MAp contains a collection

of rules that determine the behavior of the environment. Rules have

two parts: the Antecedent (which are the conditions that enable the

rule) and Consequent (which is the actions that are executed if the

conditions are satisfied). In order to create a MAp, the user can use

any of the following three methods: (1) physically interacting with the

devices themselves by demonstrating the functionalities that the MAp

should have via simple familiar interaction (e.g., by using a wall switch

to turn on a light); (2) using a UI control panels (which are shown

in the right side of Figure 3.1) that allows the user to “drag drop”

device representations by engaging them in graphical activities; and (3)

a combination of the above two methods. To terminate a MAp, the

user simply clicks on the “stop” button of the interface. To execute a

MAp, the user needs only to drag the MAp graphical representation

and drop it into a “play” button located at the top of the User Interface

(UI) control panels. To terminate a MAp the user simply clicks on the

“stop” button.

Table 3.2 summarizes the features of this approach according to the

presented template.

a CAPpella [30] is a Context-Aware Prototyping environment intended

for end-users, which follows the technique Programming by Example.

Users “program” their desired context-aware behavior (situation and

associated action) in situ, without writing any code. However, this

approach is limited to situations where a user can be reasonably

expected to come up with a static, well-specified rule in a timely fashion

that accurately describes the desired context-aware behavior.

3.2. Approaches for Involving Users 55

A CAPpella uses a combination of machine learning and user input to

support the building of context-aware applications through program-

ming by example. Specifically, a user of a CAPpella demonstrates a

context-aware behavior that includes both a situation and an associated

action. In addition, an user interface is provided to indicate what

portions of the demonstration are relevant to the behavior and trains a

CAPpella on this behavior over time by giving multiple examples. Once

trained, she can run a CAPpella, and it will enact the demonstrated

User Participation Y

System-aided Y. Rules automatically generatedEUD

Technique Programming by Example

Model-based X
Modeling

Modeler experts vs

users

X

Different modeling

approaches

X

Interoperability

mechanisms

X

Intrusive with MM X

Collaborative M.

Mechanisms

X

Interoperability

Tool support X

Application

Domain
Specific. Pervasive environment

Application

Process
X

Limitations -Users only can program basic event/action rules.

-Low expressivity.

Table 3.2: PiP. Summary of its most important features

3.2. Approaches for Involving Users 56

behavior: performing the demonstrated action whenever it detects the

demonstrated situation.

The user interface is divided into three parts. In the left frame, there is

a video player that allows the user to view the recorded video and listen

to the recorded audio. In the right frame at the top, the user can view

events detected in the recorded sensor data, and on the bottom, the

user can view actions that s/he took during the recorded session. After

viewing the captured data, the user can annotate the data: selecting

the streams of information she considers to be relevant to the behavior

being created and the actions she wants a CAPpella to perform on her

behalf. Moreover, the user sets a start and end time for all the streams

to indicate when the behavior started and when it ended. Figure 3.2

shows a snapshot of the user interface being trained for a meeting. The

user has selected a start and end time and deselected the location and

RFID data streams. The actions shown are turning the lights on and

off, and starting the notes recording program.

Figure 3.2: a CAPpella user interface

3.2. Approaches for Involving Users 57

In order for a user to demonstrate a context-aware behavior, a CAPpella

must have multimodal sensing capability to capture both the situation

and the action that should be taken. a CAPpella currently uses

an overhead video camera, a microphone, RFID antennas and tags,

an instrumented computer (for login, logout, sending email, loading

recently used files and for capturing user notes), and a switch that

detects whether a phone is in use to capture events that occur during

the demonstration of the situation in order to capture both When the

user starts the recording (the sensors begin storing time-stamped data

into separate logs) and When the user stops the recording system (the

sensors stop sensing and event detection on the data logs begin). The

user repeats this process a small number of times over a period of days

or weeks and improves a CAPpella’s ability to recognize this behavior

with the new data. After a sufficient number of training examples have

been provided, the user requests a CAPpella to recognize the situation,

and when it does, it performs the demonstrated actions.

An application example using a meeting and medicine-taking scenario,

Dey et al. illustrate in [30] how a user can demonstrate different

behaviors to a CAPpella.

Table 3.3 summarizes the features of this approach according to the

presented template.

Capture and Access Magnetic Poetry (CAMP) [38] is an end-user pro-

gramming environment that allows users to create context-aware appli-

cations for home. CAMP has a user interface that is based on the

Magnetic Poetry Metaphor (described in the previous chapter), which

allows users to create applications in a way that takes advantage of the

flexibility of natural language (see Figure 3.3).

3.2. Approaches for Involving Users 58

User Participation Y

System-aided Y. Ability to recognize the situation

and perform actions.EUD

Technique Programming by Example

Model-based X
Modeling

Modeler experts vs

users

X

Different modeling

approaches

X

Interoperability

mechanisms

X

Intrusive with MM X

Collaborative M.

Mechanisms

X

Interoperability

Tool support X

Application

Domain
General

Application

Process
X

Limitations -Users have to train the system by recording events, which

sometimes can be tedious for them.

-The expressiveness is limited since the approach only

supports the behavior that can be demonstrated.

Table 3.3: CAPpella. Summary of its most important features

CAMP enables users to create programs that reflect the way they

conceive of the desired application, rather than requiring that users

specify applications in terms of devices. From users’ magnetic poetry-

based application descriptions, CAMP generates a specification of a

valid capture application that can be executed in a capture-enabled

home environment. CAMP makes use of a restricted and domain-

3.2. Approaches for Involving Users 59

Figure 3.3: Examples of different magnetic poetry arrangements

specific vocabulary, it avoids many of the difficulties involved in parsing

natural language.

CAMP serves as an interface to INCA [102], an infrastructure that

provides abstractions for the development of capture and access applica-

tions. The interface is designed to allow people to use an input language

with which they are comfortable and that lets them express their

ideas flexibly; CAMP automatically generates the technology-oriented

application specifications necessary for realizing the applications. By

doing so, CAMP allows non-developers to create programs that are

valid ubicomp applications without having specialized programming

knowledge. The constrained vocabulary makes clear to users what

their choices are, and what aspects of the system they can play with or

configure.

The users use four w’s word categories (who, what, where, when) to

capture and access in describing applications. Some examples of each

are there:

• who: I, me, everyone, no one, family, stranger, baby, wife, Billy,

etc.

• what: picture, audio, video, conversation, etc.

3.2. Approaches for Involving Users 60

• where: kitchen, living room, home, everywhere, etc.

• when: always, later, never, a.m., morning, day, week, month,

before, hour, minute, Sunday, January, once, now, every time, etc.

• general: 1, 2, a, the, record, remember, view, save, keep,

microphone, speaker, etc.

Figure 3.4 shows an snapshot of the CAMP interface while a sentence

is composed. Once the end-user has composed a sentence, the

system automatically translates it into instructions and parameters

for devices, using a custom dictionary to reword and restructure the

user’s terms into a format that can be parsed. This translation is

displayed in the bottom frame of the interface as feedback to the

user. The INCA infrastructure abstracts the lower level details involved

in the development of capture and access applications, and provides

customizable building blocks that support interfaces for capturing and

accessing information, components for storing information, a way to

integrate relevant streams of information, and the removal of unwanted

data.

Figure 3.4: The Capture & Access Magnetic Poetry interface

Table 3.4 summarizes the features of this approach according to the

3.2. Approaches for Involving Users 61

presented template.

User Participation Y

System-aided Y. Automatic translation of sentences

into instructions.EUD

Technique Magnetic Poetry Metaphor

Model-based X
Modeling

Modeler experts vs

users

X

Different modeling

approaches

X

Interoperability

mechanisms

X

Intrusive with MM X

Collaborative M.

Mechanisms

X

Interoperability

Tool support X

Application

Domain
General

Application

Process
X

Limitations Expressiveness is limited for applications that capture

behavior using devices within the physical environment

(such as cameras and interactive displays).

Table 3.4: CAMP. Summary of its most important features

The Accord Toolkit [12] enables people to easily administer and re-

configure services based on embedded devices around the home by

means of the Tangible Toolbox. This toolbox also enables devices to be

integrated with each other through several different editors.

The conceptual model of the developed Tangible Toolbox is made up

3.2. Approaches for Involving Users 62

of services that compose components. These components are seen as

three different kinds of transformers, two that either transform physical

properties to digital data or vice versa and the third kind that takes

some digital data and transforms into another form of digital data.

The transformers are the fundamental building blocks of the Tangible

Toolbox. The underlying infrastructure of the toolbox is based on the

model and a set of editors addressing different user groups and needs.

These editors are:

The Graph Editor is directed to expert users such as programmers

and displays all components in a graph. This editor gives a good

overview of all existing components and how they are connected.

The other editors are aimed at the inhabitants of households. With

the Linker Device users can explore what properties a physical

device in the home expose and through the Linker Device link

these with properties of other physical devices (see Figure 3.5.a).

The Puzzle Editor is a graphical interface to compose services from

components. This editor is based on the jigsaw metaphor

(described in the previous chapter) to enable a user the connection

of components through a series of left-to-right couplings of puzzle

pieces (see Figure 3.5.b).

The Paper Puzzle Editor utilizes paper based identification tech-

nology. This editor aims at creating an interface to the Tangible

toolbox that is not perceived as computer interface. Each

component is represented as a physical puzzle piece and in the

same way as in the graphical Puzzle Editor; a service is created

through connecting these pieces in a left-to-right order (see Figure

3.5.c).

3.2. Approaches for Involving Users 63

As Figure 3.5 shows, the Puzzle Editor is focused on enabling users

the construction of assemblies, it is described further. This editor

discovers a local dataspace where transformers are registered. In

order to make itself available for use a transformer exports itself to

the distributed dataspace. The transformer is introspected and the

properties associated with it are made available as input and output

points, each transformer also has a jigsaw piece property which exports

how it should appear in the editor. Each room has a dataspace

associated with it and components that can be accessed from that room

are registered with the dataspace.

The Puzzle editor is composed of two distinct panels: a list of available

components (shown as jigsaw pieces, see the top of Figure 3.5.b) and

an editing canvas (see the bottom of Figure 3.5.b). Jigsaw pieces can

be dragged and dropped into the editing canvas or workspace. When a

jigsaw piece is dragged onto the workspace it clones itself and becomes

a symbolic link to the underlying component it represents. The editing

canvas serves as the work area for connecting pieces together and

visualizing their activities. When properties related to jigsaw pieces

in the dataspace are updated, the corresponding jigsaw piece changes

its color and a short audio clip is played.

Table 3.5 summarizes the features of this approach according to the

presented template.

Alfred [11] follows the butler metaphor described in the previous chapter

through the use of a macro programming approach, which enables a

user to compose a program via Programming by Example (using verbal

or physical interactions). Alfred is an end-user programming interface

that allows a user to “program” the system by telling it the name of a

3.2. Approaches for Involving Users 64

(a) The Graph Editor (c) The Paper Puzzle Editor

(b) The Puzzle Editor

Figure 3.5: Accord Toolkit editors

new goal, demonstrating one or more plans for achieving that goal, and

finally telling the system the conditions under which it would prefer

one plan to another. Similarly, the user can name events that arise in

the environment and tell the system what goals should be posted when

those events arise. Each of these steps can be done by simple verbal

commands or other natural forms of interaction.

Alfred works with Rascal [103] and ReBa [104] two systems, which

are responsible for the adaptive and reactive components. On the one

hand, Rascal is able to support interactions in a variety of spaces

with very different capabilities. Rascal provides a crucial layer of

abstraction by allowing applications to make high-level service requests,

such as delivering a message to the user. Rascal then evaluates all

available methods for satisfying the request, effectively producing a plan

that takes into account the availability of the hardware and software

resources in the current environment. Additionally, Rascal can take

“advice” from other agents on what kinds of resources are preferable in

what context. For example, an agent detecting activity context through

ReBa will discourage the use of audio devices in favor of displays when

3.2. Approaches for Involving Users 65

User Participation Y

System-aided Y. It indicates which pieces are avail-

able for target connections.EUD

Technique Jigsaw metaphor

Model-based X
Modeling

Modeler experts vs

users

X

Different modeling

approaches

X

Interoperability

mechanisms

X

Intrusive with MM X

Collaborative M.

Mechanisms

X

Interoperability

Tool support X

Application

Domain
Specific: smart home systems

Application

Process
X

Limitations Expressiveness is limited to the pieces and the rules that

define which ones can be connected.

Table 3.5: The Accord toolkit. Summary of its most important features

the user is talking on the phone. This layer of abstraction enables the

design of new applications without having detailed knowledge of the

environments they would be running in. This software has been running

in several offices, a conference room, a living room, and a bedroom.

ReBa automatically reacts to some of the events taking place within its

boundaries and context. For example, an environment should illuminate

the room upon a person’s entry but it should not illuminate the room

3.2. Approaches for Involving Users 66

upon a person’s entry if the room is already occupied by people. The

core component of ReBa is its Behavior Coordinator, which resolves the

potential conflicts and dependencies among the individual behaviors.

Although all behavior bundles are written by software engineers, it is

the responsibility of the owner of any individual space to choose the

most appropriate combination of behaviors for his space.

Thus, Alfred is essentially a multi-modal macro recorder. Upon a user’s

request, the system begins recording all of his actions, primarily spoken

commands. When the recording is done, Alfred assigns one or more

spoken names to the recorded sequence. Alfred can also add hardware

triggers to it. The recorded macros are simple task sequences lacking

explicit conditionals. Macros can, however, call other macros, giving

users the capability to create abstractions. Interacting with Alfred is a

sequence of tasks forming a procedure, which is quite familiar to most

users from recipes and other instructions.

Table 3.6 summarizes the features of this approach according to the

presented template.

The user can perform using Alfred the following: 1) Recording a New

Macro, 2) Adding a Hardware Trigger and 3) Invoking the tasks. An

example to create a new trigger sequence is:

User: When I press this button [user presses one of the free buttons]

run the “Good morning, computer” sequence.

Computer: Please press the button again for confirmation.

[User presses the button again]

Computer: Done!

After, if somebody presses the button, the “Good morning, computer”

macro will be automatically executed. A recorded task sequence can be

3.2. Approaches for Involving Users 67

User Participation Y

System-aided Y. The system automatically creates

tasks from users’ recordings and tells

the users if some tasks have failed.EUD

Technique Butler metaphor

Programming by Example

Model-based X
Modeling

Modeler experts vs

users

X

Different modeling

approaches

X

Interoperability

mechanisms

X

Intrusive with MM X

Collaborative M.

Mechanisms

X

Interoperability

Tool support X

Application

Domain
General

Application

Process
x

Limitations -Limited expressivity due to the lack of conditionals.

-The user has to be familiar with vocabulary to record and

invoke the tasks.

Table 3.6: Alfred. Summary of its most important features

invoked in three different ways: through a spoken command, through a

hardware trigger (if defined), and through a graphical user interface (if

present).

The Spreadsheet Paradigm [105] follows a Natural Programming tech-

nique since spreadsheet languages are widely used End-user program-

3.2. Approaches for Involving Users 68

ming languages. Burnett et al. [106, 107] have prototyped their

approach in the spreadsheet paradigm. Their prototype includes the

following:

• An interactive testing methodology to help end-user programmers

test. To do this, one of the components is the “What You See

Is What You Test” (WYSIWYT) methodology for testing [108].

WYSIWYT allows users to incrementally edit, test and debug their

formulas as their programs evolve, visually calling users’ attention

to untested cells by painting their cell borders in red (see the red

color in Figure 3.6) meanwhile tested cells are painted blue.

Figure 3.6: An spreadsheet paradigm example that provides feedback using

colors

• Fault localization capabilities to help users find the faults that

testing may have revealed. To do this, the “Help Me Test” (HMT)

feature [109] suggests test values for user-selected cells or user-

selected dataflow arrows.

• Interactive assertions to continually monitor values the program

produces, and alert users to potential discrepancies.

Figure 3.6 shows an example of spreadsheet paradigm environment in

which the fault-localization feedback of the system shades the cells that

3.2. Approaches for Involving Users 69

have a higher likelihood of faults, compared to lighter shades for cells

that are less likely to contain faults.

Table 3.7 summarizes the features of this approach according to the

presented template.

User Participation Y

System-aided Y. Inmediate feedback using colors.EUD

Technique Natural Programming

Model-based X
Modeling

Modeler experts vs

users

X

Different modeling

approaches

X

Interoperability

mechanisms

X

Intrusive with MM X

Collaborative M.

Mechanisms

X

Interoperability

Tool support X

Application

Domain
General

Application

Process
X

Limitations -Lack of data abstraction features.

-Simple model input/output that consists in the ability to

enter constant formulas.

Table 3.7: The spreadsheet paradigm. Summary of its most important

features

The Whyline [36] is a debugging interface for asking questions about

program behavior that follows the Natural Programming technique

described in the previous chapter. It uses questions because a debugging

3.2. Approaches for Involving Users 70

activity always begins with a question, and programmers/users must

answer their question using existing tools and their limited capabilities.

Hence, this approach proposes to remove this hurdle by allowing

programmers/users to directly ask the questions they naturally want

to ask.

The Whyline is prototyped in Alice, the environment shown in Figure

3.7 as well as: (1) the object list, (2) The 3D world view, (3) the

event list, (4) the currently selected object’s properties, methods, and

questions, and (5) the code area. Alice is an event-based language that

simplifies the creation of interactive 3D worlds. Code is created by

dragging and dropping tiles to the code area and choosing parameters

from popup menus. This interaction prevents all type and syntax errors.

Figure 3.7: The Alice programming environment before the world has been

played

Table 3.8 summarizes the features of this approach according to the

3.2. Approaches for Involving Users 71

presented template.

User Participation Y

System-aided Y. Visual highlighting helps with diag-

nosis and repair activities.EUD

Technique Natural Programming

Model-based X
Modeling

Modeler experts vs

users

X

Different modeling

approaches

X

Interoperability

mechanisms

X

Intrusive with MM X

Collaborative M.

Mechanisms

X

Interoperability

Tool support X

Application

Domain
General

Application

Process
X

Limitations Questions are predefined (the user is limited to explore the

available questions and ask).

Table 3.8: The Whyline. Summary of its most important features

The Whyline answers the question by analyzing the runtime actions that

did and did not happen, and provides an answer as Figure 3.7 shows.

The Whyline supports observation and hypothesizing by increasing

the visibility of the actions that likely contain the fault. The arrows

represent data and control flow causality, which are labeled by the action

they point to. The arrows help the user to follow the runtime system’s

3.2. Approaches for Involving Users 72

computation and control flow. The user interacts with the timeline by

dragging the time cursor (the vertical black line in Figure 3.7). In case

that the user moves the cursor over an action, the action and the code

that caused it become selected, supporting diagnosis and repair. The

most helpful feature of the Whyline seems to be the question menu and

visual highlighting that helps with diagnosis and repair activities.

The above approaches serve to analyze different ways of lowering barriers

to users in works, which are focused on implementing an EUD technique or

metaphor but they are not model-based. In the majority of model-based

approaches, closer languages such as DSLs or DSVLs, different views, or

abstraction levels are provided in order to make users’ participation easier

in a concrete domain. Next, two model-based approaches are presented as

example.

PANTO [110] provides a natural language interface for executing queries

that acquire information from ontologies. Ontology refers to a knowl-

edge base that includes concepts, relations, instances that together

model a domain for storing a lot of knowledge. Thus, this approach

bridges the gap between basic semantic web and real-world users

since users play a key role in semantic web sharing and exchanging

information but they may acquire formal knowledge in ontologies

to obtain their needed information (e.g., the ontology syntax, some

formal query language, and the structure and vocabulary of the target

ontology).

PANTO follows several steps to translate natural language queries to

SPARQL queries since SPARQL has been recommended as the standard

query language for the semantic web community. These steps are

summarized as follows:

3.2. Approaches for Involving Users 73

Figure 3.8: Panto example of translating natural language queries to SPARQL

queries

1. It translates Natural Language queries to entities (concepts,

instances or relations). This step is mainly supported by the

Lexicon, which is composed of the following components:

• Ontology Entities are extracted and stored for fast access and

matching. In particular, ontology entities and their names are

put into a special hash table, in which a key maps to a set of

ontology entities and an ontology entity can be obtained by

different keys. Given a word from the natural language query,

the Lexicon will acquire a set of possible entities. Proper

nouns are also extracted from the ontology for fast access and

matching.

• General Dictionaries bridge the gap between user vocabulary

and ontology vocabulary. Thus, user’s query concepts can

be matched to the ontology concepts. Moreover, the general

dictionaries enable Panto to translate some user’s words such

as “how long. . . ” in properties such as ‘length”.

3.2. Approaches for Involving Users 74

• User-Defined synonyms allows users to optionally define their

own “synonymy words” since users may use jargons and ab-

breviations to denote entities, words from general dictionaries

only may not be enough. Thus, a set of words that match the

same entity in the ontology can be defined.

2. It extracts the entities in the parse trees as pairs to form an

intermediate representation called QueryTriples. Then, PANTO

maps QueryTriples to OntoTriples which are represented with

entities in the ontology. Finally, OntoTriples are interpreted as

SPARQL. To do this, the Translator is the backbone of PANTO,

which carries out the deep parser of parse trees. Thus, the words of

natural language queries store facts of the domain model that are

stated in the triple form <subject, predicate, object. The subject

and the object may be classes, instances or literal values and

usually should be named with words or phrases. The predicate

may be prepositions, verbs, verb phrases and so on, and sometimes

may also be phrases.

Table 3.9 summarizes the relevant information of PANTO according to

the presented template.

Although PANTO address some complex sentences in natural language

such as negations or comparative, it has some limitations since the

ambiguity and complexity make difficult for a machine to understand

arbitrary natural language (such as queries involving count on instances)

and more limitations arise when more features are added to SPARQL.

In addition, PANTO is focused on the translation steps, so it has a weak

spot in user interaction since PANTO does not guide users to express

their natural language queries.

3.2. Approaches for Involving Users 75

BaVeL [65] is a DSVL to visually specify rules for the syntactic and

semantic validation of different models for presenting the result in an

intuitive way to users. This is performed by translating the analysis

results in terms the user can interpret. As a consequence, the analysis

results may not be ignored or misinterpreted by users, which may avoid

wrong design decisions.

User Participation Y

System-aided XEUD

Technique Natural Programming

Model-based Y
Modeling

Modeler experts vs

users

Modeler experts

Different modeling

approaches

X

Interoperability

mechanisms

X

Intrusive with MM X

Collaborative M.

Mechanisms

X

Interoperability

Tool support X

Application

Domain
SPARQL queries

Application

Process
X

Limitations -Weakness in user interaction (users are not guided to

correctly express their natural language queries).

-PANTO translators only support SPARQL queries and

they cannot be reused in other approaches.

Table 3.9: PANTO approach. Summary of its most important features

3.2. Approaches for Involving Users 76

Specifically, the DSVL allows the modeler expert to select input data,

filter the system models, perform the verification by calling external or

internal analysis tools, and select the output format of the validation.

The latter includes how results should be reflected in the source

model. Once the previous steps have been performed, a customized

modeling environment for the DSVL is automatically generated. Such

environment allows the user to build models as well as verify the

properties that the modeler expert made available.

Figure 3.9 shows the DSVL generated interface, which includes one

button for each defined validation property, executes the analysis and

returns the results. In particular, the Figure 3.9 shows the result

obtained after executing the analysis called state reachability (i.e.

the input to the analysis was modeled as a graph element). The

user selected such analysis by clicking on the corresponding validation

property.

This process is transparent to the user who just selects the property to

analyze, and the verification results are returned in a proper way to the

user (e.g. in terms of the original language) as defined by the modeler

expert through BaVeL. Moreover, Guerra et al. states that BaVeL is

customizable to any source DSVL.

Table 3.10 summarizes the relevant information of BaVeL according to

the presented template.

3.3. Approaches for Achieving MDD Interoperability 77

Figure 3.9: Snapshot of BaVeL implementation. Validation mechanisms in

terms users can interpret

3.3 Approaches for Achieving MDD Interopera-

bility

Interoperability mechanisms could provide benefits at the different stages

of the software development in MDD approaches. For instance, some

MDD approaches were carefully designed to interoperate from a different

MDD approach in order to provide a different language to edit models.

Other approaches interoperate to integrate different development groups in a

common model development project.

Therefore, it is possible to find a variety of MDD approaches that carry

out interoperability in order to exchange model information in literature.

Next, some relevant examples of model-based approaches that achieve MDD

interoperability are presented and the relevant information for each one is

shown using the table template previously presented.

3.3. Approaches for Achieving MDD Interoperability 78

User Participation Y

System-aided Y. Selection mechanisms and results

are shown in a language closer to usersEUD

Technique X

Model-based Y
Modeling

Modeler experts vs

users

Users

Different modeling

approaches

X

Interoperability

mechanisms

Y. Weaving model to support model-to-

model transformations within the same

modeling approach

Intrusive with MM Y

Collaborative M.

Mechanisms

X

Interoperability

Tool support Y

Application

Domain
General

Application

Process
Y

Limitations The modeler specifies the properties to analyze in models

and the user just builds models and selects the properties

to analyze

Table 3.10: BaVeL approach. Summary of its most important features

Voelter and Solomatov [111] advocate the integration of different lan-

guages by language modularization and composition. Modular Lan-

guages use a relatively small general-purpose core and can be extended

with more (domain specific) concepts as needed. Thus, each language

module may address a specific concern of software development in

general, of a specific system or platform of a business domain. A

3.3. Approaches for Achieving MDD Interoperability 79

language module is similar a traditional framework or library, but it

comes with its own syntax, IDE support, type system, and compiler or

transformation engine.

In modular languages, the use of both DSLs and code generation is

an important argument since DSLs are closely aligned with a business

domain or a specific concern of a software system (such as persistent

data definition, workflow or component structures). DSLs can be put

into module libraries and can be used directly, or extended slightly

to tailor them to a specific architecture. It is certainly not possible

to define all these language modules completely independent of each

other, so a clear layer structure between the modules is necessary

in order to allow language modules to work with each other. In

particular, this approach explains techniques for language extension and

composition based on projectional editors in general, and JetBrains’

Meta Programming System [112](MPS) specifically.

Figure 3.10 shows an example of this approach that embeds independent

languages. Specifically, it embeds SQL into Java and it is implemented

using MPS.

Figure 3.10: A select SQL statement embedded in Java

To define a language extension with MPS, several steps have to be

performed. These steps are summarized as follows:

1. Definition of the structure of the language A (abstract syntax) and

the structure of the extended concepts of the language B.

3.3. Approaches for Achieving MDD Interoperability 80

2. Definition of the representation of concepts in the model editor

(concrete syntax).

3. Definition and validation of variable types by creating rules.

4. Editor Tuning to integrate the extended concepts in editors.

Defining an usable editor that not only adds the extended concepts

by selecting them in a menu but also recognizes them by simply

typing in the editor, is an additional effort that modeler experts

have to carry out (e.g., as the previous example shown in Figure

3.10 that integrates SQL in a Java method and references a method

parameter by just typing the code).

5. Definition of transformations to generate and compile the code.

In case of DSLs or domain-specific extensions of general purpose

languages cannot be directly executed. The model has to be

translated into a language for which some kind of execution

infrastructure (a compiler or interpreter) exists. In an environment

where models and programs are treated the same in that they are

both stored as an abstract syntax tree and projected for editing,

there are two different scenarios for code generation:

• DSLs or language extensions typically need to be mapped to

general purpose languages such as Java or C.

• Since the general purpose languages themselves are repre-

sented via an Abstract Syntax Tree and projection, the

programs cannot be feed directly to the compiler, a text

representation has to be generated from them.

Table 3.11 summarizes the relevant information of this approach

according to the presented template.

At this point, it is also worth pointing out that modular languages

3.3. Approaches for Achieving MDD Interoperability 81

User Participation X

System-aided XEUD

Technique X

Model-based Y
Modeling

Modeler experts vs

users

Modeler experts

Different modeling

approaches

Y

Interoperability

mechanisms

X

Intrusive with MM Y

Collaborative M.

Mechanisms

X

Interoperability

Tool support Y

Application

Domain
General

Application

Process
Y

Limitations -Existing languages have to be re-implemented in a specific

projectional workbech.

-Users have to be experts in concepts of different languages

to carry out the system description.

Table 3.11: Voelter and Solomatov approach. Summary of its most important

features

are flexible because the concepts involved can be chosen, and they are

convenient for users who use concepts from different languages within

the same tool. Nonetheless, users have to be experts in every concept

of each integrated language, which could make system descriptions for

non-expert users difficult.

3.3. Approaches for Achieving MDD Interoperability 82

Giachetti [113] propose a process that integrates UML and DSL models

in an unique Model-Driven Development solution. This process is

comprised of the following 4 steps:

1. Definition of meta-models of the involved modeling approaches

(source and target modeling approaches).

2. Definition of the integration meta-model to identify the equiva-

lences between the meta-models involved and to fix the mapping

issues that are produced by structural differences that may exist.

This integration meta-model is also called pivot meta-model. The

differences between a pivot meta-model and a weaving meta-

model are related to their definition and use. A weaving meta-

model is instantiated to represent links among constructs of the

involved meta-models. By contrast, a pivot meta-model can be

a pre-defined representation of concepts for the interoperability

domain, or can be generated from the meta-models of the modeling

approaches that must interoperate.

Moreover, this approach defines constraints for the definition and

generation of the pivot meta-model such as: 1) all the classes

from the pivot meta-model must be mapped, 2) the mapping is

defined between elements of the same type, and 3) an element from

the integration meta-model is only mapped to one element of the

target meta-model. The violation of these rules may require the

modification of the meta-models in order to fulfill them.

3. Automatic UML Profile Generation. This step considers the

automatic generation of the UML profile that implements the

meta-model extensions that are required to customize the abstract

syntax of a target modeling language with the modeling informa-

3.3. Approaches for Achieving MDD Interoperability 83

tion of the MDD approach involved.

4. Generation of Model-Interchange Mechanisms considers the gen-

eration of the necessary model transformations to automatically

obtain from the models, which are defined with the customized

modeling language appropriate inputs (models), to specific MDD

tools such as model compilers.

Table 3.12 summarizes the relevant information of this approach

according to the presented template.

Figure 3.11 shows an example of this approach in which specific

modeling features of a DSL have been integrated into UML. In

particular, the example shows that UML has been extended with

an association between the classes Passenger and Flight, and an

aggregation between these two classes and the class Reservation. A

passenger can make a reservation for a specific flight, or can take a

flight without a previous reservation. The association between the

classes Passenger and Flight indicates those passengers that actually

flew. Thus, a passenger with a reservation may not be related to a

flight, for instance, if the passenger misses the flight.

Guerra et al. [114] approach consists of a pattern-based approach for

defining bidirectional relations (a weaving model) among modeling

approaches. The main contribution of this proposal is an unique

framework for the definition of specific inter-modeling patterns. These

patterns also provide advantages such as identification of interopera-

bility conflicts, and the generation of model-to-model transformations.

Table 3.13 summarizes the relevant information of this approach

according to the presented template.

Figure 3.12 provides the general scheme of this approach. In Step 1, the

3.3. Approaches for Achieving MDD Interoperability 84

User Participation X

System-aided XEUD

Technique X

Model-based Y
Modeling

Modeler experts vs

users

Modeler experts

Different modeling

approaches

Y

Interoperability

mechanisms

Y. Pivot model

Intrusive with MM Y

Collaborative M.

Mechanisms

X

Interoperability

Tool support Y

Application

Domain
General

Application

Process
Y

Limitations Interoperability mechanisms are designed to interoperate

between a DSL and UML.

Table 3.12: Giachetti approach. Summary of its most important features

designer (who is a modeler expert) builds the “inter-model specification”

using a pattern language, which can be analyzed in Step 2 (e.g.,

conflicts of patterns with respect to the language meta-models such

as a pattern requires two links stemming from an object but the meta-

model cardinality constraints only allow one). In Step 3, the designer

chooses the usage scenario for the specification: transformation, model

matching or model traceability. In the transformation scenario, the

designer can decide whether the operational mechanisms are for forward

3.3. Approaches for Achieving MDD Interoperability 85

Figure 3.11: Example UML model extended

or backward transformation (the patterns are direction-independent and

can be interpreted both ways). In this case the synthesized mechanisms

will create a target model from a source one from scratch (forwards) or

vice-versa (backwards). For model matching and model traceability, the

generated operational mechanisms are able to create appropriate traces

between the compared models, as well as to delete incorrect traces.

Klar et al. [21] shows how the MDD interoperability can be used to

support a complete development process. In particular, this proposal

is focused on the integration of requirement modeling into the MDD

process.

Figure 3.13 shows a running example of this approach, which seeks to

integrate descriptions of use case diagrams. These use case diagrams

are described using different modeling languages and tools.

On the one hand, a standard requirements engineering tool is employed

to create more detailed textual use case description and to record other

sorts of (non-functional requirements) as the left side of Figure 3.13

shows. On the other hand, a UML tool supports the creation of high-

3.3. Approaches for Achieving MDD Interoperability 86

User Participation X

System-aided XEUD

Technique X

Model-based Y
Modeling

Modeler experts vs

users

Modeler experts

Different modeling

approaches

Y

Interoperability

mechanisms

Y. Weaving model

Intrusive with MM X

Collaborative M.

Mechanisms

X

Interoperability

Tool support Y

Application

Domain
General

Application

Process
Y

Limitations

Table 3.13: Guerra et al. approach. Summary of its most important features

level use case diagrams as the right side of Figure 3.13 shows.

To integrate model descriptions, interoperability mechanisms have to

be defined by a modeler expert. In particular, the modeler expert

defines a set of mappings and transformation rules using both meta-

models as input. Following the use case diagrams example, once the

interoperability mechanisms have been defined, a modeler expert can

describe use case diagrams (in either of the above mentioned tools)

and interoperate between them as follows: (1) create a first set of use

3.3. Approaches for Achieving MDD Interoperability 87

Figure 3.12: Guerra et al. interoperability general scheme

Figure 3.13: Interoperability between two tools that describe use case

diagrams

case diagrams and translate them into skeletons of more detailed textual

descriptions, (2) complete and modify the generated text skeletons, and

(3) synchronize the result text description with the use case diagrams

of (1).

Table 3.14 summarizes the relevant information of this approach

according to the presented template.

3.3. Approaches for Achieving MDD Interoperability 88

User Participation X

System-aided XEUD

Technique X

Model-based Y
Modeling

Modeler experts vs

users

Modeler experts

Different modeling

approaches

Y

Interoperability

mechanisms

Y. Weaving model

Intrusive with MM X

Collaborative M.

Mechanisms

X

Interoperability

Tool support Y

Application

Domain
Specific. Requirements Engineering

Application

Process
Y

Limitations Tools does not support de facto standard in the meta-

modeling community, which makes the interoperability with

existing modeling approaches difficult.

Table 3.14: Klar et al. approach. Summary of its most important features

Kappel et al. [115] propose a framework for model-based tool integration

which is based on conceptual modeling techniques (a weaving model

and model transformations). This framework enables the design of

integration models on a conceptual level in terms of UML component

diagrams. Furthermore, this approach addresses recurring integration

problems such as structural meta-model heterogeneities by means of

reusable integration components.

3.3. Approaches for Achieving MDD Interoperability 89

In this approach, the weaving model is defined using a mapping

language called CAR. This language provides nine different core

mapping operators. These nine mapping operators result from the

possible combinations between the core concepts of meta-metamodels,

namely class, attribute, and reference, which also led to the name of

the CAR mapping language. These mapping operators are designed to

be bi-directional.

One important requirement for the CAR mapping language is that it

should be possible to reconstruct the source models from the generated

target models, i.e., any loss of information during transformation should

be prevented.

Although this proposal reduces the modeler experts’ effort by reducing

the number of model elements of the manually created mapping model

compared to the number of elements needed for the corresponding model

transformations of other tools, the modeler experts’ effort is increased if

they have to integrate existing weaving models and transformation rules

in the de facto model transformation standard into the CAR mapping

language.

Table 3.15 summarizes the relevant information of this proposal accord-

ing to the presented template.

Invar [16] advocates an integrative approach called Invar (INtegrated view

on VARiability) that provides an unified perspective to users configuring

products in multi product line environments, regardless of the different

modeling methods and tools used internally. Thus, this approach

facilitates the integration of variability models (such as feature models)

by presenting the configuration options of multiple variability models

created with different heterogeneous modeling approaches to the end-

3.3. Approaches for Achieving MDD Interoperability 90

User Participation X

System-aided XEUD

Technique X

Model-based Y
Modeling

Modeler experts vs

users

Modeler experts

Different modeling

approaches

Y

Interoperability

mechanisms

Y. Weaving Model in terms of UML

component diagrams

Intrusive with MM X

Collaborative M.

Mechanisms

X

Interoperability

Tool support Y

Application

Domain
General

Application

Process
Y

Limitations The weaving model is defined using the CAR mapping

language, which increases the modeler experts’ effort

if interoperability is necessary with de facto standard

modeling tools or vice-versa.

Table 3.15: Kappel et al. proposal. Summary of its most important features

user in an integrated fashion.

Figure 3.14 shows the current state of practice that no integration tools

are used and Invar. On the one hand, the current state of practice

multiple heterogeneous variability modeling approaches are used by

different organizations and there is no integration of the diverse tools

supporting different notations. On the other hand, Invar approach

3.3. Approaches for Achieving MDD Interoperability 91

allows to “plug-and-play” variability models. “Plugging” refers to simply

adding new variability models to a shared repository. “Playing” refers

to presenting the options provided by variability models to end-users

configuring a product. For this purpose, a variability model is seen

as an autonomous entity, which can be plugged into the configuration

space to provide configuration options. Autonomous however does

not necessarily mean independent, because variability models may be

related with each other. In particular, this approach allows using

variability models distributed across multiple repositories by accessing

them through Web Services providing configuration choices. An end-

user works with a front-end for product configuration and can use the

services without knowing details about the concrete variability models

“behind” the services.

Figure 3.14: Configuration of multi product lines: no integration tools (left)

and Invar approach (right)

3.3. Approaches for Achieving MDD Interoperability 92

As Figure 3.14 shows, there is a component in the Invar archi-

tecture that enables the communication between the Web services

called Configuration Broker. The Configuration Broker enables the

communication between the Web Services. It reads the inter-model

dependency information to determine which Web Services are affected

when products are configured. The configuration broker also translates

events from the end-user configuring and passes them on to the

Web Services that need to react to the end-user’s interactions, which

the Invar framework supports with a set of operations that manage

information of variability models (such as get the selected features).

The end-user product configuration front-end can be a website or

a stand-alone application and presents the choices defined in the

variability models. End-user can select among the choices by answering

questions such as “Do you want to enable international bank transfers?”

in a natural way (like the Whyline approach previously described).

Table 3.16 summarizes the relevant information of Invar according to

the presented template.

3.4. Discussion and Conclusions 93

User Participation Y

System-aided XEUD

Technique Questions/answers to configure the

variability

Model-based Y
Modeling

Modeler experts vs

users

Both

Different modeling

approaches

Y

Interoperability

mechanisms

Y. Controller based on operations and

rules

Intrusive with MM X

Collaborative M.

Mechanisms

X

Interoperability

Tool support Y

Application

Domain
Specific. Variability modeling

Application

Process
Y

Limitations -Interoperability mechanisms are focused on supporting

variability models.

-Users configure products by answering questions that

activate/deactivate features in variability models (they do

not participate in the creation of variability models).

Table 3.16: Invar approach. Summary of its most important features

3.4 Discussion and Conclusions

This chapter has presented the state of the art by analyzing existing

approaches and classifying them in two categories: approaches for involving

users in the creation or modification of a software artifact, and approaches for

3.4. Discussion and Conclusions 94

achieving interoperability between modeling approaches. For each approach,

relevant features are analyzed as well as its limitations.

Table 3.17 shows the analyzed approaches and a summary of the obtained

results for the relevant features, which are involved in the analysis criteria of

this thesis work. In the table, letters Y and X mean yes and no supported,

respectively for the results. The relevant features are shown in columns as

follows:

• Regarding the features of the challenge of involving users to develop or

modify their own applications (EUD): User Participation (UP), System-

Aided (SA), and Technique (T). In the T column, letters represent

the first letter of the EUD technique or metaphor that has been

applied: Programming by Example (PbE), Magnetic Poetry Metaphor

(MPM), Jigsaw Metaphor (JM), Butler Metaphor (BM) and Natural

Programming (NP).

• Regarding the features of the challenge of involving users in modeling

tasks: Model-Based (MB), Profile who performs modeling tasks (P). In

the P column, letters ME, U and B mean Modeler Expert, Users and

Both, respectively.

• Regarding the features of the challenge of achieving non-intrusive

interoperability between models of heterogeneous modeling approaches:

Different modeling Approaches (DA), Interoperability mechanisms (I),

Intrusive with Meta-Models (I-MM), Collaborative Modeling mecha-

nisms (CM), Tool Support (TS).

• Regarding the feature of the Application Domain (AD), it points out

whether the approach has to be applied in some Specific domain (S) or

it is General (G), which means that it is domain-independent.

3.4. Discussion and Conclusions 95

• Regarding the feature of the Application Process (AP), it indicates if a

process is provided for the application of the approach.

EUD Modeling Interoperability

UP SA T MB P DA I I-MM CM TS AD AP

PiP Y Y PbE X X X X X X X S X

a Cappella Y Y PbE X X X X X X X G X

CAMP Y Y MPM X X X X X X X G X

The Accord toolkit Y Y JM X X X X X X X S X

Alfred Y Y BM

PBE

X X X X X X X G X

The spreadsheet paradigm Y Y NP X X X X X X X G X

The Whyline Y Y NP X X X X X X X G X

PANTO Y X NP Y ME X X X X X S X

BaVeL Y Y X Y U X Y Y X Y G Y

Voelter and Solomatov X X X Y ME Y X Y X Y G Y

Giachetti X X X Y ME Y Y Y X Y G Y

Guerra et al. X X X Y ME Y Y X X Y G Y

Klar et al. X X X Y ME Y Y X X Y S Y

Kappel et al. X X X Y ME Y Y X X Y G Y

Invar Y X NP Y B Y Y X X Y S Y

Table 3.17: Summary of the state of the art by showing the analyzed features

As the table shows, most of the analyzed approaches use Programming

by Example or Natural Programming as EUD technique to involve users in

the creation or modification of a software artifact. On the one hand, the

Programming by Example technique requires that users show the desired

behavior to the system and select the relevant events, which can be tedious.

In addition, users cannot physically do all they may want to be automated.

Therefore, the Programming by Example technique is not always appropriate.

On the other hand, the Natural Programming technique and providing closer

languages seem to be the most extended option to involve users in the

customization of a software artifact.

Overall, EUD techniques provide better user participation and involve-

ment than the rest of approaches. However, most of these approaches limit

3.4. Discussion and Conclusions 96

the expressivity and capacities to users. For this reason, most of the studied

EUD approaches are only appropriate for developing simple tasks commonly

described in the literature, such as controlling lights. Other approaches lack

control structures such as conditionals, which only allow users to program

basic event action rules.

In MDD, a multitude of modeling tools is available supporting different

tasks, such as model creation, model transformation, and code generation.

However, it is often difficult to use tools in combination or involve users who

have different background in the descriptions of models due to both the lack

of interoperability mechanisms and the necessary modeling skills that users

may have. Therefore, the potential of MDD could not be fully exploited.

As Table 3.17 shows, none of the studied approaches attempt to confront

the relevant features of modeling and interoperability. First, some of

these approaches provide interoperability mechanisms but they are intrusive

with the structure of meta-models. Second, some of these approaches are

designed to be applied in specific domains such as variability models, so

their application cannot be transferred to existing modeling approaches of

different domains. Third, most of these approaches only involve Modeler

Experts in modeling tasks. Although only one of the approaches (the Invar

approach) involve both modeler experts and users in the description of the

system in models, it limits the participation of users by only enabling them to

select features from a predefined set, which is previously designed by modeler

experts.

Unlike these approaches, this thesis work claims for an approach in which

different users actively collaborate for obtaining a unified system description

in models using different modeling approaches. The collaboration of different

types of users such as end-users is really important to minimize the mismatch

between their expectations and the system behavior. Moreover, collaboration

3.4. Discussion and Conclusions 97

favors the use and adoption of the system. Note that none of the studied

approaches provide collaborative modeling mechanisms (see the CM column

in Table 3.17) since these approaches are focused on transformations from an

entire model to another model. Moreover, these approaches do not provide

collaborative modeling mechanisms to determine in which model concerns a

different user may be involved. Therefore, these collaborative mechanisms

become critical to obtain a full system description in models that combines

model descriptions from different users and modeling approaches.

Recently, the Collaboro [116] approach provides a collaborative envi-

ronment that enables the discussion among developers and users to define

a DSL. In Collaboro, developers and users have the chance to request

changes, propose solutions and give an opinion (and vote), which will be

accepted/rejected whether an agreement is achieved. This discussion enriches

the definition of both the abstract (i.e., meta-model) and concrete (i.e.,

notation) syntax of a DSL until no more changes are requested. At the

end, a DSL definition is obtained that ensures that the end result satisfies as

much as possible the expectations of the end-users.

In addition, an international effort known as the GEMOC Initiative [117]

has emerged to explore the development of techniques, frameworks, and

environments in order to facilitate the creation, integration, and automated

processing of heterogeneous modeling languages. The GEMOC Initiative

highlights the importance of supporting users with different levels of experi-

ence to express their perspective using their own language. This initiative also

stresses the importance of integrating heterogeneous parts to deliver a global

service. Thus, the GEMOC Initiative reinforces the contribution that this

thesis work claims since, to the best of our knowledge, there is no approach

that simultaneously does the following: 1) enable collaborative modeling to

delimit the aspects of the system that may be described by another user

3.4. Discussion and Conclusions 98

who describes those aspects with models using a different modeling language;

and 2) integrate model fragments that have been described using a different

modeling language in a non-intrusive way (i.e., without affecting the structure

of modeling languages) to obtain a model with a unified system description.

Therefore, in spite of the research efforts that have been done, this chapter

shows that there is still work to be done in order to completely solve the

challenges confronted in this thesis.

Chapter 4

ADDRESSING THE INVOLVEMENT OF

USERS

Nowadays, a select few have access to be actively involved in MDD

processes since users face barriers and challenges (e.g., steep learning

curves, arduous concepts and user interfaces) that make the description of

domain-specific content hard for them. In addition, it becomes necessary

to provide a collaboration to share knowledge in MDD processes in order

to develop a new generation of software systems that requires expertise in

a variety of domains. Among other benefits, the collaboration promotes a

continual validation of the software to be built [118], thus guaranteeing that

the final software will satisfy the users’ needs [116]. Therefore, it is very

important that different types of users participate cooperatively from the very

beginning [11, 12]. Although several approaches have confronted collaborative

modeling, most of them address collaboration to involve different roles using

the same modeling language and tools. This work goes one step further

by achieving collaborative modeling since it involves different types of users

in modeling tasks using different modeling languages for describing system

properties that depend on them.

100

4.1. Identifying the phases of MDD processes and issues 101

The remainder of this chapter is structured as follows: Section 4.1

identifies both the most appropriate phase of the MDD process to actively

involve users, and the main issues that need to be addressed in that phase.

Section 4.2 presents collaborative modeling, its challenges, lessons learned,

and design decisions. Section 4.3 overviews our proposal and its main building

blocks to involve users in modeling tasks in a collaborative way. Section 4.4

shows how our proposal has been put into practice and validated throughout

several case studies. Finally, Section 4.5 concludes the chapter.

4.1 Identifying the phases of MDD processes

and issues

To address the involvement of different types of users, we first identify

the most appropriate phase of the MDD process to actively involve them.

Afterwards, we identify the main issues need to be dealt with.

Figure 5.3 shows a highly simplified view of the different phases of a

MDD process. First, the requirements of the system are represented using

Platform-Independent Models (PIMs). Then these PIMs are converted into

Platform-Specific Models (PSMs), which, in turn, are converted into code.

requirements2models Domain
Expert

End-user

Modeler Expert

PIM
Model CODE PSM

Model

MDD

m2m m2t

Figure 4.1: Classic approach of a MDD process

PIMs are used to model the functionality and structure of the system

independently of the technological details of the platform upon which it will

4.1. Identifying the phases of MDD processes and issues 102

be implemented, while PSMs are used to combine the specifications contained

in the PIM models with the details of the platform that is chosen to implement

the system [40].

Therefore, the platform-independence of PIMs makes them the most

appropriate to address the issues identified above to actively involve users

in MDD processes.

To support the participation of users in the description of PIMs, we

identify two main issues: scoping the user-dependent participation and

specifying user-dependent properties.

• Scoping the user-dependent participation. Since many of the

users involved in modeling tasks are not familiar with describing the

full aspects of the system [13] (e.g., end-users cannot pay attention to

describe software quality aspects the way as software engineers do), it

is necessary to identify and delimit which aspects of models may be

described by users. Therefore, in order to obtain a unified system

description, users should be provided with collaborative modeling

mechanisms that allow them to focus on modeling their dependent

properties rather than on modeling the functionality and structure of

the entire system.

• Specifying user-dependent properties. Traditional interviews

are still used to capture the user needs in software development

activities [119]. However, traditional interviews are not always the best

option for extracting user needs [120].

Works like [121] show that there are still problems in the extraction of

users’ needs. One of the most important problems is the one related

to problems of understanding. These problems result from the

necessary involvement of different types of users such as requirements

4.2. Collaborative Modeling 103

analysts, designers, developers, and end-users. The requirements are

produced and interpreted by people with different experience levels and

backgrounds. For instance, end-users do not understand the jargon of

software developers and developers often do not understand the jargon

of end-users [13]. This makes the adoption of models hard for users

since they face barriers and challenges [1] (e.g., steep learning curves,

arduous concepts and user interfaces) in order to participate in software

projects of MDD processes.

Therefore, mechanisms need to be provided to scope the user-dependent

participation and to overcome the problems of understanding that users face

to specify their user-dependent properties.

4.2 Collaborative Modeling

In order to address the issue of scoping the user-dependent participation that

was identified in the previous section, we have studied collaborative modeling.

The growing number of modeling approaches underlines the rising relevance

of developing and introducing collaborative modeling mechanisms that give

different users the opportunity to contribute in model descriptions.

Collaborative modeling is defined as follows[122]:

Collaborative modeling refers to a process where a number

of people actively contribute to the creation of a model.

Collaborative modeling has been a research topic since the late 70’s and

becomes important with 1) increasing need for collaboration among modelers

and domain experts [123], and 2) increasing complexity of systems and

organizations [6]. Since the late 70’s, various other modeling approaches

have adopted the notion of collaborative modeling such as [16, 116].

4.2. Collaborative Modeling 104

Nevertheless, the current state of practice of collaborative modeling

approaches confronts collaborative modeling mechanisms using the same

modeling language and tools among all the users who actively participate

in the modeling effort. Figure 4.2 depicts our approach compared with the

current state of practice.

Current Practice :
No integration of model descriptions
from different modeling approaches

Envisioned Approach:
Integration of model descriptions
from different modeling languages

Modeling
Approach

Model
editor

Model

A

Collaborative
Modeling
Mechanisms

Modeling
Approach

Model
editor

Model

A

Collaborative
Modeling
Mechanisms

B

Figure 4.2: A highly simplified view of collaborative modeling: current state

of practice (left) and our approach (right)

In the current state of practice (see left side of Figure 4.2), traditional

collaborative modeling approaches have used a homogeneous software process

and toolset. Moreover, they usually enable regular and proactive face-to-

face meetings, and team members usually have the same language and work

culture [3, 124]. Specialists within teams need to exchange knowledge among

themselves and across team boundaries. Traditional software tools usually

provided limited collaboration support features such as shared workspaces

and file repositories [3].

In our envisioned approach (see right side of Figure 4.2), collaborative

4.2. Collaborative Modeling 105

modeling mechanisms seeks to address the issues identified in Section 4.1

(scoping the user-dependent participation and specifying user-dependent

properties) from different modeling languages. In particular, collaborative

modeling mechanisms seek to support in our approach that some concerns

of the system are described in models using a modeling approach and model

editor (see the column A in the right side of Figure 4.2) and other concerns

are described using a different modeling approach and model editor (see the

column B in the right side of Figure 4.2) that fits users’ context and needs in

order to overcome the barrier of users to describe domain-specific content in

models. Therefore, our approach 1) aims the involvement of users to describe

themselves their user-dependent properties, and 2) obtains a unified model

that integrates descriptions of both modeling languages.

For supporting the above mentioned collaborative modeling mechanisms

in our approach, it is important to identify the key and critical challenges

in the collaborative modeling field to overcome them. These challenges are

the following [6]:

• The integration of submodels or models descriptions that are made from

different participants who actively participate in the modeling effort,

and the resolution of conflicts during the integration of such submodels

or models descriptions.

• The lack of modeling skills avoids that participants are actively involved

in the modeling effort.

• The design of an approach for supporting the collaborative modeling

effort (i.e. a sequence of steps) that can be applied in existing modeling

approaches.

In addition, it is important to identify the lessons learned in the

collaborative modeling field to take them into account in our approach. The

4.2. Collaborative Modeling 106

lessons learned are the following:

• The involvement of users with guidance throughout the process becomes

important since users’ participation certainly helps to relate the models

with the real needs [5].

• Users can also fulfill different roles in the collaborative modeling process

to coordinate tasks whereas in traditional modeling methods, the input

of users is processed into a model by the analyst/modeler [6].

• The process is initiated by managers to drive the process in the begin-

ning, and the first challenge usually is engage the right stakeholders in

the process [5].

• The use of a preliminary model is extended in the so-called prototyping

strategy, where for each step in the modeling process an analyst prepares

the model and participants subsequently criticize and change themselves

the model [125].

• The modeling process should be iterative since models should be

improved during the modeling process [5].

The challenges and lessons learned presented above inspire design

decisions of our proposal for supporting collaborative modeling as follows:

• Variability management will be used in a novel way for enabling collab-

orative modeling. Thus, our approach will enable a user, who acts as a

manager, to: 1) prepare a model with the commonalities of the system,

and 2) determine variabilities in which a different user is engaged in the

modeling effort. Moreover, the application of variability management

in our approach provides guidance throughout the modeling process to

the users, who are engaged in the modeling effort, with information

4.2. Collaborative Modeling 107

about the system concerns they may describe. Thus, our approach will

provide key operations and queries on variability models to manage and

integrate model descriptions from different users, and detect conflicts

during the integration of such model descriptions.

• Users will collaborate themselves in the modeling effort using a language

which is familiar for them. This mitigates the lack of modeling skills

that users face to actively participate in the modeling effort, and

different roles are supported in the modeling process. Moreover, this

design decision is inspired by the guidelines to involve users in modeling

tasks that are presented in Chapter 5, which states that users should

be provided with a closer language and tools.

• A modeler expert will initialize and execute our approach in order to 1)

specify the correspondences among concepts of the different modeling

languages, and 2) provide the proper tool support for users, who may

be involved in the description of user-dependent properties.

• The modeling process will be iterative. Thus, our approach supports

during the modeling process the modification of the initial model,

the creation of new variabilities, and the modification/description of

variabilities.

Next, we define our collaborative modeling process that is comprised

of the following five stages: Identify project goals, Identify users, Choose

modeling approaches, Specify and execute our proposal, and Build models in

a collaborative way. Figure 4.3 shows each stage as a rounded square. The

first two stages are carried out by the Modeler expert using interviews for

identifying project goals and users is described in Section 5.1.

In the third stage, the Modeler expert selects the two appropriate

modeling approaches for enabling collaborative modeling and interoperability

4.2. Collaborative Modeling 108

Identify project goals

Identify users

Select modeling approaches

Specify and execute our proposal

Build models in a collaborative way

Figure 4.3: Different stages of the collaborative modeling process

in modeling tasks. Selecting the appropriate modeling tool is one of the most

important phases of any modeling exercise [5]. Model selection should be

driven by the goals of project and the users. It is important that the choice

of modeling tools should happen with the users after the goals are decided

and after surveying the available tools and selecting the ones that are most

appropriate. In fact, the Modeler expert may select the modeling approaches

that users are most familiar and comfortable with [5].

At this point, it is also worth pointing out that although this work

promotes that the Modeler expert may select existing modeling approaches

among the broad variety of modeling approaches, it is not always available

an existing modeling approach that both fits the goals and is closer to the

users of a concrete project. In this case, the Modeler expert should design a

language for actively involving users in the modeling effort. To do this, the

Modeler expert may follow the guidelines to involve users in modeling tasks

that are identified in Section 5.2.

In the fourth stage, the Modeler expert will initialize and execute our

approach by taking as input the two selected modeling approaches. Varia-

bility management provides our approach with mechanisms for supporting

4.3. Overview of this work 109

collaborative modeling by scoping the user-dependent participation, whereas

the interoperability mechanisms provide our approach elements that overcome

the barriers of users to specify themselves the user-dependent properties using

one of the selected modeling approaches.

In the last stage, the users build models in a collaborative way using the

two selected modeling approaches (e.g., the modeling approach A and the

modeling approach B as was depicted in Figure 4.2). On the one hand,

the process is started by a user who acts as a manager and drives the

process since s/he prepares the model (as we have identified in the lessons

learned in collaborative modeling) using the model editor of the modeling

approach A and sets those model elements in which a different user should

be actively engaged to describe them (user-dependent properties). On the

other hand, the different user describes the properties using the model editor

of the modeling approach B. Our approach aims to provide operations and

queries that automatically integrates the model descriptions of the modeling

approach B into the modeling approach A. As a result, collaborative modeling

from two different modeling approaches is supported. This stage is iterative

until modeling tasks (see the recursive arrow of Figure 4.3) are finished.

The next section overviews how this thesis work addresses the two last

stages of the collaborative modeling process (Specify and execute our proposal,

and Build models in a collaborative way).

4.3 Overview of this work

The necessity of involving users in modeling tasks and integrating their model

descriptions becomes crucial. In this thesis, we deal with this necessity by not

only enabling users to describe themselves their user-dependent properties in a

non-intrusive way (i.e., without affecting the structure of modeling languages)

4.3. Overview of this work 110

but also, encompassing collaborative modeling throughout the modeling effort

by scoping the user-dependent participation.

To start with, we propose an approach that addresses the issues iden-

tified above (scoping the user-dependent participation and specifying user-

dependent properties) to involve end-users in modeling tasks. Specifically, our

approach provides end-users with a tool-supported visual modeling language

that enables collaborative modeling using the variability management facet

of feature models. With the tool, end-users are able to select and customize

themselves system features using concepts that fit their skills, context and

needs, which helps them to overcome their understanding barrier with a MDD

process for developing pervasive systems, which has been used to apply the

approach.

To achieve this, we start with the identification of user skills and their

software activities as well as guidelines to involve users in modeling tasks. In

short, the main conclusions of this identification are that users do not have

to be transformed into modeler experts, and users should be provided with

closer languages since in far too many cases are inclined to favor the tools

that users are most familiar and comfortable with [5, 7]. In addition, the

EUD techniques and metaphors that were presented in Chapter 2 and 3 serve

to identify interface design decisions. These interface design decisions can

be applied to create a modeling environment that fits users’ goals and needs

since closer languages are not always available for involving users in modeling

tasks within the existing variety of modeling approaches.

However, this approach of selecting and customizing system features

presents some drawbacks and it is not enough to involve different types of

users in existing MDD processes, who could require more expressiveness to

describe their user-dependent properties. To address this, we propose an

approach that uses the variability management facet that uses models to

4.3. Overview of this work 111

describe variation points rather than features. Thus, we enable collaborative

modeling by supporting both the selection of model fragments of the

system that may be described using a different modeling language, and the

integration of those model fragments once they are described.

Figure 5.3 shows an overview of our envisioned approach to involve users in

description of PIMs of MDD processes. First, a user (e.g., a Modeler expert)

describes requirements in a base PIM model of a MDD process. Second,

this user scopes the user-dependent participation by defining a set of gaps in

models using variability mechanisms. Finally, a different user (e.g., an end-

user) specifies the user-dependent properties using PIM model fragments of

a different modeling language. At the end of this process, a PIM model that

unifies model fragment descriptions is obtained even when these fragments

have been described using a different modeling language.

Therefore, different users do not have to deal with unfamiliar concepts,

and they are provided with mechanisms that let them know which aspects

of the system they are involved in. This can eliminate some of the barriers

that exist in the description of domain-specific content, which could help to

achieve a wider adoption of MDD processes in industry [1, 4].

User
(e.g., Modeler

expert)

User with different skills
(e.g., end-user)

Base PIM
Model

PIM
Model

Fragments

Variability
Management CODE PSM

Model

MDD

requirements2models

m2m m2t

scoping the user-dependent
participation

specifying user-dependent
properties

1

2

3

Figure 4.4: Overview of our proposal

4.3. Overview of this work 112

Afterwards, we provide mechanisms that allow models from different

modeling approaches to interoperate in a non-intrusive and collaborative way.

As explained in Chapter 3, although several approaches have dealt with the

pursued goals, they still present some drawbacks. To overcome them, we

propose a method, named Medem, which enables collaborative modeling by

bridging two different modeling approaches. Specifically, Medem enables the

user of an existing modeling approach to define a set of gaps. Another user can

fulfill these gaps using models of a different modeling approach. To do this, we

combine interoperability and variability mechanisms in a non-intrusive way

for the existing meta-models. On the one hand, we apply interoperability

mechanisms by means of (1) a weaving model that links model concepts

of each approach, (2) model transformations that obtain model descriptions

from one model to another, and (3) model queries that manage information

of models. On the other hand, we apply variability management mechanisms

in a novel way to determine gaps that may be fulfilled by the new user.

From the two facets to model variability (features and models for

managing the variability of products) that were presented in Chapter 2, we

choose the facet of models for managing the variability of products using

a separate variability language rather than annotating the base modeling

language. Thus, the structure of the modeling language does not require to

be extended (non-intrusive) and variation points can be viewed as gaps that

have to be described using model fragments of a different modeling language.

In order to turn into reality the proposal, a toolkit was developed.

The toolkit enables the symbiosis between interoperability mechanisms and

variability modeling. Specifically, the toolkit implements operations that are

in charge of managing the creation and description of gaps, which also imply

other operations such as queries and transformations of model fragments from

a modeling approach to the another one. These operations are implemented

4.3. Overview of this work 113

using the widespread tools of the Eclipse Modeling Project1 in order to

promote the application of our approach in existing modeling approaches.

Although these operations are implemented to be domain-independent, the

toolkit has to be initialized by a modeler expert in order to provide the toolkit

with domain-dependent information such as the weaving model.

For validation purposes, the proposal has been applied in three case

studies from different domains and levels of complexity. In particular, the

case studies involve users in modeling tasks in a non-intrusive way of existing

modeling languages within the following domains: smart home systems, web

information systems, and biomechanical protocols.

Figure 4.5 presents the main building blocks that support the proposed

approach. Each building block is denoted by a rounded rectangle within

the Medem block, which represents our approach. As figure shows, each

building block is related to the fields that were explained in Chapter 2 (Model-

Driven Development and Variability Management), which is colored gray at

the top of the figure. In addition, the left side of the figure shows the two

existing modeling languages that are necessary to apply our approach. By

Modeling languagea, we refer to the modeling approach which integrates of

model descriptions of another modeling approach that we identify as Modeling

languageb. The main building blocks of the approach are: interoperability

mechanisms and Collaborative modeling.

• Interoperability mechanisms. This building block is related to

the Model-Driven Development field, which enables us to exchange

model descriptions between the Modeling approacha and the Modeling

approachb by means of model transformations. In particular, we use

the hybrid approach for model transformations that was described in

1 http://www.eclipse.org/modeling/

http://www.eclipse.org/modeling/

4.3. Overview of this work 114

 O
ur

 a
pp

ro
ac

h

Model-Driven
Development

Collaborative Modeling

Variability Management

Interoperability
mechanisms Modeling

languagea

Modeling
languageb

 Commonalities

Variabilities

Weaving model

Model transformations

Model queries

Figure 4.5: Main building blocks of our approach

Chapter 2 in which a weaving model is designed to set correspondences

among the concepts of the modeling approaches, and transformation

rules are created according to the weaving model for enabling the

automatic translation from one approach to another. Our decision to

use this hybrid approach for model transformations with a weaving

model and transformation rules comes for the following reasons:

– It is the most followed by the most adopted languages [22].

– It becomes popular and useful tools in research and industry [71].

– It is non-intrusive with the structure of models of the modeling

approaches.

• Collaborative modeling. This building block is related to the

Variability Management field, which enables us to manage a range

of products by specifying variable elements on model descriptions.

Usually in the variability management field, commonalities refer the

product elements that come up across all feasible product configurations

meanwhile, variabilities refer the product elements that can be replaced

4.4. Validation 115

(gaps and gap descriptions as explained in Chapter 2). However,

commonalities and variabilities use to be described using the same

modeling approach and tools. In this work, we propose to use

variabilities in a novel way to determine gaps that may be described

using a different modeling approach. Thus, variability modeling

mechanisms enable us to provide collaborative modeling.

4.4 Validation

The presented work has been validated to prove its applicability and feasibility

throughout different domains and levels of complexity. In particular, three

case studies have been developed following the guidelines for case study

research by Runeson and Höst [126]. These case studies are introduced as

follows:

1. PervML-Pantagruel. This case study tackles the application of

Medem in an existing modeling approach for developing smart home

systems in order to involve users in the modeling effort using another

existing modeling language.

2. UIM-Sketcher. This case study addresses the application of Medem

in two existing modeling approaches for two involving different roles of

an organization in the development of web information systems.

3. Bioengineering kinematic - Medical Protocol. This case study

involves doctors with biomedical engineers in the description and

analysis of biomechanical protocols in existing tools. To achieve this,

we address the design of a new Domain-Specific Language (since, to the

best of our knowledge, there is no an existing DSL that fits the concepts

of biomechanical protocols that doctors use) by following guidelines and

4.5. Conclusions 116

design principles from the EUD literature. Afterwards, this case study

performs the application of Medem to involve doctors’ descriptions

within biomedical engineers’ descriptions.

Overall, the evaluation of the case studies revealed positive results of our

approach since it: (1) can be applied in different domains, (2) is non-intrusive

with the existing the modeling languages, and (3) involves users in modeling

tasks in a collaborative modeling way.

4.5 Conclusions

Achieving the involvement of users in MDD processes becomes necessary to

enrich the description of models, and to help to adopt MDD processes by

the software industry. To achieve this, non-intrusive interoperability between

models of heterogeneous approaches becomes crucial in current industrial

settings since different types of users, who have different background (such

as engineers and end-users), should be involved in the modeling effort using

a different modeling languages that fits their context and needs.

In this thesis the End-user Development, the Model-Driven Development

and the Collaborative Management fields are combined in order to achieve 1)

interoperability in a non-intrusive way, and 2) collaborative modeling from

different modeling languages. Therefore, the identified issues (scoping the

user-dependent participation and specifying user-dependent properties) can

be tackled using variability management mechanisms in a novel way.

Chapter 5

INVOLVING END-USERS IN MODELING

TASKS

Although the active involvement of different types of users in the

description of PIMs of MDD processes is key as motivated in previous

chapters, users use to transfer their requirements to a Modeler expert rather

than participate themselves in modeling tasks. This is because models

represent barriers to users since models can have concepts that are unfamiliar

to some users, so users need the Modeler expert to describe the domain-specific

content in models.

In order to allow users to describe themselves domain-specific content in

models, it is necessary to identify the user skills and their software activities

to set the target of our proposal. Next, it is necessary to identify general

guidelines and interface design decisions from the EUD literature that make

the participation of users easier in the description of system behavior in order

to apply them for lowering barriers of users in the description of domain-

specific content in models.

Afterwards, we apply the identified guidelines and design principles

to provide a tool-supported visual modeling language that addresses the

118

5.1. Identification of User Skills and their Software Activities 119

involvement of end-users in modeling tasks of an existing MDD process for

developing pervasive systems. We choose end-users and pervasive systems as

application example because end-users are the ones who have more in-depth

knowledge about both the services that must be provided by the system and

the environment in which the system is going to be deployed. However, end-

users face barriers to actively participate in the description of their system

because they lack the skills to manage the technologies that the existing

MDD process uses, so they have to transfer their requirements to a software

professional.

The tool-supported visual modeling language not only enables the active

participation of end-users in modeling tasks but also, enables collaborative

modeling by addressing the issues that were identified in Chapter 4 (Scoping

the user-dependent participation and Specifying user-dependent properties)

using the variability management facet of feature models.

This chapter is structured as follows: Section 5.1 identifies user skills and

their software activities. Section 5.2 identifies general guidelines and design

principles to involve users in modeling tasks. Section 5.3 presents our tool-

supported visual modeling language that applies the identified guidelines to

enable end-users to collaborate in modeling tasks of an existing MDD process

for developing pervasive systems. Finally, Section 5.4 presents the conclusions

of the chapter.

5.1 Identification of User Skills and their Soft-

ware Activities

Although the user population is quite diverse because they are present in a lot

of domains and with different needs, users and the activities that they usually

perform with computers have been analyzed in previous works [29] [127].

5.1. Identification of User Skills and their Software Activities 120

Two classes of user activities were identified whether they are involved in

the creation or modification of a software artifact. More specifically, Class

1, which refers to modifying a software artifact, includes activities that allow

users to choose among alternative behaviors (or presentations or interaction

mechanisms) that are already available in the application by setting some

parameters; these activities are usually called parametrization, customization,

or personalization. Class 2, which refers to creating a software artifact,

includes all the user activities that imply some programming in various

programming paradigms.

These two classes can be supported by different types of interfaces:

closed-option and open-option. Class 1 could be supported by closed-option

interfaces and Class 2 could be supported by both interfaces. Closed-option

interfaces provide users with a catalogue of requirements. This catalogue

allows users to select those requirements that satisfy their needs. Open-

option interfaces allow Class 2 to define new requirements if the requirements

catalogue does not satisfy users’ needs.

More recently, Fischer and Ye proposed a spectrum of software-related

activities [127]; Figure 5.1 is adapted from that work and shows the spectrum

of the above activities graphically. On the right side of the spectrum are the

Software Professionals, i.e., software engineers that develop software systems

for users other than themselves. On the opposite side (left side) are the Pure

End-users that passively use software systems to accomplish their daily tasks.

Users who are willing to perform various activities that cause them to modify

and/or create software artifacts are represented in Figure 5.1 as End-users

who customize; they may have certain software development skills, but they

only develop software to solve the specific problems that they face.

Our target is to provide mechanisms for both End-users who customize

(from now onward end-users) and Software Professionals (SPs) to allow them

5.2. Identification of Guidelines to Involve Users in Modeling
Tasks 121

Pure End-users End-users who customize Software Professionals

Class 1:
Modifying software

Class 2:
Creating Software

Target of
our

proposal

Figure 5.1: The spectrum of software-related activities

to work cooperatively in modeling tasks of MDD processes. Thus, the design

of models is complemented by both (1) Modeler experts, who play the role

of SPs’ in MDD processes, contribute to improve the system behavior; and

(2) end-users contribute by describing themselves their demands and desires,

which helps end-users to successfully adopt and use the system [128].

5.2 Identification of Guidelines to Involve Users

in Modeling Tasks

Once the target users are identified, we have studied the End-user Develop-

ment literature to establish guidelines that make the participation of users in

the description of system behavior easier. The guidelines are the following:

• Users should be provided with a closer language such as a

DSVL to lower the barriers for users in the description of domain-

specific content [7]. Furthermore, the use of a visual language seems

to be the best option since visual languages have proven to be more

intuitive and easier to use than other options like textual languages or

general purpose languages. This is because the gap between the mental

model of the user and the concepts of the DSVL is smaller than the

concepts that SPs manage in a DSL [129, 130].

• Users do not pay attention to software quality as software

5.2. Identification of Guidelines to Involve Users in Modeling
Tasks 122

engineers do [13]. They do not bother at all about software

engineering issues such as quality and maintenance. Therefore, users

should focus on user-dependent properties, whereas software engineers

should focus on engineering issues.

• Users have to use a library of components as a starting point

in order to customize their system. In the context of End-user

Development, it is essential that a library of components or a initial

system be provided by SPs [131].

• Users do not have to be transformed into SPs [8]. The plan

is to provide techniques and tools that allow users to collaborate with

SPs in the development of software systems.

• Users have to be supported by specific tools made especially

for them. Nielsen [132] recommends that users should participate in

the description of their system though user interfaces. These interfaces

should “speak the user’s language”, and they should include good

mappings between the user’s conceptual model of the information and

the computer’s interface for it.

In order to provide users with a closer modeling language such as a DSVL,

it becomes necessary to build an editor that enables the creation of models

of that closer modeling language. To build the model editor, we have studied

well-accepted techniques and metaphors in the field of End-User Development

(such as Natural Programming and Visual Programming that were presented

in Chapter 3). According to these studies, the main design interface decisions

that may be applied in the design of a specific tool for users are the following:

• Using a wizard: the user needs to achieve a single goal (the description

of their needed system) but several decisions need to be made before

5.2. Identification of Guidelines to Involve Users in Modeling
Tasks 123

the goal can be fully achieved (several steps), which may not be known

to the user. Thus, the use of a wizard is recommended in [133] since

the user wants to reach the overall goal but may not be familiar with

or interested in the steps that need to be performed.

• Offering navigation buttons: navigation buttons suggest users that

they are navigating a path with steps. This is recommended in [133]

because the learning and memorization of the task of each step are

improved. In addition, when users are forced to follow the order of

tasks, they are less likely to miss important things and therefore will

make fewer errors.

• Displaying the elements using a grid layout: this is recommended

in [133] to any circumstance where several information objects are

presented and arranged spatially within a limited area. This improves

the presentation and it minimizes the time to scan, read and view

objects on screen.

• Offering options: an interesting conclusion is reached in [134]: what

people see is what they select from!. The study states that people tend to

select from the entire list of options what they are first presented with.

Rarely is an effort made to find additional options through scrolling.

If eleven items are presented, the choice is from these eleven. When

options must be compared among themselves, controls presenting all

the options together will yield the best results.

• Selection rather than introduce text: the studies presented in [135]

show the advantages and disadvantages of using either entry fields

or selection fields for data collection. Since information became less

familiar or subject to spelling or typing errors they recommend choosing

a selection technique.

5.2. Identification of Guidelines to Involve Users in Modeling
Tasks 124

• Using autocompletion: The study showed in [135] states that aided

entry, also known as autocompletion, is preferred over unaided entry

methods, and it is also the fastest method. Autocompletion reduces

errors in comparison to unaided entry. In addition, it also minimizes

the user’s effort by reducing input time and keystrokes.

• Using a warning: this is recommended in situations where the user

performs an action that may unintentionally lead to a problem [133]

and the system cannot or should not automatically resolve this situation

so the user needs to be consulted. The warning might also include a

more detailed description of the situation to help the user make the

appropriate decision by means of two options at least.

• Offering all options: this is recommended when the number of options

is not large and they can be displayed without scrolling [135].

• Offering some options: this is recommended when the number of

options is high and it needs a scroll to be displayed. Thus, it is

recommended to show some options of the available list [135]. This

improves the speed of performance and satisfaction.

The Modeler expert can apply the identified guidelines and interface design

decisions in order to involve users in modeling tasks by providing them with

closer modeling languages and closer model editors in case that there is not

available an existing modeling language and/or model editor that fit both the

project goals and the users to be involved in modeling tasks.

5.3. Applying the identified guidelines and interface design
decisions to pervasive systems 125

5.3 Applying the identified guidelines and in-

terface design decisions to pervasive sys-

tems

In order to apply the guidelines and interface design decisions identified above,

we use the pervasive systems domain. Since end-users could not participate in

the description of their pervasive system (e.g., an smart home) in an existing

MDD approach because they lack the skills to use the technologies to describe

in models the services that must be provided, a closer modeling language and

tools must be provided.

Moreover, the issues that have been identified in Chapter 4 (Scoping the

user-dependent participation and Specifying user-dependent properties) may

be addressed. To achieve this, we propose to combine MDD and Software

Product Lines (SPLs). Specifically, we propose the use of the variability

management facet of feature models.

In SPLs, many efforts have already been made to improve the development

of a large range of software-intensive systems faster, better, and cheaper [81]

in different domains such as smart home systems [136, 137].

There are several works that show how to combine MDD and SPLs

[138, 89]. For example, Voelter and Groher [89] describe an approach

where development is combined with model-driven development. They

define aspects at the modeling level, the transformation level, and the

implementation level. They apply their approach to the Smart Home domain.

Anastasopoulos et al. [138] apply a combination of both MDD and SPL to

the Ambient Assisted Living (AAL) domain. They express variations in

smart home functionality as features, and synthesize AAL specifications by

composing features. Compared to our work, the above approaches do not

5.3. Applying the identified guidelines and interface design
decisions to pervasive systems 126

actively involve end-users in the modeling effort of the MDD-SPL system,

which is essential for the successful development in many domains such as

smart homes [139].

In our initial approach, we actively involve end-users in modeling tasks

by providing both: 1) a feature model that addresses the identified issue of

scoping the user-dependent participation by both determining the variabilities

of the system and guiding the users’ collaboration throughout modeling tasks,

and 2) a closer language for end-users that fits end-users context and needs

by applying the identified interface design decisions in order to address the

identified issue of specifying user-dependent properties.

Considering the schema of the MDD-SPL that Figure 5.2 shows, a product

operation transforms input assets into an output system according to the

configuration specified in a decision model. This approach contributes with

an end-user tool that uses a closer language and enables users to themselves

collaborate in the modeling effort by configuring variabilities of the system.

The variabilities are stored in the decision model, which drives the production

process. The design of the commonalities of the system and the variabilities

(the feature model) is performed by the Modeler expert (who plays the role of

Software Professional). Our tool provides model queries and transformations

to obtain the output system.

End-user
tool

Assets Production
Operation

Output
System

Decision
Model

So
ftw

ar
e

Pr
od

uc
t

Li
ne

 C
on

ce
pt

s

Figure 5.2: The initial approach for involving end-users in modeling tasks

5.3. Applying the identified guidelines and interface design
decisions to pervasive systems 127

This approach has been applied in an existing MDD approach for

developing smart home systems [140, 141]. Specifically, we have extended

a SPL to allow end-users to create tailored solutions that directly reflect

their needs and expectations using a closer language. Figure 5.3 illustrates

the blocks used in this application. The input assets consist of a collection

of models describing all smart homes that can be produced. These models

are created by using the PervML language [99]. A smart home is uniquely

defined by the selections made on the feature model, which plays the role

of decision model. The selected features determine which elements of the

PervML models are used for the initial configuration of the smart home by

means of a Realization Model. Finally, the output system is obtained through

a model transformation.

PervML
Model

Realization
Model

Pervasive
System

Feature
Model

M2T

End-user
front-end

Techniques and
metaphors in the field of
end-user development

A. Catalog of available
configurations

B. Saving the
configuration

Figure 5.3: Application of the approach using features

The Software Professional sets the smart home commonalities and

variabilities by means of the feature model making assumptions about the

desirable functionality of end-users. Conversely, end-users are the ones who

best know their activities and their functionality expectations. As described

in the identification of user skills in Section 5.1, end-users and Software

Professionals actually possess distinct types of knowledge. End-users are

the “owners” of the problem and experts are the “owners” of the technology

5.3. Applying the identified guidelines and interface design
decisions to pervasive systems 128

to solve the problem. Although end-users are not experts, they have deep

knowledge of their specific environment and they should be able to develop

their own smart home system according to their needs. Hence, we involve end-

users in the Smart Home configuration in order to minimize the mismatch

between user expectations and system behavior.

In order to tackle this, end-users must be supplied with a closer language

that allows them to describe their needs [14]. To the best of our knowledge

there is no available an existing modeling language that fits with this

application, so we have applied the identified guidelines and interface design

decisions identified in Section 5.2 to develop a tool that allows end-users to

configure their smart home system by themselves (see End-user front-end in

Figure 5.3). In particular, the end-user tool allows end-users configure the

feature model by selecting from a catalog of available options (see Step A in

Figure 5.3) which services and devices must be available in each location.

Thus, once end-users have finished the configuration, the operations provided

in our approach will obtain the realization model (see Step B in Figure 5.3)

that determines the output system by applying model transformations.

Next, details about the blocks involved in our approach are described as

follows:

The Pervasive Modeling Language (PevML) model. PervML [142] is

a DSL for describing pervasive systems using high-level abstraction

concepts. This language focuses on specifying heterogeneous services

in specific physical environments such as the services of a smart home.

These services can be combined to offer more complex functionality

by means of interactions. These services can also start the interaction

as a reaction to changes in the environment. The main concepts of

PervML are: (1) a Service coordinates the interaction between suppliers

to accomplish specific tasks (these suppliers can be hardware o software

5.3. Applying the identified guidelines and interface design
decisions to pervasive systems 129

systems); (2) a Binding provider (BP) is a supplier adapter that embeds

the issues of dealing with heterogeneous technologies; (3) an Interaction

is a description of a set of ordered invocations between Services; and

(4) a Trigger is an ECA rule (Event Condition Action) that describes

how a Service reacts to changes in its environment. This DSL has been

applied to develop solutions in the smart home domain [143]. The reader

is referred to [99] for a detailed description of PervML concepts.

For example, the bottom of Figure 5.4 shows an abstraction of a

PervML model that describes the blocks for the assembly of a smart

home system [142]. The grey blocks implement the functionality of the

selected features. The white blocks enable an alternative functionality

of the system. The (l), (o), (m) and (p) blocks provide adapters for the

new resources available.

The feature model. As described in Section 2.3, feature models are widely

used to describe the set of products in a software product line in

terms of features, which are hierarchically linked in a tree-like structure

and are optionally connected by cross-tree constraints. There are

many proposals for the type of the relationships and the graphical

representation of feature models [144]. We have chosen the Feature

Model [145] as the modeling language because it is feature reasoning

oriented and has a good tool support [146].

For example, the top of Figure 5.4 shows a feature model that

determines the initial and the potential features of the smart home.

The grey features are selected to specify a member of the smart home

family. The white features represent potential variants. Initially, the

smart home provides Automated illumination, Presence simulation and

a Security system. This security system relies on In home detection

5.3. Applying the identified guidelines and interface design
decisions to pervasive systems 130

(inside the home) and a siren alarm. The system can potentially

be upgraded with volumetric presence detection and more alarms to

enhance home security.

The feature model also determines how the features relate to each

other by cross-tree constraints. As the feature model of Figure 5.4

shows, these relationships are: Optional represented with a small white

circle on top of the feature, Mandatory represented with a small black

circle on top of the feature, Multiple choice represented with a black

triangle, Single choice represented with a white triangle, Requires which

it is represented with a dashed arrow and Excludes represented with a

dashed double-headed arrow.

The End-user front-end. It allows end-users to define the initial config-

uration of the smart home system by means of a closer language. To

design it, we have chosen the jigsaw metaphor [12]. As described in

Chapter 3, the “jigsaw pieces” metaphor is based on the familiarity

evoked by the notion and the intuitive suggestion of assembly by

connecting pieces together. Essentially, it allows users to take variability

decisions through a series of left-to-right couplings of pieces. Constrain-

ing connections in a left to right fashion also provides users with the

sense of a pipeline of information flow. Moreover, this end-user front-

end applies all the guidelines that were identified in Section 5.2 and

applies the following design interface decisions: displaying the elements

using a grid layout, offering options, selection rather than introduce

text, and offering all options.

The manner in which the end-user front-end is used in our approach is

as follows: end-users define their initial configuration by means of the

end-user front-end. The end-user front-end should present the whole

5.3. Applying the identified guidelines and interface design
decisions to pervasive systems 131

Multiple
choice

<<Default>>

Feature Model

Security

In Home Detection
Alarm

Realization Model

<<Service>>
(a)Light by

presence

<<Service>>
(b)In Home
Detection

<< Service>>
(c) Alarm

<<Trigger>>
(g) Random
Simulation

Starter

<< Trigger>>
(h) Presence

Detected

<< BP>>
(l) Perimeter

Detector

<< BP>>
(n) Infrared

Detector

<< BP>>
(p) Visual Alarm

<< Interaction>>
(i) Security

<< BP>>
(o) Silent

Alarm

<< BP>>
(j) Automated

Lighting

<< BP>>
(k) Volumetric

Detector

<< BP>>
(m) Blink
Lighting

<< BP>>
(q) Buzzer

<< Service>>
(d) Automated

Lighting

PervML Model Abstraction

(1) Smart Home

(2) Security

(11) Siren

(4) Automated Illumination

(6) In Home Detection

(14) Volumetric
Detector

(10) Silent
Alarm

(13) Infrared
Detector

(12) Visual
Alarm

(5) Alarm

(15) Lamp (16) Gradual
Lamp

(9) Light By Presence

(17) Infrared
Detector

(18)Volumetric
detector

Automated Illumination

Light by presence Illumination

<< Service>>
(e) Lamp
Mediator

(6) (h)

<<Default>>(6) (b)
<<Default>>(14) (k)

<<Default>>(13) (n)

<<Default>>(5) (c)

<<Default>>(10) (o)
<<Default>>(11) (q)

<<Default>>(12) (p)
<<Alternative>>(12) (m)

<<Default>>(9) (h)

<<Default>>(9) (a)
<<Default>>(18) (k)

<<Default>>(17) (n)

<<Default>>(8) (e)

<<Default>>(4) (d)

<<Default>>(2) (i)

Mandatory

Single
choice

Optional

(3) Presence
Simulation

Requires

(8) Illumination
(7) TV -

Multimedia

<< Service>>
(f) Presence
Simulation

Presence Simulation

Light by presence

<<Default>>(3) (f)

<<Default>>(3) (g)
<<Default>>(8) (e)

<<Default>>(3) (f)

Figure 5.4: Models for the SPL

5.3. Applying the identified guidelines and interface design
decisions to pervasive systems 132

set of features defined in the feature model as Jigsaw pieces. The

jigsaw editor should be divided in two areas. An area should contain

compatible and non-compatible pieces and the other area should be the

workspace where end-users can define their initial configuration. In the

Figure 5.5, we illustrate each jigsaw piece which represents a feature

of the feature model previously modeled in Step A by the Software

Professional (see top of Figure 5.6). The root piece is filled in black

with a gray frame, the compatible pieces are filled in black and the

non-compatible pieces are filled in gray. When a jigsaw piece is added

within the workspace, non-compatible pieces should be disabled and

shadowed, indicating which pieces are compatible. Compatible and non-

compatible pieces are defined by the feature model. Therefore, end-users

should do the following steps to define an initial configuration:

Smart
Home

Lamp
Volumetric
360 degree
Detector

Infrared
160 degree
Detector

Outside
Detector

AlarmPresence
Detection

Jigsaw
pieces

Perimeter
Detection

In Home
Detection SirenSilent

Alarm

Visual
Alarm

Security Automated
Illumination

Presence
Simulation

Figure 5.5: Defining the initial configuration

1. Select the root piece. From this feature end-users can define all

their initial configuration services.

5.3. Applying the identified guidelines and interface design
decisions to pervasive systems 133

2. Add available pieces to the last piece selected. If end-users select

a leaf piece a service will be configured.

3. Repeat steps 1 and 2 until all pieces have been selected or repeat

until all the services needed are configured.

When the services have been configured, end-users will have a line of

puzzle for each service initiated in the system from the root to the

leaves. The services which are not initialized will not be available in

the system.

According to the feature model and the initial configuration represented

in Figure 5.6, end-users have defined three initial services: Presence

Detection, Alarm and Automated Illumination. In the end, end-users

will attain a line of puzzle for each service.

Realization model. It is an extension that we have incorporated to Atlas

Model Weaving (AMW) [147] in order to relate the features to the

PervML elements. AMW is a model for establishing relationships

between models as was described in Chapter 2. Our extension

augments the AMW relationship with the default and alternative tags.

This augmented relationship is applied between features and PervML

elements (BPs and Services). In the context of a BP, the default

relationship means that the BP is selected for the initial configuration

of the system. The alternative relationship means that the BP is

considered a quiescent element that should be incorporated to the SPL

product, but does not participate in the initial configuration.

This model (see the middle of Figure 5.4) establishes the relationships

between the features and the PervML elements. For instance, the visual

alarm feature is related to a BP (p) for visual alarms, but, alternatively,

it can be replaced with a BP (m) that emulates the visual alarm by using

5.3. Applying the identified guidelines and interface design
decisions to pervasive systems 134

Lamp

Infrared
160 degree
Detector

In Home
DetectionSecurity

Smart Home

Presence Simulation Security

Siren

Automated Illumination

Presence Detection

Volumetric 360
degree Detector

In home Detection Silent
Alarm

Infrared 160 degree
Detector

R
eq

ui
re

s

Visual
Alarm

Outside
Detector

Perimeter Detection

Alarm

Lamp Gradual
Lamp

Variation PointInitial Configuration

Smart
Home

Presence
Detection

The initial configuration

Security Silent
Alarm

Smart
Home Alarm

Automated
Illumination

Smart
Home

Figure 5.6: An example of the initial configuration of the smart home

the blink lighting.

Model To Text (M2T). Once the services have been configured, the

transformation engine can be applied to generate the code. For this

task, we have used the MOFScript language which provides capabilities

for navigating models, creating files, etc. MOFScript takes as input one

model and applies over one selected meta-element a contextual rule.

The applied rule can access the element properties, navigate over the

related model elements and invoke other rules.

The reader is referred to [148] for obtaining more information about the

transformation rules and the tools to support the code generation.

5.3. Applying the identified guidelines and interface design
decisions to pervasive systems 135

Although this initial approach enables collaborative modeling by providing

end-users with a closer language and achieves non-intrusive interoperability

between PervML and the jigsaw metaphor, the expressivity of end-users is

limited to the services that are previously designed in the feature model by the

Software Professional. To overcome this limitation, we provided to advanced

end-users with an open-option interface to describe new services. In this open-

option interface, end-users are able to describe the needed information for a

new service, which is: name of the service, where the service is located, what

devices or services are needed to sense the context information (condition)

and what devices or services are needed to activate this service (action).

For example, end-users may need a climatization service that switches on

the air conditioning when the window of the living room is closed and the

temperature in the living room is over 26 degrees.

To support this in our tool, we have been inspired in existing EUD

techniques such as Natural Programming and Visual Programming. In

addition, the tool applies the following design interface decisions that

were identified in Section 5.2: using a wizard, offering navigation buttons,

displaying the elements using a grid layout, offering options, and using

autocompletion. Only advanced end-users can use the open-option interface

in order to reduce the complexity to non-advanced end-users. If a non-

advanced end-user needs a service which is not included in the predefined

catalogue, they need to interact with Software Professionals in order to

describe the new requirements (new services and configurations).

The open-option interface offers advanced end-users the representation of

the physical environment and a left frame that provides mechanisms to define

the information required for a new service. Figure 5.7 shows a description

of a new climatization service for the living room using the defined interface.

The left side of the figure shows the required information: name, location,

5.3. Applying the identified guidelines and interface design
decisions to pervasive systems 136

condition and action. In order to introduce such information as location,

end-users just need to select the corresponding option in the left frame and

then select the location in the representation of the environment (at the right

of figure).

Figure 5.7: Open-option interface for describing a new service

In addition, the open-option interface shows in a visual way what

information has been selected in the environment (right frame) and it also

offers a text message where users can read and modify the result of their

description (bottom frame). In this text message, some information can be

modified such as: the value of the action or conditions (activated, inactivated

or a numeric value) and how the language has to join two or more actions or

conditions (and or or). This modifiable information is underlined in the text

message.

To conclude, the advantage of using feature models is that model elements

subject to variability are clearly marked but the initial configuration of

5.4. Conclusions 137

the system is limited to a bounded selection of features, which limits the

expressiveness during the collaborative modeling. Nevertheless, although we

propose an open-option interface to overcome the limitation of expressiveness

for enabling advanced end-users to create new services, we still detect the

following drawbacks and limitations in this approach:

• No integration mechanisms are provided if new services are created.

This can cause conflicts during the integration of the new services with

both the commonalities of the system and the initial configuration of

the system using features.

• Two interfaces should be provided to users. One interface to support

the selection of features and another one to create new services.

• There is no limitation about the concerns that users are able to

modify during the creation of new services. Thus, users could modify

commonalities of the system rather than be focused on describing

the variants of the system. This may imply modifications of system

descriptions that other users made, and it may create inconsistencies

between the feature model and the description of new services.

To overcome our approach’s shortcomings, we propose to use the facet of

variability models rather than features for supporting collaborative modeling.

5.4 Conclusions

In this chapter, we have presented our proposal for achieving the involvement

of end-users in modeling tasks of an existing MDD process for developing

smart home systems.

Thus, end-users are able to share their knowledge with software profession-

als in order to enrich the system design since end-users are the ones who have

5.4. Conclusions 138

more in-depth knowledge about both the services that must be provided by

the system and the environment in which the system is going to be deployed.

In addition, the active participation of end-users in the system design creates

on them a sense of ownership and minimize their mismatch between their

expectations and system behavior [5], which makes results more difficult to

reject in the future.

To start with, we have set the target of our approach by identifying the

user skills and software activities. Afterwards, we present general guidelines

and design principles that the EUD literature suggests to lower the barriers

of users in the description of system behavior. In conclusion, users may be

involved in modeling tasks using a modeling language that provides them

concepts that they are familiar with. Although this work promotes the

selection of existing modeling languages among the broad variety, it is not

always available an existing modeling language that fits the goals and is closer

to the users of a concrete project. In this case, we consider that the guidelines

and design principles of the EUD literature that have been included in this

chapter help the Modeler expert to design a modeling language that actively

involves users in the modeling effort.

Finally, we have presented both our approach for supporting collaborative

modeling using feature models and our tool-supported visual modeling

language for involving end-users in the modeling tasks of an existing approach

for developing smart home systems. Although this approach enables that

end-users collaborate with software professionals in modeling tasks to obtain

the initial configuration of the smart home system, this approach presented

some limitations and drawbacks such as a bounded selection of features for

end-users in the initial configuration of the system.

For this reason, it is necessary to evolve this approach for involving

different types of users (e.g., scientists, engineers and end-users) by achieving

5.4. Conclusions 139

interoperability from different modeling languages and enabling collaborative

modeling in modeling tasks of MDD processes. Thus, users describe

themselves system properties that depend on them using a different modeling

language that fits their goals, context and needs.

Chapter 6

ACHIEVING THE INVOLVEMENT OF

USERS IN MODELING TASKS WITH

HETEROGENEOUS MODELING

LANGUAGES

I
n the previous chapter, we presented our approach for involving end-

users in modeling tasks using a tool-supported visual modeling language.

This tool allows end-users to select and customize system features using

concepts that they are familiar with. However, giving end-users ways to easily

customize behavior in well-specific domains, or customize their own tools to

develop their daily work activities is important as we previously described;

however, it is not enough [149], so it becomes necessary to empower different

types of users with more expressiveness in order to support the development

of a new generation of software systems. These systems need that different

types of users are actively involved in modeling tasks to obtain a unified

system description.

To address this, we explain in this chapter the sequence of steps that

addresses the two last stages (Specify and execute our proposal, and Build

140

6.1. Supporting collaborative modeling using variability models141

models in a collaborative way) of the collaborative modeling process that was

explained in Chapter 4. We refer to this sequence of steps as the Medem

method.

Medem enables the transformation and integration of descriptions in

models from different modeling languages. Specifically, Medem supports

the user of a modeling language to define a set of gaps in models, which

are fulfilled by another user who describes them using a different modeling

language. Thus, different types of users are involved and guided in the

description of models using known concepts for them, which could help to

adopt MDD processes by the software industry as expected [1]. Medem

supports this collaborative modeling in a novel way by using the facet of

modeling variability that uses models (which was introduced in Chapter 2).

This facet provides Medem with mechanisms to manage the gaps.

This chapter is structured as follows: Section 6.1 presents our proposal

for supporting collaborative modeling using models of a different modeling

language. Section 6.2 presents the Medem method, which is divided into

the specification of mechanisms (the specification phase) and the creation

of models (the execution phase). Section 6.3 describes the steps that the

Modeler expert performs in the specification phase of Medem. Section 6.4

explains the steps that users perform to build models in a collaborative way

during the execution of Medem. Finally, Section 5.4 presents the conclusions

of the chapter.

6.1 Supporting collaborative modeling using

variability models

We identified in our initial approach, which was presented in the Chapter

5, new needs to support collaborative modeling from different types of users

6.1. Supporting collaborative modeling using variability models142

since enabling them to select or customize system features in order to be

involved in modeling tasks is not enough. Therefore, it becomes necessary

to provide users with different mechanisms that 1) empower them with more

expressiveness, and 2) provide them with integration mechanisms to describe

the system features that depend on them in order to obtain a unified system

description.

To address this, we propose to use in a novel way the variability

management facet that uses models for managing the variability of products in

a separate variability language, which was presented in Section 2.3. This facet

could provide our approach with mechanisms to create variation points (as

gaps to scope the participation of users), which can be described using models.

Therefore, this facet could provide our approach the following benefits:

• It could increase the expressiveness of users.

• It stresses the importance of the involvement of users by describing their

user-dependent properties using models rather than selecting features.

• It does not modify the structure of the modeling languages.

To support this facet, we choose the Common Variability Language (CVL)

[90] because it pursues OMG standardization of variability modeling and

management as we introduced in Chapter 2. Next, we present the current

practice of modeling variability with CVL, and our envisioned approach using

CVL.

Current practice of modeling variability with CVL:

CVL is based in the Base-Variation-Resolution approach (BVR-approach)

[150] which argues to define orthogonal variability models that apply to a

single base model.

The motivation of CVL is to separate variability modeling from the base

domain modeling. CVL is suitable for modeling variability of models in any

6.1. Supporting collaborative modeling using variability models143

base modeling language such as DSLs or UML. The CVL approach leaves

the base domain modeling to the modeling language while the variability

is treated with CVL (see Figure 6.1). This separation between the modeling

language and the variability language provides a good separation of variability

concerns. Thus, users who describe the base model can concentrate almost

exclusively on the modeling language.

Base
Model

Variation
Model

Resolution
model

Figure 6.1: Base-Variation-Resolution Approach

As illustrated in Figure 6.1, a CVL specification consists of one variation-

model that is applied to one base-model, and one or several resolution-models.

The variation-model defines a set of alternatives (variabilities) for model

fragments in the base-model. A fragment can be any arbitrary part of the

base model, including a set of elements and their relationships. Finally, the

resolution model determines the specific replacement choices for placements

of the variability-model.

Figure 6.2 shows the current practice of CVL in which the different

background colors highlight the CVL elements and the base model described

using a DSL that is focused on a domain (see DSLA in Figure 6.2). The

figure also shows the transformations that CVL provides in order to obtain

a Resolved model. The Resolved model is a DSLA model in which the

variabilities of the system has been fully described and all regular DSL tools

(such as code generation) can be used.

It is important to highlight that the model fragments that describe the

variabilities that could be identified in the base model are described using the

same modeling language in CVL (see DSLA in Figure 6.2).

6.1. Supporting collaborative modeling using variability models144

CVL

Execute CVL
transformations

DSLA

Resolved
model

Resolution
Model

Possible
variabilities

in the
system

Variation
Model

Generic and
standarized

The specific choices
for variabilities

Domain
model of a
particular
family of
system

Base
Model

Focused on
a domain

Base model fully
described.

All regular DSL
tools can be used

Figure 6.2: Modeling varibility with CVL

Our envisioned approach using CVL:

In our approach, we propose to use the variabilities that can be created in

CVL to determine which model fragments of the base model can be refined

using a different modeling language. Therefore, CVL provides our approach

mechanisms to address the issue of scoping the user-dependent participation,

which was identified in Chapter 4. Hence:

In our proposal, CVL is used in a novel way to specify

not only variabilities in the base model but also use these

variabilities to enable collaborative modeling from a different

modeling language.

Figure 6.3 depicts our envisioned proposal for supporting collaborative

6.1. Supporting collaborative modeling using variability models145

modeling from different modeling languages using CVL. The different back-

ground colors highlight the CVL elements and the two different modeling

languages. On the one hand, the left side of the figure shows the current

practice of modeling variability with CVL On the other hand, the right side

of Figure 6.3 shows a different DSL, which may be closer to a different type of

users (e.g., end-user) for supporting the collaborative modeling and involving

them in modeling tasks (see DSLB in the figure) by describing the variabilities.

Specifically, the description of commonalities is performed using the DSLA

whereas the description of the variabilities is performed using the DSLB. To

support this, our approach uses interoperability mechanisms that transforms

the description of variabilities from DSLB models to DSLA models. At the

end, the CVL transformations are executed to obtain a resolved model that

integrates system descriptions, which were made using a different modeling

language.

Therefore, our approach supports collaborative modeling to actively

involve and guide users in the specification of their user-dependent properties.

The main advantage of our approach using CVL is that it 1) scopes the user-

dependent participation by creating system variabilities, and 2) empowers the

description of system variabilities using a different modeling language, and 3)

integrates the description of the user-dependent properties to obtain a unified

system description.

Our proposal can be applied in different domains, so it can enable

collaborative modeling between models of existing modeling languages. To

support this, we have defined a sequence of steps to initialize and execute the

approach as well as supporting the construction of models in a collaborative

way. These steps are described in detail in the next sections.

6.2. The Medem method 146

CVL

Execute CVL
transformations

DSLA DSLB

Supporting collaborative modeling and
describing variabilities using a different

modeling language

Resolved
model

In
te

ro
pe

ra
bi

lit
y

m
ec

h
an

is
m

s

Base
Model

(variabilities)

Resolution
Model

Possible
variabilities

in the
system

Variation
Model

Generic and
standarized

The specific choices
for variabilities

Domain
model Base

Model
(commonalities)

Focused on
a domain

Model that unifies
system descriptions

from different
modeling languages

Closer to a
different

type of user

Closer
domain
model

Figure 6.3: Our envisioned proposal using CVL

6.2 The Medem method

To tackle the issues (scoping the user-dependent participation and specifying

user-dependent properties) that were identified in Chapter 4 to involve

users in modeling tasks, and the envisioned approach that was previously

presented, we propose the Medem method. Medem is comprised of two

main building blocks that support model interoperability by means of

model transformations, and variability management for enabling collaborative

modeling using a different modeling language in a non-intrusive way with the

structure of models.

Medem has 7 steps and it is divided into the specification of mechanisms

6.2. The Medem method 147

(specification phase) and the creation of models (execution phase). On the

one hand, the specification phase is performed by a Modeler expert (Steps 1-

3). On the other hand, the execution phase (Steps 4- 7) is performed between

a user (e.g., a software engineer) who defines gaps as variable model subsets

and another user (e.g., an end-user) who describes the gaps using a different

modeling language. Thus, an unified system description can be obtained.

Figure 6.4 provides a general overview of Medem by showing its steps,

involved artifacts and roles in the specification and execution phases. The

shaded artifacts serve to show how Medem extends the hybrid approach

for model transformations presented in Chapter 2 (non-shaded artifacts) by

integrating variability management in a novel way for enabling collaborative

modeling.

Extended Mb
editor

Extended Ma
editor

builds a partially
instantiated

model with gaps

Modeler Expert Usera Userb

Ma

Input, Modeler/User action

describes
the gaps

Fully instantiated

Specification Execution

Extend/s
the

editor/s

Mb Mb Mb

x

x

x

x

6

Input

MMa

designs

Weaving
Model

creates

1

2

4

translates
source

target 5

3

Ma
editor

source
resolves 7 target

Ma

x

x

x

x

Gap creation support

Transformation
rules

Gap description support
(optional)

Mb x x
x x

x

Mb
editor

MMb

Transformation output Model transformation step Variability management step

Figure 6.4: Steps of Medem during its specification and execution

Next, we describe each phase and step of Medem which each one is

indicated in the figure as a number.

6.3. The Specification Phase 148

6.3 The Specification Phase

The aim of this phase is the specification of mechanisms that support the

execution of Medem for enabling users to build models in a collaborative way.

To start with, the Modeler expert determines whether the input meta-models

(see MMa and MMb in Figure 6.4) of different modeling languages are able to

exchange model descriptions (interoperable). To do this, the Modeler expert

needs to: (1) be aware of the answer of questions such as [151]: Do the models

describe the same or different set of concerns? How are the models composed,

and what are the relationships to sub-models?, and (2) needs to overcome

interoperability challenges since some concepts could have heterogeneities.

In this context, the use of model transformations is the cornerstone [22, 23,

24] of solving the connection among models of different modeling languages.

As analyzed in the background in Section 2.2, this work is focused on a hybrid

approach for model transformations since it is the most followed by the most

adopted languages [22], and it becomes popular and useful tools in research

and industry [71]. Moreover, this hybrid approach is non-intrusive with the

structure of meta-models of the modeling approaches.

In this hybrid approach, the Modeler expert takes as input the meta-

models for defining a weaving model with specific mappings (corresponden-

ces). This weaving model is used as input to create the model transfor-

mations. Nevertheless, the definition of the specific mappings and model

transformations may present challenges to Modeler experts since structural

heterogeneities can be found among bridged concepts in internal properties

(such type, cardinality, etc.) and element relationships (such as inheritance).

Moreover, semantic heterogeneities can be found among the concepts of the

source and target meta-model (such as the target meta-model cannot always

represent all the information from the source). These heterogeneities may

6.3. The Specification Phase 149

prevent the appropriate mapping specification and avoid the exchange of

model descriptions between the modeling approaches.

Since the appearance of these challenges depend on the meta-models in

which our approach is going to be applied and there is existing works (such

as [76, 115]) that propose techniques to overcome structural and semantic

heterogeneities, a detailed description of how to tackle them falls out the

scope of the present work and relays on the Modeler expert knowledge.

In this work, the modeler expert determines as to whether or not are

heterogeneities between the source and target meta-model. If so, the modeler

expert determines whether the heterogeneities could be addressed by applying

existing modeling techniques or model transformations. By contrast, the

modeler expert determines that the heterogeneities cannot be addressed, so

the appropriate definition of both weaving model and model transformations

cannot be obtained. Therefore, the application of Medem is not feasible since

the interoperability between models of the two involved approaches is not

supported.

Moreover, the Modeler expert also determines the feasibility of Medem

by taking as input the editors (Ma editor and Mb editor) that enable the

creation of models, which correspond the MMa and MMb respectively, and

determines whether the Ma editor can be extended to support the creation of

gaps (variabilities) by selecting model elements. If the model editor is not able

to support the creation of gaps by selecting model elements, Medem could be

not feasible since it would be necessary that the user of the Ma editor creates

gaps using a generic tree-like model editor and the variability management

tool, which can be difficult for some users. By contrast, Medem is feasible.

Once the Modeler expert has determined that Medem is feasible, s/he

performs the steps of the Specification phase (see the specification column of

Figure 6.4): Step 1) designing a weaving model to link concepts between meta-

6.3. The Specification Phase 150

models, Step 2) obtaining model transformations according to the weaving

model, and Step 3) extending the model editors to support Medem. These

steps are described in detail below:

Step 1) Designing the weaving model. The weaving model is a model

that contains different kinds of relationships to link the fullset of meta-

model elements. To design the weaving model, we propose to use AMW

as argued in Chapter 4. AMW consists in defining a specific mapping

model (called weaving model) between the meta-modela and meta-

modelb (MMa and MMb, respectively). The weaving model provides

Medem with a bi-directional way to link elements of the meta-models

involved. In addition, the weaving model is non-intrusive with the meta-

models, so we do not need to modify the meta-models.

Step 2) Obtaining model transformations. The weaving model contains

abstract and declarative links that are used to produce the fullset of

model transformation rules. Transformation rules are used to enable

interoperability between the modela and modelb descriptions.

Note that according to [76] structural heterogeneities can be found

among bridged concepts in internal properties (such type, cardinality,

etc.) and element relationships (such as inheritance) and they can be

resolved with transformation rules.

Step 3) Extending the model editors. The Modeler Expert extends the

Ma editor for supporting the creation of gaps whether s/he determined

that the Ma editor can be extended. To do this, the Modeler Expert

implements an interface in this editor, which is explained in Chapter

7, to enable the creation of gaps (placement fragments in terms of

variability concepts) as modela elements that will be involved in a

substitution. The creation of gaps is carried out by selecting modela

6.3. The Specification Phase 151

elements. A gap is defined by an identifier and a set of boundary

elements that give the boundary between the gap and the rest of the

model. The storage of gaps is automatically carried out in a variability

model.

Although the Mb editor does not need to be extended, it can be a good

option in some scenarios. For instance, if Userb are end-users we may

need editors that guide them in the description of gaps. To support this

situation, specific tool support has been developed. It is explained in

Chapter 7.

CVL [97] proposes two main concepts to express variability: placement

fragment and replacement fragment. Table 6.1 shows the main Medem

concepts, the CVL concept that supports them, and a brief description.

Medem CVL Description

Gap list CVL model

The gap list contains the variabilities that

has been identified and it is stored in a CVL

variability model using an input modela (base

model). The CVL model indicates which gaps

must be described and how these gaps must be

involved and related to other elements of the

modela

Gap
Placement

fragment

Each gap described as variable in the base

model by the Usera is stored as placement

fragment in the CVL model

Gap description
Replacement

fragment
It contains model descriptions that fit in a gap

Table 6.1: Relation between Medem and CVL concepts

6.4. The Execution Phase 152

Therefore, CVL allows Medem to: (1) manage the placements of a

base system model; (2) manage the components that can fit into the

placements; (3) define a set of boundary points that give the boundary

between a placement and the rest of the model; and (4) express gaps

in a non-intrusive way with the structure of the ma and the mb models.

Moreover, CVL provides tool support to display CVL concepts (such as

placements) in a model editor. We identify each extended editor as the

Medem interface for modela or modelb (from now onwards the extended

modela or modelb editor).

At this point, the specification phase has finished and its artifacts (the

weaving model, model transformations and extended editors) are used in

the execution phase in order to automatically achieve collaborative modeling

from different modeling languages and obtain a unified system description.

Moreover, it is important to highlight that these artifacts are reused in

successive collaborative descriptions of the same modeling approaches.

6.4 The Execution Phase

In this phase, the Medem toolkit supports the creation of a fully instantiated

modela that integrates modelb descriptions in a transparent way for the users

of the modeling approaches.

For exemplifying the execution phase of Medem, we use two well-known

modeling techniques: Class Diagrams (CD) and Entity-Relationship (ER)

diagrams. We select these modeling techniques as example because their

concepts are well-know even though the prominent application of Medem is for

enabling the participation of users who may be actively involved in modeling

tasks of an existing MDD process using a different modeling language

(e.g., involving end-users in modeling tasks of an existing MDD process for

6.4. The Execution Phase 153

obtaining an unified system description of a smart home system [152]).

Figure 6.5 shows the CD-ER example that aims the involvement of two

domain experts who use different modeling languages, so they need work in a

collaborative way to obtain a unified description of the system. As modeling

domain, a simple warehouse information system is used. Next, we describe

the steps of the execution phase of Medem.

Step 4) Building the partially instantiated model with gaps. The

Usera reuses or builds from scratch a partially instantiated modela using

the extended modela editor. Next, the Usera creates gaps in the model

by selecting elements. Gaps will be described by the Userb using the

modelb editor. The gaps are marked as variable in the base system

model and they are automatically stored in the CVL model. Note that

we use partially instantiated to denote that gaps are not described yet

by a different user.

For example, Figure 6.5(1) depicts the CD model of the information

system that a CD user has built. Furthermore, the CD user has created

a gap to enable a different user (the ER user) to refine the description

of how the sales are stored in the information system. The gap is

represented in the figure by a grey square following the CVL concrete

syntax [90]. The creation of gaps by selecting model elements is enabled

in the extended Ma editor. How to extend this model editor is explained

in Chapter 7.

For each gap, CVL creates a set of boundary points in which a crossed

circle represents each one. Boundaries set the boundary between a gap

and the rest of the model. In this example, the gap has a boundary in

the Sale and Product classes.

Optionally in this step, the Usera can create replacement fragments

6.4. The Execution Phase 154

Supplier

ID : String

Place

ID : String

Sale

ID : String
amount: int
date: Date

Product

ID : String

Employee

ID : String

Seller

ID : String

Manager

ID : String

at

responsible

comprises

0..* 1..*

0..*

1

0..* 1

Part

price : int

Sale Product
ID

amount

date

ID

comprises
n n

has Part
ID

ID: string

price

Sale Product
ID

amount

date

ID

comprises
n n

has Part
ID

value

currency
includes

Coupon

ID

timeslot

amount

1

n

Supplier

ID : String

Place

ID : String

Sale

ID : String
amount: int
date: Date

Product

ID : String

Employee

ID : String

Seller

ID : String

Manager

ID : String

at

responsible

comprises

0..* 1..*

0..*

1

0..* 1

Part

value: int
currency: int

ID: string
Coupon

ID : String
timeslot: int
amount: int

(1) Step 4: CD User specifies a first version of the system and defines a gap for refinements by ER User

(2) Step 5: Gap of the CD model transformed (m2m) to ER model

(3) Step 6: ER User refines the model gap

(4) Step 7: ER model transformed (m2m) to fill the gap of the CD model

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

n

n

0..*

1

Figure 6.5: Example of collaborative modeling between class diagram model

descriptions and relationship model descriptions

6.4. The Execution Phase 155

(predefined descriptions) for each gap to provide users with a library

of components that help their involvement in modeling tasks and make

the participation of users easier according to the guidelines identified

in Section 5.2. To do this, model elements can be selected in the base

system model for creating a replacement fragment from this selection.

Step 5) Translating to support gap descriptions. The transformation

rules, that were created in the Step 2, takes as source the partially

instantiated modela to automatically translate the content of each gap

into a target modelb. Moreover, the elements involved as boundaries for

each gap are also translated for showing them using modelb concepts.

For example, once the CD user ends the creation of gaps, m2m

transformations are executed to translate each gap and its context (the

boundary model elements) to a ER model. Figure 6.5(2) depicts the

gap and its context transformed in a ER model that the ER user can

refine.

Step 6) Describing the gaps. The Userb refines the gaps using the Mb

editor or its extended version. The Mb editor stores each gap description

in a modelb transparently to the Userb. For example, Figure 6.5(3)

shows the refinements that the ER user has performed: a new entity to

manage coupons in sales and a refinement of the price attribute, which

has been changed to to store the value and currency (see the refinements

denoted by dotted blue lines in the Figure 6.5(3)).

Step 7) Obtaining the fully instantiated modela. A process automati-

cally resolves the gap descriptions into a resolution model, which is a

modela. Thus, this resolution model combines descriptions that have

been performed in Ma and Mb by the Usera and Userb respectively.

The process is made up of the following steps: 1) the transformation

6.5. Conclusions 156

rules takes as source each gap description in a modelb to automatically

translate it into a modela, 2) the variability model is updated to include

each gap description as a replacement fragment and create resolution

elements, and 3) an automated mapping provided by CVL transforms

the variability model into the resolution modela. The resolution model

uses the concepts of the base language (modela). Thus, the partially

instantiated modela that is taken as input at the beginning of the

process is enriched with modelb descriptions.

For example, once the ER user has finished the gap refinements, both

a m2m transformation from the ER model to the CD model and the

transformation that is provided by CVL are executed to obtain a fully

instantiated CD model. This fully instantiated model is shown in Figure

6.5(4) in which the gap is fulfilled according to its ER model description.

At this point, successive collaborative modeling descriptions can be

automatically supported by returning to Step 4. For example, the CD user

creates new gaps to enable the ER to refine the description of different

concerns of the system.

6.5 Conclusions

In this chapter, we have presented our Medem approach for supporting col-

laborative modeling from two different modeling languages using variability

models. To achieve this, we have described the steps that are necessary

in the specification and execution of Medem. These steps combine modeling

and variability techniques that achieve non-intrusive interoperability between

model descriptions of two different modeling languages. In addition, the

guidelines of the EUD literature that have been presented in previous chapters

can be followed to provide different types of users with a closer different

6.5. Conclusions 157

modeling language, whether there is no modeling language that fits the needs

of users of a concrete project.

To build the sequence of steps, we have tackled the issues that were

identified for involving users in MDD processes (scoping the user-dependent

participation and specifying user-dependent properties), we have overcome

the key and critical challenges that have been identified for achieving

collaborative modeling, and we have taken into account the lessons learned

in the collaborative modeling field. For example, one design decision that

has been applied is the use of variability management in a novel way to

specify not only variabilities in the base model but also, use these variabilities

to determine which model concerns have to be described with a different

modeling approach.

The main innovation of Medem is the combination of both variability

and modeling techniques to 1) scope the user-dependent participation by

describing gaps and completing them, and 2) reuse the Medem initialization

if new model descriptions are carried out. Furthermore, we believe that

using our model-driven and variability-based approach is a promising way

to integrate model descriptions that have been performed using a different

modeling language. This approach brings the following important benefits: 1)

users are able to participate in the modeling effort of an existing MDD process

using a modeling language that they are familiar with; 2) different modeling

languages are able to interoperate in order to obtain the full description of

a software system; 3) users can be focused on describing the concerns of

the software system that they are experts with rather than describe the

entire software system; 4) the structure of the modeling languages is not

modified, which promotes the application of the approach in existing modeling

languages; and 5) it could help to improve the adoption of MDD processes.

The next chapter shows the technological decisions to support the princi-

6.5. Conclusions 158

pal building blocks of Medem (interoperability and variability mechanisms).

Chapter 7

MEDEM TOOL SUPPORT

I
n this chapter, we describe the technological decisions that support

the principal building blocks of Medem (interoperability and variability

mechanisms) in order to create a toolkit that embeds the development of

these building blocks. Specifically, we have implemented a toolkit prototype

that entails a variability model to manage gaps, and a weaving model

and transformation rules to support model-to-model transformations. The

toolkit supports collaborative modeling from different modeling languages in

a transparent way once it is initialized at the beginning and this initialization

can be reused in different projects of the same modeling languages.

The technological decisions that support the toolkit are aligned with

current modeling standards and MDD-oriented technologies. Therefore, we

favor that researchers and practitioners apply our approach to other existing

modeling approaches. In particular, we have proposed MOF [63] meta-models

as stating point in our approach to support non-intrusive interoperability of

any DSL based on MOF and more specifically, the Eclipse implementation of

it (the Eclipse Modeling Framework (EMF) [153]).

Also, as stated in previous chapters, we have proposed CVL variability

160

Chapter 7. Medem Tool Support 161

models (a proposal sent by IBM, Thales, Fraunhofer FOKUS and TCS

for the Object Management Group) to support collaborative modeling. In

order to use our toolkit as is, it requires that the meta-models of the

modeling languages are defined using EMF, and the model editors store

model descriptions using XML Metadata Interchange (XMI). Moreover, it is

recommended that the Ma editor can be extended to implement an interface

that is provided by the CVL Tool for creating gaps by selecting model

elements. For further details on these technologies and the CVL Tool we

refer the reader to [153, 154, 155].

Figure 7.1 gives an overview of the technological decisions that support the

main building blocks of our approach. In addition, the figure shows how these

technological decisions are related to the steps (corresponding to the different

numbers shown in the figure) to specify and execute Medem. To support the

specification of model transformations between modela and modelb in Steps 1

and 2, the AMW and ATL eclipse plugins are proposed to be used. To extend

model editor in Step 3 for supporting variability, CVL and its associated tool

support is used. To manage CVL gaps and integrate them into a final model

in Steps 4-7, we use EMF model queries, m2m transformations, and a CVL

transformation. Steps 4 and 6 use model editors and do not need specific tool

support.

This chapter is structured as follows: Section 7.1 describes the technolog-

ical decisions for supporting model transformations in Steps 1-2 of Medem.

Section 7.2 shows the support of variability management in Step 3. Section

7.3 describes the mechanisms for supporting integration of models in Steps 5

and 7. Section 7.4 shows an example of usage integrating ER and CD model

descriptions. Finally, Section 7.5 concludes the chapter.

7.1. Supporting model transformations in Steps 1-2 162

Step supported using a model editor

To
ol

K
it

Transformed
Model Gap

Class Diagram editor
CVL-enabled

m2m

ATL
Transformation

Rules

ER Diagram editor

Meta-model
View

Model Gap

User A User B

EMF
Model
Query

 CVL
transformation

Refined
Model Gap

 Fully
instantiated

model

CVL variability
model

3

AMW
Weaving Model

1 2

4

5

6

7

Step with tool support defined

Figure 7.1: Overview of the technological decisions that support the steps of

Medem and how they are related

7.1 Supporting model transformations in Steps

1-2

For enabling the toolkit to support the model transformations, the weaving

model and transformation rules have to be provided by the Modeler expert in

Steps 1 and 2 of Medem (see 1 and 2 in Figure 7.1).

To create and handle the weaving model, we propose the use of the ATLAS

Model Weaver (AMW) [156] Eclipse plugin. The AMW tool provides a

set of standard facilities for the management of weaving models and meta-

models [22] such as an easy-to-use and intuitive editor for conforming models.

Specifically, this tool allows the Modeler expert to establish relationships

(i.e., links) between the Meta-Modela and the Meta-Modelb to store them

7.1. Supporting model transformations in Steps 1-2 163

in a model named weaving model. Moreover, we propose the ATLAS

Transformation Language (ATL) [157] for the development of the model

transformation according to the links of the weaving model. ATL is the

preferred option in the community [22], it is considered the facto standard

for the development of model transformations [39] and it is coupled with the

AMW tool.

Figure 7.2 shows a snapshot of a fragment of the weaving model to support

the CD-ER example that was described in the previous section. The left-

hand panel shows the meta-model concepts of the CD (represented in the

EMF tree-like editor) and the right-hand one shows the meta-model concepts

of the ER. The center panel shows the weaving model and the links among

concepts (correspondences) that were created by the Modeler expert.

Class Diagram
MM element

ER Diagram
MM element

Weaving model
correspondence

Figure 7.2: A fragment of the weaving model for the CD-ER example

Once the weaving model is designed, the AMW tool could interpret the

weaving model to transform the links of the weaving model into an executable

ATL transformation as output [76]. This output will be used by the toolkit

to enable interoperability between modela and modelb descriptions.

7.2. Supporting variability management in Step 3 164

7.2 Supporting variability management in Step

3

For supporting variability management, the Ma editor may be extended

to enable the automatic creation of gaps in the CVL variability model by

selecting modela elements. To formalize the creation and description of

gaps, we use concepts that CVL [155] proposes to express model variability

such as PlacementFragment (a set of base model elements that can be

replaced), ReplacementFragment (a set of model elements that will be used

as replacement for some placement fragment), and Boundary (model element

that represents the boundary between a placement fragment and the rest of

the base model).

For extending the Ma editor to create gaps, CVL provides tool support

that includes an API [155], which can be implemented in a base model editor

to become CVL enabled. In particular, the interface ICVLEnabledEditor

provided in the CVL API should be implemented [155] to obtain the CVL

enabled version of the Ma editor. The CVL editor interoperates with any

editor implementing this interface in which its meta-model is defined using

EMF (specifically, an ecore meta-model). In total the interface counts 4

operations. This interface allows getting and setting the base model elements

selected in the Ma editor as well as highlighting modela elements. The

selecting capabilities are used to both make selections and links to the modela

elements and build fragments from selections in the CVL variability model,

and the highlighting capabilities allow displaying the variability in the Ma

editor.

Once the Ma editor is CVL enabled, the resulting behavior for the user

consists of selecting the model elements that are going to be included in the

placement fragment, and choosing ”create placement fragment from selected”

7.2. Supporting variability management in Step 3 165

from right-click pop-up menu. This behavior is automatically achieved in

the Ma editor with the implementation of the CVL interface described above.

The PlacementFragment, the ReplacementFragment and the Boundary points

will be generated automatically in the CVL variability model. Whether the

Ma editor could not be CVL enabled, the CVL tool enables the creation of

the CVL variability model using a generic tree like model editor but this can

be difficult for Ma users, so the Modeler expert will determine its feasibility

as explained in the previous section.

By following the CD-ER example, the upper part of Figure 7.3 shows the

CVL-enabled editor to support the automatic creation of gaps by selecting

CD model elements and choosing ”create placement fragment from selected”

from right-click pop-up menu.

Supporting the optionally extension of the Mb editor

Although the Mb editor does not need to be extended, it can be a good option

in some scenarios (e.g., Usersb are end-users who need editors that guide them

in the description of gaps). Hence, specific tool support has been developed

to guide the description of gaps.

The Modeler expert could extend the Mb model editor by adding the

following areas: Components (shows a guide with all the placement fragments

of the variation model that should be described), Components personalization

(enables the description of placement fragment using mb concepts and

highlight the mb concepts that are boundaries), Information (helps with the

description of components), Library of components area (shows the available

replacement fragments for a placement fragment) to provide a library of

components as a starting point to refine a component. Thus, a placement

fragment can be refined with a replacement fragment from the library of

components in the extended Mb editor, or it can be refined using mb concepts.

7.2. Supporting variability management in Step 3 166

CVL Variability model

Class Diagram editor

CVL-enabled

CD User

Figure 7.3: Snapshot of CVL variability model once a gap is automatically

created by selecting model elements in the CD editor

To fulfill the Components, Information, and Library of components areas,

we use the EMF Model Query framework (EMFMQ) [158]. To complete the

components area, we use the EMF Model Query framework (EMFMQ) [158].

7.2. Supporting variability management in Step 3 167

EMFMQ provides an API to construct and execute query statements in a

SQL-like fashion as follows:

1 SELECT

2 FROM modelElements

3 WHERE condition

These query statements are included in the toolkit for discovering and

modifying model elements. Queries are first constructed with their query

clauses and then they are ready to be executed. There are two query

statements available: SELECT and UPDATE. The SELECT statement pro-

vides querying without modification while the UPDATE statement provides

querying with modification. Every query statement requires some query

clauses. The SELECT statement requires two clauses, a FROM and a

WHERE. For example, we initialize the Components area of the extended

modelb editor by executing a domain-independent query that we have

implemented [152] using EMFMQ, which is for selecting all the placement

fragments of a given resource (the CVL variability model).

At this point, it is also worth pointing out the importance of integrating

model validation mechanisms in the toolkit since we detected some problems

during gap descriptions (i.e., gap descriptions do not fit the boundaries

in the variability model and a component is described in a gap that was

already described). To address this, the toolkit executes a set of EMF Model

Queries in gap descriptions, the weaving model, and the partially and fully

instantiated modela to show the result in the Information component that

could be added within this extension of the Mb editor. For example, we

define a rule that checks if gap descriptions satisfy the boundary elements in

the CVL model. If some modelb description does not satisfy the boundaries

elements, a message is shown in the modelb extended editor such as: “The

modelb concept has to be included in the description of the component name”.

7.3. Supporting integration of models in Steps 5 and 7 168

7.3 Supporting integration of models in Steps

5 and 7

In Step 5, the toolkit executes for each gap the ATL model transformation

to obtain a Mb model that the Userb could refine. Specifically, the toolkit

manages both the CVL variability model using the CVL tool support and the

model transformations to transform the gaps from one modeling language to

another.

In addition, we defined generic model queries in the toolkit to obtain

information of the CVL variability model (i.e., a list with the gaps that

should be described). For example, the select statement to get the list of

the PlacementFragments of the CVL variability model is as follows:

1 SELECT statement =

2 new SELECT(

3 new FROM(resource.getContents ()),

4 new WHERE(new EObjectTypeRelationCondition(

5 CvlPackage.Literals.PLACEMENT_FRAGMENT ,

6 TypeRelation.SAMETYPE_OR_SUBTYPE_LITERAL));

In Step 7 of Medem, the toolkit transforms each refined Mb model to a Ma

model and updates the CVL variability model to obtain the fully instantiated

model, which combines descriptions obtained from the both editors. In

particular, it performs the following as described in the previous section: 1)

translates the modelb concepts into modela concepts using the transformation

rules, 2) stores the information in the variability model using EMFMQ update

queries, and 3) executes a CVL transformation to obtain the resolution model.

For example, we have implemented an update statement by using

EMFMQ to update a replacement named ReplacementFragment1 to store

the descriptions (ElementsFromDescription1) in a given resource (the CVL

7.4. Example of usage: integrating ER and CD model descriptions169

variability model). The update query is as follows:

1 UPDATE statement =

2 new UPDATE(

3 new FROM(resource.getEObjects ()),

4 new WHERE(new EObjectAttributeValueCondition(

5 CvlPackage.eINSTANCE.getCVLNamedElement_Name (),

6 new StringValue(ReplacementFragment1))),

7 new SetRFragment(ElementsFromDescription1));

Figure 7.4 shows a snapshot of the Medem toolkit once it completes a gap

description (e.g., how the sales are stored in the information system) in the

CVL variability model using model transformations and update EMF model

queries. In particular, the figure shows a subset of the CVL variability model

that has one gap (the red square icon), a gap description (blue and red icon),

and a resolution element (green icon) that links the gap with its description.

Moreover, the figure shows the Medem toolkit log that shows information

throughout the process (such as the elements that were obtained using the

EMF model queries).

Once the refinements of gaps has been finished, the fully instantiated

model (the resolution model in terms of CVL concepts) is obtained as a result

taking the CVL variability model as input and using the CVL resolution

model generator [97]

7.4 Example of usage: integrating ER and CD

model descriptions

For executing and using the toolkit (Steps 4-7 of Medem), the Modeler expert

has to provide both the weaving model and the ATL model transformation

previously described. Then, the toolkit automatically supports collaborative

7.4. Example of usage: integrating ER and CD model descriptions170

Medem toolkit log

Variability model

Placement fragment
(gap)

Replacement
fragment

(gap description)

Resolution
element

Figure 7.4: Snapshot of the Medem toolkit prototype

modeling descriptions by creating (Step 4) and describing gaps (Step 6) from

a different modeling language.

By following the CD-ER example, the lower half of Figure 7.3 shows a

snapshot of the CVL variability model with the PlacementFragment (the red

square icon) with its boundaries (arrow icons) that has been automatically

created once the CD user selected model elements in the CVL-enabled Class

Diagram editor in order to allow a different user (the ER user) to refine the

description of how the sales are stored in the information system.

After, the toolkit automatically provides the ER user with a ER model

for each gap to enable its refinement. Once the ER user has finished the

7.4. Example of usage: integrating ER and CD model descriptions171

Subset of the fully instantiated CD model

CVL Variability model

Gap refined using a ER model

CD model that
integrates the
refinements of

ER models

Toolkit support

Figure 7.5: Integrating ER and CD model descriptions

refinement of ER models (see an example of gap refined using a ER model

in the upper half of Figure 7.5), the toolkit automatically follows the process

that was described in Step 7 to automatically obtain a fully CD model that

7.5. Conclusions 172

integrates the refinements of ER models as the lower half of Figure 7.5 shows.

Finally, we would like to highlight that the toolkit automatically reuses

the weaving model and the ATL transformation in successive collaborative

descriptions, which comprise meta-model concepts that have already been

used. For example, the ER user could change the attributes of the Coupon

entity that is shown in the upper half of Figure 7.5 in successive collaborative

modeling descriptions. In that case, the toolkit will automatically support

that change without requiring the Modeler expert to define correspondences

again.

7.5 Conclusions

In this chapter, we have presented the technological decisions to support

our Medem approach. The technological decisions that support the main

building blocks of our approach (collaborative modeling and interoperability

mechanisms) are aligned with current modeling standards and MDD-oriented

technologies such as MOF meta-models and CVL variability models.

The main advantage of our Medem approach using CVL is to empower

users as an active role in the modeling effort of the system properties that

depend on them using a different modeling language that fits their context

and needs. Therefore, Medem offers a balance between keeping the properties

of ma models and having the flexibility to describe properties using mb models.

Medem also uses an API to build and execute query statements for discovering

and modifying elements of both the weaving model and the CVL variability

model. We would emphasize that both the weaving model and the CVL

variability model are non-intrusive with the meta-models of the modeling

languages.

Although our approach automatically supports collaborative modeling

7.5. Conclusions 173

descriptions in a transparent way for users once it is specified, the specification

of the approach by the modeler expert may require the most time and effort.

On the one hand, selecting the proper modeling approaches among the broad

variety, especially if it is not available an existing modeling approach that

both fits the project goals and is closer to the users that may be involved.

On the other hand, we have detected that the first three steps of Medem

(designing the weaving model, obtaining the model transformations and

extending the model editors) could require more time than the remaining

steps of Medem. However, this phase is reusable even though users change

model descriptions or create new ones. Moreover, this initial time could be

reduced using existing approaches such as [76] to accelerate the development

time of the weaving model and model transformations.

Since the technological decisions that support the toolkit are aligned with

current modeling standards and MDD-oriented technologies, researchers and

practitioners will be more inclined to apply our proposal to other existing

modeling approaches. Nevertheless, we believe that these decisions could

present some limitations in the application of our approach in some cases

(e.g., users that use a language that is not based on MOF, or some required

inputs to apply our approach such as the Ecore meta-models of the involved

modeling approaches are not provided).

The next chapter shows the application of Medem in three case studies of

different domains in order to evaluate their applicability and feasibility.

Chapter 8

EVALUATION OF THE PROPOSAL

This chapter describes the application of our proposal in practice for

evaluating its applicability and feasibility. Medem was applied in

three case studies of different domains (smart home systems, web information

systems, or biomechanical protocols) that show the necessity of enabling

different types of users (end-users and software professionals; domain experts

and software development experts; and doctors and biomedical engineers,

respectively) to collaborate in modeling tasks.

In order to perform the case studies, we follow the guidelines provided by

Runeson and Höst [126]. Thus, we design and plan the three case studies in

which each one takes as input an existing MDD process of a different domain

that does not involve different types of users in modeling tasks even though

they should be actively involved in the description of domain-specific content.

For each case study, we present its highlights and its applicability of

Medem. In particular, we describe for each case study the following: 1)

why Medem was applied, 2) the involved DSLs and a snapshot to provide an

overview, 3) an example of a correspondence designed in the weaving model

to show an example of transformation between concepts in the case study.

174

8.1. PervML - Pantagruel Case Study 175

Finally, we conclude by discussing the results. The results have proven

the applicability and feasibility of our approach in a non-intrusive way with

the structure of models of existing MDD processes. In addition, the results

serve to discuss not only the advantages of Medem but also, its drawbacks

and future improvements.

This chapter is structured as follows: Section 8.1 presents the case study

of smart home systems. Section 8.2 shows the case study of web information

systems. Section 8.3 describes the case study of biomechanical protocols.

Finally, Section 8.4 discusses the main conclusions of the results obtained

from the application of the three case studies.

8.1 PervML - Pantagruel Case Study

We evaluated our method by applying it in an existing MDD process that

address the development of pervasive systems [152]. As was introduced in

Chapter 5, this process is PervML and provides a DSL that is focused on

specifying heterogeneous services in concrete physical environments such as

the services of a smart home. PervML has been successfully applied to develop

solutions in the smart home domain [99]. The main characteristics of PervML

are the following:

• The services, devices, and locations of the smart home are described

using a graphical syntax based on UML.

• The service and device behaviors are specified using the Action Semantic

Language (ASL).

• The triggers of the services are specified using the Object Constraint

Language (OCL).

8.1. PervML - Pantagruel Case Study 176

• Six models are required to specify the above information. More detailed

information about these models can be found in [99].

Although the configuration of the smart home system relies on end-users’

descriptions, end-users cannot participate in the description of their smart

home system because end-users lack the skills to manage the technologies that

PervML uses (i.e., ASL, OCL, or UML) and describe the smart home system

using concepts that end-users are not familiar with (i.e., component, trigger,

interaction, or binding provider) in different models. For example, the upper

half of Figure 8.1 shows a snapshot of six PervML models that are required

to describe a smart home. These models describe services (i.e., comfort and

security services), devices (i.e., alarm and presence detector devices), and the

location of the services and devices (i.e., living room, bedroom locations) of

the smart home. These models not only describe the smart home services but

also the available devices, operations and behavior.

As end-users need a language that uses concepts familiar for them in

order to collaborate in the PervML modeling phase, we apply Medem. Thus,

the smart home system description is completed using model descriptions

of another existing DSL called Pantagruel [159]. Pantagruel integrates an

end-user oriented language to describe a pervasive environment following a

sensor-controller-actuator development paradigm. This paradigm improves

the usability of non-professional participants according to the studies assessed

in [159]. Pantagruel offers users the following:

• Expressiveness to describe the events of the smart home system.

• Improvements in the development process using its visual programming

language. This is due to the representation of objects using spatial

relationships. Pantagruel offers a spatial structure of entities, rules,

sensors, and actuators that could be customized.

8.1. PervML - Pantagruel Case Study 177

• Improvements in the abstract and concrete syntax with regard to

PervML. For example, two concepts of PervML are: Device and

Service. By contrast, Pantagruel does not have the concept of Service.

Pantagruel links devices that can work as a sensor or actuator to design

the events of the system. These links are made by means of visual

representations. This makes Pantagruel more intuitive for users than

PervML (i.e., sequence diagrams are used in PervML to design the

events of the system).

Therefore, we apply the steps of Medem to support collaborative modeling

between PervML and Pantagruel.

First of all, the Modeler expert designs the weaving model to bridge all

the PervML and Pantagruel concepts (Step 1 of Medem). The PervML

meta-model has about 67 elements among meta-classes, classes and attributes

and the Pantagruel meta-model has about 28 elements. These meta-models

are taken as input to design correspondences in the weaving model. For

example, the weaving model bridges the (Device, Service, and Trigger)

PervML concepts and the Sensor Pantagruel concept. Note that, there

are Pantagruel concepts that have multiple correspondences with PervML

concepts and vice versa. After, the Modeler expert obtains the transformation

rules according to the weaving model (Step 2 of Medem).

Next, the Modeler expert extends the PervML and Pantagruel editors to

support the gap creation and description, respectively (Step 3 of Medem).

Then, the execution phase of our approach starts and the PervML analyst

builds a partially instantiated PervML model (Step 4 of Medem) with gaps

(i.e., a gap to allow end-users to describe how the comfort service in the

parents room works). These gaps are translated (Step 5 of Medem) to be

completed by end-users in the Medem extended editor for Pantagruel (Step

6 of Medem) as the snapshot of the lower half of Figure 8.1 shows (i.e., the

8.1. PervML - Pantagruel Case Study 178

ParentsRoom comfort gap is described to set the blinds of the parents room

to the middle position, switch off the garden lights, and set air conditioning

temperature to 20 when the activator of the parents room is enabled). Once

end-users complete the descriptions of gaps, the Medem toolkit automatically

translates Pantagruel model descriptions to PervML descriptions (Step 7 of

Medem) to resolve a fully PervML instantiated model.

The result was that end-users can actively participate in the description

of concerns of their smart home, and their descriptions were integrated to

obtain a unified system description in PervML models. Thus, the end-users’

involvement that Medem provided does not force to end-users neither manage

the 6 different PervML models that describe a smart home system nor have

knowledge about the technologies required to manage these models.

Therefore, as the application of Medem combined two existing modeling

languages in a non-intrusive way to obtain a common system description,

it not only inherited their advantages (i.e., the expressiveness that the

Pantagruel provides to end-users) but also, it added the following advantages:

(1) the PervML models were not only designed by the software professionals,

the PervML models were also enriched by the end-users; and (2) end-

users were provided with examples that help them in their involvement and

organization of their descriptions.

In the application of this case study, we detected that the gaps that

software professionals created in PervML to involve end-users in modeling

tasks seek to orchestrate different services in order to fit end-users’ preferences

and they are not involved in the description of other concerns of the

system (i.e., how the devices and operations work). For this reason, it

was not necessary the fullset of correspondences in the weaving model and

transformation rules that were provided at the beginning by the Modeler

expert. The Modeler expert should be provided with mechanisms that

8.1. PervML - Pantagruel Case Study 179

B) Medem extended editor for Pantagruel

A) PervML

Figure 8.1: Snapshots of PervML and Pantagruel

optimize the creation of the weaving model and transformation rules since

they required the most Modeler expert ’s effort and time.

8.2. UIM - Sketcher Case Study 180

Finally, we have detected that the Modeler expert required more effort to

apply Medem whether the role (end-users in this case study) does not have a

closer modeling language to be involved in modeling tasks of an existing MDD

process (PervML in this case study). In that case, the Modeler expert needs to

select a proper modeling language for that role, which increases the required

effort of the Modeler expert. Specially, if the modeling language cannot be

reused and it has to be designed from the scratch. Although the selection or

design of a proper modeling language could require an important effort of the

Modeler expert, it could be worth in the execution since a role with different

skills is actively involved in modeling tasks of an existing modeling approach,

which creates a sense of ownership of the process that makes results more

difficult to reject in the future [5].

8.2 UIM - Sketcher Case Study

We applied Medem in two existing MDD processes of the Valencian Re-

gional Ministry of Infrastructure, which are called User Interface Modeler

(UIM) [160] and Sketcher [161] [162]. These approaches are focused on the

development of web information systems.

UIM supports organization’ needs on web information systems (e.g, online

procedures that citizens may complete to request subventions, grants, etc.).

In particular, UIM allows software development experts to specify interfaces

and how they are related in an abstract way with the information system.

UIM uses concepts in its models such as ClassView, Visualization Set, Filters,

Patterns and Package Unit Interaction, so the use of UIM may be complex

and it requires that software development experts spend time in learning

the modeling language. The upper half of Figure 8.2 shows a snapshot of

different UIM models from the UIM editor. Specifically, the figure shows a

8.2. UIM - Sketcher Case Study 181

subset of UIM models that specify a web interface to allow citizens to manage

car licenses. Although UIM use visual elements, its complexity is mainly

related to the concepts (which are not familiar for non-software development

experts) and the navigability among models (e.g. the InformationIU concept

is described with a different model that uses distinct concepts such as

visualizationSet or classView).

A) UIM models

B) Sketcher model

«VS» VisualizationSet1

«CV» Driver

name

id

address

add

remove

update

«CV» License

type

currentDate

expirationDate

«F» SDriver

«F» SLicense

hashas

View1

CitizenAnonymous
Worker

View2 View3

Figure 8.2: Snapshots of UIM and Sketcher

In the organization, software development experts use UIM to develop

web information systems but they also need to collaborate with domain

experts in documentation. Domain experts in documentation are in charge

of designing user interfaces because they know the information that citizens

8.2. UIM - Sketcher Case Study 182

have to complete to carry out the organization’ procedures. However, domain

experts do not use UIM as software development experts do, domain experts

use Sketcher to express the initial representation of user interfaces in a

closer way since Sketcher is based on the standard notation of sketching

tools, which favors the users’ validation in early stages of development.

This situation forces software development experts to manage all Sketcher

model descriptions in order to translate and integrate them in UIM models.

Therefore, we applied Medem in UIM and Sketcher to enable collaborative

modeling between software development and domain experts.

To apply Medem as we previously described, the Modeler expert designs

the weaving model and transformation rules to bridge all the UIM and

Sketcher concepts. The UIM meta-model has about 65 elements and

the Sketcher meta-model has about 41 elements. These meta-models are

taken as input by the Modeler expert to design correspondences in the

weaving model. For example, the weaving model bridges the (ClassView

and VisibleAttribute) UIM concepts and the Input/Output Widget Sketcher

concepts. Next, the Modeler expert extends the UIM editor to support the

gap creation and description, respectively. Then, the software development

expert builds a partially instantiated UIM model with gaps (i.e., the

EditableInformationView gap to allow domain experts to describe the

web form that citizens may complete to renew their car license). These

gaps are translated to be completed by domain experts in the Sketcher

editor as the snapshot of the lower half of Figure 8.2 shows (i.e., the

EditableInformationView gap is described to include in the web form

some tags and Input widgets). Once the domain expert completes the

descriptions of gaps, the Medem toolkit automatically translates Sketcher

model descriptions to UIM descriptions to resolve a fully UIM instantiated

model that integrates descriptions of both software development experts and

8.2. UIM - Sketcher Case Study 183

domain experts.

Once Medem was applied in UIM and Sketcher, we consider that Medem

provided the main following advantages: (1) software development experts

were not forced to integrate themselves descriptions from Sketcher models

to existing UIM models since the Medem toolkit automatically obtains a

fully instantiated UIM model with descriptions from the Sketcher model;

and (2) the variability model avoided isolation features in the Sketcher-UIM

integration because it keeps the relation with each concern that Sketcher

description fulfills and the elements of the UIM model.

At the end, we also detected in this case study that the initialization phase

of Medem using the toolkit (designing the weaving model, obtaining the model

transformations and extending the model editor) may require more time than

the remaining steps of Medem. However, this phase is reusable even though

domain experts change model descriptions or software development experts

create new gaps.

Moreover, we detected a problem that appears in the transformation that

the toolkit automatically carries out if Sketcher descriptions cause a conflict

with UIM descriptions. For example, the same component is already used

in UIM descriptions, or the same component is used to different purposes

(e.g., the software development expert designs a field named ID in UIM to

request the user the personal identification number, whereas the domain

experts adds a ID field in Sketcher to request the user the license plate). This

problem triggered the extension of the Medem toolkit to show an information

message in the extended Mb editor (the Sketcher editor in this case study) if

this conflict occurs after gap descriptions are transformed. To achieve this,

we defined a set of rules and we also use EMF Model queries between gap

descriptions and the ma model.

8.3. Bioengineering Kinematic - Medical Protocol Case Study 184

8.3 Bioengineering Kinematic - Medical Proto-

col Case Study

We applied Medem to overcome the dependence on using new technology

between biomedical engineers and doctors of a local hospital [163]. The

local hospital provides equipment that is made of cameras, and sensors to

track patients’ movements. It also provides commercial tools named Capture,

Tracker, and Analyzer [164] (from now onward Bioengineering Kinematic)

to describe and analyze biomechanical protocols. Biomechanical protocols

are used to measure performances and identify changes in human body

movements and muscles (i.e., a movement produces pain or not in patients).

For example, a measure that can be obtained from a movement is the range of

motion. It provides the maximum degrees that are achieved in a movement.

To specify this in the tool, the biomedical engineer requires knowledge

about (1) how this measure can be obtained, and (2) how to combine and use

the operators that the tool provides. In short, many operators are required in

the tool to get the range of motion of a movement such as: the interpolation of

the points involved, the application of several functions (in order to calculate

vectors, angles, midpoints, constants of the points involved), the creation of

1D plains, and events to measure the range of motion by using the functions

that are previously created. The upper half of Figure 8.3 illustrates some

operators used in the tool to define the biomechanical protocol for shoulder,

which can be set to be repeated several times to detect differences. This

protocol is focused on analyzing data of four existing shoulder movements:

flexion, extension, abduction, and adduction. In particular, the figure shows

a subset of the 93 operators and 128 variables that are need to analyze the

biomechanical protocol and get a report.

Although Bioengineering Kinematic provides advantages for the patient,

8.3. Bioengineering Kinematic - Medical Protocol Case Study 185

A) Bioengineering Kinematic Analyzer Language

Zoom

B) Medem extended editor for Medical Protocols

Catalog

Wizard

Protocol
description

Figure 8.3: Snapshots of Bioengineering Kinematic Analyzer and Medical

Protocol

doctors do not use them due to the complexity, so they depend on biomedical

engineers. This is because the tools use concepts that doctors are not familiar

with (such as projections, vectors, or signals) while doctors use different

concepts according to their medical activity (such as series, movements, or

8.3. Bioengineering Kinematic - Medical Protocol Case Study 186

muscles). As a result, biomedical engineers carry out the descriptions of

biomechanical protocols according to the doctors’ descriptions. This causes

a tedious process between doctors and biomedical engineers that could be

solved if doctors themselves describe the protocols because doctors are who

best know both the protocols they would like to analyze and the information

that the report should include to each patient. To tackle this, we apply

Medem to enable collaborative modeling between biomechanical engineers

and doctors.

To start with, we designed a DSL named Medical Protocol [163] since,

to the best of our knowledge, there is no an existing DSL that fits the

concepts of biomechanical protocols. Figure 8.4 shows the main concepts of

the DSL. The DSL includes: (1) the concepts that doctors are familiar with

(see the upper side of the figure), (2) the concepts that support movement

and muscle measures (see the dashed blue boxes in the middle side of the

figure), and (3) the concepts that allow doctors to design reports according

to their preferences (see the dotted red boxes in the bottom side of the figure).

Figure 8.4 also shows how the DSL concepts are related. A brief

description of the main concepts is as follows:

• Protocol. It is the root concept to measure performances in series of

human body movements. It has to be mainly related to a Patient.

• Series. It is composed by one or more movements, which can be

repeated one or more times.

• Movement. It represents a movement that can be performed by

patients. At the moment, doctors are focused on analyzing knee and

shoulder movements, so we specialize Movement in Knee and Shoulder.

Moreover, we specialize each one with the available existing movements.

Shoulder is mainly specialized in Flexion, Extension, Abduction, and

8.3. Bioengineering Kinematic - Medical Protocol Case Study 187

Adduction. Knee is mainly specialized in Flexion and Extension. Each

movement can be repeated one or more times, and it involves one or

more muscles.

• Muscle. It expresses the muscles that can be analyzed in a movement.

• Measure. It represents measures that can be obtained by analyzing

Muscle or Movement data.

• Movement Measure. It is related to the movement that analyzes.

Moreover, we analyze the data that is usually measured in a move-

ment and we specialize Movement Measure to represent the available

measures such as angle, velocity and frequency.

• Muscle Measure. It is related to the muscle that analyzes. Moreover,

we also analyze the data that is usually measured in a muscle and we

specialize Muscle Measure to represent the available measures such as

frequency and RMS (Root Mean Square used to analyze the fatigue).

• Report. It expresses the report that doctors should design to review

the output data for the selected measures using plots and tables.

• Plot. It represents data about a measure of a muscle or movement.

• Table. It represents data about measure of a muscle or movement. A

table is composed by one or several rows (each row is represented with

the RowData concept).

Thus, these concepts provide expressiveness to doctors using concepts they are

familiar with rather than force them to learn how to specify each movement

and measure using the concepts of the existing Analyzer tool.

Regarding to the DSL view, it follows the guidelines and design decisions

that were identified in Chapter 4 to involve users in modeling tasks. We

8.3. Bioengineering Kinematic - Medical Protocol Case Study 188

Protocol Series Movement

Patient

Muscle

Shoulder Knee

Flexion ExtensionFlexion Abduction

Measure

Movement
Measure

Muscle
Measure

Angle Velocity Frequency RMS

Data

Report

RowData

Plot

Table

… …

next

… …

Figure 8.4: The Medical Protocol meta-model

design the DSL view by taking two main design decisions: (1) a catalog of

movements and measures, and (2) a wizard. The description of each one and

how they are shown is as follows:

A catalog of movements and measures. We decide to design a catalog

8.3. Bioengineering Kinematic - Medical Protocol Case Study 189

of movements and measures to overcome the design barrier that we

detected in this case study by following the design suggestion proposed

by Ko et al. [165]. In addition, we detect that a catalog perfectly fits

in the description of biomechanical protocols because we notice that

doctors use (1) the same kind of movements (doctors do not create

body movements, they use the existing ones), (2) the same muscles are

involved in a specific movement, and (3) the same measures can be

analyzed in different protocols.

The view of the catalog is different for Movements and Measures. Each

Movement is shown as a box with a representative image, name, and

the property to set the number of repetitions (the number of repetitions

by default is one). Each Measure is displayed using a tree as [166]

recommends in a different view to design the report. The tree has two

main nodes: Movements and Muscles, which are used to represent the

available measures. Each item of the tree includes the measure name

and a brief description.

A wizard. We decide to include a wizard to overcome the selection and use

barriers by following the Welie et al. [166] recommendation. The wizard

helps doctors to describe a protocol since several decisions need to be

made. In the wizard, we design five steps that doctors should follow

to describe a protocol. In addition, we use navigation buttons to guide

doctors among the steps. The steps of the wizard are the following:

1. The protocol creation. It allows doctors to create a new

protocol description by setting a name to identify it and selecting

the body part to analyze (shoulder or knee). For example, a doctor

creates a new protocol named Right shoulder protocol and selects

shoulder as body part.

8.3. Bioengineering Kinematic - Medical Protocol Case Study 190

2. The series description. It allows doctors to select the move-

ments that describes a series of movements. The available

movements are shown from the catalog according to the body part

selected in the previous step. For example, the series are specified

to be repeated once and it is made up of four movements (flexion,

extension, abduction, and adduction). Each movement is specified

to be repeated four times.

3. The report definition. It allows doctors to design the elements

(plots and tables) that the report should include. For example,

the report of this protocol includes a table. For each row, an angle

movement measure is selected for each movement.

4. The patient selection. It allows doctors to relate the protocol

that has just been described for a patient. Thus, the patient can

perform the movements according to doctors’ descriptions.

5. The protocol storage. It allows doctors to store the protocol.

The view of this is just a button. However, we would like to

highlight the importance of this step because of it depends that

the protocol is stored using the DSL concepts and transformed into

concepts of the existing Analyzer tool.

We implement an interface prototype according to the DSL view presented

above. The lower half of Figure 8.3 shows a snapshot of the interface

prototype of The Series Description step. Specifically, the figure shows (1)

the head and navigation buttons (see the upper side of the snapshot); (2) the

catalog of movements for shoulder (see the middle side of the snapshot); (3)

the area to describe and set the series of movements and repetitions by using

drag and drop from the catalog, and selection for the number of repetitions

for each movement (as the snapshot shows, the series of movements is made

8.3. Bioengineering Kinematic - Medical Protocol Case Study 191

up of four movements and each one has set 4 repetitions);

After the Medical Protocol DSL and interface are created, the Modeler

expert applies Medem by designing the weaving model and transformation

rules to bridge all the Bioengineering Kinematic and Medical Protocol con-

cepts (Step 1 and 2). The Bioengineering Kinematic meta-model has about

118 elements among meta-classes, classes and attributes and the Medical

Protocol meta-model has about 51 elements. For example, the weaving

model bridges the (Projection, Angle, Vector, and Constant) Bioengineering

Kinematic concepts and the Flexion Medical Protocol concept.

Next, the biomedical engineer builds a partially instantiated Bioengineer-

ing Kinematic model (Step 4 of Medem) with gaps (i.e., a gap to allow

doctors to describe protocol with a series of patient’s movements for shoulder).

These gaps are translated (Step 5 of Medem) to be completed by doctors

in the Medem extended editor for Medical Protocol (Step 6 of Medem) as

the snapshot of the lower half of Figure 8.3 shows (i.e., the movements

of the protocol are made up of a series with four different movements:

abduction, flexion, extension, and abduction). Note that the snapshot shows

the view that allows doctors to set the movements of the protocol. Further

information about the DSL view and the remaining steps of the wizard can be

found in [163]. Finally, the Medem toolkit automatically translates Medical

Protocol model descriptions to Bioengineering Kinematic descriptions (Step

7 of Medem) to resolve a fully instantiated Bioengineering Kinematic model.

As a result, the application of Medem in this case study required more

Modeler expert’s effort than the other case studies (i.e., it was also necessary

to built both the Medical Protocol DSL and its editor). Nevertheless,

the application of Medem overcomes the barriers that doctors had with

the Bioengineering Kinematic tool, so the Modeler Expert effort in the

specification is worth in the execution by providing the following main

8.4. Conclusions 192

advantages: (1) doctors are able to carry out themselves descriptions

of biomechanical protocols, (2) doctors manage less concepts, and (3)

movements and measures are reused for each protocol rather than force

doctors to describe them from scratch.

8.4 Conclusions

In this chapter, we conclude by discussing the results of the validation of this

thesis proposal (Medem) in the three case studies that have been presented.

Overall, the application of Medem in existing modeling approaches reveals

positive results regarding its applicability and feasibility. We therefore believe

that the application of Medem in different domains provides representative

results to indicate that it could be applied for involving users in modeling

tasks of other MDD processes. Next, we discuss the advantages of Medem,

its drawbacks and future improvements.

With regard to the advantages, Medem actively involves different types of

users in modeling tasks of an existing MDD process using a closer modeling

language for them, which helps those users in the description of domain

specific content [7] by do not force them to use different modeling primitives

to actively participate in a modeling project [8]. Furthermore, Medem

integrates users’ descriptions to obtain a unified system description. Thus,

Medem lowers the barrier of users in MDD approaches, which promotes the

universally adoption of MDD [1]. Moreover, Medem provides collaborative

modeling mechanisms to delimit the concerns of the system in which users

may participate, which guides users to be focused on the concerns of the

system that they may collaborate rather than be focused on the description

of the full system [5, 13]. In addition, Medem exchanges model descriptions

between different modeling languages using interoperability mechanisms that

8.4. Conclusions 193

are non-intrusive with the structure of such models, which promotes the

application of the approach in existing MDD processes. All in all, the users,

who were involved in the case studies, expressed by means of interviews and

thinking aloud the usefulness of the approach since Medem enables them to

actively collaborate in the description of concerns by using concepts that they

are familiar with. Even though the users expressed that it would be useful

for them that the tool provides them feedback using information messages

(e.g., users might like to know whether there are some conflicts or errors in

the system due to their descriptions), users expressed their satisfaction with

Medem due to the guidance throughout the description of concerns since the

tool only requested to describe those concerns of the system that rely on

them.

With regard to the drawbacks, we detect that the specification phase of

Medem requires the most-time consuming (e.g., to specify the corresponden-

ces in the weaving model and transformation rules) as the three different

applications of our approach have revealed. This result fits in the literature

since the specification of the weaving model and transformation rules is a

challenging task that demands the most Modeler Expert ’s effort and time [39].

This required time is aggravated by the fact that meta-models may become

very large: for instance, the UML 2 meta-model [47] has about 260 meta-

model classes [167]. Even there are approaches such as [39, 75, 76] that seek

the improvement of modelers’ productivity by reducing the specification time

of model transformations by means of semi-automatic approaches and generic

model transformations, model transformations are mostly created manually

and adhoc [76].

Hence, some aspects of the tool support have to be improved in our

approach to reduce the effort that is necessary to initialize our approach.

As the next chapter presents, we started working on providing mechanisms

8.4. Conclusions 194

to only define the correspondences in the weaving model that support the

description of gaps rather that the fullset of concepts since its description

may not involve as many concepts as the modeling language has. Thus, the

number of correspondences can be reduced as well as the necessary effort of

the Modeler expert.

As additional improvement, a major issue is to reduce the time that is

required to create the transformation rules. Our goal is to reduce the number

of necessary correspondences in the weaving model and therefore, the number

of model transformations will be also reduced. Another goal is to provide

generic model-to-model transformation rules that work as easy as a language

translator by only selecting the weaving model and the source model as input

to create a target model as output. Thus, the Modeler expert does not have

to provide the transformation rules and they will be also reusable in different

modeling approaches.

Another future improvement is the model validation mechanisms because

we detected some problems during the case studies (e.g., user-dependent

descriptions do not fit the boundaries of the variability model). Despite we

address a great number of problems integrating model validation mechanisms

in the toolkit by means of a set of domain-independent rules using EMFMQ,

we believe that it is important to provide more validation mechanisms for

checking syntactic and semantic problems in models (e.g., user-dependent

properties may cause conflicts with the properties of the common system

description).

Chapter 9

TOWARDS THE EFFICIENT

SPECIFICATION OF THE

INTEROPERABILITY MECHANISMS

The specification of mechanisms to support collaborative modeling from

different modeling languages (the weaving model and transformation

rules) demands the most Modeler Expert ’s time and effort as concluded in

Chapter 8 since the support of the full set of meta-model concepts is mostly

manual [76] and performed at the beginning of the process even though

there are approaches that achieve a semi-automatic specification of model

transformations. These approaches reduce the development time [39] but

they could also require manual refinements (since the complete automation

is too ambitious except from simple transformations [39]).

Therefore, this chapter presents our ongoing work for achieving an

efficient support of collaborative modeling from different modeling languages

by extending Medem since we detected in the case studies that some

correspondences of the weaving model and their corresponding transformation

rules are not used throughout collaborative modeling. This is because the

196

9.1. Model Transformations By-Example 197

necessary concepts to fulfill the gaps do not involve as many concepts as the

base modeling language has and therefore, it is not necessary that the full set

of both correspondences and transformation rules is specified at the beginning

of the specification phase.

Hence, we propose a strategy, named Medem-on-demand, which only

includes on-demand correspondences in the weaving model that are necessary

to support collaborative modeling. We join the term “on-demand” to stress

the fact that both the weaving model and transformation rules only include

concepts that support collaborative modeling (the descriptions of gaps)

rather than create the full set at the beginning. Therefore, Medem-on-

demand can reduce the number of correspondences in the weaving model,

the transformation rules, and the Modeler Expert ’s effort.

The rest of this chapter is organized as follows: Section 9.1 presents

some existing approaches that accelerate the specification phase using model

transformations by-example and their drawbacks. Section 9.2 describes

Medem-on-demand. Section 9.3 presents the extension of the Medem toolkit

to support Medem-on-demand. Section 9.4 describes the application of

Medem-on-demand in the same case studies that Medem was applied for

evaluating its applicability, its feasibility and comparing the results with

Medem in order to assess whether Medem-on-demand increases Modeler

experts’ productivity by reducing the number of model transformations.

Finally, Section 9.5 concludes the chapter.

9.1 Model Transformations By-Example

Model transformations can be used in many different application scenarios,

for instance, to provide interoperability from different domains, from different

roles, and from different software representations as explained in Chapter 2.

9.1. Model Transformations By-Example 198

However, model transformations are typically developed manually and they

are becoming more and more complex [76, 168].

As a consequence, research groups start working in approaches for

easing the burden of specifying model transformation rules by hand such

as Model Transformations By-Example approaches (MTBE) [168]. MTBE

approaches [169, 170] follow the same idea as querying database systems

by giving examples of query results and programming by-example for

demonstrating actions, which are recorded as replayable macros [32].

In general, two kinds of approaches may be distinguished in MTBE [171]:

(1) approaches following a demonstration-based approach in which model

transformations are shown in the model editor by modifying example models.

These modifications are recorded and can be applied to other models as well;

and (2) approaches that follow a correspondence-based approach in which the

input model, the output model as well as the correspondences between them

have to be given by the user. For both kinds, a multitude of approaches have

been proposed during the last years such as [168, 171, 170, 172, 173, 169].

Next, we introduce as example some MTBE approaches and other ones that

seek to ease the specification of model transformations.

On the one hand, Langer et al. [168] and Kappel et al. [171] seek to

accelerate the model transformation specification phase by defining model-to-

model transformations by-example. These approaches take as input to build

model transformations as a triple comprising a source model and a target

model that are taken as example, and a weaving model with correspondences

between these two models.

On the other hand, Bollati et al. [39] provide mechanisms to semi-

automate the development of transformations. Moreover, there are ap-

proaches such as the proposed by Cuadrado et al. [75] that brings generic

model transformations to promote reusability. These approaches can acceler-

9.1. Model Transformations By-Example 199

ate the development time of transformations, or it can favor the reuse of model

transformations if the modeling languages change. In addition, Didonet et

al. [76] propose the automatically production of the weaving model using

matching transformations and two input meta-models.

Although these approaches reduce the necessary Modeler experts ’ effort

to develop model transformations and they aim for semi-automated transfor-

mation generation, the generated transformations are intended to be further

refined by the user [171, 39] since complete automation is too ambitious,

except from very simplistic transformations [39]. Moreover, these approaches

include the full set of correspondences in the weaving model and model

transformation at the beginning. However, these approaches are focused

on translating an entire source model to an entire target one rather than

complete a partially instantiated model with model fragments of a different

modeling language to support collaborative modeling.

Since we have detected in Medem that some correspondences are not used

throughout collaborative modeling even they are defined at the beginning in

the weaving model and their corresponding model transformations, the full

set of both correspondences in the weaving model and transformation rules is

not necessary to included it at the beginning. This is because the necessary

concepts to fulfill the gaps with model fragments of a different modeling

language could not involve as many concepts as the modeling language has.

Therefore, we propose a strategy towards an efficient support that reduces

both the number of correspondences in the weaving model and transformation

rules by creating them on-demand rather than specifying the full set at the

beginning.

9.2. Medem-on-demand 200

9.2 Medem-on-demand

Although Medem enables collaborative modeling from two different modeling

languages to obtain a model that integrates descriptions of both, it requires

that a Modeler expert designs the fullset of model transformations in the

specification phase. As previously explained, the Modeler expert designs the

model transformations by specifying correspondences among meta-models to

bridge every concept of both the Meta-Modela and the Meta-Modelb in the

weaving model.

According to our previous experiences of applying Medem in different

domains [152, 162, 163] that were presented in Chapter 8, the specification

of the weaving model and the model transformation rules requires the most

Modeler Expert ’s effort (specially if the meta-models have a high number of

concepts). Moreover, we observed a phenomenon in our previous experiences

that shows that some correspondences of the weaving model are not used (and

therefore, some transformations rules neither) since collaborative modeling

descriptions do not involve as many concepts as the language has.

For exemplifying the phenomenon that we observed, we use the CD-ER

example that was presented in Figure 6.5 of Section 6.2. At this point, it is

important to highlight that the model transformations were created at the

beginning of Medem by a Model expert, so the model transformations cover

the fullset of CD and ER concepts, which requires the most Modeler expert ’s

effort. This required effort is aggravated by the fact that meta-models may

become very large: the CD meta-model [47] has about 106 elements among

meta-model classes and attributes. The ER meta-model [174] has about 52

elements.

To support Medem in this example, around 72 element relationships need

be added in the weaving model at the beginning. We focus on collecting

9.2. Medem-on-demand 201

the number of the necessary correspondences of the weaving model in order

to compare the Modeler Expert ’s effort because these correspondences are

used to create the transformation rules. According to [115], this comparison

should give an indication on how much effort requires the creation of both

the weaving model and the transformation rules. Although there are different

proposals of CD and ER meta-models, they may require a similar order of

magnitude to specify the full set of correspondences and transformation rules.

However, note that the CD-ER example does not use all the CD or

ER concepts in the creation of description of gaps such as inheritance or

associative entity. Therefore, some correspondences of the weaving model

and some transformations rules are not being used. In this example, it is

only necessary to add 33 element relationships in the weaving model to the

fully instantiated CD model shown in the bottom part of Figure 6.5. As

a result, the number of correspondences in the weaving model is reduced

the 45.8% with regard to create the full set of model transformations at the

beginning.

Although, the CD-ER example is used to illustrate both collaborative

modeling from different modeling languages and the phenomenon that shows

that some correspondences of the weaving model are not used for supporting

collaborative modeling descriptions, the numbers that are shown in the

evaluation section reveal that this phenomenon frequently occurs in different

application domains.

Therefore, it is necessary an approach towards an efficient support of

collaborative modeling from different modeling languages for application

domains in which meta-models may become large, collaborative model

descriptions do not involve as many concepts as the language has, and model

transformations have to be created from scratch. To address this, our strategy

follows the idea of including on-demand correspondences in the weaving model

9.2. Medem-on-demand 202

rather than the fullset of concepts.

The more complex the correspondence requirements in the weaving model

are, the more time-consuming specifications will be [21]. To achieve a constant

project progress, Klar et al. [21] suggest an iterative approach to define the

correspondences. Thus, we propose that the definition of the correspondences

in the weaving model is incrementally completed step by step on-demand

according to the concepts that are necessary to support collaborative

modeling (the description of gaps using a different modeling language). This is

advantageous, compared to producing all the correspondences in the weaving

model (and the corresponding transformation rules) in one single step [21].

To achieve this, we propose the Medem-on-demand method. Medem-

on-demand acts as an extension of Medem for accelerating the specification

phase. In this phase, the Modeler Expert creates on-demand correspondences

in the weaving model. In particular, we propose that the Modeler Expert

takes as input a source model with gaps to only include in the weaving model

those concepts and correspondences that are needed to describe the gaps

using a different modeling language. As the Modeler Expert does not include

concepts that are not going to be used in gap descriptions, the number of

correspondences in the weaving model can be reduced and therefore, the

number of transformation rules can be also reduced.

Medem-on-demand is illustrated in Figure 9.1. Note that the shaded

artifacts in the figure serve to show the changes in Medem-on-demand with

regard to Medem.

Figure 9.1 also shows the steps of Medem-on-demand corresponding to

the different numbers shown, involved artifacts and roles in its specification

and execution phases. These steps are described in detail below:

Step 1. The Modeler Expert should extend the model editors for supporting

the creation and description of gaps as previously described in Step 3

9.2. Medem-on-demand 203

Extended Mb
editor

Extended Ma
editor

builds a partially
instantiated model

with gaps

Modeler Expert Usera Userb

Ma

Input, Modeler/User action

describes
the gaps

Fully instantiated

Specification Execution

extends
the

editors

Mb Mb Mb

x

x

x

x

6

Input

MMa

partially
designs

Weaving
Model

partially
creates

4

5

2

 Designs on demand

source

target

3

1

Ma
editor

source
resolves 7 target

Ma

x

x

x

x

Gap creation support

Transformation
rules

Gap description support

Mb x x
x x

x

Mb
editor

MMb

Transformation output

Figure 9.1: Steps of Medem-on-demand during its specification and execution

of Medem.

Step 2. The Usera reuses or builds a partially instantiated modela and

creates gaps using the extended Ma editor as previously described in

Step 4 of Medem.

Step 3. The Modeler Expert takes as input the partially instantiated modela

with gaps for creating a weaving model on-demand. This weaving

model may only include the necessary Meta-Modela (MMa) concepts

and correspondences to support the description of gaps using Meta-

Modela (MMb) concepts.

To help the Modeler Expert with the creation on-demand of the weaving

model, we design a set of generic model queries that automatically

obtain a view of the MMa concepts that the Modeler Expert should

include in the weaving model. Thus, the Modeler Expert does not have

to manually determine which MMa concepts are necessary. This is

9.2. Medem-on-demand 204

specially useful in order to prevent that necessary MMa concepts have

not been included in the weaving model.

The set of queries takes as input the partially instantiated modela with

gaps (which are stored in the variability model) in order to get the

following:

1. The gaps that are stored in the variability model. For example,

the gap for refining the sales of the CD-ER example.

2. The MMa concepts that have been involved in the description of

each gap. By following the motivating example, the queries obtain

CD concepts for the gap such as: Class, Association and Property.

3. The MMa concepts that are set as boundaries for each gap.

Following the example, the gap of the motivating example has

the Class CD concept as boundary.

Once a query that gets MMa concepts is executed, each MMa concept

is stored (whether it has been not included yet). Thus, the Modeler

Expert is provided with the view of the MMa concepts that may be

included in the weaving model.

Step 4. The Modeler Expert uses the view of MMa concepts in order to

partially design a weaving model with correspondences for these MMa

concepts with MMb concepts. Note that we use partially to stress

that this weaving model does not bridge all the MMa concepts, it is

focused on including the MMa concepts that are needed to support the

description of gaps.

By following the motivating example, the Modeler Expert checks the

view of the CD meta-model concepts (such as class, association, name,

type, and property), and includes correspondences for them in the

9.3. Tool Support 205

weaving model. Thus, the number of elements of the weaving model

has been reduced.

Step 5. Once the weaving model is created, the Modeler Expert creates the

transformation rules to transform a source model (i.e., the CD model

in the motivating example) conforming to its input meta-model into a

target model (i.e., the ER model in the motivating example) conforming

to its meta-model as described in Step 2 of Medem. Note that the

difference is the reduction of the necessary transformation rules due to

the reduction of concepts and correspondences in the weaving model.

The remaining steps of Medem-on-demand (Step 6 and 7) are as the

ones described in Medem for describing the gaps and obtaining the fully

instantiated modela.

At this point, it is important to highlight that although Medem reuses the

weaving model and transformation rules even the MMa and MMb concepts

involved in the creation and description of gaps change, Medem-on-demand

is iterative in that case. Although Medem-on-demand could accelerate the

model transformation specification phase since the correspondences in the

weaving model are adjusted to the MM concepts that support the description

of gaps, Medem-on-demand could require that the Modeler Expert adjusts the

weaving model and transformation rules if the MM concepts that are involved

in the creation and description of gaps change in successive collaborative

descriptions.

9.3 Tool Support

In this section we describe the extension of the Medem toolkit to support

Medem-on-demand. On the one hand, we define a set of rules that are

9.3. Tool Support 206

executed to select between Medem or Medem-on-demand according to the

provided inputs. Medem-on-demand accelerates the specification phase since

the Modeler expert only has to extend the Ma editor to enable the Usera to

build a partially instantiated modela as described in Step 2.

Only if the partially instantiated modela with gaps (the CVL variability

model) is provided in the specification phase, the rules will select the

Medem-on-demand support. By contrast, if both the weaving model and

transformation rules of the full set of meta-model concepts are provided, the

rules will select the Medem support.

On the other hand, the support of the model transformations on-demand

comprises a set of generic model queries that provides the Modeler expert with

a list that suggests the MMa concepts that should be included in the weaving

model for supporting the description of gaps. Thus, the Modeler Expert does

not have to manually determine which MMa concepts are necessary, which is

specially helpful when the number of meta-model concepts grows. Also, the

list prevents that the Modeler Expert forgets the inclusion of some necessary

MMa concepts in the weaving model.

We use the EMFMQ framework as the main building block to create

select statement queries for obtaining the list. The queries takes as input

the partially instantiated modela with gaps (which are stored in the CVL

variability model) in order to obtain the following (as described in Step 3 of

Medem-on-demand): (1) the gaps that are stored in the variability model,

(2) the MMa concepts that have been involved in the description of each gap;

and (3) the MMa concepts that are set as boundaries for each gap.

For example, we have implemented the following select statement query

using EMFMQ that selects all the concepts that have been set as boundaries

for each gap:

9.3. Tool Support 207

1 SELECT statementBoundaries =

2 new SELECT(

3 new FROM(re sou r c e . getContents ()) ,

4 new WHERE(

5 new EObjectTypeRelationCondition (

6 CvlPackage . L i t e r a l s .PLACEMENT_BOUNDARY_ELEMENT

,

7 TypeRelation .SAMETYPE_OR_SUBTYPE_LITERAL))) ;

Following the CD-ER example this query returns the Class CD model

concept since it is the one set as boundary. Once the set of queries is executed,

the list of meta-model concepts is provided and taken as input by the Modeler

expert in order to only bridge those meta-model concepts in a weaving model.

Figure 9.2 shows a snapshot of the Medem-on-demand toolkit once the

CVL variability model that supports the watch example introduced above

is taken as input and it is executed the operation that gets the list with all

necessary CD model concepts (MM elements) to support the description of

gaps.

As figure shows, the Medem-on-demand toolkit recommends that the

weaving model should include correspondences for the concepts that are

necessary to to refine the gap of how the sales are stored in the information

system. Some of the concepts found are: class, association, type, and property

CD model concepts.

To conclude, we would like to highlight that the toolkit supports Medem

as well as Medem-on-demand and it automatically selects between them

according to the Modeler expert inputs. In addition, the toolkit does not

modify the meta-models of the modeling languages and it is customizable

to different modeling languages. Moreover, the Medem-on-demand toolkit

includes generic queries to get list with the suggested the MMa concepts, so

9.4. Application and discussion 208

Class Diagram concepts
obtained from the CVL

variability model

Figure 9.2: Snapshot of the Medem-on-demand toolkit

they can be reused even though the modeling languages change.

9.4 Application and discussion

To assess whether Medem-on-demand increases Modelers’ expert productivity

by reducing the number of model transformations, we apply it in the same

case studies that Medem was applied in order to evaluate its applicability,

feasibility and compare the results with Medem.

In particular, we describe for each case study the following: 1) the

number of correspondences that were necessary to apply Medem, 2) the total

number of model of correspondences that have been set and non-used in

Medem, and 3) the application of Medem-on-demand and the total number

of correspondences created.

1. PervML - Pantagruel Case Study. According to the data

summarized in Table 9.1 (see first row), 62 correspondences are needed

between PervML and Pantagruel in the weaving model.

After, we analyze the PervML and Pantagruel model descriptions

9.4. Application and discussion 209

and model transformations and we collect that 24 correspondences

of the weaving model are not used. This is mainly because the

Pantagruel sensor-controller-actuator development paradigm can be

corresponded to several concepts of three different PervML models

which follows Event Condition Action (ECA) rules. In particular,

these PervML concepts are focused on describing not only how the

devices and operations works but also how different services are

orchestrated. In fact, end-user’s descriptions in Pantagruel seek to

only orchestrate different services in order to fit them with end-users’

preferences. For this reason, we apply Medem-on-demand to focus the

correspondences of the weaving model on supporting descriptions of

services by orchestrating services and changing their attributes.

By applying Medem-on-demand, the Modeler expert extends the editors

(Step 1) and executes our approach to take as input both the partially

instantiated model with gaps (Step 2) and the list of the necessary

meta-model concepts (Step 3) in order to partially design the weaving

model (Step 4) and transformation rules (Step 5). We analyze the

weaving model and we collect that the Modeler expert created 36

correspondences rather than the 62 that were created in Medem.

Therefore, Medem-on-demand reduces the 41,94% the number of

necessary correspondences in the weaving model with regard to Medem

(see last column of Table 9.1). Moreover, we analyze different PervML

smart home descriptions once Medem-on-demand is applied and we

notice that the gaps created in the partially instantiated PervML model

by the PervML analyst comprise the same concepts, so Medem-on-

demand does not require new Modeler expert ’s iterations to neither

create new correspondences in the weaving model nor transformation

rules.

9.4. Application and discussion 210

2. UIM - Sketcher Case Study. According to the data summarized

in Table 9.1 (see second row), 86 correspondences are needed between

UIM and sketcher in the weaving model.

Then, we analyze the UIM and Sketcher model descriptions and model

transformations and we collect that 18 correspondences of the weaving

model are not used. This is because the software development expert

created gaps to allow domain experts to design web interfaces with

the data that may be collected from citizens rather than design web

interfaces to show information. This makes that some Sketcher concepts

are not used even though their correspondences are included in the

weaving model. For example, the TabularPanel UIM concept was not

used during descriptions because it shows information in a table format.

By applying Medem-on-demand, we analyze the resulting weaving

model and we collect that the Modeler expert created 61 correspon-

dences rather than the 81 that were created in Medem. Therefore,

Medem-on-demand reduces the 29,07% the number of necessary corres-

pondences in the weaving model with regard to Medem (see last column

of Table 9.1).

Whether the software development expert creates gaps in further

scenarios that imply the use of concepts that are not included in

the weaving model such as the ones related to show information on

web interfaces, Medem-on-demand may iterate (only Step 4 and 5) to

update the weaving model and the transformation rules. In this case,

although the number of correspondences will be the same in Medem

and Medem-on-demand, Medem-on-demand still provides three main

advantages: an initial reduction of correspondences in the weaving

model, reduces the initial effort of the Modeler expert, and enables

collaborative modeling between the software development expert and

9.4. Application and discussion 211

the domain expert before Medem enables it.

3. Bioengineering Kinematic - Medical Protocol Case Study.

According to the data summarized in Table 9.1 (see third row), 347

correspondences are needed between Bioengineering Kinematic and

Medical Protocol in the weaving model.

Then, we analyze the model descriptions and model transformations

and we collect that 186 correspondences of the weaving model are

not used. This is because the gaps are focused on only describing

biomechanical protocols for shoulder and the weaving model also

includes correspondences for knee movements. Moreover, we notice that

doctors have only used tables to design the reports (they do not include

plots in gap descriptions).

By applying Medem-on-demand, the Modeler expert takes as input both

the partially instantiated model with gaps and the list of the necessary

meta-model concepts in order to partially design the weaving model and

transformation rules. We examine the weaving model and we collect

that the Modeler expert created 164 correspondences rather than the

347 that were created in Medem. In conclusion, Medem-on-demand

reduces the 52.74% the number of necessary correspondences in the

weaving model with regard to Medem (see last column of Table 9.1).

Whether doctors use plots in future descriptions, a new iteration of

Medem-on-demand is carried out to allow the Modeler expert to update

the weaving model and transformation rules. Moreover, new iterations

of Medem-on-demand can be carried out to support the description

of biomechanical protocols for different body parts such as knee. We

would like to emphasize that in case that the creation or description

of gaps comprises new concepts, Medem-on-demand can iterate to

9.4. Application and discussion 212

Medem Medem-on-demand

Case study Total Non-used Total Result (%)

1) PervML - Pantagruel 62 24 36 -41.94%

2) UIM - Sketcher 86 18 61 -29.07%

3) Bioengineering Kine-

matic Analyzer- Medical

protocol

347 186 164 -52.74%

Table 9.1: Summary of total and non-used correspondences in the weaving

model using Medem and Medem-on-demand in the three case studies

support them. Therefore, Medem-on-demand also provides advantages

in this case study from the beginning (such as the reduction of the

number of correspondences in the weaving model and the initial effort

of the Modeler expert, and enables collaborative modeling before Medem

enables it) as we detected in the previous case study.

Once Medem-on-demand has been applied to the three case studies, we

believe that the data that is summarized in Table 9.1 provides representative

results since the three case studies scope different domains and levels of

complexity. Furthermore, the case studies conducted have served to show

not only improvements of Medem-on-demand with regard to Medem but also

some drawbacks.

With regard to the improvements, Medem-on-demand reduces the neces-

sary correspondences in the weaving model to include only those ones that

are needed to support gap descriptions rather than include correspondences

to bridge all concepts of the modeling languages. Thus, the Modeler

expert accelerates the specification phase and the execution phase (model

9.4. Application and discussion 213

descriptions) can be performed before. In addition, the Modeler expert is

helped in the design of the weaving model by taking input examples (in

particular, the partially instantiated model, the list of the created gaps and

the list with the recommended meta-model concepts that may be included in

the weaving model), which according to [17] examples help to organize better

the system needs and domain reference components.

With regard to the drawbacks, we detect that Medem-on-demand may not

always reduce the necessary correspondences in the weaving model, so Medem

may be applied instead. We analyze that the reduction of the correspondences

in Medem-on-demand depends on:

1. The number of necessary concepts to describe the gaps with regard

to the total meta-model elements. For example, as more concepts are

demanded to describe the gaps more correspondences are needed in

the weaving model, so the weaving model on-demand may have the

same number and the specification phase can require more time for the

Modeler expert to update the weaving model and transformation rules

on-demand.

2. The number of changes in the concepts that are demanded to support

future gap creation and description. For example, the Bioengineering

kinematic-Medical protocol case study shows the best results of the

Medem-on-demand application as we described above. However,

doctors can demand new elements in gap descriptions in the successive

collaborative descriptions such as knee protocols. In this case, a new

iteration of Medem-on-demand will be required to allow to Modeler

expert to change the weaving model and transformation rules.

9.5. Conclusions 214

9.5 Conclusions

In this chapter, we have presented our ongoing work, Medem-on-demand, as

an extension of Medem to efficiently obtain model transformations in the

specification phase. In order to address this, we propose mechanisms to

only specify correspondences in the weaving model and transformation rules

that are necessary for describing the gaps rather than create a full set of

correspondences and transformation rules at the beginning.

Therefore, Medem-on-demand could accelerate the specification phase

since it reduces the number of correspondences and transformation rules.

We believe that if the required effort of the specification phase is reduced

specifying model transformations on-demand, it will favor the collaborative

modeling from different modeling languages.

In order to put Medem-on-demand into practice, we have described the

technological decisions to support it in a transparent way to the users once

the Modeler Expert ends the specification phase. At this point, it is also

worth pointing out that although the example used in this chapter to present

Medem-on-demand is focused on CD models and ER models, the need of

model transformations on-demand can be transferred to other languages,

as we shown in the case studies, in which meta-models may become large,

collaborative model descriptions do not involve as many concepts as the

language has, and model transformations have to be created from scratch.

Figure 9.3 shows our recommendation, based on the improvements and

drawbacks previously discussed, on which method (Medem or Medem-on-

demand) should be chosen by Modeler experts to achieve an efficient support

of collaborative modeling from different modeling languages. For example, if

the full set of model transformations is available, or collaborative modeling

involves many concepts and the involved ones could change in successive gap

9.5. Conclusions 215

descriptions, we recommend to choose Medem since the weaving model may

not be reduced and Medem-on-demand will require different iterations due to

the changes in successive gap descriptions. As figure shows, we recommend

to choose Medem-on-demand in other cases.

Number of concepts involved
 in gap descriptions

Medem-on-demand

Medem-on-demand Medem-on-demand

Medem +

-

- +

N
um

be
r

of
 c

ha
ng

ed
 c

on
ce

pt
s

in

 s
uc

ce
ss

iv
e

ga
p

de
sc

rip
tio

ns

Figure 9.3: Choosing between Medem and Medem-on-demand

In conclusion, we have shown that both our approach and its extension

are capable of achieving interoperability between models from different

approaches, and providing collaborative modeling mechanisms in a non-

intrusive way. Therefore, different types of users are actively involved in

modeling tasks according to the confronted thesis goals.

Chapter 10

CONCLUSIONS AND FUTURE WORK

The present work has introduced a model-driven and variability-based

approach for confronting the challenge of achieving interoperability

from different modeling languages in order to involve users in modeling tasks.

Confronting this challenge, this work also enables collaborative modeling in

order to delimit and guide users in the modeling effort in a non-intrusive way

(i.e., without affecting the structure of modeling languages).

We applied our approach in three different domains in which different

types of users (end-users and software professionals; domain experts and

software development experts; and doctors and biomedical engineers) are

involved in a common modeling project using different modeling languages to

perform model descriptions. Whether in smart homes, web information sys-

tems or biomechanical protocols, the growing number of modeling approaches

underlines the rising relevance of giving different users the opportunity to

contribute in model descriptions. We consider that our approach can also be

applied to other domains with similar results.

This last chapter reviews our central results and primary contributions,

and proposes new areas for future research in connection with the limitations

216

10.1. Contributions 217

of this work. First, Section 10.1 presents the main contributions of our

approach. Section 10.2 outlines the assessment and future work that can

complement and extend this thesis. Section 10.3 provides an overview of the

publications that have emerged from this work. Section 10.4 presents the

projects directed related to some parts of this thesis. Finally, Section 10.5

concludes with some final remarks.

10.1 Contributions

The major contribution of this thesis is a model-driven and variability-

based approach for achieving collaborative modeling and non-intrusive

interoperability between models of heterogeneous modeling languages to

involve users in modeling tasks. This approach combines the main ideas of the

End-user Development, the Model-Driven Development and the Variability

Management fields to achieve not only interoperability in a non-intrusive way

with the structure of models but also, to use variability management in a novel

way to enable collaborative modeling from a different modeling language.

This main contribution is complemented with three other contributions:

1. The identification of different user skills and guidelines for in-

volving users in software development activities, and their application

for involving end-users in modeling tasks of an existing MDD process

for developing pervasive systems by selecting and customizing system

features.

2. A model-based and variability-based implementation to support

the approach in a transparent way to the users once it is initialized.

3. An extension of our approach for addressing an efficient support

of collaborative modeling by specifying on-demand the interoperability

10.1. Contributions 218

mechanisms. Thus, this extension reduces the necessary effort.

Although the above contributions push towards the involvement of users

in a unified modeling project using different modeling approaches, we believe

that this thesis also provides remarkable results for the communities of the

combined fields as follows.

• Relevant results for the End-User Development community:

– Identification of guidelines that can be applied in different

domains to involve users in modeling tasks (i.e., users should be

provided with a closer modeling language and users should be

focused on describing user-dependent properties).

– Case studies that are representative of real problems of existing

modeling approaches in which users cannot participate even

though they are the ones who best know the expected functionality.

This is because users need skills to capture every important aspect

of their software system through models.

– Application of the identified guidelines and interface

design decisions in case studies to involve users in modeling

tasks since it was not available a closer language and tools that

fit into the some case study goals and identified users.

• Relevant results for the Model-Driven Development community:

– Identification of challenges, lessons learned, and design

decisions in collaborative modeling to involve users in modeling

tasks (i.e., using variability management to provide users with

guidance throughout the modeling process).

– Empirical evidences of integrating submodels or models

descriptions that are made from different participants who ac-

10.1. Contributions 219

tively participate in the modeling effort using the CVL variability

management language. CVL identifies variation points in a base

model and they may have models to describe them. In addition, we

propose that these models are described using a different modeling

language and we provide mechanisms to translate and integrate

them in the base model. This could help to achieve a wider

adoption of MDD processes.

– Resolution of conflicts during the integration of such submodels

or model descriptions using generic rules, which have been im-

plemented using model queries. If some rule is not followed, an

information message will be shown to the user.

– Specification on-demand of the interoperability mech-

anisms to only support the concepts of a different modeling

language that users need to describe the variation points (user-

dependent properties) rather than create interoperability mecha-

nisms for supporting the fullset of the concepts of the two involved

modeling languages. Thus, the necessary effort for specifying the

interoperability mechanisms can be reduced obtaining an efficient

support.

• Relevant results for the Variability Management community.

– A novel way to use variability management in which not

only is used to manage variabilities in a base model but also, use

these variabilities to enable collaborative modeling from a different

modeling language.

– The application results, which reveal that the facet of varia-

bility models does not limit the expressiveness of users to a

bounded selection of features during the collaborative modeling

10.2. Assessment and Future Work 220

as our initial attempt using the facet of features for managing

variabilities does.

We hope that these contributions and results encourage researchers and

practitioners to apply our approach to other promising areas of research and

industry.

10.2 Assessment and Future Work

The work presented so far reveals insights combining the End-user Devel-

opment, the Model-Driven Development and the Variability Management

fields to involve users in the modeling effort. Although our work tackled

challenges and ideas of these fields, a close assessment is necessary to reveal

some limitations of this work and propose some future work.

We believe that using our model-driven and variability-based approach is

a promising way to integrate model descriptions that have been performed

using a different modeling language. This approach brings the following

important benefits: (1) users are able to participate in the modeling effort

using a different modeling language; (2) different modeling languages are able

to interoperate in order to obtain the full description of a software system; (3)

users can be focused on describing the concerns of the software system that

they are experts with rather than describe the entire software system; and

(4) the structure of the modeling languages is not modified, which promotes

the application of the approach in existing MDD processes.

The main innovation of our approach is the combination of both variability

and modeling techniques to (1) delimit the concerns that may be described

by a different user by creating gaps and completing them, and (2) reuse

the specification of the approach if the descriptions of concerns change. We

believe that our approach is especially useful for both taking advantage of

10.2. Assessment and Future Work 221

the experience of different users in modeling tasks and preventing those roles

are forced to use different modeling primitives in order to participate in the

same project.

Although our approach automatically supports collaborative modeling

descriptions in a transparent way for users once it is specified, the specification

of the approach by the modeler expert requires the most-time consuming (e.g.,

to specify the correspondences in the weaving model and transformation rules)

as the three different applications of our approach have revealed. Hence, some

aspects of the tool support have to be improved in our approach to reduce

the necessary effort to initialize our approach. For example, we believe that

the extension of our approach contributes towards an efficient definition of

the interoperability mechanisms since they are defined on-demand to only

support the concepts that are involved in collaborative modeling descriptions

rather than defining interoperability mechanisms to the fullset of concepts.

The technological decisions that support the main building blocks of

our approach (collaborative modeling and interoperability mechanisms) are

aligned with current modeling standards and MDD-oriented technologies. In

particular, we have proposed both MOF meta-models as stating point in our

approach to support non-intrusive interoperability of any DSL based on MOF,

and CVL variability models (an standard proposal for the OMG) to support

collaborative modeling.

These technological decisions may favor that researchers and practitioners

apply our approach to other existing modeling approaches that are based on

MOF. Nevertheless, we believe that these decisions present some limitations in

the application of our approach in some cases (e.g., users that use a language

that is not based on MOF, or some required inputs to apply our approach

such as the Ecore meta-models of the involved modeling approaches are not

provided).

10.2. Assessment and Future Work 222

Therefore, the research presented here is not a closed work and there are

several interesting directions that can be taken to provide the proposal with

a wider spectrum of application and reduce the required specification effort.

The following list offers several interesting activities to continue this work.

Generic model-to-model transformations. Our goal is to provide generic

model-to-model transformation rules that work as easy as a language

translator by only selecting the weaving model (that bridges the meta-

model concepts of the two different modeling languages) and the source

model as input to create a target model as output. Thus, the Modeler

expert does not have to create the transformation rules and they will

be also reusable in different modeling languages. Although this future

improvement is out of scope of this thesis work, we started working on

considering the best solution but we have found some problems with

model heterogeneities.

Model validation. We integrated model validation mechanisms in the

toolkit by means of a set of domain-independent rules using EMFMQ,

since we detected some problems during collaborative modeling de-

scriptions (i.e., user-dependent descriptions do not fit the boundaries

of the variability model). Although we address a great number of

problems, we believe that it is important to provide more validation

mechanisms for checking syntactic and semantic problems in models

(i.e., user-dependent properties may cause conflicts with the base

model properties). Hence, further work is needed to add more

domain-independent rules for model validation, or to combine the rules

with other existing model validation mechanisms such as the Epsilon

Validation Language [175].

Tool support. Some technologies were used to implement the toolkit that

10.2. Assessment and Future Work 223

supports our ideas (i.e., EMF, EMFMQ, CVL, etc.). Although we

spent a great amount of effort on it to work, still the toolkit requires

further work to be used by a regular modeler expert (i.e., a user-friendly

interface, guidance of the steps that should be followed, guidance of the

inputs that should be provided, etc.).

Variability management concrete syntax. We detected in the different

applications of our approach that some design decisions have to be

taken about the concrete syntax of the variability management language

concepts (i.e., how the replacement fragment and boundaries of CVL are

represented), so we believe that more work is needed to set guidelines

for the concrete syntax of these concepts.

Multi-user support. The participation of more than two users in a

common modeling project may be necessary in some scenarios (i.e.,

a smart home modeling project in which more than one user should

be involved in the specification of the user-dependent properties).

Although we addressed multi-user support by managing users and

policies in our first attempt for supporting collaborative modeling using

features [140], it requires further work in our approach using variability

models to deal with conflicts with regard to: users descriptions,

management of users, ownership of objects or skills, user descriptions

from more than one different modeling approach since our approach

can be applied more than once in the same base modeling language

to support users with different skills (i.e., in a smart home modeling

project, users described their dependent-properties as we shown but

also, it is necessary to involve in the same modeling project an

electrician who uses a different closer language to specify the devices

of the home and how they are connected).

10.3. Publications 224

10.3 Publications

The research activity presented in this work has been presented and discussed

before on different peer-review forums. The distinct publications are ordered

by year of publication and the author position is used as an indicator of the

degree of contribution made by the author of this thesis was involved. The

publications are the following:

• Francisca Pérez, Pedro Valderas and Joan Fons. Collaborative

Modeling through the Integration of Heterogeneous Modeling Languages.

22nd International Conference on Information Systems Development

(ISD2013). Sevilla, Spain, 2013.

• Francisca Pérez, Pedro Valderas and Joan Fons. A Domain-Specific

Language for Enabling Doctors to Specify Biomechanical Protocols.

IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC 2013). San Jose, CA, USA, 2013.

• Francisca Pérez, Pedro Valderas and Joan Fons. Allowing End-

users to Participate within Model-Driven Development Approaches.

IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC 2011). Pittsburgh, PA, USA, 2011.

• Francisca Pérez, Pedro Valderas and Joan Fons. Towards the

Involvement of End-users within Model-Driven Development. Third

International Symposium on End-User Development (IS-EUD 2011).

Torre Canne (Brindisi), Italy, 2011.

• Estefanía Serral, Francisca Pérez, Pedro Valderas, Vicente Pelechano.

An End-User Tool for Adapting Home Automation to User Behaviour

10.3. Publications 225

at Runtime. IV International Conference on Ubiquitous Computing and

Ambient Intelligence (UCAmI 2010). Valencia, SPAIN, 2010.

• Francisca Pérez and Pedro Valderas. Allowing End-users to Actively

Participate within the Elicitation of Pervasive System Requirements

through Immediate Visualization. Fourth International Workshop on

Requirements Engineering Visualization (REV’09). Atlanta, Georgia,

USA. 2009.

• Francisca Pérez, Carlos Cetina, Pedro Valderas and Joan Fons. To-

wards End-User Development of Smart Homes by means of Variability

Engineering. Third International Workshop on Variability Modelling of

Software-intensive Systems (VaMoS’09). Sevilla, Spain. 2009.

• Francisca Pérez, Pedro Valderas and Joan Fons. Enabling End-users

Participation in an MDD-SPL Approach. 1st International Workshop

on Model-driven Approaches in Software Product Line Engineering

(MAPLE 2009). San Francisco, California, USA. 2009.

• Francisca Pérez and Pedro Valderas. A Tool-supported Natural

Requirements Elicitation Technique for Pervasive Systems centred on

End-users. XIV Jornadas de Ingeniería del Software y Bases de Datos.

San Sebastián, Spain. 2009.

10.3.1 Relevance of the publications

This section provides some information about the relevance of some of the

publications presented above where different aspects of this work have been

published.

ISD. According to the CORE conference ranking, the International Con-

ference on Information Systems Development (ISD) is Tier-A. It is

10.3. Publications 226

recognized as being one of the most important conferences in the area

of information systems engineering.

VL/HCC. According to the CORE conference ranking, the IEEE Sympo-

sium on Visual Languages and Human-Centric Computing (VL/HCC)

is Tier-A. It is recognized as one of the most important conference in

the area of visual languages and human-centric computing.

REV. According to the CORE conference ranking, the International Work-

shop on Requirements Engineering Visualization (REV) is Tier-B. It is

recognized as an important workshop related to the area of visualization

of requirements and ways of making them practical.

UCAmI. The Ubiquitous Computing and Ambient Intelligence (UCAmI)

conference has been consolidated as a reference event in Ubiquitous

Computing & Ambient Intelligence, agglutinating high quality papers.

This conference provides a discussion forum where researchers and

practitioners on Ubiquitous Computing and Ambient Intelligence can

meet, disseminate and exchange ideas and problems, identify some of

the key issues related to these topics, and explore together possible

solutions and future works.

IS-EUD. The International Symposium on End-User Development (IS-

EUD) is an important international symposium to bring together

researchers and practitioners from industry and academia that are

working in the field of End-user Development.

International workshops. In addition to the above mentioned venues,

different parts of the work have been published in workshops from

relevant conferences such as the International Software Product Line

Conference (SPLC). This has helped to achieve diffusion of the work.

10.4. Projects Directed 227

10.4 Projects Directed

In addition, one degree project was directed and one degree project was co-

directed in the context of this work to explore some concepts and put into

practice its application. They are listed as follows:

• Herramienta para transformar modelos mediante reglas genéricas y

reutilizables. Alejandro Del Ruste Palau. Universidad San Jorge. July

2013.

• Implementación de un editor de usuarios finales para la configuración

de su entorno en un hogar digital. Hugo Ricós Llorca. Universitat

Politècnica de València. October 2011.

10.5 Final Conclusion

Henry Ford, founder of the car company that bears his name, revolutionized

the automotive industry and converted the automobile from an expensive

curiosity into a practical conveyance that would profoundly impact the

landscape of the twentieth century. It was Henry Ford who stated:

“Coming together is a beginning, staying together is progress, and working

together is success.”
– Henry Ford (1863-1947)

This quote emphasizes the importance of collaborate with others to

successfully reach one goal. Specifically, it can be transferred to Model-

Driven-Development processes in which the involved parties may work

together to the success of the modeling project.

Nevertheless, some involved parties such as users are usually interviewed

or in other ways heard but they lack the skills to actively participate in

10.5. Final Conclusion 228

modeling tasks. Therefore, it becomes increasingly essential giving users the

opportunity to contribute themselves in model descriptions. The involvement

of users from the very beginning could help to achieve a wider adoption

of Model-Driven-Development processes. In the particular case of involving

end-users, it creates a sense of ownership of the process that makes results

more difficult to reject in the future, and minimize the mismatch between

end-user expectations and system behavior. This thesis is an attempt

to achieve “working together is success” in Model-Driven Development by

actively involving users in modeling tasks.

BIBLIOGRAPHY

[1] Gunter Mussbacher, Daniel Amyot, Ruth Breu, Jean-Michel Bruel,

Betty Cheng, Philippe Collet, Benoit Combemale, Robert France,

Rogardt Heldal, James Hill, Jörg Kienzle, Matthias Schöttle, Friedrich

Steimann, Dave Stikkolorum, and Jon Whittle. The Relevance

of Model-Driven Engineering Thirty Years from Now. In Model-

Driven Engineering Languages and Systems, volume 8767 of Model-

Driven Engineering Languages and Systems, page 18, Valencia, Spain,

September 2014. Springer International Publishing Switzerland.

[2] J. Whittle, J. Hutchinson, and M. Rouncefield. The state of practice in

model-driven engineering. Software, IEEE, 31(3):79–85, May 2014.

[3] Ivan Mistrík, John Grundy, André Hoek, and Jim Whitehead.

Collaborative Software Engineering: Challenges and Prospects. Springer

Berlin Heidelberg, 2010.

[4] Benoit Combemale, Julien Deantoni, Benoit Baudry, Robert France,

Jean-Marc Jézéquel, and Jeff Gray. Globalizing Modeling Languages.

Computer, pages 68–71, June 2014.

[5] Alexey Voinov and Francois Bousquet. Modelling with stakeholders.

Environmental Modelling Software, 25(11):1268 – 1281, 2010.

[6] Michiel Renger, Gwendolyn L. Kolfschoten, and Gert-Jan de Vreede.

Challenges in collaborative modeling: A literature review. In Advances

230

BIBLIOGRAPHY 231

in Enterprise Engineering I, held at CAiSE 2008, volume 10, pages

61–77, Montpellier, France, 2008.

[7] Christoph Neumann, Ronald A. Metoyer, and Margaret Burnett. End-

user strategy programming. J. Vis. Lang. Comput., 20(1):16–29, 2009.

[8] EUSES Consortium. http://eusesconsortium.org, 2013.

[9] Stephen J. Mellor, Anthony N. Clark, and Takao Futagami. Guest

editors’ introduction: Model-driven development. In IEEE Software,

page 20(5):14:18, 2003.

[10] Jean-Marc Jézéquel. Model driven design and aspect weaving. Journal

of Software and Systems Modeling (SoSyM), 7(2):209–218, may 2008.

[11] Krzysztof Gajos, Harold Fox, and Howard Shrobe. End user

empowerment in human centered pervasive computing. In Proceedings

of Pervasive 2002, pages 1–7, 2002.

[12] Jan Humble, Andy Crabtree, Terry Hemmings, Karl-Petter kesson,

Boriana Koleva, Tom Rodden, and Pär Hansson. “playing with

the bits” user-configuration of ubiquitous domestic environments. In

UbiComp 2003: Ubiquitous Computing, volume 2864 of Lecture Notes

in Computer Science, pages 256–263. Springer Berlin Heidelberg, 2003.

[13] Maria Francesca Costabile, Piero Mussio, Loredana Parasiliti Provenza,

and Antonio Piccinno. End users as unwitting software developers. In

WEUSE ’08: Proceedings of the 4th international workshop on End-user

software engineering, pages 6–10, New York, NY, USA, 2008. ACM.

[14] Henry Lieberman, Fabio Paterno, and Volker Wulf. End User

Development. Springer, 2006.

BIBLIOGRAPHY 232

[15] Muneera Bano and Didar Zowghi. A systematic review on the

relationship between user involvement and system success. Information

and Software Technology, 58(0):148 – 169, 2015.

[16] Deepak Dhungana, Dominik Seichter, Goetz Botterweck, Rick Rabiser,

Paul Grünbacher, David Benavides, and José Galindo. Configuration

of multi product lines by bridging heterogeneous variability modeling

approaches. In Software Product Line Conference (SPLC), 2011 15th

International, pages 120–129, Aug 2011.

[17] Mary Beth Rosson, Hansa Sinha, Mithu Bhattacharya, and Dejin Zhao.

Design planning by end-user web developers. J. Vis. Lang. Comput.,

19(4):468–484, 2008.

[18] Hugo Brunelière, Jordi Cabot, Cauê Clasen, Frédéric Jouault, and

Jean Bézivin. Towards Model Driven Tool Interoperability: Bridging

Eclipse and Microsoft Modeling Tools. In Modelling Foundations and

Applications, volume 6138, chapter 5, pages 32–47. 2010.

[19] Giovanni Giachetti, Beatriz Marín, and Oscar Pastor. Using uml

as a domain-specific modeling language: A proposal for automatic

generation of uml profiles. In Proceedings of the 21st International

Conference on Advanced Information Systems Engineering, CAiSE ’09,

pages 110–124, Berlin, Heidelberg, 2009. Springer-Verlag.

[20] Andreas L. Opdahl. Incorporating uml class and activity constructs

into ueml. In ER Workshops, volume 6413, pages 244–254. Springer,

2010.

[21] Felix Klar, Sebastian Rose, and Andy Schürr. A meta-model-driven tool

integration development process. volume 5 of Lecture Notes in Business

Information Processing, pages 201–212. Springer, 2008.

BIBLIOGRAPHY 233

[22] Juan Manuel Vara and Esperanza Marcos. A framework for model-

driven development of information systems: Technical decisions and

lessons learned. Journal of Systems and Software, 85(10):2368 – 2384,

2012.

[23] Xavier Blanc, Marie-Pierre Gervais, and Prawee Sriplakich. Model

bus: Towards the interoperability of modelling tools. In Model Driven

Architecture, volume 3599 of Lecture Notes in Computer Science, pages

17–32. Springer Berlin Heidelberg, 2005.

[24] Marcos Didonet Del Fabro, Jean Bézivin, and Patrick Valduriez. Model-

driven tool interoperability: An application in bug tracking. In On the

Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and

ODBASE, volume 4275 of Lecture Notes in Computer Science, pages

863–881. Springer Berlin Heidelberg, 2006.

[25] Salvatore T. March and Gerald F. Smith. Design and natural science

research on information technology. Decis. Support Syst., 15(4):251–

266, 1995.

[26] Vijay Vaishnavi and William Kuechler. Design research in information

systems. http://www.isworld.org/Researchdesign/drisISworld.htm,

January 2004.

[27] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf.

End-user development: An emerging paradigm. In End User

Development, volume 9 of Human-Computer Interaction Series,

chapter 1, pages 1–8. Springer Netherlands, Dordrecht, 2006.

[28] Alexander Repenning and Andri Ioannidou. What makes end-user

development tick? 13 design guidelines. In End User Development,

BIBLIOGRAPHY 234

volume 9 of Human-Computer Interaction Series, pages 51–85. Springer

Netherlands, 2006.

[29] Maria F. Costabile, Daniela Fogli, Catherine Letondal, Piero Mussio,

and Antonio Piccinno. Domain-expert users and their needs of software

development. In Interaction, volume 4, pages 532–536, 2003.

[30] Anind K. Dey, Raffay Hamid, Chris Beckmann, Ian Li, and Daniel

Hsu. A cappella: programming by demonstration of context-aware

applications. In CHI ’04, pages 33–40, New York, USA, 2004.

[31] Brad A. Myers, John F. Pane, and Andy Ko. Natural programming

languages and environments. Commun. ACM, 47(9):47–52, September

2004.

[32] Henry Lieberman. Programming by example (introduction). Commun.

ACM, 43(3):72–74, 2000.

[33] Graham Clarke Jeannette Shiaw-Yuan Chin, Victor Callaghan. A

programming-by-example approach to customising digital homes.

Intelligent Environments, 2008 IET 4th International Conference on,

pages 1–8, July 2008.

[34] Graham Clarke Jeannette Shiaw-Yuan Chin, Victor Callaghan. An

end-user programming paradigm for pervasive computing applications.

International Conference on Pervasive Services, pages 325–328, 2006.

[35] Alexander Repenning and Corrina Perrone. Programming by example:

programming by analogous examples. Commun. ACM, 43(3):90–97,

2000.

BIBLIOGRAPHY 235

[36] Andrew J. Ko and Brad A. Myers. Designing the whyline: a debugging

interface for asking questions about program behavior. In CHI ’04

proceedings, pages 151–158, New York, USA, 2004. ACM Press.

[37] Brad A. Myers. Taxonomies of visual programming and program

visualization. J. Vis. Lang. Comput., 1(1):97–123, March 1990.

[38] Khai N. Truong, Elaine M. Huang, and Gregory D. Abowd. Camp:

A magnetic poetry interface for end-user programming of capture

applications for the home. In in Proceedings of Ubicomp 2004, pages

143–160, 2004.

[39] Vernica Andrea Bollati, Juan Manuel Vara, Álvaro Jiménez, and

Esperanza Marcos. Applying mde to the (semi-)automatic development

of model transformations. Information and Software Technology,

55(4):699 – 718, 2013.

[40] OMG. MDA Guide Version 1.0.1. http://www.omg.org/cgi-bin/

doc?omg/03-06-01.pdf, June 2003.

[41] Stuart Kent. Model driven engineering. In Proceedings of the Third

International Conference Integrated Formal Methods (IFM’2002), 2002.

[42] Aditya Agrawal, Tihamer Levendovszky, Jon Sprinkle, Feng Shi, and

Gabor Karsai. Generative programming via graph transformations

in the model-driven architecture. In In OOPSLA 2002 Workshop in

Generative Techniques in the context of Model Driven Architecture,

2002.

[43] Bran Selic. The pragmatics of model-driven development. IEEE Softw.,

20(5):19–25, 2003.

http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

BIBLIOGRAPHY 236

[44] Amílcar Sernadas, Cristina Sernadas, and Hans-Dieter Ehrich. Object-

oriented specification of databases: An algebraic approach. In VLDB

’87: Proceedings of the 13th International Conference on Very Large

Data Bases, pages 107–116, San Francisco, CA, USA, 1987. Morgan

Kaufmann Publishers Inc.

[45] Ralf Jungclaus, Gunter Saake, Thorsten Hartmann, and Cristina

Sernadas. TROLL: a language for object-oriented specification of

information systems. ACM Trans. Inf. Syst., 14(2):175–211, 1996.

[46] Michael Rohs and Jürgen Bohn. Entry points into a smart

campus environment.overview of the ethoc system. In ICDCSW

’03: Proceedings of the 23rd International Conference on Distributed

Computing Systems, page 260, Washington, DC, USA, 2003. IEEE

Computer Society.

[47] Object Management Group. Unified modeling language: Superstruc-

ture version 2.1.1. OMG Specification, February 2007.

[48] Philippe Kruchten. The Rational Unified Process: An Introduction.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

2003.

[49] Ivan Kurtev Ivanov. Adaptability of Model Transformations. phdthesis,

IPA, 2005. ISBN 90-365-2184-X.

[50] Jean Bézivin, Nicolas Farcet, Jean-Marc Jézéquel, Benoît Langlois, and

Damien Pollet. Reflective model driven engineering. pages 175–189.

Springer, 2003.

[51] Jean Bézivin. In search of a basic principle for model driven engineering.

Novatica Journal, Special Issue, 5(2):21–24, 2004.

BIBLIOGRAPHY 237

[52] Douglas C. Schmidt. Guest editor’s introduction: Model-driven

engineering. Computer, 39(2):25–31, 2006.

[53] Robert Balzer. A 15 year perspective on automatic programming. IEEE

Trans. Softw. Eng., 11(11):1257–1268, 1985.

[54] Krzysztof Czarnecki. Generative Programming. Principles and

Techniques of Software Engineering Based on Automated Conguration

and Fragment-Based Component Models. PhD thesis, Technical

University of Ilmenau, October 1998.

[55] Ulrich W. Eisenecker. Generative programming (gp) with c++. In

JMLC ’97: Proceedings of the Joint Modular Languages Conference on

Modular Programming Languages, pages 351–365, London, UK, 1997.

Springer-Verlag.

[56] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific

languages: an annotated bibliography. volume 35, pages 26–36, New

York, NY, USA, 2000. ACM.

[57] Martin Fowler. Domain Specific Languages. Addison-Wesley

Professional, 1st edition, 2010.

[58] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how

to develop domain-specific languages. ACM Comput. Surv., 37(4):316–

344, December 2005.

[59] Juha pekka Tolvanen and Steven Kelly. Modelling languages for product

families a method engineering approach. In 1st OOPSLA Workshop on

Domain-specic Visual Languages, 2001.

[60] Io Ns and M. Simos. Organization Domain Modeling and OO Analysis

and Design: Distinctions, Integration, New Directions. 1997.

BIBLIOGRAPHY 238

[61] Robert Esser and Jörn W. Janneck. A framework for defining domain-

specific visual languages. In OOPSLA 2001 Workshop on Domain

Specific Visual Languages, 2001.

[62] Thomas Stahl, Markus Völter, Jorn Bettin, Arno Haase, and Simon

Helsen. Model-driven software development - technology, engineering,

management. Pitman, 2006.

[63] Object Management Group. Meta object facility (MOF) specification,

2000. http://www.omg.org.

[64] Markus Völter. Md* best practices. Journal of Object Technology,

8(6):79–102, 2009.

[65] Esther Guerra, Juan de Lara, Alessio Malizia, and Paloma Daz.

Supporting user-oriented analysis for multi-view domain-specific visual

languages. Information and Software Technology, 51(4):769 – 784, 2009.

[66] Anne Geraci. IEEE Standard Computer Dictionary: Compilation of

IEEE Standard Computer Glossaries. IEEE Press, Piscataway, NJ,

USA, 1991.

[67] ATL Transformation Language. https://www.eclipse.org/atl/,

2015.

[68] Meta Object Facility (MOF) 2.0 Query/View/Transformation (QVT).

http://www.omg.org/spec/QVT/, 2015.

[69] Hartmut Ehrig, Karsten Ehrig, U. Prange, and G. Taentzer.

Fundamentals of Algebraic Graph Transformation (Monographs in

Theoretical Computer Science. An EATCS Series). Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 2006.

http://www.omg.org
https://www.eclipse.org/atl/
http://www.omg.org/spec/QVT/

BIBLIOGRAPHY 239

[70] Andy Schürr. Specification of graph translators with triple graph

grammars. In Graph-Theoretic Concepts in Computer Science, volume

903 of Lecture Notes in Computer Science, pages 151–163. Springer

Berlin Heidelberg, 1995.

[71] Frank Legler and Felix Naumann. A classification of schema mappings

and analysis of mapping tools. In BTW, volume 103 of LNI, pages

449–464. GI, 2007.

[72] Anas Abouzahra, Jean Bézivin, Marcos Didonet Del Fabro, and

Frédéric Jouault. A practical approach to bridging domain specific

languages with uml profiles. In Proceedings of the Best Practices for

Model Driven Software Development at OOPSLA, volume 5. Citeseer,

2005.

[73] Albin Jossic, Marcos Didonet Del Fabro, J-P Lerat, Jean Bézivin, and

Frédéric Jouault. Model integration with model weaving: a case study

in system architecture. In Systems Engineering and Modeling, 2007.

ICSEM ’07. International Conference on, pages 79–84, March 2007.

[74] Marcos López-Sanz, Juan Manuel Vara, Esperanza Marcos, and

Carlos E. Cuesta. A model-driven approach to weave architectural

styles into service-oriented architectures. In Proceedings of the First

International Workshop on Model Driven Service Engineering and Data

Quality and Security, MoSE+DQS ’09, pages 53–60, New York, NY,

USA, 2009. ACM.

[75] Jesús Sánchez Cuadrado, Esther Guerra, and Juan Lara. Generic model

transformations: Write once, reuse everywhere. In Theory and Practice

of Model Transformations, volume 6707 of Lecture Notes in Computer

Science, pages 62–77. 2011.

BIBLIOGRAPHY 240

[76] Marcos Didonet Del Fabro and Patrick Valduriez. Towards the

efficient development of model transformations using model weaving

and matching transformations. Software & Systems Modeling, 8(3):305–

324, 2009.

[77] Muhammad Ali Babar, Lianping Chen, and Forrest Shull. Managing

variability in software product lines. IEEE Software, 27(3):89–91, 2010.

[78] Marco Sinnema and Sybren Deelstra. Classifying variability modeling

techniques. Inf. Softw. Technol., 49(7):717–739, July 2007.

[79] Sven Apel, Florian Janda, Salvador Trujillo, and Christian Kstner.

Model superimposition in software product lines. In RichardF. Paige,

editor, Theory and Practice of Model Transformations, volume 5563

of Lecture Notes in Computer Science, pages 4–19. Springer Berlin

Heidelberg, 2009.

[80] Jan Bosch. Design and Use of Software Architectures: Adopting

and Evolving a Product-line Approach. ACM Press/Addison-Wesley

Publishing Co., New York, NY, USA, 2000.

[81] Paul C. Clements and Linda Northrop. Software Product Lines:

Practices and Patterns. SEI Series in Software Engineering. Addison-

Wesley, August 2001.

[82] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software

Product Line Engineering: Foundations, Principles and Techniques.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[83] Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. Software

Product Lines in Action: The Best Industrial Practice in Product Line

Engineering. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

BIBLIOGRAPHY 241

[84] Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela, J. Obbink,

and Klaus Pohl. Variability Issues in Software Product Lines Software

Product-Family Engineering. In Frank van der Linden, editor, Software

Product-Family Engineering, volume 2290 of Lecture Notes in Computer

Science, chapter 3, pages 303–338. Springer Berlin / Heidelberg, Berlin,

Heidelberg, April 2002.

[85] Lianping Chen, Muhammad Ali Babar, and Nour Ali. Variability

management in software product lines: A systematic review. In

Proceedings of the 13th International Software Product Line Conference,

SPLC ’09, pages 81–90, Pittsburgh, PA, USA, 2009. Carnegie Mellon

University.

[86] Marco Aiello, Pavel Bulanov, and Heerko Groefsema. Requirements

and tools for variability management. In COMPSAC Workshops, pages

245–250. IEEE Computer Society, 2010.

[87] Klaus Schmid and Isabel John. A customizable approach to full

lifecycle variability management. Sci. Comput. Program., 53(3):259–

284, December 2004.

[88] Felix Bachmann and Len Bass. Managing variability in software

architectures. In Proceedings of the 2001 Symposium on Software

Reusability: Putting Software Reuse in Context, SSR ’01, pages 126–

132, New York, NY, USA, 2001. ACM.

[89] Markus Voelter and Iris Groher. Product line implementation using

aspect-oriented and model-driven software development. Software

Product Line Conference, 2007. SPLC 2007. 11th International, pages

233–242, 10-14 Sept. 2007.

BIBLIOGRAPHY 242

[90] Øystein Haugen, Birger Møller-Pedersen, Jon Oldevik, Gøran K. Olsen,

and Andreas Svendsen. Adding standardized variability to domain

specific languages. In SPLC ’08, pages 139–148, Washington, DC, USA,

2008. IEEE Computer Society.

[91] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and

Moonhang Huh. Feature-Oriented Domain Analysis (FODA) Feasibility

Study. 1990.

[92] Kyo Chul Kang and Hyesun Lee. Variability modeling. In Systems and

Software Variability Management, pages 25–42. 2013.

[93] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated

analysis of feature models 20 years later: A literature review. Inf. Syst.,

35(6):615–636, September 2010.

[94] Andreas Svendsen, Øystein Haugen, and Xiaorui Zhang. Cvl 1.2 user

guide, 2011.

[95] Markus Voelter and Eelco Visser. Product line engineering using

domain-specific languages. In Software Product Line Conference

(SPLC), 2011 15th International, pages 70–79, 2011.

[96] Object Management Group. Variability Modeling. http:

//www.omgwiki.org/variability/doku.php?id=introduction_

to_variability_modeling, 2009.

[97] Common Variability Language Revised Submission. http://www.

omgwiki.org/variability/doku.php, 2012.

[98] Franck Fleurey, Øystein Haugen, Birger Møller-Pedersen, Gøran K.

Olsen, Andreas Svendsen, and Xiaorui Zhang. A Generic Language

and Tool for Variability Modeling. Technical report, 2009.

http://www.omgwiki.org/variability/doku.php?id=introduction_to_variability_modeling
http://www.omgwiki.org/variability/doku.php?id=introduction_to_variability_modeling
http://www.omgwiki.org/variability/doku.php?id=introduction_to_variability_modeling
http://www.omgwiki.org/variability/doku.php
http://www.omgwiki.org/variability/doku.php

BIBLIOGRAPHY 243

[99] Javier Muñoz. Model Driven Development of Pervasive Systems.

Building a Software Factory. Phd thesis, Universidad Politécnica de

Valencia, 2008.

[100] Manuel Jimenez, Francisca Rosique, Pedro Sanchez, Barbara Alvarez,

and Andres Iborra. Habitation: A domain-specific language for home

automation. IEEE Software, pages 30–38, 2009.

[101] Jane Webster and Richard T. Watson. Analyzing the past to prepare

for the future: Writing a literature review. MIS Q., 26(2):xiii–xxiii,

June 2002.

[102] Khai N. Truong and Gregory D. Abowd. Inca: A software infrastructure

to facilitate the construction and evolution of ubiquitous capture access

applications. In Pervasive, volume 3001 of Lecture Notes in Computer

Science, pages 140–157. Springer, 2004.

[103] Krzysztof Gajos. Rascal - a resource manager for multi agent systems

in smart spaces. In Revised Papers from the Second International

Workshop of Central and Eastern Europe on Multi-Agent Systems:

From Theory to Practice in Multi-Agent Systems, CEEMAS ’01, pages

111–120, London, UK, UK, 2002. Springer-Verlag.

[104] Ajay Kulkarni. A Reactive Behavioral System for the Intelligent

Room. Massachusetts Institute of Technology, Department of Electrical

Engineering and Computer Science, 2002.

[105] Robin Abraham, Margaret Burnett, and Martin Erwig. Spreadsheet

programming. Wiley Encyclopedia of Computer Science and

Engineering, 2008.

BIBLIOGRAPHY 244

[106] Margaret Burnett, Gregg Rothermel, and Curtis Cook. Software

engineering for end-user programmers. In Proceedings of the CHI’03

Workshop on End-User Development, 2003.

[107] Margaret Burnett, Curtis Cook, and Gregg Rothermel. End-user

software engineering. Commun. ACM, 47(9):53–58, 2004.

[108] Gregg Rothermel, Margaret Burnett, Lixin Li, Christopher Dupuis, and

Andrei Sheretov. A methodology for testing spreadsheets. ACM Trans.

Softw. Eng. Methodol., 10(1):110–147, January 2001.

[109] Marc Fisher II, Gregg Rothermel, Darren Brown, Mingming Cao,

Curtis R. Cook, and Margaret M. Burnett. Integrating automated test

generation into the wysiwyt spreadsheet testing methodology. ACM

TRANS. SOFTW. ENG. METHODOL, 15:2006, 2006.

[110] Chong Wang, Miao Xiong, Qi Zhou, and Yong Yu. Panto: A

portable natural language interface to ontologies. In The Semantic Web:

Research and Applications, volume 4519 of Lecture Notes in Computer

Science, pages 473–487. Springer Berlin Heidelberg, 2007.

[111] Markus Voelter. Language and ide modularization and composition

with mps. In Generative and Transformational Techniques in Software

Engineering IV, volume 7680 of Lecture Notes in Computer Science,

pages 383–430. Springer Berlin Heidelberg, 2013.

[112] JetBrains’ Meta Programming System. http://jetbrains.com/mps,

2014.

[113] Giovanni Andrés Giachetti Herrera. Supporting Automatic Interopera-

bility in Model-Driven Development Processes. PhD thesis, Universitat

Politècnica de València, 2011.

http://jetbrains.com/mps

BIBLIOGRAPHY 245

[114] Esther Guerra, Juan de Lara, and Fernando Orejas. Inter-modelling

with patterns. Software and System Modeling, 12(1):145–174, 2013.

[115] Gerti Kappel, Manuel Wimmer, Werner Retschitzegger, and Wieland

Schwinger. Leveraging model-based tool integration by conceptual

modeling techniques. In The Evolution of Conceptual Modeling, volume

6520 of Lecture Notes in Computer Science, pages 254–284. Springer

Berlin Heidelberg, 2011.

[116] Javier Luis Cánovas Izquierdo and Jordi Cabot. Enabling the

collaborative definition of dsmls. In Advanced Information Systems

Engineering, volume 7908 of Lecture Notes in Computer Science, pages

272–287. Springer Berlin Heidelberg, 2013.

[117] The gemoc initiative. http://gemoc.org, 2015.

[118] Tobias Hildenbrand, Franz Rothlauf, Michael Geisser, Armin Heinzl,

and Thomas Kude. Approaches to collaborative software development.

In CISIS, pages 523–528, 2008.

[119] Oscar Dieste Dante Carrizo and Natalia Juristo. Study of elicitation

techniques adequacy. In 11th Workshop on Requeriments Engineering

(WER), 2008.

[120] Hugh R. Beyer and Karen Holtzblatt. Apprenticing with the customer.

Commun. ACM, 38(5):45–52, 1995.

[121] Michael G. Christel;Kyo C. Kang. Issues in requirements elicitation.

Technical report, 09/1992 1992. Prepared for the SEI Joint Program

Office, HQ ESC/AXS 5 Eglin Street, Hanscom AFB, MA 01731-2116.

Sponsored by the U.S. Department of Defense.

http://gemoc.org

BIBLIOGRAPHY 246

[122] Peter Rittgen. Coma: A tool for collaborative modeling. In CAiSE

Forum, volume 344 of CEUR Workshop Proceedings, pages 61–64.

CEUR-WS.org, 2008.

[123] Jac A.M. Vennix, David F. Andersen, George P. Richardson, and John

Rohrbaugh. Model-building for group decision support: Issues and

alternatives in knowledge elicitation. European Journal of Operational

Research, 59(1):28 – 41, 1992. Modelling for Learning.

[124] Alberto Avritzer and Daniel J. Paulish. A comparison of commonly used

processes for multi-site software development. In Collaborative Software

Engineering, pages 285–302. Springer Berlin Heidelberg, 2010.

[125] Palmer R.N. Lund, Jay R. Water resource system modeling for conflict

resolution. In Water Resources Update 3 (108), pages 70–82, 1997.

[126] Per Runeson and Martin Höst. Guidelines for conducting and reporting

case study research in software engineering. Empirical Softw. Engg.,

14(2):131–164, 2009.

[127] Yunwen Ye and Gerhard Fischer. Designing for participation in socio-

technical software systems. In UAHCI’07 proceedings, pages 312–321,

Berlin, Heidelberg, 2007. Springer-Verlag.

[128] Mary Beth Rosson, Hansa Sinha, Mithu Bhattacharya, and Dejin Zhao.

Design planning by end-user web developers. J. Vis. Lang. Comput.,

19(4):468–484, 2008.

[129] John Steinmetz. Computers and squeak as environments for learning.

Squeak : Open Personal Computing for Multimedia, 2000.

BIBLIOGRAPHY 247

[130] David Canfield Smith, Allen Cypher, and James C. Spohrer. Kidsim:

programming agents without a programming language. Commun.

ACM, 37(7):54–67, 1994.

[131] Judith Segal. Two principles of end-user software engineering research.

In WEUSE I proceedings, pages 1–5, New York, NY, USA, 2005. ACM.

[132] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 1993.

[133] Martijn van Welie and Hallvard Trætteberg. Interaction patterns in user

interfaces. In Proc. Seventh Pattern Languages of Programs Conference:

PLoP 2000, pages 13–16, 2000.

[134] Mick P. Couper, Roger Tourangeau, Frederick G. Conrad, and Scott D.

Crawford. What they see is what we get: response options for web

surveys. Soc. Sci. Comput. Rev., 22(1):111–127, 2004.

[135] Wilbert O. Galitz. The Essential Guide to User Interface Design: An

Introduction to GUI Design Principles and Techniques. John Wiley &

Sons, Inc., New York, NY, USA, 2002.

[136] Markus Voelter and Iris Groher. Product line implementation using

aspect-oriented and model-driven software development. SPLC 2007,

pages 233–242, Sept. 2007.

[137] Javier Muñoz and Vicente Pelechano. Building a software factory for

pervasive systems development. In CAiSE, pages 342–356, 2005.

[138] Michalis Anastasopoulos, T. Patzke, and M. Becker. Software product

line technology for ambient intelligence applications. In In Proc.

Net.ObjectDays, pages 179–195, 2005.

BIBLIOGRAPHY 248

[139] Jon O’Brien, Tom Rodden, Mark Rouncefield, and John Hughes. At

home with the technology: an ethnographic study of a set-top-box trial.

ACM Trans. Comput.-Hum. Interact., 6(3):282–308, 1999.

[140] Francisca Pérez and Pedro Valderas. Allowing end-users to actively

participate within the elicitation of pervasive system requirements

through immediate visualization. In REV’09, pages 31–40, Washington,

USA, 2009. IEEE Computer Society.

[141] Francisca Pérez, Pedro Valderas, and Joan Fons. Enabling end-users

participation in an mdd-spl approach. In MAPLE 2009 Workshop, 2009.

[142] Javier Muñoz and Vicente Pelechano. Applying software factories to

pervasive systems: A platform specific framework. In ICEIS (3), pages

337–342, 2006.

[143] Javier Muñoz, Vicente Pelechano, and Carlos Cetina. Implementing a

pervasive meeting room: A model driven approach. In IWUC, pages

13–20, 2006.

[144] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux,

and Yves Bontemps. Generic semantics of feature diagrams. Comput.

Networks, 51(2):456–479, 2007.

[145] Antonio Ruiz-Cortés David Benavides, Pablo Trinidad. Automated

reasoning on feature models. LNCS, Advanced Information Systems

Engineering: 17th International Conference, CAiSE 2005, 3520:491–

503, 2005.

[146] Antonio Ruiz-cortés Sergio Segura Alberto Jimenez Pablo Trinidad,

David Benavides. Fama framework. In 12th Software Product Lines

Conference (SPLC), 2008.

BIBLIOGRAPHY 249

[147] Marcos Didonet Del Fabro, Jean Bézivin, and Patrick Valduriez.

Weaving models with the eclipse amw plugin. In Eclipse Modeling

Symposium, Eclipse Summit Europe 2006.

[148] OO-Method group. Universitat Politècnica de València. PervML Home.

http://www.pros.upv.es/index.php/es/flagship-projects/home,

2012.

[149] Maria Francesca Costabile, Daniela Fogli, Piero Mussio, and Antonio

Piccinno. Visual interactive systems for end-user development: A

model-based design methodology. IEEE Transactions on Systems, Man,

and Cybernetics, Part A, 37(6):1029–1046, 2007.

[150] Joachim Bayer, Sebastien Gerard, Øystein Haugen, Jason Xabier

Mansell, Birger Møller-Pedersen, Jon Oldevik, Patrick Tessier, Jean-

Philippe Thibault, and Tanya Widen. Consolidated product line

variability modeling. in software product lines. In Springer, editor,

Research Issues in Engineering and Management, 2006.

[151] Brian Elvesæter, Axel Hahn, Arne-Jørgen Berre, and Tor Neple.

Towards an interoperability framework for model-driven development

of software systems. In Interoperability of Enterprise Software and

Applications, pages 409–420. Springer London, 2006.

[152] Francisca Pérez, Pedro Valderas, and Joan Fons. Allowing end-

users to participate within model-driven development approaches. In

IEEE Symposium on Visual Languages and Human-Centric Computing.

VL/HCC 2011, pages 187–190, 2011.

[153] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.

EMF: Eclipse Modeling Framework 2.0. Addison-Wesley Professional,

2nd edition, 2009.

http://www.pros.upv.es/index.php/es/flagship-projects/home

BIBLIOGRAPHY 250

[154] Object Management Group (OMG). Xml metadata interchange (xmi)

specification, 2014.

[155] Øystein Haugen, Birger Møller-Pedersen, Gøran K. Olsen, Andreas

Svendsen, Franck Fleurey, and Xiaorui Zhang. Consolidated CVL

language and tool. Technical report, 2010.

[156] Marcos Didonet, Del Fabro, Jean Bézivin, and Patrick Valduriez.

Weaving models with the eclipse amw plugin. In Eclipse Modeling

Symposium, Eclipse Summit Europe, 2006.

[157] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. Atl:

A model transformation tool. Sci. Comput. Program., 72(1-2):31–39,

June 2008.

[158] Eclipse EMF Model Query Website. http://www.eclipse.org/

modeling/emf/downloads/?project=query, 2014.

[159] Zoé Drey and Charles Consel. A Visual, Open-Ended Approach to

Prototyping Ubiquitous Computing Applications. In Proceedings of the

8th IEEE Conference on Pervasive Computing and Communications

(PERCOM’10), Mannheim Allemagne, 03 2010.

[160] Valencian Regional Ministry of Infrastructure. UIM

basic concepts. http://www.moskitt.org/fileadmin/

conselleria/documentacion/Manual_Usuario/1.1.3/

ManualMetodologicoUIMIngles.pdf, 2011.

[161] Valencian Regional Ministry of Infrastructure. Sketcher plugin. http:

//www.moskitt.org/eng/moskitt-1320/, 2011.

[162] Francisca Pérez, Pedro Valderas, and Joan Fons. Collaborative

modeling through the integration of heterogeneous modeling languages.

http://www.eclipse.org/modeling/emf/downloads/?project=query
http://www.eclipse.org/modeling/emf/downloads/?project=query
http://www.moskitt.org/fileadmin/conselleria/documentacion/Manual_Usuario/1.1.3/ManualMetodologicoUIMIngles.pdf
http://www.moskitt.org/fileadmin/conselleria/documentacion/Manual_Usuario/1.1.3/ManualMetodologicoUIMIngles.pdf
http://www.moskitt.org/fileadmin/conselleria/documentacion/Manual_Usuario/1.1.3/ManualMetodologicoUIMIngles.pdf
http://www.moskitt.org/eng/moskitt-1320/
http://www.moskitt.org/eng/moskitt-1320/

BIBLIOGRAPHY 251

In Information System Development, pages 385–396. Springer Interna-

tional Publishing, 2014.

[163] Francisca Pérez, Pedro Valderas, and Joan Fons. A domain-specific

language for enabling doctors to specify biomechanical protocols. In

IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), pages 99–102, 2013.

[164] BTS Bioengineering Kinematics. http://www.btsbioengineering.

com/BTSBioengineering/Kinematics/BTSSMARTANALYZER/BTS_

SMART_ANALYZER.html, 2013.

[165] Andrew J. Ko, Brad A. Myers, and Htet Htet Aung. Six learning

barriers in end-user programming systems. In Proceedings of the 2004

IEEE Symposium on Visual Languages - Human Centric Computing,

VLHCC ’04, pages 199–206, Washington, DC, USA, 2004. IEEE

Computer Society.

[166] Martijn van Welie and Hallvard Trætteberg. Interaction patterns in

user interfaces. In PLoP 2000, pages 13–16, 2000.

[167] Haohai Ma, Weizhong Shao, Lu Zhang 0023, and Yanbing Jiang.

Applying OO metrics to assess UML meta-models. In Proceedings of

MODELS/UML’2004. UML 2004, 2004.

[168] Philip Langer, Manuel Wimmer, and Gerti Kappel. Model-to-model

transformations by demonstration. In Theory and Practice of Model

Transformations, volume 6142 of Lecture Notes in Computer Science,

pages 153–167. Springer Berlin Heidelberg, 2010.

BIBLIOGRAPHY 252

[169] Dániel Varró. Model transformation by example. In Model Driven

Engineering Languages and Systems, volume 4199 of Lecture Notes in

Computer Science, pages 410–424. Springer Berlin Heidelberg, 2006.

[170] Manuel Wimmer, Michael Strommer, Horst Kargl, and Gerhard

Kramler. Towards model transformation generation by-example. In

Proceedings of the 40th Annual Hawaii International Conference on

System Sciences, HICSS ’07, pages 285b–, Washington, DC, USA, 2007.

IEEE Computer Society.

[171] Gerti Kappel, Philip Langer, Werner Retschitzegger, Wieland

Schwinger, and Manuel Wimmer. Conceptual modelling and its

theoretical foundations. chapter Model Transformation By-example:

A Survey of the First Wave, pages 197–215. Springer-Verlag, Berlin,

Heidelberg, 2012.

[172] Yu Sun. Model transformation by demonstration. In Proceedings of

the 24th ACM SIGPLAN Conference Companion on Object Oriented

Programming Systems Languages and Applications, OOPSLA ’09, pages

831–832, New York, NY, USA, 2009. ACM.

[173] Iván García-Magariño, Jorge J. Gómez-Sanz, and Rubín Fuentes-

Fernández. Model transformation by-example: An algorithm for

generating many-to-many transformation rules in several model

transformation languages. In RichardF. Paige, editor, Theory and

Practice of Model Transformations, volume 5563 of Lecture Notes in

Computer Science, pages 52–66. Springer Berlin Heidelberg, 2009.

[174] Robson do Nascimento Fidalgo, Edson Alves, Sergio España, Jaelson

Castro, and Oscar Pastor. Metamodeling the enhanced entity-

BIBLIOGRAPHY 253

relationship model. Journal of Information and Data Management,

4(3):406–420, 2013.

[175] Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. Detecting

and repairing inconsistencies across heterogeneous models. In Software

Testing, Verification, and Validation, 2008 1st International Conference

on, pages 356–364, 2008.

ABOUT

Francisca Pérez is teaching computer science

subjects at the Universidad San Jorge in which

she has a full-time lecturer position from 2012

to nowadays. Although she currently resides in

Zaragoza, she was born in Valencia, she studied

at the Universitat Politècnica de València and

she is a researcher at the Centro de Investigación en Métodos de Producción

Software.

Her research interests are related to Model-Driven Development, Varia-

bility Management, End-user Development, and Collaborative Modeling. Her

research shows that variability management can be used in a novel way to

specify not only variabilities in a base model but also, use these variabilities

to enable collaborative modeling from a different modeling language. Thus,

different roles such as users can be involved in modeling tasks using a closer

modeling language for them.

When she is not glued to a computer screen, she enjoys her family, listening

music and traveling. Also, she spends time cooking delicious desserts, dancing

and singing in videogames, and trying very hard not be the worst board games

player. You can reach her at francisca2perez (at) gmail (dot) com.

254

	Introduction
	Motivation
	Problem Statement
	Thesis Goals
	The Proposed Solution
	Research methodology
	Thesis Context
	Thesis Structure

	Background
	End-User Development
	Definition
	Initiatives

	Model Driven Development
	Definition
	Initiatives
	Domain-Specific Languages
	Meta-modeling
	Interoperability of Models

	Variability Management
	Definition
	Features for managing the variability of products
	Models for managing the variability of products

	Conclusions

	State of the Art
	Analysis Criteria
	Approaches for Involving Users
	Approaches for Achieving MDD Interoperability
	Discussion and Conclusions

	Addressing the Involvement of Users
	Identifying the phases of MDD processes and issues
	Collaborative Modeling
	Overview of this work
	Validation
	Conclusions

	Involving End-users in Modeling Tasks
	Identification of User Skills and their Software Activities
	Identification of Guidelines to Involve Users in Modeling Tasks
	Applying the identified guidelines and interface design decisions to pervasive systems
	Conclusions

	Achieving the Involvement of Users in Modeling Tasks with Heterogeneous Modeling Languages
	Supporting collaborative modeling using variability models
	The Medem method
	The Specification Phase
	The Execution Phase
	Conclusions

	Medem Tool Support
	Supporting model transformations in Steps 1-2
	Supporting variability management in Step 3
	Supporting integration of models in Steps 5 and 7
	Example of usage: integrating ER and CD model descriptions
	Conclusions

	Evaluation of the Proposal
	PervML - Pantagruel Case Study
	UIM - Sketcher Case Study
	Bioengineering Kinematic - Medical Protocol Case Study
	Conclusions

	Towards the Efficient Specification of the Interoperability Mechanisms
	Model Transformations By-Example
	Medem-on-demand
	Tool Support
	Application and discussion
	Conclusions

	Conclusions and Future Work
	Contributions
	Assessment and Future Work
	Publications
	Relevance of the publications

	Projects Directed
	Final Conclusion

	Bibliography

