
Departamento de Ingenieŕıa Electrónica

PhD Thesis

Study, Modelling and Implementation of
the Level Set Method Used in

Micromachining Processes

Author:

Carles Montoliu Alvaro

Thesis advisors:

Dr. Joaqúın Cerdá Boluda

Dr. Ricardo Colom Palero

Valencia, September 2015.

“Śı com lo taur se’n va fuyt pel desert
quant és sobrat per son semblant qui·l força,
ne torna may fins ha cobrada força
per destruir aquell qui l’ha desert:
tot enax́ı·m cové lunyar de vós,
car vostre gest mon esforç ha confús:
no tornaré fins del tot haja fus
la gran pahor qui·m toll ser delitós.”

Ausiàs March, ?1397 - †1459

Per a Marc

Agradecimientos

Sin duda, todo el trabajo que hay detrás de esta tesis ha sido posible gracias a
la colaboración y dedicación de muchos. Todos ellos merecen ser agradecidos por
haber contribuido a su manera en la culminación de este trabajo.

Agradecer sinceramente a mis directores y tutores, Ximo Cerdà y Ricardo Colom,
por permitir formarme como investigador y ofrecerme sus consejos. Ellos me han
tratado con respeto y nunca han puesto freno a mis ambiciones, más bien las han
engrandecido. Gracias por guiar toda esta aventura.

Una mención muy especial se merecen Miguel Ángel Gosálvez y Néstor Ferrando.
Les tengo que agradecer la gran suerte que he tenido de poder colaborar con
dos eminencias como ellos. Sus grandes conocimientos han permitido obtener
los mejores resultados de este trabajo, además de haber sido una experiencia
gratificante. Gracias por su constante apoyo y su ayuda infinita.

Asimismo, dar las gracias también a Vicente Herrero, Jose Maŕıa Monzó, Ana
Ros y Ramón J. Aliaga. Ellos dieron vida a un ambiente de trabajo idóneo,
aportándome mucho más que ayuda y conocimientos. Del mismo modo Ángel
Tébar, Rafael Gadea y Jorge Daniel siempre han estado dispuestos a ayudar en
todo cuanto han podido.

Mi estancia en el instituto Fraunhofer de Erlangen me ha permitido acelerar mi
formación y vivir unas experiencias de lo más satisfactorias. Todo ello ha sido
gracias a la magńıfica gente con la que he tenido el placer de colaborar y convivir.
Gracias a Eberhard Bär y a toda la incontable gente del Fraunhofer IISB.

Un mérito especial se merecen mi familia y mis amigos por aguantarme todo este
tiempo sin perder la paciencia conmigo ni en los peores momentos. Es de un valor
incalculable tener tantos hombros en los que poder dejarte caer para coger las
fuerzas suficientes para seguir. Gracias Isidor y Lourdes, gracias Ferran y Andreu,
y gracias Vicente, Enric y David.

iii

No pod́ıa faltar mi particular aimia, Nuria. Ella se merece un eterno
agradecimiento por haber tenido que vivir todo esto conmigo. Compañera
de todas y cada una de las experiencias, buenas y malas, de esta larga
aventura. Animándome en todo momento, siempre ayudándome con un altruismo
deslumbrante y enseñándome una inmensidad de conocimientos. Ella, ha sido y
es, mi l lir entre cards.

Una vez más, much́ısimas gracias a todos.

iv

Summary

The main topic of the present thesis is the improvement of fabrication processes
simulation by means of the Level Set (LS) method. The LS is a mathematical
approach used for evolving fronts according to a motion defined by certain laws.
The main advantage of this method is that the front is embedded inside a higher
dimensional function such that updating this function instead of directly the front
itself enables a trivial handling of complex situations like the splitting or coalescing
of multiple fronts.

In particular, this document is focused on wet and dry etching processes, which are
widely used in the micromachining process of Micro-Electro-Mechanical Systems
(MEMS). A MEMS is a system formed by mechanical elements, sensors, actuators,
and electronics. These devices have gained a lot of popularity in last decades and
are employed in several industry fields such as automotive security, motion sensors,
and smartphones.

Wet etching process consists in removing selectively substrate material (e.g. silicon
or quartz) with a liquid solution in order to form a certain structure. This is a
complex process since the result of a particular experiment depends on many
factors, such as crystallographic structure of the material, etchant solution or its
temperature. Similarly, dry etching processes are used for removing substrate
material, however, gaseous substances are employed in the etching stage.

In both cases, the usage of a simulator capable of predicting accurately the result
of a certain experiment would imply a significant reduction of design time and
costs. There exist a few LS-based wet etching simulators but they have many
limitations and they have never been validated with real experiments. On the other
hand, atomistic models are currently considered the most advanced simulators.
Nevertheless, atomistic simulators present some drawbacks like the requirement of
a prior calibration process in order to use the experimental data. Additionally, a lot
of effort must be invested to create an atomistic model for simulating the etching
process of substrate materials with different atomistic structures. Furthermore,
the final result is always formed by unconnected atoms, which makes difficult a

v

proper visualization and understanding of complex structures, thus, usually an
additional visualization technique must be employed.

For its part, dry etching simulators usually employ an explicit representation
technique to evolve the surface being etched according to etching models. This
strategy can produce unrealistic results, especially in complex situations like
the interaction of multiple surfaces. Despite some models that use implicit
representation have been published, they have never been directly compared with
real experiments and computational performance of the implementations have not
been properly analysed.

The commented limitations are addressed in the various chapters of the present
thesis, producing the following contributions:

• An efficient LS implementation in order to improve the visual representation
of atomistic wet etching simulators. This implementation produces
continuous surfaces from atomistic results.

• Definition of a new LS-based model which can directly use experimental
data of many etchant solutions (such as KOH, TMAH, NH4HF2, and IPA
and Triton additives) to simulate wet etching processes of various substrate
materials (e.g. silicon and quartz).

• Validation of the developed wet etching simulator by comparing it to
experimental and atomistic simulator results.

• Implementation of a LS-based tool which evolves the surface being etched
according to dry etching models in order to enable the simulation of complex
processes. This implementation is also validated experimentally.

• Acceleration of the developed wet and dry etching simulators by using
Graphics Processing Units (GPUs).

In this thesis, all the listed solutions require the definition of thorough
studies and methodologies of design in order to develop efficient and correct
implementations, including benchmark experiments against other existing models
and/or experimental results.

vi

Resumen

El tema principal de la presente tesis consiste en mejorar la simulación de los
procesos de fabricación utilizando el método Level Set (LS). El LS es una técnica
matemática utilizada para la evolución de frentes según un movimiento definido
por unas leyes en concreto. La principal ventaja de este método es que el frente
está embebido dentro de una función definida en una dimensión superior. De esta
forma, actualizar dicha función en lugar del propio frente permite tratar de forma
trivial situaciones complejas como la separación o la colisión de diversos frentes.

En concreto, este documento se centra en los procesos de atacado húmedo y seco,
los cuales son ampliamente utilizados en el proceso de fabricación de Sistemas
Micro-Electro-Mecánicos (MEMS, de sus siglas en inglés). Un MEMS es un
sistema formado por elementos mecánicos, sensores, actuadores y electrónica.
Estos dispositivos han ganado mucha popularidad en las últimas décadas y son
utilizados en muchos campos de la industria como la seguridad automoviĺıstica,
sensores de movimiento y teléfonos inteligentes.

El proceso de atacado húmedo consiste en eliminar de forma selectiva el material
del sustrato (por ejemplo, silicio o cuarzo) con una solución ĺıquida con el fin de
formar una estructura espećıfica. Éste es un proceso complejo pues el resultado de
un determinado experimento depende de muchos factores, tales como la estructura
cristalográfica del material, la solución atacante o su temperatura. De forma
similar, los procesos de atacado seco son utilizados para eliminar el material del
sustrato, sin embargo, se utilizan sustancias gaseosas en la fase de atacado.

En ambos casos, la utilización de un simulador capaz de predecir de forma precisa
el resultado de un experimento concreto implicaŕıa una reducción significativa
del tiempo de diseño y de los costes. Existen unos pocos simuladores del
proceso de atacado húmedo basados en el método LS, no obstante tienen muchas
limitaciones y nunca han sido validados con experimentos reales. Por otro lado,
los simuladores atomı́sticos son hoy en d́ıa considerados los simuladores más
avanzados. Sin embargo, estos simuladores tienen algunos inconvenientes como
la necesidad de un proceso de calibración previo para poder utilizar los datos
experimentales. Además, debe invertirse mucho esfuerzo para crear un modelo

vii

atomı́stico para la simulación de materiales de sustrato con distintas estructuras
atomı́sticas. Asimismo, el resultado final siempre está formado por átomos
inconexos que dificultan una correcta visualización y un correcto entendimiento
de aquellas estructuras complejas, por tanto, normalmente debe emplearse una
técnica adicional para la visualización de dichos resultados.

Por su parte, los simuladores del proceso de atacado seco normalmente utilizan
técnicas de representación expĺıcita para evolucionar, según los modelos de
atacado, la superficie que está siendo atacada. Esta técnica puede producir
resultados poco realistas, sobre todo en situaciones complejas como la interacción
de múltiples superficies. A pesar de que unos pocos modelos son capaces de
solventar estos problemas, nunca han sido comparados con experimentos reales
ni el rendimiento computacional de las correspondientes implementaciones ha sido
adecuadamente analizado.

Las expuestas limitaciones son abordadas en los distintos caṕıtulos de la presente
tesis y se han producido las siguientes contribuciones:

• Implementación eficiente del método LS para mejorar la representación
visual de los simuladores atomı́sticos del proceso de atacado húmedo. Esta
implementación produce una superficie continua a partir de los resultados
atomı́sticos.

• Definición de un nuevo modelo basado en el LS que pueda usar directamente
los datos experimentales de muchos atacantes (tales como KOH, TMAH,
NH4HF2 y aditivos como IPA y Triton) para simular el proceso de atacado
húmedo de diversos materiales de sustrato (por ejemplo silicio y cuarzo).

• Validación del simulador de atacado húmedo desarrollado comparándolo con
resultados experimentales y con los de simuladores atomı́sticos.

• Implementación de una herramienta basada en el método LS que evolucione
la superficie que está siendo atacada según los modelos de atacado seco
para, de esta forma, habilitar la simulación de procesos complejos. Esta
implementación también es validada experimentalmente.

• Aceleración de los simuladores desarrollados de los procesos de atacado seco
y húmedo mediante Unidades de Procesado Gráfico (GPUs, de sus siglas en
inglés).

En esta tesis, todas las soluciones listadas requieren la definición meticulosa
de estudios y metodoloǵıas para el desarrollo de implementaciones eficientes y
correctas. Además, se han evaluado los resultados comparándolos con modelos
existentes y/o con resultados experimentales.

viii

Resum

El tema principal de la present tesi consisteix en millorar la simulació de processos
de fabricació mitjançant el mètode Level Set (LS). El LS és una tècnica matemàtica
utilitzada per a l’evolució de fronts segons un moviment definit per unes lleis en
concret. El principal avantatge d’aquest mètode és que el front està embegut
dins d’una funció definida en una dimensió superior. D’aquesta forma, actualitzar
la dita funció en lloc del propi front, permet tractar de forma trivial situacions
complexes com la separació o la col·lisió de diversos fronts.

En concret, aquest document es centra en els processos d’atacat humit i sec, els
quals són àmpliament utilitzats en el procés de fabricació de Sistemes Micro-
Electro-Mecànics (MEMS, de les sigles en anglès). Un MEMS és un sistema format
per elements mecànics, sensors, actuadors i electrònica. Aquests dispositius han
guanyat molta popularitat en les últimes dècades i són utilitzats en molts camps
de la indústria, com la seguretat automobiĺıstica, sensors de moviment i telèfons
intel·ligents.

El procés d’atacat humit consisteix en eliminar de forma selectiva el material del
substrat (per exemple, silici o quars) amb una solució ĺıquida, amb la finalitat
de formar una estructura espećıfica. Aquest és un procés complex ja que el
resultat d’un determinat experiment depèn de molts factors, com l’estructura
cristal·logràfica del material, la solució atacant o la seva temperatura. De manera
similar, els processos d’atacat sec son utilitzats per a eliminar el material del
substrat, no obstant, s’utilitzen substàncies gasoses en la fase d’atacat.

En ambdós casos, la utilització d’un simulador capaç de predir de forma precisa
el resultat d’un experiment en concret implicaria una reducció significativa del
temps de disseny i dels costos. Existeixen uns pocs simuladors del procés d’atacat
humit basats en el mètode LS, no obstant tenen moltes limitacions i mai han
sigut validats amb experiments reals. Per la seva part, els simuladors atomı́stics
tenen alguns inconvenients com la necessitat d’un procés de calibratge previ per a
poder utilitzar les dades experimentals. A més, deu invertir-se molt d’esforç per
crear un model atomı́stic per a la simulació de materials de substrat amb diferents
estructures atomı́stiques. Aix́ı mateix, el resultat final sempre està format per

ix

àtoms inconnexos que dificulten una correcta visualització i un correcte enteniment
d’aquelles estructures complexes, per tant, normalment deu emprar-se una tècnica
addicional per a la visualització d’aquests resultats.

D’altra banda, els simuladors del procés d’atacat sec normalment utilitzen
tècniques de representació expĺıcita per evolucionar, segons els models d’atacat,
la superf́ıcie que està sent atacada. Aquesta tècnica pot introduir resultats
poc realistes, sobretot en situacions complexes com per exemple la interacció de
múltiples superf́ıcies. A pesar que uns pocs models son capaços de resoldre aquests
problemes, mai han sigut comparats amb experiments reals ni tampoc el rendiment
computacional de les corresponents implementacions ha sigut adequadament
analitzat.

Les exposades limitacions son abordades en els diferents caṕıtols de la present tesi
i s’han prodüıt les següents contribucions:

• Implementació eficient del mètode LS per millorar la representació visual
dels simuladors atomı́stics del procés d’atacat humit. Aquesta implementació
produeix una superf́ıcie cont́ınua a partir dels resultats atomı́stics.

• Definició d’un nou model basat en el mètode LS que puga utilitzar
directament les dades experimentals de molts atacants (com ara KOH,
TMAH, NH4HF2 i additius com IPA i Triton) per a simular el procés d’atacat
humit de diversos materials de substrat (per exemple silici i quars).

• Validació del simulador d’atacat humit desenvolupat comparant-lo amb
resultats experimentals i amb els de simuladors atomı́stics.

• Implementació d’una ferramenta basada en el mètode LS que evolucione la
superf́ıcie que està sent atacada segons els models d’atacat sec per, d’aquesta
forma, habilitar la simulació de processos complexos. Aquesta implementació
també és validada experimentalment.

• Acceleració dels simuladors desenvolupats dels processos d’atacat sec i humit
mitjançant Unitats de Processat Gràfic (GPUs per les segues sigles en
anglès).

En aquesta tesi, totes les solucions llistades requereixen la definició meticulosa
d’estudis i metodologies per al desenvolupament d’implementacions eficients i
correctes. A més, s’han avaluat tots els resultats comparant-los amb models
existents i/o amb resultats experimentals.

x

Acronyms

AFM Atomic Force Microscopy. 52, 164, 166, 217
ALU Arithmetic Logic Unit. 44
API Application Programming Interface. 40–42

CA Cellular Automata. 69, 70, 74, 78, 205, 208
CCA Continuous Cellular Automata. 70, 77–80, 84, 95–97, 101–106,

109–115, 129, 131–133, 142, 153–174, 205–208, 214–217
CCP Capacitively Coupled Plasma. 71
CFL Courant-Friedrichs-Lewy. 23, 24, 28, 30, 83, 84, 126, 182
CPU Central Processing Unit. 38–41, 43, 45, 49, 111, 115, 142–146,

148–150, 153, 156, 158, 159, 171–173, 189, 190, 194, 198,
202–204, 206–208, 212, 216, 217, 221

CSP Closest S Point. 86, 88
CTM Close To Metal. 42
CTS Constant-Time-Stepping. 153–155, 159, 163, 216
CUDA Compute Unified Device Architecture. 43–47, 50, 51, 144, 146,

147, 149, 153, 154, 163, 188–190, 192, 198, 202–204, 212, 221
CVD Chemical Vapor Deposition. 54

DRIE Deep Reactive Ion Etching. 58, 59, 74, 103, 106, 121, 210, 213

EA Evolutionary Algorithm. 113, 114
ED Electro-Deposition. 54
EDP Ethylene Diamine Pyrocatechol. 61
ENO Essentially Non Oscillatory. 24–26

FCC Face Centered Cubic. 62, 63, 213
FMA fused multiply-add. 50, 51
FPGA Field-Programmable Gate Array. 39, 43
FPU Floating-Point Unit. 44

xi

Acronyms

GPGPU General-Purpose computing on Graphics Processing Unit.
38–40, 42, 43

GPU Graphics Processing Unit. 38–46, 49–51, 79, 111, 115, 142, 144,
146–153, 156, 158, 159, 163, 170–173, 175–177, 188–195, 198,
202–210, 212, 216–219, 221, 222, 224, 225

H-J Hamilton-Jacobi. 15, 21, 24–26

ICP Inductively Coupled Plasma. 58
IPA Isopropyl alcohol. 65, 112, 113, 115, 121, 131, 133, 173, 206, 215

KMC Kinetic Monte Carlo. 69, 70
KOH potassium hydroxide. 61, 65, 67, 69, 73, 101, 103, 104, 106, 112,

113, 115, 119, 131–134, 153, 154, 156, 157, 165–167, 169, 173,
206, 213, 215–217

LFS Lax-Friedrichs Schemes. 26, 28, 30, 119, 122, 125, 126
LLF Local Lax-Friedrichs. 26
LS Level Set. 7, 11, 14–16, 19–21, 24, 28–32, 34, 35, 37, 38, 51, 60,

71, 74, 75, 77, 79, 80, 82, 84, 88–92, 95–111, 114–116, 118, 119,
121–126, 128, 132, 133, 135, 142, 146, 147, 155, 171, 172,
175–177, 181–187, 189, 194, 197, 198, 200, 202–210, 212, 214,
215, 218, 221, 223

MEMS Micro-Electro-Mechanical Systems. 51–55, 58, 61, 69, 73, 78, 79,
87, 110–112, 114, 116, 135, 136, 144, 153, 159, 163, 171, 172, 174,
176, 204, 205, 210, 212

NBM Narrow Band Method. 10, 20, 21, 30–33, 212, 223
NEMS Nano-Electro-Mechanical Systems. 51

openCL Open Computing Language. 42, 43

Pthreads POSIX Threads. 143, 144, 153
PVD Physical Vapor Deposition. 55

R-K Runge-Kutta. 24
RF Radio Frequency. 51, 52, 55, 60, 71, 72
RIE Reactive Ion Etching. 58, 59, 71–75, 176, 177, 190, 195, 199, 200,

203, 205, 207–209, 213, 214, 218, 219, 222
RLE Run-Length Encoding. 37, 74

xii

Acronyms

SDF Signed Distance Function. 16, 19–21, 28–30, 32, 34, 35, 80, 83,
87–96, 107, 116, 118, 125, 128, 129, 149, 181, 185–187, 189–191,
194, 214, 215, 223, 224

SDK Software Development Kit. 43
SFM Sparse Field Method. 10, 21, 32–35, 37, 38, 74, 77, 79, 88, 91,

93–111, 115, 122, 124, 125, 127–130, 132, 134–137, 140–165,
167–175, 177, 182, 185–188, 190–195, 198, 200, 202–209, 212,
214–219, 221–225

SIMD Single Instruction Multiple Data. 142
SM Streaming Multiprocessors. 44, 45, 49, 50, 147
SSE Streaming SIMD Extensions. 142

TMAH tetramethylammonium hydroxide. 61, 65, 67, 112, 113, 115, 119,
131–134, 153, 165, 168, 173, 206, 215, 216

TPC Thread Processing Cluster. 44
TVD R-K Total Variation Diminishing R-K. 24, 25

UC Unit Cell. 63, 96, 101, 102, 104, 105, 153–155, 160, 161, 165–169,
171

UV Ultraviolet. 55

VOF Volume Of Fluid. 8–10, 211
VPE Vapor Phase Epitaxy. 54

WENO Weighted ENO. 24–26, 83, 90, 214

xiii

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Objectives . 2

1.3 Methodology . 4
1.3.1 Employed tools . 4

1.4 Structure of the thesis . 5

2 State of the art 7
2.1 Introduction to the Level Set method . 7

2.1.1 Tracking moving interfaces techniques . 7

2.1.2 Theory for front propagation . 11

2.1.3 Similarity with Hamilton-Jacobi equations . 14

2.1.4 Implicit functions . 15

2.1.5 Signed Distance Function . 19

2.1.6 Reinitialization of the implicit function . 20

2.2 Numerical schemes for the Level Set method . 21
2.2.1 Completely external . 22

2.2.1.1 Enhancing of the derivatives approximations. 23

2.2.1.2 Enhancing the temporal discretization 24

2.2.2 External and dependent on local topology . 25

2.2.3 Dependent on local curvature . 26

2.2.4 Local Level Set methods . 29

2.2.4.1 Narrow Band Method. 30

2.2.4.2 Sparse Field Method . 32

2.2.4.3 Further optimizations . 37
xv

Contents

2.3 Graphics Processing Units . 38
2.3.1 Graphics pipeline GPUs evolution . 40

2.3.2 GPGPU programming languages . 42

2.3.3 CUDA platform . 43

2.3.3.1 Parallel execution . 45

2.3.3.2 Memory structure . 46

2.3.3.3 Kepler microarchitecture . 49

2.4 Micro-Electro-Mechanical Systems (MEMS) . 51
2.4.1 Introduction . 51

2.4.2 Micromachining processes. 53

2.4.3 Anisotropic wet etching . 60

2.4.3.1 Crystallographic orientations . 62

2.4.3.2 Etch rate crystallographic orientation dependent 65

2.4.3.3 Simulation of anisotropic wet etching 67

2.4.4 Reactive Ion Etching. 71

2.4.4.1 Simulation of Reactive Ion Etching . 73

3 Visual representation improvement 77
3.1 Introduction and drawbacks of cellular automata simulators 78

3.2 Image reconstruction with the Level Set method 79
3.2.1 Minimal surface energy model . 80

3.2.1.1 Numerical schemes . 82

3.2.2 The convection model approach . 83

3.2.2.1 Numerical schemes . 84

3.2.3 Mesh generation . 84

3.2.4 Distance matrix . 85

3.2.5 Initial surface determination . 87

3.3 Developed implementations . 88
3.3.1 Original LS . 89

3.3.2 Local SFM . 91

3.4 Results . 95
3.4.1 Impact of the mesh resolution . 96

3.4.2 Convex corners . 101

3.4.3 Microneedles . 102

3.4.4 Accelerometer . 104

3.4.5 Wagon wheel . 105

xvi

Contents

3.4.6 Computational behaviour . 107

3.5 Conclusions . 109

4 Level Set method for wet etching simulation 111
4.1 Introduction and drawbacks of previous wet etching simulators 112

4.1.1 CCA wet etching simulators . 112

4.1.2 Wet etching simulation by means of the LS method. 115

4.2 Experimental etch rates . 116
4.2.1 Isotropic etchant . 121

4.3 SFM developed simulator . 122
4.3.1 Mesh generation . 124

4.3.2 Initial surface determination . 125

4.3.3 Numerical discretization. 125

4.3.4 Complete algorithm . 127

4.3.5 Validation of the developed algorithm: etching of spherical samples 129

4.3.6 Simulation of complex MEMS . 132

4.3.6.1 Etching of double-sided wafers . 135

4.3.6.2 Consecutive etching processes . 136

4.4 SFM parallel implementations . 142
4.4.1 CPU implementation . 142

4.4.2 GPU implementation . 144

4.4.2.1 Parallelization of the SFM . 144

4.4.2.2 Main variables . 147

4.4.2.3 Workflow . 149

4.5 Results and comparisons . 153
4.5.1 Mesh resolution impact . 153

4.5.2 Parallel CPU vs GPU . 156

4.5.3 Sequential CCA vs sequential SFM . 159

4.5.3.1 Anisotropic results. 160

4.5.3.2 Isotropic results . 162

4.5.4 GPU CCA vs GPU SFM . 163

4.6 Conclusions . 172

xvii

Contents

5 Dry etching profile evolution 175
5.1 Introduction . 176

5.1.1 Anetch . 178

5.2 Surface evolution module . 181
5.2.1 Input data . 183

5.2.2 Distance matrix calculation. 184

5.2.3 Initial surface determination . 185

5.2.4 Evolution loop. 185

5.2.5 Complete algorithm . 186

5.2.6 GPU implementation . 188

5.2.6.1 Main variables . 189

5.2.6.2 Workflow . 189

5.3 Extraction module . 194
5.3.1 Implementation . 197

5.4 Results . 198

5.5 Conclusions . 203

6 Conclusions and future work 205
6.1 Conclusions . 205

6.2 Contributions. 208

6.3 Future work. 209

List of Figures 211

List of Tables 221

List of Algorithms and Procedures 223

Bibliography 227

xviii

Chapter 1

Introduction

The reasons that have motivated all the research effort invested during this thesis
are compiled in this chapter, including the objectives established when defining
the research tasks of the thesis. After this, the work and research strategies used
in the different parts of the thesis are commented. Finally, the structure of this
document is presented, summarizing the main contributions of every chapter.

1.1 Motivation

The Level Set (LS) method is a mathematical approach to evolve fronts according
to certain motions. The essential idea is to embed the front in a one-higher-
dimensional function such that the motion is applied to this function instead of
the front itself, i.e. an implicit representation of the front. This enables a trivial
handling of complicated situations like the splitting and coalescing of several fronts.
The LS method has been applied in many fields, but this thesis is focused on
improving the simulation of micromachining processes.

Current technological devices like smartphones and vehicles include miniaturized
electronic and mechanical systems which tend to be smaller every year. There are
several processes employed in the fabrication of these Micro-Electro-Mechanical
Systems (MEMS), such as wet and dry etching processes.

Wet etching process consists in introducing a substrate inside an etchant solution
which removes the substrate material. The behaviour of this removal process
depends on many factors, such as: the mask pattern applied to avoid etching
certain areas of the substrate, etchant solution, its concentration and temperature,
substrate material, and its crystallographic orientation. The most used substrate
material is silicon since it allows the integration with typical electronic components

1

Chapter 1. Introduction

and a lot of effort has been invested in last decades in order to well understand
the silicon wet etching process. This enables the possibility of creating complex
three-dimensional structures by selecting properly all the experiment parameters.

Due to the high complexity of wet etching process, the prediction of the result
of a specific experiment is very useful since it can reduce time and costs when
designing a certain microstructure. Accordingly, several approaches have been
developed to simulate silicon wet etching process. Current atomistic simulators
based on Cellular Automata (CA) can describe accurately many silicon etchants
and even some solutions for etching quartz substrates. Nevertheless, an atomistic
simulator result is a cloud of unconnected points that makes difficult the well
understanding and study of the resulting structures and, usually, an additional
visualization method is required. In addition, CA-based simulators require the
knowledge of the atomic structure of the material being etched as well as an
exhaustive classification of the different atomistic configurations. Moreover, a
computationally expensive calibration process must be performed each time that
experimental conditions are changed, which can take several tens of hours.

As the technology evolves, new etchant solutions and materials are employed and
more complex structures can be implemented. Thus, we think that the LS method
can be used to improve the visualization of the CA results and also it can be a good
alternative method which avoids calibration processes and it is independent on
atomistic structure of the substrate material. Similarly, the implicit representation
of the LS method could be used to improve the current dry etching simulators that
cannot produce realistic results because of the employed explicit evolution front
techniques required by dry etching models.

Furthermore, the Sparse Field Method (SFM) optimization reduces the computa-
tional time of the original LS method by only considering the space strictly close
to the front. This optimization can be combined with the parallel nature of the LS
method, which enables the possibility of reducing drastically the execution times
by running the algorithms on parallel platforms like Graphics Processing Units
(GPUs) or modern Central Processing Units (CPUs), influencing significantly the
design of MEMS.

1.2 Objectives

The present thesis is focused on the theoretical and practical implementation of
the LS method in order to improve the simulation of micromachining processes.
The objectives imposed for this thesis are:

• To validate the LS method as a tool for improving atomistic results
of wet etching simulations. Since atomistic methods produce a cloud of
unconnected points, results visualization is difficult specially for complex

2

1.2 Objectives

structures. Hence, we want to take advantage of the LS properties in order
to construct a smooth and continuous surface from the atomistic resulting
points, independently of the complexity of the resulting structure.

• To develop a versatile wet etching simulator based on the LS
method capable of using directly experimental data. In this point, we
want to adapt the LS method to employ directly an extensive experimental
data set, thus, avoiding any calibration process or any required knowledge of
atomistic structure of the material being etched. This simulator should be,
ideally able to reproduce faithfully the experimental results for every etchant
solution and substrate material.

• To accelerate LS simulations by implementing a parallel algorithm
of the SFM. The main drawback of the LS method is the higher
computational cost due to the front is embed in a higher-dimensional
function. Nevertheless, this issue can be alleviated by executing the
algorithm on a parallel architecture, such as modern multi-core CPUs
or many-core GPUs. The combination of both optimizations (SFM and
parallelization) can reduce drastically the execution time of LS algorithms.

• To perform a thorough comparison with the most advanced
atomistic simulators of wet etching process as well as to compare
the results with the corresponding experimental ones. Since CA-
based simulators are currently accepted as the most accurate and efficient
approach to simulate wet etching process, we believe that every new
developed simulator must be compared to them in terms of accuracy
and computational performance. Similarly, the results produced with the
proposed simulator must be validated against experimental ones.

• To improve the current dry etching simulators by using a LS
implementation to evolve the front being etched. Many current dry
etching simulators use an explicit representation of the surface being etched,
however, this representation technique requires additional programming
effort to handle complex situations like surface coalescing or disjoint.
Accordingly, the usage of the LS method to evolve the etched surface would
enable a trivial handling of these situations, allowing the simulation of more
complex processes.

All these objectives are addressed in the different chapters of the thesis.

3

Chapter 1. Introduction

1.3 Methodology

In order to solve the imposed objectives, a strict work methodology has been
followed to guarantee an adequate process to address the corresponding problems.

The first stage of this methodology was to identify the problem to be solved.
Then, a thorough information research has been performed in order to know if the
specific problem has been already tried to solve and to get as much information as
possible to determine if solving the problem would make a significant contribution
to scientific community.

After this, a theoretical study was performed in order to design a new methodology
and procedures that solve the problem or improve the current limitations.

Then, these new procedures were implemented to verify the good results. The
algorithms proposed in this thesis have been implemented in Java since it allows a
quick development to validate the designed procedures. Some of these algorithms
were then implemented in C and CUDA C in order to efficiently execute them on
a multi-core CPU and a massively parallel GPU, respectively. Both programming
languages provide an efficient performance, thus, they were used to accelerate the
simulations. In addition, Nvidia CUDA C has been chosen since it is a relatively
matured platform with well documented manuals and guides. The GPUs utilized
in this thesis were the Nvidia GeForce GTX 260, the GeForce GTX 560, and the
GeForce GTX Titan. Furthermore, the extraction and visualization procedures of
LS surfaces have been developed with Matlab programming language due to the
available libraries that can be directly used for such purposes.

After the implementation of the algorithms, the results were analysed in terms of
computational performance and validity of the results. This task usually was an
iterative process in which the algorithms were debugged, corrected and optimized.
Then, the efficacy of the proposed solutions was also analysed by comparing the
results with other methods and/or experimental ones.

Finally, when the proposed solutions have been corrected and validated, the
corresponding documentation such as scientific articles and the present thesis,
were written.

1.3.1 Employed tools

During the realization of the thesis, several tools have been utilized in the different
stages of the explained methodology. Accordingly, in the first stages, several web
portals have been utilized to find related information, such as: sciencedirect,
iopscience, and ieeexplore. Especially interesting is the searching tool Google
scholar since it searches over many portals and websites and it can provide even
PhD thesis that are not listed in any scientific journal.

4

www.sciencedirect.com
www.iopscience.iop.org
www.ieeexplore.ieee.org
http://scholar.google.es
http://scholar.google.es

1.4 Structure of the thesis

When implementing Java algorithms, several version of the Integrated Develop-
ment Environment (IDE) Eclipse have been employed, from 3.8 (Juno) to 4.4
(Luna), which use the 1.7 or 1.8 versions of the Java Development Kit (JDK).
Furthermore, the codes written in C programming language have been developed
on the Microsoft Visual Studio 2010 IDE. The same tool has been employed for
implementing parallel CUDA C algorithms to be executed on Windows-based Op-
erating Systems (OSs). The Nvidia CUDA toolkit 5.0 has been used with this
tool. On the other hand, the Nsight Eclipse Edition released by Nvidia has been
used for developing CUDA C algorithms on Ubuntu OS, in combination with the
6.5 version of the CUDA toolkit. Moreover, still in the implementation stage, the
R2011b (7.13) and R2014a (8.3) version of the Matlab tool have been used for
the surface extraction and visualization processes.

The computational performance of the proposed algorithms was analysed
introducing timers in the code itself. Nevertheless, besides the applications
themselves, the Nvidia CUDA Visual Profiler provides very useful information
about the performance of CUDA C applications being executed on an Nvidia GPU.
Hence, using both strategies, the algorithms were optimized by modifying them
until an efficient performance was achieved. Finally, the results were compared
in terms of accuracy with other methods results. For wet etching process, the
obtained results were compared to those obtained with the CA-based simulator
Intellietch 2.22, developed by Intellisense-Corp. On the other hand, for dry etching
simulations, the Anetch 0.7.5 version, developed by the Fraunhofer IISB, was used
for obtaining the corresponding results.

1.4 Structure of the thesis

The present document is divided into a total of six chapters, compiling all the
research carried out during the thesis.

Chapter 2 contains useful information of the topics covered in the thesis. This
information includes many up to date references, forming a state of the art of the
different topics, namely: theory and numerical techniques of the LS method, GPU
devices utilized as massively parallel execution platforms, and an introduction to
MEMS, including explanations of wet and dry etching processes.

Later, in chapter 3 the first objective is addressed, i.e. to improve the visualization
of the structures obtained with CA-based simulators of wet etching process. First,
the existing problem is commented and two different solutions are proposed. The
algorithms of these solutions are explained in detail and finally both are compared
with the CA results to appreciate the improvement. This chapter is also used to
demonstrate the better performance of the SFM in comparison with the original
LS method.

5

Chapter 1. Introduction

Chapter 4 covers the next three objectives. This chapter is focused on the
simulation of wet etching process with the LS method. The methodology
previously described is followed to solve the problems of atomistic simulators.
Accordingly, a SFM algorithm is proposed to simulate wet etching process taking
directly experimental data. Furthermore, in order to exploit the parallel nature of
the LS method, two parallel versions of the proposed algorithm are implemented:
one to be executed on a multi-core CPU and another adapted for a GPU device.
Both implementations are compared in terms of computational performance.
Finally the results obtained with the proposed SFM algorithm are compared to
those obtained with a CA approach and to the experimental ones, proving the
efficacy and efficiency of the developed implementation. Hence, solving the three
corresponding objectives.

The improvement of the dry etching simulators is addressed in chapter 5. In the
first place, the problem of current dry etching simulators like Anetch is identified
and explained. After commenting previous related solutions, a solution based on
the SFM method is proposed. Furthermore, a new parallel implementation of the
proposed SFM algorithm is developed to be executed on modern GPUs in order to
reduce the computational time. Accordingly, an additional algorithm is developed
to obtain a complete dry etching simulator which fulfils the last objective.

Finally, chapter 6 compiles all the contributions of this thesis. Additionally, all the
publications derived from this work are presented. Since there is room for further
research, the future work is also commented in this section. After this, the lists of
figures, tables and algorithms, as well as the bibliographic references are included
at the end of the document.

6

Chapter 2

State of the art

2.1 Introduction to the Level Set method

The main topic of the Thesis is the Level Set (LS) method applied to model
and improve the simulation of semiconductor fabrication processes, therefore this
section introduces it and explains the relevancy obtained in the last years by this
method.

2.1.1 Tracking moving interfaces techniques

Many physical phenomena can be described as a moving interface which separates
two or more regions, including semiconductor manufacturing processes (etching,
deposition, crystal growth, etc.), combustion processes and meteorology among
others. There are different ways to characterize a moving interface. The simplest
scenario is an interface represented by a function y = f(x, t). However, many
phenomena cannot be described by such functions, for instance a closed curve,
since a single value of x may produce several y values. For simplicity, consider a
one-dimensional closed curve Γ(t) moving in a two dimensional space S as shown in
Fig. 2.1. The movement of the interface is defined by the velocity field F = (u, v).
This F field is determined by the physical process being modelled and can depend
on local properties, such as local curvature of the curve.

There are mainly three ways to track the interface:

• Geometric approach. Suppose that the interface is parametrized by the
variable s such that the image of each front point si at each time step n∆t
(assuming a homogeneous time discretization) is a marker point (xni , yni) on

7

Chapter 2. State of the art

Inside

Outside

F

Figure 2.1: One-dimensional closed curve example. The front is determined by the
interface of two regions. Local normal directions of the front are shown.

the moving front. An example of this is shown in Fig. 2.2. Therefore,
unique values of the coordinates x and y are given by specific values of s and
t, such that the front is defined as Γ(t) = ((x(s, t), y(s, t)). Accordingly, the
equations of motion can by described by differentiating with respect to the
parametrization variable s:

xt = u

(
ys√
x2

s+y2
s

)
,

yt = −v
(

xs√
x2

s+y2
s

)
,

(2.1)

abandoning the underlying fixed coordinate system. This approach implies
the discretization of the interface, thus special attention is required when
different elements of the interface collide since collisions can create corners,
cusps and changes in topology. Also, if the accuracy needs to be kept
constant, new points must be added to the interface if it expands and some
points of the interface must be removed when the size of it decreases.

• Volume Of Fluid (VOF). Consider the function f(x, y, t). This function
represents the volume fraction of the material in a cell such that f = 1
inside the interface Γ, f = 0 outside and 0 < f < 1 for the interface cells.
An example of a volume fraction for the closed curve of Fig 2.1 is presented
in Fig 2.3. Then, the motion of the volume fraction can be written as

ft = F · ∇f. (2.2)
8

2.1 Introduction to the Level Set method

s0
s1

Figure 2.2: One-dimensional closed curve example parametrized by the s variable. The
next position of each particle is pointed by the arrows.

According to this equation, all the points of the material are transported
under the velocity field F . The advantages of this approach are the straight
application in multiple dimensions, the ease of handling topological changes
and the intrinsic nature of the VOF algorithms to conserve the mass of
each fluid [1]. Nevertheless, since the function f is not continuous and it is
discretized over a fixed underlying grid, (2.2) cannot be easily solved directly
and an approximation of ∇f must be used to perform the evolution update.
This is typically done through algorithms that reconstruct the front of the
volume with different grades of accuracy [1–4].

• Level Set method. The third approach was presented by Osher and Sethian
[5]. This method also uses a fixed grid over the space S. An implicit
function φ(x, y, t) is defined over the whole space such that the zero level
set φ(x, y, t) = 0 corresponds to the evolving interface Γ(t), i.e.:

φ(Γ(t), t) = 0. (2.3)

The main idea of this method is to apply the motion to the implicit function
φ, such that it would be possible to know φ at any time t with the motion
equation ∂φ

∂t . In order to connect the front motion to the implicit function
dynamics, the time derivative is applied to (2.3) and, according to the chain
rule, it yields to

φt +∇φ(Γ(t), t) · Γ′(t) = 0, (2.4)
where F = Γ′(t). Thus, the equation of the φ evolution can be written as

φt + F · ∇φ = 0. (2.5)
9

Chapter 2. State of the art

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.3 0.4 0.3 0.2 0.3 0.3 0.0 0.0 0.0

0.0 0.0 0.3 0.9 1.0 1.0 1.0 1.0 0.9 0.0 0.0 0.0

0.0 0.0 0.4 1.0 1.0 1.0 1.0 1.0 0.8 0.0 0.0 0.0

0.0 0.0 0.2 0.8 1.0 1.0 1.0 0.7 0.1 0.0 0.0 0.0

0.0 0.0 0.0 0.1 0.4 0.9 1.0 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.6 1.0 0.9 0.7 0.1 0.0 0.0

0.0 0.0 0.0 0.2 0.6 0.9 1.0 1.0 1.0 0.3 0.0 0.0

0.0 0.0 0.0 0.8 1.0 0.9 0.3 0.4 0.4 0.1 0.0 0.0

0.0 0.0 0.0 0.5 0.9 1.0 0.6 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.2 0.5 0.4 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 2.3: Volume fraction of a closed curve used in the VOF method. The blue cells
represent the interface cells with 0 < f < 1 and the red/white ones correspond to the
cells that are completely inside/outside the front.

The advantages of this approach are the direct extension to multiple
dimensions and the trivial handling of topological changes. Additionally,
since function φ is defined over the whole space S and it is smooth,
gradients and geometric characteristics such as local normal vectors and
local curvatures can be calculated straightforwardly. On the other hand, the
usage of an additional space dimension to build the implicit function implies
a high computational cost O(Nn+1), where n is the number of dimensions
of the interface, and N is the number of grid points in each dimension.
Nevertheless, this can be alleviated with the Narrow Band Method (NBM),
which updates only the points located within k layers counted from the front
Γ(t) itself, thus reducing the computational cost to O(kNn) [6]. However,
this approach is not completely optimal because more points than the strictly
necessaries are still updated and, in addition, the implicit function φ needs
to be rebuilt periodically every time the front reaches the k-th layer. As a
result, the Sparse Field Method (SFM) was introduced, which reduces the
active region to only the strictly necessary points while efficiently updating
the φ function in each time step [7].

Each of these three approaches has its own advantages and drawbacks and all
of them are still currently used and contributing to each other. For instance, an
implementation of the geometric approach, also known as front tracking or marker
particle method, has been developed recently for fluid interfaces in compressible
flows [8], as well as an algorithm to simulate solidification with volume change of
a droplet on a fixed cooling plate [9]. The VOF method is still used for many

10

2.1 Introduction to the Level Set method
P
ro
p
ag
at
io
n

(a) (b)

Figure 2.4: Cosine curve propagating with velocity F = 1. (a) Swallowtail solution,
(b) entropy solution. Figure adapted by author from [25].

applications too, such as the simulation of wall to liquid heat transfer [10] or the
simulation of electrohydrodynamic two-phase flows [11]. Similarly, the LS method
has been used in many fields, such as image segmentation [12, 13], inverse problems
[14, 15], chemical etching [16–21] and surface reconstruction from scattered points
[22, 23].

2.1.2 Theory for front propagation

In the LS method, one of the main difficulties in solving the front evolution
equation to emulate properly physical phenomena is that the front must
be capable to present sharp changes in its topology, i.e. the solution
needs to be nondifferentiable even with an initial smooth front. Therefore,
accurate and efficient numerical techniques with the capability of producing this
nondifferentiability are required.

In order to explain these requirements a simple example is commented [24].
Consider an initial front defined by a cosine periodic curve which is propagated
in its normal direction with a given speed F . For simplicity, F = 1 is taken.
As can be shown in Fig. 2.4(a), the front passes through itself and this solution
cannot reproduce physical phenomena in which the front represents the boundary
between two regions. This solution is known as double-valued swallowtail.

To properly represent a physical interface separating two regions, the front at time
t should only consist of the set of all points located a distance t from the initial
front. One way to build this solution is understanding the front like a propagating
flame, such that once one grid point has been burnt, it cannot be burnt again [24].
This approach produces the result shown in Fig. 2.4(b) and satisfies the entropy
condition of Huygens’ Principle, i.e. no new information can be created during
the evolution of the front. This means that once the entropy condition is invoke,

11

Chapter 2. State of the art
P
ro
p
ag
at
io
n

Figure 2.5: Triple sine curve propagating with velocity F = 1− εκ. (a) ε = 0.025, (b)
ε = 0.25. Figure adapted by author from [26].

i.e. the front reaches a burnt point, some information is lost and it is not possible
to construct the previous front.

Fulfilling the entropy condition, a nondifferentiable weak solution is obtained after
the occurrence of the singularity. Another way of obtaining this weak solution is
through the limit of curvature-dependent propagating fronts [24]. Consider now a
velocity function F = 1 − εκ, where ε is a constant and κ is the curvature. The
curvature evolution equation can be written as [24]:

κt = εκαα + εκ3 − κ2, (2.6)

where α is the arc length and the second derivative of the curvature κ is taken
with respect to it. Eq. (2.6) is a reaction diffusion equation because of the reaction
term (εκ3−κ2), which drives the front toward singularities, and the diffusion term
(εκαα) that balance this effect by smoothing the front.

If the speed function F (κ) = 1− εκ, ε > 0 is applied to the cosine front, the front
is sharpened at the trough by the negative reaction term since the curvature is
negative κ < 0 at such points but it is smoothed by the positive diffusion term.
Two cases with ε > 0 are shown in Fig. 2.5 for a better understanding. The first
case corresponds to a small value of ε and can be observed that the troughs sharpen
up at the beginning of propagation. However, in the second case where the value
of ε is larger, the parts of the front with high and positives curvature values move
downward while the concave parts of the front move quickly up. Thus, for ε > 0
the front stays smooth as shown in Fig. 2.6(a). On the other hand, with ε = 0
a pure reaction equation is obtained κt = −κ2 and a corner is developed in the
exact solution κ(s, t) = κ(s,0)

1+tκ(s,0) , if the initial curvature is negative at some point
as can be visualized in Fig 2.6(b).

As conclusion, two cases have been studied: (i) the front Γcurvature(t) with a
curvature-dependent velocity F = 1 − εκ, ε > 0, and (ii) the velocity constant
front Γconstant(t) with F = 1. Then, at any time T

lim
ε→0

Γcurvature(T) = Γconstant(T). (2.7)
12

2.1 Introduction to the Level Set method
P
ro
p
ag
at
io
n

Figure 2.6: Cosine curve propagating with velocity F = 1− εκ. (a) ε = 0.25, (b) ε = 0.
Figure adapted by author from [25].

Thus, the limit of the front with curvature-dependent velocity corresponds to the
entropy solution for the constant velocity front.

This limit is named the viscous limit because of its similarity with a viscous
hyperbolic conservation law, which is defined for u(x, t) by an equation of the
form

ut + [G(u)]x = 0. (2.8)
A simple example is given by the Burgers’ equation:

ut +
(
u2

2

)
x

= 0, (2.9)

which describes the motion of a compressible fluid in one dimension. The solution
of this equation can develop discontinuities, known as shocks, even for arbitrarily
smooth initial data. Nevertheless, the development of these shocks can be stop if
a viscosity term is added in the equation as a diffusive term on the right side:

ut +
(
u2

2

)
x

= εuxx. (2.10)

For ε > 0 can be demonstrated that solution must remain smooth for all the time.
The role of curvature in a propagating front is analogous to the role of viscosity
in the hyperbolic conservation law. In fact, the previously commented entropy
condition is equivalent to the condition that enables that a compressible viscous
fluid suddenly expands or compresses [24].

Consider an initial front given by the graph f(x) with f and f ′ periodic on [0, 1],
that remains as a graph for all time. Define ψ as the height of the propagating
front at time t such that ψ(x, t = 0) = f(x). According to Fig. 2.7 the change in
height V in a unit time is related to the speed F in the normal direction by:

V = F

√
1 + ψ2

x

1 , (2.11)
13

Chapter 2. State of the art

Figure 2.7: Representation of an initial graph ψ(x, t) and the updated one ψ(x, t+ ∆t)
according to the normal velocity F . Figure adapted by author from [26].

being the equation of motion

ψt = F
√

1 + ψ2
x. (2.12)

If the velocity function F (κ) = 1 − εκ, and the definition for the curvature
κ = −ψxx/(1 + ψ2

x)3/2 are used, then:

ψt −
√

1 + ψ2
x = ε

ψxx
1 + ψ2

x

. (2.13)

Differentiation of both sides of this equation yields an evolution equation for the
slope u = ∂ψ/∂x of the propagating front such that,

ut +
[
−
√

1 + u2
]
x

= ε

[
ux

1 + u2

]
x

. (2.14)

This equation, i.e. the derivative of the curvature-modified equation for the
changing height ψ of a graph, is similar to viscous hyperbolic conservation law
(2.10) for the propagating slope u. This shows the relation between curvature-
dependent moving fronts and the hyperbolic conservation law [27].

2.1.3 Similarity with Hamilton-Jacobi equations

The relation of the moving fronts with the hyperbolic conservation law previously
explained is relevant because hyperbolic equations have been well studied and
numerical schemes already developed can be applied to front propagation theory.
Consider now the LS view that the front is embedded in a higher dimensional
function

φt + ~F · ∇φ = 0, (2.15)
14

2.1 Introduction to the Level Set method

or, if the motion is in the normal direction,

φt + F |∇φ| = 0, (2.16)

where |∇φ| =
√
φ2
x + φ2

y. The hyperbolic conservation law cannot be applied
directly to this LS formulation due to the multiple variable partial differentiation.
To solve this, the similarity with Hamilton-Jacobi (H-J) equations was studied.
These partial differential equations are usually used in mechanics and enable to
obtain the temporal evolution equations of a wave or a particle. Consider the
general H-J equation

φt +H(∇φ) = 0. (2.17)

The function H is known as Hamiltonian. This equation is equivalent to the LS
equation where H(∇φ) = ~F · ∇φ or in the normal motion H(∇φ) = F |∇φ|, but
only if the velocity F depends exclusively on position x and first derivatives of
φ. However, equations for curvature-dependent motion depends on the second
derivatives of φ and they are not H-J equation type.

Considering the one-dimensional H-J equation

φt +H(φx) = 0 (2.18)

and taking spatial derivatives of the entire equation, it becomes

(φx)t +H(φx)x = 0. (2.19)

Therefore, setting u = φx results in

ut +H(u)x = 0, (2.20)

which is equivalent to (2.8), thus the link in one-dimension between H-J equations
and hyperbolic conservation law is proved. Accordingly, the usage of viscosity
solutions of H-J equations were proposed [28, 29]. This was culminated by
proposing a general framework for the numerical solution of H-J equations using
successful methods from the theory of conservation laws [30–32]. The extension
of these methods was possible since H-J equations in one spatial dimension are
integrals of conservation laws [5]. More information about the links between the
LS formulation, hyperbolic conservation laws, and H-J equations can be found in
literature [26, 33].

2.1.4 Implicit functions

In the last sections the links between the LS method and hyperbolic conservation
laws as well as H-J equations have been exposed. These similarities are used
for building the adequate numerical techniques for propagating fronts that enable
the capability to produce singularities like nondifferentiable curves. Depending

15

Chapter 2. State of the art

on features of the motion, different numerical techniques must be used. This is
discussed in section 2.2.

The main idea of the LS method is to encapsulate the front Γ in a higher
dimensional implicit function φ such that the front always corresponds to a
particular level of the implicit function. Typically the zero level is chosen,
thus φ(Γ) = 0. Unlike the marker particle methods (see section 2.1.1) which
parametrize the front, in the LS method the implicit function is used for
representing and evolving the front.

Consider a one-dimensional front Γ moving in a two dimensional space and
an implicit function φ(x, y) defined over the whole space, such that the front
corresponds to the zero level of φ, i.e. the implicit definition of the front is:

φ(x, y) = 0. (2.21)

Thus, every point p = (x0, y0) that satisfies the condition (2.21) forms part of the
front Γ. However, if φ(p) < 0, the point p is inside the front and if φ(p) > 0 the
point is outside the front. Thus, an implicit function only can represent a front
that separates the space into subdomains with nonzero areas such as spheres or
planes.

Consider the one-dimensional example shown in Fig. 2.8. The simple closed curve
is a circumference, defined by the equation

x2 + y2 − 5 = 0, (2.22)

which corresponds to the zero level of the implicit function φ used to embed the
circumference, such that

φ(Γ) = x2 + y2 − 5 = 0. (2.23)

The implicit function used in this example is the Signed Distance Function
(SDF), and separates the space into two subdomains: the interior of the front
with φ(x, y) < 0 and the exterior of the circumference with φ(x, y) > 0. To build
the SDF, first a discretization of the two dimensional space has to be performed.
In Fig. 2.8(a) the generated grid is shown. Then, the distance value between
every grid point and the front Γ is calculated and stored with the corresponding
sign depending if the grid point is outside (positive) or inside (negative). These
distance values are shown in Fig. 2.8(a) with colours and, if they are represented
as the third dimension, the implicit function SDF φ is formed as shown in Fig.
2.8(b). To discretize implicitly a front moving on <n, an n-dimensional set of
points needs to be resolved, whereas to discretize a parametric representation, it
only needs to be resolved an (n−1)-dimensional set. This can be a drawback since
it implies a higher computational cost, however, this can be partially avoided by
only resolving those points very close to the front, leaving the rest unresolved.

16

2.1 Introduction to the Level Set method

Interior

Exterior

(a) (b)

Figure 2.8: Implicit representation of a circumference. The signed distance function
is used as implicit function to embed the front. (a) View from Z axis, the black line
represent the circumference front and the two subdomains separated by it. (b) Three-
dimensional representation of the implicit function. The zero level which contains the
front is shown.

Another aspect to consider about implicit functions is the extraction of the implicit
interface. In implicit representations, only values of φ at the generated grid cells
are known, but usually almost none of them are exactly placed at the interface,
i.e. exactly φ(x, y) = 0. Thus, in order to locate the interface, isocontour needs
to be interpolated from known values of φ at the grid points. This is a standard
procedure accomplished by a variety of contour plotting routines. One of the most
used algorithms for extracting isosurfaces moving on three-dimensional spaces
is the so-called marching cubes method [34]. Basically, this method takes eight
neighbouring cells for each grid cell (forming a cube) and determines the polygons
necessaries to represent the part of the surface that goes through this cube. Finally
all the polygons are joined and the surface is formed. Nevertheless, new algorithms
for the same purpose have been presented [35].

Due to the required discretization of the space and the consequent interpolation
to extract the implicit front, an error is introduced. This error is reduced if
the number of grid cells is increased, reaching zero error for infinite grid cells.
Nevertheless, numerical techniques and conditions can guarantee stability and a
valid result. This is discussed in section 2.2, but generally if the implicit function
is smooth enough over the grid, these estimates will be appropriate. For example,
the gradient of an implicit function defined over a three-dimensional space is

∇φ =
(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
. (2.24)

17

Chapter 2. State of the art

The gradient vector is perpendicular to isosurfaces and points in the direction of
increasing φ, i.e. outward. Thus, the unit normal vector is defined as

~N = ∇φ
|∇φ|

. (2.25)

This definition of the normal vector is valid not only on the interface but over the
whole space.

Since the space is discretized with a grid, the derivatives used for calculating the
gradient need to be approximated using, for example, finite difference techniques.
Only the equations of x variable are shown, but for the rest of variables is
analogous. Different grades of accuracy can be obtained. For instance, a first-
order accurate forward difference:

∂φ

∂x
≈ φ+

x = φi+1 − φi
∆x , (2.26)

where ∆x is the grid resolution used in the x dimension and the subscript i is used
for referencing a specific grid point in the x dimension. The first-order backward
difference is defined as:

∂φ

∂x
≈ φ−x = φi − φi−1

∆x . (2.27)

A second-order accurate central difference can be calculated with:

∂φ

∂x
≈ φx = φi+1 − φi−1

2∆x (2.28)

Higher order accurate differences can be calculated but generally require a higher
computational cost [31, 32].

The mean curvature of the interface is defined as the divergence of the normal
vector ~N = (n1, n2, n3) such that,

κ = ∇ · ~N = ∂n1

∂x
+ ∂n2

∂y
+ ∂n3

∂z
, (2.29)

thus, κ > 0 for convex regions of the front, κ < 0 for concave ones and κ = 0 for
planes. This equation can be directly written as a function of partial derivatives
of φ since

κ = ∇ ·
(
∇φ
|∇φ|

)
, (2.30)

leading to

κ = (φ2
xφyy + φ2

yφxx + φ2
xφzz + φ2

zφxx + φ
2

yφzz + φ2
zφyy

−2φxφyφxy − 2φxφzφxz − 2φyφzφyz)/ |∇φ|3 ,
(2.31)

18

2.1 Introduction to the Level Set method

which is in terms of the first and second order derivatives of φ. The lasts can be
calculated with a second-order accurate finite difference

φxx = ∂2φ
∂x2 ≈ φi+1−2φi+φi−1

∆x2

φxy = φyx = ∂2φ
∂x∂y ≈

φi+1,j+1−φi−1,j+1−φi+1,j−1+φi−1,j−1
4∆x∆y

(2.32)

With these equation, the normal vector ~N and the curvature κ can be calculated
for every grid point. Then, an approximation of the value of the normal vector
~N at an interface point ~x0 can be also obtained by interpolating the values of
~N from the spatial neighbouring grid points to the point ~x0. This interpolation
procedure requires φ to be smooth and well behaved. A good choice that satisfies
this requirements is the SDF [33].

2.1.5 Signed Distance Function

In the LS method an implicit function is used for encapsulating and embedding a
front. Thus, the front separates two regions of the space, acting as an interface.
The distance function for ~x points is defined as:

d(~x) = min(|~x− ~xin|), (2.33)

where ~xin represents the interface points. Initially, the function φ(~x) = 1± d2(~x)
was used as implicit function in the LS method [5]. Nevertheless, the SDF proved
that was a better choice [36]. A SDF is an implicit function φ with |φ(~x)| = d(~x)
for every point ~x. Thus, φ(~x) = d(~x) = 0 for all ~x that belongs to the interface,
φ(~x) = −d(~x) for all points that are interior to the interface and φ(~x) = d(~x) for
exterior points. This function satisfies all the features explained in section 2.1.4.
An SDF example of a two-dimensional front is shown in Fig. 2.8.

To build a distance function, for every grid point ~x, its closest interface point has
to be found. This closest point is labelled as ~xc. Then, the distance d between
both points is calculated. Then, for every point ~y on the line segment connecting ~x
and ~xc, ~xc is the closest point for ~y as well. In fact, due to d is Euclidean distance,
the next condition is fulfilled:

|∇d| = 1, (2.34)

since a point that is twice as close to the interface, gives a value of d that is half as
big. Eq. (2.34) is known as Eikonal equation, and it is satisfied by both distance
function and SDF, i.e. |∇φ| = 1. However, the argument exposed is only valid
as long as only a unique closest point ~xc exists for a point ~x. Therefore, this
approximation has to be used with caution to avoid overall degradations of the
numerical method. According to this approximation, the normal vector results in

~N = ∇φ, (2.35)
19

Chapter 2. State of the art

whereas the curvature (2.31) can be simplified to:

κ = ∆φ, (2.36)

where ∆φ is the Laplacian of φ such that,

∆φ = φxx + φyy + φzz. (2.37)

These simplifications are relevant and can reduce computational effort, however,
special attention must be taken since kinks generally have |∇φ| 6= 1 and these
equations can be insufficiently accurate.

2.1.6 Reinitialization of the implicit function

Once the implicit function φ is built, the LS method evolves this function
according to a certain motion. Although this function is initialized as a SDF,
it can be deteriorated and noise can be introduced due to the finite differences
approximations. As interface evolves, φ will generally become a function that is
no longer a SDF and, thus, the approximations of section 2.1.5 cannot be used. In
addition, this can lead to produce instabilities and/or produce unrealistic results
[37].

To avoid this troubles, a technique known as reinitialization was proposed [38].
This technique keeps φ as a SDF during the evolution of the front by replacing
φ by another similar function φ̃ that fulfils the conditions of a SDF. The new
function φ̃ keeps the interface in its zero level but is softer than φ and is better
behaved. It was proved that this replacement is mathematically correct since the
interface is kept in the same level zero of the function [39, 40].

This technique can be applied depending on the sensitivity of φ. If φ is very
sensitive, it needs to be reinitialized to a SDF both accurately and often.
Additionally, since φ can develop noisy and sharp features that are not suitable for
finite difference approximations, it is always advisable to reinitialize φ occasionally
so that it stays sufficiently smooth.

The straightforward way to reinitialize the function φ is to locate the front by
interpolation techniques and calculate explicitly the exact SDF. This method
requires a high computational effort specially if it is applied after every time step
[41]. For this reason, more elaborated solutions were presented [42, 43]. These
techniques avoid the need to locate the front and basically consist of solving a
partial differential equation to steady state.

In order to reduce computational effort and get reasonable run times, a new
method was proposed that restricted the calculations of motion and reinitialization
to a small band of points close to interface φ = 0 [38]. This technique is the
first version of the local LS method and it was named as the NBM and analysed

20

2.2 Numerical schemes for the Level Set method

extensively [6]. However, the NBM is not optimal since more points than the
strictly necessary are updated. To solve this, the SFM was proposed by Whitaker
[7], which only updates the points that are necessaries to evolve the surface.
Therefore, if only first-order accurate finite differences are required, only 3 layers
of grid points are updated: the one containing the interface itself, those points at
distance ∆x from the front and the layer of points at distance −∆x from the front.
Additionally, another advantage of the SFM is that in each time step the SDF is
built and, thus, there is no need to use any of these reinitialization techniques.
These local LS methods are discussed in section 2.2.4.

Nevertheless, there are some applications where is useful to update more than one
level of the implicit function and, perhaps, none of these techniques can be used.
For that reason, nowadays new reinitialization techniques are still being presented
[44–46].

2.2 Numerical schemes for the Level Set method

In section 2.1, the origin of the LS has been studied. The development of this
method started with the analysis of corners and singularities in propagating
interfaces. The roles of curvature and smoothing viscous term have shown the
relation between entropy conditions and hyperbolic conservation laws. Similarly,
the connection between LS equations and H-J equations was presented. The
numerical schemes developed for approximating the solution to these equations
can be used by the LS method to evolve the front. The basic evolution equation

φt + ~V · ∇φ = 0, (2.38)

depends on the velocity ~V and it is known as the convection equation. The
implicit function φ contains the interface, thus, numerical methods can be applied
to evolve it forward in time and, consequently, moving the interface across the grid.
Consider that both φ and ~V are defined over the whole space which is discretized
as commented in section 2.1.4 (i.e. building a grid)1. At a specific time tn, let
φn = φ(tn) represent the current values of φ. Updating φ in time consists in
finding its new values φn+1 = φ(tn+1) at every grid point for the next time step
tn+1 = tn + ∆t, where ∆t is the time increment.

The velocity field can depend on different factors such as the position over the grid
and local topology of the front. Regarding these features of the motion, different
numerical techniques must be used. Following, three distinct motions and their
corresponding numerical schemes are presented.

1This is not always possible and the extension velocity technique must be applied to extend
the front velocity to the rest of the grid when it is not straightforward extendible [6, 47–49].

21

Chapter 2. State of the art

2.2.1 Completely external

Consider a velocity field defined over the whole space such that only the coordinates
are needed to determine the value for a particular point. Additionally, this field
can vary over time or not, such that at specific time tn the velocity field is defined
as:

~V n = ~V (~x, t). (2.39)
By applying the simplest and first-order accurate method for the time discretiza-
tion of (2.38), the forward Euler method, results in:

φn+1 − φn

∆t + ~V n · ∇φn = 0. (2.40)

If this equation is extended for a three-dimensional case, it can be written as:

φn+1 − φn

∆t + unφnx + vnφny + wnφnz = 0, (2.41)

where u, v, w are the components of ~V in dimensions x, y, z respectively. The
numerical techniques can be applied independently for every dimensional term,
thus, only the one-dimensional case is considered:

φn+1 − φn

∆t + unφnx = 0. (2.42)

The term un determine whether the front is moving to the right or to the left and
it only depends on the grid point position. Thus, this equation must be solved for
every grid point. Consider a certain grid point at position i such that

φn+1
i − φni

∆t + uni (φx)ni = 0, (2.43)

where the subscript i indicates that the values correspond to the grid point
xi. The spatial derivative (φx)ni could be approximated in a straightforward
manner by (2.26), (2.27) or (2.28), however the solution would diverge and
appropriate approximations must be chosen adequately. For this reason, the
upwind differencing or upwinding was presented [5]. The basic idea of this method
is to take information from left if the front is moving to right and vice versa.
Accordingly, if uni > 0 at point xi, the value of φi is moving from left to right, i.e.
the left value φi−1 will be transported to the position i at the end of a time step.
Consequently, backward derivative φ−x should be used in this case. On the other
hand, if uni < 0, the φi value is moving from right to left, so information from the
right side of xi must be used for determining the value of φi at tn+1. In this case,
the forward derivative φ+

x must be used. Finally, if uni = 0, the term uni (φx)ni is
also zero and there is no need to approximate φx.

The upwinding method for any time and any point is summarized in algorithm 1.

22

2.2 Numerical schemes for the Level Set method

Algorithm 1: Upwind differencing technique
if u > 0 then

φx is approximated by φ−x .
else

if u < 0 then
φx is approximated by φ+

x .
else

The u(φx) term vanishes.

Since approximations of the derivatives (2.26) and (2.27) are first-order accurate,
the errors are O(∆x).

To obtain a convergent solution of (2.38), the result must be consistent and
stable. The combination of the forward Euler time discretization with the upwind
difference scheme is a consistent finite difference since the error converges to zero
as ∆t → 0 and ∆x → 0. In addition, stability can be guaranteed by using the
Courant-Friedrichs-Lewy (CFL) condition [50]. This condition avoids the error
of the derivatives approximations to be amplified while the front is being evolved
since it asserts that ∆x

∆t > |u|, i.e. the numerical wave speed must be at least as
fast as the physical wave speed. This turns into the CFL time step restriction:

∆t < λ∆x
max{|u|} , (2.44)

where max{|u|} is selected as the largest value of |u| over the entire grid and
λ is a scalar value such that 0 < λ < 1. Usually, λ = 0.9 is chosen when a
rapid convergence is needed, nevertheless, λ = 0.5 is a more conservative choice.
The CFL condition can be written for multiple dimension, for example, for the
three-dimensional case is:

∆t < λ

max
{
|u|
∆x + |v|

∆y + |w|
∆z

} , (2.45)

where ∆x,∆y and ∆z are the spatial resolutions of the corresponding dimensions.

2.2.1.1 Enhancing of the derivatives approximations

If the application requires more accuracy, instead of using first-order approxima-
tions of derivatives, more accurate approximations can be used, such as second-
order central differences. However, these approximations are not compatible with
first-order Euler discretization and they require a time step ∆t ∼ ∆x2, i.e. a more

23

Chapter 2. State of the art

restrictive CFL condition, implying a high computational cost. Therefore, the
Essentially Non Oscillatory (ENO) polynomial interpolation can be used in com-
bination with upwinding and first-order Euler time discretization. This technique
was first developed for hyperbolic conservation laws [30]. The basic idea of this
method is to find the smoothest polynomial to approximate ∇φ. This method was
improved significantly by the construction of ∇φ directly from a divided difference
table of the pointwise data [51, 52]. Finally, this technique was extended to the
H-J equations, such as (2.38), taking advantage of the similarity between hyper-
bolic conservation laws and this type of equations [5]. This is known as H-J ENO
and it allows to approximate φ+

x and φ−x with a third-order accurate by using a
subset of {φi−3, φi−2, φi−1, φi, φi+1, φi+2, φi+3} values.

While the ENO method consists in finding the smoothest polynomial, an improved
scheme known as Weighted ENO (WENO) was presented [32]. This method takes
a convex combination of the different polynomial approximations produced by
ENO. If any of the approximations interpolates across a discontinuity, it is given
minimal weight in this combination to minimize the resulting errors. On the other
hand, in smooth regions of ∇φ, all the polynomials have a significant weight so
the local accuracy is improved from third-order to fourth-order. Furthermore,
the WENO was optimized to produce a fifth-order accurate in smooth regions
[53]. Similarly to the ENO method, the WENO scheme was extended to the
H-J framework, enabling to solve (2.38) accurately. More information about
this two techniques can be found in scientific literature [54]. Additionally, these
methods are being continuously researched and new improvements are presented
for hyperbolic conservation laws [55–57].

2.2.1.2 Enhancing the temporal discretization

Similarly to spatial derivatives which can be improved in terms of accuracy, the
first-order forward Euler discretization of time used in (2.40) can be enhanced.
Although the LS method is not usually so sensitive to temporal discretization
as to spatial accuracy, in some cases an accurate temporal discretization may be
required to obtain accurate numerical solutions.

The Runge-Kutta (R-K) numerical method was developed to discretize time
to solve ordinary differential equations. Basically, this technique takes several
Euler steps and combines the results with the initial data using a convex
combination. The Total Variation Diminishing R-K (TVD R-K) method was
presented and applied to the LS method [51] which can increase the accuracy
of time discretization. The TVD R-K guarantees that no spurious oscillations are
produced because of this accuracy increment in the time discretization, as long as
no spurious oscillations are produced with the Euler steps. This technique, e.g. a
third-order accurate TVD R-K method, can be used in combination with central
differencing to obtain a numerical stable solution of (2.38). Accordingly, it is also

24

2.2 Numerical schemes for the Level Set method

possible to use a TVD R-K method together with upwind differences and H-J
ENO or H-J WENO.

Although fourth-order and higher accurate TVD R-K schemes exist, they require
much computational effort and the improvement of accuracy does not make a
significant difference in practical calculations [51].

2.2.2 External and dependent on local topology

In section 2.2.1, the velocity field for a specific time tn that corresponds to a
particular point ~xi is only determined by its coordinates (xi, yi, zi), i.e. ~V (~xi, tn).
Therefore, it does not depend on the local topology of the front. Now consider
an external velocity field that depends on some local geometrical properties of
the implicit function φ instead of only the grid coordinates of the point. For
example, the velocity field can be obtained with the local normal vector ~N , such
that ~V = ~V (~N, t). As before, ~V can vary over time or not. It is assumed that the
velocity field ~V is defined for every grid point and the normal vector ~N can be
calculated straightforwardly with (2.25) not only on the interface.

The case of an externally generated velocity field and this case, where the velocity
field depends on φ, are both defined by (2.38) which is a H-J type equation like
(2.17). Nevertheless, different numerical techniques need to be applied to each
case due to the different dependencies of ~V .

A function is considered convex if the Hessian matrix He is non-negative in
all of its values. Consider a Hamiltonian that depends on multiple variables
H(φx1 , φx2 , · · · , φxn

), then its He matrix is defined by

He(H) =

∂2H
∂φ2

x1

∂2H
∂φx1∂φx2

· · · ∂2H
∂φx1∂φxn

∂2H
∂φx2∂φx1

∂2H
∂φ2

x2
· · · ∂2H

∂φx2∂φxn

...
...

. . .
...

∂2H
∂φxn∂φx1

∂2H
∂φxn∂φx2

· · · ∂2H
∂φ2

xn

 , (2.46)

where, in a three-dimensional case, x1 = x, x2 = y and x3 = z. A compact form
for expressing the condition for a convex Hamiltonian is

∂2H

∂φxi
∂φxj

≥ 0, (2.47)

for all the possible combinations of xi, xj . Condition (2.47) is fulfilled when velocity
field ~V is completely externally generated. On the other hand, if ~V depends on
the implicit function φ, this condition is usually not satisfied, i.e. the Hamiltonian
is non-convex and upwind differences cannot be applied [25].

25

Chapter 2. State of the art

In order to solve non-convex Hamiltonian monotone schemes extended from
hyperbolic conservation laws to H-J equations can be used [28, 31]. It was proven
that monotone schemes converge to viscosity solutions and that allows to generate
valid and realistic results since the entropy condition is fulfilled [31]. The key idea
of these schemes is to replace the Hamiltonian H by a numerical Hamiltonian Ĥ
approximation. One set of these schemes is the Lax-Friedrichs Schemes (LFS)
[58]. This technique consists in replacing the Hamiltonian by the Lax-Friedrichs
numerical flux function:

Ĥ(φ) = H
(
φ+

x +φ−
x

2 ,
φ+

y +φ−
y

2 ,
φ+

z +φ−
z

2

)
−

αx
φ+

x−φ
−
x

2 − αy
φ+

y −φ
−
y

2 − αz φ
+
z −φ

−
z

2

, (2.48)

where the forward and backward derivatives can be calculated using first-
order approximations, such as (2.26) and (2.27) respectively, and more accurate
approximations like H-J ENO or H-J WENO can also be used. Moreover,
dissipation coefficients αx, αy and αz have been introduced to control the amount
of numerical viscosity. These factors are defined as:

αx = max
∣∣∣∂H(φ)
∂φx

∣∣∣
αy = max

∣∣∣∂H(φ)
∂φy

∣∣∣
αz = max

∣∣∣∂H(φ)
∂φz

∣∣∣
. (2.49)

The straightforward method is to calculate these maximum values over the whole
grid but the computational cost can be reduced by searching only in local regions
close the point being evaluated. These methods are known as Local Lax-Friedrichs
(LLF) [31, 52]. Furthermore, new improved versions of the LFS have been
presented [59–62].

In addition, several different techniques like Godunov’s scheme or the Roe-Fix
scheme can be found in literature [31, 51, 63]. These methods share the same
basic idea of the LFS, i.e. to use a numerical approximation of the Hamiltonian.
Nevertheless, usually they require more complex implementations and a higher
computational effort than LFS.

2.2.3 Dependent on local curvature

In the previous two sections, the motion of the front was defined by an external
velocity field which can depend on the local geometry of the front or not. These two
cases are a H-J type equation and techniques directly extended from hyperbolic
conservation laws are used to define proper numerical schemes.

26

2.2 Numerical schemes for the Level Set method

 1 2 3

 4 5 6

 7 8 9

Figure 2.9: Example of a closed curve evolved by the velocity field ~V = −bκ ~N with
b = 1 in the normal direction. Reproduced from [26].

Consider now a self-generated velocity field which is proportional to its local
curvature and moves the interface in its normal direction, such that

~V = −bκ ~N (2.50)

where b is a constant and κ is the local curvature. If b > 0 the interface moves
in the direction of concavity, thus, a circumference in two dimensions shrinks to
a single point and eventually disappears. Every closed curve moving with b > 0
will collapse to a single point regardless of its geometry complexity [64–66]. An
example is reproduced in Fig. 2.9. It can be observed that the large oscillations
disappears quickly while the parts with smoother curvatures remain longer. As
can be deduced, the curve tends to a single point. On the other hand, if b < 0,
the interface moves in the direction of convexity, therefore circumferences expand.

Even if the velocity field would have a tangential component Vt, this component
would be automatically zero. Since ~N and ∇φ point in the same direction,
~T · ∇φ = 0 for any tangent vector ~T . For example, consider a velocity field

27

Chapter 2. State of the art

~V = Vn ~N + Vt ~T which is used in the LS method such as:

φt +
(
Vn ~N + Vt ~T

)
· ∇φ = 0. (2.51)

Thus, the tangential component can be avoided,

φt + Vn ~N · ∇φ = 0. (2.52)

Furthermore, since

~N · ∇φ = ∇φ
|∇φ|

· ∇φ = |∇φ|
2

|∇φ|
= |∇φ|, (2.53)

equation (2.52) can be rewritten as:

φt + Vn|∇φ| = 0, (2.54)

which is known as the Level Set Equation and Vn = −bκ is the normal component
of the velocity field. Finally this equation results in:

φt − bκ|∇φ| = 0. (2.55)

Notice that (2.55) is a parabolic equation due to curvature dependency, thus,
neither upwind differencing scheme nor LFS can be used for solving numerically
this kind of motion. On the other hand, when φ is a SDF, the condition |φ| = 1
is fulfilled and thus, the curvature can be approximated by the Laplacian of φ,
therefore, the equality (2.36) is satisfied, leading to the heat equation:

φt − b∆φ = 0, (2.56)

where φ is the temperature and b is the thermal conductivity. The heat equation
is the most basic parabolic equation and these equations need to be discretized
using central differencing since the information to update the front is taken from
all spatial directions, as opposed to hyperbolic equations where information flows
only in the direction of characteristics. To calculate κ in (2.55) second-order
central differences (2.28) and (2.32) must be used in curvature (2.31) for each
spatial dimension. Accordingly, the term |∇φ| must be calculated using second-
order differences too. Likewise, the Laplacian of (2.56) is obtained with (2.37) by
using second-order central differences (2.32) in each spatial dimension.

After applying a forward first-order Euler time discretization, (2.56) results in:

φn+1 − φn

∆t − b∆φn = 0. (2.57)

Nevertheless, due to the second spatial derivatives of curvature, the restrictive
O((∆x)2) CFL condition

∆t <
(

2b
(∆x)2 + 2b

(∆y)2 + 2b
(∆z)2

)−1
(2.58)

28

2.2 Numerical schemes for the Level Set method

needs to be fulfilled. Analogously, (2.55) can be discretized with first-order
forward Euler scheme. Notice that parabolic equations need a restrictive time
step O((∆x)2) in contrast to hyperbolic equations such as (2.40), which need
only O(∆x). Nevertheless, enforcing ∆t = O((∆x)2) gives an overall O((∆x)2)
accurate discretization, even if forward Euler is used for time discretization.

Consider now the next convection-diffusion equation:

φt + ~V · ∇φ = bκ|φ|, (2.59)

which includes both the effects of an external velocity field ~V and a diffusive term
that depends on the curvature. Again, if the implicit function φ is a SDF, the
equation turns into:

φt + ~V · ∇φ = b∆φ. (2.60)

This equation can be solved applying the upwind differencing method, used in
section 2.2.1 for externally generated velocity fields, to the term ~V · ∇φ and using
central differencing on the parabolic term bκ|φ| or b∆φ. Accordingly, the most
restrictive time step needs to be chosen to ensure stability, i.e. the time step
imposed by the diffusive term ∆t = O((∆x)2) calculated by the condition (2.58).

It is worth to pay attention to (2.60). Consider that the constant b is replaced
by a term ε = O(∆x) such that the diffusion term vanishes as the mesh is refined
with ∆x→ 0. The equation becomes:

φt + ~V · ∇φ = ε∆φ, (2.61)

and tends to (2.38) as ε→ 0. The addition of a diffusive term ε∆φ to the right side
of (2.38) is known as the artificial viscosity method. This method can be used
to provide numerical stability when solving the convective term of (2.38) with
central differences. The artificial viscosity method obtains the physically correct
weak solution when it is taken to the limit ε → 0. This limit is the previously
introduced viscous limit and corresponds to the entropy solution presented in
section 2.1.2 that satisfies the Huygens’ Principle. Nevertheless, when the motion
is applied by the LS method, it was proven that εκ|∇φ| is a better form for the
viscosity term than ε∆φ [5, 67].

2.2.4 Local Level Set methods

All the motions previously studied require to update the implicit function φ over
the whole grid. Additionally, it is necessary to define the velocity field ~V on
every grid point in order to calculate the next values of φ when using one of the
propagation equations (2.38), (2.55) or (2.56). Therefore, performing one time
step over the entire computational domain requires O(N3) operations in three
dimensions, where N is the number of grid points in one dimension. This method

29

Chapter 2. State of the art

is not efficient since, usually, the application only requires one interface which is
embedded in the zero level of φ. Thus, the rest of the φ levels are not essential.

The idea of local LS methods is to reduce the computational domain. This
technique provides the next common advantages:

• Reduction of computational effort. Since the computational domain is
reduced, the number of operations needed to updated φ is also reduced and
is lower than O(N3).

• The extension of the velocity field over the whole grid is not always trivial
since it only can make sense at the interface itself. Nevertheless, with the
local LS methods, this extension is reduced and can even be avoided.

• As it is explained in previous sections, the determination of the time step
∆t by CFL condition (2.45) as well as the LFS dissipation coefficients
(2.49) require the search on the computational domain. Thus, since the
computational domain is reduced, the number of required operations is also
reduced.

2.2.4.1 Narrow Band Method

The first local LS method is known as the NBM [6, 38]. This method reduces the
computational domain to only those grid points inside a narrow band. A narrow
band of k layers is formed by those grid points with a distance value to the interface
smaller than k/2 times the grid resolution. Thus, a grid point ~xi will form part of
the narrow band if

|φ(~xi)| ≤
k

2 ∆x, (2.62)

where φ is the SDF to the interface. For a two dimensional grid example, the φ
values for every grid point are stored in a two-dimensional array. Additionally,
the points that fulfil condition (2.62), i.e. the points inside the narrow band, are
considered as active points and are tracked using a one-dimensional array. Thus,
only the points tracked by the one-dimensional array are used for updating the
values of φ. Likewise, the rest of grid points are kept constant. An example of an
interface and the surrounding narrow band is shown in Fig. 2.10.

When the front reaches close to the edge of the narrow band, the evolution process
is stopped and a new band is built such that the interface is set at the center of
it. The NBM with k layers can be summarized in the simplified algorithm 2.

Since the computational domain has been reduced to only the active points inside
the tube, the NBM requires only O(kN) operations to update the interface in
a two-dimensional space and O(kN2) in three dimensions. Although this is a
significant improvement it is still not optimal and, also, additional tasks have

30

2.2 Numerical schemes for the Level Set method

Figure 2.10: An interface (blue line) surrounded by a narrow band. Computational
domain is reduced to only those gray grid points in dark area.

Algorithm 2: Simplified algorithm of the NBM
1 Label as active those points that are inside the narrow band formed by the

points that fulfil (2.62).
2 Specify those points close to the edge of the band such that, when the interface

reaches one of them, a new band has to be built.
3 Initialize all the points outside the band with large positive (negative) values if

are outside (inside) the region defined by the closed interface.
4 Update the interface with the corresponding LS equation until one of the points

defined in step 2 is reached by the interface.
5 Rebuild the band and go to 1.

31

Chapter 2. State of the art

been included, such as the definition of active and edges points, and the need to
rebuild the tube every time the interface is close to the edge. Furthermore, as
explained in previous sections, after updating the interface, the implicit function
φ is no longer a SDF and, thus, reinitialization techniques must be applied.

Although the SFM, next explained, requires a lower computational cost, the NBM
is still being used in such fields as: multiphase incompressible fluid simulations
in combination with multi-resolution grids [68] and, also, in medical image
segmentation [69]. These implementations are usually combined with techniques
that maintain the LS implicit function as a SDF [70].

2.2.4.2 Sparse Field Method

The NBM is not optimal since more points than the strictly necessaries are
updated. Additionally, the narrow band has to be defined periodically as the
interface is evolved and a reinitialization technique must be applied to keep the
implicit function as a SDF.

Consequently, the SFM was introduce by Whitaker [7]. The SFM only updates
those points strictly necessary to calculate the next step of the interface. In
the SFM, several lists are used for keeping track of the grid points that are
required to update φ with the LS equation. The number k of required lists
depends on the adjacent points used for computing the new values of φ at interface
points. Therefore, if n forward points and n additional backward points are
used, the total number of lists that has to be updated is k = 2n + 1, such that
L−n, L−n+1, · · · , L+n are all the lists. Notice that the list containing the interface
grid points, namely L0, is also included. Each of these lists, Li, contains a layer
of points that fulfil condition:

i− ∆x
2 ≤ φ(~x) ≤ i+ ∆x

2 . (2.63)

Similarly to the NBM, in the SFM the active grid points act like a border between
the positive and negative regions, while the rest of the grid points are kept constant.
An example of the computed grid points by both methods is shown in Fig. 2.11. In
the SFM example, only the interface points and their adjacent ones are updated,
i.e. k = 3, whereas in the NBM about k = 11 layers of points are included in the
computational domain.

Once the list of points are defined, the φ values of the list L0 are updated with the
LS equation and, depending on the new distance value of each point, it is moved
to the corresponding adjacent list, i.e. L±1. Then, the points of the rest of the
lists are updated by simply adding/subtracting ∆x (assuming a regular LS grid)
to its closest point of the adjacent list depending if they are positive/negative. For
instance, the points of the list L+1, are updated by adding ∆x to the closest points

32

2.2 Numerical schemes for the Level Set method

(a) (b)

Figure 2.11: Comparison of the grid points included in the computational domain
in: (a) the NBM and (b) the SFM. The interface is represented by a green line and
the noncomputed points are shown in white. In (a) the blue/orange points are the
exterior/interior computed points. Whereas in (b) the green, blue and orange points are
those included in L0, L+1, L−1 SFM lists.

of L0, and the points of L−2, update their values subtracting ∆x to the closest
points of L−1. After the distance values are properly updated, those points next to
an interface point that do not belong to any list, are included in the corresponding
most exterior list depending on their signs. Thus, a continuous process is enabled
such that, as the interface evolves, new grid points are included in one of the most
exterior list L±n while other points are transferred to the adjacent lists and, when
they are far enough from the interface, they do not belong any longer to any list
and are kept constant.

In order to ease the calculations of this process, every grid point is labelled with
a state according to the list it belongs to, such that a point belonging to Li is
labelled with state i. Moreover, if a negative point does not belong to any list
it is labelled with state −(n + 1), where n is the subscript of the most exterior
list. Analogously, an exterior point that do not belong to any list is labelled with
state (n + 1). Also, these points are kept to the constant values k∆x

2 and −k∆x
2 ,

respectively, where k is the number of total layers of points.

Additionally, in order to do not change the state of the points and their
associated lists until all of the points are updated, auxiliary lists are defined
to temporary store the information of the points that have to be transferred to
another list. Therefore, in a SFM with k lists, the auxiliary lists are defined as

33

Chapter 2. State of the art

S−n, S−n+1, · · · , S+n, such that the list Si contains the information about those
points that will be transferred to the list Li at the end of the evolution process.

As an example, consider a simple scenario where first-order differences (forward
and backward) (2.26) and (2.27) are used. Thus, only k = 3 layers of grid points
are necessary to update φ, namely: L0 includes those points that contain the
interface itself, layer L+1 contains the positive points adjacent to the interface,
and those negative points adjacent to the interface are included in L−1. Moreover,
the auxiliary lists S0, S+1 and S−1 are also defined. The grid points are classified
depending on its distance to the interface as compiled in table 2.1.

Set of points state label φ interval value
L0 0 [−0.5∆x, 0.5∆x]
L+1 1 (0.5∆x, 1.5∆x]
L−1 −1 [−1.5∆x,−0.5∆x)
Rest of interior −2 < −1.5
Rest of exterior 2 > 1.5

Table 2.1: Corresponding SFM states and lists of grid points depending on their distance
values.

Because of simplicity, the algorithm of the SFM is explained according to the first-
order differences example for a three-dimensional case. Consider the interface is
already defined, thus, in order to evolve it according to the SFM, the algorithm
formed by the consecutive evaluation of procedures 3, 4, 5, 6, and 7 must be
applied.

The SFM is based on the approximation that the points next to the interface
evolve exactly like the interface itself. Therefore, there is no need to apply any
velocity extension technique. Furthermore, since the neighbouring points of the
interface are updated with perfect distance values, a SDF is built in each time step
and, thus, no reinitialization process is required.

The accuracy of the SFM was compared to the traditional LS method [7]. In
order to measure the error of both approximations, the evolution of a circle was
simulated by both techniques since it can be calculated analytically and, thus, used
as reference. To compute the total error of a method, first the zero-contour of the
implicit function φ was obtained and then, the distance to the analytical solution
was computed. To find the points that form the contour, a linear interpolation
between adjacent points that lie on either side of a zero level was used. Then,
the exact point where these lines have a zero value was used for calculating the
distance to the analytical circle. Finally, the total error is the root mean squared of

34

2.2 Numerical schemes for the Level Set method

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30

TraditionalpLS
SFM

RMS
error

CurvaturepFlow

Time

Constantpspeed

Time

Figure 2.12: Error comparison of the traditional LS method and the SFM in two
different scenarios: (a) a circle moving under its own curvature and (b) a circle moving
in the direction of the inward normal with constant speed. Figure adapted by author
from [7].

these distances. The results of this study of the error are reproduced in Fig. 2.12.
Two examples were studied, both consisting of a moving circle but the first one was
evolved under its own curvature 2.12(a) whereas the second one 2.12(b) was moved
in the direction of the inward normal at a uniform speed of 1. The results show
that both methods produce comparable errors and are within the same order of
magnitude although the SFM can obtain lower errors than traditional LS method.

Procedure 3: Initialization
1 Determine the SDF φ over the grid. Notice that this calculations can be limited

to only those active points required by the SFM.
2 Build the lists and label the points according to table 2.1.

Procedure 4: Evolution
1 for each L0 point ~xi do
2 Update φ(~xi) value according to the LS equation.
3 if φ(~xi) > 0.5∆x then add ~xi to S+1
4 if φ(~xi) < −0.5∆x then add ~xi to S−1

35

Chapter 2. State of the art

Procedure 5: Lists update
1 for each L+1 point ~xi do
2 Among the six neighbouring points of ~xi, find the point ~xb with the minimal

φ value and state = 0.
if no point with state = 0 is found then

3 remove ~xi from L+1
4 state(~xi) = 2

else
5 Do φ(~xi) = φ(~xb) + ∆x
6 if φ(~xi) ∈ [−0.5∆x, 0.5∆x] then add ~xi to S0
7 if φ(~xi) > 1.5∆x then remove ~xi from L+1

8 for each L−1 point ~xi do
9 Among the six neighbouring points of ~xi, find the point ~xb with the maximal

φ value and state = 0.
if no point with state = 0 is found then

10 remove ~xi from L−1
11 state(~xi) = −2

else
12 Do φ(~xi) = φ(~xb)−∆x
13 if φ(~xi) ∈ [−0.5∆x, 0.5∆x] then add ~xi to S0
14 if φ(~xi) < −1.5∆x then remove ~xi from L−1

Procedure 6: Transfer from auxiliary lists
1 for each S0 point ~xi do
2 remove ~xi from S0
3 add ~xi to L0
4 state(~xi) = 0
5 for each S+1 point ~xi do
6 remove ~xi from S+1
7 add ~xi to L+1
8 state(~xi) = 1
9 for each S−1 point ~xi do

10 remove ~xi from S−1
11 add ~xi to L−1
12 state(~xi) = −1

36

2.2 Numerical schemes for the Level Set method

Procedure 7: Evolution of exterior lists
1 for each L0 point ~xi do

for neighbouring points ~xb with state = 2 do
2 add ~xb to L+1
3 state(~xb) = 1

for neighbouring points ~xb with state = −2 do
4 add ~xb to L−1
5 state(~xb) = −1

6 Go to step 1 of procedure 4 until evolution is performed.

After the presentation of the SFM, variations of this method have been
presented. For example, in the field of medical image segmentation, an SFM that
approximates the implicit function φ by only three integer values, namely, −1, 0
and +1 for interior, interface and exterior points was published [71]. Also further
improvements were presented [72, 73]. These methods speed up significantly the
simulations since only basic calculations are performed. Nevertheless, the accuracy
of the results is reduced in comparison with original SFM.

2.2.4.3 Further optimizations

Despite the SFM reduces significantly the computational cost of the LS method
from O(N3) to O(N2) in three-dimensional scenarios, O(N3) memory space is still
required since the φ values of every grid point must be stored.

This problem can be relieved using octrees data structures, which are very efficient
in terms of storage since only O(N2) space is required [74] due to the mesh
refinement, i.e. only a few grid points are used far from the interface but a finer
one is used close to it. However, the data access time is increased from O(1) up
to O(logN) because of the hierarchical storage. Several LS implementations can
be found which use octree techniques [75–78].

Another data structure that has been used to reduce storage requirements is the
Run-Length Encoding (RLE) LS method [79]. This technique applies the RLE
scheme to compress regions far from the interface to only their sign representation
while storing with full precision the active points. The storage efficiency is further
improved over the octree LS.

Furthermore, a technique that keeps the optimal time access O(1) and improves
the space storage requirements was presented [80]. This method, known as sparse
block grid, divides the three-dimensional N3 space into small cubic blocks of m3

points each. Then, the coarse grid of (N/m)3 stores pointers to only those cubic

37

Chapter 2. State of the art

blocks that intersect the interface. These blocks are constantly allocated and
deallocated as the interface is evolved. This method provides a storage complexity
of O

(
(N ·m)3 +m3n2).

Recently, the Hash Table Local LS method was introduced [81]. This method
only computes the LS data in a band around the interface, like the SFM but,
additionally, only stores the data in that same band. Then, a hash table data
structure is used for accessing stored data. This kind of data structure provides
an O(1) access time. Nevertheless, the authors conclude that their method, while
being easier to implement, performs worse than a quadtree implementation.

2.3 Graphics Processing Units

A Graphics Processing Unit (GPU) is a specialized electronic circuit designed to
calculate arithmetic operations related with computer graphics visualization or
rendering. Nowadays, GPUs are included in embedded systems, mobile phones,
personal computers, workstations, and game consoles. Their first goal is to reduce
computational effort to the Central Processing Unit (CPU) in applications, such
as video games or interactive three-dimensional applications, by manipulating
computer graphics and performing image processing. Meanwhile, the CPU can
be used exclusively for other algorithms like mathematical operations.

GPUs are usually designed for applications that requires a large computational
effort such as real-time rendering in high resolution three-dimensional video games.
Moreover, these applications also require many operations per pixel, for instance,
in order to apply anti-aliasing filters to smooth the scene and to provide a more
realistic aspect.

The input of a GPU is a list of geometric primitives. These primitives are
the simplest geometric objects that the system can handle, typically triangles
in a three-dimensional application. Many operations are applied to these
primitives, such as shading, in order to map them onto the screen and to create
a final picture. Historically, some of these operations were configurable but
not programmable. Next generations of GPUs could implement many different
operations to the geometric primitives and, eventually, these operations became
completely programmable.

Consequently, over the past years, the scientific community has identified other
applications unrelated with graphical operations but with similar characteristics.
Therefore, due to the high programmability gained during last years, the
GPUs were used as general-purpose computing units. Additional reasons of the
quick expansion of the General-Purpose computing on Graphics Processing Unit
(GPGPU) are [82]:

38

2.3 Graphics Processing Units

• The great relation computing-power/price.

• The huge integration on personal computers since the most of them have the
capability of executing and developing GPGPU algorithms [83].

• High-level programming languages and tools created by GPU vendors that
allow programmer flexibility, productivity and an easy learning process.

• Communities created by vendors in order to make public their own GPUs
and their capabilities. Events, awards, fellowships and seminars are financed
by the biggest vendors (like Nvidia) every year.

GPUs were traditionally focused on graphic operations and many of these
operations can be calculated for each pixel independently of the rest of the
pixels. Therefore, parallelism is a natural way of increasing performance in
GPUs. High computational requirements of graphic operations, especially in
video games, caused a drastic improvement of the computational capabilities of
GPUs. Eventually, they became a highly parallel programmable processing unit
and started forming part of the many-core family processors since the execution
of a lot of simultaneous threads is maximized. A many-core processor example is
the Nvidia GeForce GTX Titan Z GPU which has 5760 cores [84].

GPUs are not the only many-core architecture that has gained interest over
the last years. Field-Programmable Gate Arrays (FPGAs) have been highly
successful in many application areas [85]. Although in some applications FPGAs
can obtain better performances [86], GPUs are still the most used many-core
platform due to the previously cited reasons and, also, they provide faster time
to deployment than FPGAs [87]. This is because FPGAs are, unfortunately, hard
to program for general-purpose computing since it requires detailed knowledge
of low-level hardware. Nevertheless, the FPGA vendor Altera has recently
announced support for a high-level programming language to implement parallel
environments. Therefore, the FPGAs have nowadays become an attractive many-
core choice and several applications have been implemented recently and compared
with GPU implementations [88]. Generally, better energy efficiency is shown by
the FPGAs implementations and in, some cases, they are even faster than GPUs
[88, 89].

On the other hand, the other family processors that exists nowadays is the
multi-core processors like modern CPUs. Current CPUs, rather than increasing
the features of single core, are integrating several cores. Multi-core devices
maximize the performance of running sequential instructions, enabling only a
few simultaneous execution threads. Traditionally, one of the major performance
factors of CPUs has been increasing frequency. However this increase was stopped
at just below 4.0 GHz due to the required huge power consumption [85, 90].
Consequently, CPUs started increasing performance through multi-core and vector

39

Chapter 2. State of the art

(a) (b)

Figure 2.13: Historical comparison of theoretical peak performance in terms of: (a)
gigaflops and (b) bandwidth for the fastest available Nvidia GPUs and Intel CPUs.
Reproduced from [92].

instructions instead. An example of this kind of processors are the Intel Xeon E7
that currently can integrate up to 15 cores, 2 execution threads per core and it
can operate up to 3.4 GHz [91].

In Fig. 2.13 a historical and theoretical performance comparison of the fastest
Nvidia GPUs and Intel CPUs in terms of gigaflops and bandwidth is presented.
Data from last year shows that GPU performance of both metrics is roughly
between 4 and 8 times higher. Accordingly, a massively parallelized algorithm
executed on a GPU can be up to seven times faster than a parallel CPU
implementation [20].

At present, legacy systems that have been used for several years need to evolve
in order to take advantage of new multi-core or many-core processors [93].
Nevertheless, the increasing of parallelism only improve the performance of those
parts of the algorithm suitable to be parallelized, meaning that the serial section
of the code can become the bottleneck [94]. Thus, the majority of the applications
benefit from the combination of both a many-core GPU and a fast multi-core CPU.

2.3.1 Graphics pipeline GPUs evolution

Before GPUs were used for GPGPU, they were used exclusively for graphics
operations in order to render images with some visual effects. This process can
be understood as set of stages that are applied sequentially and it is known as
the graphics pipeline. A GPU is a hardware implementation of the pipeline and
an Application Programming Interface (API) is used for rendering the desired
graphics. An API provides a standardized way for programmers to develop

40

2.3 Graphics Processing Units

graphics rendering capable of being executed in any hardware that supports the
specific API. Then, the set of instructions generated by the API are interpreted
by the drivers of the GPU.

Following, the different stages of a graphics pipeline of an early Nvidia GeGorfe
are commented [95]:

• Interface. The link between the CPU and the GPU. Through this interface
both, API instructions and data, are received.

• Vertex control. GeForce GPUs only interpret triangle primitives from CPU.
This stage, then, converts the triangle data into a form that the hardware
understands and places the prepared data into the vertex cache.

• Vertex shading, transform and lighting (VS/T&L). The primitives are
modified by applying some transform operations to their vertices, such as
rotation or translation. Additionally, some values like colors, normal vectors,
and tangents, are calculated.

• Triangle setup. Edges equations are created to interpolate colors and other
vertex properties.

• Raster stage. It determines which pixels are contained in each triangle.
Then, for every pixel, some necessary values for shading it are interpolated.

• Shader. The final color of each pixel is determined.

• Raster operation stage. It performs the final raster operations on the pixels.
Transparency and antialiasing effects are computed. It also determines the
visible/occluded objects according to the given view point.

• Frame buffer interface. This stage manages memory reads/writes from/to
the display frame buffer memory that is used for finally representing the
image on the display.

This pipeline was upgraded over the years, improving rendering of graphics.
Originally, the vertex and pixel shader stages were configurable but not
programmable. Nevertheless, the version 8 of the API DirectX included a
programming language similar to assembly with a set of 127 instructions. Thus,
developers could use them on the supported GPUs in order to apply different
graphic operations. The first GPU that supported these instructions was the
Nvidia GeForce 3 and it appeared in the 2001.

GPU architectures have focused increasingly on the programmable parts of the
graphics pipeline. Indeed, previous generations of GPUs could be understood
as additional instructions to a fixed-function pipeline. However, current GPUs
can be defined as a programmable device surrounded by supporting fixed-function

41

Chapter 2. State of the art

units [82]. In 2006 the GeForce 8800 GPU was introduced. This device mapped
the separate programmable graphics stages into an array of unified processors,
such that the logical graphics pipeline is a loop with much fixed-function graphic
logic between the iterations. This unification enables a better load balance by
dynamically allocating the execution resources to different pipeline stages.

The GeForce 8800 was served with the DirectX 10 API generation. By this
generation, the vertex and pixel shader stages had been unified to a new logical
stage, namely geometry shader. The geometry shader stage processes all the
vertices of a primitive rather than isolated vertices, such that both stages are
identical to the programmer. Additionally, innovative features were introduced
such as: 32-bit integer and floating-point support, arbitrary number of reads from
global memory, and dynamic flow control set instructions.

GPUs continued evolving and including new functionalities until current GPUs,
which are formed by an array of thousands of processing units. These processors
are completely programmable, are able to execute code simultaneously and support
64-bit integer and floating-point instructions. This enables the possibility of using
GPUs as massive parallel computing devices in many scientific applications, such
as: simulation of information propagation over networks [96], acceleration of fluids
dynamics [97], simulation of stars clusters around black holes [98], medical image
processing [99–101] and micromachining processes simulation [19, 20, 102].

2.3.2 GPGPU programming languages

The first time that GPGPU was considered of interest was in 2003 [103]. Originally,
fixed graphic-functions (e.g. texture filters and blending) were used in order to
perform GPGPU operations. This was extremely improved by the introduction
of high-level programming languages that were designed for computation and
abstracted of the API graphics of the GPU. Two of the first ones were BrookGPU
[104] and Sh [105] (which later was commercialized as RapidMind [106]), both were
academic research projects with the goal of abstracting the GPU as a streaming
processor.

Consequently, the majors GPU vendors made public their own languages in order
to extend the usage of their devices as research instruments. There are three
major GPU vendors for the PC market, Intel being the largest. Nevertheless,
Intel is only dominant in integrated and low-performance market. On the other
hand, Nvidia and AMD are the two unique suppliers for high-performance GPUs.
AMD released their own language to researchers in 2006, namely Close To Metal
(CTM). CTM was a low-level programming interface but was short-lived since
AMD subsequently switched from CTM to Open Computing Language (openCL)
[107].

42

2.3 Graphics Processing Units

OpenCL is a framework, very similar to C programming language, for writing
programs that execute across heterogeneous platforms such as CPUs, GPUs,
digital signal processors, FPGAs and other processors2. The openCL project was
initially developed by Apple Inc. and they submitted their initial proposal to
Khronos Group but, eventually, was supported by AMD, IBM, Qualcomm, Intel
and Nvidia. The first version of openCL was released on December 2008. This
framework has severely extended due to all the support that is receiving from
important companies, like Altera that has recently presented an openCL compiler
to be directly used in their FPGAs devices [109].

On the other hand, the Compute Unified Device Architecture (CUDA) platform
presented by Nvidia has been very successful since its release in June 2007. Despite
of Nvidia GPUs also support openCL, CUDA is the most mature technology
with the most advanced development tools. The CUDA platform is accessible
to developers through CUDA-accelerated libraries, compiler directives (such as
OpenACC), and extensions to standard programming languages, including C,
C++, Fortran and Python among others.

Another key aspect for the quick expansion of the GPGPU environments like
CUDA and openCL has been the Software Development Kits (SDKs) presented
by the vendors. For example, the AMD APP SDK or the CUDA toolkit that
includes a complete integration in Microsoft Visual Studio in Windows systems or
a customized version of Eclipse.

Despite of the variety of languages, all of them are conceptually equivalent and
offer roughly the same functionalities. Nevertheless, in the present thesis, the
CUDA platform has been chosen due to the large amount of information including
books, tutorials, templates and the high popularity that has achieved in last years.

2.3.3 CUDA platform

In this section the architecture of modern Nvidia GPUs, i.e. CUDA, is described.
Nevertheless, modern GPUs of other vendors like AMD implement very similar
structures as explained in section 2.3.1. Furthermore, notice that several CUDA
microarchitectures have been presented since its release including significant
improvements.

The Nvidia GeForce 8800 GPUs in 2007 were the first devices implementing
CUDA. These devices implement the first CUDA microarchitecture, namely
Tesla3. In the present thesis, an Nvidia GeForce GTX 260 which implements

2Heterogeneous computing refers to systems that use more than one kind of processor to gain
performance. For example, a system formed by a CPU and a GPU [108].

3Do not confuse the Tesla microarchitecture with the Tesla GPUs specially designed for servers
and workstations.

43

Chapter 2. State of the art

Thread Processing Cluster

...

Interconnection network

Cache

Global memory

...

Streaming Multiprocessor

Special Functions Unit

File register

Shared memory

Texture unit

Constant and texture cache

Instructions unit

Doble precision unit

Streaming processors

Cache Cache

Figure 2.14: Tesla CUDA microarchitecture schematic of the Nvidia GT200 series [110].

the Tesla microarchitecture but with some improvement with respect to GeForce
8800 series, was used, thus, the GT 200 series is explained.

Tesla CUDA microarchitecture is the first one implementing the unified shader
model and is composed of hundreds of simple cores that are designed to maximize
floating-point throughput. Each CUDA core has a fully pipelined integer
Arithmetic Logic Unit (ALU) and a Floating-Point Unit (FPU) that executes
one 32-bit integer or floating point instruction per clock cycle. The CUDA cores
are grouped into Streaming Multiprocessors (SM), each with 8 CUDA cores, also
including 2 special functions units and one instructions unit that control the
execution of the threads on the multiple processors as well as a double precision 64-
bit processing core. Moreover, a 32-bit register file, a data parallel shared memory,
a cache for constant data, and another reading texture cache are included in the
SM. Likewise, the SMs are organized in Thread Processing Clusters (TPCs) such
that SMs can share texture, cache and constant memories. Finally, the TPCs
are connected to the global memory. A schematic of the described architecture is
depicted in Fig. 2.14.

CUDA is designed to execute a lot of threads simultaneously. For instance, the
GPU Nvidia GeForce GTX 285 has 240 CUDA cores. The Tesla generation
contains 10 TPCs of 3 SMs each, resulting in 30 SMs per GPU. Moreover, each
SM is able to handle up to 1024 simultaneous threads, resulting in 30, 720 threads
per GPU [110].

44

2.3 Graphics Processing Units

2.3.3.1 Parallel execution

A subroutine executed in a CUDA GPU is called kernel and it is invoked by the
CPU. When an application invokes a kernel, the organization of execution threads
must be defined. CUDA platform uses a hierarchical organization of threads such
that, the threads are grouped into blocks and the blocks are distributed over a
grid. Both, the size of the thread blocks and the dimensions of the grid, must
be provided when invoking a kernel and this will determine the number of total
execution threads. This enables the possibility of efficiently adapt the structure
of threads to the hardware while executing an algorithm in a natural an optimal
way.

Maximum block and grid dimensions are determined by CUDA microarchitecture.
For instance, Tesla microarchitecture supports thread blocks up to 512 threads
that can be distributed in 3 dimensions whereas a maximum number of 65535
blocks distributed only in two dimensions is supported.

When a kernel is invoked, each SM receives a block of threads and the blocks are
computed simultaneously. Once a SM has finished computing its corresponding
block, its resources are released and a new block is delivered to the now free
SM. This enables a workflow such that the blocks wait to be computed until
a SM is free. Once every block has been computed, the kernel execution is
over. A simplified kernel execution of a sum operation of two arrays is shown
in Fig. 2.15. Initial arrays v1 and v2 have 1024 positions each, thus, the
natural way of performing a sum operation is creating 1024 threads so that each
thread only performs the operation v1[id] + v2[id], where id is the thread identity
id = 0, 1, 2, 3, · · · , 1023. Additionally, this result is stored in the result variable r,
such that r[id] = v1[id] + v2[id]. Accordingly, one way to group 1024 threads is
creating 128 blocks of 8 threads each. After the creation of the blocks, the first 30
are assigned to the 30 SMs that has de GPU while the rest of the blocks wait until
a SM finishes computing the current block and its resources are released. This
process is continued until every block has been computed.

Notice that this is just a simple example and probably is not the optimal choice.
Best choices are those that the size of the block is multiple of 32 such as 128 or
256 [92]. This is because the threads within a block are grouped into warps, each
containing 32 threads. This hierarchical organization is depicted in Fig. 2.16. All
the threads of a warp execute the same code and can be alternated with other
warps within the same SM. A SM can manage up to 32 warps simultaneously
in the Tesla microarchitecture although it only contains 8 cores. In order to
accomplish managing such a number of warps with those limited resources, the
delays produced when a warp accesses to the global memory are used for other
warps to perform operations. Typically, the delays produced by the global memory,
which is off-chip, are of the order of several hundreds of clock cycles [111] thus,

45

Chapter 2. State of the art

Blockd: BlockdF BlockdF27
III

III

v2

IIIvF
: F 2 3 F: F:22 F:23
4 7 2 F2 F 7 5

4 5 6 7
3 6 8 FF

8 9
8 FF IIIvF

: F 2 3 F: F:22 F:234 5 6 7 8 9

III2 5 F: 8 4 F 43 2 F 6 9 F III

r III: : : : : : :: : : : : : III

: F 2 3 F: F:22 F:234 5 6 7 8 9: F 2 3 F: F:22 F:234 5 6 7 8 9

r III6 F2 F2 2: 5 8 96 8 9 F7 F7 F2 III

Thedfirstd3:dblocksd
beingdexecutedd
simultaneouslydatd
thed3:dSMsI

Blockd:
SMd:

BlockdF
SMdF

III

Blockd29
SMd29

idd=d:
r[:]=4E2

idd=dF
r[F]=7E5

idd=d2
r[2]=2EF:

idd=d3
r[3]=F2E8

idd=d4
r[4]=3E3

idd=d5
r[5]=6E2

idd=d6
r[6]=8EF

idd=d7
r[7]=FFE6

idd=d8
r[8]=8E9

idd=d9
r[9]=FFEF

idd=dF:
r[F:]=FE4

idd=dFF
r[id]=vF[id]Ev2[id]

idd=dF2
r[id]=vF[id]Ev2[id]

idd=dF3
r[id]=vF[id]Ev2[id]

idd=dF4
r[id]=vF[id]Ev2[id]

idd=dF5
r[id]=vF[id]Ev2[id]

idd=d232
r[id]=vF[id]Ev2[id]

idd=d233
r[id]=vF[id]Ev2[id]

idd=d234
r[id]=vF[id]Ev2[id]

idd=d235
r[id]=vF[id]Ev2[id]

idd=d236
r[id]=vF[id]Ev2[id]

idd=d237
r[id]=vF[id]Ev2[id]

idd=d238
r[id]=vF[id]Ev2[id]

idd=d239
r[id]=vF[id]Ev2[id]

F28donepdimensionald
blocksdofd8dthreadsdeachId
Eachdthreaddonlydaccessesd
todonedmemorydaddressI

Blocksdwaitingdford
beingdcomputeddwhend
adSMdisdreleasedI

InitialddataI
Operationdtodperform:
rd=dvFdEdv2I

FinaldresultI

Figure 2.15: Workflow of a kernel execution. The kernel consists in performing the
operation r = v1 + v2.

other warps can use the now unused core. The swapping warps process is depicted
in Fig. 2.17.

A GPU can be used as a massively parallel computing unit. Nevertheless, in order
to take completely advantage of the GPU power, the application being executed
must be capable of being split in many execution threads which apply the same
operations to different elements. In addition, the number of threads must be high
enough to use all the cores of the GPU. Otherwise the acceleration provided by
the GPU with respect to a traditional sequential execution can be insignificant or
even a worse computational efficiency can be obtained.

2.3.3.2 Memory structure

Another important aspect to consider when developing a CUDA algorithm is the
communication between execution threads. As has been explained previously,
accessing to the global memory requires many clock cycles thus resulting inefficient.
CUDA platform implements a hierarchical structure of memories to provide an
efficient communication between threads within the same block. Following, the
Nvidia CUDA hierarchical memories are commented:

46

2.3 Graphics Processing Units

Warp

...
Thread

...

...

...

...

...

...
...

...

...

Block

...

...

...

...

...

...

...

...

...
...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...
...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Grid

Figure 2.16: CUDA hierarchical organization of execution threads.

47

Chapter 2. State of the art

Time

WarpM1

ExecutingMoperations
WaitingMforMmemoryMdata
ReadyMtoMcompute

WarpM2
WarpM3
WarpM4
WarpM5
WarpM6
WarpM7
WarpM8

Executing

SM

ReadyMtoM
process

Warp

WaitingM
forMmemoryM

data

IncomingM
newMwarps

WarpM
completed

WarpM
releasingM

aMcore

WarpM
hasMobtained
memoryMdata

WarpM
enteringMto
compute

(a)

(b)

Figure 2.17: Warp swapping process. This figure shows how the delays produced when
a warp accesses to the global memory are taken in advantage by other warps. (a) shows
the different states of a warp in time whereas in (b) the flow chart of execution is shown.

48

2.3 Graphics Processing Units

• Per-thread registers. There are 16 K 32-bit registers per SM and they store
the local variables of each thread, i.e. only one thread can access to its own
registers. Notice that these registers are shared between all the concurrent
threads within a block, thus, the higher the number of threads per block,
the lower the number of registers that can be used by one single thread.

• Shared memory. 16 KB of memory included in each SM. The data stored in
the shared memory can be accessed by all the threads within a block but it
will be deleted when the execution block finishes. To achieve high bandwidth,
shared memory is divided into 16 equally-sized memory banks, which can be
accessed simultaneously. However, if two addresses of a memory request fall
in the same memory bank, the access is serialized. Thus, special attention
to the memory accesses has to be paid in order to maximize the bandwidth.
Since it is an on-chip memory only a few clock cycles are necessary to access
[92].

• Global memory. This is the main memory of the device and can vary from
hundreds of MB to several GB of capacity. Every execution thread has
access to the whole memory. Since it is an off-chip memory, high latencies
are produced when accessing to it. Allocation and releasing memory are
performed from the CPU and the data stored is maintained during the whole
application. In the first GPUs, a coalesced access had to be performed in
order to get an optimal bandwidth data transfer [92].

• Constant memory. The CPU can store variables in global memory as
constant data which is cached and cannot be modified by GPU.

• Texture memory. The texture memory space resides in global memory and
is cached in texture cache. Then, if the requested data is stored in the
cache, the access time is reduced. This cache is optimized for 2-dimensional
spatial locality so, threads of the same warp that read close together texture
addresses will achieve the best performance. Thus, coalesced accesses are
easily obtained, reducing reading time.

2.3.3.3 Kepler microarchitecture

During the last part of the thesis, an Nvidia GeForce GTX Titan was used for
performing calculations. This GPU implements the Kepler microarchitecture,
therefore, the main differences with respect to the Tesla microarchitecture are
following commented.

In previous microarchitectures (Tesla and Fermi) the 2x shader clock was used
thus, by running units at higher clock rate, a higher throughput can be achieved
with fewer execution units. This enables an area optimization but it consumes
more power.

49

Chapter 2. State of the art

GPU features Tesla Kepler
Maximum number of SM 30 15
Max. CUDA cores 240 2880
Max. threads per block 512 1024
Max. blocks in a grid 65535 231 − 1
Max. dimensions of the grid 2 3

SM features
Max. cores 8 192
Max. threads 1024 2048
Special functions units 2 32
Instruction dispatch units 1 8
Double-precision cores 1 64
Number of 32-bit register 16 K 64 K
Shared memory 16 KB 48 KB
Shared memory banks 16 32

Table 2.2: Main differences between Tesla and Kepler CUDA microarchitectures.

Kepler architecture is the first focused on efficiency, programmability and
performance [112]. The efficiency goal was achieved through the use of a unified
clock instead of the 2x shader clock while including more cores to achieve similar
levels of performance. The reduction of clock rate reduces power consumption
down to 50% and, additionally, two Kepler cores use about 90% of the power of
one of the previous Fermi architecture.

For example, the Nvidia GeForce GTX 560 is one of the last GPUs implementing
the Fermi architecture. This device has 336 CUDA cores running at 1700 MHz
[113]. On the other hand, the Nvidia GeForce GTX 660 is one of the first GPUs
that implements the Kepler microarchitecture. This GPU has 960 CUDA cores
but running only at 980 MHz due to the new efficiency goal of this architecture
[114].

As a consequence of the above, Kepler architecture employs a new SM architecture
called SMX which includes much more CUDA cores. This allows to execute a whole
warp per clock cycle. A SMX includes 192 CUDA cores.

Another difference is that Tesla GPUs use IEEE 754-1985 floating point arithmetic,
however, Kepler architecture implements the new IEEE 754-2008 floating-point
standard. This provides the fused multiply-add (FMA) instruction for both single

50

2.4 Micro-Electro-Mechanical Systems (MEMS)

and double precision arithmetic. The FMA performs multiplication and addition
with a single final rounding step unlike a multiply-add instruction. Thus, no
precision is lost in the addition and the FMA is more accurate than performing
the operations separately [112].

Finally, differences of the features between Tesla and Kepler microarchitectures
are grouped in Table 2.2 [92, 110, 112].

CUDA platform has been extensively used in many research fields such as
computational finance [115, 116], astronomy related [98], medical image [99, 100],
simulation of clustering process of protein structures [117], parallel data mining
[118] and defence-related applications [119, 120]. Particularly in this thesis, the
power of Nvidia GPUs has been used for accelerating the simulation of wet and
dry etching processes applied to micromachining of microstructures [19, 20, 102].

2.4 Micro-Electro-Mechanical Systems (MEMS)

The main topic of the thesis is the improvement of micromachining processes
simulation by means of the LS method. The application of these processes
is the fabrication of microstructures based, mainly, on silicon (Si) or quartz
substrates. Therefore, in this section an introduction to such structures as well as
the corresponding fabrication methods are given.

2.4.1 Introduction

The acronym Micro-Electro-Mechanical Systems (MEMS) was used in the late
80’s but the first fabrication process of a device that can be considered a MEMS
was patented in the 50’s [121]. Originally, the MEMS technology was used
for referencing to electrical and mechanical devices within microscopic scale.
These devices are three-dimensional structures with a specific electrical and/or
mechanical behaviour. However, in the last twenty years, the MEMS field has
become a high-technology scientific field that includes many different kinds of
devices with varied applications. A device can be currently considered a MEMS
if characteristic sizes of its structures are within the 0.1 − 1000 µm range in
either of the x, y or z dimension. In addition, a MEMS should include at least
one of the following features: multiple components, complex functions, system
integration and the capability of mass production [122]. Nowadays it is possible
to fabricate devices smaller than 0.1µm, however those devices are included in
the Nanotechnology field and, then, the new acronym Nano-Electro-Mechanical
Systems (NEMS) is used.

Nowadays, MEMS technology can be found in many applications such as
micromirrors and microlens[123], high-quality tunable Radio Frequency (RF)

51

Chapter 2. State of the art

(a) (b) (c)

Figure 2.18: Three MEMS structures examples: (a) tuning-fork probe [141], (b) three-
dimensional accelerometer [142] and (c) micro-mirror [143].

filters [124, 125], tunable antennas for mobile devices [126–128], RF switches and
steerable antennas for radar and aerospace communications [129–131], medical
applications like microfluidic cytometer (to measure various parameters of cells)
[132], microneedles for drug delivery [133] or specific DNA sequences detection
[134, 135], automotive industry applications like airbags detonation, antilock
braking system among others [136, 137], and thermo-electric generators used for
energy harvesting [138–140].

Fig. 2.18 shows three MEMS example, namely (a) a quartz-based tuning-fork
probe with a sharp tip for Atomic Force Microscopy (AFM) systems [141], (b) a
three-dimensional accelerometer [142], and (c) a micromirror [143]. Both (b) and
(c) are silicon-based MEMS.

Traditionally, MEMS were fabricated on silicon substrates using integrated circuit
batch-processing technologies such as surface and bulk silicon micromachining,
lithography, etc., due to silicon availability and well-known material properties
[144]. This enables the possibility of integrating both silicon electronics and MEMS
structures on the same substrate.

MEMS technology still relies on semiconductor industry, however, due to the
interest of many major electronic devices vendors and the huge commercialization
of these devices4, materials and technology are constantly expanding and more
differentiated of the semiconductor processes [146]. According to this expansion,
nowadays alternative substrates such as quartz [141], ceramics [147], plastics [148]
and diamond [149, 150] can also be used for fabricating MEMS, although still most
MEMS devices are based on silicon as substrate.

4The three major MEMS vendors are Bosch, STMicroelectronics and Texas Instruments and
they invoice 1011, 970 and 763 US$M respectively due to MEMS devices sales [145].

52

2.4 Micro-Electro-Mechanical Systems (MEMS)

1-yBulkyAcousticyWaveyfiltersyandyduplexers

2-yAntennaytuneryforymobileycommunications

3-yMicrophones

7-yAccelerometeryandygyroscope

6-yMagnetometery(compass)

5-yHumidityyandytemperatureysensor

(1)

(1)

(1)

(2)(3)
(3)

(3)

(4)

(2)

4-yPressureysensor
(2)(3)

(3)

(5)

(2)

(6)

(7)

Figure 2.19: Schematic of a generic current smartphone. In red, the MEMS devices
that can include. Reproduced from [146]

The interest on miniaturized devices has been present since many years ago.
Especially important was the physicist Richard Feynman, who was able to
foreseeing the miniaturization trend and need arising in semiconductor devices
at late fifties [151]. This interest has evolved drastically enabling the possibility
of integrating several MEMS devices in many consumer applications such as
smartphones. A current smartphone contains several MEMS, including motion
sensors (gyroscope and accelerometers), wave filters and antenna duplexers,
microphones using MEMS technology, etc. Fig. 2.19 depicts the MEMS devices
included in a current generic smartphone [146]. Other not so common MEMS
included in few devices are an optical image stabilization (that detects phone
movement and provides feedback to the autofocus mechanism to compensate for
the motion) [152] and an array of micromirrors used for steering light for image
projection in an integrated picoprojector [153, 154]. Mainly because of the huge
commercialization of smartphones, MEMS sales have been drastically increased in
last years and are expected to continue increasing, thus proving the relevancy of
MEMS in electronic industry sector [155, 156].

2.4.2 Micromachining processes

There are two main groups of MEMS manufacturing technologies: bulk and surface
micromachining. The first one defines structures inside a silicon substrate by
selectively etching some parts of it. On the other hand, surface micromachining
creates structures on top of a surface by a succession of thin film depositions and
selective etching processes.

MEMS can be fabricated by a combination of several processes, including: material
deposition, masking specific regions of material and removing parts of material.

53

Chapter 2. State of the art

The main processes used for depositing thin film material layers can be grouped
in those that use chemical reaction and the ones that are based on a physical
reaction:

• Due to chemical reaction:

– Chemical Vapor Deposition (CVD). The substrate is placed inside a
reactor where several gases are supplied. Therefore, the substrate
is exposed to one or more volatile precursors producing the desired
deposit layer on the substrate surface. Many materials can be deposited
using this method, including: silicon, carbon nanotubes, silicon dioxide,
silicon carbide, silicon nitride and polycrystalline silicon (also called
polysilicon) among others. Polysilicon is very used in MEMS surface
micromachining since it is easy to deposit and is similar to silicon. On
the other hand, silicon dioxide and silicon nitride are used as masking
materials in etching processes.

– Electro-Deposition (ED), also known as electroplating. This process is
typically restricted to electrically conductive materials. The substrate
is placed in a liquid solution. Additionally, a counter electrode (usually
platinum) is placed in the solution. Then, a potential is applied between
a conducting area on the substrate and the counter electrode resulting
in the formation of a layer of the desired material on the substrate. ED
is typically used to make films of metals such as copper, gold and nickel
in a thickness from approximately 1µm to more than 100µm.

– Epitaxy. This technology is similar to CVD but if the substrate is
an ordered semiconductor crystal (e.g. silicon), the deposited material
on the substrate surface keeps the same crystallographic orientation.
Similarly, if the substrate is amorphous or polycrystalline the deposited
film also has the same atomic structure. One of the most important
epitaxy methods is the Vapor Phase Epitaxy (VPE) which introduces
several gases in an induction heated reactor where only the substrate is
heated enabling the deposition of the desired material. Advantages of
this process are the high deposited rate of material and the possibility
of producing layers of more than 100µm thickness.

– Thermal oxidation. This is a simply oxidation process of the substrate
surface in an oxygen (O) rich atmosphere. In the oxidation process,
atoms of oxygen are combined with the structure of the substrate, which
means that the film grows actually downwards into the substrate. This
process is limited to materials that can be oxidized and only can form
films of materials that oxides the substrate. Furthermore, when the
oxide layer is thick enough, the oxygen cannot access the substrate
surface and the process is stopped. Thermal oxidation is usually used

54

2.4 Micro-Electro-Mechanical Systems (MEMS)

to form silicon dioxide layers on a silicon substrate due to it can be used
as masking material in subsequent etching processes.

• Due to physical reaction:

– Evaporation. It is a Physical Vapor Deposition (PVD) method to
deposit thin films and basically consists in placing inside a vacuum
chamber the substrate and the source material to be deposited. Then,
the source material is heated to the boil and evaporation point so it is
condensed on all surfaces. Many materials can be deposited using this
method, however the deposited layer strongly depends on direction and
it can result on non-uniform thickness.

– Deposition by sputtering. This technology is also a PVD method,
similar to evaporation but particles of source material are ejected using
a different method. The process of removing atoms of a material
(target) by the impact of energetic particles is known as sputtering.
The substrate and the target are placed in a vacuum chamber, which is
filled with an inert gas (typically argon) at low pressure. Then, a RF
power source ionizes the gas and the ions are accelerated towards the
target, ejecting surface atoms of the target material which is condensed
on all surfaces, including the substrate.

– Spin casting. The material to be deposited on the substrate must be
in liquid form or must be dissolved in a solvent. Then, the liquid is
deposited by a syringe on the substrate surface which is, then, spun
at high revolutions such that the material forms a thin film over the
substrate surface once the solvent is evaporated. This is particularly
useful in photolithography to apply photoresist to substrates. With
this method, single monolayers of molecules can be obtained as well as
layers of tens of micrometers.

The commented chemical and physical deposition methods are depicted in Fig.
2.20.

Another important method for MEMS micromachining is the photolithography.
This process is the transfer of a pattern to a thin film or to a substrate. A
typical photolithography process must follow three steps: photosensitive material
application, light exposure, and developing. First, a thin film of photosensitive
material is deposited on the substrate. Usually, in the MEMS context a photoresist
is used as photosensitive material, which is in liquid form and is applied by spin
casting. The next step is to expose this material to a pattern of light of a specific
wavelength, usually Ultraviolet (UV). The exposure to light causes a chemical
change in the photoresist, allowing some zones to be removed by a solution, called
developer. The third step is to place the deposited photoresist in a developer

55

Chapter 2. State of the art

Chemical vapor deposition

Furnace

GasCinlet:
sourceCmaterialC
NCprecursors

Substrates

Pump
Reactor

Electro-deposition

RFCinductiveCheatingCcoil

GasCinlet:
sourceCmaterialC
NCprecursors

Pump

Reactor
Substrates

HeatedCholder

Vapor phase epitaxy Thermal oxidation

Furnace

Inlet:CoxygenC
orCwaterCvapor Substrates

Container

Substrate

ElectricalC
connector

ElectrolyteCsolution

DCCvoltageCsource

CounterC
electrode

Deposition by sputtering

GasCinlet:
inertCgasCMArB Substrate

Pump

CounterCelectrode

RFCsignal

Electrode

SputteringCtargetArN

Evaporation

VauumCchamber

Substrates

Holder

HeatedCholder
SourceCmaterial

Spin casting

Vacuum
chuck

Substrate

MaterialCtoCbeCdeposited

Vacuum
chuck

DepositedCmaterial

BEFORECSPINING AFTERCSPINING

ChemicalCdeposition

PhysicalCdeposition

Figure 2.20: Micromachining deposition methods representation.

56

2.4 Micro-Electro-Mechanical Systems (MEMS)

solution, then, if the resist material is a positive resist, the exposed material
is removed and the unexposed zones of the photoresist remain. On the other
hand, if the exposed material is resilient and the unexposed material is etched
away, the photoresist is considered a negative resist. The typical result after
a photolithography process is a thin film pattern of photoresist deposited on
a substrate. Then this material can be used as a mask for etching processes,
protecting those covered zones of the substrate.

Etching processes can be used to selectively remove those material parts that are
not protected with a mask or to completely remove a sacrificial layer, previously
deposited, that has been used as support for another layer. Depending on the
application and the desired final structure the most proper processes can be used:

• Wet etching. Basically it consists in introducing a substrate into a liquid,
called etchant, which removes the exposed material. Wet etching processes
can be classified in two groups:

– Anisotropic etching. This etching process produces different etch rates
that strongly depends on the atomic structure of the material and
on the used etchant. This process has been exhaustively studied and
can be used for producing complex three-dimensional structures. The
modelling of anisotropic chemical wet etching is one of the main topics
of the present thesis, thus, it will be detailed in section 2.4.3.

– Isotropic etching. This process is similar to the previous one but
different etchants are used. In this case, there is no dependency on
the substrate atomic structure and it is etched equally in all directions.
Fig. 2.21 depicts a simple comparison of an anisotropic and an isotropic
etching processes.

• Dry etching. The most common dry etching processes are those that cover a
substrate with a plasma. It involves a high-speed stream of glow discharge
(plasma) of an appropriate gas mixture being shot in pulses at a substrate.
The plasma source acts as an etchant and can be either charged (ions) or
neutral (atoms and radicals). The main dry etching processes are:

– Ion milling (or Ion Etching). It is the process of removing atoms by
physical sputtering with an inert gas (typically argon). Atoms of the
substrate are ejected from the surface by transferring momentum from
ions. The systems used are very similar in principle to sputtering
deposition systems but now the substrate instead of the target is
bombarded by ions. Since usually ions approach the substrate
approximately from one direction, this process is highly anisotropic.
Moreover, the substrate can be held rotated to modify the direction of
impact and masks can be used for etching it selectively.

57

Chapter 2. State of the art

– Reactive Ion Etching (RIE). This etching process is similar to the Ion
milling but when the ions are accelerated towards the substrate, they
react at the surface forming another gaseous material that will etch
the substrate chemically. Additionally, the sputtering effect of the ions
on the surface also contributes to the process of removing atoms from
the substrate. Thus, in RIE process there are two contributions, the
chemical etching and the physical sputtering. The first one is usually
isotropic whereas the physical sputtering is highly anisotropic, hence,
by changing the balance between both contributions it is possible to
influence the overall anisotropy of the process. Typical results of RIE
process are shown in Fig. 2.22. Additionally, sputtering yield (i.e.
surface atoms removed per incident ion) may be enhanced significantly
compared to pure physical sputtering and Inductively Coupled Plasma
(ICP) can be used for increasing etch rate. In the present thesis, an
improvement of RIE simulators has been developed thus, this method
is detailed in section 2.4.4.

– Deep Reactive Ion Etching (DRIE). A modification of the RIE process
in which etch depths of hundreds of microns can be achieved with
vertical sidewalls. The original and most used process is based in
the so-called Bosch process since the Robert Bosch company filed the
original patent [157]. This process consists in alternating two different
gas composition in a reactor. The first one creates a polymer on the
surface of the substrate (passivation), then, the second stage of this
method is a RIE such that the polymer layer of horizontal surfaces is
quickly removed by the impact of ions. However, the polymer layers of
vertical surfaces remain since the polymer dissolves very slowly only in
chemical etching. As a result, high aspect ratios can be achieved. For
instance, sub-micron deep trenches with an aspect ratio of 160 can be
fabricate in silicon with DRIE method [158]. Furthermore, the Bosch
process is used for producing through silicon vias of hundreds of microns
deep [159, 160]. Due to the alternation of etching and passivation stages,
the formation of scallops on the sidewalls is common in the Bosch
process [161]. This is depicted in Fig. 2.22. Another DRIE process
is the cryogenic process which is similar to RIE but the substrate is
chilled up to −110 ◦C such that the chemical reaction (which produces
the isotropic etching) slows down while the physical sputtering is still
ejecting substrate atoms [162].

These processes are ones of the most used for MEMS micromachining, however,
there are many variations and new methods being currently under research [163–
165]. By combining different of the listed processes, many current complex MEMS
devices are fabricated. An example of a MEMS structure fabrication process is

58

2.4 Micro-Electro-Mechanical Systems (MEMS)

Container

Etchant

Mask

Etched material

Substrate

Isotropic etching

Container

Etchant

Mask

Substrate

Anisotropic etching

Etched
material

Figure 2.21: Comparison of isotropic and anisotropic wet etching processes.

Reactive ion etching Deep reactive ion etching

Substrate

Mask

Etched
material

Substrate

Mask

Etched
material

Mask

Substrate

Etched
material

Figure 2.22: Comparison of RIE and DRIE dry etching processes. Two possible
results are shown for the RIE example. In the first one the physical sputtering has
more influence which leads to almost vertical sidewalls while in the second example, the
chemical contribution has more influence and it results in a more isotropic etching. Notice
that, in the DRIE example, the scallops have been exaggerated to an easier visualization.

59

Chapter 2. State of the art

0.HSiliconHwafer

1.HThermalHoxidation:H
HHHHSiO2HlayersHgrowth

2.HRemovalHofHSiO2HtopHlayerH
HHHHbyHHFHisotropicHetching.

3.HSiCHdepositionHbyH
HHHHsputteringH

4.HAlHdepositionHbyHsputteringH

5.HPatternHtransfernHonHAlH
HHHHbyHphotolithographyH

6.HPatternHtransfernHonH
HHHHSiCHbyHRIEH

7.HAnisotropicHwetHetchingHofH
HHHHSiHwithHKOHHsolutionH
HHHHandHAlHremoval

Si SiO2 SiC Al

Figure 2.23: Representation of the steps and methods used for a cantilever
micromachining [166].

reproduced in Fig. 2.23. This corresponds to the micromachining process of a
cantilever, a very common structure used as RF switch or resonator [166].

2.4.3 Anisotropic wet etching

In this thesis, both the wet etching of silicon and quartz substrates have been
simulated by using a LS-based method. One of the main advantages of the LS
method is that there is no need to know the crystallographic structure neither
the chemicals reactions involved in the etching process due to the macroscopic
nature of this method. Nevertheless, a brief explanation of the chemical reactions
involved in wet etching process as well as crystallographic structure of silicon and
quartz can be helpful to understand the complexity of the process.

The goal of an etching process is to transfer a pattern to a substrate. The first
etching processes were used in XV century to etch a metal surface with ornaments.
These processes consisted in covering the metal with wax and, then, the desired
pattern was created on the wax by removing some parts of it. Finally the metal
was immersed in an acid solution such that unprotected areas of the metal surface
were chemically removed and the wax pattern was transferred to the metal surface.
In this example, an acid solution was used as etchant and wax was used as masking
material.

A wet etching process can be isotropic or anisotropic as shows Fig. 2.21. In the
first scenario, substrate material is removed at the same velocity in all directions,
but, for anisotropic etching, this velocity depends on atomic structure of the

60

2.4 Micro-Electro-Mechanical Systems (MEMS)

substrate. Therefore, the features of an etching process depends on etchant and on
material substrate. For instance, due to silicon crystallographic atomic structure,
different etchants present different etch rates for each crystallographic orientation.
Additionally, there are etchants that remove silicon isotropically, such as a mixture
of HF and HNO3 [167].

In the area of MEMS, wet etching is usually used for creating patterns in silicon
and other materials like quartz [168–170]. The first use of anisotropic chemical wet
etching on silicon substrates was in the sixties [171] and after that, it was applied
to fabricate power transistors [172]. Nowadays, its usage is much extended due to
its low cost, the capability of batch processing, and the possibility of fabricating
complex structures exclusively with chemical wet etching, such as microprobes
[141, 173], accelerometers [142], microneedles [174] or microchannels for microfluids
applications [175].

Instead of using acids for silicon etching, alkaline solutions such as potassium
hydroxide (KOH), tetramethylammonium hydroxide (TMAH), or Ethylene
Diamine Pyrocatechol (EDP) are commonly used [171, 176, 177]. This is a complex
process that takes place through sequential oxidation and etching reactions [178].
The oxidation process can be produced by a chemical or by an electrochemical
reaction. In the chemical oxidation reaction, surface atoms of silicon that are
terminated with an atom of hydrogen (H) are combined with an atom of oxygen
terminated with an atom of hydrogen, i.e. H is replaced by OH. Although the
hydroxyl group OH− acts as a catalyst in this stage, the active species is typically
H2O in alkaline solutions. This chemical oxidation reaction can be written as:

≡ Si−H + H2O + OH− →≡ Si−OH + H2 + OH− (2.64)

Similar reactions occurs for dihydride and trihydride terminated silicon atoms,
i.e. with two and one backbond(s) respectively. Furthermore, these reactions are
independent of the source of hydroxide solution, such as KOH or TMAH. As can
be observed, both a water molecule and a hydroxyl ion are necessary to be close
to the replaced H in order to oxidise it. Thus, there are two main factors to
determine the reactivity, namely the H terminations and the amount of empty
space in the proximity of them. The number of H terminations varies according to
the crystal orientation of a silicon, therefore, the oxidation rate, which determine
de overall etch rate, depends on the crystallographic orientation of silicon resulting
in a highly anisotropic etching [178].

On the other hand, electrochemical studies have found the existence of measurable
currents during wet etching, thus suggesting an electrochemical oxidation reaction
[179]. In this reaction, also a water molecule is necessary to replace H by OH
terminations, however, this does not depend on the amount of OH− ions. The
water molecule directly reacts with a dangling electron that results from a random
thermal dissociation of Si-H. This dissociation produces two electrons in the
conduction band and leaves enough space for the reaction with a water molecule

61

Chapter 2. State of the art

and it can be produced at any site, which leads to an isotropic etching. The
electrochemical oxidation can be written as:

≡ Si−H + H2O→ Si−OH + 2H+ + 2e− (2.65)

Consequently, the overall anisotropy of a wet etching process is determined by the
relative importance of the two oxidation reactions.

Both oxidation reactions produce a silicon atom OH-terminated, then, in the
etching reaction, this atom is removed from the surface as a Si(OH)4 product.
Consequently, the underlying silicon atoms are now H-terminated and ready to be
oxidized again. The etching reaction is written as:

(≡ Si)3 Si−OH + 3H2O→ 3 (≡ Si−H) + Si (OH)4 (2.66)

Although alkaline solutions have an anisotropic behaviour due to chemical
oxidation predominance, the anisotropy depends on several other factors, namely:
temperature, concentration of the solution, crystallographic orientation of the
substrate, the used etchant and the possibility of adding substances such as
alcohols or surfactants.

Quartz substrates has a more complex crystallographic structure than silicon and
it is formed by silicon and oxygen atoms such that, an atom of oxygen is always
located between two silicon atoms [180, 181]. In a similar manner than silicon,
when a quartz substrate is etched with a hydrofluoride solution (often combined
with ammonium fluoride NH4F, such as ammonium bifluoride NH4HF2), also
presents an anisotropic behaviour [181]. A deeper explanation of the reactions
involved in this etching process can be found in scientific literature [182].

2.4.3.1 Crystallographic orientations

As exposed in the previous section, chemical wet etching presents an anisotropic
behaviour due to the crystallographic structure of substrates, such as silicon or
crystal quartz. This process depends on the used etchant, therefore, the behaviour
of an etchant is characterized by the etch rate at each crystallographic orientation.

Silicon atoms are distributed following a Face Centered Cubic (FCC) lattice. This
lattice is formed by placing cubic cells contiguously, such that the complete silicon
crystal structure is formed by placing the silicon basis (the eight atoms shown
in Fig. 2.24 (a)) at every corner of the cubic cells [183]. Fig. 2.24 (b) shows
a whole cubic cell, including the atoms that are shared with contiguous cells,
which follow the diamond structure. When a whole crystal is cut, different planes
and orientations can be obtained according to the corresponding crystallographic
structure produced.

62

2.4 Micro-Electro-Mechanical Systems (MEMS)

(a) (b)

Figure 2.24: Atomic representation of: (a) basis of silicon and (b) diamond FCC
structure which also corresponds to silicon. Those atoms in red form part of the basis of
the cell, whereas the blue atoms are shared with other adjacent lattice cells.

The most common method to describe atomic planes and directions of a crystal
substrate is the Miller indexes. When the atomic structure follows a cubic lattice
like silicon, an orientation is defined by a three number tuple. Consider an
orthogonal coordinate system, with dimensions x, y, z and unit vector size a. Then,
a plane that intersects x-axis at distance a from the origin and it is parallel
to y- and z-axis (which is the same that intersecting them at ∞) is defined by
(a/a, a/∞, a/∞), i.e. (100). That is, Miller indexes of a plane are constructed by
taking the reciprocals of the intersect points with the axes. If a plane intersects
an axis at some negative point, the negative sign of the point is placed on the
number. For example, if a plane intersects axis y at −a and axis x and z at a/2,
the plane is represented by (a

a/2 ,
a
−a ,

a
a/2), i.e. (21̄2). Correspondingly, a system of

generic planes is defined (hkl), which represents the corresponding perpendicular
vectors 〈hkl〉. In Fig. 2.25 are represented some planes in a cubic cell and the
corresponding Miller indexes. Depending on the cut plane (such as the surface of
a wafer), a minimal Unit Cell (UC) is defined, which is repeated along the lattice.

Meanwhile, crystal quartz presents a hexagonal system, in contrast to silicon which
has a tetragonal system [181, 185]. When Miller indices are used in hexagonal
systems, equivalents planes have indices that appear dissimilar. To overcome this,
the Miller-Bravais indexing system is used in quartz crystals such that a plane is
defined by four indices (hkil), where i = −(h+ k). Fig. 2.26 shows the hexagonal
system used for analysing quartz crystals (a), and the atomic lattice cell of the
α-quartz, formed by silicon and oxygen atoms such that, every oxygen atom is
always located between two silicon atoms (b) [180, 186].

63

Chapter 2. State of the art

Figure 2.25: Several examples of planes intersecting a cubic cell and the corresponding
Miller indexes. Adapted by author from [184].

Z

120 º

120 º
120 º

Silicon
Oxygen

(a) (b)

Figure 2.26: (a) Hexagonal system and the four vectors used for defining Miller-Bravais
indices. The lattice cell is highlighted with orange. (b) Crystal atomic structure of the
quartz lattice cell [186].

64

2.4 Micro-Electro-Mechanical Systems (MEMS)

2.4.3.2 Etch rate crystallographic orientation dependent

According to etching process, each orientation is etched at a different etch rate due
to atomic configuration of crystals. A traditional and useful method to represent
the anisotropy of specific etchants and substrate materials is the stereographic
projection of a sphere [144]. In stereographic projection, crystal lattice is placed
in the center of a sphere and crystallographic directions are projected first onto
the sphere and then they are projected onto a plane under the sphere (see Fig.
2.27(a)). This method does not preserve areas but angles are preserved, thus
making possible to measure angles between crystallographic orientations. Fig.
2.27 (b) shows two examples of stereographic projections of silicon. Due to
crystallographic structure of silicon, any permutation or change of sign of any
element of a generic orientation (hkl) results in the same crystallographic structure.
Thus, all the possible orientations are contained in the area delimited by the
orientations 〈100〉, 〈110〉 and 〈111〉, which is highlighted in red in Fig. 2.27 (b)
[187].

In order to easily visualize the anisotropy of an etchant, the etch rates values
of the different orientations are assigned to different colors and stereographic
representations are coloured accordingly. A thorough characterization of KOH
and TMAH etchants was performed by Sato et al. by etching silicon hemispheres
[188, 189]. Nevertheless, another method that consists in etching a silicon structure
similar to a wagon wheel was used to characterize KOH [190] and it has recently
been proved to obtain accurate characterizations for KOH and TMAH [191].
Furthermore, the usage of additional elements that modify the original anisotropy
of the etchant have been studied, including the addition of Isopropyl alcohol
(IPA) to KOH solution [192–194] and the addition of surfactant Triton X-100
to TMAH solutions [195]. A complete characterization of KOH, TMAH with and
without additives was performed by Gosálvez et al., including results at several
temperatures and etchants concentrations [191]. A simulation result of a wagon
wheel experiment and the reconstructed etch rate stereographic projection of KOH
30 wt% at 61.2 ◦C are shown in Fig. 2.28 [191].

Although the crystallographic structure of quartz is more complex than silicon
structure, the same stereographic projection technique is used for visualizing
the different etch rates depending on crystallographic orientations. The main
planes presented by a quartz crystal are shown in Fig. 2.29 (a). Although first
experiments to characterize the wet etching process of quartz were performed
mainly with Z-cut quartz specimens [169, 181], the etching of quartz hemispheres
has been successfully used for obtaining the etch rate distribution of various
etchants according to crystal orientations [180, 185, 196]. An initial hemisphere
quartz and the resulting hemisphere after an etching process with NH4HF2 solution
are shown in Fig. 2.29 (b) and (c) respectively. In addition, the reconstructed etch
rate stereographic projection of this etchant is shown in 2.29 (d). An accurate

65

Chapter 2. State of the art

110

111

112

001

11-1

11-2

00-1

010 -1101-10 100

121

011

-112

-111

-121

-12-1

-11-1

-11-2

01-1

12-1

1-1-2

1-1-1
10-1

2-1-1
21-1

2-11

101
1-11

100

11-1

01-1

011

001

112

111

121

110

12-1
11-2

00-1

0-1-1

0-10

0-11

1-12 1-21

1-11

101 1-1-1

1-1-2

1-2-1

1-1-1

10-1

<100>

(101)

<00-1>

(1-10)

(10-1)

(011)

<0-10>
<001>

<11-1>
<010>

(111)

(110)

<0-10>

(1-11)

<010>

<001>

<11-1>

010
1-12

(a)

(b)

Figure 2.27: (a) Stereographic projection technique of a (001)-oriented silicon crystal.
(b) Stereographic projections of a (110)- and (100)-oriented silicon crystals.

66

2.4 Micro-Electro-Mechanical Systems (MEMS)

<100>)wafer KOH)30)wt%)at)61.2)ºC

E
tc

h)
ra

te
,)u

m
/m

in

(110)

(111)

(001)

(a) (b)

Figure 2.28: (a) Simulation result of a wagon wheel experiment used for obtaining
etch rate distribution of KOH 30 wt% solution at 61.2 ◦C (reproduced from [187]). (b)
Stereographic projection of the etch rates (reproduced from [191]).

characterization of NH4HF2 as anisotropic etchant of quartz was performed by
Cheng et al. by etching a hemisphere [196].

2.4.3.3 Simulation of anisotropic wet etching

Anisotropic chemical wet etching is a complex process that depends on many
factors, such as etchant solution (e.g. KOH or TMAH), substrate material
(silicon or quartz among others), temperature of the solution, and the pattern
mask applied to the substrate surface protecting specific regions against etching.
Consequently, it is not trivial to predict the result of a concrete scenario and
many experiments had to be performed in order to finally obtain the desired
structure. Of course this methodology would imply a waste of time and resources,
thus, the development of accurate simulators has been of interest for the scientific
community since many years ago.

The first wet etching simulators strategy is known as geometric simulators since the
anisotropic etching is emulated by planes which are evolved at the corresponding
velocity in the normal direction [198]. Therefore, the velocity of every orientation
was needed in order to simulate the process accurately [199]. Several geometric
models were presented and were able to emulate properly the anisotropic etching
[200–202], nevertheless, there are to factors that encourage the research of different
simulators: the complex data base needed of every orientation and the high
computational effort required by these models, specially to compute the interaction
of several planes like etching of both top and bottom sides of a wafer [203].

As an alternative, simulators based on an atomistic strategy were introduced. This
approach describes the crystal substrate as a collection of cells or atoms. Each
atom is connected with the neighbouring atoms according to the crystallographic
orientation, as can be visualized in Fig. 2.30 for some silicon orientations. The
etching process in these models is emulated by removing selectively the surface

67

Chapter 2. State of the art

Z

R

m

r

m

m
m

m

r R

rRr

s

s
x

x

<2-1-10>

<01-10>

<0001>

Max

0

Crystaldquartzdplanes Pre-etchdquartzdhemisphere

Post-etchdquartzdhemisphereSaturateddNH4HF2datd70dºC

)ab)bb

)cb)db

Figure 2.29: (a) Planes of a quartz crystal. Traditional notation of the different planes
according to geometrical shape is shown. In (b) and (c), a pre- and post- etch quartz
hemispheres are shown (obtained with Intellietch [197]). The etching process is performed
using NH4HF2 as etchant. The final etch rate distribution is presented in (d) (obtained
with Intellietch [197]).

68

2.4 Micro-Electro-Mechanical Systems (MEMS)

Surface atoms Bulk atoms

(110) (100) (111)

Figure 2.30: Connections between surface and bulk atoms (blue and white respectively)
in atomistic models for silicon orientations (a)〈100〉, 〈110〉 and 〈111〉. Obtained with
visualTAPAS [204] and reproduced from [187].

atoms. The atoms of the surface are inspected to determine the removal rate
according to their neighbourhood configuration, deciding whether the atom is
removed or remains at the surface.

Within the atomistic strategy, two schemes can be distinguished, namely the
Kinetic Monte Carlo (KMC) and Cellular Automata (CA). In the KMC, each
atom has a different probability depending on its orientation and then, an atom is
randomly selected to be removed from the surface such that those atoms belonging
to an orientation with a higher etch rate have a higher probability to be removed
and vice versa. Hence, when an atom is decided to be removed it is immediately
removed. This method allows a suitable tool for the exploration of the surface
morphology [205, 206] and the simulation of complex MEMS structures [207]. The
removal probability can be obtained by theoretical considerations of the chemical
reactions [208] and by comparing with experimental results, which usually implies
a complex calibration process [209–211].

Another atomistic approach is the CA. A CA system is a lattice of connected
atoms, such that each of them is labelled with a state. Depending on the current
state and the neighbouring atoms, the states are updated after each time step by
applying the same set of rules. The first simulators based on CAs are the discrete
CAs applied to wet etching of silicon [212]. This method removes every atom
surface but the surface atoms with three bulk neighbours, i.e. (100) surfaces. This
simple method can model properly some etchants like KOH but it is very limited
when trying to emulate other etchants or complex surfaces [203].

Another simulator based on CAs is known as stochastic CA [212]. Similarly to
KMC, each atom was assigned with a removal probability depending on the surface
orientation. The possible atom states are only occupied or empty, such that an
occupied atom belongs to the bulk and an empty atom has been etched away [213–

69

Chapter 2. State of the art

215]. The main difference with KMC models is that, while KMC operates purely
sequentially, the CA approach operates with a decide and perform strategy, i.e.
a first iteration is used for deciding which atoms have to be removed depending
on the removal probability of each one and, then, a second iteration removes
the selected atoms and updates the state and the removal probability of their
neighbours. Due to the randomness of this process, usually multifaceted surfaces
at convex corners are not well reproduced.

Zhu and Liu introduced a new scheme based on CA, namely the Continuous
Cellular Automata (CCA) [216]. The CCA avoids the random noise produced
by stochastic CAs. In this method, each atom configuration is associated with a
specific etch rate and have an occupation value between 0 and 1. Initially, every
atom has an occupation 1, then, the etching process is emulated by gradually
reducing the occupation of the surface atoms as indicated by their associated etch
rates. When an atom reaches an occupation ≤ 0, it is removed from the bulk. Due
to the decide and perform strategy, identical atoms are removed simultaneously.

These atomistic models reproduce a macroscopic behaviour (surface evolution) by
the definition of microscopic rules. Many effort has been put by researchers to link
both levels and obtain accurate simulations. Accordingly, a thorough classification
of silicon atoms that allowed the correct emulation of complex surfaces was
presented [217]. Additionally, the effect of physical phenomena enabled to obtain
an accurate set of etch rates for many crystal orientations [218, 219]. Moreover,
the CCA has also proved to properly simulate the usage of additives in silicon wet
etching [220], design of cavities and mesas with sharp corners [221], and quartz
etching with ammonium bifluoride [180].

Despite the good agreement with experimental results, an intrinsic drawback of
atomistic models is that the final result is represented as a cloud of points and it
makes difficult to visualize some complex geometries. Accordingly, in chapter 3 of
this thesis this problem is addressed.

Although the CCA represent a significant improvement respect with geometric
simulators regarding accuracy and required experimental etch rates, this atomistic
method still requires a laborious calibration process to relate experimental
macroscopic etch rates with atomistic configurations of the different atoms in
the lattice. Optimization algorithms are the most common for calibrating the
CCA. Basically, these algorithms start with an initial set of parameters, run a
simulation of a specific experiment, and the error between specific measurements
of experimental and simulated data is calculated. Then, the initial parameters
are modified and these steps are repeated until the measured error is low enough.
The calibration process of the CCA is a complex task that can require tens of
hours to converge and must be performed in order to simulate any etchant or any
configuration change such as different temperature or concentration [180, 222].

70

2.4 Micro-Electro-Mechanical Systems (MEMS)

Consequently, several implementations based on the LS method has been presented
in last years since this calibration process can be avoided [223–226]. In chapter 4
the LS implementation developed for wet etching of silicon and quartz is explained.

2.4.4 Reactive Ion Etching

In wet etching processes, a liquid solution is used as etchant, conversely, in dry
etching processes a gaseous environment, usually in vacuum, is used as etchant
[227]. The RIE is a dry and plasma etching process in which both chemical and
physical effects contribute to remove material from the substrate. The etch rate of
this process is substantially higher than purely physical processes like ion milling,
in which only physical sputtering effect takes part in the etching process. One
of the most characteristic features of RIE is the capability of highly anisotropic
etching without relying on crystallographic orientations of the substrate material,
in contrast with wet etching which strongly depends on crystal planes (see section
2.4.3.2).

For RIE process, the substrate is placed between two parallel plates inside a
reactor in which both plasma and DC bias voltage are created using a Capacitively
Coupled Plasma (CCP). The substrate is situated on one of the electrodes which
is electrically isolated, whereas the other one is connected to ground. A strong
RF signal (typically 13.56 MHz at a few hundred watts) is applied between the
two electrodes in order to generate a plasma from the selected etch gases. Due
to the high mobility of electrons, this RF signal makes them impact with the
substrate platter electrode. Thus, due to its DC isolation, a large negative voltage
is created [228]. On the other hand, ions have low mobility and the plasma acquires
a positive voltage as depicted in Fig. 2.31(a). This DC bias voltage between
the plasma and the electrode produces ion bombardment towards the electrode,
exposing the substrate to heavy ion bombardment. The ions react chemically with
the surface of the substrate due to neutral species stuck at the surface but also
can remove material by physical sputtering. Due to chemical reactions, the etch
yield is substantially increased which is known as ion enhanced etching [229].

Additionally to etching produced by ion bombardment, chemical isotropic
etching is also produced at the substrate surface. Nevertheless, the overall
etching behaviour of RIE process is an anisotropic etching independently of the
crystallography of substrate material. This anisotropic behaviour is obtained
thanks to two factors: the normal direction of ions that mostly impact only on the
horizontal surface of the substrate and the formation of a sidewall passivation layer
that reduces or completely stops the lateral etching or underetching produced by
chemical reactions [230]. This passivation layer is formed by redeposited etched
mask atoms and inert species, including species from the etchant gas solution
condensed in vertical walls, or non-volatile etch products [231]. This anisotropic
process is depicted in Fig. 2.31(b). As it is shown, the mask material is also

71

Chapter 2. State of the art

Mask

Substrate

+
+ ++

+
++ +

+
+

++

++ +

+
Inert-species

Redeposited
mask

Etched-surface

Passivation-
layer

+ + + +

Neutrals

Etchant-gas-inlet

Pump

RF-signal

Substrate

Plasma

Parallel-plates

+-+-+-+-+-+-+-+-+-+-+-+

+

+
+ + +

+

+
+++

Ions

(a) (b)

Figure 2.31: RIE schematic setup (a) and anisotropic etching produced by verticality
of ions bombardment and the formation of a sidewall passivation layer (b).

etched away due to physical sputtering of ions. Hence, selectivity5 of silicon to
photoresist masks is usually 1-10:1 [232].

Etch rate and anisotropy are consequence of balancing etching and deposition
reactions, which is usually done by selecting properly the concentration of etchant
solution or using additional gases [231]. Consequently, RIE can produce perfectly
vertical walls, fully isotropic etching and positively or negatively tapered walls
[232] (as shown in Fig. 2.22).

Many materials can be etched using RIE processes, including silicon, silicon dioxide
(SiO2), polysilicon, and silicon carbide (SiC). Relying on the target material,
different gaseous solutions that react with the material must be used, for example,
silicon can be etched in fluorine, chlorine or bromine plasmas such as SiF4,SiCl4 or
SiBr4 [233]. On the other hand, silicon dioxide is normally etched with C2F6,C3F8
or CHF3 [232].

Many parameters like RF power, bias voltage, chamber pressure, temperature,
etch gas flow rates, and the usage of different gas mixtures will determine the
etching behaviour, namely etch rate, selectivity, sidewall angle or other responses
[234, 235].

In comparison with wet etching, RIE is economically much more expensive due
to equipment requirement. Some materials like silicon or silicon dioxide, can be
etched by both methods, thus, when deciding which process must be used in
a micromachining experiment, the usage of a RIE must be justified. However

5The term selectivity denotes the capability of removing the target material without removing
other materials. For instance, the capability of removing the substrate while preserving the mask
material that protect specific regions of the substrate. Thus, a high mask selectivity is suitable
for etching processes.

72

2.4 Micro-Electro-Mechanical Systems (MEMS)

there are materials that only can be etched with RIE, like silicon carbide and
titanium carbide. Each process has advantages over the other, for instance, RIE
process presents a higher etch rate, photoresist masking works well for many RIE
applications, etching only one side of substrate needs no protection on backside,
high aspect ratio can be fabricated simply, and sidewall angle can be adjusted
by modifying parameters of the experiment. On the other hand, wet etching is a
simpler process that allows a high throughput in batch mode, it is easy to work
with any wafer shape and size, and the resulting surface is less damaged than with
RIE process [232].

Due to the good features that present both processes, usually they are combined in
MEMS micromachining to produce complex structures, like the example shown in
Fig. 2.23 in which SiC is etched with a RIE process using aluminium as masking
material and a KOH solution is used for etching a silicon wafer following the
pattern created on the SiC. Many MEMS examples that use both methods can be
found, like prismatic beams [236] and torsional resonators [237].

2.4.4.1 Simulation of Reactive Ion Etching

RIE is a complex process that relies on many parameters, such that process
output depends on many externally controlled variables. Additionally, due to the
complex physical and chemical processes involved in RIE, many non-ideal effects
occur in experiments, including undercutting of mask due to small passivation
layer failures [238], undercutting of the sidewall at the bottom corner of a trench
[239, 240], and high aspect ratio structures can be etched more slowly due to a flux
reduction of the arriving ions (RIE lag effect) or even faster because the amount of
passivation species that arrives at the bottom is decreased (inverse RIE lag effect)
[241, 242]. Originally, trial-and-error strategies were used until the desired result
was achieved. Nevertheless, as more accuracy was required by industry, plasma
etching simulators capable to predict both, the plasma features and the etching
process properties, became fundamental [243]. These tools allow to emulate the
effect of varying several external parameters of an experiment [244].

One of the main issues in modelling plasma etching is the wide range of physical
measurements and temporal scales, ranging from atomistic measurements like
removed atoms, to macroscopic dimension such as reactor and substrate sizes
[243]. Accordingly, a typical strategy to deal with this problem in RIE simulation
is to divide the process into two different domains, namely the reactor-scale and
the feature-scale.

The reactor-scale domain provides the incident particles fluxes, yields, energy and
angular distribution relying on equipment and experimental scenario (pressure,
bias power, gas flow and concentration, etc.). This data can be provided by
equipment simulations or by information obtained directly from experiments [245–

73

Chapter 2. State of the art

247]. This reactor-scale data is then used as a data base by the feature-scale
simulator.

The feature-scale simulation tool is commonly divided in three main stages:

• Flux calculation: given a parametrized structure, this stage calculates local
fluxes of the different species at each face of the structure being etched. The
visibility and orientation of the faces are considered in this stage. There are
mainly two methods to calculate the local fluxes, the first one consists in
integrating the fluxes (provided by reactor-scale domain) over the solid view
angles [248, 249]. The other way is by performing Monte Carlo simulations
of the particles impacting on the structure according to the data provided by
reactor-scale domain [246]. This simulated particles can be absorbed, thus,
changing the surface composition (for example forming a passivation layer
that reduces the etch rate) or can be reflected and reemitted [250].

• Etch rate calculation: this stage calculates the local etch rate of each face
being etched according to the species local fluxes previously calculated, the
yields of the particles and the composition of the surface [251, 252].

• Profile evolution: According to the local etch rates, this stage updates the
surface of the structure being etched. There are several methods for evolving
the surface. The string method and the improved method of characteristics
represents the surface as a string of nodes connected by straight lines [253].
Although they are simple algorithms, they present problems at sharp corners
[254]. Another evolution technique is the cell-based method [255], which
is equivalent to the CA representation of section 2.4.3.3. This technique
is well combined with Monte Carlo simulations [256]. Although cell-based
method provides excellent results, promising LS implementations have been
presented in last years. Kokkoris et al. presented a three-dimensional LS-
based RIE simulator of silicon dioxide and DRIE of silicon [257]. This model
was able to reproduce the lag and inverse lag effect. On the other hand,
Radjenović et al. used a simpler fluxes model but introduced the usage
of the SFM for plasma etching [258]. Ertl and Selberherr presented a LS
implementation for deposition, RIE and DRIE that efficiently used the SFM
in combination with RLE to reduce computational effort and memory usage
[259, 260]. The advantages of the LS method is the trivial formation of
sharp or smooth surfaces, however, usually an explicit parametrization of
the surface is required to calculate local fluxes, therefore, the implicit surface
must be extracted from implicit function.

All of these modules must be executed iteratively to advance progressively the
surface since fluxes and surface composition change with the etched surface
topography. Notice that some simulators include the reactor-scale simulation in

74

2.4 Micro-Electro-Mechanical Systems (MEMS)

this iterative process such that, the new profile of the structure is considered for
the calculation of the fluxes [250].

In chapter 5 the implementation of a LS module for profile evolution developed
in the present thesis is detailed. This module is used in combination with the
software Anetch developed by the Fraunhofer IISB [261]. This tool emulates the
RIE of silicon dioxide in C2F6 gas solution.

75

Chapter 3

Improvement of the visual
representation of atomistic wet
etching simulators by means of the
Level Set method

This chapter presents an application of the LS method to improve CCA-based
simulators results oriented to chemical wet etching process. Since these results
are sets of unconnected atoms, the goal of the LS implementation is to obtain a
continuous surface from these points in order to improve the results visualization.

First the visualization-related drawbacks of the CCA are introduced in section 3.1
as well as the motivation for the implementation of a LS method to improve CCA
results. Then, section 3.2 explains the two different models used, including the
required numerical techniques. In this section, the developed algorithms required
by the two models are also described. Later, section 3.3 collects the details
of the two developed implementations, namely, an original LS implementation
that updates the whole three-dimensional space and a local LS implementation
based on the SFM. Additionally, this section includes the algorithms of both
implementations. In section 3.4 several examples are studied and results of both
implementations are compared and characterized against CCA results. Finally,
conclusions are presented in section 3.5.

77

Chapter 3. Visual representation improvement

(a) (b)

Figure 3.1: Two results of a CCA-based wet etching simulator proving the difficulty of
visualization: (a) uncoloured cloud of points and (b) coloured points according to their
normal vector. Images obtained with Intellietch [197].

3.1 Introduction and drawbacks of cellular automata
simulators

The most currently used simulation methods for MEMS micromachining processes
are based on atomistic approaches. In particular, the CCA is commonly used for
simulating the anisotropic wet etching process. By continuously removing surface
atoms, the CCA emulates the etching process, thus, resulting in a set or cloud of
atoms. The resulting three-dimensional structure depends on many factors such
as the etchant, temperature, mask pattern used to protect specifics regions of the
substrate, and the crystallographic orientation of the material. These dependencies
allow to obtain many different complex structures, containing both sharp and
smooth surfaces.

Despite of accurate results obtained with the CCA, final results are a cloud of
unconnected points because of intrinsic atomistic nature of the CAs. Therefore,
it is hard to visualize correctly some details of structures, especially when dealing
with complicated topologies as shows Fig. 3.1(a). In addition, the CCA approach
introduces some noise due to the calibration process required for obtaining the
atomistic etch rates from experimental macroscopic measurements [222]. As a
consequence, a robust technique must be applied in order to ease visualization
and understanding of the structures.

The method currently used for improving the final visualization (for example in
Intellietch commercial software [197]) is to shade the points depending on their
normal vector. Unfortunately, in complex morphologies of some structures the
shading accuracy of the method is not good enough and adds too much noise, so
the visualization quality decreases greatly (see Fig. 3.1(b)). Thus, in order to
improve the visualization, it is necessary to obtain a continuous surface from the
information of the remaining atoms. This process is known as image or surface (in

78

3.2 Image reconstruction with the Level Set method

three dimensions) reconstruction and, when applied to MEMS structures must be
sufficiently versatile to reconstruct all the different kinds of topologies that can be
obtained with anisotropic wet etching.

Accordingly, in this thesis the usage of a LS algorithm for image reconstruction
from scattered points is proposed.

3.2 Image reconstruction with the Level Set method

There are many methods for surface reconstruction [262–266]. In particular,
triangulation methods such as Delaunay triangulations and Voronoi diagrams
are very popular [267–269]. This triangulation technique generates a mesh from
unconnected points by connecting the points with their adjacent points, forming
triangles that fulfil the Delaunay condition, i.e. the circumferences defined by the
three points of all the triangles have no other point within their interior. Hence,
every point is connected with its neighbouring points and a continuous surface can
be reconstructed.

Although these techniques can provide suitable results in many applications, they
are not adequate for noisy data and data that can present holes or boundaries [270].
Furthermore, they generally require a constant density of points and, CCA results
of wet etching simulations usually present complex parts that are formed only by
a few atoms and structures with holes, especially when etching simultaneously the
top and the bottom of a substrate.

On the other hand, the LS method has proven to be robust even with noisy data
that is formed by different densities [271, 272]. In addition, the LS approach can
handle the splitting and joining of several surfaces with no additional effort, which
result very valuable when is applied to MEMS structures. Another advantage of
the LS with respect to triangulation methods is the possibility to generate non-
linear surfaces.

The LS is a technique to evolve a front (surface in three dimensions) according
to some physical fields or properties. The main idea of the LS when applied to
three-dimensional surface reconstruction is to start with an initial surface such
that it surrounds all the scattered points. Then, the initial surface is evolved up
to the points by the LS method, thus preserving the continuity of the surface. A
simple two-dimensional example of this process is depicted in Fig. 3.2.

On the other hand, the high computational cost of the LS method can be
drastically reduced by applying local techniques like the SFM and implementing
a parallel algorithm to be executed on a GPU.

79

Chapter 3. Visual representation improvement

−4

0

4

8

FrontScattered points

Distance
value

(a)

(b)

−2

0

2

−4

Figure 3.2: Simple two-dimensional example of image reconstruction from scattered
points. The front and the corresponding SDF are shown: (a) initial front, (b) evolved
front adapted to the scattered points.

3.2.1 Minimal surface energy model

Despite some models for LS image reconstruction have been presented [7, 273],
in this thesis the minimal energy model presented by Zhao et al. [272] has been
chosen since this model does not need any additional information, only the data
points (i.e. atoms of CCA results, from now on referred as set S), and also because
of the complex structures that result from wet etching simulations. Although some
information from the atomistic configuration, like neighbouring atoms connected
to a specific atom, could be used as input parameters to improve the reconstruction
process, CCA models usually produce noisy data as well as isolated atoms (see Fig.
3.1(b)). Therefore, a model which only requires scattered points to reconstruct
the surface has been chosen.

This energy model defines an energy function of a surface which is proportional to
the sum of the distance values of those points that form the surface. This energy
function is defined as:

E(Γ) =
[∫

Γ
dm(~x)ds

]1/m
, (3.1)

80

3.2 Image reconstruction with the Level Set method

where Γ is a surface, ds the surface area, m ∈ [1,+∞) variates the smoothness of
the surface, and

d(~x) =
√

(x− xS)2 + (y − yS)2 + (z − zS)2 (3.2)

is the unsigned distance between surface points ~x = (x, y, z) and the S points
~xS = (xS , yS , zS).

The purpose of this model is to find a surface adapted to S points, which
corresponds to a local minimum of surface energy. Therefore, initial surface is
evolved following the gradient descent of the energy function:

∂E(Γ)
∂Γ = 1

m

[∫
Γ
dm(~x)ds

] 1
m−1 [

m · dm−1(~x)∇d(~x) · ~N + dm(~x)κ
]
, (3.3)

where ~N is the normal vector of the surface and κ the mean curvature. When the
minimal energy is achieved, (3.3) turns out:

dm−1(~x)
[
∇d(~x) · ~N + 1

m
d(~x)κ

]
= 0. (3.4)

Because of the balance between both terms, ∇d(~x) · ~N and d(~x)κ, of (3.4), the
reconstructed surface is more flexible in high sampling density regions and more
rigid in regions with a low sampling density [271]. There are two minima that
satisfies (3.4), the first one is the trivial solution Γ = ∅ and the second one Γ = Γ0
is the desired surface attached to S points. The surface Γ0 will approximate the
real and desired shape of the S cloud if the sampling density of data is enough to
resolve the real shape. In two dimensions, the local minimum corresponds with a
polygon connecting adjacent points by straight lines, however in three dimensions,
the minimal surfaces is smoother and it has no edges [272].

In order to achieve the reconstructed surface that corresponds to the minimal
energy of (3.4), an initial surface Γ that encloses all the S points is evolved in the
normal direction according to the energy gradient flow of (3.3), leading to:

∂Γ
∂t = −∂E(Γ)

∂Γ
~N

= −
[∫

Γ d
m(~x)ds

] 1
m−1

dm−1(~x)
[
∇d(~x) · ~N + 1

md(~x)κ
]
~N.

(3.5)

In this study, m = 1 is used since it allows to obtain accurate results and is the
less computational costly. Accordingly, (3.5) turns out:

∂Γ
∂t

= −
[
∇d(~x) · ~N + d(~x)κ

]
~N. (3.6)

When the surface is far away from S, both terms make the surface shrink and
finally the equilibrium of (3.4) is achieved, resulting in:

∇d(~x) · ~N = −d(~x)κ. (3.7)
81

Chapter 3. Visual representation improvement

When the surface is close to S points, ∇d(~x) and ~N tend to be perpendicular and
the left side of (3.7) tends to zero, thus, a small distance value d(~x) is required to
fulfil the condition, which corresponds to those points attached to S points.

The election of a proper initial surface is important since, if it is too far from
S, the surface may need many steps to reach the solution, which requires a
high computational effort. Additionally, in complex topologies, a different local
minimum energy could be found and the desired surface would not be reached. In
practice, a good initial surface is formed by a contour of the distance function, i.e.
d(~x) = ε, being ε a constant. In section 3.2.5, an algorithm to find such initial
surface is described.

Once the velocity of the surface is defined by (3.6), the surface is embedded in the
zero contour of the φ function:

Γ(t) = {~x : φ(~x, t) = 0}. (3.8)

Then, the front velocity is extended to every level and the chain rule as well as
the LS formulation are applied, leading to:

∂φ(Γ(t), t)
∂t

= ∂φ

∂t
+ ∂Γ(t)

∂t
· ∇φ = 0. (3.9)

Hence, by taking (3.6), the LS equation is obtained:

∂φ

∂t
=
[
∇d(~x) · ~N + d(~x)κ

]
~N · ∇φ, (3.10)

which can be written as:

φt =
[
∇d(~x) · ~N + d(~x)κ

]
|∇φ|. (3.11)

The application of the LS method for evolving the surface allows to take advantage
of all the benefits explained in sections 2.1 and 2.2, like trivial handling of
topological changes and formation of sharp and smooth surfaces.

3.2.1.1 Numerical schemes

The LS equation of the energy model (3.11) can be developed to the form

φt = ∇d(~x) · ∇φ+ d(~x)κ|∇φ|, (3.12)

which is a convection-diffusion equation like (2.59) (studied in section 2.2.3), where
~V = ∇d(~x) corresponds to a completely external velocity field and the second term
corresponds to a local curvature dependent motion with b = d(~x). Each term
must be solved with the corresponding numerical techniques in order to ensure

82

3.2 Image reconstruction with the Level Set method

convergence and numerical stability. Upwind differencing technique can be used
to solve the first term. Thus, taking into account that

∇d(~x) =
(
∂d(~x)
∂x

,
∂d(~x)
∂y

,
∂d(~x)
∂z

)
, (3.13)

and, following the upwind differencing algorithm 1, the proper derivative, forward
φ+
q or backward φ−q for q = x, y, z, are chosen depending on the corresponding sign

of ∂d(~x)
∂q . As forward and backward derivatives, different numerical approximations

can be used, such as first-order derivatives or even the WENO scheme if more
accuracy is required.

Regarding the second term, when φ is a SDF, the curvature κ can be approximated
by (2.36). Additionally, central second-order derivatives must be used for solving
this term. Because of this term, it is necessary to take a restrictive time step
∆t = O(∆x2). In particular, if a forward first-order Euler time step is applied,
(3.12) turns out:

φn+1 = φn + ∆t [∇d(~x)∇φn + d(~x)κn|∇φn|] , (3.14)

and the corresponding CFL condition (2.58) has to be used in order to avoid
divergence, resulting in:

∆t < 1
max

{
2d(~x)
(∆x)2 + 2d(~x)

(∆y)2 + 2d(~x)
(∆z)2

} . (3.15)

In particular, the following time step has been utilized to ensure convergence in
all the tested cases:

∆t = 0.9
max

{
2d(~x)
(∆x)2 + 2d(~x)

(∆y)2 + 2d(~x)
(∆z)2

} (3.16)

Notice that, although the first term only has a time step ∆t = O(∆x), the
restriction of this second term applies to the whole equation since it is the most
restrictive.

3.2.2 The convection model approach

Due to restrictive time step required by the energy model represented by the
parabolic curvature-dependent equation (3.14), many iterations may be required
in order to achieve the minimal energy surface.

Depending on the scenario, a simpler and faster model can result more interesting.
Accordingly, the convection model was introduced [272]. In this model the surface
velocity is defined by

∂Γ(t)
∂t

= −∇d(~x). (3.17)
83

Chapter 3. Visual representation improvement

Thus, the LS equation results in:

φt −∇d(~x) · ∇φ = 0. (3.18)

In this model, each point of the surface is moved towards its closest S point until
the whole surface reaches a local equilibrium, which corresponds with a linear
approximation that connects all the points.

3.2.2.1 Numerical schemes

The simple hyperbolic LS equation (3.18) corresponds to a motion generated by
a completely external field, as described in section 2.2.1, with ~V = −∇d(~x).
Accordingly, the upwind differencing method has to be used analogously as in
the energy model to solve the first term of (3.14).

Regarding time discretization, if a forward first-order Euler time step is applied,
(3.18) turns out:

φn+1 = φn + ∆t [∇d(~x) · ∇φn] (3.19)

and the CFL condition (2.45) result in:

∆t < 1
max

{
|Dx|
∆x + |Dy|

∆y + |Dz|
∆z

} , (3.20)

where Dq = ∂d(~x)
∂q , for q = x, y, z. In order to fulfil this CFL condition, the next

time step has been employed:

∆t = 0.5
max

{
|Dx|
∆x + |Dy|

∆y + |Dz|
∆z

} , (3.21)

ensuring convergence in all the tested examples. The convection model can be
solved with a time step ∆t = O(∆x) because of the curvature dependency has
been removed, thus, less iterations than in the energy model (3.11) are required
to reach the S points.

3.2.3 Mesh generation

The first step in both models (energy and convection) is to build a three-
dimensional mesh enclosing all the S points. Since the CCA resulting structures
follow the crystallographic structure of silicon, distances between atoms is known.
Thus, if the substrate size of the structure is known as well as the unit lattice cells
used in CCA simulations, the minimal distance between atoms dist min can be
obtained directly, avoiding to calculate the distances between each two points and

84

3.2 Image reconstruction with the Level Set method

selecting the lowest. Hence, the mesh resolution is proportional to this minimal
distance between atoms:

∆x = n · dist min, (3.22)

where n is a positive and real number, which is chosen depending on the required
accuracy of the reconstructed surface. A lower n will result in a finer grid with more
points, which produces a more accurate surface. The effect of mesh resolution on
reconstructed surface accuracy is studied in section 3.4.1. Furthermore, a regular
mesh such that ∆x = ∆y = ∆z is built.

Once the resolution grid is chosen, the absolute dimensions must be specified.
Accordingly, the minimal minq and maximal maxq values in each dimension
q = x, y, z, are determined among S points. Now, an offset value of 4∆x is added
to each minimal and maximal value to allow the determination of a proper initial
surface exterior to S points and surrounding them (see section 3.2.5). Then, the
number of mesh points in each dimension is calculated, such that:

numq =
⌊
maxq −minq

∆x

⌋
. (3.23)

The mesh generation process is summarized in algorithm 8.

Algorithm 8: Mesh generation algorithm
1 Determination of dist min according to S points features.
2 Selection of resolution ∆x according to the desired accuracy.
3 Determination of minimal and maximal values minq and maxq for q = x, y, z.
4 Extension of the mesh dimensions by minq = minq + 4∆x and
maxq = maxq + 4∆x.

5 Calculation of number of mesh points with (3.23).

3.2.4 Distance matrix

Once the mesh has been generated, distance matrix d(~x) needs to be calculated.
This matrix contains the distance between each mesh point and its closest S point.
This task could result very costly if a direct algorithm is used since

numx · numy · numz · numS , (3.24)

distance calculations would be necessary (being numS the number of points in
S) and then, the minimal one for each grid point would have to be selected. In
order to drastically reduce this computational effort, a propagating algorithm is

85

Chapter 3. Visual representation improvement

proposed. The main idea is to discretize S points ~xS = (xS , yS , zS) over the mesh:

i = round
{
xS−minx

∆x
}

j = round
{
yS−miny

∆x

}
k = round

{
zS−minz

∆x
}
.

(3.25)

Then, for the corresponding mesh points (i, j, k) the exact distance to the closest
~xS points is calculated. After that, these mesh points propagate the coordinates of
their closest S points to their neighbouring mesh points so they can calculate the
exact distance to the S points. This process is repeated until every mesh point has
a distance value assigned. Accordingly, two stacks are used to track the current
mesh points, thus, each mesh point is only visited six times (one per neighbouring
point) and only six distance values are calculated per mesh point. The details of
the proposed propagating algorithm are presented in algorithm 9.

Algorithm 9: Propagating algorithm for matrix distance calculation.
1 For every ~xS point, determine the best mesh point xi,j,k approximation with

(3.25). This ~xS is associated to xi,j,k as its Closest S Point (CSP). In case of two
~xS are approximated to the same mesh point, only the closest will be associated
as the CSP of the corresponding mesh point.

2 Assign an initial distance value to every mesh point, ensuring that this value is
higher than all the possible distance values.

3 Calculate the exact distance between the xi,j,k points and their CSP obtained in
step 1.

4 Initialize stacks P1 and P2.
5 Add all the xi,j,k points obtained in step 1 to P1.

while P1 and P2 are not empty do
for every p1 point from P1 do

6 Calculate the distance between each of the six neighbouring points np1 of
p1 and the CSP associated with p1.
if the new distance value is smaller than the previously stored then

7 Store the new one.
8 If np1 is not included in P2, add it.

for every p2 point from P2 do
9 Calculate the distance between each of the six neighbouring points np2 of

p2 and the CSP associated with p2.
if the new distance value is smaller than the previously stored then

10 Store the new one.
11 If np2 is not included in P1, add it.

86

3.2 Image reconstruction with the Level Set method

This algorithm may produce a small error when calculating the matrix distance.
For instance, if the mesh is not enough accurate, two S points can be discretized to
the same mesh point even they are not at the same distance. Thus, only the closer
of these two points will be considered in the propagating algorithm. Nevertheless,
the distance matrices produced by this algorithm for several examples have been
compared to the same matrices obtained by a direct algorithm (which ensures a
perfect minimum distance calculation for every point), proving that the proposed
propagating algorithm only produces a maximum error lower than mesh resolution
(usually lower than ∆x/3) and an average error per mesh point 4 or 5 orders of
magnitude lower than mesh resolution. After comparing the resulting structures
of both algorithms, it is concluded that the produced error is negligible.

Furthermore, both the energy (3.14) and the convection model (3.19) use the
gradient of the matrix distance ∇d(~x) (3.13), which is constant in the whole
simulation and it is used by both models for the application of the upwind
differencing scheme. To calculate the three matrices ∂d(~x)

∂q , for q = x, y, z, second-
order central derivatives (2.28) are used in each spatial dimension.

3.2.5 Initial surface determination

Starting the evolution surface process with a proper initial surface is very
important since ensures the convergence to S points as well as computational
cost can be reduced. Instead of starting the reconstruction process with a trivial
surface like a rectangular cuboid (Fig. 3.2 depicts an equivalent two-dimensional
example) a contour of the distance matrix d(~x) is chosen as initial surface. In
particular, for the MEMS structures studied in this thesis, the distance value
chosen as contour is

ε = 2∆x, (3.26)

which ensures the convergence of the surface to S points with a few iterations while
being far enough so the surface can reproduce properly the shape of the structure.

To determine those mesh points that satisfies condition (3.26) and encloses all the
S points, an iterative tagging algorithm has been implemented based on the one
presented by Zhao et al. [272]. The proposed procedure is presented in algorithm
10.

By applying this algorithm, all the exterior mesh points with a distance value lower
than ε are tagged as initial surface. Additionally, the rest of exterior and interior
mesh points, with respect to this new initial surface, are tagged accordingly.

Now, every mesh point is tagged as interior, exterior or initial surface. This
enables to embed this initial surface inside an implicit SDF φ. First, distances
between every mesh point and initial surface need to be determined. To accomplish
this task, the propagating algorithm 9 is used. However, instead of discretizing

87

Chapter 3. Visual representation improvement

Algorithm 10: Determination of initial surface.
1 Tag every mesh point as interior but the two most exterior rectangular cuboids

that are tagged as exterior.
2 Initialize stack P and include every exterior point.

while P is not empty do
3 Extract the first p point from P .

for each neighbouring point np of p do
if np is interior then

if distance value assigned to np ≥ ε then
4 Tag np as exterior.
5 Add np to stack P .

else
6 Tag np as initial surface.

the ~xS points, the mesh points tagged as initial surface will be used, such that
they are their own CSP. This produces a zero distance value that corresponds to
the zero LS of φ.

Once every mesh point has a distance value to its closest initial surface point, these
values are signed according to their tags, i.e. negative for interior and positive for
exterior points. Therefore, the SDF φ is built.

Notice that local LS methods like the SFM do not require φ values for all the mesh
points, but only for those active points close to the surface. Hence, a more efficient
algorithm is explained in section 3.3.2 instead of using the propagating algorithm.

3.3 Developed implementations

When implicit SDF φ has been obtained, the evolution process of the surface can
be started. In this thesis two LS-based implementations for image reconstruction
have been implemented for comparison. In the first one, the whole grid space is
computed, whereas in the second, a local SFM implementation has been developed.

In both implementations, once the evolution surface process is finished, the final
step is to extract the implicit surface from the corresponding SDF for visualization.
The Matlab function isosurface is used for this task. This function takes the
mesh, the φ values and the contour value (the zero level) as input and it produces
a list of explicit faces and vertices that can be visualized.

88

3.3 Developed implementations

3.3.1 Original LS

As commented in section 2.1.6, the implicit function φ must be maintained as a
SDF during the whole front evolution process in order to guarantee convergence,
accurate results, and the application of SDF properties (see section 2.1.5). In this
first implementation, the reinitialization method presented by Sussman et al. has
been used [42].

This technique keeps the implicit function φ as a SDF by taking

φt = Sgn(φ0) (1− |∇φ|) (3.27)

to steady state after each LS iteration, where Sgn is the smoothed sign function

Sgn(φ0) = φ0√
φ2

0 + ∆x2
, (3.28)

and φ0 is the SDF of initial surface. If a simple Euler time step is applied to (3.27),
it turns out:

φ̃− φ
∆t̃

= Sgn(φ0)(1− |∇φ|), (3.29)

where ∆t̃ is the time step applied in the reinitialization process, φ is the implicit
function resulting from LS iterations and φ̃ is the new SDF that can be obtained
with:

φ̃ = φ+ ∆t̃ · Sgn(φ0)(1− |∇φ|). (3.30)

A typical and proper value of the time step is

∆t̃ = ∆x/10, (3.31)

and the operator |∇φi,j,k|, for a generic grid point i, j, k, must be calculated with
the next expression to ensure stability [42]:

|∇φi,j,k| =

√
max {Atx, Bbx}+ max

{
Aty, B

b
y

}
+ max {Atz, Bbz} if φ0

i,j,k > 0√
max {Abx, Btx}+ max

{
Aby, B

t
y

}
+ max {Abz, Btz} if φ0

i,j,k < 0

0 otherwise

(3.32)
where

Atq =
(
max

{
φ−p , 0

})2
, Abq =

(
min

{
φ−p , 0

})2
Btq =

(
max

{
φ+
p , 0

})2
, Bbq =

(
min

{
φ+
p , 0

})2
,

(3.33)

being q = x, y or z such that φ−q is the backward derivative in dimension q and φ+
q

is the analogous forward derivative. Notice that A and B are chosen to represent
89

Chapter 3. Visual representation improvement

(a)

(b)

Figure 3.3: Comparison of original LS implementation using: (a) first-order accurate
spatial differences and (b) fifth-order WENO scheme.

backward and forward differences, whereas the superscripts t and b indicate the
max or min operator respectively.

By applying this method, the zero level of φ is kept intact but the rest of the levels
are modified to fulfil the properties of a SDF [42].

Due to the high computational effort of computing the whole three dimensional
grid, the two models are used to accelerate the executing process, i.e. the
convection model is used in first place for a few iterations and then the surface is
adapted to S points with the energy model. In particular, for an initial surface
obtained like commented in section 3.2.5, only 3 iterations of the convection model
are sufficient to accelerate the total simulation time significantly while allowing the
energy model to correctly adapt.

In this thesis, two different approaches for spatial backward and forward derivatives
have been implemented, namely, the fifth-order accurate WENO scheme [53, 54]
and the first-order simple derivatives (2.27) and (2.26). Nevertheless, due to
the higher computational effort required by WENO scheme, the same simulation
process takes about 3 to 5 times more than first-order differences. Fig. 3.3 shows
a comparison of a surface reconstructed by both schemes when they are applied

90

3.3 Developed implementations

with the same conditions and for the same number of iterations. For comparison,
an accelerometer structure has been chosen [142]. As can be observed, although
the result of first-order derivatives looks softer and less accurate, both are very
similar. Thus, the first-order accurate difference approach has been selected.

The pseudocode of this original LS-based implementation is presented in
algorithm 11. Notice that the variables φ, φ̃,∇φ, |∇φ|, d(~x), Dq, φq, φ

±
q , κ are three-

dimensional variables of mesh size, storing the corresponding value for every mesh
point. Hence, all the operations are performed for each point individually. For
instance, when applying the upwind differencing, the proper derivative φx(i, j, k)
of the point (i, j, k) is selected by checking the sign of Dx(i, j, k), which can be
different for another point (i2, j2, k2). Nevertheless, for simplicity and clarity, in
algorithm 11 the individual-point notation is omitted.

3.3.2 Local SFM

Another LS implementation for evolving the initial surface up to S points has been
implemented. This second approach implements the local SFM, thus, after each
time step a perfect SDF is built, avoiding to use any reinitialization process.

Similarly to the previous implementation, only first-order derivatives are used,
hence, according to the SFM, the lists L0, L+1, and L−1 as well as the temporary
lists S0, S+1, and S−1 are used to keep the active points updated (see section
2.2.4.2). Additionally, each grid point is labelled with the state 0, 1,−1, 2,−2
depending on their φ value. This information is collected in table 2.1.

Accordingly, the implicit φ function is only needed at those points close to the
surface. Thus, there is no need to use the propagating algorithm 9 to build φ over
the whole mesh. Instead of this and taking into account the point tags (or states)
produced by initial surface determination algorithm 10 (i.e. exterior, interior or
initial surface (IS)), the algorithm 12 is used to embed the surface in the SDF φ.

This implementation also applies, in first place, three iterations of the convection
model, followed by the energy model until convergence is achieved. According to
procedures 4, 5, 6, and 7, the steps of this implementation are shown in algorithm
13.

91

Chapter 3. Visual representation improvement

Algorithm 11: Original LS image reconstruction implementation.

1 Generate a three-dimensional mesh according to algorithm 8.
2 Build the distance matrix d(~x) between mesh and S points with the propagating

algorithm 9.
3 Calculate ∇d(~x) with second-order central derivatives (2.28).
4 Find a proper initial surface with algorithm 10.
5 Build the SDF φ of the initial surface by applying the propagating algorithm 9

and keep these values (φ0) for reinitialization process.
6 Calculate the time steps for convection model ∆tc, energy model ∆te, and

reinitialization process ∆t̃, according to (3.21), (3.16), and (3.31) respectively.

-Convection model-
for iter=0; iter<3; i++ do

7 Calculate forward and backward spatial derivatives φ+
x , φ

−
x , φ

+
y , φ

−
y , φ

+
z , φ

−
z .

8 Use Dq to determine by upwind differencing algorithm 1 the proper derivatives,
backward of forward, in each dimension q.

9 Update implicit function φ with (3.19) using ∆tc.
10 Calculates |∇φ| according to (3.32).
11 Apply the reinitialization process to φ by (3.30) to obtain φ̃.
12 Do φ = φ̃.

-Energy model-
while no convergence do

13 Calculate |∇φ| with second-order central derivatives (2.28).
14 Approximate curvature κ with (2.36).
15 Calculate forward and backward spatial derivatives φ+

x , φ
−
x , φ

+
y , φ

−
y , φ

+
z , φ

−
z .

16 Use Dq to determine by upwind differencing algorithm 1 the proper derivatives,
backward of forward, in each dimension q.

17 Update implicit function φ with (3.14) using ∆te.
18 Calculates |∇φ| according to (3.32).
19 Apply the reinitialization process to φ by (3.30) to obtain φ̃.
20 Do φ = φ̃.
21 Extract implicit final surface for visualization.

92

3.3 Developed implementations

Algorithm 12: Determination of implicit SDF φ in the SFM implementation.
Data: state = {exterior, interior, IS}
Data: List of active points = {L+1, L−1, L0}
for each mesh point (i, j, k) do

switch state do
case IS

1 φ(i, j, k) = 0
2 state aux(i, j, k) = 0
3 add (i, j, k) to L0
4 break;

case exterior
if any adjacent point of (i, j, k) has state = IS then

5 φ(i, j, k) = ∆x
6 state aux(i, j, k) = 1
7 add (i, j, k) to L+1

else
8 φ(i, j, k) = 1.5∆x
9 state aux(i, j, k) = 2

10 break;
case interior

if any adjacent point of (i, j, k) has state = IS then
11 φ(i, j, k) = −∆x
12 state aux(i, j, k) = −1
13 add (i, j, k) to L−1

else
14 φ(i, j, k) = −1.5∆x
15 state aux(i, j, k) = −2
16 break;

17 state = state aux

93

Chapter 3. Visual representation improvement

Algorithm 13: SFM implementation for surface reconstruction.

1 Generate a three-dimensional mesh according to procedure 8.
2 Build the distance matrix d(~x) between mesh and S points with the propagating

algorithm 9.
3 Calculate ∇d(~x) with second-order central derivatives (2.28).
4 Find a proper initial surface with algorithm 10.
5 Build the SDF φ of the initial surface and add the points to the corresponding lists with

algorithm 12 .
6 Calculate the time steps of the convection model ∆tc and the energy model ∆te according

to (3.21) and (3.16) respectively.
-Convection model-

for iter=0; iter<3; i++ do
for each L0 point ~xi do

7 Calculate φ+
x , φ

−
x , φ

+
y , φ

−
y , φ

+
z , φ

−
z .

8 Use Dq(~xi) to determine, by upwind differencing algorithm 1, the proper
derivative to use in each dimension q.

9 Update implicit function φ with (3.19) using ∆tc.
if φ(~xi) < −0.5∆x then

10 remove ~xi from L0 and add it to S−1.
if φ(~xi) > 0.5∆x then

11 remove ~xi from L0 and add it to S+1.

12 Update L+1 and L−1 lists with procedure 5.
13 Transfer points from auxiliary lists by applying procedure 6.
14 Add corresponding points to L±1 according to procedure 7.

-Energy model-
while no convergence do

for each L0 point ~xi do
15 Calculate φ+

x , φ
−
x , φ

+
y , φ

−
y , φ

+
z , φ

−
z .

16 Use Dq(~xi) to determine by upwind differencing algorithm 1 the proper derivative
to use in each dimension q.

17 Calculate |∇φ| with second-order central derivatives (2.28).
18 Approximate curvature κ with (2.36).
19 Update implicit function φ with (3.14) using ∆te.

if φ(~xi) < −0.5∆x then
20 remove ~xi from L0 and add it to S−1.

if φ(~xi) > 0.5∆x then
21 remove ~xi from L0 and add it to S+1.

22 Update L+1 and L−1 lists with procedure 5.
23 Transfer points from auxiliary lists by applying procedure 6.
24 Add corresponding points to L±1 according to procedure 7.
25 Extract implicit final surface for visualization.

94

3.4 Results

3.4 Results

In this section, first, the effect of the mesh resolution used by the LS method on
the reconstructed surfaces is studied. Later, several surfaces reconstructed with
both the original LS-based (algorithm 11) and the local SFM-based (algorithm
13) implementations are shown. Every reconstructed surface is compared with the
corresponding CCA result in order to visualize the improvement obtained with
the LS implementations. In addition, some features of resulting structures are
measured in order to calculate the error produced by both implementations. CCA
results are obtained with Intellietch [197] which applies a colouring technique to
atoms regarding their normal vectors. Finally, a discussion about the execution
times of the implementations is presented.

A compilation of all the common simulation parameters and numerical techniques
used in both implementation are collected in table 3.1. Both implementations
have been written using sequential Java programming language. Moreover, they
are executed on a testing machine consisting of Intel core i7 at 3.4 GHz with 8 GB
of RAM using 64 bit Windows-based server and Java Virtual Machine (version
1.8.0 31).

It is important to notice that CCA structures results are formed only by surface
atoms, therefore, the most of the times they are not closed surfaces. However,
the LS implementations, start from an initial closed surface that shrinks up to S
points. For this reason, a set of points can be reached by two different LS surfaces
(for example from the top and the bottom) at the same time, producing holes in
the surface. Thus, the energy of the surface is not always able to achieve the local
minimum that corresponds with the final surface (contrary to the developed LS
application of chapter 5, which does allow to achieve a local minimum of energy
because of the type of surfaces).

Accordingly, it has been found a proper amount of iterations that, given the
initial surface obtained according to section 3.2.5, produces accurate and closed
surfaces, improving significantly results visualization. Particularly, in the original
LS implementation, 3 iterations with the convection model, followed by 40 of
the energy model. On the other hand, in the SFM a perfect SDF is built
after each iteration and the SDF is not modified by the reinitialization process,
therefore between 40 and 70 iterations of the energy model are required in this
implementation. Similarly, 3 iterations of the convection model are previously
applied.

95

Chapter 3. Visual representation improvement

Expression Description

∆x = n · dist min
Mesh resolution proportional to the
minimal distance between CCA
atoms.

∆tc = 0.5∆x
max{|Dx|+|Dy|+|Dz |}

Time step for convection model.

∆te = 0.9∆x2

6 max{d(~x)}
Time step for energy model.

∆t̃ = ∆x
10

Time step for reinitialization process
(only used in original LS
implementation).

∇d(~x) = (Dx, Dy, Dz) Gradient of distance matrix.

Dq = φl+1−φl−1
2∆

Spatial second-order central
derivatives of distance matrix for
q = x, y, z and l = i, j, k.

φ+
q = φl+1−φl

∆x
Forward first-order derivative of φ.

φ−q = φl−φl−1
∆x

Backward first-order derivative of φ.

κ = φxx + φyy + φzz
Approximation of the local curvature
for a SDF.

φqq = φl+1−2φl+φl−1
∆x2

Second-order accurate approximation
for the second derivatives of
q = x, y, z.

Table 3.1: Numerical techniques and values used in both LS and SFM developed
implementations (algorithms 11 and 13 respectively).

3.4.1 Impact of the mesh resolution

The resolution of the mesh used by the LS method has an important impact
on the accuracy of the reconstructed surface. In order to study this effect, the
accelerometer of Fig. 3.3 has been reconstructed with several resolution values
using both implementations. Furthermore, two distances of the structure are
measured to compare the error with the original CCA result. This CCA structure
can be visualized in Fig. 3.4, including the mask used in the wet etching process
and a close-up, and it has the following features:

• Silicon substrate size: 1260x1260x70 µm3.

• Surface orientation: (100).

• Number of UCs: 128x128.

96

3.4 Results

B A

Figure 3.4: CCA simulation result of a simple accelerometer micromachining process.
Measurements A and B are shown for comparison with LS reconstructions.

• Measurement A (width of the beam): 14.8 µm.

• Measurement B (width of the central mass): 419.6 µm.

Seven different resolutions have been used to build the LS mesh in order to
reconstruct this cloud of points. These resolutions have been chosen such that each
one has the double of mesh points than the previous resolution approximately, since
the margin points added in each dimension are not considered (see section 3.2.3).
Since it is a three-dimensional grid, each dimension must be multiplied by 3

√
2. For

each reconstruction process, table 3.2 shows: the value n which multiplies dist min
to produce ∆x (column 1), the corresponding mesh dimensions in voxels 1(column
2), the iterations of the energy model (the convection model is always applied
for 3 iterations) (column 3), the execution time of the whole process (column 4),
the distances of measurements A and B of the reconstructed structures (columns
5 and 6), and the relative errors of these measurements (columns 7 and 8), i.e.
the difference between CCA and reconstructed measurements divided by the mesh
resolution. Each row is subdivided into two values in order to present results of
both implementations, the upper values are the original LS results and the lowers
correspond to the SFM implementation ones.

As can be observed in table 3.2, in the most of the cases the errors are smaller than
mesh resolution. Although a finer resolution does not imply a smaller error (in a
specific measurement), the accuracy of reconstructed surfaces is actually increased
since a more detailed visualization of planes is observed as shows Fig. 3.5. This
figure shows the reconstructed surfaces corresponding to several cases of table 3.2,
including measurements A and B.

1The term voxel refers to volumetric pixel, and it is the minimal cubic unit that forms a
three-dimensional object. In the LS method, each mesh point has a distance value assigned that
defines the embedded surface and, thus, every mesh point corresponds to a voxel.

97

Chapter 3. Visual representation improvement

∆
x

d
is

t
m

in
M

es
h

(v
ox

el
s)

E
ne

rg
y

it
er

.
R

ec
on

s.
ti

m
e

(s
)

M
ea

su
re

A
(µ

m
)

M
ea

su
re

B
(µ

m
)

er
ro

r
A

∆
x

er
ro

r
B

∆
x

1.
0

59
8x

59
8x

39
40

94
.0

16
.6

42
0.

3
0.

86
0.

33
70

37
.0

16
.9

42
1.

8
1.

00
1.

03

1.
26

47
6x

47
6x

33
40

50
.8

17
.5

42
2.

9
1.

01
6

1.
23

70
24
.6

17
.4

42
1.

9
0.

98
0.

85

1.
58

76
38

0x
38

0x
28

40
27
.9

16
.4

42
2.

3
0.

48
0.

80
70

13
.3

16
.0

42
1.

6
0.

36
0.

60

2.
0

30
3x

30
3x

24
40

15
.6

18
.0

42
1.

5
0.

76
0.

45
70

7.
3

17
.7

42
1.

9
0.

69
0.

35

2.
52

04
24

2x
24

2x
21

40
10
.1

17
.9

42
5.

7
0.

58
1.

13
50

4.
1

18
.7

42
5.

5
0.

73
1.

10

3.
18

19
4x

19
4x

18
40

7.
2

20
.2

42
6.

4
0.

8
1.

00
50

3.
3

20
.6

42
6.

1
0.

86
0.

96

4.
0

15
6x

15
6x

16
40

4.
6

17
.4

42
0.

8
0.

3
0.

14
40

1.
6

19
.8

42
3.

6
0.

59
0.

47

T
ab

le
3.

2:
R

ec
on

st
ru

ct
io

n
pa

ra
m

et
er

s
an

d
re

su
lts

,
in

cl
ud

in
g

m
ea

su
re

m
en

ts
of

th
e

si
m

pl
e

ac
ce

le
ro

m
et

er
us

ed
fo

r
vi

su
al

iz
in

g
th

e
eff

ec
t

of
m

es
h

re
so

lu
tio

n.
Fo

r
ea

ch
ca

se
,b

ot
h

th
e

or
ig

in
al

LS
(u

pp
er

ro
w

s)
an

d
th

e
SF

M
im

pl
em

en
ta

tio
n

(lo
w

er
ro

w
s)

re
su

lts
ar

e
pr

es
en

te
d.

98

3.4 Results

Original LS SFM

420.3 um
16.6 um

425.7 um
17.9 um

420.8 um
17.4 um 423.6 um

19.8 um

425.5 um
18.7 um

421.6 um
16.0 um

421.8 um
16.9 um

422.3 um
16.4 um

(a)

(b)

(c)

(d)

Figure 3.5: Representation of the effect of mesh resolution in the original LS and
the SFM implementations, by reconstructing a simple accelerometer with four different
resolutions: ∆x

dist min
= (a) 1.0, (b) 1.5876, (c) 2.5204, and (d) 4.0. Measurements A

and B are shown in each case. The SFM presents sharper results than original LS
implementation.

Regarding the accuracy of the original LS in comparison with the SFM
implementation, both methods present similar errors in all the cases and are in
close proximity to each other. Nevertheless, the SFM presents sharper results,
which is more stressed in higher resolutions (coarser meshes) (see Fig. 3.5).

In relation to execution times, in all the experiments the SFM has been more than
twice faster than original LS while obtaining better results, proving the efficacy
and efficiency of this technique. Moreover, the relation of computational cost with
mesh size can be observed in Fig. 3.6. The original LS method computational
cost is O(N3), being N the number of points in each dimension. For example, if
the number of points in each dimension is doubled, i.e. the total mesh points is
multiplied by eight, the execution time will be theoretically, eight times higher.
Thus, execution time is directly proportional to total mesh points. This behaviour
is observed in the left graph of Fig. 3.6, for example, for ∆x

dist min = 1.0 the
number of mesh points is 13946556, while for ∆x

dist min = 2.0 the number of mesh
points is 2203416, which is 6.33 times lower. Accordingly, the execution times

99

Chapter 3. Visual representation improvement

0 2 4 6 8 10 12 14

xr10
6

0

10

20

30

40

50

60

70

80

90

100

Totalrmeshrpoints

E
xe

cu
tio

n
rti

m
er

(s
)

1.0

1.26

1.5876

2.0

2.5204

3.18

4.0

0 2 4 6 8 10 12 14

xr10
6

0

10

20

30

40

50

60

70

80

90

OriginalrLS

SFM

1.0

1.26

1.5876

2.0

2.5204

3.18

4.0

E
xe

cu
tio

n
rti

m
er

(s
)

Totalrmeshrpoints

Totalrexecutionrtime Loopsrexecutionrtime

OriginalrLS

SFM

Figure 3.6: Representation of the computational time of both implementations for the
mesh sizes of table 3.2. In red are shown the corresponding ∆x

dist min
factors. The left

graph represents the execution time of the whole algorithms whereas in the right graph
only the loops evolution (convection and energy) times are considered.

are 94.0 and 15.6 s respectively, i.e. a relation of 6.03 that is in close proximity
to the theoretical value. However, this behaviour is not completely achieved in
coarser meshes since other parts of the algorithm, like matrix distance calculation,
become more relevant (21.7% of the total execution time for ∆x

dist min = 4.0 in
contrast with 9.4% for ∆x

dist min = 1.0). If only the execution time of the evolution
loops (convection and energy) are considered, this behaviour is almost perfectly
achieved, as shown in the right graph of Fig. 3.6, where the execution time of the
loops follows an almost perfect straight line.

Similarly, the computational times of the SFM implementation are also shown in
Fig. 3.6. The theoretical computational cost of the SFM is O(N2), so if the number
of points in each dimension is doubled, i.e. the total mesh points is increased by a
factor of four, the execution time is also multiplied by four. Thus, computational
time is proportional to total mesh points as well as in the original LS but the
proportion is lower. This behaviour is perfectly visualized in both graphs of Fig.
3.6. Accordingly, the case with numx = 598 (n = 1.0) has an execution time of
37.0 s, while for the case numx = 303 (n = 2.0) the execution time is 7.3 s which is
in close proximity to the expected theoretical value 9.5 s. However, this theoretical
behaviour is not perfectly achieved because of the strong dependency of the SFM
on the surface morphology, i.e. this method not only depends on the mesh size
but on the active points of the surface. Nevertheless, an important reduction of

100

3.4 Results

computational time is obtained by using the SFM-based implementation as show
both graphs of Fig. 3.6.

Finally, according to the results of this section, in the next reconstruction processes
examples, the mesh resolution

∆x = 1.5876 · dist min, (3.34)

will be used since it allows to obtain accurate results with a low error and preserves
similar visualization details than ∆x = 1.0 · dist min, while keeping an execution
time of a few seconds. Accordingly, the corresponding number of iterations will
be used as well, i.e. 3 iterations of the convection model followed by 40 iterations
of the energy model in the original LS implementation and 70 in the local SFM
implementation.

3.4.2 Convex corners

The first example is a simple wet etching experiment of silicon that shows the
underetching phenomenon and the formation of different crystallographic planes
[274]. The details of the simulated experiment are:

• Silicon wafer (100) oriented with 2500x2500 µm2 size.

• 128x128 UCs are used in the simulator.

• Micromachining process:

– Application of the square mask pattern of silicon nitride shown in Fig.
3.7.

– Wet etching with KOH 40 wt% at 81 ◦C for 190 minutes.

– Remove the mask.

• Measurement A (width of the mesa): 1597 µm.

• Measurement B (long of the mesa): 1602 µm.

• Measurement C (height): 193.4 µm.

The simulated CCA result is shown in Fig. 3.7(a). Intellietch simulation tool
applies a shading process to the CCA resulting points according to normal vector
of discrete points. Nevertheless, in the close-up of the figure it is observed that the
resulting structure is still a cloud of unconnected points, making the visualization
of crystallographic planes difficult.

This surface is reconstructed using both implementations. These results are
presented in Fig. 3.7(b) and (c) for the original LS and the SFM implementations

101

Chapter 3. Visual representation improvement

Mask
A
B

AB
A

B

C

C

C

(a)

(b) (c)

Figure 3.7: Convex corners results: (a) CCA, (b) original LS, and (c) SFM
implementations. The mask used in the micromachining process is also shown.

respectively. Measurements A, B, and C are compiled in table 3.3 as well as
the corresponding errors with respect to CCA measurements. Although both
implementations present very similar results, the SFM errors are lower and the
steps produced in the silicon surface are better observed (see close-ups of Fig.
3.7) in this implementation result. Additionally, it has been 2.6 times faster than
original implementation.

3.4.3 Microneedles

The next example is an array of microneedles formed by a succession of dry and
wet etching processes [275]:

• Silicon (100) wafer of 600x600 µm2.

• 184x184 UCs.

• Micromachining process:
102

3.4 Results

Masks

A

B

C

C

A
B

C

A

B

(a)

(b) (c)

Figure 3.8: Microneedles results: (a) CCA, (b) original LS, and (c) SFM
implementations. The masks used in the micromachining process are also shown.

– Deposition of the left mask shown in Fig. 3.8.

– DRIE up to 240 µm depth.

– Remove the applied mask.

– Apply the mask on the right.

– DRIE up to 320 µm depth (additional 80 µm).

– Remove the mask.

– Wet etching with KOH 40 wt% at 70 ◦C.

• Measurement A (height of the top part of the needle): 36.3 µm.

• Measurement B (width of a needle head): 7.54 µm.

• Measurement C (height of a needle): 313.6 µm.

For this example a coarser mesh had to be used since, due to the high depth of the
structure, many mesh points were created and too much memory was required.
As a consequence, the testing machine was not able to reconstruct the structure.
Thus, instead of using ∆x = 1.5876 · dist min, a value of ∆x = 2.274 · dist min
has been used. Nevertheless, the errors obtained by both implementations are still
small.

103

Chapter 3. Visual representation improvement

In this example, the difference between execution times of original and SFM has
been increased. Particularly, the SFM implementation has been 5.7 times faster
as presented in table 3.3. This is because the majority of the mesh points are
not computed by the SFM due to this particular structure. On the other hand,
both results shown in Fig. 3.8(b) and (c) respectively, are in close proximity with
each other and with the CCA result (a). The improvement obtained by both LS
approaches can be especially well visualized in the close-up.

3.4.4 Accelerometer

Another reconstructed surface is the result of the micromachining process of a
three-axis accelerometer [142]. Notice that, in this simulated experiment, the
silicon wafer is etched at both sides (top and bottom):

• Silicon sample (100) with 3780x1260x70 µm3 size.

• 512x170 UCs. Notice that only the surface atoms are processed by the
CCA simulator Intellietch, thus, the vertical UCs dimension depends on the
etching time and atoms are added during the simulation.

• Micromachining process:

– Deposition of the upper mask shown in Fig. 3.9 on both sides of the
wafer, top and bottom.

– Wet etching with KOH 40 wt% at 70 ◦C for 20 min.

– Remove the pattern (lower mask) of Fig. 3.9 from the top and the
bottom sides.

– Wet etching with KOH 40 wt% at 70 ◦C for 45 min.

– Remove both masks.

• Measurement A (width of the first mass): 543.7 µm.

• Measurement B (width of the beam of the second module): 9.3 µm.

• Measurement C (width of the beam of the third module): 9.3 µm.

The resulting CCA structure is shown in Fig. 3.9(a). In this complex structure
there are many different crystallographic orientations, which make difficult to
calculate the normal vector of the atoms at those complicated topologies. A
consequence of this can be visualized in the close-ups of Fig. 3.9(a), where many
atoms are not properly coloured by the simulator.

104

3.4 Results

Masks

A

B

C

A A

B

C

B

C

(a)

(b) (c)

Figure 3.9: Accelerometer results: (a) CCA, (b) original LS, and (c) SFM
implementations. The mask (upper) and the pattern (lower) used in the micromachining
process are also shown.

In addition to these complicated topologies, this structure is formed by holes and
accurate small parts, like the beams. Despite all of these difficulties, both LS
implementations are capable to reconstruct flawlessly the surface as shown in Fig.
3.9(b) and (c). Especially interesting are the close-ups, showing those parts where
the CCA presents a low accuracy but, anyhow the LS approaches could reconstruct
the surface. In this case, both implementations achieved very similar results and
errors (see table 3.3) but, again, the SFM is 2.9 times faster than original LS.

3.4.5 Wagon wheel

Finally a complex wagon wheel structure is used to prove the versatility of
the developed LS-based implementations. Wagon wheels experiments are used
to characterize a specific wet etching process [191]. The particular simulated
experiment is:

• 200x200 µm2 silicon wafer (100) oriented.

• 184x184 UCs.
105

Chapter 3. Visual representation improvement

Mask A

B

C

C C

A A

BB

(a)

(b) (c)

Figure 3.10: Wagon wheel results: (a) CCA, (b) original LS, and (c) SFM. The mask
used in the micromachining process is also shown.

• Micromachining process:

– Deposition of the mask shown in Fig. 3.10.

– DRIE up to 20 µm of depth.

– Wet etching with KOH 40 wt% at 70 ◦C for 3 min.

– Remove the mask.

• Measurement A (long of the spoke): 55.8 µm.

• Measurement B (distance between the two central spokes): 89.13 µm.

• Measurement C (depth): 21.88 µm.

The reason these kind of experiments is used to obtain the etch rates of specific
crystallographic orientations is because many complex planes appear during wet
etching process. These planes correspond with the spokes of the resulting
structure. As can be seen in the CCA result in Fig. 3.10(a), the spokes are
very thin in some parts and, as a consequence, many atoms are not correctly
represented by the CCA simulator, which can make hard to study this type of
experiments (see close-ups of Fig. 3.10).

The results provided by both LS implementations present a significant improve-
ment as can be seen in Fig. 3.10(b) and (c). Nevertheless, in this case the SFM
presents more accurate results and lower errors, as exposed in table 3.3. In addi-
tion, the SFM implementation has been able to reconstruct even those thin parts

106

3.4 Results

of the spokes formed by single atoms, like the spokes used in measurements A and
B (close-ups of Fig. 3.10(c)). Contrary, the original LS implementation has not
been able to be so accurate and separated surfaces have been formed as can be
observed in Fig. 3.10(b). Regarding the computational time, the SFM is 2.8 times
faster.

3.4.6 Computational behaviour

Finally, Fig. 3.11 shows two graphs comparing the execution time of the mains
parts of both implementations. Regarding the original LS implementation, the
most costly part is clearly the evolution loops, which include the calculation
of spatial derivatives and the update of SDF, and the application of the
reinitialization process. These two parts of the loops cost practically the same
in all the examples, taking, each one, more than 40% of the total time. Because
of this, the matrix distance determination (which uses the propagating algorithm
9) only takes around 10% of the whole reconstruction process.

On the other hand, in the SFM implementation, especially the lists update sub-
routine takes significantly less time (between 15 and 30%) than the reinitialization
process in the first implementation. Also, the time taken by this subroutine is lower
than the calculation of spatial derivatives and the φ update. As a consequence,
the propagating algorithm used in distance matrix determination, becomes more
relevant, taking up to 47.6% of the time in the microneedles example.

Another interesting behaviour that can be seen in Fig. 3.11 is the reduction of the
build φ subroutine contribution in the SFM implementation. This is because the
propagating algorithm is avoid and the faster and direct solution of algorithm 12
is used.

A less important time-consuming part of the algorithm is labelled as rest of
algorithm in Fig. 3.11. This part includes several steps like reading S points,
initial surface determination, calculation of the time steps, mesh generation, and
calculation of the derivatives of the matrix distances. All these tasks have been
grouped because of their low execution times in comparison with the rest of the
parts.

Generally, the SFM implementation always takes much less time than original
LS implementation for reconstructing the same structure. In particular the
first implementation has been 2.6, 5.7, 2.9, and 2.8 times slower than the SFM
implementation for the studied examples and, in the most of the measurements,
the SFM obtains smaller errors.

107

Chapter 3. Visual representation improvement

E
xa

m
pl

e
M

es
h

R
ec

on
s.

M
ea

su
re

m
en

ts

(v
ox

el
s)

ti
m

e
(s

)
A

(µ
m

)
er

ro
r

A
∆

x

B
(µ

m
)

er
ro

r
B

∆
x

C
(µ

m
)

er
ro

r
C

∆
x

C
on

ve
x

co
rn

er
s

37
9x

37
9x

36
37
.1

15
93

0.
59

15
95

1.
04

19
2.

1
0.

19
Fi

g.
3.

7
14
.2

15
95

0.
34

16
00

0.
31

19
3.

4
0.

00
M

ic
ro

ne
ed

le
s

38
0x

38
0x

20
4

18
1.

7
38
.1

2
1.

13
8.

26
0.

45
31

4.
3

0.
45

Fi
g.

3.
8

31
.7

37
.9

1.
00

8.
9

0.
85

31
4.

0
0.

26
A

cc
el

er
om

et
er

50
1x

14
94

x3
5

17
6.

1
54

4.
7

0.
39

11
.5

0.
87

12
.0

1.
06

Fi
g.

3.
9

61
.6

54
4.

4
0.

28
11
.6

0.
90

12
.0

1.
06

W
ag

on
w

he
el

54
2x

54
2x

66
12

8.
2

54
.8

0
2.

67
90
.2

5
2.

99
21
.9

6
0.

22
Fi

g.
3.

10
45
.4

55
.2

7
1.

42
89
.4

9
0.

96
21
.9

0
0.

05

T
ab

le
3.

3:
C

om
pi

la
tio

n
of

re
co

ns
tr

uc
tio

n
ex

am
pl

es
pa

ra
m

et
er

s
an

d
m

ea
su

re
m

en
ts

.
Fo

r
ea

ch
ex

am
pl

e,
m

ea
su

re
m

en
ts

of
bo

th
im

pl
em

en
ta

tio
ns

,o
rig

in
al

LS
(u

pp
er

ro
w

)
an

d
SF

M
(lo

w
er

ro
w

),
ar

e
pr

es
en

te
d.

108

3.5 Conclusions

U

2U

4U

6U

8U

1UU

12U

14U

16U

18U

2UU

U

1U

2U

3U

4U

5U

6U

7U

T
im

ec
.s

u

T
im

ec
.s

u

OriginalcLS SFM

Convexc
cornersc

Microneedles Accelerometer
Wagonc
wheel

Convexc
cornersc

Microneedles Accelerometer
Wagonc
wheel

Matrixcdistance

Build

Reinitialization

Restcofcalgz

Derzcandcupdate ɸ

ɸ
Matrixcdistance

Build

Restcofcalgz

Derzcandcupdate ɸ

ɸ

Updateclists

41zU

41z8

11z2

43z3

42z7

6z42

44z4

42z6

42z1

41z8 1Uz1

43z5

25z1
24z9

2Uz6

47z6

15z9

44z8

26z4

19z2

44z2

29z8

19z6
6z72

Figure 3.11: Graphs representing the contributions of the different subroutines used in
both LS implementations.

3.5 Conclusions

In this chapter, two LS-based approaches have been developed to improve the
visualization of wet etching CCA-based simulator results. Atomistic simulators
like the CCA always provide a resulting structure formed by a cloud of unconnected
atoms. This can make hard to visualize the results.

Accordingly, the application of a LS-based technique to construct a continuous
surface from the cloud of points resulting from the CCA has been proposed. In
particular, an energy model that depends on local curvature of surface has been
used.

Two approaches have been implemented. The first is based on the original
LS method, where all the mesh points are updated in every iteration and a
reinitialization process is required to guarantee stability and convergence. The
second implementation is a local SFM-based that updates only those points close
to the surface, resulting in a more efficient approach.

First, a study has been made to determine the adequate parameters, like mesh
resolution and number of iterations. Then, both implementations have been
compared with the CCA results in four examples. Additionally, some features
of the structures have been measured in order to characterize the error of both
implementations. The errors produced by both LS implementations are usually
lower than LS mesh resolution.

109

Chapter 3. Visual representation improvement

Despite the completely different topologies presented by the studied four examples,
both LS implementations have been able to reconstruct flawlessly all of them.
The final surfaces are always continuous even in those complicated parts of the
structures. In general, the SFM implementation obtains more accurate results and
lower errors, than the original LS-based, being capable to reconstruct even those
accurate parts defined by single atoms. In addition, the SFM has been between
2.6 and 5.7 times faster than the other approach.

In conclusion, the developed LS implementations have been able to improve visual
representation of CCA results applied to MEMS micromachining. Especially
interesting is the SFM approach since it obtains errors usually lower than mesh
resolution and the results are provided in just tens of seconds. Thus, it can be
very useful to ease the design of MEMS.

110

Chapter 4

Level Set method for wet etching
simulation

After the improvement of CCA results visualization by means of the LS method
applied as a surface reconstruction process, in this chapter, the LS approach is used
to simulate wet etching process. In the first place, a SFM-based algorithm that uses
directly information taken from experiments is developed. Three implementations
of this LS algorithm are developed. The first one is a pure sequential CPU
approach, which is used for validating the proposed SFM algorithm. This approach
is compared with a state-of-the-art CCA model similar in terms of computational
efficiency and accuracy of results.

Furthermore, two parallel implementations of the SFM algorithm are developed,
namely a multi-core CPU and a many-core GPU. A comparison between both
implementations is performed, proving the excellent computational efficiency
achieved when executing the SFM algorithm on a GPU.

The proposed SFM algorithm is applied to the simulation of complex MEMS
micromachining processes, based on silicon and quartz substrates. These results
are compared to a CCA approach, including a direct comparison with experimental
results.

This chapter is structured as follows. In section 4.1 the most advanced atomistic
models as well as the currently existing LS-based simulators of wet etching process
are introduced. Then, section 4.2 explains how the experimental data is used by
the developed simulator. Later, in section 4.3 technical details of the proposed
SFM-based algorithm are given. Parallel implementations of this algorithm are
introduced in section 4.4, including the CPU and the GPU versions. Finally, the

111

Chapter 4. Level Set method for wet etching simulation

results obtained with all of these implementations are shown and compared with
experimental and CCA ones in section 4.5.

4.1 Introduction and drawbacks of previous wet
etching simulators

Chemical wet etching is a very useful and important bulk micromachining process
for MEMS fabrication as explained in section 2.4.3. The key aspects of this method
are the low cost, the ability to generate smooth and flat surfaces, and to release
suspended structures. Nevertheless, the shape of the resulting structures is difficult
to predict due to multiple experimental parameters, such as crystallographic
orientations [176, 191, 276, 277], composition of etchant solution (e.g. KOH
[188, 193] or TMAH [177, 278]), its concentration and temperature [191, 192], and
usage of additives (e.g. Triton [175, 195] or IPA [193, 194]). As a consequence, an
important effort has been made in last years to model the process accurately in
order to avoid the need to perform several experiments until the desired structure
is achieved.

4.1.1 CCA wet etching simulators

Although several techniques have been used to simulate wet etching process
(see section 2.4.3.3), atomistic models and, in particular the CCA, are currently
considered the most accurate and reliable [102, 180, 187].

This technique emulates the etching process by, first, constructing a mesh of atoms
according to the crystallographic structure of the substrate. Then, the surface
atoms that are in contact with the etchant solution are continuously removed
depending on their neighbourhood configuration (see section 2.4.3.3). According to
this, Gosálvez et al. introduced the step-flow model [219]. The step-flow proposes
that the high index silicon planes (e.g. (533)) are formed by several (111) terraces
separated by steps. These terraces start to retract since the atoms at the step
are weakly connected to bulk atoms and they are much easier to be removed
[218]. This study provided an extensive classification of the atom configurations
existing between the tree main orientations (001), (110), and (111), i.e. each of
these atoms was classified regarding the number of first and second surface and
bulk neighbouring atoms, namely n1s, n2s, n1b, n2b. In the CCA, every atom has
an internal value of occupancy Π, which initially is 1 and after one iteration it is
reduced such that, when occupancy is equal or lower than 0, an atom is removed.
Thus, according to the current configuration of each atom, the corresponding
amount of occupancy reduction is applied, i.e. for every atom, the occupancy at
time step k is updated with:

Πk+1 = Πk −∆t · rk, (4.1)
112

4.1 Introduction and drawbacks of previous wet etching simulators

where ∆t is the time step and:

rk = R(n1s, n2s, n1b, n2b), (4.2)

is the amount of occupancy that has to be removed, which is determined by the
function R that relates atomistic configuration with etch rate. Function R depends
on etchant solution (e.g. KOH or TMAH)and its temperature and concentration.

Nevertheless, the issue is that etch rates are experimentally obtained in a
macroscopic form, i.e. a specific orientation plane is etched at a specific etch rate.
Thus, the other main contribution of Gosálvez et al. was to develop a system of
equations relating macroscopic etch rates with atomistic configurations [219].

However, since n1s and n1b can take values between 0 to 3, and n2s and n2b

between 0 to 11 [187, 217, 219], there are 4x4x12x12 = 2304 possible R values,
which is higher than independent equations. Thus, initially, a manual calibration
was required depending on etchant and experimental conditions to determine only
33 removal rates R values, which is sufficient to simulate different etchants like
KOH, KOH+IPA and TMAH [219, 220, 279].

Nevertheless, there are still atomistic configurations that are not classified by the
step-flow model. In order to address this problem, in the first place, a removal
probability function that directly provides a removal rate regarding first and second
number of neighbouring atoms was used [220, 280]. However, this method was not
able to reproduce the usage of additives and requires a manual calibration process,
which can become a complicated task, especially for etchants with a significantly
different behaviour than KOH [222].

Accordingly, the usage of Evolutionary Algorithm (EA) in order to find the
values for the rest of atomistic configurations that were not included in the step-
flow classification was proposed [222]. An EA is an optimization trial-and-error
process that starts from an initial set of possible solutions. Every solution is
formed by a set of parameters which are changed after each iteration. In CCA
models, these parameters are the amount of occupancy reduction for each atomistic
configuration. Thus, every possible solution is evaluated according to several
objective functions, including differences between experimental and simulated
etching of a sphere, discrepancies with experimental measurements when etching a
(100) surface protected with a circular mask, and differences between etch rate of
similar orientations (due to crystallographic symmetries). Those possible solutions
that obtain better errors, have more probabilities to be chosen to be combined with
other solutions and, thus, producing new solutions. This process is repeated and
tends to obtain solutions with less error after each iteration. When the errors are
small enough, the best solution is selected.

113

Chapter 4. Level Set method for wet etching simulation

Accordingly, the calibration CCA process of a specific etchant (solution,
concentration and temperature) by means of an EA is formed by the following
steps:

1. Generate all the possible solutions.

2. Run a CCA simulation for every possible solution.

3. Calculate the errors of the different objective functions.

4. Generate the new possible solutions according to the errors.

5. Go to step 1 until convergence is achieved.

Usually, a calibration process requires several hundreds or even thousands
of iterations to successfully calibrate the CCA. This laborious task can take
advantage of distributed and parallel environments but, even so, it can take
between a few hours to several tens of hours [187, 222]. However, thanks to
accurate CCA models and the robustness of EA, more than 30 silicon etchants
have been calibrated and can be used to perform CCA wet etching simulations
[222]. Additionally, EAs in combination with CCA have been used to calibrate
and simulate NH4HF2 for wet etching of quartz substrates [180].

Despite the step-flow CCA-based approach in combination with the EA calibration
process has been able to simulate silicon and quartz wet etching in many etchant
solutions, the main drawbacks are:

• The resulting structure is formed by a cloud of points, making necessary to
use additional techniques (such as the presented in chapter 3) to visualize
correctly the results.

• It is necessary the knowledge of the substrate structure in order to make a
thorough classification of the different atomistic configurations.

• A calibration process is required to relate experimental macroscopic etch
rates with atomistic removal rates. This process is required each time
the experimental conditions are changed, i.e. for each etchant solution,
concentration, temperature, usage of additives, or substrate material.

In this context, the search for an alternative method, which is simultaneously
capable of using experimental data without any prior calibration while remaining
computationally efficient, has the potential to significantly influence the future of
MEMS design. Thus, in this thesis, the LS method has been considered as an
alternative to the CCA approach.

114

4.1 Introduction and drawbacks of previous wet etching simulators

4.1.2 Wet etching simulation by means of the LS method

Although atomistic approaches have been widely used to simulate chemical wet
etching, the LS method has also been applied previously to emulate this process.
In particular, Adalsteinsson and Sethian introduced a unified model for etching,
deposition and lithography in 1995 [16–18]. Despite only simple etching processes
were considered (e.g. isotropic and unidirectional etching processes), they proved
the capability of the LS for the simulation of such micromachining processes [281].

Later, Radjenović et al. presented a LS implementation to simulate silicon wet
etching with KOH 30 wt% at 70 ◦C [223, 282]. This simple approach only
considered the experimental etch rates for the main orientations (111), (110), and
(100) whereas, for the rest of the orientations, an interpolation relation was used.
Nevertheless, the SFM was validated for wet etching simulation. Finally, they
developed a new implementation that allows the simulation of silicon wet etching
with KOH with concentrations 30 wt%, 40 wt%, and 50 wt% at 70 ◦C. For
every etchant solution, 13 experimental etch rate values were considered [225].
This approach was capable to simulate silicon etching with several simple masks,
demonstrating the possibility of evolving anisotropic etching fronts with the LS
method. On the other hand, this results have been never compared with other
existing methods, such as the CCA approach, nor with experimental results.
Additionally there is still much room for further optimizations and improvements.

Accordingly, a more exhaustive evaluation is required, therefore, in contrast with
the already developed LS wet etching simulators, in this thesis several SFM-
based implementations are developed, including a sequential algorithm as well as
a CPU and a GPU parallel implementations. Moreover, full distributions of 8100
experimental etch rates are used. The reported simulations include many etchant
solutions, such as KOH, KOH+IPA, TMAH, TMAH+Triton, and NH4HF2 for
quartz substrates, at different concentrations and temperature. Furthermore, the
possibility to perform complex experiments, such as simulating etching processes
on double-sided wafers of any material as well as advanced processes, including
the sequential use of different mask patterns during successive etching steps with
the possibility of changing top and/or bottom masks as well as etchant solution.

Finally, these algorithms are compared to each other in terms of computational
efficiency as well as an exhaustive comparison with the state-of-the-art CCA
approach in terms of accuracy and computational efficiency is performed.
Additionally, the simulation results are directly compared with those from
experiments.

115

Chapter 4. Level Set method for wet etching simulation

Substrate

Etchant

Front

Distance
to the front

N1

N0

N2

5

4

3

2

1

0

-1

-2

-3

-4

-5

Figure 4.1: Two-dimensional example of an etching process simulation by means of the
LS method. The front (black line) embedded inside a SDF corresponds to the substrate
surface in contact with the etchant solution. Several local normal vectors, which are
utilized to determine local etch rates, are represented. Reproduced from [19].

4.2 Experimental etch rates

The LS method is a numerical technique to track moving fronts according to
some physical motions which depend on the phenomenon being emulated. When
emulating chemical wet etching process, the moving front corresponds with the
surface of the material that is in contact with the etchant. In addition, the
motion of the front is determined by many external factors, such as etchant,
its temperature, concentration and possible additives, and substrate material.
Moreover, anisotropic wet etching is a relevant process in the field of MEMS
micromachining because of the strong dependency of etch rates on crystallographic
structure of substrate material. Hence, the velocity of the front is determined
by external factors but, also, it depends on the topography of the front itself.
According to LS technique, the substrate surface in contact with etchant solution
is the three-dimensional surface embedded inside a SDF and evolved according to
experimental etch rates. A simple two-dimensional example is depicted in Fig.
4.1. Notice that, contrary to LS implementation of chapter 3, the LS front is not a
closed front (or closed surface in three-dimensions). Furthermore, in this chapter,
the distance values of those grid points lower to the front are considered positive
whereas the upper points are signed as negative, nevertheless, this has no effect
on the LS behaviour.

The developed implementations, utilize directly experimental etch rates to move
the surface being etched. These etch rates values are usually obtained by
etching and measuring structures that resemble a wagon wheel [190, 191]. These
type of experiments produces many spokes, each of them has been etched a

116

4.2 Experimental etch rates

Row 0, column 44

Row 135, column 44

Row 45, column 44

Row 90, column 44
Row 0, column 0

Row 45, column 0

Row 135, column 0

Row 90, column 0

0.1234 0.1234 0.1234...
0.1234 0.1234 0.1234...
0.1234 0.1234 0.1234...
...

0.1234 0.1234 0.1234...
0.1234 0.1234 0.1234...

Stereographic projection sampling Etch rate matrix

�

Φ

Figure 4.2: Example of an etch rate distribution discretization and arranging process
in matrix form. This matrix can be accessed with spherical coordinates (θ,Φ).

specific distance (see Fig. 2.28) depending on the corresponding crystallographic
orientation. By measuring all the produced spokes, a specific etchant and
conditions are characterized obtaining a complete etch rate distribution.

From an experimental point of view, the traditional way to represent the anisotropy
of an etchant is to show a stereographic projection of the unit sphere while
presenting the etch rates at different locations (θ,Φ) using isolines and/or a
collection of colors (see section 2.4.3.2). Since a sphere contains all possible
substrate orientations, it provides a complete representation of the etchant
anisotropy in a compact way. The procedure originated in early experimental
reports, where real hemispherical samples were actually etched [196, 196]. By
mechanically probing the hemisphere surface before and after etching at different
latitude/longitude locations, the etched distance is determined as a function of the
orientation, in terms of latitude (θ) and azimuth (Φ) spherical coordinates, thus
obtaining the etch rate corresponding to a normal vector by dividing by the etch
time.

Accordingly, in this thesis it has been possible to use an extensive data base of
experimental etch rate distributions of 33 different etchants obtained by Gosálvez
et al. [191]. These distributions are hemispheres discretized with an angular
resolution of 2◦ for both spherical coordinates θ,Φ, resulting in 8100 etch rate
values (etched micrometers per minute) arranged in a 180x45 matrix R(θ,Φ). This
discretizing and arranging process is depicted in Fig. 4.2, showing the relation
between stereographic projection and etch rate matrix. Since only hemispheres
are considered, the angular domain of both coordinates is:

θ = [0, 90]
Φ = [0, 358].

(4.3)

117

Chapter 4. Level Set method for wet etching simulation

These spherical coordinates depend on surface local geometry, in particular, they
can be obtained from local normal vector ~N = (Nx, Ny, Nz):

θ =

arctan
(√

N2
x+N2

y

Nz

)
if Nz > 0

arctan
(√

N2
x+N2

y

Nz

)
+ π if Nz < 0

π
2 otherwise

Φ =

2π − arctan
(
Ny

Nx

)
if Nx > 0, Ny > 0

arctan
(
−Ny

Nx

)
if Nx > 0, Ny ≤ 0

π − arctan
(
Ny

Nx

)
if Nx < 0

π
2 if Nx = 0, Ny < 0
3π
2 otherwise

(4.4)

Since only a hemisphere is considered, if θ > π
2 → θ = π − θ. Notice normal

vector of an implicit function φ can be obtained with (2.25). Accordingly, the
three-dimensional components are determined with:

Nx = φx

|∇φ|
Ny = φy

|∇φ|
Nz = φz

|∇φ| .

(4.5)

By using (4.4) and the definition of the normal vector (2.25) for a SDF, surface
local etch rates can be obtained from the LS function φ. Hence, the etch rate
matrix can be understood as R(~N) = R(Nx, Ny, Nz), which is the equivalent to
the velocity field ~V of the LS method introduced in section 2.2. Therefore, each
element of the surface being etched will be advanced according to its corresponding
etch rate value R(~N). Because of the motion is in the normal vector direction, the
LS equation results in:

φt +R(~N)|∇φ| = 0. (4.6)
Thus, it is easy to realize that the etch rates that must be applied to advance the
surface, depend directly on local topology of surface, hence, numerical schemes
described in section 2.2.2 must be utilized to solve (4.6). Furthermore, Hamiltonian
of (4.6) is defined as:

H(φ) = R(~N)|∇φ|. (4.7)

Because of the dependency of the Hamiltonian on the normal vector ~N , this is a
non-convex Hamiltonian since it does not fulfil condition (2.47) [16, 281]. As a

118

4.2 Experimental etch rates

consequence, upwind differencing technique cannot be utilized (see section 2.2.2).
In its place, in this thesis the LFS is used to solve (4.6) since, based on central
difference derivatives, LFS is the simplest scheme that preserves monotonicity.
This scheme replaces the Hamiltonian from (4.6) with a new Hamiltonian ˆH(φ)
defined in (2.48). Particularly in this study, the next expression has been employed:

ˆH(φ) = H
(
φ+

x +φ−
x

2 ,
φ+

y +φ−
y

2 ,
φ+

z +φ−
z

2

)
−αF

(
αx

φ+
x−φ

−
x

2 + αy
φ+

y −φ
−
y

2 + αz
φ+

z −φ
−
z

2

) , (4.8)

resulting in the LS equation:

φt +R(~N)|∇φ| − αF
(
αx
φ+
x − φ−x

2 + αy
φ+
y − φ−y

2 + αz
φ+
z − φ−z

2

)
= 0, (4.9)

where αF ≥ 0 is a numerical value introduced to control the overall viscosity
and guarantee the stability of the front by modifying simultaneously the three
artificial viscosity factors αx, αy and αz. A larger αF results in smoother surfaces
while smaller αF generates sharp features/discontinuities, which should be handled
carefully to avoid unrealistic and/or diverging solutions. Depending on the
anisotropy of the simulated etchant, different values of αF are needed. In this study
it has been found that αF = 0.48 is adequate to simulate KOH-based etchants,
while αF = 0.45 and αF = 0.5 are more suitable to simulate TMAH-based
and saturated NH4HF2-based etchants, respectively. The procedure to obtain
these parameters is trial and error, selecting those values which produce the most
realistic results. Too large values result in soft, featureless fronts, while too small
values result in discontinuities and/or unnatural, sharp features.

The artificial viscosity factors are defined in their general form by (2.49). For
simplicity, only expressions of spatial dimension x are derived step by step,
nevertheless, for the rest of dimensions the process is analogous. According to
(2.49), the viscosity factor can be written as:

αx = max

∣∣∣∣∣∂R(~N)
∂φx

· |∇φ|+ ∂|∇φ|
∂φx

·R(~N)

∣∣∣∣∣ . (4.10)

Due to R(~N) depends directly on normal vector instead of spatial derivatives of
φ, the chain rule must be applied to the first term, leading to:

∂R(~N)
∂φx

= ∂R(~N)
∂Nx

· ∂Nx
∂φx

. (4.11)

In turn, considering:

∂|∇φ|
∂φx

=

√
φ2
x + φ2

y + φ2
z

∂φx
= 1

2(φ2
x + φ2

y + φ2
z)−1/2 · 2φx = φx

|∇φ|
= Nx, (4.12)

119

Chapter 4. Level Set method for wet etching simulation

and applying the quotient rule:

∂Nx
∂φx

= φx/|∇φx|
∂φx

=
|∇φ| − φx ∂|∇φ|∂φx

|∇φ|2

= |∇φ| − φx(φx/|∇φ|)
|∇φ|2

= 1
|∇φ|

− φ2
x

|∇φ|3

=
φ2
y + φ2

z

|∇φ|3

(4.13)

Thus, by taking (4.13) into (4.11):

∂R(~N)
∂φx

= ∂R(~N)
∂Nx

φ2
y + φ2

z

|∇φ3|
. (4.14)

Finally, by replacing the expressions of (4.14) and (4.12) into (4.10) and proceeding
analogously for the rest of dimensions, the viscosity factors are obtained:

αx = max

∣∣∣∣∣∂R(~N)
∂Nx

φ2
y + φ2

z

|∇φ3|
· |∇φ|+Nx ·R(~N)

∣∣∣∣∣
αy = max

∣∣∣∣∣∂R(~N)
∂Ny

φ2
x + φ2

z

|∇φ3|
· |∇φ|+Ny ·R(~N)

∣∣∣∣∣
αz = max

∣∣∣∣∣∂R(~N)
∂Nz

φ2
y + φ2

x

|∇φ3|
· |∇φ|+Nz ·R(~N)

∣∣∣∣∣
(4.15)

As can be observed, these factors depend on the variation of etch rate with respect
to normal vector components, i.e. the terms R(~N)

∂Nq
for q = x, y, z dimensions.

In order to numerically obtain these derivatives, it is necessary to discretize the
components of the normal vector. In this thesis it has been found experimentally
that good results are obtained by using second-order central differences with a
resolution of 0.01. Thus, these terms are calculated with the next equations:

R(~N)
∂Nx

= R(Nx + 0.01, Ny, Nz)−R(Nx − 0.01, Ny, Nz)
2 · 0.01

R(~N)
∂Ny

= R(Nx, Ny + 0.01, Nz)−R(Nx, Ny − 0.01, Nz)
2 · 0.01

R(~N)
∂Nz

= R(Nx, Ny, Nz + 0.01)−R(Nx, Ny, Nz − 0.01)
2 · 0.01

(4.16)

Notice that despite etch rate matrix R has been written as R(~N) to emphasize the
dependency on normal vector, the actual etch rate matrix is defined for spherical

120

4.2 Experimental etch rates

coordinates, i.e. R(θ,Φ). Moreover, because of etch rates are only defined for
discrete spherical coordinates (a total of 8100 values) and normal vectors are not
restricted to specific values, an approximation technique must be applied to select
the most suitable R(~N) corresponding values. However, this approximation may
introduce abrupt changes, causing numerical instabilities. In order to prevent
this, an interpolation process is employed. Consider a specific normal vector
~N0 = (Nx0, Ny0, Nz0). For this vector, the corresponding latitude (θ0) and azimuth

(Φ0) values are calculated with (4.4) and then they are normalized according to
the domain (4.3). Then, the next weights are determined:

P1 = R(bθ0c, bΦ0c)
P2 = R(bθ0c, dΦ0e)
P3 = R(dθ0e, bΦ0c)
P4 = R(dθ0e, dΦ0e)

, (4.17)

and the next distance values are calculated:

D1 = θ0 − bθ0c
D2 = Φ0 − bΦ0c

. (4.18)

These values are depicted in Fig. 4.3. Finally, the etch rate value corresponding
to ~N0 is calculated as:

R(~N0) = P1((1−D1) · (1−D2))
+P2((1−D1) · (D2))
+P3((D1) · (1−D2))
+P4((D1) · (D2)).

(4.19)

Notice that, thanks to the LS method and the direct usage of experimental etch
rate distributions, etching conditions such as: temperature, surface orientation,
substrate material (in this thesis, both quartz and silicon substrates are modelled),
etchant concentration, and the inclusion of additives (e.g. IPA or Triton) are
modelled exclusively by using the corresponding etch rate matrix R(θ,Φ).

4.2.1 Isotropic etchant

Isotropic etching is used as a complementary process in connection with anisotropic
etching and/or DRIE [283]. For isotropic etchants, the etch rate remains essentially
constant along any direction. When an isotropic etching process is simulated,
some simplifications can be made. An isotropic etching can be understood as
an anisotropic etching with R(θ,Φ) = 1 for every possible θ and Φ angles. This
case corresponds to a front moving in its normal direction at constant velocity.
Such cases cannot be properly solved with upwind differencing since backward

121

Chapter 4. Level Set method for wet etching simulation

D
1

D2

P1

P2

P3

P4

(�0,Φ0)

�

Φ

Figure 4.3: Interpolation applied to approximate the proper etch rate value for a generic
(θ0,Φ0) values, according to the known etch rate values P1, P2, P3 and P4.

and forward spatial derivatives (φ±q) can have different signs at sharp features of
the front [33]. This issue is solved by using LFS as well.

The main feature of isotropic etching simulation by means of LFS is that it is
not necessary to search the values for the artificial viscosity coefficients of (4.9)
because of etch rate distribution R is always constant and, thus, the derivatives
∂R(~N)
∂Nq

= 0, implying αq = 1 in all dimensions. Consequently, the next equation is
applied when an isotropic etchant is simulated:

φt + |∇φ| −
(
φ+
x − φ−x

2 +
φ+
y − φ−y

2 + φ+
z − φ−z

2

)
= 0. (4.20)

4.3 SFM developed simulator

Last section presents how the LS method is adapted in this thesis to simulate
wet etching process using directly a complete etch rate distribution. In this
section, the steps of the developed algorithm are detailed. In this chapter, only
SFM-based implementations are considered since the SFM presents more accurate
results than original LS method (which computes the whole grid space) as well as
faster simulations due to computational cost is reduced to roughly O(N2) by only
computing those grid points close to the surface.

122

4.3 SFM developed simulator

Substrate Mask

(a) (b)

Figure 4.4: Simple etching process simulation: (a) initial substrate flat surface and the
applied circular mask, (b) resulting structure after etching process.

In the first place, the simulation of simple etching process is explained. A simple
etching process consists of a flat surface etched for a concrete time with a single
mask that remains constant for the whole etching process. An example of simple
etching process is shown in Fig. 4.4. Notice that in all the performed simulations,
the applied masks are considered ideal, i.e. masks are never etched.

In the developed LS-based simulation tool, user needs to introduce the next input
parameters to perform an etching process simulation:

• Surface substrate size in micrometers: subsx and subsy for the corresponding
dimensions x and y.

• LS mesh dimension.

• Time of the etching process Te.

• Etchant solution: concentration, temperature and additives.

• Surface wafer orientation.

• Mask to deposit on wafer surface. This simulates the lithographic process
used to mask the wafer.

Fig. 4.5 shows the input panels of the simulation tool that allow user to define
the etching process properties. Notice that etch rate distributions used by the
LS method depend not only on the etchant features but also on the wafer surface
orientation since this crystallographic surface orientation must correspond to the
orientation at the center of the stereographic projection, i.e. to R(θ = 0,Φ = 0).
Nevertheless, translations and rotations can be performed to transform a specific
etch rate matrix to another with a different surface orientation.

123

Chapter 4. Level Set method for wet etching simulation

(a) (b)

Figure 4.5: Input parameters panels: (a) substrate and grid size definitions, time of
etching, and wafer and etchant features, (b) mask definition panel that allows to load a
predefined mask.

4.3.1 Mesh generation

LS mesh represents the substrate and its surface in contact with the etchant, as
shown in Fig. 4.1. A regular grid is used in this thesis, thus grid resolution is the
same for all dimensions ∆x = ∆y = ∆z. Notice that grid resolution affects directly
the accuracy of simulation results (as commented in section 4.5.1). The surface grid
size is determined according to input parameters introduced by user. Accordingly,
the number of grid points in x dimension (numx) is directly introduced by the
user whereas the number of points in y is determined by:

numy = numx

subsx
subsy. (4.21)

However, the number of points in z dimension (numz) must be determined to
ensure that is sufficiently large to perform the whole etching process, otherwise
the moving front would disappear at those places that reach the bottom of the
grid. Furthermore, if numz is too large, an unnecessary amount of memory would
be utilized. Notice that, since the SFM is utilized, computational time depends
mainly on the number of points that form the surface, rather than on grid size.
However, the whole grid is allocated in memory space and it should be as small as
possible. Accordingly, numz is calculated regarding the etch rate in the vertical
direction and the time of etching:

numz = 4 + Te ·R(θ = 0,Φ = 0). (4.22)

124

4.3 SFM developed simulator

4 additional points are introduced to properly handle the SFM lists. By calculating
numz with this equation, an adequate amount of memory is used. Notice that, if
an isotropic etching process is simulated, R(θ = 0,Φ = 0) = 1µm/min is assumed.

4.3.2 Initial surface determination

Once the LS grid has been generated according to etching and user input
parameters, initial surface must be determined. For simple etching processes,
initial surface is simply a horizontal plane on the top of the grid. Particularly, if
the number of grid points in vertical dimension is numz and indices start at 0, the
initial surface is the plane formed by the points (i, j, k = numz − 2).

According to the LS method, this surface must be embedded inside a SDF,
however, due to SFM, only those adjacent points to the surface must be updated
and included in the SFM lists depending on their distance values (see table 2.1).
According to the LFS applied to the LS equations (4.9) and (4.20), second-order
central differences must be utilized to calculate spatial derivatives of SDF φ in order
to calculate normal vector components (4.5) as well as gradient |∇φ|. Hence, only
three SFM lists are required to update active grid points, namely L0, L+1 and
L−1. Additionally, each grid point is tagged with state = 0, 1,−1, 2,−2 depending
on the distance value as shown in table 2.1.

Moreover, when simulating wet etching processes those surface points covered
with masking material deposited on the top of the substrate must be kept to
constant values in order to emulate the physical process. The mask is loaded
from an image file and it is rescaled according to surface grid dimensions,
producing a two-dimensional matrix maskt with numx · numy size, such that
maskt(i, j) = 1 indicates that the surface grid point (i, k) is covered by the mask
and maskt(i, j) = 0 is used for non-masked grid points. Accordingly, algorithm
14 is used to generate initial surface, its SDF, the SFM lists and the state tag for
every grid point. Correspondingly, Fig. 4.6 depicts a two-dimensional example
showing the initial state of the grid points according to a simple mask.

4.3.3 Numerical discretization

One of the input parameters is the etching time Te. This total etching time must
be discretized into time steps in order to guarantee stability when updating (4.9)
or (4.20). In particular, a forward first-order Euler time discretization is employed,
thus, φ values at time t = (n+ 1)∆t are obtained with:

φn+1 = φn −∆t
[
R(θ,Φ)|∇φn|

−αF
(
αnx

(φ+
x)n−(φ−

x)n

2 + αny
(φ+

y)n−(φ−
y)n

2 + αnz
(φ+

z)n−(φ−
z)n

2

)]
,

(4.23)

125

Chapter 4. Level Set method for wet etching simulation

Algorithm 14: Simple initial top surface determination.
1 Initialize every grid point to φ = −1.5∆x and state = −2.

for each grid point (i, j, k = numz − 2) do
2 φ(i, j, k = numz − 2) = 0.
3 state(i, j, k = numz − 2) = 0.

if maskt(i, j) = 0 then
add (i, j, k = numz − 2) to L0.
add (i, j, k = numz − 1) to L−1.
add (i, j, k = numz − 3) to L+1.

4 φ(i, j, k = numz − 1) = −∆x.
5 state(i, j, k = numz − 1) = −1.
6 φ(i, j, k = numz − 3) = ∆x.
7 state(i, j, k = numz − 3) = 1.

else
8 φ(i, j, k = numz − 1) = −1.5∆x.
9 state(i, j, k = numz − 1) = −2.

10 φ(i, j, k = numz − 3) = 1.5∆x.
11 state(i, j, k = numz − 3) = 2.

where ∆t is the time step, which must be obtained with the corresponding CFL
condition. Since this LS equation does not depend on second derivatives (such as
local curvature), a time step ∆t = O(∆x) according to (2.45) can be employed.
Taking into account that max{|∇φ|} = 1 by definition, it has been found after
numerous simulations that:

∆t = 0.3∆x
max{R(θ,Φ)} (4.24)

is a proper value that ensures realistic results for every tested etch rate distribution.
Since etch rates are provided in [µm]/[min], ∆t is also in minutes. Hence, the
number of iterations needed to perform an etching process of the introduced
etching time (also in minutes) can be directly calculated by:

Niter = Te
∆t . (4.25)

Likewise, due to LFS (4.8) utilized in order to evolve the surface properly, the terms
∇φ and ~N must be calculated with second-order central differences (2.28), whereas
for forward and backward spatial derivatives φ±q simple first-order differences are
utilized ((2.26) and (2.27) respectively).

Analogously, when simulating an isotropic etchant, expressions (4.23) and (4.24)
can be simplified by considering R(θ,Φ) = 1 and αq = 1.

126

4.3 SFM developed simulator

L+1

L-1

MaskL0

0

-Δx

Δx

Signed
distance

x

z

k=0

k=1

k=num
z
-1

k=num
z
-2

k=num
z
-3

Figure 4.6: Two dimensional example of an initial flat surface partially covered with
a mask. Only grid points that are not covered with the mask are included in the
corresponding SFM lists. Orange, green and blue voxels represent the L−1, L0 and L+1
lists used in the SFM, respectively, while gray and red voxels are not included in any list
since they do not need to be updated. Positive/negative distances are associated to the
points located below/above the front. Signed distance values are shown.

4.3.4 Complete algorithm

When input parameters has been introduced, the mask pattern has been loaded,
and the mesh and initial surface have been generated accordingly, the etching
process is simulated by updating the φ values of grid points with (4.23) for the
corresponding number of iterations depending on the desired time of etching. The
workflow of the developed SFM simulator can be observed in algorithm 15.

It is important to notice that viscosity factors αq must be calculated in each
iteration, which implies the search of the maximum values (4.15). As a
consequence, the first L0 loop (step 7) must be completely performed before
updating φ values (second L0 loop, step 13). However, this search is limited
to only those surface points included in L0 list.

The main variables of the algorithm are collected in table 4.1. Notice that, despite
most of the variable are stored for every mesh point, only those values included
in SFM lists are computed. On the other hand, the three-dimensional variable
mask3D will be useful when simulating more complex processes since not only
points of initial surface can be masked, thus a value indicating whether a grid
point is masked or not will be useful. By knowing the amount of memory required
by all the main variables, theoretical amount of memory taken by the algorithm
can be calculated, which is useful for comparing to another existing methods.

127

Chapter 4. Level Set method for wet etching simulation

Algorithm 15: SFM-based algorithm for the simulation of simple wet etching
process.

1 Introduce etching process features: substrate type (silicon or quartz), crystallographic
orientation, etchant concentration, temperature, etching time, substrate size, and grid
size.

2 Load the mask pattern.
3 Generate the LS mesh according to input parameters. Eq. (4.22) is used to determine

the vertical size of the mesh.
4 Build initial surface, its SDF, and the SFM lists according to algorithm 14.
5 Obtain ∆t according to (4.24) and the corresponding number of iterations with (4.25).

-Etching loop-
6 for iter=0; iter< Niter; i++ do
7 for every point in L0 do
8 Calculate forward and backward spatial derivatives φ±q for q = x, y, z dimensions.

9 Calculate second-order central differences φq = φ+
q +φ−

q

2 .
if Anisotropic etchant then

10 Determine the normal components (4.5).
11 Convert the normal vector to spherical coordinates (θ,Φ) with (4.4) and

obtain the corresponding etch rate value by accessing the matrix R(θ,Φ).
12 Determine αq coefficients with (4.15) and select the maximum values.

13 for each L0 point ~xi do
14 Update φ(~xi) using (4.23).

if φ(~xi) < −0.5∆x then
15 remove (~xi) from L0 and add it to S−1.

if φ(~xi) > 0.5∆x then
16 remove (~xi) from L0 and add it to S+1.

17 Update L+1 and L−1 lists with procedure 5.
18 Transfer points from auxiliary lists by applying procedure 6.
19 Add corresponding points to L±1 according to procedure 7.
20 Extract implicit surface for visualization.

128

4.3 SFM developed simulator

Variable Type Size Description
φ float grid Signed distance values of every mesh point.

φ−x float grid First-order backward spatial derivative of φ in x.

φ+
x float grid First-order forward spatial derivative of φ in x.

φ−y float grid First-order backward spatial derivative of φ in y.

φ+
y float grid First-order forward spatial derivative of φ in y.

φ−z float grid First-order backward spatial derivative of φ in z.

φ+
z float grid First-order forward spatial derivative of φ in z.

H float grid Hamiltonian value of every mesh point.

mask3D boolean grid Indicates those masked grid points.

state char grid Indicates the SFM state of every grid point.

R float 180x45 Etch rate distribution.

maskt boolean surface Top mask pattern introduced by user.

maskb boolean surface Bottom mask pattern introduced by user.

Table 4.1: Main variables utilized in wet etching SFM implementation. The variables
with size grid are three-dimensional matrices of numx ·numy ·numz points. On the other
hand, surface size is used for two-dimensional matrices of numx · numy entries.

4.3.5 Validation of the developed algorithm: etching of spherical
samples

In order to validate the proposed algorithm, the etching processes with several
etchant solutions of silicon/quartz spheres are simulated, exposing all the
crystallographic orientations of the substrate to the etchant. Thus, the resulting
sphere can be measured before and after the etching process to calculate the
actual etch rate distribution that is producing the SFM. This simulation process
is commonly used to validate the calibration process of the CCA [180, 222].

For these simulations, a regular mesh of 300x300x300 points is built. The radius
of the initial sphere is ε = 146∆x, which represents a spherical sample of 22 mm.
Using a sphere as initial surface requires using a different procedure than algorithm
14. In its place, those points that are located at ε distance from the center of the
grid are tagged as initial surface. For this initial spherical surface determination,
algorithm 16 is used, which is equivalent to algorithm 10 utilized to determine the
initial surface for image reconstruction.

Once initial surface points have been determined, initial surface needs to be
embedded inside a SDF. To accomplish this, the propagating algorithm 9 is used to

129

Chapter 4. Level Set method for wet etching simulation

Algorithm 16: Determination of spherical initial surface.
1 Tag every mesh point as interior but the two most exterior rectangular cuboids that

are tagged as exterior.
2 Initialize stack P and include every exterior point.

while P is not empty do
3 Extract the first p point from P .

for each neighbouring point np of p do
if np is interior then

if distance between np and grid center ≥ ε then
4 Tag np as exterior.
5 Add np to stack P .

else
6 Tag np as initial surface.

calculate the corresponding distance values to initial sphere for every mesh point.
Then, these values are signed as positive/negative regarding the mesh point tags
inside/outside produced by algorithm 16. After this, the SFM lists are initialized
according to the distance values of grid points.

The goal of these simulations is to measure the removed material in a certain period
of time for all the 8100 directions used by experimental etch rate distributions.
Accordingly, after determining the initial sphere, the exact radius for each direction
must be calculated. This is performed with the algorithm 17, which calculates the
radius of the sphere for all the directions. Notice that two different points of the
sphere surface can produce the same spherical coordinates since a discretization
of 2 deg is used for experimental etch rate distributions. As a consequence, the
average radius value of all those points with the same spherical coordinates is
taken, producing Rdini(θ,Φ).

Nevertheless, due to grid resolution, it is possible that no sphere point corresponds
with some location (θ,Φ), i.e. some locations Rdini(θ,Φ) can result without
any stored value. To solve this, the normal vector of those empty locations is
calculated. Then, similar vectors are searched through all the sphere points and
Rdini(θ,Φ) is calculated as the average of all those radius values. Since only a
hemisphere is considered for representing the etch rate distributions because of
symmetry reasons, normal vectors with a negative z component are mapped to
the positive hemisphere. The whole procedure is explained in algorithm 17. Notice
that for initial sphere, all the L0 points have a zero distance value.

After the initial sphere has been measured for every location (θ,Φ), the etching
process is started with the desired etching conditions for 960 minutes according
to evolution SFM algorithm 15. Once the sample has been etched, the radii are

130

4.3 SFM developed simulator

Algorithm 17: Calculation of sphere radii.
Data: Center of the sphere: ~xC = (xC , yC , zC)
Data: tol = 0.01
for every point (xi, yi, zi) in L0 do

1 Calculate the distance to the center r =
√

(xi − xC)2 + (yi − yC)2 + (zi − zC)2.
2 Calculate normalized distances to the center dq = qi−qC

r
for each dimension

q = x, y, z.
3 Obtain corresponding sphere coordinates (θ,Φ) to (dx, dy, dz) with (4.4).
4 Consider the distance value r = r + φ(xi, yi, zi).
5 Update the average distance rav of all the points with the same coordinates (θ,Φ)

and store it in Rd(θ,Φ) = rav.
for every empty location Rdini(θ,Φ) do

6 Determine corresponding normal vector components:
7 Nx = sin θ · cos Φ.
8 Ny = sin θ · sin Φ.
9 Nx =

√
1−N2

x −N2
y .

for every point (xi, yi, zi) in L0 do
10 Calculate normalized normal vector (dx, dy, dz) of (xi, yi, zi).

if |Nx − dx| < tol and |Ny − dy| < tol and |Nz − dz| < tol then
11 Obtain the radius r =

√
(xi − xC)2 + (yi − yC)2 + (zi − zC)2.

12 Consider the distance value r = r + φ(xi, yi, zi).
13 Update the average distance rav of all the similar normal vectors and store

it in Rd(θ,Φ) = rav.

measured again for every spherical location following algorithm 17. Notice that
not only the distance of grid points to the center are considered but the φ value
of each voxel, i.e. since interior points have positive values, if a L0 point has
a positive φ value means that the actual surface is such distance further to the
center. Similarly, a negative φ value indicates that the surface is closer to the
center. After this, Rdetched(θ,Φ) is produced, storing all the average radii for
every spherical coordinates.

Accordingly, the etch rate corresponding to each location (θ,Φ) is obtained with:

RSFM = Rdini −Rdetched
960 . (4.26)

If this procedure is applied to silicon spheres etched with KOH 24 wt% at 70 ◦C,
KOH 24 wt% with IPA (1 cm saturated) at 65 ◦C, TMAH 20 wt% at 60 ◦C, an
isotropic etchant with R = 1 µm/min, KOH 40 wt% at 70 ◦C, TMAH 25 wt%
at 80 ◦C, TMAH 25 wt%+ Triton 0.1 v/v at 80 ◦C, and a quartz sphere etched
with saturated NH4HF2 at 70 ◦C, the etch rate distributions presented in Fig.
4.7 are obtained. For comparison, experimental and CCA distributions are also

131

Chapter 4. Level Set method for wet etching simulation

presented. For the CCA, only hemispheres are considered by Intellietch simulator,
which is sufficient to obtain a complete etch rate distribution. In addition, silicon
spheres are formed by 181x256 unit cells (a total of 259516 surface atoms) whereas
quartz spheres are formed by 256x211 unit cells (472298 surface atoms).

On the other hand, for the SFM simulations a 300x300x300 grid has been
employed, which correspond to an initial surface of 221546 voxels. In addition,
the parameter αF has been selected as follows: 0.48 for KOH-based experiments,
i.e. (a), (b) and (e), 0.45 for TMAH-based, i.e. (c), (f) and (g), and 0.5 for quartz
substrate (h).

In comparison to the experimental distributions, the LS simulations describe
accurately the etch rate anisotropy for all eight cases, confirming the correctness
of the developed algorithm and validating the simulation of dramatically different
etchants with the proposed SFM algorithm 15. In comparison, the CCA results
seem slightly noisier in all cases, but especially for the isotropic etchant and the
etching solution applied to quartz. The crystallographic structure of quartz is
more complicated than that of silicon, leading to a more complex atom removal
sequence [180]. This results in a more complex surface morphology for the quartz
sphere and, thus, the etch rate distribution becomes noisier when sampling the
advancement of the etch front over various locations on the sphere.

It is also interesting to visualize the actual shape evolution of the simulated spheres
for very long etch times. Fig. 4.8 shows the etched spheres for some of the etchant
conditions of Fig. 4.7, simulated with the SFM developed implementation. As
expected, the lower the local etch rate the sharper the corresponding protruding
region, which reflects the underlying symmetry of the etch rate: two-, four-
and six/three-fold around the {110}, {100} and {111} orientations, respectively.
Similarly, the shape of the resulting quartz sphere follows the etch rate distribution
shown in Fig. 4.7(h), producing three distinguished less-etched parts.

4.3.6 Simulation of complex MEMS

After the algorithm for simple wet etching process was validated, the simulation
of more complex micromachining processes was implemented, including:

• Etching of double-sided wafers.

• Successive etching steps with the possibility of using different mask patterns
and/or applying different etchants.

• Different operations to be applied on masks (top and/or bottom if double-
sided substrate), including mask removal, mask deposition on non-trivial
(etched) substrates, and mask removal of specific regions.

132

4.3 SFM developed simulator

CCA-

Exp.

SFM

Silicon-

(b) (c) (d)(a)

<111>

<001>

<110>

CCA-

Exp.

SFM

Silicon- Quartz

(h)

Max

0

<2-1-10>

<01-10>

<0001>

(f) (g)(e)

Figure 4.7: Comparison between experimental and simulated etch rate distributions
using the LS and CCA methods: (a) KOH 24 wt% at 70 ◦C, (b) KOH 24 wt% with IPA
(1 cm saturated) at 65 ◦C, (c) TMAH 20 wt% at 60 ◦C, (d) an isotropic etchant, (e)
KOH 40 wt% at 70 ◦C, (f) TMAH 25 wt% at 80 ◦C, (g) TMAH 25 wt%+ Triton 0.1 v/v
at 80 ◦C, and (h) saturated NH4HF2 at 70 ◦C. (a)-(g) Silicon substrate. (h) Quartz
substrate. Adapted by author from [19] and [20].

133

Chapter 4. Level Set method for wet etching simulation

(a)

(b)

(c)

(d)

{0001}(e)

Figure 4.8: SFM-simulated evolution of a typical sphere sample of 22 mm of radius
etched in: (a) KOH 40 wt% at 70 ◦C, (b) TMAH 25 wt% at 80 ◦C, (c) TMAH 25 wt%+
Triton 0.1 v/v at 80 ◦C, (d) an isotropic etchant, and (e) saturated NH4HF2 at 70 ◦C.
(a)-(d) Silicon substrate. (e) Quartz substrate. The numbers represent the etch time in
minutes. Adapted by author from [20].

134

4.3 SFM developed simulator

Substrate Mask

(a) (b)

Figure 4.9: Etching example simulation of a double-sided silicon wafer: (a) substrate
showing the top and the bottom initial surfaces, (b) resulting structure after the
interaction of both surfaces according to etching process. In both cases, substrate surfaces
and applied masks are represented.

4.3.6.1 Etching of double-sided wafers

Etching wafer on top and bottom sides simultaneously enables the fabrication of
complex MEMS structures such as microprobes or accelerometers [141, 142, 173,
284]. Hence, simulation of such complex experiments is essential for MEMS design.
A simple double-sided etching example is shown in Fig. 4.9.

This type of processes can be understood as two moving surfaces (top and
bottom) that interact with each other to form the resulting final structure. Such
interactions usually produce the vanishing of some parts of the substrate, i.e. the
etching through the whole wafer. Accordingly, the LS method can handle without
any additional programming effort, coalescing or disjoint of multiple surfaces since
the actual surface is embedded in a higher-dimensional function.

Regarding the SFM, both surfaces can be treated as only one, i.e. the grid
points of both surfaces are included in the same SFM lists. For double-sided
wafer simulations, the LS grid is completely defined by user, i.e. substrate size in
vertical dimension subsz is also an input parameter and the number of points in
this dimension is simply calculated by:

numz = numx

subsx
subsz, (4.27)

contrary to simple etching processes where this parameter was calculated
depending on the selected etchant with (4.22). Additionally, two initial surfaces
must be defined at top and bottom of the grid. The top initial surface is equivalent
to that of the simple etching process and corresponds to the points (i, j, k) located
at plane k = numz − 2. On the other hand, the bottom initial surface is the plane
located at k = 1 (notice that indices start at 0).

135

Chapter 4. Level Set method for wet etching simulation

Algorithm 18: Initial bottom surface determination.
for each grid point (i, j, k = 1) do

1 φ(i, j, k = 1) = 0.
2 state(i, j, k = 1) = 0.

if maskb(i, j) = 0 then
add (i, j, k = 1) to L0.
add (i, j, k = 0) to L−1.
add (i, j, k = 2) to L+1.

3 φ(i, j, k = 0) = −∆x.
4 state(i, j, k = 0) = −1.
5 φ(i, j, k = 2) = ∆x.
6 state(i, j, k = 2) = 1.

else
7 φ(i, j, k = 0) = −1.5∆x.
8 state(i, j, k = 0) = −2.
9 φ(i, j, k = 2) = 1.5∆x.

10 state(i, j, k = 2) = 2.

Initial surfaces need to be determined according to the masks. Thus, two masks
need to be loaded, namely: the mask to be applied on the top of the substrate
(maskt) and the mask to be deposited on the bottom of the substrate (maskb).
The top mask is equivalent to the mask of a simple etching process. Similarly, the
same rules are applied to embed the bottom surface and to initialize SFM lists
according to maskb, i.e. substrate points are considered with positive distance
values whereas etchant points are considered negative. Hence, algorithm 14 used
for determining simple initial surfaces is applied according to maskt. After that,
the procedure presented in algorithm 18 is used for determining the bottom initial
surface.

A two-dimensional example of a double-sided wafer is depicted in Fig. 4.10. Notice
that one of the main advantages of the SFM implementation is the trivial handling
of the two surfaces. The points that form both surfaces are included in the same
SFM lists and the same evolution algorithm 15 is applied.

4.3.6.2 Consecutive etching processes

Another feature of the SFM-based simulator implemented in this thesis is the
possibility to perform consecutive etching changing the mask patterns applied
to substrate. Many MEMS structures are micromachined by applying/removing
different mask patterns and etching with various solutions. Therefore, the
simulation of these processes increases the usefulness of the simulator in order
to design complex MEMS devices.

136

4.3 SFM developed simulator

L+1

L-1

MaskL0

L+1

L-1

MaskL0

k=0

k=1

k=num
z
-1

k=num
z
-2

k=num
z
-3

x

z

k=2

0 -Δx Δx
Signed

distance

Figure 4.10: Two dimensional example of initial surfaces of a double-sided wafer
partially covered with a top and a bottom masks. Voxels of both fronts are included
in the same corresponding SFM lists, namely: orange, green and blue voxels represent
the L−1, L0 and L+1 lists, respectively. Red and gray voxels are not included in any list.
Positive/negative distances are associated to wafer/etchant points.

When simulating a double-sided etching, the substrate size is fixed and introduced
by the user. Thus, the grid size remains constant through all the consecutive
etching processes. Nevertheless, when simulating simple etching processes, vertical
dimension of grid is calculated with (4.22), depending on time of etching and
etch rate distribution. Thus, in the consecutive etching steps, the grid vertical
dimension must be increased according to the new time of etching and the etchant
selected. If the grid vertical size numz of the first etching step was calculated with
(4.22), then for an additional time of etching Te2 and a new etch rate distribution
R2(θ,Φ), the new vertical dimension is obtained with

numz2 = numz +R2(θ = 0,Φ = 0) · Te2. (4.28)

Then, all the variables of table 4.1 must be redefined again with this new size but
keeping the previous values such that a new etching loop can be started directly.

Additionally, after each etching process, the next mask operations can be
performed on both substrate sides (in double-sided simulations) by the developed
simulator:

137

Chapter 4. Level Set method for wet etching simulation

• Apply mask: the corresponding substrate side (top or bottom) will be
covered according to the loaded mask pattern. If a point is already masked
it will remain masked.

• Remove existing mask: the mask of the corresponding substrate side will be
completely removed.

• Remove pattern: a specific substrate region will be unmasked according to
the loaded pattern.

All these operations can be applied independently on top and bottom sides of
substrate if it is a double-sided wafer. After the first etching process has been
performed, the user can apply a combination of any of these operations before the
next etching process is started. The application of a mask as well as the removing
of a pattern will ask the user to load an image file. On the other hand, the mask
removing operation will simple unmask every point of the desired side (in case of
double sided-wafers).

Algorithm 19: Grid point status determination for mask/unmask operations.
Data: Grid point (i, j, k)

1 uppers = false
2 lowers = false

for every point (i, j, k2), such that k2 > k do
if state(i, j, k2) = 0 then

3 uppers = true; break;

for every point (i, j, k2), such that k2 < k do
if state(i, j, k2) = 0 then

4 lowers = true; break;

5 if uppers = false and lowers = true then (i, j, k) is top.
6 if uppers = true and lowers = false then (i, j, k) is bottom.
7 if uppers = false and lowers = false then (i, j, k) is isolated.
8 if uppers = true and lowers = true then (i, j, k) is intermediate.

In order to apply properly these operations to only those points of the
corresponding side, the algorithm 19 has been implemented. This algorithm
determines, according to the state of the points of the same column, if a grid
point is:

• top: there are surface points only below it. It will be affected by top
operations.

• bottom: there are surface points only over it. It will be affected by bottom
operations.

138

4.3 SFM developed simulator

• isolated: there are no surface points over neither below it. It will be affected
by both top and bottom operations.

• intermediate: there are surface points below and over it. It will be affected
only by those operations applied to the closest side.

Thus, depending on the tag provided by algorithm 19, mask operations can be
applied correctly to the corresponding points.

Notice that, although input patterns are two-dimensional, already etched surfaces
are defined over the whole three-dimensional grid. Accordingly, three main
variables are defined: maskt, maskb and mask3D. The first two are only
two-dimensional variables of numx · numy grid points used for storing the
patterns loaded by the user, whereas mask3D is a three-dimensional variable of
numx · numy · numz size which indicates for every grid point whether is masked
or not.

For example, if a top loaded mask indicates that a specific point must be masked
(maskt(i, j) = 1), then, the top point of the surface in the column (i, j) must
be masked. The rest of operations and point cases can be described similarly.
Given top and bottom masks, maskt and maskb, introduced by user, and the
variable mask3D that contains the mask information of the previous etching step,
algorithms 20, 21 and 22 describe the operations of applying mask, removing
pattern, and removing mask respectively. Notice that, when maskt and maskb are
used for removing a pattern, 0 values indicate that such point must be unmasked
whereas 1 values are used for denoting those surface points that must be kept
intact.

Algorithm 20: Operation of applying a mask.
Data: maskt and maskb introduced by user.
Data: mask3D from previous etching process.
Data: side = {top, bottom} chosen by user.
for every grid point (i, j, k) do

if state(i, j, k) = 0 then
1 if side = top then mask = maskt
2 else if side = bottom then mask = maskb

if mask(i, j) = 1 then
3 Apply algorithm 19 to determine the status of (i, j, k).

if status =side or status = isolated then
4 mask3D(i, j, k) = 1

else if status = intermediate then
if (i, j, k) is closer to side surface or equidistant then

5 mask3D(i, j, k) = 0

139

Chapter 4. Level Set method for wet etching simulation

Algorithm 21: Operation of removing a pattern.
Data: maskt and maskb patterns introduced by user.
Data: mask3D from previous etching process.
Data: side = {top, bottom} chosen by user.
for every grid point (i, j, k) do

1 if side = top then mask = maskt
2 else if side = bottom then mask = maskb

if mask(i, j) = 0 then
3 Apply algorithm 19 to determine the status of (i, j, k).

if status =side or status = isolated then
4 mask3D(i, j, k) = 0

else if status = intermediate then
if (i, j, k) is closer to side surface then

5 mask3D(i, j, k) = 0

Algorithm 22: Operation of removing a mask.
Data: mask3D from previous etching process.
Data: side = {top, bottom} chosen by user.
for every grid point (i, j, k) do

1 Apply algorithm 19 to determine the status of (i, j, k).
if status =side or status = isolated then

2 mask3D(i, j, k) = 0
else if status = intermediate then

if (i, j, k) is closer to side surface then
3 mask3D(i, j, k) = 0

These algorithms are described for double-sided wafers, however, for simple pro-
cesses the same algorithms can be applied but only considering top mask oper-
ations. All the simulated experiments have emulated correctly the experimental
results by using these algorithms.

Once all the desired operation have been applied, the next etching process can
start. Then, it is necessary to define the new SFM lists regarding these operations.
Notice that each of these operations has been reflected on the variable mask3D,
thus, new state values can be assigned to grid points as well as they can be included
in the corresponding SFM lists regarding their φ values and the value of mask3D
for every point.

In order to summarize and visualize properly all the operations and different
etching processes that can be simulated, a workflow diagram of the whole simulator
is depicted in Fig. 4.11.

140

4.3 SFM developed simulator

GetDfromDuser:
kDDSubstrateDmaterialD
FsiliconDorDquartzM
kDDWaferDcrystallographicD
orientation
kDDSurfaceDsize:D
subsxvDsubsy
kDDGridDsize:Dnumx

DoubleksidedD
wafer?

GetDfromDuser:
kDDWaferDwidth:D
subsz

WaferDwidthD
automaticallyD
determined

Calculate:
kDDTimeDstep
kDDNumADofDiterations:DNiter
BuildDinitialDsurfacev
itsDSDFDandDtheDSFMDlists

UpdateDSDFD
withDSFMDalgorithm

NiterDreached?

No
SurfaceDextractionD
andDODDvisualization

GetDfromDuser:
kDDMaskDpatternsD
FtopDandDbottomDfor
doubleksidedDwafersM

ChooseDdesiredDoperationD
FtopDorDbottomM:
kDDApplyDmask
kDDRemoveDpattern
kDDRemoveDmask

AdditionalD
etchingDstep?

Yes

Yes

No

Yes

No

GetDfromDuser:
kDDEtchantDsolutionD
FKOHvDTMAHvDetcM
kDDTimeDofDetching:DTe

Figure 4.11: Workflow diagram of the developed SFM-based algorithm for complex
wet etching processes simulation. Gray boxes are used for operations that require user
interaction, whereas white boxes are performed automatically by the program.

141

Chapter 4. Level Set method for wet etching simulation

4.4 SFM parallel implementations

After in section 4.3 the proposed SFM was proved to be capable of correctly
simulating wet etching processes and a set of algorithms were developed in
order to enable the simulation of complex micromachining processes, a further
optimization has been developed. In particular, two parallel algorithms have been
implemented, a CPU- and a GPU-based implementations, which take advantage
of the parallel intrinsic nature of the LS method since every grid point can be
updated simultaneously.

The SFM relies on linked lists to track the active points of the moving surface.
These data structures are not easily adapted to run on a parallel environment, thus,
only a few parallel GPU-based implementations have been recently published and
all of them in the field of medical image segmentation [12, 285–287]. Galluzzo
et al. proposed an implementation which stores the whole grid and emulates
the SFM lists with one-dimensional arrays [287]. On the other hand, approaches
that reduce memory storage by splitting the grid into blocks such that, only those
blocks close to the front are stored in GPU memory have been presented [285, 286].
Nevertheless, these implementations usually increase the communication between
CPU and GPU, which can increase computational time.

Moreover, different numerical schemes, variables and data treatments are used for
wet etching simulation with respect to medical image segmentation algorithms.
To the best of author’s knowledge, there is no SFM parallel implementation for
wet etching simulation at the moment of writing this thesis. Accordingly, in this
thesis two parallel implementations of the SFM are presented. The objective
is to compare an optimized parallel multi-thread CPU implementation with an
also optimized parallel many-thread GPU approach. Additionally, the GPU
implementation is compared with state-of-the-art CCA GPU-based as well, in
terms of execution time and accuracy of simulated results.

4.4.1 CPU implementation

The first developed parallel implementation of the SFM algorithm 15 is based on
the capabilities of modern multi-core CPUs. Since the benchmarks of this study
are performed on a quad-core 2.8 GHz Intel Core i7, the possibility to optimize the
performance by taking advantage of specific properties of this CPU is considered.
This includes the usage of Single Instruction Multiple Data (SIMD) operations,
which can apply the same instruction to a multiple data objects in one clock cycle.
In particular, the Streaming SIMD Extensions (SSE) operations developed by Intel
are used. Based on the use of Microsoft Visual Studio 2010 in this study, the code
is automatically optimized by generating SSE2 instructions using the /arch:SSE2
compilation option.

142

4.4 SFM parallel implementations

In addition, in last years the tendency of microprocessor manufacturers is to
integrate multiple core in one chip instead of increasing the working frequency.
There are different chooses to take advantage of these multi-core platforms, such
as openMP directives [288] or the Open Source POSIX Threads (Pthreads) library
recently adapted to Windows O.S. [289]. In this thesis the Pthreads library has
been used due to the small size of the libraries, the efficient communications/data
exchange between execution threads, and the quick learning process due to its C
programming language integration. This library enables the creation of multiple
execution threads that are computed simultaneously by the multiple cores of the
CPU.

The main idea of the developed parallel CPU SFM is to distribute the points
included in all the SFM lists among the execution threads. The way of
avoiding data conflict is to enforce that each execution thread creates a sub-
list of every SFM list such that, access to each list is exclusive for the thread
creator. For example, if Nth execution threads are created such that tid =
0, · · · , Nth − 1 represents the thread identifier, the following lists are generated:
Ls0[tid], Ls+1[tid], Ls−1[tid], Ss0[tid], Ss+1[tid], Ss−1[tid], i.e. one sub-list of every
SFM list per execution thread. Accordingly, the active points to be updated are
distributed over the sub-lists, therefore, each thread computes only those points
included in its own sub-list. It is important to have roughly the same amount
of points in each sub-list of the same type. Otherwise, an execution thread with
less points would have to wait until the rest of threads finish computing all the
points. To accomplish this, points are distributed uniformly among the sub-lists,
i.e. after a point has been included in a sub-list of thread tid = 0, the next point
will be included in the corresponding tid = 1 sub-list and so on. This ensures
that all the sub-lists have essentially the same amount of points. This strategy
has provided the fastest simulations in all the tested experiments in comparison
to other schemes, like splitting the grid in different regions such that every thread
only computes those points included in its corresponding grid region.

Another important feature to consider when developing a parallel implementation
is the synchronization of execution threads. This must guarantee updated values
when accessing to specific stored data that can depend on other execution
threads. Otherwise, wrong results would be obtained. Pthreads library provides
synchronization barriers that ensures that, at the barrier point of the algorithm, all
the threads have finished their previous tasks, i.e. all the threads wait until all of
them reach the barrier. In the developed algorithm 15, barriers are required after
steps 7, 13, 17, 18 and 19, since these steps require values stored in neighbouring
positions, for instance, when updating L±1 lists, six adjacent positions of the
current point are visited (see procedure 5).

Finally, in order to obtain the maximum values of viscosity factors αq (4.15),
every thread searches for the maximum values among the points included in its
sub-list. Then, a search through these values must be performed. This task must

143

Chapter 4. Level Set method for wet etching simulation

be performed only by one thread, accordingly, Pthreads provides a barrier to
ensure that only one thread executes a certain region of the algorithm. Hence,
this serialization barrier is used before updating φ values (i.e. step 13) since αq
values are required in this step.

The implemented parallel CPU SFM-based algorithm for anisotropic wet etching
is depicted in Fig. 4.12. In this figure, those parts of the algorithm executed in
parallel by different execution threads are shown in green, whereas sequential parts
are represented in white boxes and barriers and serialized sections are coloured
in red. Moreover, the equivalent steps of sequential algorithm 15 are labelled
in red numbers. Notice that, since the parallel CPU implementation has been
developed, mainly, to compare computational efficiency with respect to the parallel
GPU implementation, this implementation is only capable of simulating simple
experiments, i.e. one-sided wafer substrates.

4.4.2 GPU implementation

Based on the sequential implementation of the SFM presented in algorithm 15,
another parallel implementation of the SFM has been developed in this thesis,
namely a CUDA C algorithm to be executed on an Nvidia GPU device. According
to section 2.3.3, when executing a parallel algorithm on a GPU, several hundreds or
thousands execution threads are created to simultaneously apply the same set of
instructions (kernel) to different grid elements. For simplicity and clarity, only
simple one-sided wafer visual examples are shown, as well as only the simple
algorithm is presented. Nevertheless, the developed GPU implementation is
capable of simulating complex MEMS micromachining processes (like double-sided
wafers etching) as commented in section 4.3.6.

4.4.2.1 Parallelization of the SFM

A GPU implementation cannot use the same multi-core strategy of section 4.4.1
since the use of linked lists does not fit well the GPU computing philosophy.
Thus, a SFM implementation without this data structure has been developed.
This requires the use of an auxiliary state variable (state aux) to indicate the
corresponding current SFM list of every grid point. Thus, the variable state aux
is updated at the same steps of algorithm 15 where points were added/removed
to/from a list. Consequently, modifying the current state before required is avoided
by using this auxiliary variable. The variable state aux is a three-dimensional
variable that stores the current SFM list of every grid point and it takes the values
0, 1,−1, 10, 11, or −11 to indicate that a point is included in L0, L+1, L−1, S0, S+1,
or in S−1 respectively. Whereas the values 2 and −2 are used for indicating those
points that are not included in any list and form part of the substrate or the
etchant solution respectively. In addition, according to the SFM, only points with

144

4.4 SFM parallel implementations

Synchronizationpbarrier

Synchronizationpbarrier

InitializepthepSFMpsub{lists

,,,C C C C,,,LsC[C]
,,,C C C C,,,LsC[3]

,,,C C C C,,,LsC[Nth{3]

LC

,,,C C C C,,,Ls±3[C]
,,,C C C C,,,Ls±3[3]

,,,C C C C,,,Ls±3[Nth{3]

LD3pandpL{3

,,,C C C C,,,SsC[C]
,,,C C C C,,,SsC[3]

,,,C C C C,,,SsC[Nth{3]

SC

,,,C C C C,,,Ss±3[C]
,,,C C C C,,,Ss±3[3]

,,,C C C C,,,Ss±3[Nth{3]

SD3pandpS{3

,,, ,,, ,,, ,,,

{ppSubstrateptype
{ppWaferporientation

{ppSubstratepsize
{ppGridpsize

{pMaskppattern
{pTimepofpetching

Getpuserpparameters<3{4

Generatepmesh,
BuildpinitialpsurfacepandpembedpitpinsidepapSDF,p
Forpeverypgridppoint<p
{ppDeterminepthepcorrespondingpSFMplistp{LCvpLD3vpL{3}paccordingptoptheirpdistancepvaluespandpmasks,
{ppIncludeptheppointpinpthepcorrespondingpsub{listpforpapuniformpdistribution,pp
Calculateptimepsteppandpnumberpofpiterations,

5
x

6

CreatepNthpexecutionpthreadsO

Serializationpbarrier<
Determinepabsolutepviscositypfactorspαxvpαyvpandpαzpamongpeverypsub{listpp

34

Ifpnumberpofpiterationspreached<pextractpimplicitpsurfacepforpvisualization,pOtherwisepgoptopstepppp,p4C w

Synchronizationpbarrier

,,,
ForpeverypLsC[C]ppoint
determine<
pp{pspatialpderivativespofpϕ
pp{plocalpnormalpvector
pp{pcorrespondingpetchpratep
pp{pmaximumpvaluepofp
sub{listpviscositypfactorspαq

ForpeverypLsC[3]ppoint
determine<
pp{pspatialpderivativespofpϕ
pp{plocalpnormalpvector
pp{pcorrespondingpetchpratep
pp{pmaximumpvaluepofp
sub{listpviscositypfactorspαq

ForpeverypLsC[Nth{3]ppoint
determine<
pp{pspatialpderivativespofpϕ
pp{plocalpnormalpvector
pp{pcorrespondingpetchpratep
pp{pmaximumpvaluepofp
sub{listpviscositypfactorspαq

w

ForpeverypLsC[C]ppoint<
pp{pupdatepϕpvalue
pp{pIfpϕU{C,6ΔxpmovepitptopS{3

pp{pIfpϕAC,6ΔxpmovepitptopSD3

ForpeverypLsC[3]ppoint<
pp{pupdatepϕpvalue
pp{pIfpϕU{C,6ΔxpmovepitptopS{3

pp{pIfpϕAC,6ΔxpmovepitptopSD3

ForpeverypLsC[Nth{3]ppoint<
pp{pupdatepϕpvalue
pp{pIfpϕU{C,6ΔxpmovepitptopS{3

pp{pIfpϕAC,6ΔxpmovepitptopSD3

,,,
35

UpdatepLsD3[C]pandpLs{3[C]p
accordingptopprocedurep6,

UpdatepLsD3[3]pandpLs{3[3]p
accordingptopprocedurep6,

UpdatepLsD3[Nth{3]pandp
Ls{3[Nth{3]paccordingptop
procedurep6,,,,

3w

Transferppointspfromp
auxiliaryplistspSsC[C]vpSsD3[C]vp
andpSs{3[C]pwithpprocedurepO,

,,,Transferppointspfromp
auxiliaryplistspSsC[3]vpSsD3[3]vp
andpSs{3[3]pwithpprocedurepO,

Transferppointspfromp
auxiliaryplistspSsC[Nth{3]vp
SsD3[Nth{3]vpandpSs{3[Nth{3]p
withpprocedurepO,

37

Addpneighbouringppointspto
Ls±3[C]pwithpprocedurepw, ,,,

3q
Addpneighbouringppointspto
Ls±3[3]pwithpprocedurepw,

Addpneighbouringppointsptop
Ls±3[Nth{3]pwithpprocedurepw,

Figure 4.12: Parallel CPU SFM algorithm for wet etching simulation. Red numbers
indicate the equivalent step of algorithm 15.

145

Chapter 4. Level Set method for wet etching simulation

0±0.5Δx.hstate_aux=0

-1±0.5Δx.hstate_aux=-1

1±0.5Δx.hstate_aux=1

Signedhdistance:

Upperhboundary

Lowerhboundary

Executionhthread

Figure 4.13: Simple three-dimensional example showing the execution thread
distribution: one thread computes a vertical grid column. Additionally, state aux labels
and upper and lower boundaries of each thread are represented. Green voxels contain
the active surface, whereas blue and orange ones corresponds with substrate and etchant
solution respectively. White voxels are not computed.

state aux = 0 (or state aux = ±1, depending on the algorithm step) are visited
and processed, whereas the points labelled as state aux = ±2 (i.e. no included in
any list) are ignored.

A GPU can be understood as a coprocessor of the CPU which executes certain
parts of the algorithm in parallel. CPU must invoke a kernel and it is in charge of
allocating the necessary space memory and transferring the corresponding data in
both directions, CPU to GPU and vice versa. In this study, the GPU is used
for executing the etching loop of algorithm 15, similarly to the parallel CPU
implementation of previous section.

The basic strategy used for the CUDA implementation, is to create as many
threads as columns has the LS grid. Thus, each execution thread is in charge
of applying the corresponding operations of the etching loop to every grid point
contained in a specific vertical grid column, as recommended by previous CUDA
optimizations for similar data access patterns [290]. Moreover, in order to mimic
the SFM behaviour, each thread keeps track of the upper and lower spatial
boundaries of the active region of a column, thus processing only a few voxels
instead of the whole column. A three-dimensional simple example of the thread
distribution is depicted in Fig. 4.13, showing the state aux label of grid points as
well as the column boundaries.

Likewise, it is important to pay attention on the work distribution among all
the execution threads created when invoking a kernel. This implementation is

146

4.4 SFM parallel implementations

executed on two different GPUs, the Nvidia GeForce GTX 260 of Tesla CUDA
microarchitecture with 192 cores [110], and the Nvidia GeForce GTX 560 [113],
which belongs to Fermi CUDA microarchitecture and it has 336 cores [92]. As
explained in section 2.3.3, the best performance is obtained when the thread blocks
size is a multiple of warp size (32 threads). It has been conclude after some tests
that 256 threads per block is the optimal choice to obtain the SMs occupied enough
to take advantage of the delays produced when accessing to global memory (see
section 2.3.3 and Fig. 2.17). Because the work space is two-dimensional (i.e. a
collection of vertical columns in three dimensions) blocks size is chosen to be 16x16
threads and the grid of blocks launched by each kernel is two-dimensional as well.
The actual grid dimensions depend on the size of the LS mesh, such that the
number of blocks in each dimension is obtained with:

Nblockx =
⌊
numx + 15

16

⌋
Nblocky =

⌊
numy + 15

16

⌋
.

(4.29)

Thus, a two-dimensional grid of blocks is created and each of these blocks contain
256 (16x16) execution threads, guaranteeing the execution of one thread per
column. Notice it is possible that more threads than grid columns are created
depending on grid dimensions. In such cases, the excess threads are simply not
computed. The CUDA hierarchy can be visualized in Fig. 2.16.

4.4.2.2 Main variables

The variables used in the GPU SFM implementation are essentially the same
described for the sequential implementation in table 4.1. Nevertheless, it is
important to decide in which GPU memory must be stored each variable. Usually,
accessing to data stored in global memory of GPU device takes a relevant
part of computing time [291]. Hence, a very important aspect of any CUDA
implementation is the need to optimize the memory bandwidth by performing
memory coalescing. A coalesced access to global memory is achieved when threads
of the same warp access to adjacent locations of the global memory and some
conditions (which depend on the device microarchitecture) of the size of the data
accessed and the memory addresses, are fulfilled [92]. A coalesced access enables
to unify the memory accesses of every thread in just one operation, minimizing
the amount of memory readings.

Due to the thread distribution implemented, this is easily obtained when updating
values of φ since each thread only needs to access its memory position and each
thread is located next to each other. However, when the threads need to access the
neighbouring φ values to calculate spatial derivatives, memory coalescing is better
achieved by directly using the texture memories of GPU since these are designed

147

Chapter 4. Level Set method for wet etching simulation

Variable Type Size GPU memory
φ float grid Texture

φ−x float grid Global

φ+
x float grid Global

φ−y float grid Global

φ+
y float grid Global

φ−z float grid Global

φ+
z float grid Global

H float grid Global

mask3D boolean grid Global

state char grid Global

state aux char grid Global

R float 180x45 Texture

αx float surface Global

αy float surface Global

αz float surface Global

boundaryup int surface Global

boundarydown int surface Global

Table 4.2: Main variables allocated in GPU device and utilized in the SFM parallel
GPU implementation. The variables with size grid are three-dimensional matrices of
numx·numy ·numz size. On the other hand, surface size corresponds to a two-dimensional
matrix of numx · numy entries.

for exploiting memory access locality. With the chosen thread memory order,
it has been found that this memory offers good performance for neighbourhood
access. In addition, the values of the etch rates R(θ,Φ) are also stored in texture
memory to improve memory coalescing when calculating local velocity of the front
with (4.17) and (4.19).

Accordingly, in table 4.2 are collected all the variables allocated in GPU memory,
specifying in which type of memory are allocated. Notice that viscosity factors αq
are presented as two-dimensional matrices since the CPU is in charge of calculating
the maximum values over the local maxima obtained by every execution thread
(see next section). Moreover, the variables boundaryup and boundarydown are used
for storing the upper and lower boundaries of each execution thread.

148

4.4 SFM parallel implementations

4.4.2.3 Workflow

Similarly to the parallel CPU implementation, synchronization is required after
some steps in order to guarantee updated values. In a CUDA implementation,
this task can be accomplished by grouping a set of instructions in a kernel since,
when the CPU launches a kernel, the next kernel is not invoked until the previous
has been finished and returned the control to the CPU, i.e. the kernel is a CPU
blocking operation, which ensures the synchronization of all execution threads.
Essentially, the algorithm 15 has been divided in five different kernels, namely the
loop of step 7, the loop of step 13, and steps 17, 18 and 19. Those kernels are
explained in algorithms 23, 24, 25, 26 and 27, respectively. Notice that the same
amount of threads (i.e. one thread per grid column) is created when launching
every kernel. In addition, every execution thread computes simultaneously all the
instructions collected by the kernel. Moreover, kernels 4 and 5 are also employed
to update the upper a lower boundaries of the threads.

Algorithm 23: Kernel 1 of GPU SFM implementation. It corresponds to step 7
of algorithm 15.
for every column point ~xi with state aux = 0 between upper and lower boundaries do

1 Spatial derivatives φ±q (~xi).

2 Second-order central differences φq(~xi) = φ+
q (~xi)+φ−

q (~xi)
2 .

if Anisotropic etchant then
3 Determine normal components (4.5).
4 Obtain corresponding etch rate R(θ,Φ).
5 Calculate maximum values of viscosity coefficients αq among column points.

Algorithm 24: Kernel 2 of GPU SFM implementation. It corresponds to step 13
of algorithm 15.
for every column point ~xi with state aux = 0 between upper and lower boundaries do

1 Update φ(~xi) using (4.23).
if φ(~xi) < −0.5∆x then

2 state aux(~xi) = −11.
if φ(~xi) > 0.5∆x then

3 state aux(~xi) = 11.

Another important aspect of a GPU implementation is to minimize the volume of
data transferred between GPU and CPU devices in order to achieve an optimal
behaviour [92]. Accordingly, in the developed implementation, the CPU generates
the initial surface and, then, the variables φ, state, state aux,R(θ,Φ), boundaryup
and boundarydown are transferred to the GPU where the etching process is
simulated. Once the time of etching has been reached, the final SDF φ is taken

149

Chapter 4. Level Set method for wet etching simulation

Algorithm 25: Kernel 3 of GPU SFM implementation. It corresponds to step 17
of algorithm 15.
for every column point ~xi between upper and lower boundaries do

if state aux(~xi) = 1 then
1 Among the six neighbouring points of ~xi, find the point with minimum distance

φ(~xb) value and state = 0.
if no point with state = 0 is found then

2 state aux(~xi) = 2.
3 state(~xi) = 2.

else
4 Update φ(~xi) = φ(~xb) + ∆x.
5 if φ(~xi) ∈ [−0.5∆x, 0.5∆x] then state aux(~xi) = 10.
6 if φ(~xi) > 1.5∆x then state aux(~xi) = 2.

if state aux(~xi) = −1 then
7 Among the six neighbouring points of ~xi, find the point with maximum distance

φ(~xb) value and state = 0.
if no point with state = 0 is found then

8 state aux(~xi) = −2.
9 state(~xi) = −2.

else
10 Update φ(~xi) = φ(~xb)−∆x.
11 if φ(~xi) ∈ [−0.5∆x, 0.5∆x] then state aux(~xi) = 10.
12 if φ(~xi) < −1.5∆x then state aux(~xi) = −2.

by CPU in order to proceed with the visualization process. On the other hand,
the maximum values of viscosity factors (4.15), must be searched over all the grid
points that from part of the active surface, thus, each execution thread obtains
the local maximum value within its corresponding column. Then, all these local
maxima (notice that this values are stored in a two-dimensional variable of the
surface size numx · numy) are transferred to the CPU, which has to find the
absolute maximum values of the viscosity factors among all the local values found
by each thread. Once obtained, the three maxima αx, αy, and αz are returned to
the GPU, which then continues with the next step. Although there is room for
further optimization, the time required by the CPU to find the maximum value
over a two-dimensional grid is negligible while the time spent doing the transfer
from GPU to CPU is only about 2.5% of the total simulation time (as commented
in section 4.5).

The workflow of this GPU implementation can be visualized in Fig. 4.14, including
the different kernels execution and a visual representation of those affected grid
points for a simple example, and the data transfers between CPU and GPU.

150

4.4 SFM parallel implementations

Algorithm 26: Kernel 4 of GPU SFM implementation. It corresponds to step 18
of algorithm 15.

1 Initialize minaux = numz and maxaux = 0.
for every column point ~xi = (i, j, k) between upper and lower boundaries do

if state aux(~xi) = 10 then
2 state(~xi) = 0.
3 state aux(~xi) = 0.

if state aux(~xi) = 11 then
4 state(~xi) = 1.
5 state aux(~xi) = 1.

if state aux(~xi) = −11 then
6 state(~xi) = −1.
7 state aux(~xi) = −1.

if state aux(~xi) = 0 or state aux(~xi) = ±1 then
8 if minaux > k then minaux = k.
9 if maxaux < k then maxaux = k.

10 if boundarydown(i, j) > minaux then boundarydown(i, j) = minaux
11 if boundaryup(i, j) > maxaux then boundaryup(i, j) = maxaux

Algorithm 27: Kernel 5 of GPU SFM implementation. It corresponds to step 19
of algorithm 15.
for every column point ~xi = (i, j, k) with state aux = 0 between upper and lower
boundaries do

for neighbouring points ~xb = (ib, jb, kb) with state = 2 do
1 state(~xb) = 1.
2 state aux(~xb) = 1.
3 φ(~xb) = φ(~xi) + ∆x.
4 if boundarydown(ib, jb) > k + 1 then boundarydown(ib, jb) = k + 1

for neighbouring points ~xb with state = −2 do
5 state(~xb) = −1.
6 state aux(~xb) = −1.
7 φ(~xb) = φ(~xi)−∆x.

151

Chapter 4. Level Set method for wet etching simulation

Launch.Kernel.7.
creating.one.execution.thread.per.grid.column

k.Transfer.from.GPU.to.CPU.local.maximum.values
of.viscosity.factors.αq.of.each.thread5.
k.Find.global.maximum.values.of.viscosity.factors5
k.Transfer.from.CPU.to.GPU.these.maximum.values5

Launch.Kernel.<.
creating.one.execution.thread.per.grid.column

Launch.Kernel.0.
creating.one.execution.thread.per.grid.column

Launch.Kernel.>.
creating.one.execution.thread.per.grid.column
Launch.Kernel.>.
creating.one.execution.thread.per.grid.column

Launch.Kernel.>.
creating.one.execution.thread.per.grid.column
Launch.Kernel.>.
creating.one.execution.thread.per.grid.column

k.Get.user.parameters5
k.Generate.mesh5
k.Build.initial.surface.and.embed.it.inside.a.SDF5
k.Initialize.state.and.state_aux.for.every.grid.point5
k.Calculate.time.step.and.number.of.iterations5
k.Allocate.GPU.memory.regions5
k.Transfer.ϕ,.state,.state_aux,.mask3D,.R,.boundaryup,
and.boundarydown.from.CPU.to.GPU5
k.Define.number.of.blocks.in.x.and.y.dimensions5.

7k<
0
>

9

CPU GPU

Kernel 1
For.every.column.point.between.upper.
and.lower.boundaries.with.state_aux=0.
determine:
k.spatial.derivatives.of.ϕ,.
k.local.etch.rates.
k.local.maximum.values.
of.viscosity.factors.αq

O

70

Kernel 2
For.every.column.point.between.upper.
and.lower.boundaries.with.state_aux=0:
..k.update.ϕ.value
..k.If.ϕ<k:59Δx.state_aux = -11

..k.If.ϕ>:59Δx.state_aux = 11

7O

Kernel 3
Update.every.column.point.
between.upper.and.lower
boundaries.with.state_aux=1

and state_aux =-1:

79

Kernel 5
For.every.column.point.between.upper
and.lower.boundaries.with.state_aux=0,

find.neighbouring.points.with.
state=2 and.state =-2..and.
update.them.correspondingly5

78

Kernel 4
Update.state_aux.of.every.column.
point.between.upper.and.lower.
boundaries.with.state_aux=10,

state_aux=11 and

state_aux =-11:

k.If.time.of.etching.reached:.transfer.ϕ.from.GPU.
to.CPU.for.visualization5
k.Otherwise.go.to.step.O

Figure 4.14: Parallel GPU SFM algorithm for wet etching simulation. Red numbers
indicate the equivalent step of algorithm 15.

152

4.5 Results and comparisons

4.5 Results and comparisons

In this chapter a total of three SFM-based wet etching simulator implementations
has been developed, namely: (i) a pure sequential Java, (ii) a parallel CPU
using Pthreads library in C programming language, and (iii) a parallel GPU
implemented in CUDA C. The three implementations obtain exactly the same
results for the same experiment conditions, thus, the accuracy obtained by them
is the same. Accordingly, the three versions implement the SFM algorithm 15,
use first-order differences (2.26), (2.27) for forward and backward derivatives, and
second-order central derivatives (2.28) to calculate the normal vector components
(4.5). Furthermore, αF = 0.48 is used for KOH-based etchants, αF = 0.5 is
utilized for NH4HF2, and αF = 0.45 for TMAH-based solutions.

In this section several experiments with different etchant conditions are simulated.
To prove the effectiveness of the developed SFM-based algorithms, every result is
compared with the corresponding experimental one. In addition, every simulation
result is also compared to state-of-the-art CCA results, in terms of computational
efficiency and accuracy of the results.

This section is structured as follows. First, the effect of mesh resolution on the
accuracy of resulting structures is studied. For the CCA approach, this effect
is similar and it is also studied. Later, several simple examples are simulated
with both parallel SFM implementations, the CPU and the GPU versions, to be
compared in terms of computational efficiency. Following, the sequential SFM
implementation is compared to a similar sequential CCA approach. The same
simple experiments are simulated to obtain a comparison in terms of computational
efficiency. Finally, a comparison of complex MEMS results is performed between
SFM GPU implementation and a GPU-based CCA approach. These results are
compared with experimental ones too.

4.5.1 Mesh resolution impact

The underlying grid in the SFM simulations effectively models the etched substrate
and its resolution affects the final accuracy of results. Typically, the larger the
number of grid points, the better the accuracy, a phenomenon that is also observed
in atomistic models. The grid points corresponds to voxels for the SFM and to UCs
for the CCA approach. Notice that, due to crystallographic structure of silicon
and quartz, the number of atoms that form a UC changes depending on surface
orientation and direction of the substrate cut (i.e. the rotation of the wafer).

To quantify the effect of the grid size, two experiments are considered and
simulated by the developed SFM and two CCA approaches, namely: the Constant-
Time-Stepping (CTS) implementation is employed since this implementation uses
a constant time step like the developed SFM algorithm and, thus, it will be used

153

Chapter 4. Level Set method for wet etching simulation

in next sections for computational efficiency comparison. On the other hand,
the compensated CTS implementation can achieve better accuracy since modifies
the time step during the simulation according to current surface and etch rates.
Both CCA approaches were presented by Ferrando et al. [292] and are currently
considered the most advanced atomistic wet etching simulators. Moreover, these
approaches are written in the same programming languages than those SFM
developed in this thesis, i.e. Java for sequential implementations and CUDA C for
the parallel versions. Hence, both approaches can be perfectly used for comparison
with the SFM developed approaches.

In the first place, the underetching of the convex corners of a square-shaped mask
pattern on a 128x128 µm2 substrate etched in KOH 40 wt% at 70 ◦C for 30 min
is simulated. For this first example, the CTS implementation of the CCA has
been utilized. As shown in Fig. 4.15(a), the measured width of the obtained
mesa structure decreases as the number of grid points is increased (voxels in
SFM and UCs in CCA, each one formed by 4 atoms in this case), following a
negative exponential behaviour that essentially saturates at the 512x512 grid size.
Considering a discrepancy of 2% with respect to this value, the fitted exponentials
indicate that the minimal grid resolution to achieve this error is 68, 062 voxels
and 28, 589 UCs for SFM and CCA, respectively. Thus, the SFM method requires
about double the number of points to reach similar accuracy as CCA. Nevertheless,
the discrepancy between both approaches for 512x512 grid points is only 3.8%, thus
concluding that the SFM seems suitable for the simulation of anisotropic etching
of real structures. This example focuses on the effect of the mesh resolution on
relative coarse features, such as the width of the resulting mesa. Accordingly,
the obtained mesh resolutions will be used later for the simulation of simple
experiments.

On the other hand, a rather complex dual-axis microprobe structure is now
considered (the micromachining process is explained later) [173]. For this
comparison, the compensated CTS-CCA is employed and the width of the beam
shown in Fig. 4.15(b) is measured for several grid resolutions shown in the
corresponding graph. Similar to the first example, this measurement follows
a negative exponential behaviour, effectively saturating at 11.0 and 11.25 µm
for SFM and CCA, respectively, for the 800x453 surface grid size. Since the
discrepancy between the converged beam widths is only 0.25 µm in comparison to
the large size of the substrate (4000x2266 µm2), it is concluded that the SFM
method appears to be a suitable alternative for the simulation of anisotropic
etching of advanced structures. In contrast to high resolutions, where the
differences between both methods are minimal, at low resolutions the discrepancy
is higher. Although the SFM can reach sub-voxel precision by definition, the mask
transfer does not. Thus, the difference by a single masked voxel can be significant,
becoming a relevant limit when choosing the surface grid size. Considering that
a 10% discrepancy with respect to the converged beam width implies a difference

154

4.5 Results and comparisons

0 0.5 1 1.5 2 2.5 3 3.5 4

x%10
5

10

15

20

25

30

35

40

Surface%points

140000 287000
B

ea
m

%w
id

th

0 0.5 1 1.5 2 2.5 3

x%10
5

74

76

78

80

82

84

86

88

M
es

a%
w

id
th

2A%Discrepancy%LS

2A%Discrepancy%CCA

Simulated%LS

Fitted%LS

Simulated%CCA

Fitted%CCA

Surface%points

512x512 <100>

<010><001>

800x453

11.0%um 11.25%um

10A%Discrepancy%LS10A%Discrepancy%CCA

68062

28589

Figure 4.15: Representation of the mesh resolution effect on simulated results for both
the SFM and the benchmark CCA method. In (a), the CTS-CCA implementation is
used for comparison, whereas in (b) the compensated CTS-CCA is used. The minimum
grid sizes required to obtain a maximum discrepancy of (a) 2% and (b) 10% with respect
to the measurements at the (a) 512x512 and (b) 800x453 grids are shown, including the
resulting structures at this resolutions.

of only 1.1 and 1.13 µm for SFM and CCA, respectively, the fitted exponentials
indicate that the minimal grid resolution to achieve this 10% deviation is about
287, 000 voxels and 140, 000 UCs (for this particular orientation and rotation each
UC contains 8 silicon atoms) for SFM and CCA, respectively. Thus, for this
structure, the LS method requires about double the number of points than the
CCA implementation to avoid errors due to grid resolution. Since this is the
most complex three-dimensional structure considered in this thesis, this same
grid resolution can be safely used to compare meaningfully the two simulation
procedures for the complex structures presented in section 4.5.4.

155

Chapter 4. Level Set method for wet etching simulation

4.5.2 Parallel CPU vs GPU

In this section both developed parallel implementations of the SFM are compared,
i.e. the parallel CPU version of section 4.4.1 against the GPU implementation of
section 4.4.2. The goal of this comparison is to find out which parallel environment
can obtain better results in terms of execution time, when simulating wet etching
processes by means of the SFM. The testing machine consists of an Intel Core i7 at
2.8 GHz with 4 GB of RAM using 64 bit Windows-based and an Nvidia GeForce
GTX 560 GPU device.

For the CPU implementation it has been found that creating 8 execution threads is
the optimal choice. Moreover, in the compilation of the code, the following options
have been selected: /arch:SSE2, /fp:fast, /Ox and /Ot, thus ensuring an optimized
and fast program. On the other hand, for the GPU version, two-dimensional blocks
of 16x16 threads have been created.

The relative performance between both parallel implementations in terms of
computational time and memory usage is compared. For this purpose, several
microengineering structures obtained by the etching of patterned Si{100} wafers
in KOH 30 wt% at 80 ◦C are simulated and studied [293]. The simulated etchant
is actually KOH 35 wt% at 80 ◦C, which has a very similar etch rate distribution
[191]. In addition, two simple etching processes with an isotropic etchant have
been simulated.

Fig. 4.16 compares all the shapes etched with the KOH solution. From left to
right, the different columns correspond to (i) the used mask patterns, (ii) the
experimental results [293], (iii) the SFM-simulated fronts and (iv) the CCA-based
results. The experimental and the CCA results have been included in this figure
for completeness since in section 4.5.3 a comparison with a CCA approach is
performed with the same experiments. On the other hand, in Fig. 4.17 the two
isotropic examples are presented, column (i) shows the applied mask patterns, (ii)
is the SFM results and (iii) the CCA results.

The green figures are the resulting structures for both parallel SFM implement-
ations since both of them implement the same algorithm and obtain the same
results. The grid sizes of each simulation have been chosen to satisfy the 2% error
condition described in section 4.5.1 for simple experiments.

Table 4.3 collects the surface grid sizes employed, the amount of memory utilized
and the simulation time of both implementations. Since this section is focused on
the comparison of both parallel SFM implementations in terms of computational
performance, the features of the experiment and measurements of the resulting
structures are omitted and they will be discussed later when comparing the
accuracy obtained against the CCA approach.

156

4.5 Results and comparisons

<
00
1>

<
-1
10
>

<
-1
-1
0>

(a
)

<
00
1>

<
-1
-1
0>

<
-1
10
>

(b
)

<
00
1>

<
-1
-1
0>

<
-1
10
>

(c
)

<
00
1>

<
-1
-1
0>

<
-1
10
>

(d
)

<
00
1>

<
-1
-1
0>

<
-1
10
>

(e
)

<
00
1>

<
-1
-1
0>

<
-1
10
>

(f
)

F
ig

ur
e

4.
16

:
C

om
pa

ris
on

be
tw

ee
n

ex
pe

rim
en

ta
la

nd
si

m
ul

at
ed

st
ru

ct
ur

es
et

ch
ed

in
a

K
O

H
-b

as
ed

so
lu

tio
n:

(le
ft

co
lu

m
ns

)
ap

pl
ie

d
m

as
ks

,(
ce

nt
er

-le
ft

)
ex

pe
rim

en
ts

[2
93

],
(c

en
te

r-
rig

ht
)

SF
M

re
su

lts
,(

rig
ht

)
C

C
A

re
su

lts
.

R
ep

ro
du

ce
d

fr
om

[2
0]

.

157

Chapter 4. Level Set method for wet etching simulation

(a)

(b) 45.3 um
45.6 um

Figure 4.17: Comparison between simulated etched structures with an isotropic etchant
solution: (left column) applied masks, (center) SFM results, (right) CCA results.
Reproduced from [20].

Experiment Surface grid (voxels) Used memory (MB) Simulation time (s)

CPU GPU CPU GPU

Main Lists Main
Fig 4.16(a) 338x201 79.4 2.12 89.8 2.7 0.6
Fig 4.16(b) 261x262 28.9 0.9 37.9 0.37 0.15
Fig 4.16(c) 261x261 42.0 1.14 51.4 0.84 0.24
Fig 4.16(d) 304x223 105.6 2.52 116.79 4.2 0.77
Fig 4.16(e) 261x261 66.3 2.54 76.43 2.8 0.43
Fig 4.16(f) 261x261 39.8 1.13 49.14 0.77 0.22
Fig 4.17(a) 261x261 238.8 2.25 253.78 2.15 1.34
Fig 4.17(b) 261x261 95.1 2.49 105.99 1.63 0.22

Table 4.3: Details of the simulated examples for the comparison between parallel CPU
and GPU implementations of the SFM.

158

4.5 Results and comparisons

The main memory usage has been calculated theoretically by considering the main
variables shown in table 4.1 for the CPU implementation and the variables of table
4.2 for the GPU approach, and taking into account the surface sizes shown in table
4.3. On the other hand, the total number of points stored by all the SFM lists
has been checked in every iteration for the whole simulations, thus, the memory
utilized by the SFM lists shown in table 4.3 has been calculated by considering the
maximum number of points included in all lists and taking into account that every
point included in a lists contains 3 floats (the 3 spatial coordinates), i.e. a total
of 12 bytes per included point. Notice that float and integer data types occupy
4 bytes, whereas char and boolean only occupy 1 byte. Moreover, the number of
points in vertical dimension have been calculated with (4.22).

Regarding the used memory collected in table 4.3, the GPU version does not use
any linked lists but requires storing the auxiliary state variable, the maximum
viscosity factor values of each column as well as the upper and lower boundaries
of each thread, implying a small increase of the main memory usage. In terms
of computational performance, the table demonstrates that the GPU algorithm
runs up to 7.4 times faster than the CPU version. Although the results confirm
that current CPUs stand as an acceptable platform to perform this type of wet
etching simulations, the massively parallel architecture of current GPUs provides
better computational efficiency with only a slightly larger use of memory. In
fact, the GPU version is expected to become increasingly more efficient when
simulating larger substrates, since the massively parallel architecture of these
devices is progressively more suitable when more and more threads are created, in
contrast to the multi-core CPU. Nevertheless, both implementations of the SFM
algorithm produce simulated results within a few seconds and combine both the
computational efficiency and the algorithmic accuracy required for the realistic
simulation of wet etching fronts for improved MEMS design.

4.5.3 Sequential CCA vs sequential SFM

In this section, the same experiments of previous section are simulated in order to
compare the developed sequential SFM algorithm with a sequential CCA approach.
In particular, the CTS-CCA implementation is used for comparison [292]. Both
approaches are written in sequential Java and use similar data structures as well
as single precision operations since it has been demonstrated that this level of
precision is sufficient to produce accurate results [102]. The testing machine
consists of an Intel Core i7 at 2.8 GHz with 4 GB of RAM using 64 bit Windows-
based server Java Virtual Machine (version 1.7.0 03).

The purpose of this section is to compare the computational cost, memory use
and accuracy of similar implementations of both methods. Accordingly, the same
experiments of previous section are simulated again, producing the same results

159

Chapter 4. Level Set method for wet etching simulation
T

im
eV

-s
)

4.16-a) 4.16-b) 4.16-c) 4.16-d) 4.16-e) 4.16-f) 4.17-a) 4.17-b)
0

5

10

15

20

25

30

35

40

11.0

17.8

8.8

38.8

7.9

15.7

35.5

7.4
15.6

39.3

13.2

10.8

17.1

8.9

39.3

8.0

15.9

11.0

17.0

8.7

40.1

8.7
14.5

37.2

10.6

24.7
6.2

6.0

8.3
20.3

12.9

19.3
12.8

8.1

15.17.5

21.3

39.2

33.8

5.7

21.6
35.8

33.5

9.1

Derivatives 8,9
EtchVrate
Visc.VFactors
UpdatVe ɸ
UpdateVlists
RestVofValg.

10,11
12
13
17-19
3-5

Figure 4.18: Representation of the execution times obtained with the SFM sequential
Java-based algorithm for the simulation results presented in Fig. 4.16 and 4.17. The red
numbers indicate the contribution of the main parts of algorithm 15. The gray numbers
indicate the corresponding step of the algorithm.

presented in Fig. 4.16 and 4.17. Whereas the SFM results are presented in green,
the blue structures correspond to the CCA results.

The grid sizes, chosen for each simulation to satisfy the 2% error described in the
context of Fig. 4.15(a) for simple etching processes, are collected in table 4.4,
which also presents some features of the experiment as well as the etched depth,
memory use and computational time for both methods. In these examples, each
UC of the CCA method is formed by 4 atoms.

4.5.3.1 Anisotropic results

According to Fig. 4.16, the simulated microstructures by both SFM and CCA
are very similar to the experimental shapes. This is confirmed by the values of
the simulated etched depths collected in table 4.4, which are in close proximity
to the experimental values. These results demonstrate the reliability of the SFM
simulator, achieving similar accuracy than CCA approach. It is important to
stress the less noisy results produced by the SFM in comparison with the CCA
model as can be observed in all the tested experiments. This is consistent with
the simulated etch rates of section 4.3.5 (see Fig. 4.7).

As shown in table 4.4, the required computational times for both methods are
within the same order of magnitude for all tests, although CCA can be up to 2
times faster for anisotropic etchants. In turn, the reported main memory refers
to the main variables stored during the whole simulation, which directly reflects
the grid size. Additionally, the memory referred as lists corresponds to the points

160

4.5 Results and comparisons

E
xp

er
im

en
t

fe
at

ur
es

Su
rf

ac
e

gr
id

si
ze

D
ep

th
(µ

m
)

U
se

d
m

em
or

y
(M

B
)

Si
m

.
tim

e
(s

)

Su
bs

tr
at

e
T

im
e

D
ep

th
SF

M
C

C
A

SF
M

C
C

A
SF

M
C

C
A

SF
M

C
C

A
si

ze
(µ

m
)

(m
in

)
(µ

m
)

(v
ox

el
s)

(U
C

s)
M

ai
n(

lis
ts

)
M

ai
n(

lis
ts

)
Fi

g
4.

16
(a

)
23

70
x1

41
6

20
0

22
5

33
8x

20
1

21
9x

13
0

23
1.

4
22

9.
6

79
.4

(2
.1

2)
34

7.
3(

2.
84

)
23

.1
14

.7
Fi

g
4.

16
(b

)
47

20
x4

75
0

15
0

16
6

26
1x

26
2

16
7x

16
9

17
4.

4
17

3.
9

28
.9

(0
.9

)
10

6.
4(

1.
15

)
3.

6
2.

1
Fi

g
4.

16
(c

)
37

82
x3

78
2

20
0

22
5

26
1x

26
1

16
9x

16
9

23
2.

5
23

3.
4

42
.0

(1
.1

4)
17

5.
6(

1.
57

)
7.

7
3.

8
Fi

g
4.

16
(d

)
15

64
x1

14
8

20
0

22
5

30
4x

22
3

19
8x

14
5

23
1.

5
23

1.
8

10
5.

6(
2.

52
)

48
1.

2(
3.

39
)

35
.6

28
.9

Fi
g

4.
16

(e
)

23
05

x2
30

5
20

0
22

5
26

1x
26

1
16

9x
16

9
23

1.
0

23
3.

9
66
.3

(2
.5

4)
28

0.
4(

3.
0)

20
.6

20
.0

Fi
g

4.
16

(f
)

41
70

x4
17

0
20

0
22

5
26

1x
26

1
16

9x
16

9
22

5.
9

23
1.

2
39
.8

(1
.1

3)
15

8.
6(

1.
49

)
6.

6
4.

9
Fi

g
4.

17
(a

)
25

0x
25

0
10

0
–

26
1x

26
1

16
9x

16
9

98
.3

10
5.

7
23

8.
8(

2.
25

)
11

44
(4

.2
3)

10
.8

11
3.

6
Fi

g
4.

17
(b

)
20

0x
20

0
30

–
26

1x
26

1
16

9x
16

9
30

.0
32

.0
95
.1

(2
.4

9)
45

0(
3.

33
)

8.
4

37
.5

T
ab

le
4.

4:
E

xp
er

im
en

ta
la

nd
si

m
ul

at
io

n
de

ta
ils

fo
r

th
e

st
ru

ct
ur

es
sh

ow
n

in
Fi

g.
4.

16
(a

ni
so

tr
op

ic
et

ch
an

ts
)

an
d

4.
17

(is
ot

ro
pi

c
et

ch
an

ts
).

161

Chapter 4. Level Set method for wet etching simulation

stored in the SFM lists and similar structures for the CCA model. The lists use
much less memory than the grid since only the necessary information to access
to the main grid is stored. Although the SFM implementation typically requires
a finer grid, table 4.4 shows that the CCA method needs to store more atoms,
requiring between 3.7 and 4.8 times more memory.

Fig. 4.18 presents the execution time of every simulated structure of table 4.4,
including the contribution of each part of the algorithm. Accordingly, the larger
computational cost for SFM is assigned primarily to the need to determine the
maximum value for the viscosity factors (4.15) over all active points, which
represents 35% − 42% of the simulation time. Comparatively, the computation
of the spatial derivatives by (2.26), (2.27), and (2.28) takes 14% − 22% of the
simulation time. This involves on average more operations than the processing of
the atomistic neighbourhood in the CCA. Finally, the task of updating the content
of the lists (i.e. steps 17 through 19 of algorithm 15) is also relevant, representing
13%− 26% of the whole time.

4.5.3.2 Isotropic results

For isotropic etchants, the etch rate remains essentially constant along any
direction. This behaviour can be tested by using a mask with a small circular
opening. If the etching process is truly isotropic, a perfect hemispherical cavity
will be developed into the substrate after prolonged etching. Fig. 4.17(a) compares
the results of such a computational experiment for the SFM and CCA method.
Both methods reproduce the expected result, nevertheless, it is concluded that the
CCA results are noisier and less isotropic, which is consistent with the etch rate
distribution for the isotropic etchant shown in Fig. 4.7. A similar conclusion is
obtained from Fig. 4.17(b), where a square mask pattern leads to the formation
of a mesa structure. The measurements of both experiments obtained by the
two methods are very similar, concluding that the SFM is capable of simulating
properly isotropic etchants.

An interesting feature of the developed SFM algorithm applied to isotropic etching
is that it is not necessary to search the values for the artificial viscosity of (4.15)
since etch rates are always constant and, thus, αq = 1 for all spatial dimensions
as commented in section 4.2.1. The spherical coordinates of the normal vector are
not required either as reflected in algorithm 15, thus resulting in a faster algorithm
for isotropic etchants. This is reflected in the simulation times shown in table 4.4,
where SFM is 10.5 and 4.5 times faster than CCA, respectively, while the memory
used by SFM remains lower, as for the anisotropic examples.

According to Fig. 4.18, since the most costly part of the algorithm for anisotropic
etchants is avoided with isotropic solutions, the task of updating the SFM lists (i.e.
steps 17 to 19 of algorithm 15) is now the most computationally expensive part

162

4.5 Results and comparisons

requiring 39.2% and 35.8% of the total simulation time respectively for experiments
(a) and (b) of Fig. 4.17. Furthermore, the calculation of spatial derivatives is also
relevant, taking 33.8% and 33.5% of the simulation times.

4.5.4 GPU CCA vs GPU SFM

In this section, the GPU implementation of the SFM presented in section 4.4.2 and
the compensated CTS-CCA [292] are compared in realistic scenarios, including
direct comparison with experiments. The goal is to validate the developed
GPU implementation by simulating wet etching experiments to fabricate MEMS
structures in silicon and quartz substrates using several etching solutions. Hence,
the results of both approaches are compared in terms of accuracy of the results, i.e.
by comparing measurements with experimental ones, and in terms of simulation
time since both simulators are implemented in CUDA C. Notice that the CCA
implementation makes use of an octree data structure, which reduces the memory
usage but adds a relevant overhead of the GPU calculations [102].

In order to properly compare the accuracy and the execution time of both
approaches, the grid sizes of both methods are determined in the context of Fig.
4.15(b), i.e. to obtain a 10% error when measuring accurate features. These grid
sizes ensure accurate results even in those sensitive parts of the structures.

The testing machine of the benchmark experiments consists of an Intel Core i7 at
2.8 GHz with 4 GB of RAM using 64 bit Windows-based and an Nvidia GeForce
GTX 260 GPU device.

Fig. 4.19 collects all the simulated experiments. From left to right, the columns
correspond to (i) the required mask patterns, (ii) the experimental results, (iii) the
SFM-simulated fronts and (iv) the CCA-based results. According to this figure,
the structures obtained by SFM and CCA are very similar. This is confirmed
by the measurements shown in the corresponding pictures, where the differences
between both simulators are of the order of a few to several tens of microns, while
the substrates measure several hundreds to even a few thousand microns. The
feature dimensions shown in red on the experimental images have been obtained
by using the scale attached to each figure. For completeness, table 4.5 collects
information about the simulations, including the crystallographic orientation of
substrate, etchant, substrate size, etching time (for every etching process, if more
than one are required), the grid size used in both simulation models and the
computational time required by both methods.

In contrast to complex MEMS structures, such as experiments (a), (b), (c), (g)
and (h), a much smaller grid could be used without sacrificing accuracy in the
case of simpler topologies with no sensitive details, such as experiments (d)-(g).

163

Chapter 4. Level Set method for wet etching simulation

9.33gum

2.46gum8.1gum

8.78gum

(a)

24.6gum

7.2gum

1962gum

1942gum

500gum

5gum

(b)

135gum
45.7gum

31
49

gu
m

30
88

gu
m

1000gum(c)

87.2gum

85.1gum

100gum

~
11

1.
8g

um

(d)

30gmin

700.2gum 681.1gum

Depth:g305gum Depth:g292gum

~732.8gum

500gum(e)

115.0gum

118.6gum

19.6gum

22.1gum

1000gum 10gum(h)

105.01gum

36.8º42.8º

20gmin Depth:g36.55gum

40gmin Depth:g72.73gum

92.97gum

32.2º36.8º

~91.5gum
31º35º(i)

Depth:g118.9gum Depth:g147.4gum

214.6gum 214.9gum

100gum

100gum

~248.7gum(f)

(g)

30
60

gu
m

270gmin 330gmin

90gmin 150gmin

350gmin

Depth:g307gum

30gmin

270gmin 330gmin

90gmin 150gmin

350gmin

30gmin

270gmin 330gmin

90gmin 150gmin

350gmin

Depth:g37.01gum20gmin

40gmin Depth:g73.75gum

Depth:g36.6gum20gmin

40gmin Depth:g73.2gum

Figure 4.19: Comparison between experimental and simulated complex structures
etched in different etchant solutions using silicon and quartz substrates: (left columns)
applied masks, (center-left) experimental results, (center-right) SFM results, (right) CCA
results. Experiments on silicon: (a) AFM tip [284], (b) dual-axis micromechanical
probe [173], (c) three-axes accelerometer [142], (d) suspended microchannel [195] and
(e) microneedles [174]. Experiments on quartz: (f) and (g) cavity and mesa [294], (h)
tuning-fork probe [141] and (i) grooves [295]. Several length measurements are shown on
the experimental and simulated scenes. Reproduced from [19].

164

4.5 Results and comparisons

E
xp

er
im

en
t

fe
at

ur
es

Su
rf

ac
e

gr
id

si
ze

Si
m

.
tim

e
(s

)

M
at

er
ia

la
nd

E
tc

ha
nt

Su
bs

tr
at

e
E

tc
hi

ng
SF

M
C

C
A

SF
M

C
C

A
or

ie
nt

at
io

n
si

ze
(µ
m

)
tim

e
(m

in
)

(v
ox

el
s)

(U
C

s)
(a

)
Si

lic
on

(1
00

)
K

O
H

40
w

t%
70
◦
C

25
0x

25
0x

22
17

+
11

+
7

53
6x

53
6

37
5x

37
5

8.
1

70
.2

(b
)

Si
lic

on
(1

00
)

K
O

H
40

w
t%

70
◦
C

22
66

x4
00

0x
19

0
80

+
27

0
40

3x
71

2
28

2x
49

8
8.

0
74

.5
(c

)
Si

lic
on

(1
00

)
K

O
H

40
w

t%
70
◦
C

21
54

6x
71

82
x3

99
11

4
+

25
6.

5
92

8x
30

9
64

8x
21

6
2.

1
21

.7

(d
)

Si
lic

on
(1

00
)

T
M

A
H

25
w

t%
80
◦
C

/
80

0x
80

0
40

+
16

0
53

6x
53

6
37

5x
37

5
32

.8
36

.9
Tr

ito
n

0.
1

v/
v

ad
d.

(e
)

Si
lic

on
(1

00
)

K
O

H
30

w
t%

80
◦
C

10
00

x1
00

0
30

to
35

0
53

6x
53

6
37

5x
37

5
63

.2
15

7.
9

(f
)

Q
ua

rt
z

(0
00

1)
N

H
4
H

F 2
85
◦
C

12
00

x1
20

0
22

0
53

6x
53

6
40

3x
34

8
44

.5
37

.1
(g

)
Q

ua
rt

z
(0

00
1)

N
H

4
H

F 2
85
◦
C

12
00

x1
20

0
22

0
53

6x
53

6
40

3x
34

8
52

.2
12

5.
5

(h
)

Q
ua

rt
z

(0
00

1)
N

H
4
H

F 2
85
◦
C

13
53

x2
45

9x
10

0
10

0
39

8x
72

3
25

9x
54

5
9.

7
18

.6
(i)

Q
ua

rt
z

(0
00

1)
N

H
4
H

F 2
85
◦
C

72
3x

39
0

20
,4

0
72

9x
39

3
47

5x
29

5
16

.8
28

.0

T
ab

le
4.

5:
E

xp
er

im
en

ta
lc

on
di

tio
ns

an
d

si
m

ul
at

io
n

pa
ra

m
et

er
s

us
ed

in
Fi

g.
4.

19
.

165

Chapter 4. Level Set method for wet etching simulation

Nevertheless, the same grid size criteria has been used for all the systems in order
to be consistent.

The following is a more detailed description of the similarities and discrepancies
between the experiments and the simulations. In addition, a description of the
micromachining process of every experiment is commented.

AFM tip: 4.19(a)
This result is obtained by applying consecutive etching steps to a double-sided
silicon wafer (100)-oriented. Consequently, each CCA UC is formed by 8 atoms.
In particular, the following process has been utilized by both approaches:

• Define a double-sided (100) silicon wafer with 250x250x22 µm3 dimensions.

• Apply the upper-left mask shown in Fig. 4.19(a) on top of the wafer.

• Apply the upper-right mask on bottom of the wafer.

• Wet etch with KOH 40 wt% 70 ◦C for 17 minutes.

• Remove top mask.

• Apply lower-right mask on the top side of the wafer.

• Wet etch with KOH 40 wt% 70 ◦C for additional 11 minutes.

• Remove the pattern shown in the lower-left mask from the bottom surface.

• Wet etch with KOH 40 wt% 70 ◦C for additional 7 minutes.

• Remove top and bottom masks.

Although no information about the etching steps or feature dimensions is provided
by the source [284], the results demonstrate that a similar structure can be
achieved by both simulators by appropriately selecting the parameters, i.e. the
etchant, concentration, temperature, mask patterns and process times. The tip
measurements shown in Fig. 4.19(a) differs 6.87 µm between both methods,
producing the CCA a more realistic shape in this case. Nevertheless, the width
substrate measurements are in close proximity, only differing 0.68 µm.

166

4.5 Results and comparisons

Dual-axis probe: 4.19(b)
Likewise the previous experiment, the substrate of this experiment is a double-
sided (100) silicon wafer and each UC is formed by 8 silicon atoms. The
micromachining process is [173]:

• Define a double-sided (100) silicon wafer with 2266x4000x190 µm3 dimen-
sions.

• Apply the upper-left mask shown in Fig. 4.19(b) on the bottom of the wafer.

• Apply the upper-right mask on the top of the wafer.

• Wet etch with KOH 40 wt% at 70 ◦C for 80 minutes.

• Remove top and bottom masks.

• Apply upper-right mask on the bottom side of the wafer.

• Apply lower mask on the top side of the wafer.

• Wet etch with KOH 40 wt% at 70 ◦C for additional 270 minutes.

• Remove top and bottom masks.

The two simulated shapes are very similar to the experimental structure. Due
to the perspective of the experimental image it is difficult to determine the
beam width. However, its length is about 2000 µm, in good agreement with
both simulated values. The tip height obtained by the CCA simulator (7.2 µm)
resembles the experiment better (9.1 µm) than the SFM (24.6 µm).

Three-axis accelerometer: 4.19(c)
For this experiment the same substrate than previous examples is used, i.e. a
double-sided (100) silicon wafer. The fabrication process follows the next steps
[142]:

• Define a double-sided (100) silicon wafer with 21546x7182x399 µm3

dimensions.

• Apply the left mask shown in Fig. 4.19(c) on bottom and top sides of the
wafer.

• Wet etch with KOH 40 wt% at 70 ◦C for 114 minutes.

• Remove the pattern shown in the mask on the right from top and bottom
surfaces.

• Wet etch with KOH 40 wt% at 70 ◦C for additional 256.5 minutes.
167

Chapter 4. Level Set method for wet etching simulation

• Remove top and bottom masks.

The experimental scale bar indicates that the width of the inertial mass obtained
by CCA (3088 µm) is closer to the experiment. Nevertheless, the SFM value
(3149 µm) differs by only 89 µm, while the length of the substrate is ∼ 22000 µm.
Similarly, the width of the beam produced by the CCA approach is more accurate
than the SFM one.

Suspended microchannel: 4.19(d)
Although in examples (a)-(c) the silicon surface is (100)-oriented and each UC of
the CCA approach is formed by 8 atoms, in cases (d) and (e) the substrate surface
is also (100) but each UC is formed by only 4 atoms. This is because the wafer
is rotated 45◦ with respect to the previous ones, producing a different UC due to
crystallographic structure of silicon [187].

The fabrication steps of this suspended microstructure are [195]:

• Define a simple (100) silicon surface with 800x800 µm2 dimensions.

• Apply the upper-left mask shown in Fig. 4.19(d) on the top side of the wafer.

• Wet etch with TMAH 25 wt%+Triton 0.1 v/v at 80 ◦C for 40 minutes.

• Mask the top of the wafer with the upper-right pattern.

• Remove the lower pattern from the top side of the substrate.

• Wet etch with TMAH 25 wt% 80 ◦C for additional 160 minutes.

Notice that in this experiment, the applied mask forms part of the final structure.
In particular the first wet etching process is used to form the channel itself.
Then, the second etching enables the release of the microchannel by removing
the material below the mask. Regarding the simulated results, both structures
well reproduce the experimental one. The errors of the shown measurements are
only 1.2 and 2.7 µm for SFM and CCA, respectively, whereas the length of the
substrate is 800 µm.

168

4.5 Results and comparisons

Microneedle: 4.19(e)
This experiment consists in fabricating a microneedle with a simple wet etching
step [174] by etching a silicon wafer masked with a squared pattern. The same
substrate properties than previous example are used. This experiment takes
advantage of the underetching properties of the KOH to produce the microneedle.
In order to properly visualize this formation, the structures at several wet etching
times are shown in Fig. 4.19(e). Accordingly, the micromachining process is:

• Define a simple (100) silicon surface with 1000x1000 µm2 dimensions.

• Apply the mask shown in the figure on the top side of the substrate.

• Wet etch with KOH 30 wt% at 80 ◦C for the corresponding minutes according
to Fig. 4.19(e) (from 30 to 350).

• Remove the top mask.

This experiment is well reproduced by both simulators. The displayed dimensions
demonstrate that the SFM result is closer to the experiment, especially the reached
depth, which only differs by 2 µm in comparison to the large substrate size.
Nevertheless, the overall shape of the resulting structures are very similar with
the experimental ones.

Quartz cavity and mesa: 4.19(f) and (g)
Since both experiments are essentially the same but with different mask patterns,
they are commented together. The material employed as substrate for these
experiments is (0001) quartz. Each UC used by the CCA approach for simulating
quartz-based experiments contains 4 atoms. The simple fabrication process is
[294]:

• Define a simple (0001) quartz substrate with 444x444 µm2 dimensions.

• Apply on the surface the mask shown in Fig. 4.19(f) for the cavity or the
one shown in (g) for the mesa experiment.

• Wet etch with saturated NH4HF2 at 85 ◦C for 81.5 minutes.

• Remove the applied mask.

The simulated shapes are very similar to the experiments. Although both
simulators generate a similar width for the mesa structure, they differ by about
34 µm from the experimental mesa. These experiments validate the developed
SFM applied to micromachining of real quartz-based structures.

169

Chapter 4. Level Set method for wet etching simulation

Tuning-fork probe: 4.19(h)
The tuning-fork probe shown in Fig. 4.19(h) is fabricated on a double-sided (0001)
quartz substrate. Despite the complexity of the experiment, this structure is
directly fabricate with only one etching step. The micromachining procedure used
by both simulators is [141]:

• Define a double-sided (0001) quartz substrate with 1353x2459x100 µm3

dimensions.

• Apply on the top-side the left mask shown in Fig. 4.19(h).

• Apply on the bottom-side the right mask.

• Wet etch with saturated NH4HF2 at 85 ◦C for 100 minutes.

• Remove the applied masks.

The simulated structures are very similar to each other and also to the experiment
as demonstrate the measurements. Due to the perspective of the experimental
close-up (right-hand side image), it is difficult to obtain the tip length but it can be
estimated that its length is lower than 10 µm. Although the SFM value is smaller
than that for CCA (19.6 against 22.1 µm) and, thus, closer to the experiment, the
overall CCA shape is more similar to the experiment.

Quartz grooves: 4.19(i)
Finally, another one-sided quartz substrate experiment is simulated. This
experiment shows the different crystallographic planes appearing when etching
a (0001) quartz surface [295]. The fabrication process is:

• Define a simple (0001) quartz substrate with 723x390 µm2 dimensions.

• Apply the mask shown in Fig. 4.19(i) on the surface.

• Wet etch with saturated NH4HF2 at 85 ◦C for 20 and 40 minutes.

• Remove the applied mask.

The figures of the results show the cross section of the structure after 20
and 40 minutes of etching. As can be observed, the depths reached by both
simulators are in close proximity to the experiment. Nevertheless, the largest
cavity measurements show that the SFM method provides more accurate results
than the CCA approach since both, the groove length and the formed angles,
barely differ from the experimental ones.

It can be concluded that both the CCA and the SFM have reproduced successfully
every tested experiment, proving the efficacy of the developed GPU SFM-based

170

4.5 Results and comparisons

implementation. The maximum discrepancies occur at the smallest parts, such as
the tips in experiments (a) and (b), where the two models differ by as much as
6.87 µm and 17.4 µm, respectively.

Furthermore, it must be considered that, probably, the conditions of the
experiments were not exactly the same to those at which the etch rates were
obtained, since every experiment has been performed by different researchers and
laboratory equipment. Hence, this specific conditions cannot be taken into account
by the simulators producing slightly different results. In addition, in some cases
the masks were only provided with low quality or even not provided at all. As a
consequence, some simulated measurements differs from experimental ones. This
discrepancies can be reduced by performing own wet etching processes under strict
conditions and properly selecting the parameters simulation. Hence, the most
important conclusion is that Fig. 4.19 demonstrates the reliability of the proposed
SFM simulator, which is capable of achieving similar accuracy while producing less
noisy results than the CCA model. Although the CCA method provides better
accuracy at small parts, the SFM implementation achieves better results for several
systems, such as (e) and (i). Thus, we conclude that the proposed parallel GPU
SFM implementation of the LS method has great potential to become a tool for
the design of complex MEMS structures.

In terms of computational performance, our parallel SFM implementation is about
∼ 8.5−10 times faster than the CCA method for those experiments where a CCA
UC is formed by 8 atoms, i.e. examples (a), (b), and (c) of the Fig. 4.19. However,
for the rest of the cases where a UC is formed by only 4 atoms, (i.e. experiments
(d) to (i)) the SFM is only ∼ 1.1− 2.5 times faster and even 1.2 times slower for
the example (f). Although the sequential implementation of both methods showed
in section 4.5.3 that the CCA can be up to 2 times faster for anisotropic etchants,
the GPU implementation of the CCA makes use of an octree data structure which
adds an overhead to the GPU calculations, thus, increasing the execution time but
reducing the memory usage [102].

Similarly to the sequential approach, the computational cost of the developed GPU
SFM implementation is primarily due to the calculation of spatial derivatives, local
etch rate and viscosity factors, which altogether are included in kernel 1 (alg. 23)
and represent 27 − 49% of the total computational time, as can be visualized in
Fig. 4.20. According to the figure, steps 13 (kernel 2, algorithm 24), 17 (kernel
3, algorithm 25), 19 (kernel 5, algorithm 27) of algorithm 15 are also relevant,
representing 6−14%, 7−11% and 5−10% of the computational time, respectively.
Another relevant part of the algorithm is labelled as Rest of alg. in Fig. 4.20, and
this part includes step 3 to 5 and also the search of the maximum viscosity factors
αq among the maximum values of each execution thread performed by the CPU.
All these tasks take 15 − 24% of the total simulation time, even 49.1% is taken
by this part of the algorithm in example (c) since the total GPU time is very
small, thus increasing the CPU contribution. Nevertheless, the transfer of the

171

Chapter 4. Level Set method for wet etching simulation

(a) (b) (c) (d) (e) (f) (g)(h) (i)

T
im

et
(s

)

0

2

4

6

8

10

12

14

16

18

0

10

20

30

40

50

60

70

22.9

8.8

10.5

43.4

23.5

8.2

10.1

45.1

18.6

9.1

11.3
7.6

48.3

22.0

8.6

10.4

12.6

42.2

20.6

9.4

10.3

14.3

38.7

15.6

10.8

4.9

11.0

13.4

42.9

22.6

8.7

10.0

9.7

42.5

15.0

9.7

10.8

12.9

46.4

1.9

3.3

9.2

2.2

7.9

1.7

3.4

1.7

2.5

2.0

4.7

1.4

1.6

4.9

1.2

4.0

3.0

Kernelt1

Kernelt2

Kernelt3

Kernelt4

Kernelt5

Vis.ttrans.

Resttoftalg.

7
13

17
18
19

3-5

49.1 2.6

5.3
7.3 6.2

27.3

2.2

Figure 4.20: Representation of the execution times obtained with the GPU SFM
implementation for the simulation results presented in Fig. 4.19. The red numbers
indicate the contribution of the main parts of algorithm 15. The gray numbers indicate
the corresponding step of the algorithm. The part labelled as Vis. tran. refers to the
GPU to CPU transfers of the local maxima of the viscosity factors of every execution
thread. The examples are grouped in two graphs with different time scales for a better
visualization.

local thread maximum viscosity factors from GPU to CPU only takes 1.2− 2.6%.
Finally, step 18 (kernel 4, alg. 26) only represents 2− 5% of the global time.

4.6 Conclusions

In this chapter, wet etching process oriented to MEMS micromachining is
simulated by means of the LS method. The aim is to provide a versatile tool for
the design of MEMS devices based on the inherent capability of the LS method
to simulate (i) the splitting and coalescing of disjoint regions of the front, such as
in double-sided etching and (ii) new etchants and/or substrate materials without
any need for recalibrating the internal parameters of the method. Based on the
increased computational efficiency and accuracy with respect to the conventional
LS method, an algorithm based on the SFM is presented. This SFM algorithm
employs the etch rates directly obtained from experiments, contrary to the state-
of-the-art atomistic methods like the CCA, which require a calibration process
when the experimental conditions (e.g. temperature, etchant solution or substrate
material) change. This algorithm is validated by the simulation of etching spherical
samples with several different etchants and reconstructing the produced etch rate

172

4.6 Conclusions

distributions. These distributions are compared with experimental and CCA
results, proving that the proposed SFM produce very similar distributions than
the experimental ones, and even less noisy results than those obtained with the
CCA.

Accordingly, three implementations of the proposed SFM algorithm have been
developed: (i) a purely-sequential Java-based, (ii) a parallel CPU version which
takes advantage of the auto-vectorization of the code offered by some compilers
and the implementation of a multi-threading based on the multi-core nature of
modern CPUs, and (iii) a parallel GPU implementation where the most time-
consuming tasks are efficiently computed by using the affordable, massively-
parallel architecture of modern GPUs.

Since the three versions produce exactly the same results, their computational per-
formance can be meaningfully compared. First, the two parallel implementations
are compared to each other by simulating a set of simple etching processes. It is
found that the GPU version results up to 7.4 times faster than the CPU imple-
mentation. Hence, it is concluded that the massively parallel platforms are more
suitable for performing SFM simulations of wet etching.

The next performed comparison is between the sequential implementations of
the proposed SFM algorithm and the state-of-the-art CCA method. For this
comparison a set of simple etching processes is used, proving the SFM achieves
similar accuracy as CCA while producing less fluctuations in the etch front and
requiring roughly 4 times less memory, even if SFM needs about double the
resolution than CCA. Although for highly anisotropic etchants SFM tends to soften
the corners and edges, reducing slightly its accuracy, the differences between the
simulated features by SFM and CCA are of the order of a few microns for substrates
measuring even thousands of microns. In terms of computational performance,
CCA is up to 2 times faster than SFM for anisotropic etchants while SFM becomes
up to 10 times faster than CCA for isotropic etchants, for which SFM provides a
smooth alternative to the noisy CCA results.

Finally, the GPU SFM implementation is compared with a GPU version of
the CCA for a wide variety of experimental conditions, including silicon and
quartz substrates in different etchants, such as KOH, KOH+IPA, TMAH and
TMAH+Triton for silicon and NH4HF2 for quartz. Similarly to previous
comparison, for highly anisotropic etchants SFM tends to soften the corners and
edges, slightly reducing the accuracy. In addition, the SFM typically requires
larger grids than CCA. The differences between the simulated features by both
methods are of the order of several microns for substrates measuring even a few
millimetres, concluding that the SFM implementation achieves similar accuracy as
the CCA method with less fluctuation in the etch front. Due to the strong, parallel
nature of the SFM and the high computational efficiency of the currently available,
many-core platforms, such as Nvidia’s GPUs, our parallel SFM implementation is

173

Chapter 4. Level Set method for wet etching simulation

typically faster than the CCA method. This feature is assigned to the use of an
octree data structure in the CCA method, which reduces memory allocation but
requires additional calculations and management.

In addition to the similar (or higher in some cases) computational performance, the
greatest strengths compared to CCA of the proposed SFM implementations are:
(i) the absence of a time-consuming calibration procedure prior to performing the
simulations, which is strictly necessary in the CCA approach when the etchant is
modified, (ii) the direct application of the simulation tool to any type of substrate,
which typically requires a dedicated effort to analyse and classify the different
atomistic neighbourhoods in the CCA approach, (iii) the smaller use of memory in
comparison to CCA, and (iv) the faster simulation of isotropic etchants. For these
reasons, the proposed SFM implementations provide accurate and fast simulations
and they can result very valuable for MEMS design.

174

Chapter 5

Improvement of profile evolution in
dry etching simulation by means of
the Level Set method

The goal of this chapter is to improve current dry etching simulators that use
explicit representation techniques to evolve the surface being etched. Explicit
parametrization has some limitations, such as tracking the interaction of various
fronts, since additional subroutines must be employed to handle such situations.

A LS implementation is proposed to use the current dry etching models while
taking advantage of the implicit front representation strategy. In particular,
an algorithm based on image reconstruction is developed to evolve the surface
being etched according to Anetch models, a silicon dioxide plasma etching
simulator. Based on the SFM, the proposed implementation is further optimized
by implementing a parallel algorithm in order to execute many operations
simultaneously on modern GPUs, reducing drastically the computational time.
Hence, finally a robust three-dimensional and fully-operation dry etching simulator
is obtained.

First, an introduction to plasma etching simulators is commented in section 5.1,
including the problems of explicit surface representation as well as Anetch tool
and previous LS-based simulators. Then, in section 5.2 the proposed algorithm
for surface evolution is explained, including the parallel GPU strategy employed.
Section 5.3 contains the details of the developed module for extracting the implicit
updated surface and make it suitable for Anetch to apply again the etching models.
Simulation results are collected in section 5.4 as well as a comparison with an
experimental result. Finally, conclusion are commented in section 5.5.

175

Chapter 5. Dry etching profile evolution

5.1 Introduction

Plasma etching or dry etching processes are widely used in the fabrication processes
of MEMS and semiconductor manufacturing industry for high fidelity pattern
transfer and anisotropic etching. In contrast to wet etching process, plasma
etching can usually obtain high anisotropy and high-aspect-ratio holes [296]. In
micromachining processes, it is very useful to predict the resulting structure of
an experiment under specific conditions so higher accuracy can be achieved and
costs can be reduced. Correspondingly, several models of plasma etching have
been developed in the last years [247, 258, 297–299].

Particularly, this chapter is focused on the RIE process simulation. In this
etching process a chemically reactive plasma is used for removing material, usually
deposited on wafers. Both, physical and chemical reactions contribute to the
etching process, enabling the creation of high anisotropic etchings. More details
about equipment and involved reactions are explained in section 2.4.4.

As commented in section 2.4.4.1, a RIE simulation tool can be understood as
a whole process formed by several modules. First, physical parameters such
as incident particle fluxes, yields, angular distribution and energy, are obtained
directly from experimental measurements or from equipment simulation. This
generic data is then utilized by the next module, which considers the current
surface topography and calculates the local fluxes of the different species. Then,
the corresponding local etch rates are calculated by the next module. Finally, the
profile evolution module evolves the surface according to the new calculated etch
rates.

According to section 2.4.4.1, there are mainly two approaches to represent a surface
in order to evolve it: explicit parametrization and implicit representation. When
evolving a surface explicitly parametrized, motion is applied to the actual points
that form the surface. This approach requires additional programming effort
to handle topological changes in the surface, such as coalescing or splitting of
contiguous regions, otherwise, unrealistic results can be produced. On the other
hand, implicit surface representation approaches like the LS method, embed the
surface inside a higher-dimensional function, such that the motion is applied to
this function. This representation enables a natural description of topological
changes without any further programming and computational effort. Additionally,
the parallel nature of the LS method enables further optimizations such as the
execution in a parallel environment like GPUs.

This chapter is focused on the profile evolution stage of RIE simulators by means
of the LS method, enabling the simulation of complex processes. Some LS-
based RIE simulators have been presented. First, the LS method was proved
to be able to emulate a very simple directional etching [16]. Later, Hwang
et al. used this method for simulating plasma etching of silicon [300]. Then,

176

5.1 Introduction

Im and Hahn presented a two-dimensional silicon dry etching simulator which
considers several plasma parameters under various conditions [301]. After that,
Kokkoris et al. published a modular tool based on the LS method capable
of reproducing experimental phenomena such as the RIE lag and inverse RIE
lag effects [257]. Nevertheless, no optimization was implemented for the LS
method. Accordingly, Radjenović et al. implemented a SFM-based tool capable
of emulating high anisotropic etching processes by using a simple model as the LS
velocity function such that the results resembled plasma etching processes [258].
This implementation was improved for silicon dioxide etching by including a Monte
Carlo module that considers different species [302]. Finally, Ertl et al. presented
a SFM-based RIE simulator of silicon coupled with a Monte Carlo module for flux
calculation [260, 303, 304].

Although all of this LS-based implementations are capable of obtaining results
that resemble RIE process results, they have never been directly compared
with experimental results and no computational performance analysis have been
presented. Accordingly, in this thesis a parallel GPU SFM implementation based
on the surface reconstruction technique of chapter 3 is proposed to implicitly evolve
the surface being etched according to etch rates provided by previous modules.
In particular, this study is focused on a silicon dioxide etching in fluorocarbon
plasma process simulator, which nowadays is included in the software Anetch [261].
Currently, Anetch uses only explicit surface representation, producing unrealistic
results for some etching processes simulations, as shown in Fig. 5.1.

The whole simulating tool proposed consists of three modules: the Anetch models,
the SFM evolution surface tool and the extraction of implicit surface. Anetch takes
equipment parameters and the current structure, defined by vertices and faces, and
calculates the new position of every vertex. These new coordinates are introduced
to the SFM module that evolves the surface up to the new vertices positions, thus,
ensuring that the SFM-updated surface is a realistic surface, contrary to explicitly
parametrized surfaces which can produce results without physical sense (see Fig.
5.1). Finally, the implicit surface is extracted from the LS function and new faces
and vertices are generated. Then, the new structure can be used as input for
the Anetch models and repeat the process until the desired depth is reached. This
algorithm is shown in Fig. 5.2. This enables the possibility of using etching models
that need an explicit representation of the structure, like Anetch, in combination
with the SFM module, which evolves the surface according to the etching model.

177

Chapter 5. Dry etching profile evolution

-0.5 -0.3 -0.1 0.1 0.3 0.5

-0.4

-0.2

0.2

0

x [um]

z
[u

m
]

X-Z view

z

y
x(a)

x

z

y

0.2

-0.2

-0.6

-1

-1 -0.6 -0.2 0.2 0.6 1
x [um]

z
[u

m
]

X-Z view

(b)

Y-Z view

0.2

-0.2

-0.6

-1

-1 -0.6 -0.2 0.2 0.6 1
y [um]

z
[u

m
]

x

z

y

(c)

Figure 5.1: Anetch unrealistic simulation results. Because of surface explicit
parametrization, (a) a through hole cannot be simulated since there is always remaining
material at the bottom of the hole, (b) the interaction of two surfaces is not properly
emulated, and (c) an unrealistic artefact is created during the simulation.

5.1.1 Anetch

The Anetch models considers neutral and ionic species. These species are formed
during plasma bulk reactions and they are fractions of the original precursor
molecules. In this study only C2F6 is used as precursor. Concentration information
and angular distribution of neutral and ionic species can be obtained from
equipment simulation or experimental measurements.

A polymer layer between oxide and plasma is formed during the oxide etching
process. This polymer is involved in some reactions and it reduces reaction rates
due to dissipated energy (for ions) or diffusive loss (of all species before they reach
the polymer-oxide interface where they can react) having an effect on the etching
process. The processes are modelled by the equations described by Zhang and
Kushner [305]. These considered reactions are shown in Fig. 5.3.

The input parameters taken by Anetch are the current structure explicitly
parametrized and the relative fluxes of the different species (neutrals and ions),
i.e. F, CF, CF2, C2F3, C2F4, CF+

2 , CF+
3 , C2F+

4 , and C2F+
5 . This information

is provided by equipment simulation or experimental measurements, and it is the
field values of ions and neutrals fluxes to the surface. For neutrals species an
isotropic angular distribution is assumed, while for ions a Gaussian curve is used.
According to this input, the model makes an initial guess of the local fluxes of

178

5.1 Introduction

Data?input:
-??Initial?structure
-??Fluxes?for?
???neutrals?and?ions

Anetch?
etching?models

New?vertices?
coordinates

LS?surface
evolution

LS?function?of?
updated?surface

Extraction?of?
implicit?surface

Evolved?
structure

Etch?depth?reached?
no

End
yes

Figure 5.2: Workflow diagram of the general simulator. The red boxes are the three
modules of the simulator, whereas white boxes represent the corresponding result of each
module.

SiO2

Polymer

Etchpreactions

Polymerpreactions

Plasma

Precursorp
C2F6

Neutrals
F,pCF,pCF2,pC2F3,pC2F4

Ions
CF2

+,pCF3
+,pC2F4+,pC2F5

+

Interfacepspecies
SiF,pSiF2,pSiF3,pSiFCO2,pSiF2CO2

Figure 5.3: Underlying mechanism as implemented by Anetch for the oxide etching
simulation.

179

Chapter 5. Dry etching profile evolution

all different species (ionic and neutrals) over the whole initial three-dimensional
structure. Whereas the initial guess values of the fluxes are obtained directly
from the user input (experiment or equipment simulation as stated above), the
concentrations of the species at the polymer-oxide interface and the polymer layer
thickness need to be derived for the initial guess. The basic principle for the initial
guess of these derived quantities is to set up a system of equations according to the
interaction between the different species assuming steady state for all concentration
and flux values [305]. This means that for all species, consumption must be equal
to production, such as for the polymer reactions [305]. For the calculation of
this initial guess, fluxes from different surface locations are not considered, which
will be done in the following steps for taking into account the three-dimensional
topology of the structure.

Based on all values of the initial guess, local sticking coefficients for all species are
calculated. In the first step they will not depend on the surface position, since
all surface positions of the three-dimensional feature have the same initial guess
values. As an example, the equation that relates the local sticking coefficient
for the F species (fluorine radicals) to polymer thickness (number of polymer
monolayers [P]), and surface concentrations is given:

SCF = [P]K10

+θSiFK11 + θSiF2K12 + θSiF3K12

+θSiF2CO2K12 + θSiFCO2K12

(5.1)

where SCF is the sticking coefficient of F, θ represents the surface coverage (i.e.
concentrations) of the corresponding species and Ki are proportionality constants
of the model that depends on the energy of the ions (if ions are involved) and the
thickness of the polymer layer (for reactions at the polymer-oxide interface) [305].
Similar equations are used for describing the rest of species.

The next step is to calculate a new local fluxes solution of all the considered species
according to sticking coefficients. This means that adsorption and desorption
of the species are considered, leading to varying flux values inside of the three-
dimensional structure. This is the most computationally expensive part of the
Anetch algorithm since, for every face of the surface being etched, the solid angle
is treated in discrete portions to each of which a certain value for the flux arriving
from another surface face at this spatial direction is attributed. Then, these local
fluxes are used as the initial guess for the next iteration.

In the next iterations, the sticking coefficients are again calculated but, now, based
on the updated values for fluxes, concentrations and polymer thickness. Then, with
the new values for the sticking coefficients a new solution for the local fluxes is
determined, and so on. The criterion for termination is the change between the
relative values of the fluxes (i.e. the flux value is set to unity in case the flux is
equal to the input value mentioned above) of two subsequent iterations. If the

180

5.2 Surface evolution module

Fluxes of
neutrals and ions

(field values)

Initial guess
for local fluxes

Local sticking
coefficients

Local fluxes

Convergence?Local
etch rates

yes noNew vertices
coordinates

Figure 5.4: Workflow diagram of Anetch silicon dioxide simulator. This corresponds
to the first module of the whole program.

maximum (taken over the different species) of this difference is below a threshold,
convergence is defined to be reached. Then, corresponding local etch rates values
are determined, which allows to calculate local shifting distances for an etching
time step [305].

These new vertices are taken by the LS module to evolve the surface and then,
the new structure is extracted. This is repeated until the desired depth is reached.
Fig. 5.4 shows the steps of this first module, i.e. the Anetch models.

5.2 Surface evolution module

Instead of using explicit parametrization techniques to evolve the surface being
etched, an implementation based on the surface reconstruction algorithm explained
in chapter 3 is proposed. The essential idea is, considering the surface of the current
structure, Anetch produces the new unconnected points of the surface according
to the etching models, then, the current surface is embedded inside a SDF and
evolved up to the new points with the LS reconstruction algorithm.

Particularly in the proposed surface reconstruction process, the coordinates of the
vertices produced by Anetch (from now on referred as set P) are used to indicate
the final position of the updated surface. Therefore, given an initial surface Γ0
formed by connected points, Anetch module calculates the new coordinates that
must be used to form the updated surface, but these points P are unconnected.
Then, Γ0 is embedded inside the φ function and, it is updated by means of the
LS method until the position indicated by P is reached by the zero-level (i.e. the
embedded surface). The evolved surface embedded inside φ is then extracted,
producing Γ1. In Fig. 5.5 a simple two-dimensional example of this procedure

181

Chapter 5. Dry etching profile evolution

Distance
to the front

Initial front

5

0

-5

-10

Final front

Anetch
P points

(a) (b)

Figure 5.5: Two-dimensional representation of a simple surface evolution example with
the LS method: (a) initial front guess, (b) final state of the front adapted to the P points.
The voxel colors represent the value of φ. Anetch takes the initial front and produces
the unconnected P points, then, the this front is evolved by means of the LS method up
to the P points.

is represented. In the next iteration, Anetch will use Γ1 to calculate the new
coordinates that will be used to indicate the new position of Γ1, which is already
embedded in φ from the previous iteration. Thus, φ is updated again to produce
Γ2. This process is repeated until the desired depth is reached, as depicted in Fig.
5.2.

In the implementation developed in chapter 3, the surface to evolve is a closed
surface surrounding the unconnected points (see Fig. 3.2). Nevertheless, in this
chapter the P points are located under the surface, which is not closed but limited
by the grid boundaries as shown in Fig. 5.5. In this chapter, the convection model
explained in section 3.2.2 in combination with the SFM is utilized since it has been
proved to be sufficiently accurate while requiring less computational effort. Thus,
the LS function is updated according to:

φn+1 = φn + ∆t[∇d(~x) · ∇φ], (5.2)

where d(~x) is the matrix distance between every grid point ~x and the closest
P point. For determining the derivatives of the term ∇d(~x) = (Dx, Dy, Dz),
second-central order differences (2.28) are used. In addition, forward first-order
Euler scheme is employed for time discretization, in combination with the upwind
differencing scheme (see algorithm 1) to properly select the forward (2.26) or
backward (2.27) first-order derivatives of the term ∇φ. As a consequence of using
the convection model, the time step is chosen according to the next CFL condition:

∆t = 0.5∆x
max {|Dx|+ |Dy|+ |Dz|}

, (5.3)
182

5.2 Surface evolution module

VerticesSNv){
llx0,ly0,lz0

llx1,ly1,lz1

lllllll...
llxNv,lyNv,lzNv

}
EdgesSNe){
llv0,lv1

llv1,lv2

lllllll...
llvNv-1,lv0

}

FacesSNf){
lle0,le1,le2

lle2,le3,le4

lllllll...
lleNe-1,le0,le1

}
ElementsS2){
llf0,lf1,...
llf1,lfNf-1,...
}
Materialle1l=lPhotoresist
Materialle2l=lSi02

Figure 5.6: Simple structure formed by two elements: photoresist (dark red) and silicon
dioxide (pink). The corresponding simplified DF-ISE file is presented. The variables in
parentheses indicate the number of the corresponding item (vertices, edges, etc.).

ensuring convergence and numerical stability. Notice a uniform LS mesh is used
such that ∆x = ∆y = ∆z.

5.2.1 Input data

The LS surface evolution module takes two input files: the current structure
explicitly represented and a list of points that must be updated, including the
new positions of such points obtained by Anetch (P points). Anetch requires an
explicit representation of the structure being etched, thus, the hierarchical format
DF-ISE is utilized for this. This is the native file format of the ISE software
company, which was acquired by the company Synopsys [306]. This data format
contains information of every material that forms the structure, e.g. silicon dioxide
and photoresist (mask). The basic information that requires a structure to be
described with the DF-ISE format is: the coordinates of all vertices, followed by
a list of edges, which are formed by connecting two vertices. Then, a list of all
faces (formed by three edges) is included. Following, the different elements of the
structure are defined by listing those faces that form each element. Notice that a
face can be included in two different elements when it is at the interface between
both elements. Finally, a material is assigned to each element of the structure. A
simple structure formed by two different elements and the corresponding simplified
DF-ISE file is presented in Fig. 5.6.

This explicit data must be represented in its implicit form such that the LS can
properly update the surface. To accomplish this, the LS module first reads all the
data stored in the DF-ISE file. In order to optimize computational performance
and memory space, only those surface points that must be updated are computed
by this module, i.e. those points of the top surface of the element being etched

183

Chapter 5. Dry etching profile evolution

(SiO2) that are not covered by the masking material (avoiding to compute those
points of the side walls and those of the bottom of the substrate since they must not
be modified). Accordingly, x and y surface dimensions are obtained among such
points. Additionally, the maximum and minimum distances between connected
surface points (maxdist and mindist) are found. These values will be used for
determining the mesh resolution and the initial LS surface. Likewise, the vertical
z dimension of the LS grid is determined by the minimal z value of those P points
included in Anetch’s output.

With the maximum and minimum values for each spatial dimension, the
boundaries of the LS grid are defined. On the other hand, grid resolution is
chosen to be proportional to the minimal distance between connected points of
the region being etched:

∆x = n ·mindist (5.4)
The parameter n is chosen for each simulation depending on the desired accuracy.
Therefore, the number of points in each spatial dimension is determined by:

numx =
⌊
maxx −minx

∆x + 1
⌋

numy =
⌊
maxy −miny

∆x + 1
⌋

numz =
⌊
maxz −minz

∆x + 1
⌋ (5.5)

wheremaxq andminq are the maximum and minimum values of spatial dimensions
q = x, y, z. Notice for the z values only the P points are considered, nevertheless,
the whole surface substrate is covered by the LS grid to allow simulations of high
underetching processes.

5.2.2 Distance matrix calculation

According to the convection model (5.2), the gradient of the distance matrix d(~x)
is employed to update the surface. This matrix is the unsigned distance between
every grid point and its closest P point. To solve this, the propagating algorithm
9 is utilized such that the S cloud of points is equivalent to the Anetch P points.
The main idea of this algorithm is to discretize the P points over the grid to find
those grid points that better approximate the P points. Then, the exact distance
between the corresponding grid points and the closest P points is calculated. After
that, these grid points propagate the coordinates of their closest P points to their
neighbouring grid points so they can calculate the exact distance to the P points.
This process is repeated until every grid point has a distance value assigned.

Then, the second-order central differences in each dimension are calculated,
producing the three matrices Dx, Dy, and Dz.

184

5.2 Surface evolution module

5.2.3 Initial surface determination

In the first iteration of the whole simulation process (see Fig. 5.2), an initial
surface must be determined. This initial surface is evolved up to the P points
with (5.2). Similarly to the surface reconstruction algorithm, it is found that a
proper initial surface is formed by those grid points that have a distance value
ε = maxdist /1.7. For this task the tagging algorithm 10 is employed. This simple
algorithm starts tagging all the grid points as interior but the points of the plane
at the top of the grid which are tagged as exterior and added to a linked list.
Then, for every point of the linked list, every neighbouring point is inspected: if
it is tagged as interior and has a distance value higher than maxdist /1.7, it is
tagged as exterior and included in the linked list. Otherwise (i.e. it is interior
with a distance value lower than maxdist /1.7), it will be used as initial surface.
After every neighbouring point has been visited, the linked list point is removed
from it. This process is repeated until the linked list is empty.

Once the initial surface points are found, it has to be embedded inside a SDF
and the grid points must be included in the corresponding SFM lists and labelled
with the proper state according to algorithm 12 and taking into account the tags
produced with the tagging algorithm.

This process only has to be performed in the first iteration. For the rest of the
simulation process, the LS module takes the φ function resulting from the previous
iteration as initial surface. Nevertheless, the LS grid is expanded in the vertical z
dimension according to the new P points.

5.2.4 Evolution loop

After obtaining the initial surface and the SFM lists, the surface is updated
according to the convection model (5.2) until convergence is reached. According
to section 3.2.1, the energy of a surface is proportional to the sum of the distance
values d(~x) of those points that form the surface. Using the convection model to
evolve a surface, its energy is decreasing until a local minimum is reached, which
corresponds with the surface attached to P points. Hence, in order to obtain
such surface adapted to the points, after each SFM iteration, the surface energy is
calculated and when the difference between the last iteration and the current one
is small enough, the evolution loop is stopped.

An example of the surface energy evolution according to the convection model
can be visualized in Fig. 5.7. The surface energy is calculated by summing the
distance values d(~x) of all the surface points. Likewise, the surface points are those
included in the SFM list L0. The first iteration of the whole etching process (see
workflow of Fig. 5.2) of a generic structure is shown in the left graph. Notice that
all the tested structures have similar energy behaviour, thus, only one example

185

Chapter 5. Dry etching profile evolution

SFM iteration

0 10 20 30 40 50 60 70 80 90 100
280

290

300

310

320

330

340

350

360

370

380

0 10 20 30 40 50 60 70 80 90 100
2.4

2.42

2.44

2.46

2.48

2.5

2.52

2.54

2.56

2.58

2.6
x 10

4

S
ur

fa
ce

 e
ne

rg
y

L 0
 p

oi
nt

s

SFM iteration

0 10 20 30 40 50 60 70 80 90 100
0

250

500

750

1.000

1250

1.500

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
x 10

4

S
ur

fa
ce

 e
ne

rg
y

L 0
 p

oi
nt

s

Figure 5.7: Evolution of the surface energy (blue) and the number of SFM L0 list
points (green) as the surface is evolved with (5.2). The left graph corresponds to the
first iteration of the whole etching process whereas the right-side graph is the eleventh
iteration.

is shown. On the other hand, the eleventh iteration is presented in the graph on
the right. In both cases, the surface energy decreases as the surface is evolved
and, usually, after 50 or 70 iterations approximately, the energy and the number
of active points has converged. At this point, the local minimum energy which
corresponds with the attached surface has been reached and the evolution surface
process can be stopped. Notice at the beginning of the eleventh iteration, the
number of points included in L0 list is increased, this is because the etched surface
has been expanded by Anetch and it covers more grid points.

5.2.5 Complete algorithm

Finally, the whole procedure of the profile evolution module by means of the SFM
is presented in algorithm 28. The LS grid is generated according to the vertices
of region to be etched, nevertheless, if it is not the first iteration, the x and y
dimensions are directly obtained from the φ function of the previous iteration,
whereas the vertical dimension z is updated according to P points. Similarly, if
it is not the first iteration, the tasks of finding an initial surface and building the
SDF are avoided since previous φ function is taken.

It is important to notice that ∆t represents a step of an artificial time used by the
LS method to evolve the surface in the evolution module. This artificial time step
needs to be used in order to ensure numerical stability and convergence, however,
the actual etching time is controlled by Anetch.

186

5.2 Surface evolution module

Algorithm 28: SFM implementation for profile evolution module.
Data: DF-ISE file describing the current structure
Data: Points to be updated and their new positions (P)

1 Read DF-ISE file and determine among the vertices of the region to be etched: the
maximum and minimum values in x and y dimensions, maxdist and mindist.

2 Find the minimum z value among the P points.
if first iteration then

3 Generate the LS mesh according to this maxima and minima, by using (5.4).
else

4 Read the φ function from previous iteration and initialize SFM lists according to the
value of every point.

5 Extend z grid dimension according to the minimum z value.
6 Build distance matrix d(~x) with propagating algorithm 9.
7 Calculate ∇d(~x) with second-order central derivatives (2.28).

if first iteration then
8 Find a proper initial surface with algorithm 10.
9 Build the SDF φ of the initial surface and add the points to the corresponding SFM

lists with algorithm 12.
10 Calculate the time step of the convection model ∆t according to (5.3).
11 while no convergence do

for each L0 point ~xi do
12 Calculate φ+

x , φ
−
x , φ

+
y , φ

−
y , φ

+
z , φ

−
z .

13 Use Dq(~xi) to determine, by upwind differencing algorithm 1, the proper
derivative to use in each dimension q.

14 Update implicit function φ with (5.2).
if φ(~xi) < −0.5∆x then

15 remove (~xi) from L0 and add it to S−1.
if φ(~xi) > 0.5∆x then

16 remove (~xi) from L0 and add it to S+1.

17 Update L+1 and L−1 lists with procedure 5.
18 Transfer points from auxiliary lists by applying procedure 6.
19 Add corresponding points to L±1 according to procedure 7.
20 Calculate surface energy En+1.
21 if |En+1 − En| < tol then break;
22 Go to extraction module.

187

Chapter 5. Dry etching profile evolution

0±0.5Δx. state_aux=0

1±0.5Δx. state_aux=1

-1±0.5Δx. state_aux=-1

Signed distance:

Execution thread

Figure 5.8: Simple three-dimensional example showing the execution thread
distribution used for the SFM evolution profile module. Each execution thread is in
charge of computing one grid point. Some intermediate voxels have been removed for a
better visualization.

5.2.6 GPU implementation

In addition to the SFM optimization, a parallel implementation of the profile
evolution module has been developed for a further reduction of the computational
time. Based on algorithm 28, this implementations is written in CUDA C
programming language and is executed on an Nvidia GeForce GTX Titan [307],
which has 2688 CUDA cores and forms part of the Kepler microarchitecture (see
section 2.3.3.3). Some features of these platform are collected in table 2.2.

The strategy used for wet etching simulation to emulate the SFM method on
a GPU (see section 4.4.2) is used in this module. Thus, the three-dimensional
auxiliary variable aux state is employed to indicate the current SFM list of every
grid point, thus denoting which points must be updated in each algorithm step.

Kepler microarchitecture devices enable the possibility of creating three-
dimensional blocks of execution threads as well as three-dimensional grids of
blocks. Furthermore, due to the high amount of threads that can be handled
by such devices, one execution thread can be in charge of only evaluating one grid
point, contrary to the implementation of section 4.4.2 where each thread has one
grid column assigned. Therefore, there is no need to use upper and lower boundar-
ies for grid columns since every thread visits a specific grid point and, depending on
its state, will perform the corresponding operations. A three-dimensional simple
example of the thread distribution can be visualized in Fig. 5.8.

Furthermore, in order to obtain the best performance, the thread block size must
be multiple of the warp size (which is 32 threads). Since the number of maximum

188

5.2 Surface evolution module

threads per block is 1024 for the Kepler microarchitecture, it has been found that
512 threads per block is the best choice. Thus, each block is formed by 8x8x8
threads. Therefore, the number of blocks in each dimension required to cover the
whole LS grid is determined by

Nblockx =
⌊
numx + 7

8

⌋
Nblocky =

⌊
numy + 7

8

⌋
Nblockz =

⌊
numz + 7

8

⌋ (5.6)

Thus, a three-dimensional grid of blocks is created, containing each block 512
(8x8x8) execution threads. This strategy ensures the creation of one execution
thread per grid voxel.

5.2.6.1 Main variables

Although the requirements for obtaining a coalesced access to global memory has
been reduced in Kepler microarchitecture [92], it is still important to pay attention
to the memory access pattern in order to optimize memory bandwidth.

Similarly to the wet etching GPU implementation, the φ variable is stored in
texture memory to explode spatial proximity of the threads accessing to such
values, therefore, due to the thread distribution utilized and the requirements of
the Kepler microarchitecture [92], coalesced accesses are obtained when accessing
to data stored in global memory.

Table 5.1 collects all the main variables employed in the GPU implementation of
the profile evolution module. Due to the upwind differencing technique used for
updating the surface properly, the values Dx, Dy, and Dz are stored during the
whole simulation in the GPU. Moreover, the variable Dmax is used for obtaining
the time step on the GPU, therefore minimizing the number of transfers between
CPU and GPU device.

5.2.6.2 Workflow

To ensure a proper thread synchronization, algorithm 28 is divided in several
CUDA kernels invoked by CPU. In the present implementation, not only the
evolution loop process is executed on the GPU but the operations of calculating
the term ∇d(~x) (i.e. step 7 of algorithm 28) and the procedure of building the
SDF of the initial surface and assigning the corresponding state aux tags to
every grid point in the first iteration (i.e. step 9) are performed in the GPU

189

Chapter 5. Dry etching profile evolution

Variable Type Size GPU memory
φ float grid Texture

φx float grid Global

φy float grid Global

φz float grid Global

state char grid Global

state aux char grid Global

D float grid Global

Dx float grid Global

Dy float grid Global

Dz float grid Global

Dmax float grid Global

Table 5.1: Main variables allocated in GPU device according to the SFM parallel GPU
implementation for RIE profile evolution. All the variables have grid size, i.e. they are
three-dimensional matrices of numx · numy · numz entries.

device. Additionally, obtaining ∆t (step 10) is also performed on the GPU,
thus minimizing the number of data transfers between CPU and GPU. As a
consequence, three additional kernels in comparison to wet etching implementation
are developed for such operations. They are explained in algorithms 29, 30,
and 31 respectively, and all the presented operations are performed by every
execution thread. When launching a CUDA kernel, every created execution thread
is assigned with an identifier (tbid) that indicates the thread number within a block.
In addition, a block identifier (bid) is also assigned, thus, using both identifiers, an
absolute unique thread identifier (tid) is obtained, which can be used for accessing
to global variables. In case that more threads than grid points would be created,
the excess threads would not be computed, ensuring that every thread only accesses
to the corresponding position.

Algorithm 29: Kernel 1 of GPU SFM implementation of profile evolution module.
It corresponds to step 7 of algorithm 28.
Data: tid = Unique thread identifier

1 Calculate Dx(tid), Dy(tid), and Dz(tid) with second-order central differences (2.28).
2 Dmax(tid) = |Dx(tid)|+ |Dy(tid)|+ |Dz(tid)|.

Regarding the kernel 2 (algorithm 30) used in the first iteration of a simulation for
building the initial SDF and the state aux matrix, notice the state tags produced
by algorithm 10 are used.

190

5.2 Surface evolution module

Algorithm 30: Kernel 2 of GPU SFM implementation of profile evolution module.
Determination of the SDF φ in the first iteration of the GPU evolution profile
module implementation. It corresponds to step 9 of algorithm 28.
Data: state = {exterior, interior, IS}
Data: tid = Unique thread identifier
switch state(tid) do

case IS
1 φ(tid) = 0
2 state aux(tid) = 0
3 break;

case exterior
if any adjacent point of (tid) has state = IS then

4 φ(tid) = ∆x
5 state aux(tid) = 1

else
6 φ(tid) = 1.5∆x
7 state aux(tid) = 2
8 break;

case interior
if any adjacent point of (tid) has state = IS then

9 φ(tid) = −∆x
10 state aux(tid) = −1

else
11 φ(tid) = −1.5∆x
12 state aux(tid) = −2
13 break;

14 state(tid) = state aux(tid)

In kernel 3 (algorithm 31), a different strategy, of that used for the rest of the
kernels (i.e. 8x8x8 threads form a block and the grid dimensions are calculated
with (5.6)), is employed for execution thread distribution. This kernel calculates
the time step according to (5.3), which requires a search among all the grid points
to find the maximum value max{|Dx| + |Dy| + |Dz|}. Notice that this value has
been calculated previously in kernel 1 (algorithm 29) for every grid point and they
are stored in variable Dmax. Thus, the task of kernel 3 is to find the maximum
value of the variable Dmax. Accordingly, one-dimensional blocks of 512 threads as
well as a one-dimensional grid of blocks are created. The number of blocks of this
grid is obtained with:

Nblocks∆t = numx · numy · numz + 255
256 . (5.7)

191

Chapter 5. Dry etching profile evolution

Algorithm 31: Kernel 3 of GPU SFM implementation of profile evolution module.
It corresponds to step 10 of algorithm 28.
Data: tbid = Thread identifier within a block
Data: bid = Unique block identifier
Data: tid = Unique thread identifier

1 Define BlockD array of 512 floats in shared memory.
2 Define BlockMax array of Nblocks∆t floats in global memory.
3 BlockD(tbid) = Dmax(tid). -Each thread takes a
4 Initialize currentThreads = 512. different Dmax value-

while currentThreads > 1 do
5 halfPoint = currentThreads/2.

if tbid < halfPoint then
6 tb2id = tbid + halfpoint.

if BlockD(tb2id) > BlockD(tbid) then
7 BlockD(tbid) = BlockD(tb2id)

8 Threads synchronization.
9 currentThreads = halfPoint.

10 BlockMax(bid) = BlockD(0). -The maximum block value
11 Threads synchronization. is stored in position 0-

if tid = 0 then
12 Find maximum values among all the BlockMax values.
13 Calculate time step ∆t with (5.3).

In order to obtain the maximum value in a parallel execution, an array of 512
positions is allocated in the shared memory of GPU. According to section 2.3.3,
this memory is very fast and only threads within the same block can access to
it. Hence, the essential strategy is that one half of the threads within each
block compares two different values of Dmax and the maximum value is stored
in the shared memory, obtaining 256 values. Then, the same process is applied
to these values and so on, until the maximum value within a block of threads
is found. Once the maximum value of every block is obtained, only one thread
is in charge of finding the absolute maximum value among those values, getting
finally the maximum value used for ∆t calculation. This procedure is explained
in algorithm 31. Notice that this procedure requires a synchronization operation
of every execution thread to ensure the comparisons are performed with updated
values, which is directly accomplished with the CUDA instruction syncthreads().

For its part, the evolution loop (i.e. step 11) is divided in five kernels, which
are analogous to those commented in section 4.4.2.3 for the wet etching simulator.
These kernels are detailed in algorithms 32, 33, 34, 35 and 36. All these operations
are performed by every execution thread with a unique thread identifier tid, which
is in charge of evaluating a certain grid point and it is used for accessing the main
variables of table 5.1.

192

5.2 Surface evolution module

Algorithm 32: Kernel 4 of GPU SFM implementation of profile evolution module.
It corresponds to steps 12 and 13 of algorithm 28.
if state aux(tid) = 0 then

1 Calculate spatial derivatives φ±q .
2 According to Dq, apply the upwind differencing algorithm 1 to determine the

proper derivatives, backward or forward, in each dimension q.
3 Store the corresponding derivatives in variables φq respectively.

Algorithm 33: Kernel 5 of GPU SFM implementation of profile evolution module.
It corresponds to steps 14-16 of algorithm 28.
if state aux(tid) = 0 then

1 Update φ(tid) using (5.2).
if φ(tid) < −0.5∆x then

2 state aux(tid) = −11.
if φ(tid) > 0.5∆x then

3 state aux(tidi) = 11.

Algorithm 34: Kernel 6 of GPU SFM implementation of profile evolution module.
It corresponds to step 17 of algorithm 28.
if state aux(tid) = 1 then

1 Among the six neighbouring points of tid, find the point with minimum distance
φ(tidB) value and state = 0.
if no point with state = 0 is found then

2 state aux(tid) = 2.
3 state(tid) = 2.

else
4 Update φ(tid) = φ(tidB) + ∆x.
5 if φ(tid) ∈ [−0.5∆x, 0.5∆x] then state aux(tid) = 10.
6 if φ(tid) > 1.5∆x then state aux(tid) = 2.

if state aux(tid) = −1 then
7 Among the six neighbouring points of tid, find the point with maximum distance

φ(tidB) value and state = 0.
if no point with state = 0 is found then

8 state aux(tid) = −2.
9 state(tid) = −2.

else
10 Update φ(tid) = φ(tidB)−∆x.
11 if φ(tid) ∈ [−0.5∆x, 0.5∆x] then state aux(tid) = 10.
12 if φ(tid) < −1.5∆x then state aux(tid) = −2.

193

Chapter 5. Dry etching profile evolution

Algorithm 35: Kernel 7 of GPU SFM implementation of profile evolution module.
It corresponds to step 18 of algorithm 28.
if state aux(tid) = 10 then

1 state(tid) = 0.
2 state aux(tid) = 0.

if state aux(tid) = 11 then
3 state(tid) = 1.
4 state aux(tid) = 1.

if state aux(tid) = −11 then
5 state(tid) = −1.
6 state aux(tid) = −1.

Algorithm 36: Kernel 8 of GPU SFM implementation of profile evolution module.
It corresponds to step 19 of algorithm 28.
if state aux(tid) = 0 then

for neighbouring points (tidB) with state = 2 do
1 state(tidB) = 1.
2 state aux(tidB) = 1.
3 φ(tidB) = φ(tid) + ∆x.

for neighbouring points (tidB) with state = −2 do
4 state(tidB) = −1.
5 state aux(tidB) = −1.
6 φ(tidB) = φ(tid)−∆x.

The workflow of this GPU SFM-based implementation of the profile evolution
module is presented in Fig. 5.9. As can be observed, in this implementation data
transfers between CPU and GPU devices are performed only at the beginning and
at the end of the evolution profile loop. Once the surface is adapted to Anetch P
points, convergence is reached and the φ values are transferred from the GPU to
the CPU in order to proceed with the extraction module.

5.3 Extraction module

As depicted in workflow diagram of Fig. 5.2, after the LS evolution module updates
the surface, the final SDF is generated and the explicit surface has to be extracted
to create faces and vertices suitable for Anetch. An example of the different steps
of this module is shown in Fig. 5.10. The LS module only considers those points
of the actual material being etched that must be updated to save memory and to
reduce computational cost (see Fig. 5.10(a)). Thus, after extracting the evolved

194

5.3 Extraction module

Kernel 3
EIDetermineImaximumIDmaxIvalueIwithinIeveryIthreadIblockGI
EIFindItheImaximumIDmaxIvalueIamongItheImaximaIofIeveryIblockI
withIoneIexecutionIthreadG
EICalculateItheItimeIstepG

PA

Kernel 4
IfI3state_aux>AL5
IIEIcalculateIbackwardIandIforwardIspatialIderivativesIofIϕG
IIEIaccordingItoIDxSIDySIandIDzSIselectItheIproperIderivativesGI
IIEIstoreIthemIinIϕxSIϕySIandIϕzIrespectivelyG

PUEPT

LaunchIKernelIP5IoneIexecutionIthreadIperIgridIvoxel

EIReadIDFEISEIfileIandIdetermineImaxGIandIminGIvalues
IIinIxIandIyIdimensionsSImaxdistSIandImindistG
EIFindIminimumIzIvalueIamongIPIpointsG
IIfI3firstIiterationL5IGenerateILSImeshG
Ielse5
IIEIReadIpreviousIϕIandIinitializeIstate_aux.

IIEIExtendItheIz gridIdimensionIaccordingItoIminimumIzG
EIBuildIdistanceImatrix d(x)IwithIpropagatinIalgorithmGI
EIAllocateIGPUImemoryIregionsGI
EIIfI3noIfirstIiterationL5TransferIϕIandIstate_auxItoIGPUG
EIDetermineInumerIofIblocksIinIeveryIdimensionG

P

U
T

CPU GPU

Kernel 1
EICalculateIDxSIDySIandIDzIwithIsecondEorderIcentralIdifferencesGI
EIDetermineIDmax>|Dx|R|Dy|R|Dz|I

8

IIfI3firstIiterationL5
IIEIFindIaIproperIinitialIsurfaceSItheIcorrespondingIϕIandI
IIIIdetermineIstate_aux forIeveryIgridIpointG

9

EIDetermineInumberIofIblocksIforItimeIstepIcalculation

Kernel 2
EIBuildItheIϕIfunctionI
EIDetermineItheIstate_aux matrixIaccordingItoItheItagsIproducedI
byItheIinitialIsurfaceIdeterminationIprocedureG

4

|
+
7

LaunchIKernelIU5IoneIexecutionIthreadIperIgridIvoxel

LaunchIKernelIT5IoneIexecutionIthreadIperIgridIvoxel

LaunchIKernelI|5IoneIexecutionIthreadIperIgridIvoxel

P|EP7 Kernel 5
If (state_aux=0)5
IIEIupdateIϕIvalueG
IIEIIfIϕ<EAG+ΔxIstate_aux= -11.

IIEIIfIϕOAG+ΔxIstate_aux= 11.

LaunchIKernelI+5IoneIexecutionIthreadIperIgridIvoxel

P8 Kernel 6
IfI3state_aux=1IorIstate_aux=-1L5
IIEIupdateIϕIandIstateIaccordingItoIneighbouringIpointsG

LaunchIKernelI75IoneIexecutionIthreadIperIgridIvoxel

P9 Kernel 7
IfI3state_aux=10 or state_aux=11 orIstate_aux=-11L5
IIEIupdateIstate_auxIandIstate asIcorrespondG

LaunchIKernelI85IoneIexecutionIthreadIperIgridIvoxel

P4 Kernel 8
IfI3state_aux=0L5
IIEIfindIneighbouringIpointsIwithIstate=2 andIstate=-2IIandI
IIupdateIthemIcorrespondinglyG

EIIfIconvergenceIreached5ItransferIϕIfromIGPUItoICPUG
EIOtherwiseIgoItoIstepIIIIIIIG

II

PU

LaunchIKernelI95IoneIexecutionIthreadIperIgridIvoxel

Figure 5.9: Parallel GPU SFM algorithm of the profile evolution module for RIE
simulation. Red number indicate the equivalent step of algorithm 28.

195

Chapter 5. Dry etching profile evolution

Faces and vertices extraction

(a)

Material walls addition

(b)

Masked faces combination

(c)

Rest of materials addition

(d)

Figure 5.10: Example of the extraction process: (a) faces and vertices generation,
(b) the side and bottom walls are added to the etched surface, (c) the etched surface is
combined with the mask region, and (d) the rest of the materials are added to the final
structure.

surface, the side and bottom walls of the substrate need to be generated and
joined to the new evolved surface (step (b)). Moreover, for a coherent structure
representation, those faces at interfaces between different materials must be shared
by both of them. Therefore, the mask faces in contact with the etched region are
combined with the rest of the faces of the etched material (step (c)). Finally, the
rest of materials can be perfectly combined forming the final structure (see Fig.
5.10(d)).

196

5.3 Extraction module

5.3.1 Implementation

This module has been implemented in Matlab programming language and the
input data are the DF-ISE file resulting from the previous iteration (or the original
structure if it is the first iteration) and the φ function produced by the LS evolution
profile module.

The first step of this module is to extract the surface from the LS function. To
accomplish this task, the isosurface Matlab function is employed in the first
place. This function finds those grid points that are close to the zero-level and
creates vertices and faces according to the values of those points. Isosurface
function usually generates too many faces to obtain reasonable low execution
times, thus, the Matlab function reducepatch could be used. However, better
results have been obtained by using the meshing tool presented by Fang et al.
[308], since a list of vertices and faces that form a more regular triangular mesh is
generated. In particular the meshresample function is used, which uses the mesh
CGAL simplification tool that reduces the number of triangles while keeping the
overall shape of the surface as much as possible [309]. This tool is based on the
halfedge-collapse operation, i.e. given an edge e connecting vertices v and w, v is
pulled into w, disappearing e and v, and leaving w. This operation is repeated
over the whole surface until the desired number of faces is reached. A maximum
number of 3000 faces has been chosen, which ensures enough accuracy for all the
tested examples and reasonable low execution times are obtained. Therefore, by
combining these two methods, a list of vertices and faces is generated forming a
surface as can be visualized in Fig. 5.10(a).

After the explicit surface generation, this regions must be connected and combined
with the rest of regions. Hence, the previous non-updated structure is loaded from
the corresponding DF-ISE file. Then, the etched regions are removed and must be
replaced by the updated ones. To ensure a coherent structure representation, the
border vertices of the extracted surface are approximate to their closest border
vertices of the adjacent regions. This allows a perfect match with the shared faces
of the interface.

After this and according to the etched region dimensions loaded from the DF-
ISE file, side and bottom walls are generated considering the border vertices of
the interface between etched material and the rest of regions. Notice that very
simple meshes can be used for defining the side walls of the etched material since
these parts of the substrate are not directly modified by the etching process. The
inclusion of side and bottom walls of the etched substrate can be visualized in Fig.
5.10(b).

The extraction process here commented generates a list of vertices and faces formed
by three vertices each. Nevertheless, the DF-ISE format requires structures defined
by vertices, edges and faces. Hence, the etched substrate is then transformed to

197

Chapter 5. Dry etching profile evolution

DF-ISE format by properly generating a list of edges defined by the connected
vertices of the faces and redefining these faces according to the new generated
edges. Now, interface faces can be included in the etched region. A structure with
those faces shared with the mask material is represented in Fig. 5.10(c).

Finally, the rest of the regions are included in the updated structure file directly
from the DF-ISE input file, producing the complete updated structure as can be
shown in Fig. 5.10(d). All this procedure is summarized in algorithm 37.

Algorithm 37: Implementation of the extraction module.
Data: LS function φ with the update etched surface
Data: DF-ISE file describing the non-updated structure

1 Load φ function and apply isosurface Matlab function to produce explicit faces and
vertices.

2 Reduce the number of faces to a maximum of 3000 by using meshresample function.
3 Load DF-ISE file.
4 Approximate border vertices of the extracted surface to the closest border vertices of the

adjacent regions for a coherent representation.
5 Generate side and bottom walls of the etched substrate.
6 Transform the updated extracted surface into DF-ISE format.
7 Add interface faces shared with other regions to the etched one.
8 Include the rest of the regions directly from the input DF-ISE file and generate the final

updated structure.

5.4 Results

This section presents a collection of several simulation results. The purpose of this
section is to prove the versatility and the capabilities of the developed modules
to handle different kinds of topologies and produce realistic results. First, a total
of four different structures are simulated to demonstrate the advantages of the
implicit representation in comparison with the explicit representation employed
by Anetch. Finally, a real experiment is simulated and both results are compared.

Furthermore, the execution time of each module is presented, as well as the
contribution of the different parts of the LS GPU module. All the simulations have
been performed on a machine consisting of an Intel Xeon CPU at 2.1 GHz with
32 GB of RAM, using a 64-bit Ubuntu-based (version 14.04 LTS) and an Nvidia
GeForce GTX Titan. For the extraction module, the Matlab 8.3 version (R2014a)
has been used. Likewise, the Anetch algorithm is written in pure sequential C++
programming language whereas the SFM algorithm is implemented in parallel
CUDA C.

198

5.4 Results

Conf. F CF CF2 C2F3 C2F4 CF+
2 CF+

3 C2F+
4 C2F+

5
A 1.21e5 2.28e4 5.58e4 9.5 1.02e2 3.48e3 9.6e3 4.56 6.9
B 1.21e5 2.28e4 5.58e4 9.5 1.02e2 8.7e3 2.4e4 1.14e2 17.25

Table 5.2: Input parameters configurations: relative field values of fluxes of the different
species, neutrals and ions.

-0.5 -0.3 -0.1 0.1 0.3 0.5

0.2

0

-0.2

-0.4

-0.6

-0.5 -0.3 -0.1 0.1 0.3 0.5

-0.4

-0.2

0.2

0

0.2

-0.2

-0.6

-1
-1 -0.6 -0.2 0.2 0.6 1

x [um] x [um]

x [um]

0.2

-0.2

-0.6

-1

-1 -0.6 -0.2 0.2 0.6 1
x [um]

SiC Mask SiO2

x

z

y

z
[u

m
]

x

z

y

z
[u

m
]

x

z

y

z
[u

m
]

z
[u

m
]

x

z

yy=0

y=0

y=0y=0

(a) (b)

(c) (d)

Figure 5.11: RIE simulation results containing a three-dimensional view of the final
structure, a cross section and the used mask patterns.

As commented in section 5.1.1, Anetch takes as input parameters the relative
field values of the considered neutrals and ions species. By modifying this
parameter values, the etching behaviour is changed. Accordingly, for the simulated
benchmarks, two different configurations of these values have been utilized. The
field values of both configurations are collected in table 5.2.

Fig. 5.11 shows the simulations results of the tested SiO2 etching processes. Each
result contains a three-dimensional visualization of the whole structure, a cross
section that provides a better understanding of the result and, in the upper right
corner of each sub-figure, the used mask pattern. In addition, table 5.3 collects the
relevant information of each simulation such as, first column: name of simulation,
second column: size of the substrate, third column: surface dimensions in voxels
of initial interface between mask and SiO2 materials, fourth column: number of
iterations of the whole algorithm shown in Fig. 5.2 and parameters configuration
of table 5.2 employed, and fifth column: simulation time of each module.

199

Chapter 5. Dry etching profile evolution

Figure Substrate Surf. size Iter. Simulation time (s)
size (µm) (voxels) /conf. Anetch LS Extrac. Total

5.11(a) 1x1x0.7 216x216 11/A 1326 75 216 1617
5.11(b) 1x1x0.95 270x270 11/A 2255 77 373 2705
5.11(c) 2x2x1.2 322x322 14/B 9206 102 410 9718
5.11(d) 2x2x1.2 306x306 14/B 469 92 318 879
5.12 21.1x21.1x12 346x346 15/A 1032 82 585 1699

Table 5.3: Parameters of the simulated RIE processes.

Notice that in these simulations, the mask regions are considered ideal so they
are not modified. Simulation (a) of Fig. 5.11 is a through hole simulation with
a simple hole in the middle of the mask. Likewise, simulation (b) is the same
structure with a substrate of silicon carbide at the bottom. These results show
that the developed simulator consisting of Anetch, the developed SFM evolution
profile module and the extraction module, is able to remove completely the etched
material, as well as to stop the etching process when a different material is reached.
Conversely, as observed in Fig. 5.1(a), the explicit surface representation used by
the original Anetch is not able to split the surface in a similar example when
reaching a different material neither completely removing the etched material at
the bottom. Both simulations use the parameters of configuration A, collected in
table 5.2, as input data for Anetch models.

In simulations (c) and (d), the parameters of configuration B are used. This
configuration provides a higher underetching. Simulation (c) consists in two
near rectangular holes in the mask. Due to the high underetching, the SiO2
between both openings is almost completely removed. This simulation shows
the capability of the developed SFM module to handle the collision of two
evolving surfaces, which usually is a complex task when using explicit surfaces.
As shown in Fig. 5.1(b), the original Anetch did not handled correctly this
phenomenon and additional subroutines would be necessary due to the explicit
surface representation employed.

Finally, simulation (d) shows the effect of the high underetching in the
micromachining process of a high aspect ratio column. This RIE process
is interesting since initial surface has many faces and many other new faces
must be added as the surface is evolved. This phenomenon is well simulated
by the implemented implicit surface representation by means of the SFM.
Nevertheless, the operations of adding new faces are usually complicated for
explicit representation algorithms and unrealistic results can be produced as shown
in Fig. 5.1(c).

200

5.4 Results

4

8

12

x([um]

x

z

y

z(
[u

m
]

0
-10 -6 -2 2 6 10

4

8

12

x([um]

x

z

y

z(
[u

m
]

0
-10 -6 -2 2 6 10

4.65 3.58

2.12

8.23

3.00

2.93 2.94

3.583.58

SiO2

SiC

SiO2

SiC

Resist

y=0

y=0

5(um

5(um

SiC Mask SiO2

(a) (b)

(c) (d)

Figure 5.12: Simulation results containing a three-dimensional view of the final
structure, a cross section representation, and the used mask patterns.

Finally, a comparison of experimental with simulated results is shown to validate
the program. The experiment consist of a SiO2 substrate masked with 2.12 µm
thick deposited AZ5214 resist to, subsequently, form micro trenches in the
substrate by fluorocarbon plasma etching. Additionally, the SiO2 substrate is
placed on a silicon carbide substrate to stop the etching process. The new formed
SiO2 trenches could be used as masking material for a subsequent SiC etching
process.

The first step of the experiment is to deposit the resist on the SiO2 substrate
and bake it in the oven. The result of this step is shown in Fig. 5.12(a). This
structure is considered by the simulator as the initial structure to be etched and
is represented in Fig. 5.12(b). In both figures several measurements are shown
for comparison. After 70 minutes of etching, with an etch rate of approximately
50 nm/min the trenches are formed. The experimental result is shown in Fig.
5.12(c).

Regarding the simulation process, the parameters used as input data correspond
to the configuration A shown in table 5.2. Additionally, the simulation parameters
used in this experiment are shown in the last row of the table 5.3. Fig. 5.12(d)
shows the three-dimensional final structure as well as the cross section in the middle

201

Chapter 5. Dry etching profile evolution

of the substrate. Notice that, despite the simulator considers an ideal resist, in
the experiment the resist is also etched, resulting in 1.74µm of thickness.

According to the results, despite the side walls of the experimental trenches
are straighter than the simulated ones, both structures are very similar. Every
simulated measurement is in good agreement with the experimental one, differing
at maximum by 0.22µm while the length of the substrate is 21.5µm. Thus, the
developed simulator has emulated correctly the experimental etching process.

Especially interesting is the improvement obtained with the LS module which
enabled the splitting of the etched surface. The surfaces of both trenches
are evolved according to Anetch models, then, when the fronts reach the SiC
substrate, the corresponding φ values are updated taking positive values and,
thus, removing the zero-level at those parts of the grid without any additional
computational effort. Therefore, the simulated material is completely removed
as in the experiment. On the other hand, this operation cannot be completely
performed with explicit parametric surface representation as shown in example
(a) of Fig. 5.1. Although this is a simple experiment, it is used for proving the
efficacy of the LS method for evolving the surface in combination with etching
models that use explicit surface representation.

The grid resolution of each simulation shown in table 5.3 has been chosen to
obtain the results with a reasonable accuracy. According to the computational
times shown in this table, the SFM module does not only depends on the grid
size but, also, on the surface topography due to the SFM. For instance, despite
the last example, shown in Fig. 5.12, has a larger surface grid than example (c)
of Fig. 5.11, the time required by the last is higher since the active surface has
more points. In every example, the LS module only represents a small part of the
total computational time of the simulation (between 1.1% and 10.5%) due to the
parallel CUDA-based implementation. On the other hand, the extraction module
represent a higher part of the simulation (between 4.2% and 36.2%) and it depends
directly on surface grid size.

In order to analyse the computational performance of the profile evolution GPU
SFM implementation, the main parts of algorithm 28 are timed on the last iteration
of every tested simulation process. The contributions of these main parts are
presented in Fig. 5.13. As can be observed, the most consuming part of the
algorithm is clearly the calculation of the matrix distance with the propagating
algorithm, which takes about 50% of the total simulation time. The second part
that takes more time (between 34% and 40%) is the operation of reading the φ
function of the previous iteration. On the contrary, all the steps executed on the
GPU side, like the evolution loop which includes kernels 4 to 8 (algorithms 32
to 36) takes less than 0.1% and they are not even displayed at the graphs. The
reason why the GPU part takes such a little time in comparison with the steps
executed on the CPU side is the high performance provided by the Nvidia GeForce

202

5.5 Conclusions

5.125.11(d)5.11(c)5.11(b)5.11(a)

0

2

4

6

8

10

T
im

eu
(s

)

MatrixuDistance
Read
Evolutionuloop
Datautransfers
Restuofualg.

ɸ
6
4
12-20

8.0

38.4

50.0

6.0

34.3

56.2 52.6

37.5

5.8

5.0

35.7

54.7

40.4

45.5

9.3
3.6

3.5 4.1

4.6

4.8

Figure 5.13: Representation of the execution times obtained with the GPU SFM
implementation of the evolution profile module of the RIE simulator. The red numbers
indicate the contribution of the main parts of algorithm 28. The gray numbers indicate
the corresponding step of the algorithm. All the values are obtained for the last iteration
of the simulation process. The contribution of the evolution is not represented since
represents less than 0.1% of the simulation time.

GTX Titan in combination with the developed one thread per grid point strategy.
Moreover, the CPU code is executed sequentially and the employed Xeon processor
works only at 2.1 GHz.

Finally, due to the number of transfers between CPU and GPU has been
minimized, they only takes 3.5 − 4.8% of the total time. Similarly, the rest of
the algorithm, including kernel 1 (algorithm 29), kernel 3 (algorithm 31), and the
reading of the DF-ISE file (step 1), only takes 5.0− 9.3% of the simulation time.

5.5 Conclusions

In this chapter, the evolution profile technique used by RIE simulators is improved
by means of implicit surface representation. In particular, a new module based
on the LS method is developed to evolve surface being etched according to the
models of Anetch, which originally utilized an explicit parametrization technique,
producing unrealistic results for some etching processes.

The LS module is based on the SFM to provide accurate and fast results. Moreover,
this module has been implemented in CUDA C programming language to take

203

Chapter 5. Dry etching profile evolution

advantage of the parallel nature of the LS reducing the computational time. Due
to the new features provided by the Nvidia GeForce GTX Titan employed in this
chapter, a new strategy has been developed for updating the surface. Accordingly,
one execution thread per LS mesh point is created, achieving negligible execution
times for the code executed on the GPU in comparison with the operations
executed on the CPU device.

In addition, another new module is implemented to extract the embedded LS
surface and to join it with the rest of the structure, enabling the coupling of
Anetch and the LS module. Hence, a versatile simulator of silicon dioxide etching
in fluorocarbon plasma process that takes advantage of the LS features, such as the
trivial handling of the interaction of several surfaces, is developed. This enables
the simulation of complex processes allowing the application of the simulator to
the design of MEMS.

Several simulated structures are presented, proving the versatility of the developed
simulator. Different scenarios have been simulated, such as the collision of two
etching surfaces due to a high underetching, the formation of a through hole in a
substrate, the capability of stopping the etching process when a new material is
reached, and the formation of high aspect ratio columns. The developed modules
of the program coupled with Anetch models simulated correctly all the tested
scenarios.

Additionally, a comparison with an experimental result is presented. The
experiment consist of the formation of micro trenches in a silicon dioxide substrate.
Despite the side walls of the experimental trenches are straighter than the
simulated ones, both results are very similar and the measurement presented for
both cases are in good agreement, even the surface has been split when reaching
the other material substrate at the bottom. This behaviour emulates correctly the
experimental process, proving the efficacy of the developed silicon dioxide plasma
etching simulator.

Finally, the computational time of each program module is presented, proving that
the LS and the extraction modules represent a small part of the simulation even
when large grids are chosen, due to the parallel CUDA-based implementation.
Also, computational time depends on the number of points of the evolving surface
because, in the SFM, only the nearest points to the surface are updated, contrary
to original LS method that computes every grid point. Moreover, the contribution
of the main parts of the GPU SFM algorithm are analysed, concluding that the
most of the time is taken by the CPU time due to the high performance provided
by the GPU device and the corresponding implementation.

204

Chapter 6

Conclusions and future work

The conclusions of the different parts of this document are compiled in this chapter.
Contributions derived from this research work as well as possible future work are
also presented.

6.1 Conclusions

All the imposed objectives have been accomplished over the different chapters of
the present thesis. These objectives are oriented to improve the simulation of
wet and dry etching processes by means of the LS method. Furthermore, the
optimization and acceleration of the proposed algorithms formed part of these
objectives too.

In chapter 2 the fundamentals of the LS method, the corresponding numerical
schemes, and some optimizations such as the SFM are commented. In addition, the
usage of GPU devices as massive parallel computational platforms is introduced.
Furthermore, the main micromachining processes used in MEMS fabrication are
presented, including a description of wet etching and RIE processes and how they
can be simulated using different approaches like CAs or the LS method.

Chapter 3 addresses one of the objectives, i.e. to improve the visualization of
the results of the CA-based simulators applied to wet etching simulation. Two
implementations were performed: (i) the original LS method which requires
updating all the grid points and the usage of a reinitialization technique to
guarantee numerical stability, and (ii) a SFM-based implementation that updates
only the strictly necessary grid points. After comparing both implementations
results to the corresponding cloud of points of a CCA simulator which applies a

205

Chapter 6. Conclusions and future work

visualization technique which consists in colouring the remaining atoms depending
on their normal vector, the next conclusions are reached:

• The SFM-based implementation achieves more accurate results than original
LS method, while requiring less computational time.

• The proposed reconstruction implementation is able to produce smooth
and continuous surfaces for all the tested structures, independently on the
complexity of these topologies.

• The visualization with the proposed implementation has been clearly
improved in comparison with the currently used technique.

Chapter 4 is focused on the simulation of wet etching process by means of
the LS method. First, the LS is adapted to use directly experimental etch
rates without regarding substrate material or crystallographic structure. The
proposed algorithm is tested and validated, accomplishing one of the imposed
objectives. Then, this SFM-based algorithm is implemented in two parallel
versions: a multi-core CPU and a massively parallel GPU version. These parallel
SFM implementations fulfil another objective. Finally, many experiments with
different conditions (etchant solution, time of etching, material substrate, etc.)
are simulated and the results obtained with the proposed algorithm are compared
to the CCA corresponding ones as well as to those experimental. This thorough
comparison satisfies another objective. Accordingly, the conclusions of this chapter
can be summarized as follows:

• The LS method is capable of simulate accurately all the tested etchant
solutions (including different concentrations and temperatures of KOH,
KOH+IPA, TMAH, TMAH+Triton, and NH4HF2) and substrate materials
(silicon and quartz) without the need for recalibrating the internal
parameters, contrary to the state-of-the-art CCA simulators.

• The proposed SFM implementation produces less noisy results than CCA
approach.

• SFM approach produces similar accuracy as CCA, although for highly
anisotropic etchants, the SFM tends to soften corners and edges.

• When comparing pure sequential implementations of the SFM and the CCA
approach, the latter is up to 2 times faster than the SFM for anisotropic
etchants, whereas the SFM can be up to 10 times faster than CCA for
isotropic etchants due to the simplification that can be applied to the
evolution equation of the LS. In addition, SFM usually requires roughly
4 times less memory.

206

6.1 Conclusions

• The SFM has been satisfactory implemented in two parallel computing
platforms: multi-core CPU and many-core GPU. This enables to obtain
simulation times of just a few seconds.

• GPU implementation of the SFM algorithm is faster than parallel CPU
version.

• When comparing GPU implementations of the SFM and the CCA approach,
the latter is usually slower than the SFM. However this is assigned to
the use of an octree data structure in the CCA method that requires
additional calculations and managements operations in order to reduce
memory allocation.

Finally, in chapter 5 the last objective is accomplished, i.e. to improve current
RIE simulators that use surface explicit representation, by developing a LS-based
tool which takes advantage of implicit representation and enables the possibility
of simulating more complex experiments. Accordingly, a GPU implementation of
the proposed SFM-based algorithm which takes advantage of the new features of
Nvidia devices is developed. This implementation has been perfectly coupled to
Anetch RIE simulator by developing a module that transform the surface from its
implicit LS representation to the corresponding explicit one. The next points can
be conclude:

• The proposed reconstruction algorithm enables the simulation of complex
processes such as through holes and coalescing of multiple surfaces.

• The proposed SFM implementation can be perfectly couple to RIE models
that use explicit surface representation like Anetch.

• The resulting structures obtained with the developed tools are realistic,
contrary to those obtained with explicit representation of Anetch.

• The complete developed simulator is validated by simulating a real
experiment. Both results are in good agreement, although the side walls
obtained in the experiment are straighter.

• Due to modern Nvidia GPU devices, the parts of the parallel SFM algorithm
executed on GPU side are drastically accelerated, such that the LS module
of a whole simulation only takes a small part of total time.

Although the study of this chapter is focused on the silicon dioxide RIE process,
different models could be used in combination to the developed SFM and extraction
modules.

207

Chapter 6. Conclusions and future work

6.2 Contributions

The research work of the present thesis has made possible the next scientific
contributions:

• Article publication in the conference: Mathematical Modelling in Engineer-
ing & Human Behaviour 2012. In this article, the proposed SFM imple-
mentation for surface reconstruction applied to improve the visualization of
the CCA simulation results is presented. Some resulting structures are in-
cluded and compared to CA results. This article was later published in the
International Journal of Computer Mathematics, listed on the JCR with an
impact factor of 0.721 (2013).
C. Montoliu, N. Ferrando, J. Cerdá, and R. J. Colom, Application of the
level set method for the visual representation of continuous cellular auto-
mata oriented to anisotropic wet etching, International Journal of Computer
Mathematics, vol. 91, no. 1, pp. 124-134, 2014.

• Article publication in: Computer Physics Communications, listed on the
JCR with an impact factor of 2.407 (2013). This article describes the first
SFM proposed algorithm for wet etching simulation, including the parallel
CPU and GPU implementations. In addition, simple etching processes are
used as benchmarks to compare the sequential implementations of the SFM
and the CCA approach.
C. Montoliu, N. Ferrando, M. Gosálvez, J. Cerdá, and R. Colom,
Implementation and evaluation of the Level Set method: Towards efficient
and accurate simulation of wet etching for microengineering applications,
Computer Physics Communications, vol. 184, no. 10, pp. 2299-2309, 2013.

• Article publication in: Journal of Micromechanics and Microengineering, lis-
ted on the JCR with an impact factor of 1.725 (2013). In this article, the
GPU implementation capable of simulating complex wet etching processes
was presented. An extensive set of silicon and quartz based experiments were
simulated and compared to a CCA approach as well as to the experimental
results.
C. Montoliu, N. Ferrando, M. Gosálvez, J. Cerdá, and R. Colom, Level
Set implementation for the simulation of anisotropic etching: application to
complex MEMS micromachining, Journal of Micromechanics and Microen-
gineering, vol. 23, no. 7, p. 075017, 2013.

• Article publication in: Journal of Micromechanics and Microengineering,
listed on the JCR with an impact factor of 1.725 (2013). The proposed
LS and extraction modules for RIE simulation are detailed, including a
comparison with an experimental result.
C. Montoliu, E. Baer, J. Cerdá and R. J. Colom, Improvement of Feature-
Scale Profile Evolution in Silicon Dioxide Plasma Etching Simulator by Using

208

6.3 Future work

the Level Set Method, Journal of Micromechanics and Microengineering, vol.
25, no. 6, p. 065013, 2015.

6.3 Future work

Despite the solutions proposed in the present thesis have provided a significant
progress in the field of LS efficient simulation and, specially, applied to
micromachining processes emulation, there is still much room for further research.
Several lines of work can be originated from this research:

• To develop a GPU implementation of the reconstruction algorithm in order
to obtain the improved visualizations of results in very short computational
times. This would make the developed tool a more interesting method to
form part of atomistic simulators, easing the understanding and the analysis
of such structures.

• Despite the amount of memory required by the implemented SFM-based wet
etching simulator is relatively low, the implementation could be improved
by using octrees data structures to allocate only those active surface points
instead of the whole LS grid. This could enable the possibility of using finer
meshes to obtain more accurate results.

• Although a lot of effort has been invested in the presented GPU
implementations, it is possible that the corresponding algorithms could be
further debugged and optimized, thus obtaining lower simulation times.

• A more ambitious project would be to include the possibility of adding
sacrificial layers of different materials on the same simulation, such that,
depending on the selected etchant solution, only the corresponding materials
would be removed. This would enable the simulation of creating even more
complex structures formed by several materials.

• According to this, more experimental effects could be taken into account
by the wet etching simulator, such as the etch-stop effect that produce
highly boron-doped silicon, or the nonideal mask patterns (i.e. the slow
material removal that also suffers the masks when etching the substrate).
The inclusion of such phenomena would produce more realistic results.

• To test the developed modules for profile evolution in RIE simulation to
other etching models. These modules were tested on silicon dioxide Anetch
models, however it must be possible to obtain good results for other etching
models.

• Another different topic to be researched would be to develop a RIE simulator
based on the SFM similar to Anetch but capable of calculating local etch

209

Chapter 6. Conclusions and future work

rates of surface without the need of extracting the implicit surface from the
LS function. If the extraction part of the simulator could be avoid, much
faster simulations would be obtained.

• In addition, would be interesting to develop a GPU implementation of the
etch rate calculation part (i.e. the current Anetch module) in order to
accelerate the simulations.

• Another possible research line would consist in developing new LS algorithms
for the simulation of other different micromachining processes, such as
vapour deposition or DRIE, which are widely used in MEMS fabrication.

All of these proposed lines of work will be addressed in the postdoctoral stage.

210

List of Figures

2.1 One-dimensional closed curve example. The front is determined by
the interface of two regions. Local normal directions of the front
are shown. 8

2.2 One-dimensional closed curve example parametrized by the s
variable. The next position of each particle is pointed by the arrows. 9

2.3 Volume fraction of a closed curve used in the VOF method. The blue
cells represent the interface cells with 0 < f < 1 and the red/white
ones correspond to the cells that are completely inside/outside the
front. 10

2.4 Cosine curve propagating with velocity F = 1. (a) Swallowtail
solution, (b) entropy solution. Figure adapted by author from [25]. 11

2.5 Triple sine curve propagating with velocity F = 1 − εκ. (a)
ε = 0.025, (b) ε = 0.25. Figure adapted by author from [26]. . . . 12

2.6 Cosine curve propagating with velocity F = 1 − εκ. (a) ε = 0.25,
(b) ε = 0. Figure adapted by author from [25]. 13

2.7 Representation of an initial graph ψ(x, t) and the updated one
ψ(x, t+ ∆t) according to the normal velocity F . Figure adapted by
author from [26]. 14

2.8 Implicit representation of a circumference. The signed distance
function is used as implicit function to embed the front. (a)
View from Z axis, the black line represent the circumference front
and the two subdomains separated by it. (b) Three-dimensional
representation of the implicit function. The zero level which
contains the front is shown. 17

211

List of Figures

2.9 Example of a closed curve evolved by the velocity field ~V = −bκ ~N
with b = 1 in the normal direction. Reproduced from [26]. 27

2.10 An interface (blue line) surrounded by a narrow band. Computa-
tional domain is reduced to only those gray grid points in dark area.
. 31

2.11 Comparison of the grid points included in the computational domain
in: (a) the NBM and (b) the SFM. The interface is represented by
a green line and the noncomputed points are shown in white. In (a)
the blue/orange points are the exterior/interior computed points.
Whereas in (b) the green, blue and orange points are those included
in L0, L+1, L−1 SFM lists. 33

2.12 Error comparison of the traditional LS method and the SFM in
two different scenarios: (a) a circle moving under its own curvature
and (b) a circle moving in the direction of the inward normal with
constant speed. Figure adapted by author from [7]. 35

2.13 Historical comparison of theoretical peak performance in terms of:
(a) gigaflops and (b) bandwidth for the fastest available Nvidia
GPUs and Intel CPUs. Reproduced from [92]. 40

2.14 Tesla CUDA microarchitecture schematic of the Nvidia GT200
series [110]. 44

2.15 Workflow of a kernel execution. The kernel consists in performing
the operation r = v1 + v2. 46

2.16 CUDA hierarchical organization of execution threads. 47

2.17 Warp swapping process. This figure shows how the delays produced
when a warp accesses to the global memory are taken in advantage
by other warps. (a) shows the different states of a warp in time
whereas in (b) the flow chart of execution is shown. 48

2.18 Three MEMS structures examples: (a) tuning-fork probe [141], (b)
three-dimensional accelerometer [142] and (c) micro-mirror [143]. 52

2.19 Schematic of a generic current smartphone. In red, the MEMS
devices that can include. Reproduced from [146] 53

2.20 Micromachining deposition methods representation. 56

2.21 Comparison of isotropic and anisotropic wet etching processes. . . 59

212

List of Figures

2.22 Comparison of RIE and DRIE dry etching processes. Two possible
results are shown for the RIE example. In the first one the
physical sputtering has more influence which leads to almost vertical
sidewalls while in the second example, the chemical contribution has
more influence and it results in a more isotropic etching. Notice
that, in the DRIE example, the scallops have been exaggerated to
an easier visualization. 59

2.23 Representation of the steps and methods used for a cantilever
micromachining [166]. 60

2.24 Atomic representation of: (a) basis of silicon and (b) diamond FCC
structure which also corresponds to silicon. Those atoms in red
form part of the basis of the cell, whereas the blue atoms are shared
with other adjacent lattice cells. 63

2.25 Several examples of planes intersecting a cubic cell and the
corresponding Miller indexes. Adapted by author from [184]. . . . 64

2.26 (a) Hexagonal system and the four vectors used for defining Miller-
Bravais indices. The lattice cell is highlighted with orange. (b)
Crystal atomic structure of the quartz lattice cell [186]. 64

2.27 (a) Stereographic projection technique of a (001)-oriented silicon
crystal. (b) Stereographic projections of a (110)- and (100)-oriented
silicon crystals. 66

2.28 (a) Simulation result of a wagon wheel experiment used for
obtaining etch rate distribution of KOH 30 wt% solution at 61.2 ◦C
(reproduced from [187]). (b) Stereographic projection of the etch
rates (reproduced from [191]). 67

2.29 (a) Planes of a quartz crystal. Traditional notation of the different
planes according to geometrical shape is shown. In (b) and (c), a
pre- and post- etch quartz hemispheres are shown (obtained with
Intellietch [197]). The etching process is performed using NH4HF2
as etchant. The final etch rate distribution is presented in (d)
(obtained with Intellietch [197]). 68

2.30 Connections between surface and bulk atoms (blue and white re-
spectively) in atomistic models for silicon orientations (a)〈100〉, 〈110〉
and 〈111〉. Obtained with visualTAPAS [204] and reproduced from
[187]. 69

213

List of Figures

2.31 RIE schematic setup (a) and anisotropic etching produced by
verticality of ions bombardment and the formation of a sidewall
passivation layer (b). 72

3.1 Two results of a CCA-based wet etching simulator proving the
difficulty of visualization: (a) uncoloured cloud of points and (b)
coloured points according to their normal vector. Images obtained
with Intellietch [197]. 78

3.2 Simple two-dimensional example of image reconstruction from
scattered points. The front and the corresponding SDF are shown:
(a) initial front, (b) evolved front adapted to the scattered points. 80

3.3 Comparison of original LS implementation using: (a) first-order
accurate spatial differences and (b) fifth-order WENO scheme. . . 90

3.4 CCA simulation result of a simple accelerometer micromachining
process. Measurements A and B are shown for comparison with LS
reconstructions. 97

3.5 Representation of the effect of mesh resolution in the original LS and
the SFM implementations, by reconstructing a simple accelerometer
with four different resolutions: ∆x

dist min = (a) 1.0, (b) 1.5876, (c)
2.5204, and (d) 4.0. Measurements A and B are shown in each case.
The SFM presents sharper results than original LS implementation. 99

3.6 Representation of the computational time of both implementations
for the mesh sizes of table 3.2. In red are shown the corresponding

∆x
dist min factors. The left graph represents the execution time of the
whole algorithms whereas in the right graph only the loops evolution
(convection and energy) times are considered. 100

3.7 Convex corners results: (a) CCA, (b) original LS, and (c) SFM
implementations. The mask used in the micromachining process is
also shown. 102

3.8 Microneedles results: (a) CCA, (b) original LS, and (c) SFM
implementations. The masks used in the micromachining process
are also shown. 103

3.9 Accelerometer results: (a) CCA, (b) original LS, and (c) SFM
implementations. The mask (upper) and the pattern (lower) used
in the micromachining process are also shown. 105

3.10 Wagon wheel results: (a) CCA, (b) original LS, and (c) SFM. The
mask used in the micromachining process is also shown. 106

214

List of Figures

3.11 Graphs representing the contributions of the different subroutines
used in both LS implementations. 109

4.1 Two-dimensional example of an etching process simulation by means
of the LS method. The front (black line) embedded inside a
SDF corresponds to the substrate surface in contact with the
etchant solution. Several local normal vectors, which are utilized
to determine local etch rates, are represented. Reproduced from
[19]. 116

4.2 Example of an etch rate distribution discretization and arranging
process in matrix form. This matrix can be accessed with spherical
coordinates (θ,Φ). 117

4.3 Interpolation applied to approximate the proper etch rate value for
a generic (θ0,Φ0) values, according to the known etch rate values
P1, P2, P3 and P4. 122

4.4 Simple etching process simulation: (a) initial substrate flat surface
and the applied circular mask, (b) resulting structure after etching
process. 123

4.5 Input parameters panels: (a) substrate and grid size definitions,
time of etching, and wafer and etchant features, (b) mask definition
panel that allows to load a predefined mask. 124

4.6 Two dimensional example of an initial flat surface partially covered
with a mask. Only grid points that are not covered with the mask
are included in the corresponding SFM lists. Orange, green and
blue voxels represent the L−1, L0 and L+1 lists used in the SFM,
respectively, while gray and red voxels are not included in any list
since they do not need to be updated. Positive/negative distances
are associated to the points located below/above the front. Signed
distance values are shown. 127

4.7 Comparison between experimental and simulated etch rate distri-
butions using the LS and CCA methods: (a) KOH 24 wt% at 70 ◦C,
(b) KOH 24 wt% with IPA (1 cm saturated) at 65 ◦C, (c) TMAH
20 wt% at 60 ◦C, (d) an isotropic etchant, (e) KOH 40 wt% at
70 ◦C, (f) TMAH 25 wt% at 80 ◦C, (g) TMAH 25 wt%+ Triton
0.1 v/v at 80 ◦C, and (h) saturated NH4HF2 at 70 ◦C. (a)-(g) Sil-
icon substrate. (h) Quartz substrate. Adapted by author from [19]
and [20]. 133

215

List of Figures

4.8 SFM-simulated evolution of a typical sphere sample of 22 mm of
radius etched in: (a) KOH 40 wt% at 70 ◦C, (b) TMAH 25 wt%
at 80 ◦C, (c) TMAH 25 wt%+ Triton 0.1 v/v at 80 ◦C, (d) an
isotropic etchant, and (e) saturated NH4HF2 at 70 ◦C. (a)-(d)
Silicon substrate. (e) Quartz substrate. The numbers represent the
etch time in minutes. Adapted by author from [20]. 134

4.9 Etching example simulation of a double-sided silicon wafer: (a)
substrate showing the top and the bottom initial surfaces, (b)
resulting structure after the interaction of both surfaces according
to etching process. In both cases, substrate surfaces and applied
masks are represented. 135

4.10 Two dimensional example of initial surfaces of a double-sided wafer
partially covered with a top and a bottom masks. Voxels of both
fronts are included in the same corresponding SFM lists, namely:
orange, green and blue voxels represent the L−1, L0 and L+1 lists,
respectively. Red and gray voxels are not included in any list.
Positive/negative distances are associated to wafer/etchant points. 137

4.11 Workflow diagram of the developed SFM-based algorithm for
complex wet etching processes simulation. Gray boxes are used
for operations that require user interaction, whereas white boxes
are performed automatically by the program. 141

4.12 Parallel CPU SFM algorithm for wet etching simulation. Red
numbers indicate the equivalent step of algorithm 15. 145

4.13 Simple three-dimensional example showing the execution thread
distribution: one thread computes a vertical grid column. Addition-
ally, state aux labels and upper and lower boundaries of each thread
are represented. Green voxels contain the active surface, whereas
blue and orange ones corresponds with substrate and etchant solu-
tion respectively. White voxels are not computed. 146

4.14 Parallel GPU SFM algorithm for wet etching simulation. Red
numbers indicate the equivalent step of algorithm 15. 152

4.15 Representation of the mesh resolution effect on simulated results
for both the SFM and the benchmark CCA method. In (a), the
CTS-CCA implementation is used for comparison, whereas in (b)
the compensated CTS-CCA is used. The minimum grid sizes
required to obtain a maximum discrepancy of (a) 2% and (b)
10% with respect to the measurements at the (a) 512x512 and (b)
800x453 grids are shown, including the resulting structures at this
resolutions. 155

216

List of Figures

4.16 Comparison between experimental and simulated structures etched
in a KOH-based solution: (left columns) applied masks, (center-left)
experiments [293], (center-right) SFM results, (right) CCA results.
Reproduced from [20]. 157

4.17 Comparison between simulated etched structures with an isotropic
etchant solution: (left column) applied masks, (center) SFM results,
(right) CCA results. Reproduced from [20]. 158

4.18 Representation of the execution times obtained with the SFM
sequential Java-based algorithm for the simulation results presented
in Fig. 4.16 and 4.17. The red numbers indicate the contribution
of the main parts of algorithm 15. The gray numbers indicate the
corresponding step of the algorithm. 160

4.19 Comparison between experimental and simulated complex struc-
tures etched in different etchant solutions using silicon and quartz
substrates: (left columns) applied masks, (center-left) experimental
results, (center-right) SFM results, (right) CCA results. Experi-
ments on silicon: (a) AFM tip [284], (b) dual-axis micromechanical
probe [173], (c) three-axes accelerometer [142], (d) suspended mi-
crochannel [195] and (e) microneedles [174]. Experiments on quartz:
(f) and (g) cavity and mesa [294], (h) tuning-fork probe [141] and
(i) grooves [295]. Several length measurements are shown on the
experimental and simulated scenes. Reproduced from [19]. 164

4.20 Representation of the execution times obtained with the GPU SFM
implementation for the simulation results presented in Fig. 4.19.
The red numbers indicate the contribution of the main parts of
algorithm 15. The gray numbers indicate the corresponding step of
the algorithm. The part labelled as Vis. tran. refers to the GPU to
CPU transfers of the local maxima of the viscosity factors of every
execution thread. The examples are grouped in two graphs with
different time scales for a better visualization. 172

5.1 Anetch unrealistic simulation results. Because of surface explicit
parametrization, (a) a through hole cannot be simulated since there
is always remaining material at the bottom of the hole, (b) the
interaction of two surfaces is not properly emulated, and (c) an
unrealistic artefact is created during the simulation. 178

5.2 Workflow diagram of the general simulator. The red boxes are the
three modules of the simulator, whereas white boxes represent the
corresponding result of each module. 179

217

List of Figures

5.3 Underlying mechanism as implemented by Anetch for the oxide
etching simulation. 179

5.4 Workflow diagram of Anetch silicon dioxide simulator. This
corresponds to the first module of the whole program. 181

5.5 Two-dimensional representation of a simple surface evolution
example with the LS method: (a) initial front guess, (b) final state
of the front adapted to the P points. The voxel colors represent
the value of φ. Anetch takes the initial front and produces the
unconnected P points, then, the this front is evolved by means of
the LS method up to the P points. 182

5.6 Simple structure formed by two elements: photoresist (dark red)
and silicon dioxide (pink). The corresponding simplified DF-ISE
file is presented. The variables in parentheses indicate the number
of the corresponding item (vertices, edges, etc.). 183

5.7 Evolution of the surface energy (blue) and the number of SFM L0
list points (green) as the surface is evolved with (5.2). The left
graph corresponds to the first iteration of the whole etching process
whereas the right-side graph is the eleventh iteration. 186

5.8 Simple three-dimensional example showing the execution thread
distribution used for the SFM evolution profile module. Each
execution thread is in charge of computing one grid point. Some
intermediate voxels have been removed for a better visualization. 188

5.9 Parallel GPU SFM algorithm of the profile evolution module for RIE
simulation. Red number indicate the equivalent step of algorithm
28. 195

5.10 Example of the extraction process: (a) faces and vertices generation,
(b) the side and bottom walls are added to the etched surface, (c)
the etched surface is combined with the mask region, and (d) the
rest of the materials are added to the final structure. 196

5.11 RIE simulation results containing a three-dimensional view of the
final structure, a cross section and the used mask patterns. 199

5.12 Simulation results containing a three-dimensional view of the final
structure, a cross section representation, and the used mask patterns.201

218

List of Figures

5.13 Representation of the execution times obtained with the GPU
SFM implementation of the evolution profile module of the RIE
simulator. The red numbers indicate the contribution of the
main parts of algorithm 28. The gray numbers indicate the
corresponding step of the algorithm. All the values are obtained
for the last iteration of the simulation process. The contribution of
the evolution is not represented since represents less than 0.1% of
the simulation time. 203

219

List of Tables

2.1 Corresponding SFM states and lists of grid points depending on
their distance values. 34

2.2 Main differences between Tesla and Kepler CUDA microarchitec-
tures. 50

3.1 Numerical techniques and values used in both LS and SFM
developed implementations (algorithms 11 and 13 respectively). . 96

3.2 Reconstruction parameters and results, including measurements of
the simple accelerometer used for visualizing the effect of mesh
resolution. For each case, both the original LS (upper rows) and
the SFM implementation (lower rows) results are presented. . . . 98

3.3 Compilation of reconstruction examples parameters and measure-
ments. For each example, measurements of both implementations,
original LS (upper row) and SFM (lower row), are presented. . . . 108

4.1 Main variables utilized in wet etching SFM implementation. The
variables with size grid are three-dimensional matrices of numx ·
numy · numz points. On the other hand, surface size is used for
two-dimensional matrices of numx · numy entries. 129

4.2 Main variables allocated in GPU device and utilized in the SFM
parallel GPU implementation. The variables with size grid are
three-dimensional matrices of numx · numy · numz size. On the
other hand, surface size corresponds to a two-dimensional matrix
of numx · numy entries. 148

4.3 Details of the simulated examples for the comparison between
parallel CPU and GPU implementations of the SFM. 158

221

List of Tables

4.4 Experimental and simulation details for the structures shown in Fig.
4.16 (anisotropic etchants) and 4.17 (isotropic etchants). 161

4.5 Experimental conditions and simulation parameters used in Fig.
4.19. 165

5.1 Main variables allocated in GPU device according to the SFM
parallel GPU implementation for RIE profile evolution. All the
variables have grid size, i.e. they are three-dimensional matrices of
numx · numy · numz entries. 190

5.2 Input parameters configurations: relative field values of fluxes of
the different species, neutrals and ions. 199

5.3 Parameters of the simulated RIE processes. 200

222

List of Algorithms and Procedures

1 Upwind differencing technique . 23

2 Simplified algorithm of the NBM 31

3 Initialization . 35

4 Evolution . 35

5 Lists update . 36

6 Transfer from auxiliary lists . 36

7 Evolution of exterior lists . 37

8 Mesh generation algorithm . 85

9 Propagating algorithm for matrix distance calculation. 86

10 Determination of initial surface. 88

11 Original LS image reconstruction implementation. 92

12 Determination of implicit SDF φ in the SFM implementation. . . . 93

13 SFM implementation for surface reconstruction. 94

14 Simple initial top surface determination. 126

15 SFM-based algorithm for the simulation of simple wet etching
process. 128

16 Determination of spherical initial surface. 130

17 Calculation of sphere radii. 131
223

List of Algorithms and Procedures

18 Initial bottom surface determination. 136

19 Grid point status determination for mask/unmask operations. . . . 138

20 Operation of applying a mask. 139

21 Operation of removing a pattern. 140

22 Operation of removing a mask. 140

23 Kernel 1 of GPU SFM implementation. It corresponds to step 7 of
algorithm 15. 149

24 Kernel 2 of GPU SFM implementation. It corresponds to step 13 of
algorithm 15. 149

25 Kernel 3 of GPU SFM implementation. It corresponds to step 17 of
algorithm 15. 150

26 Kernel 4 of GPU SFM implementation. It corresponds to step 18 of
algorithm 15. 151

27 Kernel 5 of GPU SFM implementation. It corresponds to step 19 of
algorithm 15. 151

28 SFM implementation for profile evolution module. 187

29 Kernel 1 of GPU SFM implementation of profile evolution module.
It corresponds to step 7 of algorithm 28. 190

30 Kernel 2 of GPU SFM implementation of profile evolution module.
Determination of the SDF φ in the first iteration of the GPU
evolution profile module implementation. It corresponds to step 9
of algorithm 28. 191

31 Kernel 3 of GPU SFM implementation of profile evolution module.
It corresponds to step 10 of algorithm 28. 192

32 Kernel 4 of GPU SFM implementation of profile evolution module.
It corresponds to steps 12 and 13 of algorithm 28. 193

33 Kernel 5 of GPU SFM implementation of profile evolution module.
It corresponds to steps 14-16 of algorithm 28. 193

34 Kernel 6 of GPU SFM implementation of profile evolution module.
It corresponds to step 17 of algorithm 28. 193

224

List of Algorithms and Procedures

35 Kernel 7 of GPU SFM implementation of profile evolution module.
It corresponds to step 18 of algorithm 28. 194

36 Kernel 8 of GPU SFM implementation of profile evolution module.
It corresponds to step 19 of algorithm 28. 194

37 Implementation of the extraction module. 198

225

Bibliography

[1] J. E. P. Jr. and E. G. Puckett, “Second-order accurate volume-of-fluid
algorithms for tracking material interfaces,” Journal of Computational
Physics, vol. 199, no. 2, pp. 465 – 502, 2004.

[2] Y. Renardy and M. Renardy, “Prost: A parabolic reconstruction of surface
tension for the volume-of-fluid method,” Journal of Computational Physics,
vol. 183, no. 2, pp. 400 – 421, 2002.

[3] S. J. Cummins, M. M. Francois, and D. B. Kothe, “Estimating curvature
from volume fractions,” Computers & Structures, vol. 83, no. 6, pp. 425
– 434, 2005. Frontier of Multi-Phase Flow Analysis and Fluid-Structure
Frontier of Multi-Phase Flow Analysis and Fluid-Structure.

[4] G. Weymouth and D. K.-P. Yue, “Conservative volume-of-fluid method
for free-surface simulations on cartesian-grids,” Journal of Computational
Physics, vol. 229, no. 8, pp. 2853 – 2865, 2010.

[5] S. Osher and J. A. Sethian, “Fronts propagating with curvature dependent
speed: Algorithms based on hamilton-jacobi formulations,” Journal of
Computational Physics, vol. 79, pp. 12–49, 1988.

[6] D. Adalsteinsson and J. A. Sethian, “A fast level set method for propagating
interfaces,” Journal of Computational Physics, vol. 118, no. 2, pp. 269–277,
1995.

[7] R. T. Whitaker, “A level-set approach to 3D reconstruction from range
data,” International Journal of Computer Vision, vol. 29, pp. 203–231, 1998.

[8] H. Terashima and G. Tryggvason, “A front-tracking/ghost-fluid method for
fluid interfaces in compressible flows,” Journal of Computational Physics,
vol. 228, no. 11, pp. 4012 – 4037, 2009.

[9] T. V. Vu, G. Tryggvason, S. Homma, J. C. Wells, and H. Takakura, “A front-
tracking method for three-phase computations of solidification with volume

227

Bibliography

change,” JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, vol. 46,
no. 11, pp. 726–731, 2013.

[10] N. G. Deen and J. Kuipers, “Direct numerical simulation of wall-to liquid
heat transfer in dispersed gas-liquid two-phase flow using a volume of fluid
approach,” Chemical Engineering Science, vol. 102, no. 0, pp. 268–282, 2013.

[11] J. López-Herrera, S. Popinet, and M. Herrada, “A charge-conservative
approach for simulating electrohydrodynamic two-phase flows using volume-
of-fluid,” Journal of Computational Physics, vol. 230, no. 5, pp. 1939–1955,
2011.

[12] M. Roberts, J. Packer, M. C. Sousa, and J. R. Mitchell, “A work-efficient
gpu algorithm for level set segmentation,” in Proceedings of the Conference
on High Performance Graphics, HPG ’10, pp. 123–132, Eurographics
Association, 2010.

[13] L. Wang and C. Pan, “Robust level set image segmentation via a local
correntropy-based k-means clustering,” Pattern Recognition, vol. 47, no. 5,
pp. 1917 – 1925, 2014.

[14] M. BURGER and S. J. OSHER, “A survey on level set methods for inverse
problems and optimal design,” European Journal of Applied Mathematics,
pp. 263–301, 4 2005.

[15] X.-C. Tai and H. Li, “A piecewise constant level set method for elliptic
inverse problems,” Applied Numerical Mathematics, vol. 57, no. 5-7, pp. 686–
696, 2007. Special Issue for the International Conference on Scientific
Computing.

[16] D. Adalsteinsson and J. Sethian, “A level set approach to a unified model
for etching, deposition, and lithography i: Algorithms and two-dimensional
simulations,” Journal of Computational Physics, vol. 120, no. 1, pp. 128–144,
1995.

[17] D. Adalsteinsson and J. Sethian, “A level set approach to a unified model
for etching, deposition, and lithography ii: Three-dimensional simulations,”
Journal of Computational Physics, vol. 122, no. 2, pp. 348–366, 1995.

[18] D. Adalsteinsson and J. A. Sethian, “A level set approach to a unified model
for etching, deposition, and lithography iii: Redeposition, reemission, surface
diffusion, and complex simulations,” Journal of Computational Physics,
vol. 138, no. 1, pp. 193–223, 1997.

[19] C. Montoliu, N. Ferrando, M. A. Gosálvez, J. Cerdá, and R. J. Colom,
“Level set implementation for the simulation of anisotropic etching:
application to complex mems micromachining,” Journal of Micromechanics
and Microengineering, vol. 23, no. 7, p. 075017, 2013.

228

Bibliography

[20] C. Montoliu, N. Ferrando, M. Gosálvez, J. Cerdá, and R. Colom,
“Implementation and evaluation of the level set method: Towards efficient
and accurate simulation of wet etching for microengineering applications,”
Computer Physics Communications, vol. 184, no. 10, pp. 2299–2309, 2013.

[21] H.-B. Kim, G. Hobler, A. Steiger, A. Lugstein, and E. Bertagnolli, “Full
three-dimensional simulation of focused ion beam micro/nanofabrication,”
Nanotechnology, vol. 18, no. 24, p. 245303, 2007.

[22] Y. Li, D. Lee, C. Lee, J. Lee, S. Lee, J. Kim, S. Ahn, and J. Kim, “Surface
embedding narrow volume reconstruction from unorganized points,” Com-
puter Vision and Image Understanding, vol. 121, no. 0, pp. 100–107, 2014.

[23] C. Montoliu, N. Ferrando, J. Cerdá, and R. J. Colom, “Application of the
level set method for the visual representation of continuous cellular automata
oriented to anisotropic wet etching,” International Journal of Computer
Mathematics, vol. 91, no. 1, pp. 124–134, 2014.

[24] J. A. Sethian, “Curvature and the evolution of fronts,” Communication of
Mathematical Physics, vol. 101, no. 4, pp. 487–499, 1985.

[25] J. A. Sethian, “Evolution, implementation, and application of level set
and fast marching methods for advancing fronts,” Journal of computational
physics, vol. 169, pp. 503–555, 2001.

[26] J. Sethian, Level Set Methods and Fast Marching Methods: Evolving Inter-
faces in Computational Geometry, Fluid Mechanics, Computer Vision, and
Materials Science. Cambridge Monographs on Applied and Computational
Mathematics, Cambridge University Press, 1999.

[27] J. A. Sethian, “Numerical methods for propagating fronts,” Variational
Methods for Free Surface Interfaces, edited by P. Concus and R. Finn
.Springer-Verlag, New York, 1987.

[28] M. G. Crandall and P. L. Lions, “Viscosity solutions of hamilton-jacobi
equations,” Trans. Armer. Math. Soc., vol. 277, pp. 1–42, 1983.

[29] M. G. Crandall, L. C. Evans, and P. L. Lions, “Some properties of viscosity
solutions of hamilton-jacobi equations,” Trans. Armer. Math. Soc, vol. 282,
no. 2, 1984.

[30] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, “Uniformly
high order accurate essentially non-oscillatory schemes, III,” Journal of
Computational Physics, vol. 131, no. 1, pp. 3–47, 1997.

[31] S. Osher and C.-W. Shu, “High order essentially non-oscillatory schemes for
hamilton-jacobi equations,” SIAM J. Numer. Anal., vol. 28, pp. 902–921,
1991.

229

Bibliography

[32] G.-S. Jian and D. Peng, “Weighted ENO schemes for hamilton-jacobi
equations,” SIAM Journal on Scientific Computing, vol. 21, pp. 2126–2143,
1997.

[33] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces.
Applied Mathematical Sciences, Springer, 2003.

[34] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d
surface construction algorithm,” Computer Graphics, vol. 21, no. 4, pp. 163–
169, 1987.

[35] P. Rosenthal and L. Linsen, “Direct isosurface extraction from scattered
volume data,” Eurographics/ IEEE-VGTC Symposium on Visualization,
pp. 99–106, 2006.

[36] W. Mulder and S. Osher, “Computing interface motion in compressible gas
dynamics,” Journal of Computational Physics, vol. 100, pp. 209–228, 1992.

[37] J. Gomes and O. Faugeras, “Reconciling distance functions and level
sets,” Journal of Visual Communication and Image Representation, vol. 11,
pp. 209–223, 1999.

[38] D. L. Chopp, “Computing minimal surfaces via level set curvature flow,”
Journal of Computational physics, vol. 106, pp. 77–91, 1993.

[39] Y.-G. Chen, Y. Giga, and S. Goto, “Uniqueness and existence of viscosity
solutions of generalized mean curvature flow equations,” Journal Differential
geometry, vol. 33, pp. 749–786, 1991.

[40] L. C. Evans and J. Spruck, “Motion of level sets by mean curvature i,”
Journal Differential geometry, vol. 33, pp. 635–681, 1991.

[41] B. Merriman, J. K. Bence, and S. J. Osher, “Motion of multiple junctions: A
level set approach,” Journal of Computational Physics, vol. 112, pp. 334–363,
1994.

[42] M. Sussman, P. Smereka, and S. Osher, “A level set approach for computing
solutions to incompressible two-phase flow,” Journal of Computational
Physics, vol. 114, pp. 146–159, 1994.

[43] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, “A pde-based
fast local level set method,” Journal of Computational Physics, vol. 155,
pp. 410–438, 1999.

[44] C. Basting and D. Kuzmin, “A minimization-based finite element formula-
tion for interface-preserving level set reinitialization,” Computing, vol. 95,
no. 1, pp. 13–25, 2013.

230

Bibliography

[45] G. D. Rocca and G. Blanquart, “Level set reinitialization at a contact line,”
Journal of Computational Physics, vol. 265, no. 0, pp. 34–49, 2014.

[46] D. Hartmann, M. Meinke, and W. Schröder, “The constrained reinitializ-
ation equation for level set methods,” Journal of Computational Physics,
vol. 229, no. 5, pp. 1514 – 1535, 2010.

[47] J. A. Sethian, “A fast marching level set method for monotonically advancing
fronts,” Proceedings of the National Academy of Sciences, vol. 93, no. 4,
pp. 1591–1595, 1996.

[48] D. Chopp, “Another look at velocity extensions in the level set method,”
SIAM Journal on Scientific Computing, vol. 31, no. 5, pp. 3255–3273, 2009.

[49] S. Bak, J. McLaughlin, and D. Renzi, “Some improvements for the fast
sweeping method,” SIAM Journal on Scientific Computing, vol. 32, no. 5,
pp. 2853–2874, 2010.

[50] R. Courant, K. Friedrichs, and H. Lewy, “Über die partiellen differ-
enzengleichungen der mathematischen physik,” Mathematische Annalen,
vol. 100, pp. 32–74, 1928.

[51] C.-W. Shu and S. Osher, “Efficient implementation of essentially non-
oscillatory shock-capturing schemes,” Journal of Computational Physics,
vol. 77, no. 2, pp. 439–471, 1988.

[52] C.-W. Shu and S. Osher, “Efficient implementation of essentially non-
oscillatory shock-capturing schemes, II,” Journal of Computational Physics,
vol. 83, no. 1, pp. 32 – 78, 1989.

[53] G.-S. Jiang and C.-W. Shu, “Efficient implementation of weighted ENO
schemes,” Journal of Computational Physics, vol. 126, no. 1, pp. 202 – 228,
1996.

[54] C.-W. Shu, “Essentially non-oscillatory and weighted essentially non-
oscillatory schemes for hyperbolic conservation laws,” in Advanced Numerical
Approximation of Nonlinear Hyperbolic Equations (A. Quarteroni, ed.),
vol. 1697 of Lecture Notes in Mathematics, pp. 325–432, Springer Berlin
Heidelberg, 1998.

[55] X. Zhang, Y. Liu, and C. Shu, “Maximum-principle-satisfying high order
finite volume weighted essentially nonoscillatory schemes for convection-
diffusion equations,” SIAM Journal on Scientific Computing, vol. 34, no. 2,
pp. A627–A658, 2012.

[56] W.-S. Don and R. Borges, “Accuracy of the weighted essentially non-
oscillatory conservative finite difference schemes,” Journal of Computational
Physics, vol. 250, no. 0, pp. 347–372, 2013.

231

Bibliography

[57] X. Zhong and C.-W. Shu, “A simple weighted essentially nonoscillatory
limiter for Runge-Kutta discontinuous Galerkin methods,” Journal of
Computational Physics, vol. 232, no. 1, pp. 397–415, 2013.

[58] M. G. Crandall and P. L. Lions, “Two approximations of solutions of
hamilton-jacobi equations,” Mathematics of Computation, vol. 43, no. 167,
pp. 1–19, 1984.

[59] C. Y. Kao, S. Osher, and J. Qian, “Lax-friedrichs sweeping scheme for static
hamilton-jacobi equations,” Journal of Computational Physics, vol. 196,
no. 1, pp. 367–391, 2004.

[60] H. Jiang and W. Tong, “New lax-friedrichs scheme for convective-diffusion
equation,” in Information Computing and Applications (B. Liu, M. Ma, and
J. Chang, eds.), vol. 7473 of Lecture Notes in Computer Science, pp. 269–276,
Springer Berlin Heidelberg, 2012.

[61] W. Chen, C.-S. Chou, and C.-Y. Kao, “Lax-friedrichs fast sweeping methods
for steady state problems for hyperbolic conservation laws,” Journal of
Computational Physics, vol. 234, no. 0, pp. 452–471, 2013.

[62] C. Y. Kao, S. Osher, and J. Qian, “Lax-friedrichs sweeping scheme for static
hamilton-jacobi equations,” Journal of Computational Physics, vol. 196,
no. 1, pp. 367–391, 2004.

[63] S. K. Godunov, “A difference method for numerical calculation of discontinu-
ous solutions of the equations of hydrodynamics,” Matematicheskii Sbornik,
vol. 89, no. 3, pp. 271–306, 1959.

[64] M. Gage, “Curve shortening makes convex curves circular,” Inventiones
mathematicae, vol. 76, no. 2, pp. 357–364, 1984.

[65] M. E. Gage and R. S. Hamilton, “The heat equation shrinking convex plane
curves,” Journal of Differential Geometry, vol. 23, pp. 69–96, 1986.

[66] M. A. Grayson, “The heat equation shrinks embedded plane curves to round
points,” Journal Differential geometry, vol. 26, pp. 285–314, 1987.

[67] J. Sethian, An Analysis of Flame Propagation. University of California,
Berkeley, 1982.

[68] C. Lee, J. Dolbow, and P. J. Mucha, “A narrow-band gradient-augmented
level set method for multiphase incompressible flow,” Journal of Computa-
tional Physics, vol. 273, no. 0, pp. 12–37, 2014.

[69] B. Yan, C. Li, M. Xie, and C. Davatzikos, “Narrow band region-
scalable fitting model for image segmentation in the presence of intensity
inhomogeneities,” in Biomedical Imaging: From Nano to Macro, 2011 IEEE
International Symposium on, pp. 1994–1997, March 2011.

232

Bibliography

[70] C. Li, C. Xu, C. Gui, and M. Fox, “Distance regularized level set
evolution and its application to image segmentation,” Image Processing,
IEEE Transactions on, vol. 19, pp. 3243–3254, Dec 2010.

[71] Y. Shi and W. C. Karl, “A fast level set method without solving PDEs,” in
ICASSP (2), pp. 97–100, 2005.

[72] J. Malcolm, Y. Rathi, A. Yezzi, and A. Tannenbaum, “Fast approximate
surface evolution in arbitrary dimension,” in Medical imaging, pp. 69144C–
69144C, International Society for Optics and Photonics, 2008.

[73] Y. Shi and W. Karl, “A real-time algorithm for the approximation of level-
set-based curve evolution,” Image Processing, IEEE Transactions on, vol. 17,
pp. 645–656, May 2008.

[74] J. Strain, “Tree methods for moving interfaces,” Journal of Computational
Physics, vol. 151, no. 2, pp. 616–648, 1999.

[75] F. Losasso, F. Gibou, and R. Fedkiw, “Simulating water and smoke with
an octree data structure,” ACM Trans. Graph., vol. 23, pp. 457–462, Aug.
2004.

[76] C. Min and F. Gibou, “A second order accurate level set method on non-
graded adaptive cartesian grids,” Journal of Computational Physics, vol. 225,
no. 1, pp. 300 – 321, 2007.

[77] S. Laine and T. Karras, “Efficient sparse voxel octrees,” Visualization and
Computer Graphics, IEEE Transactions on, vol. 17, pp. 1048–1059, Aug
2011.

[78] J. Papac, A. Helgadottir, C. Ratsch, and F. Gibou, “A level set approach
for diffusion and stefan-type problems with robin boundary conditions
on quadtree/octree adaptive cartesian grids,” Journal of Computational
Physics, vol. 233, no. 0, pp. 241 – 261, 2013.

[79] B. Houston, M. B. Nielsen, C. Batty, O. Nilsson, and K. Museth,
“Hierarchical rle level set: A compact and versatile deformable surface
representation,” ACM Trans. Graph., vol. 25, pp. 151–175, Jan. 2006.

[80] R. E. Bridson, Computational aspects of dynamic surfaces. PhD thesis,
Stanford university, 2003.

[81] E. Brun, A. Guittet, and F. Gibou, “A local level-set method using a hash
table data structure,” Journal of Computational Physics, vol. 231, no. 6,
pp. 2528 – 2536, 2012.

[82] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips, “Gpu
computing,” Proceedings of the IEEE, vol. 96, pp. 879–899, May 2008.

233

Bibliography

[83] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. KrÃ 1
4ger, A. E.

Lefohn, and T. J. Purcell, “A survey of general-purpose computation on
graphics hardware,” Computer Graphics Forum, vol. 26, no. 1, pp. 80–113,
2007.

[84] “Nvidia GeForce GTX Titan Z datasheet.” http://www.geforce.com/
hardware/desktop-gpus/geforce-gtx-titan-z/specifications.

[85] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and
O. O. Storaasli, “State-of-the-art in heterogeneous computing,” Scientific
Programming, vol. 18, no. 1, pp. 1–33, 2010.

[86] S. Aluru and N. Jammula, “A review of hardware acceleration for
computational genomics,” Design Test, IEEE, vol. 31, pp. 19–30, Feb 2014.

[87] A. R. Brodtkorb, T. R. Hagen, and M. L. Sætra, “Graphics processing unit
(GPU) programming strategies and trends in GPU computing,” Journal
of Parallel and Distributed Computing, vol. 73, no. 1, pp. 4–13, 2013.
Metaheuristics on GPUs.

[88] D. Chen and D. Singh, “Fractal video compression in opencl: An evaluation
of cpus, gpus, and fpgas as acceleration platforms,” in Design Automation
Conference (ASP-DAC), 2013 18th Asia and South Pacific, pp. 297–304, Jan
2013.

[89] J. Fowers, G. Brown, P. Cooke, and G. Stitt, “A performance and
energy comparison of FPGAs, GPUs, and multicores for sliding-window
applications,” in Proceedings of the ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, FPGA ’12, (New York, NY, USA),
pp. 47–56, ACM, 2012.

[90] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, K. Keutzer, D. A.
Patterson, W. L. Plishker, J. Shalf, S. W. Williams, K. A. Yelick,
M. J. Demmel, W. Plishker, J. Shalf, S. Williams, and K. Yelick, “The
landscape of parallel computing research: A view from berkeley,” tech. rep.,
TECHNICAL REPORT, UC BERKELEY, 2006.

[91] “Intel Xeon E7 datasheet.” http://ark.intel.com/es-es/products/
75258/Intel-Xeon-Processor-E7-8890-v2-37_5M-Cache-2_80-GHz.

[92] “Nvidia CUDA C programming guide.” http://docs.nvidia.com/cuda/
pdf/CUDA_C_Programming_Guide.pdf.

[93] A. Meade, J. Buckley, and J. J. Collins, “Challenges of evolving sequential
to parallel code: An exploratory review,” in Proceedings of the 12th
International Workshop on Principles of Software Evolution and the 7th
Annual ERCIM Workshop on Software Evolution, IWPSE-EVOL ’11, (New
York, NY, USA), pp. 1–5, ACM, 2011.

234

http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-z/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-z/specifications
http://ark.intel.com/es-es/products/75258/Intel-Xeon-Processor-E7-8890-v2-37_5M-Cache-2_80-GHz
http://ark.intel.com/es-es/products/75258/Intel-Xeon-Processor-E7-8890-v2-37_5M-Cache-2_80-GHz
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

Bibliography

[94] G. M. Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” in Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, AFIPS ’67 (Spring), (New York, NY, USA),
pp. 483–485, ACM, 1967.

[95] D. B. Kirk and W. H. Wen-mei, Programming massively parallel processors:
a hands-on approach. Newnes, 2012.

[96] J. Jin, S. Turner, B.-S. Lee, J. Zhong, and B. He, “Simulation of information
propagation over complex networks: Performance studies on multi-gpu,”
in Distributed Simulation and Real Time Applications (DS-RT), 2013
IEEE/ACM 17th International Symposium on, pp. 179–188, Oct 2013.

[97] B. Block, M. Lukác̆ová-Medvid’ová, P. Virnau, and L. Yelash, “Accelerated
gpu simulation of compressible flow by the discontinuous evolution galerkin
method,” The European Physical Journal Special Topics, vol. 210, no. 1,
pp. 119–132, 2012.

[98] P. Berczik, R. Spurzem, S. Zhong, L. Wang, K. Nitadori, T. Hamada,
and A. Veles, “Up to 700k gpu cores, kepler, and the exascale future
for simulations of star clusters around black holes,” in Supercomputing
(J. Kunkel, T. Ludwig, and H. Meuer, eds.), vol. 7905 of Lecture Notes
in Computer Science, pp. 13–25, Springer Berlin Heidelberg, 2013.

[99] Y. Zhuge, Y. Cao, J. K. Udupa, and R. W. Miller, “Parallel fuzzy connected
image segmentation on gpu,” Medical Physics, vol. 38, no. 7, pp. 4365–4371,
2011.

[100] B. Fulkerson and S. Soatto, “Really quick shift: Image segmentation on
a gpu,” in Trends and Topics in Computer Vision (K. Kutulakos, ed.),
vol. 6554 of Lecture Notes in Computer Science, pp. 350–358, Springer Berlin
Heidelberg, 2012.

[101] C. Kauffmann and N. Piché, “Seeded nd medical image segmentation by
cellular automaton on gpu,” International Journal of Computer Assisted
Radiology and Surgery, vol. 5, no. 3, pp. 251–262, 2010.

[102] N. Ferrando, M. Gosálvez, J. Cerdá, R. Gadea, and K. Sato, “Octree-based,
GPU implementation of a continuous cellular automaton for the simulation
of complex, evolving surfaces,” Computer Physics Communications, vol. 182,
no. 3, pp. 628–640, 2011.

[103] M. Macedonia, “The gpu enters computing’s mainstream,” Computer,
vol. 36, pp. 106–108, Oct. 2003.

[104] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and
P. Hanrahan, “Brook for gpus: stream computing on graphics hardware,” in
ACM Transactions on Graphics (TOG), vol. 23, pp. 777–786, ACM, 2004.

235

Bibliography

[105] M. McCool, S. Du Toit, T. Popa, B. Chan, and K. Moule, “Shader algebra,”
ACM Transactions on Graphics, vol. 23, pp. 787–795, Aug. 2004.

[106] M. D. McCool, “Data-parallel programming on the Cell BE and the
GPU using the RapidMind development platform,” in GSPx Multicore
Applications Conference, vol. 9, 2006.

[107] J. Stone, D. Gohara, and G. Shi, “OpenCL: a parallel programming standard
for heterogeneous computing systems,” Computing in Science Engineering,
vol. 12, pp. 66–73, May 2010.

[108] A. Shan, “Heterogeneous processing: a strategy for augmenting moore’s
law,” Linux Journal, vol. 2006, no. 142, p. 7, 2006.

[109] D. P. Singh, T. S. Czajkowski, and A. Ling, “Harnessing the power of
fpgas using altera’s opencl compiler,” in Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, FPGA ’13,
(New York, NY, USA), pp. 5–6, ACM, 2013.

[110] “Technical brief NVIDIA GeForce GTX 200 GPU architectural over-
view.” http://www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_
Technical_Brief.pdf.

[111] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos,
“Demystifying gpu microarchitecture through microbenchmarking,” in Per-
formance Analysis of Systems Software (ISPASS), 2010 IEEE International
Symposium on, pp. 235–246, March 2010.

[112] “NVIDIA’s next generation CUDA compute architecture:
Kepler gk110.” http://www.nvidia.com/content/PDF/kepler/
NVIDIA-kepler-GK110-Architecture-Whitepaper.pdf.

[113] “NVIDIA GeForce GTX 560 GPU specifications.” http://www.nvidia.es/
object/product-geforce-gtx-560-es.html.

[114] “NVIDIA GeForce GTX 660 GPU specifications.” http://la.nvidia.com/
object/geforce-gtx-660-la.html#pdpContent=2.

[115] G. Pagès and B. Wilbertz, “Gpgpus in computational finance: massive par-
allel computing for american style options,” Concurrency and Computation:
Practice and Experience, vol. 24, no. 8, pp. 837–848, 2012.

[116] A. Gaikwad and I. Toke, “Parallel iterative linear solvers on gpu: A financial
engineering case,” in Parallel, Distributed and Network-Based Processing
(PDP), 2010 18th Euromicro International Conference on, pp. 607–614, Feb
2010.

236

http://www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf
http://www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.es/object/product-geforce-gtx-560-es.html
http://www.nvidia.es/object/product-geforce-gtx-560-es.html
http://la.nvidia.com/object/geforce-gtx-660-la.html#pdpContent=2
http://la.nvidia.com/object/geforce-gtx-660-la.html#pdpContent=2

Bibliography

[117] H.-V. Dang, B. Schmidt, A. Hildebrandt, and A. Hildebrandt, “Parallelized
clustering of protein structures on cuda-enabled gpus,” in Parallel, Distrib-
uted and Network-Based Processing (PDP), 2014 22nd Euromicro Interna-
tional Conference on, pp. 1–8, Feb 2014.

[118] L. Jian, C. Wang, Y. Liu, S. Liang, W. Yi, and Y. Shi, “Parallel data
mining techniques on graphics processing unit with compute unified device
architecture (cuda),” The Journal of Supercomputing, vol. 64, no. 3, pp. 942–
967, 2013.

[119] A. Paz and A. Plaza, “GPU implementation of target and anomaly detection
algorithms for remotely sensed hyperspectral image analysis,” vol. 7810,
pp. 78100R–78100R–10, 2010.

[120] S. Fehlmann, D. Booth, P. Janney, C. Pontecorvo, P. Aquilina, T. Scoleri,
N. Redding, and R. Christie, “Application of detection and recognition
algorithms to persistent wide area surveillance,” in Digital Image Computing:
Techniques and Applications (DICTA), 2013 International Conference on,
pp. 1–8, Nov 2013.

[121] C. E, J. B, and O. K, “Method of preparing electrostatic shutter mosaics,”
1956. US Patent 2,749,598.

[122] Y.-C. Tai, Introduction to MEMS, in Microsystems and Nanotechnology,
Chapter 6, Book Ed. Zhaoying Zhou, Zhonglin Wang and Liwei Lin. Springer
Berlin Heidelberg, 2012.

[123] O. Solgaard, A. Godil, R. Howe, L. Lee, Y.-A. Peter, and H. Zappe,
“Optical MEMS: From micromirrors to complex systems,” Journal of
Microelectromechanical Systems, vol. 23, pp. 517–538, June 2014.

[124] S.-J. Park, I. Reines, C. Patel, and G. Rebeiz, “High-Q RF-MEMS 4-6 GHz
tunable evanescent-mode cavity filter,” Microwave Theory and Techniques,
IEEE Transactions on, vol. 58, pp. 381–389, Feb 2010.

[125] V. Sekar, M. Armendariz, and K. Entesari, “A 1.2-1.6 GHz substrate-
integrated-waveguide RF MEMS tunable filter,” Microwave Theory and
Techniques, IEEE Transactions on, vol. 59, pp. 866–876, April 2011.

[126] A. Morris, S. Caporal Del Barrio, J. Shin, V. Steel, and G. Pedersen,
“Tunable antennas for mobile devices: Achieving high performance in
compelling form factors,” in Microwave Symposium (IMS), 2014 IEEE
MTT-S International, pp. 1–4, June 2014.

[127] M. Higaki and K. Hashimoto, “Automatic tunable antenna system using
mems variable capacitors and a probe triggered by tpc,” in Antennas
and Propagation Society International Symposium (APSURSI), 2014 IEEE,
pp. 452–453, July 2014.

237

Bibliography

[128] M. de Jongh, A. van Bezooijen, K. Boyle, and T. Bakker, “Mobile phone
performance improvements using an adaptively controlled antenna tuner,”
in Microwave Symposium Digest (MTT), 2011 IEEE MTT-S International,
pp. 1–4, June 2011.

[129] M. Daneshmand and R. Mansour, “Rf mems satellite switch matrices,”
Microwave Magazine, IEEE, vol. 12, pp. 92–109, Aug 2011.

[130] B. Schoenlinner, A. Stehle, C. Siegel, W. Gautier, B. Schulte, S. Figur,
U. Prechtel, and V. Ziegler, “The low-complexity RF MEMS switch at
EADS: an overview,” International Journal of Microwave and Wireless
Technologies, vol. 3, pp. 499–508, 10 2011.

[131] G. Exposito-Dominguez, J.-M. F. Gonzalez, P. P. de la Torre, and
M. Sierra-Castaner, “Dual circular polarized steering antenna for satellite
communications in x band,” Progress In Electromagnetics Research, vol. 122,
pp. 61–76, 2012.

[132] M. M. G. Grafton, T. Maleki, M. D. Zordan, L. M. Reece, R. Byrnes,
A. Jones, P. Todd, and J. F. Leary, “Microfluidic MEMS hand-held flow
cytometer,” vol. 7929, pp. 79290C–79290C–10, 2011.

[133] S. Indermun, R. Luttge, Y. E. Choonara, P. Kumar, L. C. du Toit, G. Modi,
and V. Pillay, “Current advances in the fabrication of microneedles for
transdermal delivery,” Journal of Controlled Release, vol. 185, no. 0, pp. 130–
138, 2014.

[134] L. Tedeschi, C. Domenici, V. Russino, A. Nannini, and F. Pieri, “Label-free
detection of specific RNA sequences by a DNA-Based CMOS BioMEMS,”
in Sensors and Microsystems (C. Di Natale, V. Ferrari, A. Ponzoni,
G. Sberveglieri, and M. Ferrari, eds.), vol. 268 of Lecture Notes in Electrical
Engineering, pp. 277–280, Springer International Publishing, 2014.

[135] H. Ceylan, H. Kulah, A. Alp, C. OÌˆzgen, and G. HasÃ§elik, “A
disposable mems dna biosensor for antibiotic resistant gene detection in
staphylococcus aureus,” in Biomedical Engineering Meeting (BIYOMUT),
2010 15th National, pp. 1–4, April 2010.

[136] V. Goyal, “Motion MEMS and its emerging automotive applications,” Auto
Tech Review, vol. 2, no. 7, pp. 54–55, 2013.

[137] S. O. Emmanuel and O. D. Peter, “Impact assessment of MEMS application
on automobile driveability and functionality,” in Proceedings of the World
Congress on Engineering, vol. 3, 2013.

[138] J. Xie, C. Lee, and H. Feng, “Design, fabrication, and characterization
of CMOS MEMS-based thermoelectric power generators,” Journal of
Microelectromechanical Systems, vol. 19, pp. 317–324, April 2010.

238

Bibliography

[139] C.-Y. Sue and N.-C. Tsai, “Human powered MEMS-based energy harvest
devices,” Applied Energy, vol. 93, pp. 390 – 403, 2012.

[140] A. Ros Garćıa, C. Montoliu Álvaro, V. Herrero Bosch, J. M. Monzó Ferrer,
and R. J. Aliaga Varea, “Micro-generador termoeléctrico basado en contactos
eléctricos pasantes,” 2014. Spanish Patent ES2487590 A1.

[141] H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi,
Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a
sharp tip for AFM systems,” Sensors and Actuators A: Physical, vol. 148,
no. 1, pp. 311 – 318, 2008.

[142] G. Schröpfer, M. de Labachelerie, S. Ballandras, and P. Blind, “Collective
wet etching of a 3D monolithic silicon seismic mass system,” Journal of
Micromechanics and Microengineering, vol. 8, no. 2, p. 77, 1998.

[143] “Courtesy of sandia national laboratories, SUMMiT(TM) technologies.”
www.mems.sandia.gov.

[144] M. Tilli and A. Haapalinna, Properties of silicon, in Silicon Based MEMS
Materials & Technologies, Part 1, Chapter 1, Book Ed. V. Lindroos, M.
Tilli A. Lehto and T. Motooka. Micro & Nano Technologies, William
Andrew/Elsevier, 2010.

[145] “Bosch leads Yole’s MEMS market top 30
ranking..” http://www.analog-eetimes.com/en/
bosch-leads-yole-s-mems-market-top-30-ranking.html?cmp_id=
7&news_id=222906443.

[146] “Mems market overview: Steady growth for mems in 2013 and
beyond..” http://www.semi.org/eu/sites/semi.org/files/docs/YOLE_
MEMS%20Tech%20Seminar%202013-public.pdf.

[147] J.-j. Xiong, S.-j. Zheng, Y.-p. Hong, J. Li, Y.-l. Wang, W. Wang,
and Q.-l. Tan, “Measurement of wireless pressure sensors fabricated in
high temperature co-fired ceramic mems technology,” Journal of Zhejiang
University SCIENCE C, vol. 14, no. 4, pp. 258–263, 2013.

[148] S. Patil, V. Chu, and J. Conde, “Performance of thin film silicon MEMS
on flexible plastic substrates,” Sensors and Actuators A: Physical, vol. 144,
no. 1, pp. 201–206, 2008.

[149] J. K. Luo, Y. Q. Fu, H. R. Le, J. A. Williams, S. M. Spearing, and
W. I. Milne, “Diamond and diamond-like carbon MEMS,” Journal of
Micromechanics and Microengineering, vol. 17, no. 7, p. S147, 2007.

239

www.mems.sandia.gov
http://www.analog-eetimes.com/en/bosch-leads-yole-s-mems-market-top-30-ranking.html?cmp_id=7&news_id=222906443
http://www.analog-eetimes.com/en/bosch-leads-yole-s-mems-market-top-30-ranking.html?cmp_id=7&news_id=222906443
http://www.analog-eetimes.com/en/bosch-leads-yole-s-mems-market-top-30-ranking.html?cmp_id=7&news_id=222906443
http://www.semi.org/eu/sites/semi.org/files/docs/YOLE_MEMS%20Tech%20Seminar%202013-public.pdf
http://www.semi.org/eu/sites/semi.org/files/docs/YOLE_MEMS%20Tech%20Seminar%202013-public.pdf

Bibliography

[150] D. Hwang, T. Saito, and N. Fujimori, “New etching process for device
fabrication using diamond,” Diamond and Related Materials, vol. 13,
pp. 2207–2210, 2004. Proceedings of the 9th International Conference on
New Diamond Science and Technology (ICNDST-9).

[151] R. P. Feynman, “There’s plenty of room at the bottom,” Engineering and
science, vol. 23, no. 5, pp. 22–36, 1960.

[152] J. Koo, M. Kim, and B. Kang, “Optical image stabilizer for camera lens
assembly,” 2009. US Patent 7,489,340.

[153] W. Ma, H.-Y. Chan, C. C. Wong, C. Yiu, Y. C. Chan, and F. Lee,
“Towards high resolution pico-projector applications: Design improvements
on mems scanning mirror,” in Nano/Micro Engineered and Molecular
Systems (NEMS), 2011 IEEE International Conference on, pp. 831–834,
Feb 2011.

[154] M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico-
projectors: Seeing the big picture (with a small device),” Opt. Photon. News,
vol. 20, pp. 28–34, May 2009.

[155] “Challenged by newcomers proposing low-cost solutions, established MEMS
companies must develop new strategies..” http://www.yole.fr/iso_
upload/News/2014/PR_MEMS_Market_YOLEDEVELOPPEMENT_July2014.pdf.

[156] “Mems market to top $22 billion by 2018..” http://www.eetimes.com/
document.asp?doc_id=1320035.

[157] F. Laermer and A. Schilp, “Plasma polymerizing temporary etch stop,”
march 1996. US Patent 5501893.

[158] J. Parasuraman, A. Summanwar, F. Marty, P. Basset, D. E. Angelescu, and
T. Bourouina, “Deep reactive ion etching of sub-micrometer trenches with
ultra high aspect ratio,” Microelectronic Engineering, vol. 113, no. 0, pp. 35
– 39, 2014.

[159] M. J. Wolf, T. Dretschkow, B. Wunderle, N. Jurgensen, G. Engelmann,
O. Ehrmann, A. Uhlig, B. Michel, and H. Reichl, “High aspect ratio tsv
copper filling with different seed layers,” in Electronic Components and
Technology Conference, pp. 563–570, 2008.

[160] M. Rimskog, “Through wafer via technology for MEMS and 3D integration,”
in Electronic Manufacturing Technology Symposium, 2007. IEMT ’07. 32nd
IEEE/CPMT International, pp. 286–289, Oct 2007.

[161] Y. Mita, M. Sugiyama, M. Kubota, F. Marty, T. Bourouina, and T. Shibata,
“Aspect ratio dependent scalloping attenuation in DRIE and an application
to low-loss fiber-optical switches,” in Micro Electro Mechanical Systems,

240

http://www.yole.fr/iso_upload/News/2014/PR_MEMS_Market_YOLEDEVELOPPEMENT_July2014.pdf
http://www.yole.fr/iso_upload/News/2014/PR_MEMS_Market_YOLEDEVELOPPEMENT_July2014.pdf
http://www.eetimes.com/document.asp?doc_id=1320035
http://www.eetimes.com/document.asp?doc_id=1320035

Bibliography

2006. MEMS 2006 Istanbul. 19th IEEE International Conference on,
pp. 114–117, 2006.

[162] Ü. Sökmen, A. Stranz, S. Fündling, S. Merzsch, R. Neumann, H.-H.
Wehmann, E. Peiner, and A. Waag, “Shallow and deep dry etching of silicon
using ICP cryogenic reactive ion etching process,” Microsystem Technologies,
vol. 16, no. 5, pp. 863–870, 2010.

[163] J. Schille, Investigation of micromachining using a high repetition rate
femtosecond fibre laser. PhD thesis, The University of Manchester, 2013.

[164] L. Xu and Y. Pan, “Electrochemical micromachining using vibrating
tool electrode,” The International Journal of Advanced Manufacturing
Technology, vol. 75, no. 5-8, pp. 645–650, 2014.

[165] L.-M. Jiang, Y.-J. Du, J. Jia, L.-J. Lai, H. Zhou, L.-M. Zhu, Z.-W. Tian, Z.-
Q. Tian, and D. Zhan, “Three dimensional micromachining on aluminum
surface by electrochemical wet stamping technique,” Electrochemistry
Communications, vol. 33, no. 0, pp. 119–122, 2013.

[166] A. V. Singh, S. Chandra, S. Kumar, and G. Bose, “Mechanical and
structural properties of RF magnetron sputter-deposited silicon carbide films
for MEMS applications,” Journal of Micromechanics and Microengineering,
vol. 22, no. 2, p. 025010, 2012.

[167] J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont,
J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical
microlenses by a combination of isotropic wet etching of silicon and molding
techniques,” Opt. Express, vol. 17, pp. 6283–6292, Apr 2009.

[168] M. Elwenspoek and H. V. Jansen, Silicon Micromachining. Cambridge Stud-
ies in Semiconductor Physics and Microelectronic Engineering, Cambridge
University Press, 2004.

[169] C. Hedlund, U. Lindberg, U. Bucht, and J. Soderkvist, “Anisotropic etching
of Z-cut quartz,” Journal of Micromechanics and Microengineering, vol. 3,
no. 2, p. 65, 1993.

[170] D. Zhuang and J. Edgar, “Wet etching of GaN, AlN, and SiC: a review,”
Materials Science and Engineering: R: Reports, vol. 48, no. 1, pp. 1–46,
2005.

[171] D. B. Lee, “Anisotropic etching of silicon,” Journal of Applied Physics,
vol. 40, no. 11, pp. 4569–4574, 1969.

[172] E. Ammar, T. Rodgers, and T. Rodgers, “UMOS transistors on 100 silicon,”
Electron Devices, IEEE Transactions on, vol. 27, pp. 907–914, May 1980.

241

Bibliography

[173] K. Fukuzawa, S. Terada, M. Shikida, H. Amakawa, H. Zhang, and Y. Mit-
suya, “Mechanical design and force calibration of dual-axis micromechanical
probe for friction force microscopy,” Journal of Applied Physics, vol. 101,
no. 3, 2007.

[174] N. Wilke, M. L. Reed, and A. Morrissey, “The evolution from convex
corner undercut towards microneedle formation: theory and experimental
verification,” Journal of Micromechanics and Microengineering, vol. 16,
no. 4, p. 808, 2006.

[175] P. Pal, M. A. Gosalvez, and K. Sato, “Silicon micromachining based on
surfactant-added tetramethyl ammonium hydroxide: Etching mechanism
and advanced applications,” Japanese Journal of Applied Physics, vol. 49,
no. 5R, p. 056702, 2010.

[176] H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, “Anisotropic
etching of crystalline silicon in alkaline solutions: I . orientation dependence
and behavior of passivation layers,” Journal of The Electrochemical Society,
vol. 137, no. 11, pp. 3612–3626, 1990.

[177] O. Tabata, R. Asahi, H. Funabashi, K. Shimaoka, and S. Sugiyama,
“Anisotropic etching of silicon in TMAH solutions,” Sensors and Actuators
A: Physical, vol. 34, no. 1, pp. 51 – 57, 1992.

[178] M. A. Gosálvez, I. Zubel, and E. Viinikka, Wet etching of silicon, Chap. Ed.
H. Seidel in Silicon Based MEMS Materials & Technologies, Part 4, Chapter
24, Book Ed. V. Lindroos, M. Tilli A. Lehto and T. Motooka. Micro & Nano
Technologies, William Andrew/Elsevier, 2010.

[179] M. A. Gosálvez et al., Atomistic modelling of anisotropic etching of
crystalline silicon. PhD thesis, Helsinki University of Technology, 2003.

[180] N. Ferrando, M. A. Gosálvez, and R. J. Colom, “Evolutionary continuous
cellular automaton for the simulation of wet etching of quartz,” Journal of
Micromechanics and Microengineering, vol. 22, no. 2, p. 025021, 2012.

[181] P. Rangsten, C. Hedlund, I. V. Katardjiev, and Y. Bäcklund, “Etch rates
of crystallographic planes in Z-cut quartz - experiments and simulation,”
Journal of Micromechanics and Microengineering, vol. 8, no. 1, p. 1, 1998.

[182] C. Hedlund, U. Lindberg, U. Bucht, and J. Soderkvist, “Anisotropic etching
of z-cut quartz,” Journal of Micromechanics and Microengineering, vol. 3,
no. 2, p. 65, 1993.

[183] C. Kittel, Introducción a la f́ısica del estado sólido. Reverté, 1995.

[184] “Figure author: Felix Kling, licence CC BY 3.0 http://creativecommons.
org/licenses/by/3.0/.” Original link: http://en.wikipedia.org/wiki/
Miller_index#/media/File:Miller_Indices_Felix_Kling.svg.

242

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://en.wikipedia.org/wiki/Miller_index#/media/File:Miller_Indices_Felix_Kling.svg
http://en.wikipedia.org/wiki/Miller_index#/media/File:Miller_Indices_Felix_Kling.svg

Bibliography

[185] D. Cheng, K. Sato, M. Shikida, A. Ono, K. Sato, K. Asaumi, and
Y. Iriye, “Development of quartz etching database and 3-D micromachining
simulation system,” in Micromechatronics and Human Science, 2003. MHS
2003. Proceedings of 2003 International Symposium on, pp. 281–285, Oct
2003.

[186] L. Levien, C. T. Prewitt, and D. J. Weidner, “Structure and elastic properties
of quartz at pressure,” American Mineralogist, vol. 65, no. 9-10, pp. 920–930,
1980.

[187] N. Ferrando Jódar, Estudio, Modelado e Implementación Paralela de
Sistemas Celulares Utilizados en Microfabricación. PhD thesis, Universitat
Politècnica de València, 2011.

[188] K. Sato, M. Shikida, Y. Matsushima, T. Yamashiro, K. Asaumi, Y. Iriye,
and M. Yamamoto, “Characterization of orientation-dependent etching
properties of single-crystal silicon: effects of KOH concentration,” Sensors
and Actuators A: Physical, vol. 64, no. 1, pp. 87–93, 1998. Tenth IEEE
International Workshop on Micro Electro Mechanical Systems.

[189] K. Sato, M. Shikida, T. Yamashiro, K. Asaumi, Y. Iriye, and M. Yamamoto,
“Anisotropic etching rates of single-crystal silicon for TMAH water solution
as a function of crystallographic orientation,” Sensors and Actuators A:
Physical, vol. 73, pp. 131–137, 1999.

[190] R. A. Wind, H. Jones, M. J. Little, and M. A. Hines, “Orientation-resolved
chemical kinetics: Using microfabrication to unravel the complicated
chemistry of KOH/Si etching,” The Journal of Physical Chemistry B,
vol. 106, no. 7, pp. 1557–1569, 2002.

[191] M. A. Gosálvez, P. Pal, N. Ferrando, H. Hida, and K. Sato, “Experimental
procurement of the complete 3D etch rate distribution of si in anisotropic
etchants based on vertically micromachined wagon wheel samples,” J.
Micromech. Microeng., vol. 21, p. 125007, 2011.

[192] R. A. Wind and M. A. Hines, “Macroscopic etch anisotropies and microscopic
reaction mechanisms: a micromachined structure for the rapid assay of
etchant anisotropy,” Surface Science, vol. 460, pp. 21–38, 2000.

[193] I. Zubel and M. Kramkowska, “The effect of alcohol additives on etching
characteristics in KOH solutions,” Sensors and Actuators A: Physical,
vol. 101, no. 3, pp. 255–261, 2002.

[194] I. Zubel and M. Kramkowska, “Etch rates and morphology of silicon (h k
l) surfaces etched in KOH and KOH saturated with isopropanol solutions,”
Sensors and Actuators A: Physical, vol. 115, pp. 549–556, 2004. The 17th
European Conference on Solid-State Transducers.

243

Bibliography

[195] P. Pal and K. Sato, “Various shapes of silicon freestanding microfluidic chan-
nels and microstructures in one-step lithography,” Journal of Micromechan-
ics and Microengineering, vol. 19, no. 5, p. 055003, 2009.

[196] D. Cheng, K. Sato, M. Shikida, A. Ono, K. Sato, K. Asaumi, and
Y. Iriye, “Characterization of orientation-dependent etching properties of
quartz: Application to 3-D micromachining simulation system,” Sensors and
Materials, vol. 17, no. 4, pp. 179–186, 2005.

[197] IntelliSense-Corp., “Intellietch webpage.” http://www.intellisense.com/
product.aspx?id=36, January 2015.

[198] C. H. Séquin, “Compute simulation of anisotropic crystal etching,” Solid-
State Sensors and Actuators, pp. 801–806, 1991.

[199] M. Zhao, H. Oigawa, J. Ji, and T. Ueda, “Application of a 2-D anisotropic
etching simulator on perforated etching of quartz wafer,” in Sensors, 2011
IEEE, pp. 1693–1696, Oct 2011.

[200] K. Asaumi, Y. Iriye, and K. Sato, “Anisotropic-etching process simulation
system MICROCAD analyzing complete 3D etching profiles of single crystal
silicon,” IEEE Micro Electro Mechanical Systems, pp. 412–417, 1997.

[201] J. Fruhauf, K. Trautmann, J. Wittig, and D. Zielke, “A simulation
tool for orientation dependent etching,” Journal of Micromechanics and
Microengineering, vol. 3, no. 3, p. 113, 1993.

[202] G. Li, T. Hubbard, and E. K. Antonsson, “SEGS: on-line WWW
etch simulator,” MSM’98, Modeling and Simulation of Microsystems,
Semiconductors, Sensors and Actuators, 1998.

[203] M. A. Gosálvez, Manufacture and Processing of MEMS Structures, in Silicon
Based MEMS Materials & Technologies, Part 2, Chapter 10, Book Ed. V.
Lindroos, M. Tilli A. Lehto and T. Motooka. Micro & Nano Technologies,
William Andrew/Elsevier, 2010.

[204] M. A. Gosálvez, “Visualtapas: an example of density functional theory
assisted understanding and simulation of anisotropic etching (abstract
only),” Journal of Physics: Condensed Matter, vol. 20, no. 6, p. 064234,
2008.

[205] A. J. Nijdam, E. van Veenendaal, H. M. Cuppen, J. van Suchtelen,
M. L. Reed, J. G. E. Gardeniers, W. J. P. van Enckevort, E. Vlieg, and
M. Elwenspoek, “Formation and stabilization of pyramidal etch hillocks
on silicon 100 in anisotropic etchants: Experiments and monte carlo
simulation,” Journal of Applied Physics, vol. 89, no. 7, pp. 4113–4123, 2001.

244

http://www.intellisense.com/product.aspx?id=36
http://www.intellisense.com/product.aspx?id=36

Bibliography

[206] M. Gosálvez, R. Nieminen, P. Kilpinen, E. Haimi, and V. Lindroos,
“Anisotropic wet chemical etching of crystalline silicon: atomistic monte-
carlo simulations and experiments,” Applied Surface Science, vol. 178, no. 1,
pp. 7–26, 2001.

[207] Y. Xing, M. Gosálvez, and K. Sato, “Octree-search kinetic monte carlo
algorithm for the simulation of complex 3D MEMS structures,” in Micro
Electro Mechanical Systems, 2008. MEMS 2008. IEEE 21st International
Conference on, pp. 323–326, Jan 2008.

[208] M. A. Gosálvez, A. S. Foster, and R. M. Nieminen, “Multiscale modeling
of anisotropic wet chemical etching of crystalline silicon,” EPL (Europhysics
Letters), vol. 60, no. 3, p. 467, 2002.

[209] M. A. GosÃ¡lvez, D. Cheng, R. M. Nieminen, and K. Sato, “Apparent
activation energy during surface evolution by step formation and flow,” New
Journal of Physics, vol. 8, no. 11, p. 269, 2006.

[210] Y. Xing, M. A. Gosálvez, K. Sato, M. Tian, and H. Yi, “Evolutionary
determination of kinetic monte carlo rates for the simulation of evolving
surfaces in anisotropic etching of silicon,” Journal of Micromechanics and
Microengineering, vol. 22, no. 8, p. 085020, 2012.

[211] N. Ferrando, M. A. Gosálvez, and A. Ayuela, “Evolutionary kinetic
monte carlo: atomistic rates of surface-mediated processes from surface
morphologies,” The Journal of Physical Chemistry C, vol. 118, no. 22,
pp. 11636–11648, 2014.

[212] O. Than and S. Büttgenbach, “Simulation of anisotropic chemical etching of
crystalline silicon using a cellular automata model,” Sensors and Actuators
A: Physical, vol. 45, no. 1, pp. 85 – 89, 1994.

[213] H. Camon, A. Gue, J. Danel, and M. Djafari-Rouhani, “Modelling
of anisotropic etching in silicon-based sensor application,” Sensors and
Actuators A: Physical, vol. 33, no. 1, pp. 103 – 105, 1992.

[214] T. J. Hubbard and E. K. Antonsson, “Cellular automata modeling in mems
design,” Sensors and Materials, vol. 9, pp. 437–448, 1997.

[215] S. Buttgenbach and O. Than, “Suzana: a 3d cad tool for anisotropically
etched silicon microstructures,” in European Design and Test Conference,
1996. ED TC 96. Proceedings, pp. 454–458, Mar 1996.

[216] Z. Zhu and C. Liu, “Micromachining process simulation using a continuous
cellular automata method,” Microelectromechanical Systems, Journal of,
vol. 9, pp. 252–261, June 2000.

245

Bibliography

[217] Z. fa Zhou, Q. an Huang, W. hua Li, and W. Deng, “A cellular automaton-
based simulator for silicon anisotropic etching processes considering high
index planes,” Journal of Micromechanics and Microengineering, vol. 17,
no. 4, p. S38, 2007.

[218] M. A. Gosálvez, K. Sato, A. S. Foster, R. M. Nieminen, and H. Tanaka, “An
atomistic introduction to anisotropic etching,” Journal of Micromechanics
and Microengineering, vol. 17, no. 4, p. S1, 2007.

[219] M. Gosálvez, Y. Xing, and K. Sato, “Analytical solution of the continuous
cellular automaton for anisotropic etching,” Microelectromechanical Systems,
Journal of, vol. 17, pp. 410–431, April 2008.

[220] M. Gosálvez, Y. Xing, K. Sato, and R. Nieminen, “Discrete and continuous
cellular automata for the simulation of propagating surfaces,” Sensors and
Actuators A: Physical, vol. 155, no. 1, pp. 98–112, 2009.

[221] P. Pal, M. Gosalvez, K. Sato, H. Hida, and Y. Xing, “Anisotropic etching on
si{110}: experiment and simulation for the formation of microstructures
with convex corners,” Journal of Micromechanics and Microengineering,
vol. 24, no. 12, p. 125001, 2014.

[222] M. A. Gosálvez, N. Ferrando, Y. Xing, P. Pal, K. Sato, J. Cerdá,
and R. Gadea, “Simulating anisotropic etching of silicon in any etchant:
evolutionary algorithm for the calibration of the continuous cellular
automaton,” Journal of Micromechanics and Microengineering, vol. 21,
no. 6, p. 065017, 2011.

[223] B. Radjenović, M. Radmilović-Radjenović, and M. Mitrić, “Nonconvex
hamiltonians in three dimensional level set simulations of the wet etching
of silicon,” Applied Physics Letters, vol. 89, no. 21, 2006.

[224] B. Radjenović and M. Radmilović-Radjenović, “3d simulations of the
profile evolution during anisotropic wet etching of silicon,” Thin Solid
Films, vol. 517, no. 14, pp. 4233–4237, 2009. The proceedings of the
1st International Conference on Microelectronics and Plasma Technology
(ICMAP 2008).

[225] B. Radjenović, M. Radmilović-Radjenović, and M. Mitrić, “Level set
approach to anisotropic wet etching of silicon,” Sensors, vol. 10, no. 5,
pp. 4950–4967, 2010.

[226] M. Smiljanić, B. Radjenović, M. Radmilović-Radjenović, Z̆. Lazić, and
V. Jović, “Simulation and experimental study of maskless convex corner
compensation in TMAH water solution,” Journal of Micromechanics and
Microengineering, vol. 24, no. 11, p. 115003, 2014.

[227] S. Franssila, Front Matter. Wiley Online Library, 2004.
246

Bibliography

[228] G. Oehrlein, “Reactive ion etching: Handbook of plasma processing
technology,” Park Ridge New Jersey, vol. 196, 1990.

[229] J. P. Chang and J. W. Coburn, “Plasma-surface interactions,” Journal of
Vacuum Science & Technology A, vol. 21, no. 5, pp. S145–S151, 2003.

[230] G. S. Oehrlein, J. F. Rembetski, and E. H. Payne, “Study of sidewall
passivation and microscopic silicon roughness phenomena in chlorine-based
reactive ion etching of silicon trenches,” Journal of Vacuum Science &
Technology B, vol. 8, no. 6, pp. 1199–1211, 1990.

[231] G. S. Oehrlein and Y. Kurogi, “Sidewall surface chemistry in directional
etching processes,” Materials Science and Engineering: R: Reports, vol. 24,
no. 4, pp. 153–183, 1998.

[232] F. Laermer, S. Franssila, L. Sainiemi, and K. Kolari, Deep Reactive Ion
Etching, in Silicon Based MEMS Materials & Technologies, Part 4, Chapter
23, Book Ed. V. Lindroos, M. Tilli A. Lehto and T. Motooka. Micro & Nano
Technologies, William Andrew/Elsevier, 2010.

[233] W. C. Tian, J. W. Weigold, and S. W. Pang, “Comparison of Cl2 and
F-based dry etching for high aspect ratio Si microstructures etched with
an inductively coupled plasma source,” Journal of Vacuum Science &
Technology B, vol. 18, no. 4, pp. 1890–1896, 2000.

[234] H. Lee and S. Wood, “Optimization of reactive ion etching (RIE) parameters
for selective removal of MOSFET gate dielectric and evaluation of its physical
and electrical properties,” 2012 NCUR, 2012.

[235] B. Kastenmeier, P. Matsuo, J. Beulens, and G. Oehrlein, “Chemical dry
etching of silicon nitride and silicon dioxide using CF4/O2/N2 gas mixtures,”
Journal of Vacuum Science & Technology A, vol. 14, no. 5, pp. 2802–2813,
1996.

[236] H.-H. Hu, H.-Y. Lin, W. Fang, and B. C. Chou, “The diagnostic
micromachined beams on (1 1 1) substrate,” Sensors and Actuators A:
Physical, vol. 93, no. 3, pp. 258–265, 2001.

[237] Y. Wang, J. A. Henry, A. T. Zehnder, and M. A. Hines, “Surface chemical
control of mechanical energy losses in micromachined silicon structures,” The
Journal of Physical Chemistry B, vol. 107, no. 51, pp. 14270–14277, 2003.

[238] M. Boufnichel, P. Lefaucheux, S. Aachboun, R. Dussart, and P. Ranson,
“Origin, control and elimination of undercut in silicon deep plasma etching in
the cryogenic process,” Microelectronic Engineering, vol. 77, no. 3, pp. 327–
336, 2005.

247

Bibliography

[239] R. J. Hoekstra, M. J. Kushner, V. Sukharev, and P. Schoenborn,
“Microtrenching resulting from specular reflection during chlorine etching of
silicon,” Journal of Vacuum Science & Technology B, vol. 16, no. 4, pp. 2102–
2104, 1998.

[240] A. P. Mahorowala and H. H. Sawin, “Etching of polysilicon in inductively
coupled Cl2 and HBr discharges. II. simulation of profile evolution using
cellular representation of feature composition and monte carlo computation
of flux and surface kinetics,” Journal of Vacuum Science & Technology B,
vol. 20, no. 3, pp. 1064–1076, 2002.

[241] R. A. Gottscho, C. W. Jurgensen, and D. J. Vitkavage, “Microscopic
uniformity in plasma etching,” Journal of Vacuum Science & Technology
B, vol. 10, no. 5, pp. 2133–2147, 1992.

[242] M. F. Doemling, N. R. Rueger, and G. S. Oehrlein, “Observation of inverse
reactive ion etching lag for silicon dioxide etching in inductively coupled
plasmas,” Applied Physics Letters, vol. 68, no. 1, pp. 10–12, 1996.

[243] D. J. Economou, “Modeling and simulation of plasma etching reactors for
microelectronics,” Thin Solid Films, vol. 365, no. 2, pp. 348–367, 2000.

[244] R. J. Belen, S. Gomez, D. Cooperberg, M. Kiehlbauch, and E. S. Aydil,
“Feature-scale model of si etching in SF6/O2 plasma and comparison with
experiments,” Journal of Vacuum Science & Technology A, vol. 23, no. 5,
pp. 1430–1439, 2005.

[245] B. E. Thompson, H. H. Sawin, and D. A. Fisher, “Monte carlo simulation
of ion transport through RF glow discharge sheaths,” Journal of Applied
Physics, vol. 63, no. 7, pp. 2241–2251, 1988.

[246] E. Baer, D. Kunder, J. Lorenz, M. Sekowski, and U. Paschen, “Coupling
of monte carlo sputter simulation and feature-scale profile simulation and
application to the simulation of back etching of an intermetal dielectric,”
in Simulation of Semiconductor Processes and Devices (SISPAD), 2010
International Conference on, pp. 53–56, September 2010.

[247] E. Baer, D. Kunder, P. Evanschitzky, and J. Lorenz, “Coupling of
equipment simulation and feature-scale profile simulation for dry-etching of
polysilicon gate lines,” in Simulation of Semiconductor Processes and Devices
(SISPAD), 2010 International Conference on, pp. 57–60, September 2010.

[248] E. Strasser and S. Selberherr, “Algorithms and models for cellular based
topography simulation,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 14, pp. 1104–1114, September 1995.

248

Bibliography

[249] E. Scheckler and A. R. Neureuther, “Models and algorithms for three-
dimensional topography simulation with SAMPLE-3D,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 13,
pp. 219–230, Feb 1994.

[250] R. J. Hoekstra, M. J. Grapperhaus, and M. J. Kushner, “Integrated plasma
equipment model for polysilicon etch profiles in an inductively coupled
plasma reactor with subwafer and superwafer topography,” Journal of
Vacuum Science & Technology A, vol. 15, no. 4, pp. 1913–1921, 1997.

[251] R. J. Hoekstra, M. J. Kushner, V. Sukharev, and P. Schoenborn,
“Microtrenching resulting from specular reflection during chlorine etching of
silicon,” Journal of Vacuum Science & Technology B, vol. 16, no. 4, pp. 2102–
2104, 1998.

[252] W. Guo, B. Bai, and H. H. Sawin, “Mixing-layer kinetics model for plasma
etching and the cellular realization in three-dimensional profile simulator,”
Journal of Vacuum Science & Technology A, vol. 27, no. 2, pp. 388–403,
2009.

[253] J. A. Levinson, E. S. G. Shaqfeh, M. Balooch, and A. V. Hamza, “Ion-
assisted etching and profile development of silicon in molecular and atomic
chlorine,” Journal of Vacuum Science & Technology B, vol. 18, no. 1,
pp. 172–190, 2000.

[254] J. Lee, S. Yoon, and T. Won, “Topography simulation for structural analysis
using cell advancing method,” Molecular Simulation, vol. 31, no. 12, pp. 851–
857, 2005.

[255] H. Yang, Y. Song, S. Zheng, L. Wang, and P. Jia, “An optimized-based ion
etch yield modeling method in plasma etching,” in Control and Decision
Conference (CCDC), 2013 25th Chinese, pp. 2913–2918, May 2013.

[256] W. Guo and H. H. Sawin, “Review of profile and roughening simulation in
microelectronics plasma etching,” Journal of Physics D: Applied Physics,
vol. 42, no. 19, p. 194014, 2009.

[257] G. Kokkoris, A. Tserepi, A. Boudouvis, and E. Gogolides, “Simulation of
SiO2 and Si feature etching for microelectronics and microelectromechanical
systems fabrication: A combined simulator coupling modules of surface
etching, local flux calculation, and profile evolution,” Journal of Vacuum
Science Technology A: Vacuum, Surfaces, and Films, vol. 22, pp. 1896–1902,
Jul 2004.

[258] B. Radjenović, J. K. Lee, and M. Radmilović-Radjenović, “Sparse field
level set method for non-convex hamiltonians in 3D plasma etching profile
simulations,” Computer Physics Communications, vol. 174, no. 2, pp. 127–
132, 2006.

249

Bibliography

[259] O. Ertl and S. Selberherr, “A fast level set framework for large three-
dimensional topography simulations,” Computer Physics Communications,
vol. 180, no. 8, pp. 1242 – 1250, 2009.

[260] O. Ertl and S. Selberherr, “Three-dimensional topography simulation using
advanced level set and ray tracing methods,” in Simulation of Semiconductor
Processes and Devices, 2008. SISPAD 2008. International Conference on,
pp. 325–328, Sept 2008.

[261] “Anetch, physical etching simulator, release 0.7.5, Fraunhofer IISB,
Erlangen,” 2009.

[262] R. Allegre, R. Chaine, and S. Akkouche, “A flexible framework for surface
reconstruction from large point sets,” Computer Graphics, vol. 31, no. 2,
pp. 190–204, 2007.

[263] J. C. Carr, R. K. Beatson, B. C. McCallum, W. R. Fright, T. J. McLennan,
and T. J. Mitchell, “Smooth surface reconstruction from noisy range data,”
in Proceedings of the 1st international conference on Computer graphics and
interactive techniques in Australasia and South East Asia, GRAPHITE ’03,
(New York, NY, USA), pp. 119–ff, ACM, 2003.

[264] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald,
J. Schweitzer, and W. Stuetzle, “Piecewise smooth surface reconstruction,”
in Proceedings of the 21st annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’94, (New York, NY, USA), pp. 295–
302, ACM, 1994.

[265] R. Mencl and H. Muller, “Graph-based surface reconstruction using
structures in scattered point sets,” in Computer Graphics International.
Proceedings, pp. 298–311, jun 1998.

[266] C. Oblonsek and N. Guid, “A fast surface-based procedure for object
reconstruction from 3D scattered points,” Computer Vision and Image
Understanding, vol. 69, no. 2, pp. 185–195, 1998.

[267] N. Amenta, M. Bern, and D. Eppstein, “The crust and the beta-
skeleton: Combinatorial curve reconstruction,” in Graphical Models and
Image Processing, pp. 125–135, 1998.

[268] N. Amenta, M. Bern, and M. Kamvysselis, “A new voronoi-based surface
reconstruction algorithm,” in Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’98, pp. 415–421,
ACM, 1998.

[269] H. Edelsbrunner, “Shape reconstruction with delaunay complex,” in Pro-
ceedings of the Third Latin American Symposium on Theoretical Informatics,
LATIN ’98, pp. 119–132, Springer-Verlag, 1998.

250

Bibliography

[270] T. K. Dey and S. Goswami, “Provable surface reconstruction from
noisy samples,” in Proceedings of the Twentieth Annual Symposium on
Computational Geometry, SCG ’04, (New York, NY, USA), pp. 330–339,
ACM, 2004.

[271] H.-K. Zhao, S. Osher, and R. Fedkiw, “Fast surface reconstruction using the
level set method,” in Variational and Level Set Methods in Computer Vision,
2001. Proceedings. IEEE Workshop on, pp. 194–201, 2001.

[272] H.-K. Zhao, S. Osher, B. Merriman, and M. Kang, “Implicit and nonpara-
metric shape reconstruction from unorganized data using a variational level
set method,” Computer Vision and Image Understanding, vol. 80, no. 3,
pp. 295–314, 2000.

[273] H. Liu, X. Wang, and W. Qiang, “Implicit surface reconstruction from
3D scattered points based on variational level set method,” in Systems
and Control in Aerospace and Astronautics, 2008. ISSCAA 2008. 2nd
International Symposium on, pp. 1–5, dec. 2008.

[274] H. Schröder and E. Obermeier, “A new model for si {100} convex corner
undercutting in anisotropic {KOH} etching,” Journal of Micromechanics
and Microengineering, vol. 10, no. 2, p. 163, 2000.

[275] M. Shikida, M. Ando, Y. Ishihara, T. Ando, K. Sato, and K. Asaumi, “Non-
photolithographic pattern transfer for fabricating pen-shaped microneedle
structures,” Journal of Micromechanics and Microengineering, vol. 14,
no. 11, p. 1462, 2004.

[276] D. F. Weirauch, “Correlation of the anisotropic etching of singleâˆ’crystal
silicon spheres and wafers,” Journal of Applied Physics, vol. 46, no. 4,
pp. 1478–1483, 1975.

[277] D. Zielke and J. Frühauf, “Determination of rates for orientation-dependent
etching,” Sensors and Actuators A: Physical, vol. 48, no. 2, pp. 151 – 156,
1995.

[278] M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa, “Differences in anisotropic
etching properties of KOH and TMAH solutions,” Sensors and Actuators A:
Physical, vol. 80, no. 2, pp. 179 – 188, 2000.

[279] Z.-f. Zhou, Q.-a. Huang, and W.-h. Li, “Modeling and simulations of
anisotropic etching of silicon in alkaline solutions with experimental
verification,” Journal of The Electrochemical Society, vol. 156, no. 2,
pp. F29–F37, 2009.

[280] M. Gosálvez, A. Foster, and R. Nieminen, “Atomistic simulations of surface
coverage effects in anisotropic wet chemical etching of crystalline silicon,”
Applied Surface Science, vol. 202, no. 3, pp. 160 – 182, 2002.

251

Bibliography

[281] J. A. Sethian and D. Adalsteinsson, “An overview of level set methods
for etching, deposition, and lithography development,” Semiconductor
Manufacturing, IEEE Transactions on, vol. 10, pp. 167–184, Feb 1997.

[282] B. Radjenović and M. Radmilović-Radjenović, “Level set simulations of the
anisotropic wet etching process for device fabrication in nanotechnologies,”
Hemijska industrija, vol. 64, no. 2, pp. 93–97, 2010.

[283] L. R. Arana, N. de Mas, R. Schmidt, A. J. Franz, M. A. Schmidt,
and K. F. Jensen, “Isotropic etching of silicon in fluorine gas for mems
micromachining,” Journal of Micromechanics and Microengineering, vol. 17,
no. 2, p. 384, 2007.

[284] C. Liu, Foundations of MEMS. Illinois ECE series, Pearson Prentice Hall,
2006.

[285] A. E. Lefohn, J. M. Kniss, C. D. Hansen, and R. T. Whitaker, “A streaming
narrow-band algorithm: Interactive computation and visualization of level
sets,” in ACM SIGGRAPH 2005 Courses, no. 243 in SIGGRAPH ’05, New
York, NY, USA: ACM, 2005.

[286] A. Jalba, W. van der Laan, and J. Roerdink, “Fast sparse level sets
on graphics hardware,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 19, pp. 30–44, Jan 2013.

[287] F. Galluzzo, N. Speciale, and O. Bernard, “A rigorous and efficient GPU
implementation of level-set sparse field algorithm,” in Image Processing
(ICIP), 2012 19th IEEE International Conference on, pp. 1705–1708, Sept
2012.

[288] “openMP web page.” http://openmp.org/wp/.

[289] “POSIX threads windows web page.” http://sourceware.org/
pthreads-win32/.

[290] J. J. López, D. Carnicero, N. Ferrando, and J. Escolano, “Parallelization of
the finite-difference time-domain method for room acoustics modelling based
on CUDA,” Mathematical and Computer Modelling, vol. 57, no. 7, pp. 1822
– 1831, 2013.

[291] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk,
and W.-m. W. Hwu, “Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA,” in Proceedings of the
13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’08, (New York, NY, USA), pp. 73–82, ACM, 2008.

252

http://openmp.org/wp/
http://sourceware.org/pthreads-win32/
http://sourceware.org/pthreads-win32/

Bibliography

[292] N. Ferrando, M. A. Gosálvez, J. Cerdá, R. Gadea, and K. Sato, “Faster and
exact implementation of the continuous cellular automaton for anisotropic
etching simulations,” Journal of Micromechanics and Microengineering,
vol. 21, no. 2, p. 025021, 2011.

[293] “Simode, collection of examples (c), gesselschaft fur mikroelektronikan-
wendung chemnitz mbh,” 2001.

[294] C. hao Chang and H. Ming-Tsung, “A study of etch the anisotropic of quartz
microstructures,” Master’s thesis, Department of Mechanical Engineering,
National Central University, Taiwan, 2011.

[295] J. Liang, F. Kohsaka, T. Matsuo, and T. Ueda, “Wet etched high aspect ratio
microstructures on quartz for MEMS applications,” IEEJ Transactions on
Sensors and Micromachines, vol. 127, no. 7, pp. 337–342, 2007.

[296] A. Zeniou, K. Ellinas, A. Olziersky, and E. Gogolides, “Ultra-high aspect
ratio si nanowires fabricated with plasma etching: plasma processing,
mechanical stability analysis against adhesion and capillary forces and
oleophobicity,” Nanotechnology, vol. 25, no. 3, p. 035302, 2014.

[297] H. Tsuda, Y. Takao, K. Eriguchi, and K. Ono, “Modeling and simulation
of nanoscale surface rippling during plasma etching of si under oblique ion
incidence,” Japanese Journal of Applied Physics, vol. 51, no. 8S1, p. 08HC01,
2012.

[298] Y. Xiao, Z. Z. Fa, and L. W. Hua, “Three-dimensional simulation of profile
evolution in plasma etching of polysilicon,” in Solid-State and Integrated
Circuit Technology (ICSICT), 2014 12th IEEE International Conference on,
pp. 1–3, Oct 2014.

[299] L. Chiaramonte, R. Colombo, G. Fazio, G. Garozzo, and A. L. Magna, “A
numerical method for the efficient atomistic simulation of the plasma-etch of
nano-patterned structures,” Computational Materials Science, vol. 54, no. 0,
pp. 227 – 235, 2012.

[300] H. H. Hwang, T. R. Govindan, and M. Meyyappan, “Feature profile evolution
simulation using a level set method,” Journal of The Electrochemical Society,
vol. 146, no. 5, pp. 1889–1894, 1999.

[301] Y. H. Im, Y. B. Hahn, and S. J. Pearton, “Level set approach to simulation of
feature profile evolution in a high-density plasma-etching system,” Journal
of Vacuum Science & Technology B, vol. 19, no. 3, pp. 701–710, 2001.

[302] B. Radjenović and M. Radmilović-Radjenović, “3D etching profile evolution
simulations: Time dependence analysis of the profile charging during SiO2
etching in plasma,” Journal of Physics: Conference Series, vol. 86, no. 1,
p. 012017, 2007.

253

Bibliography

[303] O. Ertl, C. Heitzinger, and S. Selberherr, “Efficient coupling of monte
carlo and level set methods for topography simulation,” in Simulation of
Semiconductor Processes and Devices 2007 (T. Grasser and S. Selberherr,
eds.), pp. 417–420, Springer Vienna, 2007.

[304] O. Ertl and S. Selberherr, “Three-dimensional plasma etching simulation
using advanced ray tracing and level set techniques,” ECS Transactions,
vol. 23, no. 1, pp. 61–68, 2009.

[305] D. Zhang and M. J. Kushner, “Investigations of surface reactions during
C2F6 plasma etching of SiO2 with equipment and feature scale models,”
Journal of Vacuum Science & Technology A, vol. 19, no. 2, pp. 524–538,
2001.

[306] “Synopsys, inc.” http://www.synopsys.com.

[307] “NVIDIA GeForce GTX titan GPU specifications.” http://www.nvidia.
es/object/geforce-gtx-titan-es.html#pdpContent=2.

[308] Q. Fang and D. Boas, “Tetrahedral mesh generation from volumetric binary
and grayscale images,” in Biomedical Imaging: From Nano to Macro, 2009.
ISBI ’09. IEEE International Symposium on, pp. 1142–1145, June 2009.

[309] F. Cacciola, “Triangulated surface mesh simplification,” in CGAL User and
Reference Manual, CGAL Editorial Board, 4.5 ed., 2014.

254

http://www.synopsys.com
http://www.nvidia.es/object/geforce-gtx-titan-es.html#pdpContent=2
http://www.nvidia.es/object/geforce-gtx-titan-es.html#pdpContent=2

	Contents
	Introduction
	Motivation
	Objectives
	Methodology
	Employed tools

	Structure of the thesis

	State of the art
	Introduction to the Level Set method
	Tracking moving interfaces techniques
	Theory for front propagation
	Similarity with Hamilton-Jacobi equations
	Implicit functions
	Signed Distance Function
	Reinitialization of the implicit function

	Numerical schemes for the Level Set method
	Completely external
	Enhancing of the derivatives approximations
	Enhancing the temporal discretization

	External and dependent on local topology
	Dependent on local curvature
	Local Level Set methods
	Narrow Band Method
	Sparse Field Method
	Further optimizations

	Graphics Processing Units
	Graphics pipeline GPUs evolution
	GPGPU programming languages
	CUDA platform
	Parallel execution
	Memory structure
	Kepler microarchitecture

	Micro-Electro-Mechanical Systems (MEMS)
	Introduction
	Micromachining processes
	Anisotropic wet etching
	Crystallographic orientations
	Etch rate crystallographic orientation dependent
	Simulation of anisotropic wet etching

	Reactive Ion Etching
	Simulation of Reactive Ion Etching

	Visual representation improvement
	Introduction and drawbacks of cellular automata simulators
	Image reconstruction with the Level Set method
	Minimal surface energy model
	Numerical schemes

	The convection model approach
	Numerical schemes

	Mesh generation
	Distance matrix
	Initial surface determination

	Developed implementations
	Original LS
	Local SFM

	Results
	Impact of the mesh resolution
	Convex corners
	Microneedles
	Accelerometer
	Wagon wheel
	Computational behaviour

	Conclusions

	Level Set method for wet etching simulation
	Introduction and drawbacks of previous wet etching simulators
	CCA wet etching simulators
	Wet etching simulation by means of the LS method

	Experimental etch rates
	Isotropic etchant

	SFM developed simulator
	Mesh generation
	Initial surface determination
	Numerical discretization
	Complete algorithm
	Validation of the developed algorithm: etching of spherical samples
	Simulation of complex MEMS
	Etching of double-sided wafers
	Consecutive etching processes

	SFM parallel implementations
	CPU implementation
	GPU implementation
	Parallelization of the SFM
	Main variables
	Workflow

	Results and comparisons
	Mesh resolution impact
	Parallel CPU vs GPU
	Sequential CCA vs sequential SFM
	Anisotropic results
	Isotropic results

	GPU CCA vs GPU SFM

	Conclusions

	Dry etching profile evolution
	Introduction
	Anetch

	Surface evolution module
	Input data
	Distance matrix calculation
	Initial surface determination
	Evolution loop
	Complete algorithm
	GPU implementation
	Main variables
	Workflow

	Extraction module
	Implementation

	Results
	Conclusions

	Conclusions and future work
	Conclusions
	Contributions
	Future work

	List of Figures
	List of Tables
	List of Algorithms and Procedures
	Bibliography

