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Abstract

Time-frequency representations have been of great interest in the analysis
and classification of non-stationary signals. The use of highly selective trans-
formation techniques is a valuable tool for obtaining accurate information for
studies of this type. The Wigner-Ville distribution has high time and frequency
selectivity in addition to meeting some interesting mathematical properties.
However, due to the bi-linearity of the transform, interference terms emerge
when the transform is applied over multi-component signals. In this paper, we
propose a technique to remove cross-components from the Wigner-Ville trans-
form using image processing algorithms. The proposed method exploits the
advantages of non-linear morphological filters, using a spectrogram to obtain
an adequate marker for the morphological processing of the Wigner-Ville trans-
form. Unlike traditional smoothing techniques, this algorithm provides cross-
term attenuations while preserving time-frequency resolutions. Moreover, it
could also be applied to distributions with different interference geometries.
The method has been applied to a set of different time-frequency transforms,
with promising results.

Key words: Time-frequency representations, morphological image processing.

1. Introduction

Time-frequency representations [1, 2] are essential when working with non-
stationary signals such as ultrasonic or acoustic signals. The most straight-
forward technique for representing a signal in the time-frequency plane is the
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short time Fourier transform (STFT). This technique consists of prewindowing
the signal under test x(t) around a particular time t and calculating its Fourier
transform. The squared modulus of the STFT, the spectrogram, is commonly
used for the analysis of non-stationary signals in the time-frequency domain [3].
Nevertheless, as a result of the Heisenberg-Gabor principle [4], the spectrogram
has a trade-off between time and frequency resolutions. When using the spec-
trogram, the results are dependent on the choice of the window length, which
limits the number of applications where this can be applied.

Other types of time-frequency representations are based on the Wigner-Ville
distribution (WVD). The WVD is defined as:

Wx(t, ν) =

∫ ∞
−∞

x(t+ u/2)x∗(t− u/2)e−j2πνudu (1)

The WVD satisfies some interesting mathematical properties [5, 2, 6], such
as marginal properties or preservation of time and frequency shifts. Moreover,
the WVD simultaneously provides high selectivity in time and frequency while
the spectrogram has a trade-off between time and frequency resolutions. Despite
this, the WVD has a drawback because it produces a great number of cross-
components when it is applied over multi-component signals. Taking the above
into consideration, the main objective of this study is to achieve a time-frequency
representation, without cross-terms (such as the spectrogram), which can be as
selective as possible in time-frequency planes (such as the WVD).

This paper presents an innovative method for the elimination of cross-components
in the WVD. In addition to cross-term attenuation, our algorithm preserves
time-frequency resolutions. To do this, it incorporates image-processing algo-
rithms based on mathematical morphology.

A review of different techniques for the reduction of cross-components from
the WVD is presented in Section 2. The basis to understand the presented
research and the proposed method, which is based on morphological filters, are
explained in Sections 3 and 4, respectively. Finally, some results and conclusions
are discussed in Sections 5 and 6.

2. State of The Art

The interference structure of the WVD and its properties have been the sub-
ject of extensive studies [6, 7]. Research on eliminating cross-components from
the WVD has been of enormous benefit when working with multi-component
signals. Since interference terms are oscillatory, previous studies were related to
attenuate interference components by means of a smoothing operation. These
studies lie in the convolution of the WVD with a 2-D smoothing kernel [7, 8].
The Cohen class of shift-invariant transformations provides an important frame-
work for WVD smoothing although the design of a satisfactory kernel is a com-
plex task. Many research papers have been published on this topic with the
objective of achieving cross-term attenuation in the WVD, while preserving
time-frequency resolutions and all the desired mathematical properties. As an
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example, we can refer to [9], where the most suitable kernel is selected by means
of processing the corresponding image of the ambiguity function. Some other
proposals related to kernel design can be seen in [10, 11]. The main difficulty
of these techniques is the selection of the most appropriate kernel for each type
of signal.

The approach presented in [12] reduces the cross-components by combining
the Fourier-Bessel expansion with the WVD. The Fourier-Bessel expansion de-
composes a multi-component signal into a number of mono-component signals,
and the WVD is applied over each mono-component signal. It is a powerful tool
to eliminate interferences from the WVD. However, the method has one restric-
tion - it assumes that signal components are well-separated in the frequency
domain. If the signal components are not well-separated, it is likely that the
method will not correctly perform the frequency components separation, as will
be discussed in Section 5. An improvement of this method is presented in [13].
This improvement will be also tested and compared with our method in Section
5.

Alternative approaches to remove cross-components from the WVD distri-
bution are based on the use of image-processing algorithms [14, 15]. However,
these methods assume a-priori knowledge of the interference geometry.

A new method to remove interferences from the WVD is presented in this
paper. It starts from our earlier contribution [16] and represents an improve-
ment on the obtained results. We overcome the main drawback of [16] since
that method was not appropriate to reduce interferences when cross-terms are
touching signal terms. In this paper, we introduce another morphological operator
to remove interferences from the WVD even when interferences overlap signal
terms. New simulations have also been carried out and discussed to demonstrate
the application of the proposed method not only to remove interferences from
the WVD but also to remove them from distributions with different interference
geometries. The results from [12, 13] are compared to those obtained using our
method.

3. Method Basis

The basic idea of the presented method is to apply morphological filters to re-
duce interference components (cross-terms) from images corresponding to noisy
time-frequency representations. We want to recover only those signal terms from
the WVD that are also present in the spectrogram distribution, thereby pre-
serving the resolution of the WVD. The method uses the image corresponding
to the spectrogram as a marker for a morphological reconstruction carried out
over the WVD, which we are seeking to denoise. Essentially, the method uses
the opening by λ-reconstruction operator (or for simplicity λ-reconstruction),
which is described below.

3.1. Definition of λ-reconstruction

The λ-reconstruction operator belongs to a family of transformations called
geodesic operators [17, 18, 19, 20]. A geodesic operator involves two input im-
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ages: the marker and the reference. A morphological transformation is applied
to the marker and the result is forced to remain above or below the reference.
Let f and g (two grayscale images) be the reference and the marker images,
respectively, which are both defined in the same domain as:

f(x) : E→ T ,

where (x) ∈ E is the pixel position. In the case of valued discrete images,
T = {tmin, tmin + 1, ...tmax} (in general T ⊂ Z or R, or any compact subset of
Z or R) is an ordered set of grey-levels. Typically, in digital 8-bit images we
have tmin = 0 and tmax = 255.

Let us define the unitary geodesic λ-dilation of the marker g with respect to

the reference f , δ
(1)
f,λ(g), as the point-wise minimum between the reference and

the unitary non-flat dilation, δ
(1)
λ , of the marker, which is:

δ
(1)
f,λ(g) = δ

(1)
λ (g(x)) ∧ f(x).

The unitary λ-dilation, δ
(1)
λ , represents the dilation with a unitary non-

flat structuring function b(x), with b(x) ∈ F{E, T } being a weighting function
defined as:

b(x) =

{
−λ x ∈ B
−∞ x /∈ B

Thus, the unitary λ-dilation, δ
(1)
λ , will be defined by the expression:

δ
(1)
λ (f)(x) = {f(y) : f(y) = sup[f(z)− λ], z ∈ Bx} ∨ f(x).

The geodesic λ-dilation of size n of the marker g with respect to the reference
f is obtained by performing n successive geodesic λ-dilations of g with respect
to f :

δ
(n)
λ,f (g) = δ

(1)
f,λ[δ

(n−1)
f,λ (g)],

with δ
(0)
f,λ(g) = g.

The λ-reconstruction [21] of the reference image f from the marker g is
defined as the geodesic λ-dilation of g with respect to f until stability:

γrecλ (f(x), g(x)) = δ
(k)
f,λ(g(x)),

where k is δ
(k)
f,λ(g) = δ

(k+1)
f,λ (g).

Using the λ-reconstruction operator, only the reference image pixels that
actually touch the marker will be reconstructed with the maximum value of the
reference. The remainder of the connected areas touched by the marker will be
reconstructed with an intensity level that will decrease with a slope equal to λ
[22, 21].
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3.2. Use and behaviour of λ-reconstruction

The results of applying the λ-reconstruction operator are explained in Figures
1 and 2 using a simulated signal to illustrate the performance of the operator.
Test images have been used to illustrate the example. These images are com-
posed by straight lines and zigzag lines. We consider the zigzag lines to be
the undesired lines and the straight lines those to be preserved. This example
demonstrates how we are able to reduce zigzag lines using the λ-reconstruction
operator, and how, when the undesired lines overlap the desired ones, the use
of different values of λ provides satisfactorily differentiated results.

In Figure 1, the undesired zigzag lines do not overlap the desired straight
lines. In contrast, in Figure 2, the undesired zigzag lines overlap the desired
straight lines.

(a) (b)

(c) (d)

Figure 1: (a) Reference image. (b) Marker. (c) Result of λ-reconstruction with λ = 0. (d)
Result of λ-reconstruction with λ = 15.

Focussing on Figure 1, our aim is to prove how the operator is able to
reconstruct only the straight lines (desired lines). Image 1.b is used as marker
for the morphological operation carried out over Image 1.a. By using the λ-
reconstruction operator with different values of λ (λ = 0 and λ = 15), we
obtain images 1.c and 1.d, respectively. From here, we can point out how the λ-
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(a) (b)

(c) (d) (e)

Figure 2: (a) Reference image. (b) Marker. (c) Result of λ-reconstruction with λ = 0. (d)
Result of λ-reconstruction with λ = 15. (e) Result of λ-reconstruction with λ = 30.

reconstruction operation provides identical solutions independently of the value
of λ and efficiently removes the undesired lines. Note that in this example the
zigzag lines do not overlap the desired ones.

Focussing on Figure 2, our aim is also to reconstruct only the straight lines.
Note how, in this case, the undesired zigzag lines overlap the desired straight
lines. Image 2.b is used as marker for the morphological operation carried
out over the reference image 2.a. By using the λ-reconstruction operator with
values of λ = 0, λ = 15, and λ = 30, we obtain images 2.c, 2.d, and 2.e,
respectively. Note that if a value of λ = 0 is used, the operator does not provide
good results because the zigzag lines that touch the marker have also been
reconstructed. Higher values of λ provide a good solution for removing these
undesired components. Note that if λ increases, the intensity of the interferences
decreases.

By considering these two examples, we can draw the following conclusions:
when signals and cross-components are not touching, the operator achieves
satisfactory results independent of the value of λ. However, when the signal
and cross-terms are touching, the λ-reconstruction operator still achieves satis-
factory results, but the selection of an appropriate value of λ will improve the
result. The selection of the correct marker will also improve the final results as
will be justified in the next section.

The morphological reconstruction operator was presented in [16] as a useful
tool to reduce cross-components from interfered diagrams. The method pro-
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posed in [16] performs satisfactory solutions only when cross-terms do not touch
signal terms. The standard reconstruction operator, as introduced in [16], rep-
resents a particular case of the λ-reconstruction operator for values of λ = 0.

In the next section, a general scheme describing the complete method is
presented. The method has been called λ-Reconstruction Cross-Component
Removal (λ-RCCR).

4. General scheme of λ-RCCR

The basis of the λ-RCCR method is outlined in Figure 3. The central idea
of the method is to recover the signal information from those time-frequency
representations suffering from interference terms. The method performs a mor-
phological reconstruction operation. A binary image is obtained from the spec-
trogram, and it is used as a marker in order to ensure the inclusion of only signal
terms in the marker. To improve accuracy, the marker must be pre-processed.
For example, in those applications where time and frequency resolutions are
simultaneously required, the method should be applied using the skeleton of the
spectrogram as a marker and the image corresponding to a WVD as a reference.

The skeleton of the spectrogram is obtained by performing the homotopic
skeleton associated to the iteration of the thinning transformation [17, 20]. This
algorithm is based on the Hit-or-miss transform, which removes points of a bi-
nary set according to a finite family of templates but preserving the homotopy
of the set. Note also that the approach does not require any parameter. This
skeleton is a signal that contains the minimum quantity of information that is
sufficient to locate each point of the support of the signal in frequency and time
domains [17, 18, 23]. The skeleton is a good choice of marker since the spectro-
gram has a poor time-frequency resolution, but its components are located at
the same position as that of the desired components that we wish to reconstruct
from the WVD.

The method performs its operation as follows:

• The spectrogram of the input signal is computed, and the result is called
gi(x).

• The noisy time-frequency transformation, a Wigner-Ville transform, is
also computed from the input signal. The image corresponding to the
distribution that displays interference is referred to as f(x).

• The image gi(x) is pre-processed using a homotopy preserving skeleton
algorithm [20], thus resulting in gskel(x). The method removes cross-
components from f(x) using gskel(x) as a marker for the λ-reconstruction
operation. In comparison with the spectrogram, the output of the scheme -
the reconstructed image fr(x) - is an image with improved time-frequency
resolution, without cross-components.

The selection of λ plays an important role in improving the results. When
we apply the proposed method to a diagram showing interference, the higher
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Figure 3: General scheme of the λ-RCCR method.

the value of λ, then the higher the value of interferences that can be reduced
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by the method. However, if λ increases strongly we could also eliminate signal
information. The selection of the accurate value of λ is now discussed.

4.1. Selection of parameter λ

An error function has been formulated in order to evaluate the results found
with our method for different values of λ. The λoptimum is the value of λ that
minimizes the error function given by Equation 2.

As stated above, the skeleton of a signal contains the minimum quantity
of information needed to locate the signal in both dimensions. In order to
evaluate the error function, MSE minimization is employed. For every value
of λ we compute the difference in energy between the skeleton of the original
signal, gskel(x), and the skeleton computed from the reconstructed diagram,
fskelrλi

(x), using a value of λ = λi (see Equation 2).

error(λi) =
|
∑

x g
skel(x)−

∑
x f

skel
rλi

(x)|2∑
x f

skel
r (x)

(2)

When the diagram is reconstructed using λ = λoptimum, the skeleton of the
spectrogram and the skeleton corresponding to the reconstructed diagram are
likely to be very similar. This is due to the fact that, when processing the WVD
with the appropriate value of λ, the interference terms will disappear and as
such do not contribute to the skeleton. In addition, the signal terms will re-
main in their original position contributing to the skeleton in the same way as
the signal components from the spectrogram. When the WVD is reconstructed
with a value of λ lower than the λoptimum, λ < λoptimum, several interference
components that touch the signal terms will remain following reconstruction.
These unremoved components will contribute to the skeleton image, thereby
increasing the value of the error function. On the other hand, when the WVD
is reconstructed with a value of λ higher than the λoptimum, λ > λoptimum, the
cross-terms are removed and do not contribute to the skeleton of the recon-
structed image. However, by using λ > λoptimum, desired information of the
signal, which disappears from the skeleton of the reconstructed diagram, will be
lost, thus increasing the error function.

In Section 5.1, an algorithm for obtaining the λoptimum is discussed. The
results obtained using the λ-RCCR method are also presented. The method
operation has been compared with the methods proposed in [12, 13] and also
with classical methods, such as the filtering using 2-D Gaussian kernels. Fur-
thermore, the correct performance of the method when it is applied to other
types of transforms has been demonstrated.

5. Results and Discussion

The operating method is applied to a set of synthetic test signals x1(n),
x2(n), and x3(n), and to two real signals x4(n) and x5(n).
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To clarify the formulation of the synthetic signals let us introduce how to
formulate the linear frequency-modulated and sinusoidal frequency-modulated
signals.

On the one hand, with f0 being the normalized initial frequency and f1
the normalized final frequency, we can compute the N points record of a linear
frequency-modulated signal as:

f(n) = f0·
(
n− N

2

)
+

f1 − f0
2(N − 1)

·

[
(n− 1)2 −

(
N

2
− 1

)2
]
, n = 1, 2, . . . , N

x(n) = exp (j · 2 · π · f(n)) (3)

On the other hand, let us call f0 the normalized initial frequency, f1 the
normalized final frequency and Np the sinusoidal period. We define the following
parameter φ,

φ = acos

((
1/4− f1 + f0

2

)
· 2

f1 − f0

)
We can compute the N points record of a sinusoidal frequency-modulated

signal as:

Φ = π · (f0 + f1) · n+
f1 − f0

2
·Np

(
sin

(
2π · n
Np

+ φ

)
− sin(φ)

)
,

n = −N/2 + 1,−N/2 + 2, . . . , N/2

x(n) = exp (j · Φ) (4)

With this basic formulation, a brief outline of these signals is presented
bellow:

• x1(n): it is composed by two linear frequency-modulated signals (see
Equation (3)) whose components are well-separated in the frequency do-
main. The parameters for the first component were fixed as: f0 = 0 and
f1 = 0.2. The parameters for the second component were selected as:
f0 = 0.35 and f1 = 0.45. For both components N = 128 points were
computed and x1(n) is obtained adding the two components.

• x2(n): it is composed by two linear frequency-modulated signals (see
Equation (3)) whose components are not well-separated in the frequency
domain. The parameters for the first component were fixed as: f0 = 0
and f1 = 0.4. The parameters for the second component were selected
as: f0 = 0.22, and f1 = 0.5. For both components N = 128 points were
computed and x2(n) is obtained adding the two components.
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• x3(n): it is composed by two sinusoidal frequency-modulated signals (see
Equation (4)) whose components are not well-separated in the frequency
plane. The first sinusoid has the following parameters f0 = 0.25, f1 = 0.35,
and Np = 100. The second sinusoid has parameters f0 = 0.35, f1 = 0.45,
and Np = 100. For both components N = 128 points were computed and
x3(n) is obtained adding the two components.

• x4(n) and x5(n): two underwater signals. The first signal is a real signal
from a beluga whale and the second from a tugboat.

The automatic classification of these signals is a typical application of our
developments.

The spectrogram and Wigner-Ville distributions of the discrete time signals
presented hereafter were computed using the MATLAB time-frequency toolbox
[24]. Being N is the number of points of the signal under test, the spectrogram
of this signal is computed for time instants from 1 to N , using N frequency
bins and a N

4 -point Hamming analysis window normalized to unit energy. On
the other hand, the Wigner-Ville distribution was computed for the same time
instants and using the same number of frequency bins. In this paper, the effect
of the type and the size of the analysis window used to compute the spectrogram
is not considered since the skeleton of the spectrogram contains the minimum
quantity of information to locate each component. Therefore, the skeleton will
not change when different windows are used. Moreover, the skeleton will have
the same geometry independently of the original resolution of the computed
spectrogram.

5.1. Estimation of parameter λ

Before discussing the results obtained from the method, it is important to
calculate the value of the selected λ. The method described in Section 4.1 has
been used to numerically evaluate the error function (see Equation 2) using the
reconstructed diagram of signal x3(n), x4(n), and x5(n) for several values of
λi in the interval from 0 to 100. Remember that if the parameter λ = 0 the
λ-reconstruction operator performs the same operation as the reconstruction
operator, and the interferences which touch the desired signals are not removed
as was demonstrated in [16].

Figure 4 shows the error evolution for different values of λ. The ”∗” line
corresponds to the evaluation of the error function for the WVD diagram of an
underwater signal received from a tugboat, x5(n); the ”�” line corresponds to
the evaluation of the error function for the WV diagram of an underwater signal
of the beluga whale, x4(n); the ”◦” line corresponds to the reconstruction of the
WVD of the sinusoidal signal x3(n).

Moreover, several simulations over a varied set of signals, of a similar nature
to the set herein presented, corroborate the earlier results. These simulations
provide values of λoptimum near to 25 in all cases, and this value is in accordance
with the value that we have empirically set as optimum. From this, we can
assume and generalize the value of λoptimum = 25 as a representative choice for
these kinds of signals.
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Figure 4: Evaluating the error function for different values of λ.

Next, we provide some representative examples applying the method over
the set of test and real signals. Firstly, in section 5.2, we compare our method
results with those obtained using the method proposed in [12, 13]. Both methods
are applied over the set of test signals. Secondly, in the same section, we have
included a new example where total overlap between signal and interferences
is managed; the results obtained with the proposed method are compared to
those obtained with techniques of filtering using 2-D Gaussian kernels. Then, in
section 5.3, the λ-RCCR method is tested over the set of real signals. Finally,
in section 5.4, the method is also tested when applying it over other types of
frequency distributions.

5.2. Method Comparison

The method proposed in [12] has been tested to compare their results with
those obtained using our method. The former method reduces cross-components
by combining the Fourier-Bessel (FB) expansion with the WVD. The Fourier-
Bessel expansion decomposes a multi-component signal into a number of mono-
component signals [25], and the WVD is applied over each mono-component
signal. In the same way as proposed in [16], this is a powerful tool to eliminate
interferences from the WVD when signal components are well-resolved. If in-
terferences overlap or touch signal components, the method cannot be expected
to correctly perform the separation of frequency components. Hence, the WVD
will return a diagram showing interferences. The authors in [12] have recently
presented an improvement to their method in order to solve this problem. This
technique combines the time-order representation based on short-time Fourier-
Bessel expansion and the Wigner-Ville distribution (WVD) [13] which notice-
ably improves the results of the previous method in some cases, as we can
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corroborate in the examples.
We present three representative examples to discuss these points: Figures

5, 6, and 7 represent the results obtained when processing signals x1(n), x2(n),
and x3(n), respectively.

Figure 5 represents the results of the method proposed in [12] in compar-
ison with the λ-RCCR method. Figures 6 and 7 represent the results of the
method proposed in [12] and the results obtained with its improvement [13] in
comparison with the λ-RCCR method.

In Figures 5.a, 6.a, and 7.a we represent the Fourier-Bessel coefficients of
the three input signals, x1(n), x2(n), and x3(n), respectively. Note how the
two components from each signal can be correctly separated. Once the two
main components from the signals are separated, we can retrieve each signal
component separately and compute one WVD from every component. Figures
5.c and 5.d, 6.c and 6.d, and 7.c and 7.d show the WVD from each signal
retrieved. Figure 5.e represents the sum of the two images 5.c and 5.d. In the
same way, Figure 6.e represents the sum of the two images 6.c and 6.d and Figure
7.e represents the sum of the two images 7.c and 7.d. From Figure 5.e, we can
emphasize the outstanding results of the method [12] applied to x1(n) whose
components are well-separated in the frequency domain. On the other hand,
when signal components are not well-separated (see Figures 6.e and 7.e), the
method [12] was unable to achieve good results since it cannot correctly separate
their Fourier-Bessel components. Figures 6 (f, g, and h) and 7 (f, g, and h) show
the result obtained using the improved method [13]. Specifically, Figures 6 (f
and g) and 7 (f and g) represent the WVD of each signal component, retrieved
from x2(n) and x3(n), respectively, using the short-time FB expansion. Figure
6.h shows the sum of images 6.f and 6.g. In the same way, Figure 7.h shows
the sum of images 7.f and 7.g. In Figure 6.h, we can observe how in the case
of a linear frequency-modulated signal (x2(n)) the interferences are noticeably
reduced using the improved method. In the case of non-linear modulated signals
(Figure 7), the improvement achieves a good quality of the signal terms but it
does not reduce the interferences.

Figures 5 (b, f, g, and h), 6 (b, i, j, and k), and 7 (b, i, j, and k) show
the images used and obtained using the λ-RCCR method. In Figures 5.b, 6.b,
and 7.b we have the spectrogram of the three input signals x1(n), x2(n), and
x3(n), that is gi1(x), gi2(x), and gi3(x), respectively. Figures 5.f, 6.i, and 7.i
represent the skeleton of images gi1(x), gi2(x), and gi3(x), respectively, that is
gskel1 (x), gskel2 (x) and gskel3 (x) (the markers). Figures 5.g, 6.j, and 7.j represent
f1(x), f2(x), and f3(x), respectively, the reference images for the morphological
operator, these being the images that correspond to the WVD of x1(n), x2(n),
and x3(n). Finally, figures 5.h, 6.k, and 7.k represent the results of applying our
method (using λ = 25), which are the reconstructed images fWV 1

r (x), fWV 2
r (x),

and fWV 3
r (x). The three reconstructed images contain only the desired infor-

mation from the WVD, preserving time-frequency resolutions and avoiding any
cross-components. We can highlight the satisfactory results obtained over the
three test signals independently of the component locations, even when inter-
ferences touch signal terms.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 5: (a) FB coefficients of x1(n); (b) Spectrogram of signal x1(n), gi1(x); (c) WVD
of the retrieved signal 1; (d) WVD of the retrieved signal 2; (e) composition of images of
figure c and figure d; (f) gskel1 (x); (g) WV transform of x1(n), f1(x); (h) reconstructed image
fWV 1
r (x).

Finally, we illustrate the operation of our method in comparison with classical
techniques. We show an experiment where total overlap between signal and in-
terference components is tested.

Specifically, we now compare the λ-RCCR results with those obtained using
WVD 2-D Gaussian kernels. As stated in Section 2, many research papers have
been published on this topic with the selection of the correct kernel being the
main drawback of these techniques since it depends of the type of signal.

In the following example, we use a three component signal composed by
three harmonically related chirps (instantaneous frequencies of f, 2f, and 3f).
Here the cross-terms between the first and third component will land on top
of the second component so as to test the ability of our algorithm to manage
complete overlapping components. Also, filtering with 2-D Gaussian kernels is
recognized to work well with problems of this kind.

The tested chirp signal is composed by three linear frequency-modulated
signals. The first frequency-modulated component is a discrete-time signal with
N = 256 samples, having initial normalized frequency of f10 = 0.01 and final
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 6: (a) FB coefficients of x2(n); (b) SP of signal x2(n), gi2(x); (c) WVD of the retrieved
signal 1 using FB coefficients; (d) WVD of the retrieved signal 2 using FB coefficients; (e)
composition of images of figure c and figure d; (f) WVD of the retrieved signal 1 using short-
time FB coefficients; (g) WVD of the retrieved signal 2 using short-time FB coefficients; (h)
composition of images of figure f and figure g; (i) marker gskel1 (x); (j) WV transform of x2(n),
f2(x); (k) fWV 2

r (x).

normalized frequency f11 = 0.1. The second component is a signal with the
same number of points, which have initial normalized frequency of f20 = 2f10
and final normalized frequency of f21 = 2f11 . Finally, the third linear frequency-
modulated signal contains the same number of points and has initial normalized
frequency of f30 = 3f10 and final normalized frequency of f31 = 3f11 . The three
components of the signal have a time reference for the phase of N

2 .
Figure 8 shows the results of filtering the three-component chirp signal using
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 7: (a) FB coefficients of x3(n); (b) SP of x3(n); (c) WVD of the retrieved component
1 using FB coefficients; (d) WVD of the retrieved component 2 using FB coefficients; (e)
composition of images of figure b and figure c; (f) WVD of the retrieved component 1 using
short-time FB coefficients; (g) WVD of the retrieved component 2 using short-time FB coeffi-
cients; (h) composition of images of figure f and figure g; (i) marker g3(x); (j) WV transform
of signal x3(n); (k) fWV 3

r (x).

a 2-D Gaussian kernel, with a temporal smoothing window that we call G and
a frequency smoothing window that we call H. Figures 8.a and 8.b show the
spectrogram and Wigner-Ville distributions of the signal, respectively. Figure
8.c shows the results of filtering using a 63-point time smoothing Gaussian
window and a 63-point frequency smoothing Gaussian window. Figure 8.d shows
the results using 127-point G window and 63-point H window. Finally, Figure 8.c
shows the results of filtering using a 63-point time smoothing Gaussian window
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(a) (b)

(c) (d) (e)

Figure 8: (a) Spectrogram of the three-component chirp signal. (b) WVD of the three-
component chirp signal. (c) Result of the filtering using 63-point G window and 63-point H
window. (d) Result of the filtering using 127-point G window and 63-point H window. (e)
Result of the filtering using 63-point G window and 127-point H window.

and a 127-point frequency smoothing Gaussian window.
Figure 9 shows the results of applying the λ-RCCR method to the same

three-component chirp signal. Figure 9.a shows the marker for the morphologi-
cal operation, and Figure 9.b shows the reconstructed image.

Considering the results shown in Figures 8 and 9, we can conclude that
the 2-D filtering techniques remove interference terms but reduce the WVD
resolution. As the length of the windows increase, the resolution also increase,
but it never reaches the WVD resolution. The λ-RCCR method achieves a
high resolution of components located at f and 3f frequencies removing the
interferences. The drawback is that the component locates at frequency 2f
(the case of total overlap) can not be completely recovered using the λ-RCCR
method. Other morphological operators can be used to improve this situation,
and this research will be done in future work.

5.3. Application To Real Signals

In this section, we discuss the operating method applied to two underwater
signals: a signal from a beluga whale, x4(n), and a signal from a tubboat, x5(n).

Figures 10.a and 11.a are the spectrogram of x4(n) and x5(n), respectively.
Figures 10.b and 11.b are the skeletons of the spectrogram that are used as mark-
ers, gskel4 (x) and gskel5 (x). Figures 10.c and 11.c represent the WVD of x4(n)
and x5(n), respectively. The reconstructed images, fWV 4

r (x) and fWV 5
r (x), are

represented in Figures 10.d and 11.d, respectively.

17



(a) (b)

Figure 9: Results of applying our method to a three-component chirp signal. (a) marker ; (b)
reconstructed image.

From here, we can conclude that our method achieves great results when
it is applied over real signals. Moreover, Figure 11.d not only highlights the
satisfactory results of the method over real signals, it also demonstrates the
usefulness of the λ-reconstruction in comparison with the reconstruction oper-
ator (λ-reconstruction with λ = 0). In [16], the same signal, x5(n), was used
to illustrate the drawback of the reconstruction operator when it is used to
reconstruct diagrams whose interference terms overlap the desired signal.

(a) (b)

(c) (d)

Figure 10: (a) Spectrogram of signal x4(n) ; (b) marker gskel4 (x); (c) WVD of x4(n); (d)
fWV 4
r (x).
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(a) (b)

(c) (d)

Figure 11: (a) Spectrogram of x5(n); (b) marker gskel5 (x); (c) WVD of x5(n); (d) reconstructed
image fWV 5

r (x).

5.4. Using Other Time-Frequency Distributions

In this section, the results of applying the propossed method to other time-
frequency distributions are shown, namely: the Margenau-Hill (MH) and the
Choi-Williams (CW) distributions. Both transforms have different interference
geometries in comparison with the WVD [1].

Once again, in this example, the input signals are x3(n) and x4(n). As such,
the images used as markers for the λ-reconstruction operation are the same as
those used in the previous subsections, mainly images gskel3 (x) (Figure 7.b) and
gskel4 (x) (Figure 10.b).

Figures 12.a and 13.a display the images corresponding to the Choi-Williams
transform of both input signals, respectively. These images have been used as
references for the λ-reconstruction operator. Figures 12.b and 13.b represent
fCW1
r (x) and fCW2

r (x), which are the reconstructed images from 12.a and 13.a
using the proposed method.

In the same way, Figures 12.c and 13.c represent the images that correspond
to the Margenau-Hill transform of signals x3(n) and x4(n) and are used as
references. Figures 12.d and 13.d represent fMH1

r (x) and fMH2
r (x), the recon-

structed images.
The correct operation of the method and its application to other transforms,

that have different interference geometries, is corroborated by Figures 12.b, 12.d,
13.b, and 13.d. It can be observed how the method strongly reduces the cross-
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components, thereby preserving time-frequency resolutions.
To conclude, we point out that our method achieves great results when

applied over real signals regardless of the interference geometry and regardless
of the type of transform applied.

(a) (b)

(c) (d)

Figure 12: (a) CW distribution of signal x3(n); (b) reconstructed image fCW1
r (x); (c) MH

distribution of signal x3(n); (d) reconstructed image fMH1
r (x).

6. Conclusions

A new method for the removal of cross-components from time-frequency
transformations has been presented. The proposed method uses morphological
operators to reduce interference components from time-frequency images. It has
been tested not only over test signals, but also over real examples of underwater
signals. In comparison with other techniques in the same field, our method
overcomes the main drawback, providing a correct operation even when signal
and interference terms overlap. Moreover, it can be applied to distributions with
different interference geometry, and it preserves time-frequency resolutions.

The method achieves outstanding results in removing interference compo-
nents not only from the WVD, but also from other types of transforms such
as the Margenau-Hill (MH) or the Choi-Williams (CW) distributions. Its great
performance when it is applied over transforms with different interference ge-
ometries has also been demonstrated.
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(a) (b)

(c) (d)

Figure 13: (a) CW transform of x4(n); (b) fCW2
r (x), (c) MH transform of x4(n); (d) fMH2

r (x)
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