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Abstract 
 

Numerical simulations are useful in the processes of design, development and 

optimization of transducers for non-destructive testing. In this work, a three-

dimensional velocity–stress finite-difference model is presented for the elastic wave 

propagation in the piezoelectric substrate of a transducer excited by applying an 

impulsive voltage signal to the transducer electrodes. The allocation of the stress, 

velocity and electric fields components on a staggered grid leads to a stable scheme. 

The different time scales of both mechanical and electromagnetic waves have leaded 

previous FDTD models to choose between significant physical simplifications or 

complicated implicit equations. The model presented here is explicit in all its time 

domain equations, contains only first order derivatives and is centered in time and 

space. The results of simulations show remarkable accuracy and stability for the 

different transducers studied. 
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1.- INTRODUCTION   

An algorithm to simulate elastic wave phenomena in cylindrical piezoelectric 

transducers is presented in this paper. In the piezoelectric substrate, electromagnetic and 

acoustic fields are coupled, so wave dynamics present multiple time scales with notably 

different wave speeds. In order to resolve these multiple time scales (essential for 

numerical stability), the fastest time scale must be respected. Generic multiphysics 

packages may have this capability, but in order to be foolproof, they implement stiff 

system solvers as the default. Hence a multiphysics package will give an incorrect 

solution for the coupled wave dynamics problem unless the modeler knows and respects 

the time scale of the fastest physical mode. Furthermore, given the different order of 

magnitude of both time scales, and taking into account the significant impact of the 

wave speed with respect to stability and computational cost criteria, it is preferable to 

assume or propose one of the so-called electromagnetic quasi-static approaches when 

our interest is focused on mechanical waves. 

 

The only obligatory condition of the general quasi-static approach is that the size of the 

piezo-substrate must be considerably smaller than the wavelength of electromagnetic 

phenomena within the simulation. However, these requirement usually introduce 

additional significant simplifications to enable the development of practical models [1-
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4], and thus it is not difficult to find case studies where predicted behavior differs 

considerably from that observed in practice. Most of the previous proposed models [e.g. 

1-11], whilst achieving satisfactory results, also assume that one of the electrical vectors 

(electrostatic field or displacement) must be uniform and sometimes constant within the 

domain. The selection of the vector to be fixed depends on the electrical contour 

condition, and therefore open circuit and short-circuit conditions are respectively 

confused with fixed displacement and fixed electrical field, neglecting the piezoelectric 

coupling. Thus, for many specific cases, less restrictive approaches must be developed.  

 

In recent years the works of Smith and Ren [2] or Chagla and Smith [3] may be noted; 

they impose the condition that all electrical rotationals must be null, implying that the 

electrical displacement into the piezoelectric must be uniform. Other more accurate 

conditions are proposed by Wong and Tam [4], but their work cannot be considered as a 

complete explicit FDTD implementation; in fact, they state that an external “simulator 

named ANSOFT Maxwell 2D is used to calculate the electric displacement D within the 

substrates”. A better approach is achieved by Gsell and Dual [5] and May and Dual [6], 

but both models are explicit for all the variables with the exception of the electrostatic 

potential. To the best of our knowledge, the only other recent significant contributions 

on this topic come from Masahiro Sato et al. [7,8], whose work has achieved important 

advances but is restricted to the two dimensional case. Other important work to be 

noted, in which no restrictive conditions are imposed is that of Hornsby and Das-Gupta 

[9]. 

 

The aim of this work is to define a quasi-static approach compatible with an accurate 

physical definition of the problem and with a computational full explicit 

implementation. Thus we assume as usual that all piezo-substrate dimensions are 

smaller than the wavelength of any electromagnetic field, but we allow both 

displacement and electric fields to be variable in time and space. As will be shown, the 

critical point is to calculate explicitly the electrical displacement in each computational 

node. To facilitate this task, the simplification proposed here consists on accepting that 

electrical displacement is uniform along an axial field line, but dependent on time and 

radial direction within the piezosubstrate.  

 

The required explicitness needs different sets of equations, depending on the application 

of the piezoelectric material; i.e. different set for actuators rather than for sensors, but 

also different for a short-circuited sensor than for an open-circuited or large-impedance 

device. A complete multipurpose algorithm will be developed in due course, but in this 

paper, for the sake of simplicity and clarity, we will start by presenting the simplest 

case: actuators with external voltage excitation function. 

 

The equation system is presented as a two dimensional computational domain which 

represents a physical 3D axisymmetrical device. The selection of this symmetry is due 

to computational limitations which persist for full 3D simulations even when using 

recent high-spec machines.  Since many practical piezoelectric ceramic devices display 

axial symmetry, we consider that axisymmetrical equations are directly applicable to 

real problems, whereas 2D Cartesian simulations are less amenable to comparison with 

real devices. 

 

The authors are conscious that the stated problem has been approached successfully 

using FEM (finite element method) schemes [12-15]; however, the ease of model 
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construction and availability of direct time domain calculations when using FDTD 

models justifies their introduction for many particular case studies. In fact, in echo- 

impulse techniques and directional radiation problems, the time domain knowledge of 

physical variables is a priority, and it is difficult to obtain them from the inverse-Fourier 

transform of numerically-obtained eigenvalues. 

 

 

2.- NOTATION 

 

or : Volumetric mass density in equilibrium 

Vr : Volumetric charge density 

Sr :  Surface charge density 

E
r

: Electric field, with compounds Ei 

D
r

: Electric displacement, with compounds Dk 

H
r

: Magnetization 

B
r

: Magnetic field  

j
r

: Current density 

f : Electrostatic potential 

u
r

: punctual instantaneous speed, with compounds iu  

x
r

: punctual deformation from equilibrium, with compounds ix  

ijs  compounds of the stress tensor 

ijs = compounds of the unitary strain tensor, in Cartesian coordinates   
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D

ijk  Compounds of the elasticity tensor in conditions of constant electric displacement  

 

kih : piezoelectric modulus which defines the linear dependence between is  and kD , 

and also between kE  and is , being is  and is  expressed in reduced form (as noted in 

next paragraph about conventions) 
S

kkb  Inverse of absolute electric permittivity in condition of constant deformation 

 

 

2.1.-Conventions 

Coordinates 

Following usual conventions, in equations written in cylindrical coordinates we will use 

1x , 2x , 3x   to refer to the components r , j , z   

 

Vectorial variables: Example electric field E, 

1EEr º , 2EE ºj , 3EEz º  in cylindrical 

1EEx º , 2EE y º , 3EEz º  in Cartesian 

The axisymmetrical axis z will always be denoted by the sub index 3, as conventional in 

piezoelectricity 
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Tensorial variables 

Strain and stress tensors notation will be reduced, as follows, 

1ss ºrr , 2ssjj º , 3ss ºzz , 5ss ºrz , in cylindrical 

1ss ºxx , 2ss ºyy , 3ss ºzz , 4ss ºyz , 5ss ºxz , 6ss ºxy , in Cartesian 

The same reduction is carried out for strain s. 

 

Note that symmetry restrictions imply that tensorial compounds js r , zjs  vanish.  

 

 

3.- SCOPE OF THE MODEL 

 

When a sample of piezoelectric material is mechanically excited and no electrodes are 

present, mechanical waves propagate like in any elastic material. The absence of 

electrodes implies a null displacement field in the whole piezoelectric region, whereas 

the electric field can vary associated with perturbation. In fact, neglecting the 

displacement field in canonical equations (20-23), this set of equations -and therefore 

the dynamics of the system- becomes identical to that of any elastic solid [16]. Thus, the 

presence of electrodes is responsible for generating electrical charges, displacement 

fields and the modification of piezoelectric dynamics in comparison with simple elastic 

solids. It will be understood that the larger the influence of electrodes, the more 

complex the dynamics in comparison with a simple elastic case. 

 

The system is capable to simulate configurations where the electrode is fully integrated 

with the elastic piezostructure, such as transducers. For the sake of simplicity, we 

present and evaluate the system for the case of a cylinder with radius R and thickness Z, 

excited by flat electrodes attached to the lateral faces (Figure 1). 

 

The model can easily be implemented to simulate configurations where other media, 

different than the piezoelectric substrate, are present. In fact, the system and the 

equations are targeted to be useful to simulate time domain directivity patterns 

generated by piezoelectric transducers radiating inside a solid or fluid. In this kind of 

situations, implicit models [4-6] present numerical difficulties (due to the radiation in an 

open media), and previous explicit approaches [2,3] assume more restrictive hypothesis. 

 

 

4.- GOVERNING EQUATIONS OF PIEZOELECTRIC SYSTEMS.  

 

The general set of equations involved, which later will be particularized to the 

axisymmetrical case (with axial symmetry required in shape, excitation, and 

piezoelectric isotropy) is presented. On the one hand, the Maxwell equations for the 

electromagnetism  

 

BE
&rv

-=´Ñ ,  DjH
&rrr

+=´Ñ ,  VD r=×Ñ
r

, 0=×Ñ B
r

      (1-4) 

 

where variables are defined above, 

 

and, on the other hand, “mechanical” equations, consisting on the stress equation of 

motion and the canonical constitutive equation. For the linear undamped case, without 
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convective terms considered, they could be written respectively as follows (in matrix 

form for Cartesian coordinates):  
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The complete solution of the presented set of equations includes electromagnetic wave 

propagation. To ensure numerical stability of a hypothetical complete model, the time 

increment in each computational step becomes very small, enforcing low numerical 

accuracy in the propagation of mechanical waves and wasting significant computational 

resources. Thus, if we restrict the analysis to piezoelectric substrates with much smaller 

dimensions than the wavelength of the electromagnetic waves in the bandwidth of 

interest, we can introduce a quasi-static approach for which 0=´Ñ E
r

.  Then, the 

electrostatic potential f  can be defined as: 

f-Ñ=E
r

                (7) 

For our purposes, equation (2) will not be reduced to 0=´Ñ H
r

, as usual in a quasi-

static approach ([2-3]).  Instead, we propose a less restrictive simplification (see 

appendix B for more detailed justification) relative to the electrical displacement vector 

field; that is, for the particular case of axial symmetry:  

zDD =
r

, and                  (8)  

0=zD     for   Rr >                (9)  

 

This means that the value of D outside the substrate is negligible in comparison with its 

value within it; i.e. all the electrical flux is concentrated in the ferroelectric material. 

This approach becomes more accurate the smaller the ratio between the z and r 

dimensions is (condition that is usually fulfilled in sandwich transducer configurations). 

The proposed approach, given in equation (8), joined to Gauss law for the displacement 

field ( VD r=×Ñ
r

), implies that the electric displacement Dz remains constant over any 

line parallel to the symmetry axis, since there are no free electrical charges within the 

piezoelectric substrate.  Thus, if we evaluate the instantaneous difference of potential 

between two points of the opposite electrodes )(rtotf in a line parallel to the third axis, 

we find:  
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( )ò ò +-==-=-
Z

o

Z

o

s
jjtottot dxxDxxshdxxxExr 3133331333131 )(),(),()()( bff       (10) 

where the summation convention holds for the index j and Z is the axial distance 

between electrodes 

 

The previous equation, which can be written  

 ( ) )(),()( 133333131 xDZdxxxshx s

Z

o

jjtot bf +-=- ò ,          (11) 

operates in the simulation as an electrical boundary condition. In fact, given a known 

value of the potential between the electrodes, it defines the value of the displacement for 

each line )( 13 xD  which is coincident –given the approach stated in equations (8) and 

(9)- with the surface density charge in each point of the electrode )( 1xSr . 

 

Equation 11, joined with equations 5 and 6 and mechanical boundary conditions in 

cylindrical coordinates, configure the whole explicit FDTD model. The first time-

derivative of canonical equation in cylindrical coordinates with axial symmetry reads: 
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Where the total number of elastic modules have been reduced, and only those 

independent in axisymmetrical anisotropy have been written.  Mechanical, electrical and 

piezoelectric modules have been considered as time-independent. Finally, the variable 

compounds 2E& , 2D& , 4s& , 6s& , 4s& , and 6s&  are null due to axial symmetry, and have 

therefore been excluded from the equations. 

  

The time derivative of the strain tensor, S& , is related with the tensor of the velocity 

gradient, uÑ , as follows 

( )TuuS )(
2

1
Ñ+Ñ=&              (13) 

where this tensor in Cartesian coordinates is ( ) ijij xuu ¶¶=Ñ / , and in cylindrical 

coordinates takes the form  
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Thus, we obtain 
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where axial symmetry restrictions reduce the equation for the second compound to 

rus r /2 =& . Finally, the time-derivative constitutive equations in cylindrical coordinates 

are as follows  
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The stress equation of motion takes the form (see ref [16]): 

 

÷÷
ø

ö
çç
è

æ
-

¶

¶
+

¶

¶
=

¶

¶

rzr

r

rt

u rzrr

o

r jjsss
r

)(11
           (26) 

÷
ø

ö
ç
è

æ
¶

¶
+

¶

¶
=

¶

¶

zr

r

rt

u zzrz

o

z ss
r

)(11
            (27) 

 

where the equation for the second component has been excluded, since with axial 

symmetry 0=
¶

¶

t

uj
.  

 

Previous eight equations and the time derivative of equation (11) are implemented in the 

numerical model as shown in next section. This time derivative in cylindrical 

coordinates reads: 
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5- DISCRETIZATION OF THE EQUATIONS.   

 

The canonical equations (20-25) have been chosen in a manner which makes it easy to 

reduce the system to pure mechanics. In fact, as stated in the introduction, in the case 

that D is forced to be constant in the complete computational domain, the actual set of 

equations (20-23, 26-27) becomes entirely equivalent to that proposed by Schubert for 

solids [16]. Furthermore, the term associated with 3D&  in equations (20-22) is formally a 

source term, so if we impose a known function for 3D& , the piezoelectric substrate 

vibrates in exactly the same way as a general solid with the same source function.  

 

The coupled piezoelectric effect in this model of an actuator is given by the “electrical 

boundary condition” in Eq (28). Starting from an imposed known potential function 

between the electrodes, this equation determines the electric displacement for each 

instant and position. This electric displacement is obtained instantaneously as a function 

of the external electric conditions and the mechanical punctual state. Thus, it is the 

variable that takes into account the electro-mechanical full coupling, receiving the entire 

electromechanical prior history and acting like a source term in the next time step.  

 

To describe the explicit FDTD scheme let us consider a piezoelectric cylinder with 

radius R and thickness Z excited by two flat electrodes attached to the opposite sides of 

the cylinder. Stress-free mechanical boundary conditions are imposed. The 

computational domain defined for the physical configuration is a rectangular mesh with 

J and K nodes respectively in radial and axial directions (see Figure 1). Note that on the 

periphery, for some nodes (“phantom nodes”) artificial conditions are forced in order to 

obtain significant values of the physical magnitudes in the real contour. Both layers 

(real boundary and the phantom nodes) are required due to the second order nature of 

the general motion equations. 

 

From the mechanical equations (20-23, 26-27) we note that time derivatives of the 

speed, u
r

, are computed as spatial derivatives of the stress,s ,and vice versa. This 

particularity of mechanical, and also electromagnetic equations, suggests a leapfrog 

time-step structure, as is commonly used in explicit FDTD schemes. With this strategy, 

a set of variables (s , E, D) is computed at odd half-time intervals and the rest (u
r

) at 

even half-time intervals. 

 

An appropriate spatial staggered scheme is defined. In the scheme proposed 

(represented in Figure 1) different components of each vectorial or tensorial variable 

may be placed at different nodes of the spatial mesh. The computational evolution of 

calculation consists of three basic steps, two of which are coincident with time steps and 

the third is performed without “physical time advance”(see Figure 2). 

  

The scheme is therefore centered in space and time. This fully centered first order 

scheme represents a computational advance regarding to higher order systems with 

second order derivatives and a non-centered time scheme, where approximated methods 

(like Runge-Kutta) would be necessary.  The accuracy of the algorithm is dependent on 

the validity of the discretisation approach, which approximates mathematical 

differentials by finite differences. The whole set of discrete equations, for substrate and 

boundaries, is given in the appendix A. 
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Figure 1.- Structure of the staggered spatial mesh 

 

 

 
 

Figure 2.- Time and computational evolution of the simulation. 

 

 

5.1.- Stability  

The selection of the time step attending to the Courant number [17] has proved 

sufficiently to avoid numerical instability. No difficulties were encountered, since the 

constitutive equations are defined in terms of Dk coefficients which yield to wave 

speeds bigger than those defined from Ek coefficients. Thus, time discretisation is 

restricted by the size of the shell and by the highest longitudinal wave speed, 

o

Dkc rmaxmax = , given the next relation: 

22

max 11

1

zrc
t

D+D
£D             (32) 
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where Dt, Dr and Dz are respectively the time step and the spatial step in the respective 

directions. If a quadratic grid is used, Eq (32) reduces to 

2maxc

z
t

D
£D               (33) 

 

It is well known that the smaller the relative size of the space step with respect to 

wavelength, the better the accuracy. The size of the mesh in all the simulations of this 

work has been chosen sufficiently small. Particularly 

max

min

8 f

c
z <<D                (34) 

where fmax denotes the highest frequency evaluated in the signal, and cmin is the lowest 

wave speed of the piezoelectric domain.  

 

6- NUMERICAL RESULTS AND DISCUSSION  

 

In this section we will present some numerical experiments. The geometry and 

numerical parameters are the following: A piezoelectric cylinder of variable radius 

(R=1mm to R=40mm) and length (Z=1mm to Z=60mm). The material consist of axially 

polarized PZ21 from Ferroperm, with volumetric mass density 7500 kgm
-2

, and 

piezoelectrical properties listed in table 1. The substrate principal direction is placed 

parallel to the cylinder axis to fulfill the condition of axial symmetry in both 

piezoelectric isotropy and geometry. Two flat electrodes are attached to both flat 

cylinder ends, and the excitation external voltage functions are Ricker wavelets (to 

obtain frequency plots via the Fourier transform) and harmonic pure tones modulated by 

a Hanning function (to obtain instantaneous snapshots). The central frequency and 

bandwidth of the Ricker wavelets may vary depending on the region where the 

eigenvalues of the system are expected. The mesh is composed by nodes separated 

0.1mm in radial and axial direction, and different time steps have being tested, 

satisfying stability condition, in the interval between 15ns to 25ns.  

 

6.1-Frequency response  
 

Analytical solutions are known for the more straightforward geometries in elastic solids. 

Eigenfrequencies associated with pure axial and radial modes are defined by known 

analytical expressions. These eigenfrequencies are dependent on the wave speed of the 

perturbation and geometrical dimensions of the solid. However, one of the main 

differences between piezoelectrics and elastic solids is that the first ones are capable to 

develop different propagation speeds -as a function of applied electromagnetic 

conditions- being those speeds defined between the two limit wave speeds, c
E
 ,the 

slowest one, associated with the constant electric field condition, and c
D
 ,the fastest one, 

associated with the constant electric displacement condition. 

As a consequence of this particularity, the vibratory behavior of piezos and elastic 

solids are generally non equivalent; but there are certain particular combinations of 

geometry and electromagnetic conditions in piezoelectric transducers that lead to a 

vibration in the piezo quite similar to the vibration of simple elastic solids. 

 

More specifically, it can be demonstrated that a very thin disc excited in short circuit 

vibrates in its radial modes in a similar way to an elastic solid with identical shape and 

wave speed c
E
. By the other hand, a long and thin rod excited in open circuit condition 
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vibrates –in its axial modes- similarly to a simple elastic solid with identical shape and 

wave speed c
D
. 

  

We can justify previous statement as follows: In the case of the thin disc vibrating in a 

radial resonant mode, it can be accepted that the perturbation along an axial line remains 

practically constant. Thus, the null electrostatic potential condition (shortcircuit) is, as a 

first approach, similar to the null electric field condition, whose associated wave speed 

is c
E
. In the case of the long and thin rod vibrating in an axial resonant mode, it can be 

accepted that perturbation along a radial line remains practically uniform. Thus, the null 

electric current condition (open circuit) is, as a first approach, similar to the null electric 

displacement condition, whose associated wave speed is c
D
. 

 

In the next paragraphs we show the results of the evaluation in the aforementioned limit 

cases, i.e., short circuited thin disk and open circuit thin rod. Comparison has been 

performed between numerical model response and analytical solution of the 

correspondent elastic solid. Eigenfrequencies obtained show that the model is able to 

perform in both limit cases with the respective different limit wave speeds, 

characteristic of wave propagation in piezos, c
E
 and c

D
. This adequate response in limit 

situations, joined with the coherence and stability of model equations, allow as 

adventure a correct behavior in intermediate situations.   

  

In order to obtain eigenfrequencies numerically we compute instantaneous values of 

electric voltage and current in the electrode, calculated from an axial spatial integration 

of the whole domain, and from a radial surface integration of the whole domain 

respectively. Once obtained these time domain functions, we calculate the complex 

fourier transform of them, and finally, the frequency domain impedance and admittance 

from the division of both frequency domain functions. The plots show the absolute 

values of admittance and impedance. The resonant and anti-resonant frequencies are 

obtained from the local maxima of these functions. Notice that both impedance and 

admittance functions are defined in the frequency domain for electrical signals, and we 

have obtained them from a time domain simulation of system mechanics, therefore, all 

numerical accumulated errors should appear on the plots. If no significant lack of 

precision is found here, we can be confident concerning the accuracy of the entire time 

domain simulation. 

 

Very good agreement is found when comparing analytical with numerical results for 

both evaluated geometries as it is discussed below. 

  

6.1.1.-Thin rod 

 

The pure axial resonant modes of an elastic cylinder are multiples of the eigenfrequency 

associated with the first mode. Due to the symmetrical excitation the modes form a 

series of odd natural multiples of the fundamental frequency. Table 2 shows analytically 

derived values for the case of a cylinder with length Z=6cm, and wave speed 3859m/s 

(coincident with the speed associated with the biggest k
D
 coefficient, c

D
) compared with 

numerical data. The piezoelectric is excited in open circuit condition so the 

eigenfrequencies are associated with antiresonances. 
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Results are also shown in figure 3 where impedance is plotted against frequency in the 

region with highest signal to noise ratio. Excitation was achieved using Ricker wavelets 

with a Gaussian-like spectrum. 

   

The total integration time at the experiment was 5ms, which implies a frequency 

resolution of 0.2 kHz. The spatial resolution is one-half the internodal distance and it 

generates an additional imprecision in the derived resonance frequencies of 0.8%. The 

small differences found between numerical and analytical results can be attributed to 

this imprecision, and they are not suggesting a wrong behavior of the model. 

 

 

16.5 -4.78 -8.45 0 0 -274 

-4.78 16.5 -8.45 0 0 -274 

-8.45 -8.45 20.7 0 0 593 

0 0 0 43.5 741 0 

0 0 0 741 2768 0 

-274 -274 593 0 0 3006 

Table 1: Piezoelectric properties of the material used in simulations, written in the 

matrix form: ÷÷
ø

ö
çç
è

æ
sed

dC E

. Compliances units are 10
-12

m
2
N

-1
 and piezoelectrical charge 

constant units are 10
-12

mV
-1

. Relative permittivities. 

 

 

Numeric f(kHz) 32.4 96.8 160.3 223.1 

Analytic f(kHz) 32.1 96.4 160.8 225.1 

 

Table 2: Numerical and analytical results for the first pure axial modes in a thin 

cylindrical rod with length, Z=60mm. 

 
 

Figure 3.- Module of impedance in open circuit (continuous line), and module of admittance in 

short-circuit (dashed), for the case of a thin piezoelectric rod in arbitrary units. 
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6.1.2.-Thin disk 

 

Now let us consider the case of a thin disk. The resonance frequencies of the radial 

modes of a thick elastic cylinder in free-free-free conditions are given by the solutions 

of the implicit equation [18] 

 

)()( 21 RJRRJ kkbk ××=                 (35) 

 

where J1 and J2 are Bessel functions of first and second order respectively, k is the wave 

number, R is the external radius of the cylinder, and beta is a dimensionless coefficient 

depending on elastic material properties. 

 

In an isotropic case, beta is obtained as  

)(2

2

G

G

+
+

=
l
l

b               (36) 

Here, l and G are the Lamè coefficients and b always takes a positive value smaller 

than one. In our case, this coefficient takes the value 0.7625, so that the effective Young 

modulus associated with the calculation of wave speed is 2101056'6 -× Nm , and the 

associated wave speed is: 

 
1

10

2959
7500

1056'6 -=
×

= mscL . 

 

With this data, one can change the solutions of Eq. (35) into resonant frequencies. This 

equation is solved when kR=(2.056, 5.392, 8.532, 11.733, 14.884, 18.033, …) obtaining 

for R=4cm the numerical eigenfrequencies shown in table 3.  

 

In this table a comparison is performed between analytical purely elastic results, and 

numerical results in conditions of shortcircuit. Results can also be observed in the figure 

4, where admittance has been plotted against frequency in the region with highest signal 

to noise ratio. Again, excitation is carried out using Ricker wavelets with a Gaussian-

like spectrum.   

 
Very good agreement between analytical and numerical results is found for axial modes 

in open circuit condition (antiresonances) and for radial modes in short circuit 

(resonances). This particularity has been justified formerly in this section, but we are 

trying to extend the explanation of this point in the next lines: 

  

The mechanical coefficients of compliance tensors, in piezoelectric materials, change 

depending on the electrical condition of constant )(tD
r

or constant )(tE
r

.  In a domain 

with strictly uniform and constant )(tD
r

or )(tE
r

, the wave speed is a direct consequence 

of the value of coefficients k
D 

and k
E
 respectively. In the case of an axial mode in a thin 

rod, an open–circuit condition is accepted to approach a constant null displacement in 

any field line of the piezo, so that the wave speed is constant for any axial mode and can 

be found from the elastic coefficients (this wave speed is denoted c
D
). However, if the 

same rod is excited in short-circuit, this implies null electrostatic potential which means 

that the average value of the electric field trough a field line is null into the substrate: 

the condition of null electric field is almost but not strictly fulfilled. Moreover it can be 
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demonstrated that for low frequency modes with large value of l, the wave speed will 

approach the theoretical speed associated with the null electric field condition (c
E
) but 

for high frequency modes (in shortcircuit) the wave speed will tend to be similar to c
D
. 

This theoretical evidence is reflected in the numerical results of figure 3. 

 

 

Numeric f(kHz) 24.2 63.6 100.9 137.9 174.2 210.2 

Analytic f(kHz) 24.2 63.5 100.4 138.1 175.2 212.3 

 

Table 3: Numerical and analytical results for the first pure radial modes 

in a thin disk with radius, R=40mm. 

 

 
 

Figure 4.- Modules of impedance in open circuit (dashed line), and admittance in short-circuit 

(continuous), for the case of a thin piezoelectric disk in arbitrary units. The Bessel functions are  

plotted, by adding an arbitrary constant value to simplify visual inspection. 

 

 

On the other hand, if we study now the case of a radial mode in a thin disk, the 

shortcircuit condition is accepted to approach a null electric field along any radial line 

within the substrate, and thus the wave speed will equal the theoretical speed c
E
, which 

can be found from the elastic coefficients and is constant for any radial mode. However, 

if this disk is excited in open circuit, we have a condition of null total charge in the 

electrodes, and this means that the average value of the charge density into the 

electrodes - and the displacement field into the substrate - is null; the condition of null 

electric displacement is almost but not strictly fulfilled. It can be again demonstrated 

that, for low frequency modes the wave speed will approach the theoretical speed c
D
, 

but for high frequency modes (in open circuit) the wave speed will tend to be similar to 

c
E
. Numerical results agree with this assertion as shown in figure 4. 

 

This particular property of transducer dynamics – that high frequency modes propagate 

with speed c
E
 in radial directions and c

D
 in axial directions, independent of electrical 

contour conditions - is also found in general three dimensional substrates. Obtaining the 
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analytical value of all eigenfrequencies in three dimensional substrates is not an easy 

task. In the limit cases of low- and high-frequency modes, we can forecast the wave 

speed; However, in the “middle frequencies region” we only can affirm initially that, 

independent of electrical contour conditions, the eigenfrequencies will be found 

somewhere between those predicted for elastic materials with similar shape and with 

wave speeds similar to c
D 

and c
E
.  

 

To determine analytically the eigenfrequencies associated with a particular mode, we 

have to know the wave speed associated with that particular vibratory state. An analysis 

of this situation seems to drive to a significant conclusion: in the mid-frequency range 

(where wavelengths are small compared to physical dimensions) the wave speed may 

vary as a function of position, within the range defined by the limit values c
D 

and c
E
. 

This spatial dependence of wave speed has an interesting consequence related to the 

Fermat principle: the trajectory of an energy ray could be curved. This assertion is 

compatible with the presence of solitons in linear piezoelectrics, and is also compatible 

with the results found in our simulations, as shown in figure 5. In fact, if the diameter of 

the cylindrical rod is modified, the eigenfrequency associated with the main axial mode 

remains constant, but for the second pure axial mode, the eigenfrequency decreases as 

radial dimension increases. This decrease of the eigenfrequency is associated with a 

reduction of the wave speed in this mode, as predicted by the theory.  The bigger the 

radius, the bigger the variation of electrical displacement in the piezoelectric substrate 

(even in open circuit conditions), and the smaller the average Young modulus and wave 

speed.    

 

The numerical robustness of the model was finally tested by changing spatial mesh 

resolution, total integration time, Courant number in the region defined by the stability 

criterion, and excitation function. For the sake of brevity, all these tests are not 

presented here. However, we can stand that no significant differences were found. 

 

 
Figure 5.- Relative modules of impedance in open circuit, for three different thin rods, with 

length Z=6cm, and respective radius R=2mm, R=5mm and R=10mm 
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6.2.- Spatial and time response 

 

Previous section illustrates good agreement with theory in the evaluation of the system 

response in frequency domain. As the calculations are performed in the time domain, a 

good accuracy in frequency implies necessarily a good accuracy in the time response. In 

this section, and with the aim of illustrating wave propagation, we show a set of spatial 

instantaneous plots. 

  

In figure 6 three different instants of propagation of a high frequency Ricker pulse are 

plotted. Figure 7 illustrates important differences associated with the acceptance of 

transversal non-uniformity for the displacement field. The two plots of fig.7 are 

synchronous and the excitation function is similar, but in the first one we have an open 

circuit condition, and in the second we have a constant electric displacement condition. 

In several previous models these conditions are confused, using D=0 as a simplification 

of the real condition I=0. Experiments suggest that this simplification leads to 

considerably different results. Here we show instantaneous spatial images, but 

frequency responses are also different. 

 

Finally, figure 8 plots the cumulative quadratic axial displacement of a thin rod in its 

second pure axial mode. One may appreciate that the amplitude of the perturbation is 

not constant in a radial direction as it happens in extremely thin rods. This energy 

concentration along the axis is associated with a reduction of the effective modal wave 

speed, as commented in the frequency response section.  

 

 
Figure 6.- Volumetric compression in RZ plane. Snapshots at three different instants (t1=100ns, 

t2=300ns, t3=50ms) of a 2MHz frequency pulse propagating into a cylindrical piezoelectric 

electrically excited in its flat electrodes with free mechanic boundary conditions (R=6.5mm, 

Z=15mm, Ricker-wavelet pulse function for electrostatic potential). 

 

 
Figure 7.- Volumetric compression in RZ plane. Configuration described in figure 6 excited, in 

open circuit, in its second anti-resonant mode (left) and synchronous image, modeled similarly, 

in conditions of strict uniform electrical displacement (right) 
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Figure 8.- Instantaneous quadratic axial speed in cylinders (Z=60mm and R=2, 10, 14mm), 

excited in their second antiresonant mode. 

 

 

7- CONCLUSIONS 
 

As established in the introduction, the aim of this work is to develop a model which is 

on the one hand fully explicit, and on the other hand which agrees with real physics in 

formulation and results. 

 

The explicitness of the model has been fully satisfied, even when this requires a small 

change in the system of equations depending on the kind of electrical excitation applied. 

One of the equations requires a spatial integration; but, even in this case, no matrix 

inversions are performed, and all model equations are explicit. 

    

The discretisation of the system is performed by means of a grid that is fully staggered 

in space and in time, where no high order integrations are required. Then, all the 

discrete system equations are centered, and no other approaches are used in the 

integration (such as Runge-Kutta). Accuracy is then determined by numerical precision, 

and by the validity of the substitution of mathematical differentials by finite differences. 

Therefore, respecting soft criteria of mesh size as a function of the minimum 

wavelength to be simulated, and the necessary stability criterion, the system behaves 

satisfactorily. Moreover, the form adopted for the canonic piezoelectrical equations 

improves stability: since the stability criterion depends directly on the wave speed, then 

we have chosen the set of equations as a function of k
D
 coefficients directly related to 

the c
D
 speed, which is the faster of both characteristic piezoelectric speeds. This means 

that the “natural” speed of our system equations is c
D
, whereas c

E
 is the consequence of 

the interference between fully mechanical and piezoelectric coupled dynamics. It is easy 

to demonstrate that enforcing the electric displacement to be null in each integration 

step, the system reduces exactly to a simple elastodynamic case with wave speed c
D
 

coincident with that of Schubert [16]. Furthermore, the electrical part of the system can 

be formally accepted as a set of volumetric source terms added to the purely mechanical 

part. These source terms can only decrease the wave speed, which warranties stability.  
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Comparison of numerical results with known analytical solutions shows good 

agreement. In fact, only two simplifications of ‘real’ physics have been considered. The 

first is the quasistatic approach which is more acceptable the bigger is the ratio between 

electromagnetic and mechanical wave speeds.  Since these speeds are respectively in the 

order of 10
8
m/s and 10

3
 m/s, this approach is reasonably acceptable. The second 

assumption introduced in this work, is that the electric displacement is reduced to 

parallel field lines in the piezoelectric substrate, with no flow going out of it. 

 

The presented model is particularly adequate to simulate transient response of 

transducers, during the external excitation by narrow band pulses close to the axial 

lowest modes (as justified in appendix B), but in the results section it has been shown 

that for radial modes, and evaluating the system stationary response, the results are also 

acceptable.  

 

Therefore, we can conclude that our aim has been satisfied. However, further 

improvements both in electromagnetic simplifications and in mechanical properties of 

the material, like dissipation, nonlinear plastic hysteresis, and so on, remain interesting 

areas for development.  
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APPENDIX A 

 

A.1.- Explicit discrete equations  

  

The explicit equations for the algorithm are presented here for a quadratic grid. The 

variable names are rewritten avoiding sub index, so the instantaneous punctual value of 

a variable, for example  ),,(1 nkj tzrs  is denoted as n

kj ,1s  where rjrj D-= )1( , 

zkzk D-= )1( , and tntn D= . It must be also remarked that the physical and 

computational domain differ one from each other (by half spatial step in each 

boundary). The physical edge is defined by the node-line that satisfies strictly the 

boundary conditions; for example, in the case considered of stress-free conditions, the 

axial stress 3s  will be null for z=0 and z=Z, and the physical domain shall start and 

finish in nodes of the variable 3s , respectively, as shown in figure 1. The relations 

between the physical and computational limits are given by 

 

)2( -D= KrZ ,  )1( -D= JrR     (A.1,A.2) 

 

The FDTD scheme is based on a centered staggered grid, but in some equations the 

value of a particular stress or velocity component is required out of its self node, then 

linear interpolation is used, for example 
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Definitely, assuming previous general considerations, dynamic equations are  
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for j=1, … , J-1, and k=1, …, K-1, 
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for j=1, … , J-1, and k=2, …, K-1, 

 

 

 

The constitutive axial equations for the next half-time step, are: 
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for j=1, … , J-1, and k=1, …, K-1,             (A.6-A.8) 

 

For tangential equations, we have 
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for j=1, … , J-1, and k=2, …, K-1, 

 

 

 

And finally, the first step of the algorithm, where a known electric potential source term 

)(tf  is taken into account, is 
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where Z is the size of the physical domain, in this case )2( -D= KrZ , and the punctual 

contribution of the mechanic deformation to the time derivative of the electric field, 
2/1

2/1,2/1

+
++

n

kjpmec , is 
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for j=1, … , J-1, 
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A.2.- Boundary conditions 

 

A.2.1.- Axial boundary conditions 

Because of cylindrical symmetry both compounds ru  and rzs  vanish at the axis; 

therefore, for stability reasons, it is more convenient to place at the axis the nodes 

associated to these variables. As a consequence no field component has to be calculated 

at the axis, and the numerical problems involving the wave propagation in these 

singular points are avoided. The equation of this condition reads: 

 

05 ,1 =ks ,   for  k=1, … , K,       (A.12) 

02/1,1 =+kur , for  k=1, … , K-1,       (A.13) 

 

A.2.2.- Stress-free boundary conditions 

 

As the model describes piezoelectric actuators, only the stress-free conditions are 

evaluated in Section 6 -Numerical Results and Discussion. However, the piezoelectric 

domain can be evaluated by considering fixed boundaries or by charging to a different 

medium (the completely clamped situation has no sense here because the system stays 

in the trivial solution of no movement when excited electrically). 

 Boundary conditions are defined for the first node lines and for the virtual non-physic 

lines as follows: i) Tangential stressed are null, ii) the axial stress second components 

( js ) is linearly extrapolated in the virtual node lines from the value of two attached 

nodes, and iii) other axial stresses in the virtual node lines are imposed to have the 

opposite value of the attached node line, so the average evaluated in the real physical 

perimeter is null. Finally, iv) no conditions are required for speed and electrical vectors 

in the extreme physical node lines, as they are computed by means of main equations 

considering the values of the virtual nodes. The particular expressions of these 

conditions are noted as follows:    

 

Free condition in the electrodes (z=0, z=Z) 

Non-physical nodes: 
n

j

n

j 2/11,2/12/1,2/1 33 +++ -= ss          (A.14) 

n

Kj

n

Kj 2/1,2/12/1,2/1 33 -+++ -= ss      for  j=1, … , J-1,      (A.15) 

Conditions at the physical edge for tangential stress 

05 1, =
n

js            (A.16) 

05 , =n

Kjs    for  j=1, … , J       (A.17)                         

No conditions are required for the rest stress components 

  

 

Free condition in r=R 

Physical edge: 

05 , =n

kJs    for  k=1, … , K      (A.18) 

Non physical nodes: 
n

kJ

n

kJ 2/1,2/12/1,2/1 11 +-++ -= ss               (A.19) 

n

kJ

n

kJ

n

kJ 2/1,2/32/1,2/12/1,2/1 2222 +-+-++ -×= sss   for  k=1, … , K-1,   (A.20) 

No conditions are required for the rest stress components 
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APPENDIX B 

 

In the present appendix several arguments are presented in order to justify the approach 

introduced by equations (8) and (9). The assumption is based on the condition of 

constant displacement field through an axial line, and permits to obtain the physical 

variables in an explicit scheme. 

 

The approach, as will be shown, is accurate to model the transient response of 

transducers, during the external excitation by narrow band pulses close to the resonant 

lower modes. In order to prove the validity of the approach an ideal situation is initially 

shown. More complex cases are presented to approach to real cases. Finally a numerical 

evaluation is presented to illustrate the validity of the approach. 

 

B.1.- Ideal constant excitation 

 

During the excitation, the flat circular charged electrodes generate an electric field. By 

considering a constant excitation, the complete ceramic is uniformly polarized (as 

shown in figure B.1. The electric and displacement field have the same distribution, 

being parallel one to each other at any point. As it can be appreciated, the radial 

component of both electric fields, E and D, is notably smaller than the axial one, and 

thus they can be neglected in the first approach in the center of the capacitor. The 

approach D(r)=0 is better, the better is the relation R/Z 

 
Figure B.1.- Field lines (E and D) in a charged flat capacitor in vacuum 

 

 

B.2.- Instantaneous excitation in axial mode 

 

Consider a piezoelectric ceramic excited in an axial mode.  We focus on an instant in 

which a non-null external charge is applied at the electrodes. In this case, the wavefronts 

are accepted to be parallel to the electrodes. Each wavefront has a different compressive 

state, so each one can be considered a different dielectric layer, being the boundaries of 

this layers perpendicular to the electric and displacement field. Due to this 

perpendicularity, electric field changes in value but not in direction between contiguous 

layers. Displacement field - according to Gauss’ law r=Ñ D
r

·  - remains constant 

through a field line, as stated in our hypothesis. 

 

B.3.- Real instantaneous situation 
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Out of an axial mode, each point of the substrate has a different instantaneous state, so 

perpendicular boundaries cannot be defined, and the electric and displacement field 

change their direction and value through all the substrate. However there are real cases 

similar to the ideal hypothesis, such as the following (Justification of the truthfulness of 

these statements placed in next section):  

a) During the excitation: If an external instantaneous electric fields is being 

applied, the field lines will follow the distribution plotted in figure B.1 more 

accurately than if the electric field is exclusively generated by the punctual 

piezoelectric stresses. 

b) If the excitation frequency is close to any axial mode: Then the energy is 

accumulated in these modes and mechanical wavefronts are almost 

perpendicular to the electric field. The dielectric properties will also change in 

radial direction bending the field lines, but the relevant variations are induced in 

the axial direction 

c) For lower modes, the instantaneous dielectric properties change only a few times 

over the space among their extreme values. If dielectric properties change 

smoothly, the field lines get smoothly curved 

 

B.4.- Simulation in real situation 

 

To test the validity of our hypothesis, several simulations have been performed by 

calculating both electric field components from constitutive equations, with the purpose 

of obtaining the ratio zr EE=)tan(q for each computational node. Transducers with 

different shapes are excited by different frequencies and the hypothesis is proven to be 

reasonably adequate. Next figure B.2 illustrates an example. Figure B.2a represents, for 

each computational step, the median in the whole computational domain of the punctual 

value zr EE=)tan(q . The continuous line represents instantaneous values, and the 

discontinuous line draws the average of this median during the previous computed time. 

It can be noted that the function converges to a value smaller than 0.1, what implies that 

the angle is smaller than 6º. 

 

It can be appreciated that, periodically the value of the median angle increases. This 

growth coincides with the instants for which the voltage between the electrodes is null 

in the whole domain (see figure B.2b). In these instants the average value of Ez in a field 

line is null and big ratios of zr EE=)tan(q are associated to numerical imprecision at 

the points with smaller values of Ez.  

 

During the excitation, the typical values of zr EE=)tan(q are small, and they increase 

with time after the excitation, when the energy still keeps into the transducer due to the 

non-dissipative boundary conditions defined. In a real situation, the transducer radiates 

and dissipates energy, therefore the most relevant results of the simulation are those 

induced during the excitation.  

 

Simulations performed in different conditions show that the convergence values of the 

“median angle” (discontinuous line in figure B.2a) depend on the frequency of the 

excitation, the shape of the piezoelectric substrate, and the spectral distribution of the 

excitation signal. Generally, the smaller the frequency and the narrower the signal 

broadband, the better is the approximation of the hypothesis. Several cases in which the 

hypothesis is less accurate have also been tested. The convergence value of the median 
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of )tan(q  always keeps under the value 0.35, which implies that the angles are smaller 

than 20º for the worst cases. 

 
 

Figure B.2a.-Instantaneous median of the value zr EE=)tan(q  for the whole 

computational domain (continuous); and temporary average of this median (dashed). 

Figure B.2b.- Electric current (dashed) and voltage between electrodes (continuous) 

 

 

To sum up, the model is reasonably accurate to simulate transient responses excited by 

pulses with central frequency close to the resonance eigenfrequencies of the first 

resonant modes.  
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TABLES AND TABLE CAPTIONS 

Table 1: Piezoelectric properties of the material used in simulations, written in the 

matrix form: ÷÷
ø

ö
çç
è

æ
sed

dC E

. Compliances units are 10
-12

m
2
N

-1
 and piezoelectrical charge 

constant units are 10
-12

mV
-1

. Relative permittivities, 

 

Table 2: Numerical and analytical results for the first pure axial modes in a thin 

cylindrical rod with length, Z=60mm. 

 

Table 3: Numerical and analytical results for the first pure radial modes in a thin disk 

with radius, R=40mm. 
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16.5 -4.78 -8.45 0 0 -274 

-4.78 16.5 -8.45 0 0 -274 

-8.45 -8.45 20.7 0 0 593 

0 0 0 43.5 741 0 

0 0 0 741 2768 0 

-274 -274 593 0 0 3006 

 

Table 1: Piezoelectric properties of the material used in simulations. written in the 

matrix form: ÷÷
ø

ö
çç
è

æ
sed

dC E

. Compliances units are 10
-12

m
2
N

-1
 and piezoelectrical charge 

constant units are 10
-12

mV
-1

. Relative permittivities. 
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Numeric f(kHz) 32.4 96.8 160.3 223.1 

Analytic f(kHz) 32.1 96.4 160.8 225.1 

 

Table 2: Numerical and analytical results for the first pure axial modes in a thin 

cylindrical rod with length, Z=60mm. 
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Numeric f(kHz) 24.2 63.6 100.9 137.9 174.2 210.2 

Analytic f(kHz) 24.2 63.5 100.4 138.1 175.2 212.3 

 

Table 3: Numerical and analytical results for the first pure radial modes in a thin disk 

with radius, R=40mm. 
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FIGURE CAPTIONS 

 
Figure 1.- Structure of the staggered spatial mesh 

 

Figure 2.- Time and computational evolution of the simulation. 

 

Figure 3.- Module of impedance in open circuit (continuous line), and module of admittance in 

short-circuit (dashed), for the case of a thin piezoelectric rod in arbitrary units.  

 

Figure 4.- Modules of impedance in open circuit (dashed line), and admittance in short-circuit 

(continuous), for the case of a thin piezoelectric disk in arbitrary units. The Bessel functions are  

plotted, by adding an arbitrary constant value to simplify visual inspection. 

 

Figure 5.- Relative modules of impedance in open circuit, for three different thin rods, with 

length Z=6cm, and respective radius R=2mm, R=5mm and R=10mm 
 

Figure 6.- Volumetric compression in RZ plane. Snapshots at three different instants (t1=100ns, 

t2=300ns, t3=50ms) of a 2MHz frequency pulse propagating into a cylindrical piezoelectric 

electrically excited in its flat electrodes with free mechanic boundary conditions (R=6.5mm, 

Z=15mm, Ricker-wavelet pulse function for electrostatic potential).  

 

Figure 7.- Volumetric compression in RZ plane. Configuration described in figure 6 excited, in 

open circuit, in its second anti-resonant mode (left) and synchronous image, modeled similarly, 

in conditions of strict uniform electrical displacement (right) 

 

Figure 8.- Instantaneous quadratic axial speed in cylinders (Z=60mm and R=2, 10, 14mm), 

excited in their second antiresonant mode. 

 

Figure B.1.- Field lines (E and D) in a charged flat capacitor in vacuum  

 

Figure B.2a.-Instantaneous median of the value zr EE=)tan(q  for the whole 

computational domain (continuous); and temporary average of this median (dashed).  

 

Figure B.2b.- Electric current (dashed) and voltage between electrodes (continuous)  
 

 

 


