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Abstract

Numerical simulations are useful in the processes of design, development and
optimization of transducers for non-destructive testing. In this work, a three-
dimensional velocity—stress finite-difference model is presented for the elastic wave
propagation in the piezoelectric substrate of a transducer excited by applying an
impulsive voltage signal to the transducer electrodes. The allocation of the stress,
velocity and electric fields components on a staggered grid leads to a stable scheme.
The different time scales of both mechanical and electromagnetic waves have leaded
previous FDTD models to choose between significant physical simplifications or
complicated implicit equations. The model presented here is explicit in all its time
domain equations, contains only first order derivatives and is centered in time and
space. The results of simulations show remarkable accuracy and stability for the
different transducers studied.
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1.- INTRODUCTION

An algorithm to simulate elastic wave phenomena in cylindrical piezoelectric
transducers is presented in this paper. In the piezoelectric substrate, electromagnetic and
acoustic fields are coupled, so wave dynamics present multiple time scales with notably
different wave speeds. In order to resolve these multiple time scales (essential for
numerical stability), the fastest time scale must be respected. Generic multiphysics
packages may have this capability, but in order to be foolproof, they implement stiff
system solvers as the default. Hence a multiphysics package will give an incorrect
solution for the coupled wave dynamics problem unless the modeler knows and respects
the time scale of the fastest physical mode. Furthermore, given the different order of
magnitude of both time scales, and taking into account the significant impact of the
wave speed with respect to stability and computational cost criteria, it is preferable to
assume or propose one of the so-called electromagnetic quasi-static approaches when
our interest is focused on mechanical waves.

The only obligatory condition of the general quasi-static approach is that the size of the
piezo-substrate must be considerably smaller than the wavelength of electromagnetic
phenomena within the simulation. However, these requirement usually introduce
additional significant simplifications to enable the development of practical models [1-



4], and thus it is not difficult to find case studies where predicted behavior differs
considerably from that observed in practice. Most of the previous proposed models [e.g.
1-11], whilst achieving satisfactory results, also assume that one of the electrical vectors
(electrostatic field or displacement) must be uniform and sometimes constant within the
domain. The selection of the vector to be fixed depends on the electrical contour
condition, and therefore open circuit and short-circuit conditions are respectively
confused with fixed displacement and fixed electrical field, neglecting the piezoelectric
coupling. Thus, for many specific cases, less restrictive approaches must be developed.

In recent years the works of Smith and Ren [2] or Chagla and Smith [3] may be noted;
they impose the condition that all electrical rotationals must be null, implying that the
electrical displacement into the piezoelectric must be uniform. Other more accurate
conditions are proposed by Wong and Tam [4], but their work cannot be considered as a
complete explicit FDTD implementation; in fact, they state that an external “simulator
named ANSOFT Maxwell 2D is used to calculate the electric displacement D within the
substrates”. A better approach is achieved by Gsell and Dual [5] and May and Dual [6],
but both models are explicit for all the variables with the exception of the electrostatic
potential. To the best of our knowledge, the only other recent significant contributions
on this topic come from Masahiro Sato et al. [7,8], whose work has achieved important
advances but is restricted to the two dimensional case. Other important work to be
noted, in which no restrictive conditions are imposed is that of Hornsby and Das-Gupta

[9].

The aim of this work is to define a quasi-static approach compatible with an accurate
physical definition of the problem and with a computational full explicit
implementation. Thus we assume as usual that all piezo-substrate dimensions are
smaller than the wavelength of any electromagnetic field, but we allow both
displacement and electric fields to be variable in time and space. As will be shown, the
critical point is to calculate explicitly the electrical displacement in each computational
node. To facilitate this task, the simplification proposed here consists on accepting that
electrical displacement is uniform along an axial field line, but dependent on time and
radial direction within the piezosubstrate.

The required explicitness needs different sets of equations, depending on the application
of the piezoelectric material; i.e. different set for actuators rather than for sensors, but
also different for a short-circuited sensor than for an open-circuited or large-impedance
device. A complete multipurpose algorithm will be developed in due course, but in this
paper, for the sake of simplicity and clarity, we will start by presenting the simplest
case: actuators with external voltage excitation function.

The equation system is presented as a two dimensional computational domain which
represents a physical 3D axisymmetrical device. The selection of this symmetry is due
to computational limitations which persist for full 3D simulations even when using
recent high-spec machines. Since many practical piezoelectric ceramic devices display
axial symmetry, we consider that axisymmetrical equations are directly applicable to
real problems, whereas 2D Cartesian simulations are less amenable to comparison with
real devices.

The authors are conscious that the stated problem has been approached successfully
using FEM (finite element method) schemes [12-15]; however, the ease of model




construction and availability of direct time domain calculations when using FDTD
models justifies their introduction for many particular case studies. In fact, in echo-
impulse techniques and directional radiation problems, the time domain knowledge of
physical variables is a priority, and it is difficult to obtain them from the inverse-Fourier
transform of numerically-obtained eigenvalues.

2.- NOTATION

P, Volumetric mass density in equilibrium

P, . Volumetric charge density

P Surface charge density

E : Electric field, with compounds E;

D : Electric displacement, with compounds Dy

H : Magnetization

B : Magnetic field

J : Current density

¢ : Electrostatic potential

i : punctual instantaneous speed, with compounds u,
(f : punctual deformation from equilibrium, with compounds ¢,
o ; compounds of the stress tensor

s,;= compounds of the unitary strain tensor, in Cartesian coordinates

- 0&,
S,-» — l aél + 5/
T2 ox;  ox

k[? Compounds of the elasticity tensor in conditions of constant electric displacement

h,, : piezoelectric modulus which defines the linear dependence between o, and D, ,
and also between E, and s,, being s, and o, expressed in reduced form (as noted in
next paragraph about conventions)

B Inverse of absolute electric permittivity in condition of constant deformation

2.1.-Conventions
Coordinates
Following usual conventions, in equations written in cylindrical coordinates we will use

X,, X,, X; torefer to the components r, @, z

Vectorial variables: Example electric field E,
E =E, E,=E,, E =E; incylindrical
E =E,, E =E,, E. =E; inCartesian

The axisymmetrical axis z will always be denoted by the sub index 3, as conventional in
piezoelectricity




Tensorial variables
Strain and stress tensors notation will be reduced, as follows,
o, =0,,0,,=0,, 0. =0, 0, =0, in cylindrical

zz rz

=0,, 0

c,=0,,0,=0,,0_ =o0,,0, =05,0,, =0, in Cartesian

yz
The same reduction is carried out for strain s.

Note that symmetry restrictions imply that tensorial compoundso,,,c,,. vanish.

re 2

3.- SCOPE OF THE MODEL

When a sample of piezoelectric material is mechanically excited and no electrodes are
present, mechanical waves propagate like in any elastic material. The absence of
electrodes implies a null displacement field in the whole piezoelectric region, whereas
the electric field can vary associated with perturbation. In fact, neglecting the
displacement field in canonical equations (20-23), this set of equations -and therefore
the dynamics of the system- becomes identical to that of any elastic solid [16]. Thus, the
presence of electrodes is responsible for generating electrical charges, displacement
fields and the modification of piezoelectric dynamics in comparison with simple elastic
solids. It will be understood that the larger the influence of electrodes, the more
complex the dynamics in comparison with a simple elastic case.

The system is capable to simulate configurations where the electrode is fully integrated
with the elastic piezostructure, such as transducers. For the sake of simplicity, we
present and evaluate the system for the case of a cylinder with radius R and thickness Z,
excited by flat electrodes attached to the lateral faces (Figure 1).

The model can easily be implemented to simulate configurations where other media,
different than the piezoelectric substrate, are present. In fact, the system and the
equations are targeted to be useful to simulate time domain directivity patterns
generated by piezoelectric transducers radiating inside a solid or fluid. In this kind of
situations, implicit models [4-6] present numerical difficulties (due to the radiation in an
open media), and previous explicit approaches [2,3] assume more restrictive hypothesis.

4.- GOVERNING EQUATIONS OF PIEZOELECTRIC SYSTEMS.
The general set of equations involved, which later will be particularized to the
axisymmetrical case (with axial symmetry required in shape, excitation, and

piezoelectric isotropy) is presented. On the one hand, the Maxwell equations for the
electromagnetism

VxE:—lé, Vxﬁ:]+5, V-D=p,,V-B=0 (1-4)

where variables are defined above,

and, on the other hand, “mechanical” equations, consisting on the stress equation of
motion and the canonical constitutive equation. For the linear undamped case, without




convective terms considered, they could be written respectively as follows (in matrix
form for Cartesian coordinates):

O, O Oy
g(u U u ):L AN c.. C.. O (5)
6t 19%2s43 ,Oo ax] > axz s 6X3 21 22 23
031 O3 O3
0, lel klg k@ 0 0 0 My oy Sy
o, kﬁ kzDz kzD3 0 0 0 hiy, hy by, S,
(o kﬁ k3Dz ng3 0 0 0 _ hiy hyy By S5
o, 0 0 0 kﬁ kﬁ 0 hy hyy hyy Sy
O5 |= 0 0 0 kslz); kst 0 hlS hzs h35 Ss (6)
Oy 0 0 0 0 0 k& hig hy i S
E, hyy hy by hy hys o by B 0 0 D,
E, = hy Py hyy hyy hys hyg 0 ﬁzsz 0 D,
E; hyy hyy by hyy hys by 0 0 ﬂ§3 D,

The complete solution of the presented set of equations includes electromagnetic wave
propagation. To ensure numerical stability of a hypothetical complete model, the time
increment in each computational step becomes very small, enforcing low numerical
accuracy in the propagation of mechanical waves and wasting significant computational
resources. Thus, if we restrict the analysis to piezoelectric substrates with much smaller
dimensions than the wavelength of the electromagnetic waves in the bandwidth of

interest, we can introduce a quasi-static approach for whichVx E =0. Then, the
electrostatic potential ¢ can be defined as:

E=-V¢ @)
For our purposes, equation (2) will not be reduced toVx H = 0, as usual in a quasi-
static approach ([2-3]). Instead, we propose a less restrictive simplification (see
appendix B for more detailed justification) relative to the electrical displacement vector
field; that is, for the particular case of axial symmetry:

\D\ =D_,and ®)

D =0 for r>R ©

This means that the value of D outside the substrate is negligible in comparison with its
value within it; i.e. all the electrical flux is concentrated in the ferroelectric material.
This approach becomes more accurate the smaller the ratio between the z and »
dimensions is (condition that is usually fulfilled in sandwich transducer configurations).
The proposed approach, given in equation (8), joined to Gauss law for the displacement

field (V-D = Py ), implies that the electric displacement D, remains constant over any

line parallel to the symmetry axis, since there are no free electrical charges within the
piezoelectric substrate. Thus, if we evaluate the instantaneous difference of potential

between two points of the opposite electrodes ¢, ,(r) in a line parallel to the third axis,
we find:




z z
=G0t (1) ==, (x)) = IE3 (%, x5 )dxy = I(_ thSj (%, x3) + B33D5(x, ))dx3 (10)

where the summation convention holds for the index j and Z is the axial distance
between electrodes

The previous equation, which can be written
Z
=G0 (X)) = I (_ h3jsj (x5 x5 ))dx3 +ZB33D5(x,), (1D

operates in the simulation as an electrical boundary condition. In fact, given a known
value of the potential between the electrodes, it defines the value of the displacement for
each line D,(x,) which is coincident —given the approach stated in equations (8) and

(9)- with the surface density charge in each point of the electrode pg(x,).

Equation 11, joined with equations 5 and 6 and mechanical boundary conditions in
cylindrical coordinates, configure the whole explicit FDTD model. The first time-
derivative of canonical equation in cylindrical coordinates with axial symmetry reads:

S, ki ki ki 0 0 My S,
S, ky kyokSo 0 |0 Ay $)
O.'3 _ k1D3 le3 k£ 0 0 h33 SS (12)
s 0 0 0 kg hs 0 8
E, ( 0 0 0 hlsJ (ﬁfl 0 J (Dlj
E3 hl3 hl3 h33 O O ﬂ;3 D3

Where the total number of elastic modules have been reduced, and only those
independent in axisymmetrical anisotropy have been written. Mechanical, electrical and
piezoelectric modules have been considered as time-independent. Finally, the variable

compounds £, , D,, §,, $,, 6,,and &, are null due to axial symmetry, and have
therefore been excluded from the equations.

The time derivative of the strain tensor, S , is related with the tensor of the velocity
gradient, Vu , as follows

1
SZE(Vu—i-(Vu)T) (13)
where this tensor in Cartesian coordinates is (Vu); =du, /éx,, and in cylindrical

coordinates takes the form

ou, ou, u ou
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Thus, we obtain

r _ z r

or 0Oz

(16-19)

5, = S, = -, s
1 ’ 2 ’ 3 5
or rop r 0z

ou, . 10u, wu . ou . l[auz ou )

where axial symmetry restrictions reduce the equation for the second compound to
s, =u, /r . Finally, the time-derivative constitutive equations in cylindrical coordinates
are as follows

ou u ou .
= kﬁ - - +k1€ 7Z_h13D3 (20)
or r oz
ou, u, Ou, .
0, :klg 5}” kD . +k11; o =—h;D; (2D
ou u ou .
05 = le3 8rr +k1[; 7r+k3[;67;_h33D3 (22)
. k(ou, ou, :
05 =55(ar+ aZ j—hlle (23)
. hs(0Ou, Ou,
E =—"15|—= + 24
1 > (6;’ = ] ﬂn (24
. ou, u, Ou, 5
Ey =_h13§_h13 . h33g+ﬂ33D3 (25)

The stress equation of motion takes the form (see ref [16]):

%_ 16(r0 ) 00, O (26)
o p, or 0z r

%: 10d(ro,.) ) oo, @7
oo p, \r or Oz

where the equation for the second component has been excluded, since with axial

ou,
symmetry Y =0.

Previous eight equations and the time derivative of equation (11) are implemented in the
numerical model as shown in next section. This time derivative in cylindrical
coordinates reads:

“ u, Ou, :
D 5 (X)) = 7P, [![ -t hy 7 +hys az)d)% - ¢tot(xl)J (28)




5- DISCRETIZATION OF THE EQUATIONS.

The canonical equations (20-25) have been chosen in a manner which makes it easy to
reduce the system to pure mechanics. In fact, as stated in the introduction, in the case

that D is forced to be constant in the complete computational domain, the actual set of
equations (20-23, 26-27) becomes entirely equivalent to that proposed by Schubert for

solids [16]. Furthermore, the term associated with D, in equations (20-22) is formally a

source term, so if we impose a known function for D, , the piezoelectric substrate
vibrates in exactly the same way as a general solid with the same source function.

The coupled piezoelectric effect in this model of an actuator is given by the “electrical
boundary condition” in Eq (28). Starting from an imposed known potential function
between the electrodes, this equation determines the electric displacement for each
instant and position. This electric displacement is obtained instantaneously as a function
of the external electric conditions and the mechanical punctual state. Thus, it is the
variable that takes into account the electro-mechanical full coupling, receiving the entire
electromechanical prior history and acting like a source term in the next time step.

To describe the explicit FDTD scheme let us consider a piezoelectric cylinder with
radius R and thickness Z excited by two flat electrodes attached to the opposite sides of
the cylinder. Stress-free mechanical boundary conditions are imposed. The
computational domain defined for the physical configuration is a rectangular mesh with
J and K nodes respectively in radial and axial directions (see Figure 1). Note that on the
periphery, for some nodes (“phantom nodes”) artificial conditions are forced in order to
obtain significant values of the physical magnitudes in the real contour. Both layers
(real boundary and the phantom nodes) are required due to the second order nature of
the general motion equations.

From the mechanical equations (20-23, 26-27) we note that time derivatives of the
speed, u , are computed as spatial derivatives of the stress, o ,and vice versa. This
particularity of mechanical, and also electromagnetic equations, suggests a leapfrog
time-step structure, as is commonly used in explicit FDTD schemes. With this strategy,
a set of variables (o, E, D) is computed at odd half-time intervals and the rest (# ) at
even half-time intervals.

An appropriate spatial staggered scheme is defined. In the scheme proposed
(represented in Figure 1) different components of each vectorial or tensorial variable
may be placed at different nodes of the spatial mesh. The computational evolution of
calculation consists of three basic steps, two of which are coincident with time steps and
the third is performed without “physical time advance”(see Figure 2).

The scheme is therefore centered in space and time. This fully centered first order
scheme represents a computational advance regarding to higher order systems with
second order derivatives and a non-centered time scheme, where approximated methods
(like Runge-Kutta) would be necessary. The accuracy of the algorithm is dependent on
the validity of the discretisation approach, which approximates mathematical
differentials by finite differences. The whole set of discrete equations, for substrate and
boundaries, is given in the appendix A.
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Figure 1.- Structure of the staggered spatial mesh
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Figure 2.- Time and computational evolution of the simulation.

5.1.- Stability

The selection of the time step attending to the Courant number [17] has proved
sufficiently to avoid numerical instability. No difficulties were encountered, since the
constitutive equations are defined in terms of k” coefficients which yield to wave
speeds bigger than those defined from k* coefficients. Thus, time discretisation is
restricted by the size of the shell and by the highest longitudinal wave speed,

Coux = m , given the next relation:

At < ! (32)

o I/ AP +1/AZ?




where At, Ar and Az are respectively the time step and the spatial step in the respective
directions. If a quadratic grid is used, Eq (32) reduces to

Com V2

max

At <

(33)

It is well known that the smaller the relative size of the space step with respect to
wavelength, the better the accuracy. The size of the mesh in all the simulations of this
work has been chosen sufficiently small. Particularly

C. .
Az << 20 (34)
where f,,..x denotes the highest frequency evaluated in the signal, and c,,;, is the lowest
wave speed of the piezoelectric domain.

6- NUMERICAL RESULTS AND DISCUSSION

In this section we will present some numerical experiments. The geometry and
numerical parameters are the following: A piezoelectric cylinder of variable radius
(R=1mm to R=40mm) and length (Z=1mm to Z=60mm). The material consist of axially
polarized PZ21 from Ferroperm, with volumetric mass density 7500 kgm™, and
piezoelectrical properties listed in table 1. The substrate principal direction is placed
parallel to the cylinder axis to fulfill the condition of axial symmetry in both
piezoelectric isotropy and geometry. Two flat electrodes are attached to both flat
cylinder ends, and the excitation external voltage functions are Ricker wavelets (to
obtain frequency plots via the Fourier transform) and harmonic pure tones modulated by
a Hanning function (to obtain instantaneous snapshots). The central frequency and
bandwidth of the Ricker wavelets may vary depending on the region where the
eigenvalues of the system are expected. The mesh is composed by nodes separated
0.1mm in radial and axial direction, and different time steps have being tested,
satisfying stability condition, in the interval between 15ns to 25ns.

6.1-Frequency response

Analytical solutions are known for the more straightforward geometries in elastic solids.
Eigenfrequencies associated with pure axial and radial modes are defined by known
analytical expressions. These eigenfrequencies are dependent on the wave speed of the
perturbation and geometrical dimensions of the solid. However, one of the main
differences between piezoelectrics and elastic solids is that the first ones are capable to
develop different propagation speeds -as a function of applied electromagnetic
conditions- being those speeds defined between the two limit wave speeds, ¢ ,the
slowest one, associated with the constant electric field condition, and ¢” ,the fastest one,
associated with the constant electric displacement condition.

As a consequence of this particularity, the vibratory behavior of piezos and elastic
solids are generally non equivalent; but there are certain particular combinations of
geometry and electromagnetic conditions in piezoelectric transducers that lead to a
vibration in the piezo quite similar to the vibration of simple elastic solids.

More specifically, it can be demonstrated that a very thin disc excited in short circuit

vibrates in its radial modes in a similar way to an elastic solid with identical shape and
wave speed I By the other hand, a long and thin rod excited in open circuit condition

10




vibrates —in its axial modes- similarly to a simple elastic solid with identical shape and
wave speed c”.

We can justify previous statement as follows: In the case of the thin disc vibrating in a
radial resonant mode, it can be accepted that the perturbation along an axial line remains
practically constant. Thus, the null electrostatic potential condition (shortcircuit) is, as a
first approach, similar to the null electric field condition, whose associated wave speed
is ¢*. In the case of the long and thin rod vibrating in an axial resonant mode, it can be
accepted that perturbation along a radial line remains practically uniform. Thus, the null
electric current condition (open circuit) is, as a first approach, similar to the null electric
displacement condition, whose associated wave speed is ¢”.

In the next paragraphs we show the results of the evaluation in the aforementioned limit
cases, 1.e., short circuited thin disk and open circuit thin rod. Comparison has been
performed between numerical model response and analytical solution of the
correspondent elastic solid. Eigenfrequencies obtained show that the model is able to
perform in both limit cases with the respective different limit wave speeds,
characteristic of wave propagation in piezos, ¢ and ¢”. This adequate response in limit
situations, joined with the coherence and stability of model equations, allow as
adventure a correct behavior in intermediate situations.

In order to obtain eigenfrequencies numerically we compute instantaneous values of
electric voltage and current in the electrode, calculated from an axial spatial integration
of the whole domain, and from a radial surface integration of the whole domain
respectively. Once obtained these time domain functions, we calculate the complex
fourier transform of them, and finally, the frequency domain impedance and admittance
from the division of both frequency domain functions. The plots show the absolute
values of admittance and impedance. The resonant and anti-resonant frequencies are
obtained from the local maxima of these functions. Notice that both impedance and
admittance functions are defined in the frequency domain for electrical signals, and we
have obtained them from a time domain simulation of system mechanics, therefore, all
numerical accumulated errors should appear on the plots. If no significant lack of
precision is found here, we can be confident concerning the accuracy of the entire time
domain simulation.

Very good agreement is found when comparing analytical with numerical results for
both evaluated geometries as it is discussed below.

6.1.1.-Thin rod

The pure axial resonant modes of an elastic cylinder are multiples of the eigenfrequency
associated with the first mode. Due to the symmetrical excitation the modes form a
series of odd natural multiples of the fundamental frequency. Table 2 shows analytically
derived values for the case of a cylinder with length Z=6¢m, and wave speed 3859m/s
(coincident with the speed associated with the biggest k” coefficient, ¢”) compared with
numerical data. The piezoelectric is excited in open circuit condition so the
eigenfrequencies are associated with antiresonances.

11




Results are also shown in figure 3 where impedance is plotted against frequency in the
region with highest signal to noise ratio. Excitation was achieved using Ricker wavelets
with a Gaussian-like spectrum.

The total integration time at the experiment was Sms, which implies a frequency
resolution of 0.2 kHz. The spatial resolution is one-half the internodal distance and it
generates an additional imprecision in the derived resonance frequencies of 0.8%. The
small differences found between numerical and analytical results can be attributed to
this imprecision, and they are not suggesting a wrong behavior of the model.

16.5 -4.78 -8.45 0 0 -274
-4.78 16.5 -8.45 0 0 -274
-8.45 -8.45 20.7 0 0 593
0 0 0 43.5 741 0
0 0 0 741 2768 0
-274 -274 593 0 0 3006
Table 1: Piezoelectric properties of the material used in simulations, written in the

E

matrix form: ( ”J . Compliances units are 10"?m”N"" and piezoelectrical charge

£
constant units are 10"?mV™", Relative permittivities.

Numeric f(kHz)
Analytic f(kHz)

324
32.1

96.8
96.4

160.3
160.8

223.1
225.1

Table 2: Numerical and analytical results for the first pure axial modes in a thin
cylindrical rod with length, Z=60mm.

OO ] —1 00 200
Frequency (kHz)

Figure 3.- Module of impedance in open circuit (continuous line), and module of admittance in
short-circuit (dashed), for the case of a thin piezoelectric rod in arbitrary units.
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6.1.2.-Thin disk

Now let us consider the case of a thin disk. The resonance frequencies of the radial
modes of a thick elastic cylinder in free-free-free conditions are given by the solutions
of the implicit equation [18]

Ji(&R) = B - kR - J, (kR) (35)

where J; and J, are Bessel functions of first and second order respectively, & is the wave
number, R is the external radius of the cylinder, and beta is a dimensionless coefficient
depending on elastic material properties.

In an isotropic case, beta is obtained as
B= A+26 (36)
2(A+G)
Here, A and G are the Lamé coefficients and £ always takes a positive value smaller
than one. In our case, this coefficient takes the value 0.7625, so that the effective Young
modulus associated with the calculation of wave speed is 6'56-10'° Nm ™, and the
associated wave speed is:

' . 10
¢, = 1/M =2959ms™".
7500

With this data, one can change the solutions of Eq. (35) into resonant frequencies. This
equation is solved when kR=(2.056, 5.392, 8.532, 11.733, 14.884, 18.033, ...) obtaining
for R=4cm the numerical eigenfrequencies shown in table 3.

In this table a comparison is performed between analytical purely elastic results, and
numerical results in conditions of shortcircuit. Results can also be observed in the figure
4, where admittance has been plotted against frequency in the region with highest signal
to noise ratio. Again, excitation is carried out using Ricker wavelets with a Gaussian-
like spectrum.

Very good agreement between analytical and numerical results is found for axial modes
in open circuit condition (antiresonances) and for radial modes in short circuit
(resonances). This particularity has been justified formerly in this section, but we are
trying to extend the explanation of this point in the next lines:

The mechanical coefficients of compliance tensors, in piezoelectric materials, change
depending on the electrical condition of constant D() or constant £(¢). In a domain

with strictly uniform and constant D(t) orE (2), the wave speed is a direct consequence

of the value of coefficients k” and & respectively. In the case of an axial mode in a thin
rod, an open—circuit condition is accepted to approach a constant null displacement in
any field line of the piezo, so that the wave speed is constant for any axial mode and can
be found from the elastic coefficients (this wave speed is denoted ¢”). However, if the
same rod is excited in short-circuit, this implies null electrostatic potential which means
that the average value of the electric field trough a field line is null into the substrate:
the condition of null electric field is almost but not strictly fulfilled. Moreover it can be
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demonstrated that for low frequency modes with large value of A, the wave speed will
approach the theoretical speed associated with the null electric field condition (c%) but
for high frequency modes (in shortcircuit) the wave speed will tend to be similar to ¢”.
This theoretical evidence is reflected in the numerical results of figure 3.

Numeric f(kHz) 242 1 63.6 | 100.9 137.9 174.2 210.2
Analytic f(kHz) 242 | 63.5 100.4 138.1 175.2 212.3

Table 3: Numerical and analytical results for the first pure radial modes
in a thin disk with radius, R=40mm.
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Figure 4.- Modules of impedance in open circuit (dashed line), and admittance in short-circuit
(continuous), for the case of a thin piezoelectric disk in arbitrary units. The Bessel functions are
plotted, by adding an arbitrary constant value to simplify visual inspection.

On the other hand, if we study now the case of a radial mode in a thin disk, the
shortcircuit condition is accepted to approach a null electric field along any radial line
within the substrate, and thus the wave speed will equal the theoretical speed ¢, which
can be found from the elastic coefficients and is constant for any radial mode. However,
if this disk is excited in open circuit, we have a condition of null total charge in the
electrodes, and this means that the average value of the charge density into the
electrodes - and the displacement field into the substrate - is null; the condition of null
electric displacement is almost but not strictly fulfilled. It can be again demonstrated
that, for low frequency modes the wave speed will approach the theoretical speed &,
but for high frequency modes (in open circuit) the wave speed will tend to be similar to
. Numerical results agree with this assertion as shown in figure 4.

This particular property of transducer dynamics — that high frequency modes propagate

with speed ¢© in radial directions and ¢” in axial directions, independent of electrical
contour conditions - is also found in general three dimensional substrates. Obtaining the
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analytical value of all eigenfrequencies in three dimensional substrates is not an easy
task. In the limit cases of low- and high-frequency modes, we can forecast the wave
speed; However, in the “middle frequencies region” we only can affirm initially that,
independent of electrical contour conditions, the eigenfrequencies will be found
somewhere between those predicted for elastic materials with similar shape and with
wave speeds similar to ¢” and ¢~.

To determine analytically the eigenfrequencies associated with a particular mode, we
have to know the wave speed associated with that particular vibratory state. An analysis
of this situation seems to drive to a significant conclusion: in the mid-frequency range
(where wavelengths are small compared to physical dimensions) the wave speed may
vary as a function of position, within the range defined by the limit values ¢” and ¢*.
This spatial dependence of wave speed has an interesting consequence related to the
Fermat principle: the trajectory of an energy ray could be curved. This assertion is
compatible with the presence of solitons in linear piezoelectrics, and is also compatible
with the results found in our simulations, as shown in figure 5. In fact, if the diameter of
the cylindrical rod is modified, the eigenfrequency associated with the main axial mode
remains constant, but for the second pure axial mode, the eigenfrequency decreases as
radial dimension increases. This decrease of the eigenfrequency is associated with a
reduction of the wave speed in this mode, as predicted by the theory. The bigger the
radius, the bigger the variation of electrical displacement in the piezoelectric substrate
(even in open circuit conditions), and the smaller the average Young modulus and wave
speed.

The numerical robustness of the model was finally tested by changing spatial mesh
resolution, total integration time, Courant number in the region defined by the stability

criterion, and excitation function. For the sake of brevity, all these tests are not
presented here. However, we can stand that no significant differences were found.
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Figure 5.- Relative modules of impedance in open circuit, for three different thin rods, with
length Z=6¢cm, and respective radius R=2mm, R=5mm and R=10mm
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6.2.- Spatial and time response

Previous section illustrates good agreement with theory in the evaluation of the system
response in frequency domain. As the calculations are performed in the time domain, a
good accuracy in frequency implies necessarily a good accuracy in the time response. In
this section, and with the aim of illustrating wave propagation, we show a set of spatial
instantaneous plots.

In figure 6 three different instants of propagation of a high frequency Ricker pulse are
plotted. Figure 7 illustrates important differences associated with the acceptance of
transversal non-uniformity for the displacement field. The two plots of fig.7 are
synchronous and the excitation function is similar, but in the first one we have an open
circuit condition, and in the second we have a constant electric displacement condition.
In several previous models these conditions are confused, using D=0 as a simplification
of the real condition /=0. Experiments suggest that this simplification leads to
considerably different results. Here we show instantaneous spatial images, but
frequency responses are also different.

Finally, figure 8 plots the cumulative quadratic axial displacement of a thin rod in its
second pure axial mode. One may appreciate that the amplitude of the perturbation is
not constant in a radial direction as it happens in extremely thin rods. This energy
concentration along the axis is associated with a reduction of the effective modal wave
speed, as commented in the frequency response section.

Figure 6.- Volumetric compression in RZ plane. Snapshots at three different instants (¢,=100ns,
t,=300ns, t;=50us) of a 2MHz frequency pulse propagating into a cylindrical piezoelectric
electrically excited in its flat electrodes with free mechanic boundary conditions (R=6.5mm,
Z=15mm, Ricker-wavelet pulse function for electrostatic potential).

Figure 7.- Volumetric compression in RZ plane. Configuration described in figure 6 excited, in
open circuit, in its second anti-resonant mode (left) and synchronous image, modeled similarly,
in conditions of strict uniform electrical displacement (right)
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Figure 8.- Instantaneous quadratic axial speed in cylinders (Z=60mm and R=2, 10, 14mm),
excited in their second antiresonant mode.

7- CONCLUSIONS

As established in the introduction, the aim of this work is to develop a model which is
on the one hand fully explicit, and on the other hand which agrees with real physics in
formulation and results.

The explicitness of the model has been fully satisfied, even when this requires a small
change in the system of equations depending on the kind of electrical excitation applied.
One of the equations requires a spatial integration; but, even in this case, no matrix
inversions are performed, and all model equations are explicit.

The discretisation of the system is performed by means of a grid that is fully staggered
in space and in time, where no high order integrations are required. Then, all the
discrete system equations are centered, and no other approaches are used in the
integration (such as Runge-Kutta). Accuracy is then determined by numerical precision,
and by the validity of the substitution of mathematical differentials by finite differences.
Therefore, respecting soft criteria of mesh size as a function of the minimum
wavelength to be simulated, and the necessary stability criterion, the system behaves
satisfactorily. Moreover, the form adopted for the canonic piezoelectrical equations
improves stability: since the stability criterion depends directly on the wave speed, then
we have chosen the set of equations as a function of k¥ coefficients directly related to
the ¢” speed, which is the faster of both characteristic piezoelectric speeds. This means
that the “natural” speed of our system equations is ¢”, whereas ¢ is the consequence of
the interference between fully mechanical and piezoelectric coupled dynamics. It is easy
to demonstrate that enforcing the electric displacement to be null in each integration
step, the system reduces exactly to a simple elastodynamic case with wave speed ¢”
coincident with that of Schubert [16]. Furthermore, the electrical part of the system can
be formally accepted as a set of volumetric source terms added to the purely mechanical
part. These source terms can only decrease the wave speed, which warranties stability.
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Comparison of numerical results with known analytical solutions shows good
agreement. In fact, only two simplifications of ‘real” physics have been considered. The
first is the quasistatic approach which is more acceptable the bigger is the ratio between
electromagnetic and mechanical wave speeds. Since these speeds are respectively in the
order of 10°m/s and 10° m/s, this approach is reasonably acceptable. The second
assumption introduced in this work, is that the electric displacement is reduced to
parallel field lines in the piezoelectric substrate, with no flow going out of it.

The presented model is particularly adequate to simulate transient response of
transducers, during the external excitation by narrow band pulses close to the axial
lowest modes (as justified in appendix B), but in the results section it has been shown
that for radial modes, and evaluating the system stationary response, the results are also
acceptable.

Therefore, we can conclude that our aim has been satisfied. However, further
improvements both in electromagnetic simplifications and in mechanical properties of
the material, like dissipation, nonlinear plastic hysteresis, and so on, remain interesting
areas for development.
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APPENDIX A
A.1.- Explicit discrete equations

The explicit equations for the algorithm are presented here for a quadratic grid. The
variable names are rewritten avoiding sub index, so the instantaneous punctual value of

a variable, for example o,(7;,z,,t,) is denoted as ol’, where r; =(j —1Ar,

z, =(k—=1)Az, and ¢, = nAt . It must be also remarked that the physical and

computational domain differ one from each other (by half spatial step in each
boundary). The physical edge is defined by the node-line that satisfies strictly the
boundary conditions; for example, in the case considered of stress-free conditions, the
axial stress o3 will be null for z=0 and z=Z, and the physical domain shall start and
finish in nodes of the variable o3, respectively, as shown in figure 1. The relations
between the physical and computational limits are given by

Z=Ar(K-2), R=Ar(J-1) (A.1,LA.2)
The FDTD scheme is based on a centered staggered grid, but in some equations the

value of a particular stress or velocity component is required out of its self node, then
linear interpolation is used, for example

n n
0'3‘,41/2,/#1/2 + 0'3‘/71/2./#1/2

n pa—
03 k12 = ) (A3)
Definitely, assuming previous general considerations, dynamic equations are
At
n—1/2 n n
UL} jy1/2 +7A (rj+1/2,k+1/20-1j+1/2,k+1/2 _”.;71/2‘/“1/20'1‘/71/2,/”1/2)
wtl/2 Polj k1287
Vik+li2 = (A.4)
J.Kk+
’ At ( n i ) At ( n n )
+ Az OS5k =055 )+ > 0210 ki12 0240 k102
Po Pol'jk+1/2
forj=1, ..., J-1, and k=1, ..., K-1,
At
n-1/2 n n
UZjon + 7A(rj+l,ko-5j+l,k - ’j,ko'sj,k)
ntl/2 Poljr1/2.4 R As
UZjiy)ohk = (A5)
At ( 3 3 )
+ O3 j1/2k+1/2 O3 jr1/2,k-1/2
p,Az

forj=1, ..., J-1, and k=2, ..., K-1,

The constitutive axial equations for the next half-time step, are:
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n+1/2 n+1/2
T k11At ( w2 asl/2 )+ K12A! uri ks YUl
Ol iiyopnie T Ul k172 — U gy1/2

n+l _ Fiv1/2,k+1/2
O-lj+l/2,k+l/2 = SIS

k13At
n+1/2 n+l/2 n+l n
+ (“ijz,kﬂ —UZ 0k )_ hl 3(D3j+1/2,k+1/2 - D3j+1/2,k+1/2 )
n+l/2 n+l/2
o N k12At ( w2 ael2 )+ Kl 1AL Tivtkstr2 TUY k12
O 2 j1/2,k+1/2 Uit kev1/2 — U kv1)2 p
n+l — +1/2,k+1/2
O'zj+1/2,k+1/2 = /
k13At
n+l/2 n+l/2 n+l n
+ (“Zj+1/2,k+1 —UZj0k )_ hl 3(D3j+l/2,k+l/2 - D3j+1/2,k+1/2 )

n+l/2 n+l/2
Tivike1/2 TUTj pi1y2

k13At u
n n+l/2 n+l/2
3% 2kn2 + (””j+1,k+1 12 T U ksiy2 )"’ k13At

n+l — 27411244172
O'3j+1/2,k+1/2 = b

k33At (. et . ;
+ (quHl//;,kH _quH]//;,k )_ h33(D3j+}/2,k+l/2 - D3j+l/2,k+l/2)
forj=1, ..., J-1, and k=1, ..., K-1, (A.6-A.8)

For tangential equations, we have

+

k55Al( n+l/2 n+l/2 )+ kSSAt( n+l/2 n+l/2 ) (A.9)

n+l __ n _ _
05, =05 G k+1/2 k=12 A a2k TUZi 0

Jk

forj=1, ..., J-1, and k=2, ..., K-1,

And finally, the first step of the algorithm, where a known electric potential source term
#(t) is taken into account, is

n+ n At S n+ 1 n+ n
D3/+:/2 =D37,), +%zpmecj+ll//22,k+l/2 _%(¢j+ll/2 — @) (A.10)
k=1

where Z is the size of the physical domain, in this case Z = Ar(K —2), and the punctual
contribution of the mechanic deformation to the time derivative of the electric field,

/2 .
PMEC; 13 441/25 18

n+l/2 n+l/2
h13 (urn+1/2 e )+ 13 k2 TUT) )2
A JHLE+1/2 Jok+1/2 2
pmeci s =1 (1D
J 5
h33( n+l/2 n+l/2 )
+ UZ ok —UZ 00

forj=1, ..., J-1,
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A.2.- Boundary conditions

A.2.1.- Axial boundary conditions

Because of cylindrical symmetry both compounds «, and o, vanish at the axis;
therefore, for stability reasons, it is more convenient to place at the axis the nodes
associated to these variables. As a consequence no field component has to be calculated
at the axis, and the numerical problems involving the wave propagation in these
singular points are avoided. The equation of this condition reads:

05, =0, for k=1, .., K (A.12)
Wi, =0, for k=1, ..., K-1, (A.13)

A.2.2.- Stress-free boundary conditions

As the model describes piezoelectric actuators, only the stress-free conditions are
evaluated in Section 6 -Numerical Results and Discussion. However, the piezoelectric
domain can be evaluated by considering fixed boundaries or by charging to a different
medium (the completely clamped situation has no sense here because the system stays
in the trivial solution of no movement when excited electrically).

Boundary conditions are defined for the first node lines and for the virtual non-physic
lines as follows: 1) Tangential stressed are null, ii) the axial stress second components
(o,) is linearly extrapolated in the virtual node lines from the value of two attached

nodes, and iii) other axial stresses in the virtual node lines are imposed to have the
opposite value of the attached node line, so the average evaluated in the real physical
perimeter is null. Finally, iv) no conditions are required for speed and electrical vectors
in the extreme physical node lines, as they are computed by means of main equations
considering the values of the virtual nodes. The particular expressions of these
conditions are noted as follows:

Free condition in the electrodes (z=0, z=Z)

Non-physical nodes:

0-3’;41/2,1/2 = _0-3;l'+1/2,1+1/2 (A.14)
0-3j+1/2,1<+1/2 = _0-3741/2,1(—1/2 for j=1, ..., J-1, (A.15)
Conditions at the physical edge for tangential stress

o5, =0 (A.16)
05, =0 for j=1, ..., J (A.17)

No conditions are required for the rest stress components

Free condition in r=R

Physical edge:

c5,,=0 for k=1, ... | K (A.18)
Non physical nodes:

O-lj+1/2,k+1/2 = _(71;71/2,1”1/2 (A.19)
02 iak2 = 27025 150012 ~O2) 3000102 for k=1, ..., K-1, (A.20)

No conditions are required for the rest stress components
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APPENDIX B

In the present appendix several arguments are presented in order to justify the approach
introduced by equations (8) and (9). The assumption is based on the condition of
constant displacement field through an axial line, and permits to obtain the physical
variables in an explicit scheme.

The approach, as will be shown, is accurate to model the transient response of
transducers, during the external excitation by narrow band pulses close to the resonant
lower modes. In order to prove the validity of the approach an ideal situation is initially
shown. More complex cases are presented to approach to real cases. Finally a numerical
evaluation is presented to illustrate the validity of the approach.

B.1.- Ideal constant excitation

During the excitation, the flat circular charged electrodes generate an electric field. By
considering a constant excitation, the complete ceramic is uniformly polarized (as
shown in figure B.1. The electric and displacement field have the same distribution,
being parallel one to each other at any point. As it can be appreciated, the radial
component of both electric fields, E and D, is notably smaller than the axial one, and
thus they can be neglected in the first approach in the center of the capacitor. The
approach D(7)=0 is better, the better is the relation R/Z

)

!
vvlvv

(

Figure B.1.- Field lines (E and D) in a charged flat capacitor in vacuum

B.2.- Instantaneous excitation in axial mode

Consider a piezoelectric ceramic excited in an axial mode. We focus on an instant in
which a non-null external charge is applied at the electrodes. In this case, the wavefronts
are accepted to be parallel to the electrodes. Each wavefront has a different compressive
state, so each one can be considered a different dielectric layer, being the boundaries of
this layers perpendicular to the electric and displacement field. Due to this
perpendicularity, electric field changes in value but not in direction between contiguous
layers. Displacement field - according to Gauss’ law VD = p - remains constant

through a field line, as stated in our hypothesis.

B.3.- Real instantaneous situation
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Out of an axial mode, each point of the substrate has a different instantaneous state, so
perpendicular boundaries cannot be defined, and the electric and displacement field
change their direction and value through all the substrate. However there are real cases
similar to the ideal hypothesis, such as the following (Justification of the truthfulness of
these statements placed in next section):

a) During the excitation: If an external instantaneous electric fields is being
applied, the field lines will follow the distribution plotted in figure B.1 more
accurately than if the electric field is exclusively generated by the punctual
piezoelectric stresses.

b) If the excitation frequency is close to any axial mode: Then the energy is
accumulated in these modes and mechanical wavefronts are almost
perpendicular to the electric field. The dielectric properties will also change in
radial direction bending the field lines, but the relevant variations are induced in
the axial direction

c) For lower modes, the instantaneous dielectric properties change only a few times
over the space among their extreme values. If dielectric properties change
smoothly, the field lines get smoothly curved

B.4.- Simulation in real situation

To test the validity of our hypothesis, several simulations have been performed by
calculating both electric field components from constitutive equations, with the purpose
of obtaining the ratio tan(¢) = E, / E_ for each computational node. Transducers with
different shapes are excited by different frequencies and the hypothesis is proven to be
reasonably adequate. Next figure B.2 illustrates an example. Figure B.2a represents, for
each computational step, the median in the whole computational domain of the punctual
value tan(@) = E, / E, . The continuous line represents instantaneous values, and the
discontinuous line draws the average of this median during the previous computed time.
It can be noted that the function converges to a value smaller than 0.1, what implies that
the angle is smaller than 6°.

It can be appreciated that, periodically the value of the median angle increases. This
growth coincides with the instants for which the voltage between the electrodes is null
in the whole domain (see figure B.2b). In these instants the average value of E. in a field
line is null and big ratios of tan(@) = E, / E_ are associated to numerical imprecision at
the points with smaller values of E..

During the excitation, the typical values of tan(d) = E, /E_ are small, and they increase
with time after the excitation, when the energy still keeps into the transducer due to the
non-dissipative boundary conditions defined. In a real situation, the transducer radiates
and dissipates energy, therefore the most relevant results of the simulation are those
induced during the excitation.

Simulations performed in different conditions show that the convergence values of the
“median angle” (discontinuous line in figure B.2a) depend on the frequency of the
excitation, the shape of the piezoelectric substrate, and the spectral distribution of the
excitation signal. Generally, the smaller the frequency and the narrower the signal
broadband, the better is the approximation of the hypothesis. Several cases in which the
hypothesis is less accurate have also been tested. The convergence value of the median
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of tan(@) always keeps under the value 0.35, which implies that the angles are smaller
than 20° for the worst cases.
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Figure B.2a.-Instantaneous median of the value tan(@) = E, /E. for the whole

computational domain (continuous); and temporary average of this median (dashed).
Figure B.2b.- Electric current (dashed) and voltage between electrodes (continuous)

To sum up, the model is reasonably accurate to simulate transient responses excited by
pulses with central frequency close to the resonance eigenfrequencies of the first
resonant modes.
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TABLES AND TABLE CAPTIONS

Table 1: Piezoelectric properties of the material used in simulations, written in the
E

matrix form: ( U] . Compliances units are 10"°m*N™" and piezoelectrical charge

£
constant units are 10" ?mV™". Relative permittivities,

Table 2: Numerical and analytical results for the first pure axial modes in a thin
cylindrical rod with length, Z=60mm.

Table 3: Numerical and analytical results for the first pure radial modes in a thin disk
with radius, R=40mm.
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16.5 -4.78 -8.45 0 0 -274
-4.78 16.5 -8.45 0 0 -274
-8.45 -8.45 20.7 0 0 593
0 0 0 43.5 741 0

0 0 0 741 2768 0
-274 -274 593 0 0 3006

Table 1: Piezoelectric properties of the material used in simulations. written in the
E

matrix form: [ UJ . Compliances units are 10"?m*N™" and piezoelectrical charge

£
constant units are 10" ?mV™", Relative permittivities.
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Numeric f(kHz) | 32.4 | 96.8 | 160.3 223.1
Analytic f(kHz) |32.1 |96.4 | 160.8 225.1

Table 2: Numerical and analytical results for the first pure axial modes in a thin
cylindrical rod with length, Z=60mm.
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Numeric f(kHz) 24.2 | 63.6 | 100.9 137.9 174.2 210.2

Analytic f(kHz) 242 | 63.5 | 1004 138.1 175.2 212.3

Table 3: Numerical and analytical results for the first pure radial modes in a thin disk
with radius, R=40mm.
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FIGURE CAPTIONS
Figure 1.- Structure of the staggered spatial mesh
Figure 2.- Time and computational evolution of the simulation.

Figure 3.- Module of impedance in open circuit (continuous line), and module of admittance in
short-circuit (dashed), for the case of a thin piezoelectric rod in arbitrary units.

Figure 4.- Modules of impedance in open circuit (dashed line), and admittance in short-circuit
(continuous), for the case of a thin piezoelectric disk in arbitrary units. The Bessel functions are
plotted, by adding an arbitrary constant value to simplify visual inspection.

Figure 5.- Relative modules of impedance in open circuit, for three different thin rods, with
length Z=6cm, and respective radius R=2mm, R=5mm and R=10mm

Figure 6.- Volumetric compression in RZ plane. Snapshots at three different instants (¢,=100ns,
1,=300ns, t;=50us) of a 2MHz frequency pulse propagating into a cylindrical piezoelectric
electrically excited in its flat electrodes with free mechanic boundary conditions (R=6.5mm,
Z=15mm, Ricker-wavelet pulse function for electrostatic potential).

Figure 7.- Volumetric compression in RZ plane. Configuration described in figure 6 excited, in
open circuit, in its second anti-resonant mode (left) and synchronous image, modeled similarly,

in conditions of strict uniform electrical displacement (right)

Figure 8.- Instantaneous quadratic axial speed in cylinders (Z=60mm and R=2, 10, 14mm),
excited in their second antiresonant mode.

Figure B.1.- Field lines (£ and D) in a charged flat capacitor in vacuum

Figure B.2a.-Instantaneous median of the value tan(d) = E, /E_ for the whole
computational domain (continuous); and temporary average of this median (dashed).

Figure B.2b.- Electric current (dashed) and voltage between electrodes (continuous)
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