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Abstract. This paper presents a new algorithm for nonlinear prediction based on independent
component analysis mixture modelling (ICAMM). The data are considered from several mutually-
exclusive classes which are generated by different ICA models. This strategy allows linear local
projections that can be adapted to partial segments of a data set while maintaining generalization
(capability for nonlinear modelling) given the mixture of several ICAs. The resulting algorithm is a
general purpose technique that could be applied to time series prediction, to recover missing data in
images, etc. The performance of the proposed method is demonstrated by simulations in
comparison with several classical linear and nonlinear methods.
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1 Introduction

Independent component analysis (ICA) is an intensive area of research that is progressively
finding more applications for both blind source separation (BSS) and for feature
extraction/modelling. The goal of ICA is to perform a linear transformation of the observed
sensor signals, such that the resulting transformed signals (the sources or prior generators of
the observed data) are as statistically independent of each other as possible [1]. The linear ICA
method is extended in independent component analysis mixture modelling (ICAMM) to a kind
of nonlinear ICA model, i.e., multiple ICA models are learned and weighted in a probabilistic
manner. Thus, the ICA mixture model is a conditional independence model, i.e., the
independence assumption holds only within each class and there may be dependencies among
the classes [2]. ICAMM has recently emerged as a flexible approach to model arbitrary data
densities with non-gaussian distributions for the independent components (i.e., relaxing the
restriction of modelling every component by a multivariate Gaussian probability density
function).

ICA has been shown to improve the prediction of time series by considering certain realistic
assumptions [3]. There is also a close relationship between ICA and the minimization of
algorithmic complexity [4]. This has been used to improve the prediction of financial time
series, see for instance [5]. A procedure that includes an ICA-based preprocessing step
followed by prediction using neural networks has been applied for data prediction in several
fields; see for instance [6]. Other applications benefit by using ICA for preprocessing since the
independence among the variables is required [7].



This paper presents a novel procedure based on independent component analysis mixture
modelling (ICAMM). The novelty of the procedure consists of the mixture of ICAs is not only
proposed as a preprocessor to be applied before prediction, but the prediction itself is made
by estimating the ICAMM parameters. The data are considered from several mutually-
exclusive classes which are generated by different ICA models. This strategy allows linear local
projections that can be adapted to partial segments of a data set while maintaining
generalization (capability for nonlinear modelling) given the mixture of several ICAs.

The following sections of the paper include the following: the theoretical foundations of ICA
and ICAMM; the proposed procedure for nonlinear prediction based on ICAMM; the results
obtained for several simulations in comparison with two classical prediction methods (Kriging
and a Wiener structure-based method); and the conclusions of the paper.

2 Independent Component Analysis Mixture Modelling

The standard noiseless instantaneous ICA formulates a M x1 random vector X by linear

mixtures of M random variables that are mutually independent (s,...,s,) whose

distributions are totally unknown. That is, for s=(s,,...,s,)’ and some matrix A :

X=As . (1)

The essential principle is to estimate the so-called mixing matrix A, or equivalently B=A"
(the demixing matrix). The matrix A contains the coefficients of the linear transformation
that represents the transfer function from sources to observations. Thus, given N i.i.d.

observations (X,,...,X,) from the distribution of x, A" can be applied to separate each of

the sources s, =B x, where B, is the ith row of B. This can be seen as a projection

pursuit density estimation problem to find M directions such that the corresponding
projections are the most mutually independent. For the sake of simplicity, we will assume the
square problem (the same number of sources as mixtures, and thus the order of A is
M xM).

ICAMM is proposed in the framework of pattern recognition, considering that the observed
data come from a mixture model and they can be categorized into several mutually exclusive
classes. ICAMM assumes the underlying process that generated observed data is composed by
multiple ICA models (data of each class are modelled as an ICA, i.e., linear combinations of
independent non-gaussian sources).

The general formulation of ICAMM is:

Xt=AkSk+bk, k=1.K . (2)

where C, denotes the class &, and each class is described by an ICA model with a mixing

matrix A, and a bias vector b, . Essentially, b, determines the location of the cluster and



A, s, its shape. The goal of an ICA mixture model algorithm is to determine the parameters

for each class.

ICAMM was introduced in [2] considering a source model switching between Laplacian and
bimodal densities. Recently, a generalization of the ICAMM framework called Mixca was
proposed in [8], which includes non-parametric density estimation, semi-supervised learning,
using any ICA algorithm for parameter updating, and correction of residual dependencies.

3 ICAMM-based Nonlinear Predictor

Let us consider data vector X, of size (N x1), which can be modelled through an ICAMM
model with k=1..K classes. The parameters W,,s,,b, for this model have to be

estimated from a training data set. Assuming that the last N, values of vector X are
unknown, we can group known and unknown values of X into two smaller vectors, y

(known values) and Z (unknown values). Thus, we can write

X = (yj . (3)
z

We would like to predict Z using the known values y. Following the ICAMM model, the

probability density function of data vector X can be expressed as

p(x) = p(y,z) = Zp(y,z /C) p(C,) =Z|det W, |pGs)p(C), (@)

0
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In order to maximize the joint probability density function, we propose a maximum a

where

posteriori (MAP) estimator:

Zy,p = Max p(y,z) . (6)

z

Thus, we have to solve the following equations:
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From (5), we can obtain the contribution of the sources corresponding to the variables z :
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where . |. Thus, the sources can be expressed as
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The partial derivative of the sources with respect to the elements of vector Z s
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Assuming independence among the sources, and replacing (11) in (7), we obtain the objective
function,

K N K
5p§i,2) = Z|deth|p(Ck )Z%rm = Z|detwk|p(Ck )chk , (12)
k=1 n=1 k=1

where R, =[r,,...r,,] of dimension N,x1 and ¢, =[c,,..c,,]' of dimension NxIl. We

have called the proposed algorithm PREDICAMM (prediction based on ICAMM).

The optimization of the value of z is done using a gradient method. Applying a steepest
ascent optimization technique, we can write

Zin) Lo T A 'Vf(zm) ’ (13)
where ag; s the stepsize and Vf(z(l.)) is the gradient of the cost function. The stepsize

a and the ascent direction Vf(z) both set the convergence rate of the algorithm. There

are several different combinations of stepsize and direction for gradient methods [9]. For
simplicity, we used a steepest ascent method combined with a constant stepsize,

Op(y,2)

G+ T R0 Sz (14)

(i)

We selected a constant greater than 1 for « . This is due to the probability density values are
lower in magnitude, and so its derivative has a much lower absolute value than z.



4 Results

In order to test the proposed algorithm, a total of 13 different data sets were simulated, as
shown in Table 1. The data sets consisted of ICA mixtures with up to three classes, which were
obtained by using the Mixca algorithm [8] embedding the so-called JADE ICA algorithm [10] for
parameter updating. This procedure has demonstrated flexibility for data modelling in several
fields such as non-destructive testing [11][12] and biomedical problem diagnosis [13].

Table 1. Data sets used in simulations.

Dataset  Known Unknown Number of

I ) Density functions
number variables variables classes

01 1 1 1 Uniform, Laplacian

02 2 1 1 Uniform, Laplacian, K1

03 2 2 1 Uniform, Laplacian, K1, K10
04 2 2 1 Uniform

05 2 2 1 Laplacian

06 2 1 2 Uniform, Laplacian

07 2 2 2 Uniform, Laplacian

08 2 2 2 Laplacian, K1

09 2 2 2 K1, K10

10 2 1 3 Uniform, Laplacian, K1

11 2 2 3 Uniform, Laplacian, K1

12 2 1 3 Uniform, Laplacian, K1, K10
13 2 2 3 Uniform, Laplacian, K1, K10

From 2 to 4 variables were considered in simulations, defining 1 or 2 of them as unknowns for
prediction purposes. The following source data densities were simulated: uniform (between
+1), Laplacian distribution with a sharp peak at the bias and heavy tails, and two K distributions
[14] with shape parameters v =1 (named K1) and v =10 (named K10). Examples of these
densities are shown in Table 2. All densities had zero mean and unit variance. A total of 100
Montecarlo simulations were obtained for each of the data sets of Table 1.



Table 2. Probability density functions used in the simulations. All densities had zero mean and unit variance.

Density Skewness  Kurtosis Sample

Uniform 0 -1.2
_ 1
Laplacian 0 3 f\
K1 1.7 5.3 \
K10 0.8 0.7 M\

Fig. 1 shows the results of a Montecarlo experiment to test the stability of the prediction
algorithm. Both graphs in Fig. 1 show three different regions separated by different
shadowing. The first region, named NC for Non-Convergence, is not shadowed. This region is
composed by input values that do not converge at all and their end values are approximately
equal to their starting values.
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Fig. 1. Stability study for case number 1. Abbreviations (NC: nonconvergence, FC: failed convergence, convergence).

The second region, named FC for Failed Convergence, is shadowed in light gray. It is composed
of input values that converge partially, but their value does not match the right prediction. The
last region, named C for Convergence, is shadowed in darker gray. The values in this region
converge to the right prediction and do so in the least amount of iterations. Note that the axis

values in Fig. 1 (both for z,,,, andfor Z ) are normalized in such a way that 0 is the value

of the right prediction. The size of the convergence zone (C) spans approximately from -2 to
+2, which is about four times the standard deviation of the mixed signals. Thus, Fig. 1 shows
that the algorithm was able to converge to the right value starting from relatively far values.
We compared PREDICAMM with two classical predictors. The first predictor was ordinary
kriging, a linear unbiased predictor. The second predictor was a Wiener structure composed by
a linear step performed by ordinary kriging followed by a non-linear step performed by the
conditional expectation of predicted to real data.
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Fig. 2. Comparison of some predicted samples estimated by different methods.
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Fig. 3. Performance comparison of the proposed method with classical prediction methods.

Fig. 2 shows an example of 20 samples estimated by different prediction methods. The best
results are obtained by the proposed method PREDICAMM. The curve estimated by the
proposed method follows the changes in slope and magnitude of the real values. The values
estimated by Kriging and the Wiener-based predictor are smoothed version of the real values.

Two figures of merit were defined in order to obtain a general evaluation of the method
performance: (1) the mean squared error (MSE) and (2) the symmetric Kullback-Leibler
divergence (KLD) between the probability density of the predicted data and the probability
density of the real data. Fig. 3 shows the figures of merit estimated for the different simulated
data sets. The PREDICAMM method obtained the lowest values for MSE and KLD
demonstrating the best quality of the prediction. The difference of PREDICAMM with classical
methods is higher for the datasets generated from models with multiple ICAs since the
prediction is made using a method that is based on the generative model of the data.

5 Conclusion

A novel method for prediction has been presented. The method is based on ICAMM which
allows complex data densities to be dealt with. The method is a general purpose technique
that could be applied to several fields such as time series prediction, recovering of missing data
in images, etc. The performance of the method has been demonstrated in several simulations



outperforming the results obtained by classical prediction methods such as kriging and Wiener
structures.

Acknowledgments. This work has been supported by the Generalitat Valenciana under
grant PROMETEQ/2010/040, and the Spanish Administration and the FEDER Programme of the
European Union under grant TEC 2008-02975/TEC.

References

[EEN

. Hyvérinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, New York (2001)

2. Lee, T.W., Lewicki, M.S., Sejnowski, T.J.: ICA mixture models for unsupervised classification of non-gaussian
classes and automatic context switching in blind signal separation. IEEE Trans. on Patt. Analysis and Mach.
Intellig. 22 (10), 1078-1089 (2000)

3. Malaroiu, S., Kiviluoto, K., Oja, E.: ICA Preprocessing for Time Series Prediction. In: 2nd International Workshop on
ICA and BSS (ICA 2000), pp. 453-457 (2000)

4. Pajunen, P.: Extensions of Linear Independent Component Analysis: Neural and Information-Theoretic Methods.
Ph.D. Thesis, Helsinki University of Technology (1998)

5. Gorriz, J.M., Puntonet, C.G., Salmeron, G., Lang, E.W.: Time Series Prediction using ICA Algorithms. In:
Proceedings of the 2nd IEEE International Workshop on Intelligent Data Acquisit. and Advanc. Comput. Systems:
Technology and Applications, pp. 226-230 (2003)

6. Wang, C.Z.,, Tan, X.F., Chen, Y.W., Han, X.H., Ito, M., Nishikawa, I.: Independent component analysis-based
prediction of O-Linked glycosylation sites in protein using multi-layered neural networks. In: IEEE 10th Internat.
Conf. on Signal Processing, pp.1-4 (2010)

7. Zhang, Y., Teng, Y., Zhang, Y.: Complex process quality prediction using modified kernel partial least squares.
Chemical Engineering Science 65, 2153-2158 (2010)

8. Salazar A., Vergara L., Serrano A., Igual J.: A general procedure for learning mixtures of independent component
analyzers. Pattern Recognition 43 (1), 69-85 (2010)

9. Bersektas, D.: Nonlinear programming. Athena Scientific, Massachusetts (1999).

10. Cardoso, J.F., Souloumiac, A.: Blind beamforming for non gaussian signals. IEE Proceedings-F 140 (6), 362-370
(1993)

11. Salazar, A., Vergara, L., Llinares, R.: Learning material defect patterns by separating mixtures of independent
component analyzers from NDT sonic signals. Mechanical Systems and Signal processing 24 (6), 1870-1886
(2010)

12. Salazar, A., Vergara, L.: ICA mixtures applied to ultrasonic nondestructive classification of archaeological
ceramics. EURASIP Journal on Advances in Signal Processing, vol. 2010, Article ID 125201, 11 pages, 2010.
doi:10.1155/2010/125201

13. Salazar, A., Vergara, L., Miralles, R.: On including sequential dependence in ICA mixture models. Signal
Processing 90 (7), 2314-2318 (2010)

14. Raghavan, R.S.: A Model for Spatially Correlated Radar Clutter. IEEE Trans. on Aerospace and Electronic Systems
27,268-275 (1991)



