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Abstract 

Polyester (PES) has been coated with polypyrrole (PPy) to produce conducting fabrics. 

Graphene oxide (GO) has been used in different concentrations (10, 20 and 30 % 

weight) as counter ion to neutralize the positive charges of the PPy structure. Fourier 

transform infrared spectroscopy with attenuated total reflection (FTIR-ATR), energy 

dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) of the PPy/GO 

powders corroborated the incorporation of GO as counter ion due to the presence of O 

in the EDX spectrum, as well as an excess of C, arising from GO contribution. The 

doping level (N
+
/N) decreased with the GO content. Field emission scanning electron 

microscopy (FESEM) showed the formation of the PPy/GO coating and the 

incorporation of GO in the composite. Electrochemical impedance spectroscopy (EIS) 

in solid state and solution, cyclic voltammetry (CV) and scanning electrochemical 

microscopy (SECM) were used to test the electrical properties and electroactivity of the 

fabrics. There was a decrease in the electrical properties and electroactivity as the GO 

content increased. The conductivity of the fabrics could be tuned by varying the GO 

content. 
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1. Introduction 

The production of fabrics with new properties has received particular attention during 

recent years. Different properties such as electrical conduction [1], flame resistance [2], 

self-cleaning [3], thermal regulation [4], color change [5], solar energy production [6], 

photonic [7], antimicrobial [8], UV protecting [9] or even catalysis [10] have been 

reported. Electrical conduction has attracted special attention in the development of 

antistatic or smart textiles [1]. 

There are different methods to produce conductive fabrics, such as the incorporation of 

conductive particles [11], electroless deposition of metals [12], reduced graphene oxide 

coatings [13, 14], graphene [15] or conducting polymers synthesized either chemically 

[16-18] or electrochemically [19, 20]. During the formation of conducting polymers, 

positive charges are created in their structures. These charges need to be neutralized by 

molecules with negative charges (counter ion). Different counter ions, either organic or 

inorganic have been used for this purpose [16-18]. Here, we report the use of graphene 

oxide as counter ion in conducting fabrics for the first time. Graphene oxide carries a 
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negative charge in its structure due to the presence of carboxylic acids acquiring a 

negative zeta potential [21]. One of the main problems of fabrics coated with 

conducting polymers is the migration and loss of the counter ion when the fabrics are 

put in solution, mainly in basic pH where deprotonation of PPy occurs [17, 18]. The 

immobilization of a macroscopic material (between several microns and nanometers) 

such as graphene oxide in a conducting polymer structure prevents its solubilization. 

The aim of this paper is to obtain conducting fabrics of polyester coated with PPy/GO 

and characterize them chemically and electrochemically. 

Polyester was coated with PPy and different contents of GO (10, 20 and 30 %). The 

chemical characterization of the PPy-GO coated fabrics was performed by FTIR-ATR, 

EDX and XPS. The electrical characterization of the fabrics was performed by EIS in 

solid state. FESEM was used to observe the morphology of the coatings and the 

incorporation of GO in the PPy structure. EIS in solution, CV and SECM were used to 

test the electroactivity of the different fabrics. PPy/GO pellets were also obtained by 

compacting the powder and these were analyzed by the majority of the mentioned 

techniques. Samples doped with an organic (AQSA) and an inorganic counter ion 

(PW12O40
3-

) were also obtained and characterized by SECM for studying the effect of 

the counter ion’s nature. 

 

2. Experimental 

2.1. Reagents and materials 

All reagents used were of analytical grade.  

For the synthesis: Monolayer graphene oxide (GO) powder was acquired from 

Nanoinnova Technologies S.L. (Spain). Analytical grade pyrrole (Py), ferric chloride 

(FeCl3) and anthraquinone sulfonic acid sodium salt (AQSA) were purchased from 
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Merck. Acetone was acquired from Prolabo. Analytical grade phosphotungstic acid 

(H3PW12O40) hydrate was supplied by Fluka. 

Polyester fabrics characteristics were: fabric surface density, 100 g m
-2

; warp threads 

per cm, 55; weft threads per cm, 29. These are specific terms used in the field of textile 

industry and their meaning can be consulted in a textile glossary [22]. 

For the characterization: Sulphuric acid (H2SO4) and potassium chloride (KCl) were 

purchased from Merck. Hexaammineruthenium (III) chloride (Ru(NH3)6Cl3) and iron 

(III) sulfate pentahydrate (Fe2SO4)3·5H2O) were used as received from Acrōs Organics.  

When needed, solutions were deoxygenated by bubbling nitrogen (N2 premier X50S). 

Ultrapure water was obtained from an Elix 3 Millipore-Milli-Q Advantage A10 system 

with a resistivity near to 18.2 MΩ·cm.  

 

2.2. Synthesis of PPy/GO on polyester fabrics 

Chemical synthesis of PPy/GO on polyester textiles was carried out similarly to 

previous reports [18]. Size of the samples was approximately 4 cm x 6 cm. Polyester 

was degreased with acetone before use. Pyrrole concentration employed was 2 g L
-1

 

(~0.02 M). The molar relation of the oxidant (FeCl3) used was (1:2.5) (pyrrole:FeCl3). 

Different concentrations of GO were used as counter ion (10%, 20% and 30% respect to 

the pyrrole mass). The solution containing pyrrole and GO (80 ml) was placed in an 

ultrasound bath for 30 minutes to allow the exfoliation of the GO flakes. The second 

stage was the adsorption of pyrrole and GO on the PES fabric during 30 minutes. After 

this time, the FeCl3 solution (20 ml) was added in drops and the reaction elapsed over 

150 minutes at room temperature with magnetic stirring. Adsorption and reaction 

elapsed in a precipitation beaker. The obtained conducting fabric was washed with 

water to remove unbound PPy/GO. The conducting fabrics were dried in a desiccator 
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for at least 24 h before measurements were performed. Organic (AQSA) and inorganic 

(PW12O40
3-

) molecules were also used as counter ions to compare the results obtained 

with those of GO. Hence, PPy/AQSA and PPy/PW12O40
3-

 were obtained and collected 

for measuring their electrochemical behavior by SECM.  

 

2.3. Preparation of PPy disks 

PPy/GO, PPy/AQSA and PPy/PW12O40
3-

 powders (0.1 g) were pressed in a press (98.1 

kN) to obtain discs (13 mm diameter) that were employed to carry out the different 

measurements.  

 

2.4. FTIR-ATR  

FTIR-ATR with horizontal mono-rebound attenuated total reflection accessory was 

performed with a Nicolet 6700 Spectrometer equipped with deuterated triglycine sulfate 

detector. An accessory with pressure control was used to equalize the pressure in the 

different solid samples. A prism of ZnSe was used and spectra were collected with a 

resolution of 4 cm
−1

, 400 scans were averaged for each sample. GO powders were 

characterized to assign their different contributions. PES fabrics uncoated and coated 

with PPy/GO (10%, 20% and 30% GO content) were characterized. In addition, 

PPy/GO powders (10%, 20% and 30% GO content) were also characterized.  

 

2.5. X-ray photoelectron spectroscopy (XPS) 

XPS measurements were performed on a VG Scientific ESCALAB200 A equipment 

with PISCES software for data acquisition and analysis. For analysis, an achromatic Al 

(Ka) X-ray source operating at 15 kV (300 W) was used, and the spectrometer, 

calibrated with reference to Ag 3d5/2 (368.27 eV), was operated in CAE mode with 20 
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eV pass energy. Data acquisition was performed with a pressure lower than 10
−6

 Pa. 

Spectra have been charge corrected to give the adventitious C 1s spectral component 

(C–C, C–H) a binding energy of 285 eV. High-resolution spectra were collected using 

an analysis area of ≈1 mm
2
. The peaks were constrained to have equal FWHM to the 

main peak. This process has an associated error of ±0.1 eV. Spectra were analyzed for 

elemental composition using CasaXPS software (version 2.3.15). Deconvolution into 

sub-peaks was performed by least-squares peak analysis software, XPSPEAK version 

4.1, using the Gaussian/Lorenzian sum function and Shirley-type background 

subtraction. The best mixture of Gaussian–Lorentzian components was defined based 

on the instrument and resolution (pass energy) settings used as well as the natural line 

width of the specific core hole. 

 

2.6. Field emission scanning electron microscopy (FESEM) and energy dispersive X-

ray (EDX) 

A Zeiss Ultra 55 FESEM was used to observe the morphology of the samples using an 

acceleration voltage of 3 kV. Energy dispersive X-ray (EDX) measurements were 

performed between 0 and 10 kV. 

 

2.7. Electrical characterization by electrochemical impedance spectroscopy (EIS) 

An Autolab PGSTAT302 potentiostat/galvanostat was used to perform EIS analyses. 

EIS measurements were performed in the 10
5
-10

-2
 Hz frequency range. The amplitude 

of the sinusoidal voltage used was ± 10 mV. Measurements were carried out in a two-

electrode arrangement, in which the sample was located between two round copper 

electrodes (A = 1.33 cm
2
). In the second configuration, two rectangular copper 

electrodes (0.5 cm × 1.5 cm) separated by 1.5 cm and pressed on the fabric sample were 
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used. The measured area of the fabric with this configuration was a square of 1.5 cm so 

the measured impedance modulus (Ω) was equal to the surface resistivity (Ω/□) [19, 

20]. 

 

2.8. Electrochemical impedance spectroscopy (EIS) measurements in solution 

A standard three-electrode design was used to measure the EIS response of PES-

PPy/GO samples in 0.1 M H2SO4 solutions. An asymmetrical configuration 

metal/sample/electrolyte was used. The sample was mounted on a stainless steel plate 

(used to produce the electrical connection). An Ag/AgCl (3.5 M KCl) electrode and 

stainless steel rod were used as reference electrode and counter electrode, respectively. 

The effective area used was 0.28 cm
2
. 

The experimental results were also fitted using a non-linear least squares fitting 

minimization method by ZView software (version 2.7).  

 

2.9. Cyclic voltammetry (CV) measurements 

An Autolab PGSTAT302 potentiostat/galvanostat was used to perform CV 

measurements in 0.1 M H2SO4 medium. To produce the electrical contact with the 

fabrics, they were located between two Ti plates. The measurements were performed in 

a three-electrode arrangement. A Pt wire was used as counter electrode and its 

preparation consisted of a flame treatment to clean its surface prior to carrying out the 

synthesis, according to the method developed by Clavilier [23]. The working electrode 

was made by cutting a strip of the conducting fabrics. Potential measurements were 

referred to Ag/AgCl (3.5 M KCl) reference electrode. Oxygen was removed from 

solution by bubbling nitrogen gas for 15 min and then an N2 atmosphere was 

maintained during the measurements. The ohmic potential drop was measured and 
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introduced in the Autolab software (GPES). The measurements were taken between -0.2 

V and 0.7 V at different scan rates (50, 5 and 1 mV s
-1

). 

 

2.10. Scanning electrochemical microscopy (SECM) 

SECM measurements were carried out with a scanning electrochemical microscope of 

Sensolytics. A three-electrode configuration cell consisting of a 25 or 100-μm-diameter 

Pt microelectrode, a Pt wire auxiliary electrode and an Ag/AgCl (3.5 M KCl) reference 

electrode. Measurements were performed in Ru(NH3)6
3+

 0.01 M and 0.1 M KCl 

(supporting electrolyte). All the experiments were carried out in an inert nitrogen 

atmosphere. The substrates were samples (0.5 cm
2
) cut from the different fabrics PES-

PPy/GO (10%), PES-PPy/GO (20%), PES-PPy/GO (30%). Additional measurements 

were also performed on the conductive fabrics with another redox mediator (0.01 M 

Fe
3+

 in 0.5 M H2SO4 solutions). In this case the microelectrode employed was the 100-

μm-diameter one. 

Disks of PPy/AQSA, PPy/PW12O40
3-

 and PPy/GO powders with different GO contents 

(10, 20 and 30%) were also analyzed by SECM. In this case, the microelectrode used 

was the 25-μm-diameter one, since the disk sample was flat and smooth.  

The samples (either fabrics or powder disks) were glued to microscope slides with 

epoxy resin. The microelectrode operated at a potential of -0.4 V Ru(NH3)6
3+

, or -0.1 V 

(Fe
3+

) at which the oxidized form of the redox mediator (Ox) is reduced (Red) at 

diffusion controlled rate. Approach curves were obtained by recording the tip reduction 

current as the Pt microelectrode tip was moved in z direction. Approach curves give us 

an indication of the electroactivity of the surface. These curves were compared to the 

theoretical ones (positive and negative feedback models). The substrate’s surface in all 

the measurements were at their open circuit potential (OCP).  
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3. Results and discussion 

3.1. FTIR-ATR characterization 

Fig. 1 shows the FTIR characterization of GO and PPy-GO powders with different GO 

contents (10, 20 and 30 %). The band around 1540 cm
-1

 was associated to the pyrrole 

ring stretching vibration (C=C). C-C stretching vibration can be observed at 1450 cm
-1

. 

The band at 1300 cm
-1

 was attributed to C-N stretching vibration. The characteristic 

bands of the bending vibration of pyrrole can be observed at 775, 1037 and 1162 cm
-1

 

[16, 24]. The band at 1092 cm
-1

 was attributed to the N
+
-H in plane deformation. The 

band at 956 cm
-1

 was attributed to C-C out of plane deformation. The band at 890 cm
-1

 

was ascribed to Cβ-H out of plane vibration [24]. The band at 842 cm
-1

 was ascribed to 

C-H rocking [25]. There was little variation of the different PPy bands with the GO 

content.  

The spectrum of GO powders is also presented as reference. The main features are: the 

band around 1720 cm
−1

 which was ascribed to stretching vibrations from C=O. The 

peak at 1613 cm
−1

 arises from C=C from unoxidized sp
2
 bonds. The band at 1220 cm

−1
 

was ascribed to C-OH stretching vibrations, and finally the band around 1050 cm
−1

 was 

attributed to C-O stretching vibrations [13]. In the PPy/GO spectra, the presence of a 

band around 1700 cm
-1

 is the evidence of the presence of GO. This band corresponds to 

C=O stretching vibrations and suffered a displacement to lower wavenumbers due to the 

π-π interactions and hydrogen bonding between polypyrrole rings and GO sheets [26].  

Fig. 2 shows the characterization spectra of polyester fabrics, the most representative 

bands are: 720 cm
-1

 (out of plane benzene group), 960 cm
-1

 (C−O stretching of glycol), 

1014 cm
-1

 (in-plane vibration of benzene), 1090 cm
-1 

(ester C=O stretching), 1236 cm
-1

 

(ester C=O stretching) and 1714 cm
-1

 (C=O stretching of aromatic ester) [27]. When 
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PES fabrics were coated with the different PPy/GO coatings, the removal of the 

different PES bands and the appearance of the different PPy bands that were described 

in Fig. 1 could be observed. The presence of the band around 1700 cm
-1

 and attributed 

to C=O stretching vibration in GO is also worth highlighting [26]. The PPy/GO layer is 

thick enough to avoid the penetration of the IR radiation until the PES substrate and 

hence PES bands are hardly observed. 

 

3.2. FESEM and EDX 

Fig. 3 shows the characterization of the different PPy/GO coatings on PES by SEM. 

Fig. 3-a shows the original PES fabric. As can be seen, the surface of the fibers is quite 

smooth with no mentionable features. Fig. 3-b shows the PES-PPy/GO (10%) sample. It 

can be seen that the fibers are coated with a continuous PPy layer. In addition, the 

formation of PPy/GO aggregates on the surface of the fibers can also be observed. 

When the GO content was increased to 20% (Fig. 3-c) and 30% (Fig. 3-d), there was not 

a substantial modification of the morphology. However, an increase in the GO sheets 

content on the fibers could be easily observed. In Fig. 3-e, the surface of the fiber coated 

with PES-PPy/GO (30%) is magnified for better observation. In this micrograph the 

incorporation of GO sheets in the PPy coating can be seen. Some GO sheets are trapped 

in the polymer structure (the sheets have been circled for easy observation). Fig. 3-f 

shows the magnification of PPy/GO aggregates in a zone where they were observed on 

the surface of the fibers. The GO sheets can be clearly observed on the micrograph. All 

the sheets are coated with a continuous layer of PPy. Fig. 3-g shows the magnification 

of a GO sheet coated with PPy nanoparticles [28] that agglomerate and form globular 

morphology. Fig. 3-h shows the morphology of a GO sheet prior to performing the PPy 

polymerization for comparison; GO sheet shows the characteristic wrinkles [29] that 
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help to locate them on the surface of the fibers [13]. The wrinkles are no longer 

observed after PPy deposition since the PPy film is thick enough to avoid observation. 

More work is in progress to evaluate the rubbing and washing fastness as well as its 

improvement by plasma technique treatments. 

An EDX analysis was performed on the surface of the PES-PPy/GO (30%) sample as 

example (Fig. 4-a). The most remarkable elements are C, O and N. Carbon arises from 

pyrrole (C4H5N) and graphene oxide. Nitrogen arises from pyrrole units. And the source 

of oxygen is mainly graphene oxide. Taking into account the atomic nitrogen content 

obtained (10.83%), the carbon content arising from polypyrrole was calculated 

(43.32%). The source for the rest of the carbon (32.03%) corresponds to graphene 

oxide. The O/C (32.03/10.83) ratio obtained was 0.4; which is in agreement with 

previous results obtained [14]. The presence of sulfur arises from the synthesis method 

employed to obtain graphene oxide powders which employs sulfuric acid among other 

strong acids and oxidants [30]. 

Carbon, oxygen and nitrogen distribution maps were performed to see the local 

distribution of these elements on the surface of the PES-PPy/GO (30%) sample (Fig. 4-

b, c, d, respectively). The analyses were performed with FESEM, where no additional 

coating was applied on the surface of the samples. Oxygen is well distributed on the 

surface of the fiber, which indicates that GO has been incorporated in the PPy structure. 

Nitrogen arising from PPy was also well distributed on the surface of the fibers which 

indicates a uniform deposition of PPy. 

 

3.3. X-ray photoelectron spectroscopy (XPS) 

The relative chemical composition (C, N, O and Cl) and atomic ratios (O/C and N/C) of 

the polypyrrole (PPy) powders synthetized with different GO concentrations as counter 
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ion (10, 20 and 30 %wt) and the polyester (PES) fabric coated with the PPy/GO 

composite were analyzed by XPS (Table 1). In the PPy/GO powders, the presence of 

different concentration of GO leads to significant differences in the atomic O/C and 

N/C, especially for 30 %wt of GO. In the presence of 30 %wt of GO, the O/C ratio is an 

order of magnitude higher compared to 10 and 20 %wt. These results, in addition to the 

significant decrease of the N/C ratio for the 30 %wt of GO, indicate a lower polypyrrole 

content in this sample. The fraction of powders analyzed seem to have a higher GO 

content and lower PPy one. The growth of PPy takes place progressively on the surface 

of the fabric. Positive charges are created in the structure of the polymer and they are 

neutralized by the negative charges provided by GO. The growth continues till the 

monomer is exhausted or the polymerization process is stopped. At the same time, the 

excess of GO and Py (pyrrole) react in solution and produce the PPy/GO powders. In 

the case of the PPy powders containing the 30% GO, it seems that the quantity of GO is 

excessive and the quantity of PPy on the GO sheets is lower than with the other GO 

contents (10 and 20 %). This does not happen in the case of the fabric, where GO is 

progressively incorporated as the film grows to compensate the positive charges created 

in the structure of the polymer.  

On the other hand, the coated PES fabrics show only a two-fold increase in the O/C 

ratio in the composite with 30 wt% of GO without significant changes in the N/C ratio. 

These results could indicate uniform deposition of the PES-PPy/GO composite on the 

fibers surface and confirm that GO has been uniformly incorporated in the PPy 

structure.  

The C1s spectra of the PPy/GO nanocomposite powders can be deconvoluted in four 

peaks (Figure S1 - a, b ,c) centered at 284.6, 285.5, 287.1 and 288.5 eV attributed to the 

C–C, C–N, C–OH/C=O, and O-C=O, respectively [14, 31]. A fifth satellite peak at 291 
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eV is attributed to the C1s shake-up [32]. The C1s spectra exhibit a decrease of the 

carbon binding to nitrogen as function of the GO content, which is associated to the 

lowering of PPy in the composite (Table 2). At the same time, the increase in intensity 

of the peak associated with the C-C component and with the carbons binding to oxygen 

(especially the O-C=O) confirms the incorporation of GO in the polymer matrix [31, 

33]. It was not possible to separate the contributions of C-O and C=O peaks in the C1s 

region that was deconvoluted in a unique peak at 287.1 eV.  

The C1s envelope of the PES-PPy/GO nanocomposite can be deconvoluted in three 

peaks (Fig. S1 - d, e , f) centered at 285, 286.7 and 288.5 eV attributed to the C–C/C–N, 

C–OH, and O-C=O, respectively. A fourth satellite peak at 291 eV is attributed to the 

C1s shake-up [32]. No separate deconvolution was possible between the C-C and C-N 

component peaks and a unique peak centered at 285 eV was reported, suggesting a 

uniform incorporation of GO in the PPy structure on the coated PES [34]. The C-C/C-N 

component decreases to lower values (from 71% to 65%) as a function of the GO 

content, due to the lowering on the C-N component of the PPy structure.  

Interestingly, the peak previously observed at 287.1 eV shifted to a lower value at 286.7 

eV attributed to the presence of carbon single bonded to oxygen. However, no 

significant change in percentage of this component was observed in presence of 

different concentrations of GO. The overestimation of the C-O groups from C1s fitting 

could be due to the presence of the satellite component related to the electronic structure 

of PPy as previously observed [35]. The increase from 11% to 16% of the peak related 

to the O-C=O functionalities at 288.5 eV suggests that in the PPy/GO coated on the PES 

fibers the component of the carbons double bonded to oxygen had undergone chemical 

changes due to better incorporation of the two components in the nanocomposite [31]. 
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In order to understand the different contribution of the single and double bonded oxygen 

in the nanocomposite synthesis, the O1s region was also analyzed. The O1s XPS spectra 

of PPy/GO powders are illustrated in Fig. S2 (a, b, c), which is deconvoluted into three 

peaks. The peaks at 530.6, 532 and 533.4 eV are ascribed to O-C=O, C=O and C–O–

C/C–OH, respectively [36]. As observed before in the C1s spectra, the C-O and C=O 

components of the PPy/GO powders show discrepancies in the oxygen species in 

function of the GO content, confirming the presence of agglomerates. The increase in 

the carboxylic groups (from 19.4% to 39.5%) demonstrated the high level of oxidation 

due to the presence of increasing amount of GO in the PPy structure.  

The BE values for O1s in the PES-PPy/GO (Fig. S2 – d, e, f) nanocomposite 

components confirm, once again, the uniform incorporation of GO in the PPy structure 

coated on PES. Coherence between the independent fittings of C1s and O1s signals was 

observed. The double bonded oxygen components can be deconvoluted in a single peak 

at 531.8 eV, which increases with the increase of GO in the coating, confirming the 

conversion of the C=O and O=C–OH groups to a new chemical species in the uniformly 

dispersed nanocomposite. At the same time, the peak at 533.4 eV of C-O (epoxy and 

alkoxy) decreases noticeably, indicating that these functional groups are partially 

removed [37].  

In the N1s XPS core-level spectra (Fig. S3), the peak at 400.1 eV is attributed to the 

neutral and amine-like structure (C-N, N-H). The spectra do not show the peak at 398.3 

attributed to quinonoid imine (=N–), which indicates that the PPy composites prepared 

present few defects [38]. Conversely, the peak at 401.7 eV is due to the positively 

charged nitrogen atoms with protonation (N-H+) and is correlated with the doping level 

(N
+
/N) of the composite [39]. In both the powder and PES coated PPy/GO 

nanocomposites, the doping level decreases with the addition of GO. The decrease of 
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the doping level indicates a lower conductivity of the samples. This was confirmed by 

electrical measurements performed by EIS.  

The deconvoluted Cl2p spectra (Fig. S4) show four peaks centered at 197.5, 198.8, 

200.3 and 202 eV [40, 41]. The first peak with the lowest BE corresponds to chlorine in 

the ionic form (Cl
-
 anion), while the other is indicative of intermediate chlorine species 

(Cl
*
) due to a charge transfer between the polypyrrole backbone and the chloride [42]. 

This indicates a partial doping from chloride species. The two peaks located at 200.3 eV 

(2p
3/2

) and 202 eV (2p
1/2

) are attributed to covalent chloride (C-Cl) [43, 44].  

 

3.4. Electrical characterization by EIS 

EIS technique was used to measure the electrical properties of the conductive fabrics. 

The impedance modulus |Z| was used to measure the electrical resistance of the 

samples. The phase angle was used as an indication of the conductive/insulating 

behavior of the samples.  

Fig. S5 shows the Bode plots for the samples of PES-PPy/GO (10%), PES-PPy/GO 

(20%) and PES-PPy/GO (30%), the averaged values of impedance modulus obtained 

were 0.45 Ω, 0.47 Ω and 1.09 Ω, respectively. There was an increase in the resistance of 

the fabrics with the increasing GO content. The –phase angle also showed values near to 

0º for all the samples. A value of –phase angle of 0º indicates that the samples behave 

like a resistive material (conducting material). On the other hand, values of 90º would 

indicate a capacitive behavior (insulating material). 

Sheet resistance of the fabrics was obtained with the second electrode configuration, 

where two rectangular copper electrodes (0.5 cm × 1.5 cm) separated by 1.5 cm and 

pressed on the fabric sample were used. The measured area of the fabric with this 

configuration was a square of 1.5 cm so the measured impedance modulus (Ω) was 
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equal to the surface resistivity (Ω/□) [19, 20]. The different values of surface resistivity 

obtained for the samples of PES-PPy/GO (10%), PES-PPy/GO (20%) and PES-PPy/GO 

(30%) were 177 Ω/□, 385 Ω/□, 472 Ω/□, respectively (Fig. 5). The –phase angle was 

also near to 0º, indicating a pure resistive behavior. There was an increase of impedance 

modulus and sheet resistance with the GO content. The increase of resistance with the 

increasing GO content is in accordance with the XPS results, where a decrease of the 

doping level (N
+
/N) was also observed. 

The fabrics obtained could be used as antistatic materials since static charging of the 

fibers is excluded for sheet resistance below 5·10
9
 Ω/□ [45]. The values of surface 

resistivity obtained when employing an organic (AQSA) or inorganic (PW12O40
3-

) 

counter ions were 45 Ω/□ and 250 Ω/□, respectively [17, 18]. The planar structure of 

the counter ion AQSA allows a better arrangement of PPy chains than the 3-D 

molecules of PW12O40
3-

 [16]. The conductivity of the samples containing 10% GO was 

near to that obtained with the inorganic counter ion. Although GO is plain, its size can 

reach several microns (this size is the order of Å in the case of AQSA or PW12O40
3-

). Its 

behavior seems to be more like a 3-D counter ion than a planar one. In bibliography, a 

decrease of conductivity was observed when using bulky counter ions [24]. However, 

bulky counter ions have the advantage that they remain retained in the polypyrrole 

structure due to their difficult diffusion [46]. 

 

3.5. Electrochemical impedance spectroscopy (EIS) in solution 

Electrochemical impedance spectroscopy in solution was used to analyze the 

electrochemical behavior of the conducting fabrics. The inset in Fig. 6-b shows the 

equivalent electrical circuit used to fit the experimental data [47]. The equivalent 

electrical circuit is composed of: 
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- Ren: is a resistance that includes the electrolyte resistance (Re), the electronic 

resistance of the fabrics (Rf) and the electronic charge transfer resistance 

between the tweezers and the fabric (Rmfe). 

- Rfsi: ionic charge transfer at the PES-PPy/GO interface corresponding to the 

counter ion exchange. In this case, since bulky GO acts as a negative counter ion 

immobilized in the PPy structure, the cations diffuse through the PPy/GO to 

produce the charge compensation [26]. 

- Cfsi: Space charge capacitance at the PES-PPy/GO corresponding to the counter 

ion exchange. 

- Rfsie: Ion-electron charge transfer resistance at the PES-PPy/GO | solution 

interface with redox species. 

- W: Warburg impedance due to counter-ion diffusion. W-R: Diffusion resistance. 

W-T:  l
2
/D (s), l: length of the diffusion layer, D: binary electron–ion diffusion 

coefficient. W-P: Warburg exponent. 

Fig. 6-a show the Nyquist plots for the different conducting fabrics. In Fig. 6-b the 

Nyquist plot has been magnified for better observation of the high frequency region. 

Fig. 6-c shows the impedance modulus |Z| vs. frequency plot and Fig. 6-d represents the 

–phase angle vs. frequency plot. In all the plots, the experimental data has been 

represented by dots and the fitted data has been represented by continuous lines. The 

most remarkable features are the following: As can be seen in Fig. 6-b, there was a clear 

increase of the ionic charge transfer resistance at the PES-PPy/GO interface (Rfsi) as 

the GO content was increased. The other remarkable feature was the increase in the ion-

electron charge transfer resistance (Rfsie) at the PES-PPy/GO textile/solution interface 

with redox species when the GO content was increased. The increase in Rfsie indicates 

a lower electroactivity of the fabrics when the GO content increased. The different 
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values of the fitted parameters can be observed in Table 3. Fig. 6-c shows an increase of 

the impedance modulus |Z| at the lower frequencies with the increasing GO content, 

which indicates an increase of the diffusion electrical resistance when the GO content 

was increased. Fig. 6-d shows the Bode plot, where two time constants can be observed. 

The process at high frequencies (>10
2
 Hz) is due to the space charge capacitance at the 

PES-PPy/GO corresponding to the counter ion exchange. The process at low 

frequencies (10
-1

 to 10
2
 Hz) with –phase angle reaching nearly 45º at 10

-2
 Hz is due to 

the Warburg diffusion. 

 

3.6. Cyclic voltammetry 

Fig. 7-a shows the voltammetric characterization of the PES-PPy/GO (10%) sample at 

different scan rates. As can be seen, the scan rate has an influence on the 

electrochemical response obtained. The charge transfer proceeds through the conducting 

polymer chains since PES is an insulating material. Only if low scan rates are used, the 

oxidation/reduction of PPy can be observed properly due to the slow kinetics of 

oxidation/ reduction on the fabrics. Otherwise, a more resistive response is obtained as 

observed for higher scan rates. This type of behavior has been previously observed with 

this type of materials and is related to the slow electron transfer [17, 48]. 

Yaghoubidoust et al. obtained PPy coated fabrics which showed more capacitive 

behavior at higher scan rates (50 mV·s
-1

) although a resistive form was still obtained 

[49]. In this case, the authors previously deposited a GO layer on the fabrics and later 

synthesized the PPy layer, obtaining a bilayer coating. The GO was partially reduced 

and this could provide conductive pathways that accelerate the electron transfer.  

Fig. 7-b shows the comparison of the voltammograms of the conducting fabrics 

obtained with different GO contents. The scan rate of 1 mV·s
-1

 was used to compare the 
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results. As can be seen, as the GO content increases, there is a decrease of 

electroactivity since lower currents and lower electrical charge are obtained. The 

increase in the GO content leads to a decrease in the electroactivity. This result is in 

accordance to the results obtained by means of XPS and EIS. 

 

3.7. Scanning electrochemical microscopy (SECM) 

The electroactivity of the different PES-PPy/GO and PPy/GO samples was tested by 

means of SECM with feedback mode. The reduction current when the oxidized form of 

the redox mediator (Ox) is reduced (Red) is measured as the microelectrode approaches 

the surface to be studied. The potential of the microelectrode was fixed at -0.4 V, where 

the oxidized form of the redox mediator (Ru(NH3)6
3+

) is reduced (Ru(NH3)6
2+

) on the 

microelectrode’s surface at a diffusion controlled rate (i∞) (Fig. S6-a). The measured 

current is defined as i∞ = 4·n·F·D·C·a, where n is the number of electrons, F is the 

Faraday constant, D is the diffusion coefficient, C is the bulk concentration of the redox 

mediator and a is the radius of the microelectrode tip. 

In approach curves, the normalized reduction current registered at the microelectrode (I) 

is represented vs. the normalized distance (L). The normalized current is defined as 

follows: I = i/i∞ where ―i‖ is the current measured at the microelectrode tip and i∞ is the 

diffusion current defined above. The normalized currents depend on RG (RG=Rg/a, 

where Rg is the radius of the insulating glass surrounding the Pt tip of radius ―a‖) and 

the normalized distance L; where L=d/a (d is the microelectrode-substrate separation). 

The RG of the microelectrode used in this work was RG ≥ 20. 

Depending on the distance between the microelectrode and the substrate and the 

electroactivity of the substrates, different situations can happen: 
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- If the microelectrode is far away from the substrate, the diffusion current is 

measured (i∞). The normalized current (I) is equal to 1. 

- If the microelectrode approaches a non-conductive substrate, there is a hindrance 

to the diffusion of Ox species. The surface of the sample is not able to regenerate 

(oxidize) the reduced form of the redox mediator (Red), hence there is a 

decrease in the reduction current on the surface of the microelectrode, i<i∞. This 

situation is known as negative feedback [50] and is characterized by I < 1.  

- On the other hand, if the substrate is conductive, when the microelectrode 

approaches the surface of the sample, there is an increase in the oxidized redox 

species flux (Ox). The surface potential of the sample is able to regenerate 

(oxidize) the redox mediator. This causes an increase in the current measured on 

the microelectrode, i>i∞. This case is known as positive feedback [50] and is 

characterized by I > 1.  

Experimental approach curves were compared with a theoretical one for positive 

feedback model, according to equation 1. According to Rajendran el al. [51], Pade’s 

approximation gives a close and simple equation with less relative error for all distances 

and valid for RG > 10. The approximate formula of the steady-state normalized current 

assuming positive feedback for finite conductive substrate together with finite insulating 

glass thickness is: 

 

     (1) 

 

Fig. 8-a and Fig. 8-b show the approach curves for PPy doped with an organic counter 

ion (AQSA) and an inorganic counter ion (PW12O40
3-

), respectively. More positive 
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values of positive feedback were achieved in the case of AQSA (in the range 2.3-2.7). 

This indicates that PPy doped with AQSA is slightly more electroactive than when 

doped with the inorganic counter ion PW12O40
3- 

(in the range 1.7-2.4). The curve for the 

positive feedback model is also presented for comparison as a discontinuous line in the 

different graphics, and as can be seen, the experimental data adjusts to the theoretical 

model. A comparative of electroactivity measured by SECM of PPy depending on the 

nature of the counter ion had not been established in bibliography to the best of our 

knowledge. Fig. 8-c, d, e shows the different approach curves obtained for PPy/GO 

pellets doped with the different GO contents (10, 20 and 30 %), respectively. All the 

samples presented positive feedback indicating the electroactivity of the composites. 

The highest electroactivity was obtained for the sample with the lowest GO content (10 

%). The values of positive feedback obtained were in the range 1.8-2.1. When the GO 

content was increased, there was a decrease of the electroactivity and the positive 

feedback values were reduced to values of 1.4-1.5. However, the electroactivity was 

clearly reduced when comparing the results to the organic and inorganic counter ions. 

The electroactivity followed this order: PPy/AQSA > PPy/PW12O40
3-

 > PPy/GO. The 

size of the counter ion has a clear effect on the electroactivity of the PPy samples. The 

higher the size of the counter ion, the lower the electroactivity is. 

Fig. 8-f shows the SECM approach curves of the PES fabrics coated with PPy/GO with 

the different GO contents (10, 20 and 30 %). As can be seen, there was not a substantial 

variation in the positive feedback values and a value around 1.3 was obtained for all the 

fabrics. The decrease in the value of positive feedback of the conductive fabrics when 

compared with the pellets could be related to the existence of gaps between the fibers of 

the fabrics. In the gaps, there is no conductive material and the positive feedback value 

decreased in comparison to the continuous and flat surface of the PPy/GO pellets. The 
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approach curves for PES fabrics coated with PPy/AQSA and PPy/PW12O40
3-

 followed 

the same trend as the pellets. The respective approach curves for both types of fabrics 

can be found in bibliography [17, 18].  

The redox mediator (Ru(NH3)6
3+/2+

 is an outer sphere redox mediator and is not 

sensitive to surface oxides [52], thus, it is not able to detect the presence of surface 

oxides on the GO surface. In contrast, the redox mediator Fe
3+/2+

 is sensitive to surface 

oxides, this is why it was also used to test the electroactivity of the PES-PPy/GO 

fabrics. In this case, the Pt tip was polarized at 0.1 V where Fe
3+

 is reduced to Fe
2+

 at 

diffusion controlled rate (Fig. S6-b). Fig. 9 shows the approach curves for the fabrics 

coated with PPy and different GO contents. Differences in the positive feedback degree 

between the different fabrics were not observed, and similar curves were obtained 

independently of the GO content. However, an increase in the positive feedback value 

was observed. In this case values of positive feedback around 1.7-1.8 were achieved. 

This difference of positive feedback between the (Ru(NH3)6
3+/2+

 and the Fe
3+/2+

 redox 

mediator (1.3 vs. 1.7-1.8) can be attributed to the presence of GO in the PPy structure 

since the Fe
3+/

Fe
2+

 redox mediator is sensitive to surface oxides presence. 

 

4. Conclusions 

Polypyrrole doped with graphene oxide has been synthesized on polyester fabrics by 

chemical oxidation. This has been the first report using GO as counter ion in the 

production of conductive fabrics. Polypyrrole was doped with different GO contents 

(10%, 20% and 30%). The most remarkable fact was that conductivity and 

electroactivity of PES-PPy/GO could be tuned by varying the GO content in the 

synthesis solutions. The different chemical characterization techniques showed the 

formation of the PPy/GO composite. In FTIR-ATR spectra, the different PPy bands 
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appeared and the PES bands almost vanished indicating a good thickness of the PPy 

coating on the fabrics. The presence of a band at 1700 cm
-1

 corresponding to the 

stretching vibration of C=O indicated the incorporation of GO as counter ion. EDX 

showed a good distribution of oxygen in the PPy/GO coatings which indicates a good 

distribution of GO in the composite. XPS measurements showed an increase in the 

oxygen content and in the oxidized groups as the GO content increased. A decrease in 

the doping level of PPy (N
+
/N) with the increasing GO content was also observed. 

Evidence for the incorporation of GO in the PPy’s structure was also obtained from 

FESEM. The PPy/GO powders not fixed on the fibers showed the typical planar 

structure of GO coated with PPy in the form of globules.  

The electrical properties measured by EIS, showed the increase in resistance/ surface 

resistivity with the GO content. In general, a decrease in electroactivity was also 

observed as the GO content increased, as measured by EIS in solution and CV and 

SECM. For SECM measurements with the fabrics, similar values of positive feedback 

were obtained regarding the GO content. Another redox mediator, Fe
3+

/Fe
2+

 which is 

sensitive to surface oxides, confirmed the presence of GO in all the fabrics.   

An organic (AQSA) and an inorganic counter ion (PW12O40
3-

) were also used as counter 

ions to obtain composites with PPy and compare the results with those obtained for 

PPy/GO powders. When comparing the different counter ions used, the electroactivity 

followed this order: PPy/AQSA > PPy/PW12O40
3-

 > PPy/GO. The decrease of 

electroactivity can be attributed to the increasing size of the counter ion employed. 

However, bulky counter ions have the advantage that they remain retained in the 

polymer structure.  
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Fig. 1. FTIR-ATR spectra of GO powders, and PPy/GO powders (10, 20 and 30% GO 

content). Resolution 4 cm
−1

, 400 scans.  

 

Fig. 2. FTIR-ATR spectra of PES fabrics and PES fabrics coated with PPy/GO (10, 20 

and 30% GO content). Resolution 4 cm
−1

, 400 scans.  

 

Fig. 3. FESEM micrographs of (a) PES (x 2 K), (b) PES-PPy/GO (10%) (x 2 K), (c) 

PES-PPy/GO (20%) (x 2 K), (d) (e) (f) (g) PES-PPy/GO (30%) (x2 K) (x 10 K) (x 10 

K) (x 50 K), (h) GO (x 50 K). 

 

Fig. 4. a) EDX spectra and b) C, c) O and d) N distribution element maps of the PES-

PPy/GO (30%) sample. 

 

Fig. 5. Bode plots for PES-PPy/GO (10%), PES-PPy/GO (20%) and PES-PPy/GO 

(30%). Measurements between two copper electrodes above the samples. Distance 

between electrodes 1.5 cm. Textile measured area 1.5 cm x 1.5 cm. Frequency range 

from 10
5
 Hz to 10

-2
 Hz. a) |Z| vs. frequency plot, b) –phase angle vs. frequency plot. 

 

Fig. 6. a), b) Nyquist plots of a PES-PPy/GO (10, 20 and 30 % sample) in 0.1 M H2SO4 

(inset, simplified equivalent circuit for metal/ PPy-GO coated PES/ non-blocking 

electrolyte system. c) Impedance modulus |Z| vs. frequency plot. d) –phase angle vs. 

frequency plot. Exposed electrode area: 0.28 cm
2
. Frequency range from 10

5
 to 10

−2
 Hz. 

(—) Fitting of experimental data. 
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Fig. 7. a) Cyclic voltammograms of PES-PPy/GO (30 %) at different scan rates (50, 5 

and 1 mV·s
-1

). b) Cyclic voltammograms of PES-PPy/GO (10 %, 20 % and 30 %) at 1 

mV·s
-1

. Second scan for all measurements. 

 

Fig. 8. Approaching curves for: a) PPy/AQSA; b) PPy/PW12O40
3-

; c) PPy/GO (10%); d) 

PPy/GO (20%); e) PPy/GO (30%); f) PES-PPy/GO (10%), PES-PPy/GO (20%) and 

PES-PPy/GO (30%). The theoretical positive feedback model has been included as a 

discontinuous line. Obtained with a 25 μm diameter Pt tip in 0.01 M Ru(NH3)6
3+

 and 0.1 

M KCl. The tip potential was -0.4 mV (vs. Ag/AgCl, 3.5 M KCl) and the approach rate 

was 10 μm·s
-1
. When analyzing the conducting fabrics a 100 μm diameter Pt tip was 

used. 

 

Fig. 9. Approaching curves for PES-PPy/GO (10%), PES-PPy/GO (20%) and PES-

PPy/GO (30%). The theoretical positive feedback model has been included as a 

discontinuous line. Obtained with a 100 μm diameter Pt tip in 0.01 M Fe
3+

 and 0.5 M 

H2SO4 solution. The tip potential was -0.1 V (vs Ag/AgCl) and the approach rate was 

10 μm·s
-1

. 

 

Table captions 

 

Table 1. Relative chemical composition (At%) and atomic ratio determined by XPS of 

PPy/GO powders (10, 20, 30% of GO content) and PPy/GO coated on PES fabrics (10, 

20, 30% of GO content). 
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Table 2. Results of the deconvolution analysis of the C1s, N1s, O1s and Cl2p peaks for 

the PPy/GO powder (10, 20, 30% of GO content) and PPy/GO coated on PES fabrics 

(10, 20, 30% of GO content). 

 

Table 3. Results of the fitting of impedance data of PES-PPy/GO (10, 20 and 30% GO) 

in 0.1 M H2SO4 solution. 

 

 

 

 

 



Table 1. Relative chemical composition (At%) and atomic ratio determined by XPS of 

PPy/GO powders (10, 20, 30% of GO content) and PPy/GO coated on PES fabrics (10, 

20, 30% of GO content). 

 

 

PPy/GO powders  PPy/GO coated on PES fabrics 

 GO 10% GO 20% GO 30%  GO 10% GO 20% GO 30% 

C1s  69.64 71.31 43.05  73.86 73.67 68.56 

N1s 12.41 14.30 3.53  13.54 13.15 11.54 

O1s 14.36 11.20 49.88  10.02 10.93 17.78 

Cl2p 3.58 3.19 3.54  2.59 2.26 2.12 

O/C 0.21 0.16 1.16  0.14 0.15 0.26 

N/C 0.18 0.20 0.08  0.18 0.18 0.17 

 

 

Table 1



Table 2. Results of the deconvolution analysis of the C1s, N1s, O1s and Cl2p peaks for the PPy/GO powder (10, 20, 30% of GO content) and 

PPy/GO coated on PES fabrics (10, 20, 30% of GO content).
 

  Relative area corresponding to different chemical bonds (%) 

 C1s (eV) O1s (eV) N1s (eV) Cl2p (eV) 

 284.6 285.0 285.5 286.7 287.1 288.5 291.0 530.6 531.8 532.0 533.4 535.5 400.1 401.7 197.5 198.8 200.3 202.0 

PPy/GO 10% 43.2 - 32.3 - 12.6 9.2 2.7 19.4 - 57.4 19.8 3.3 86.6 13.4 35.5 37.2 22.4 4.8 

PPy/GO 20% 46.5 - 27.8 - 14.6 8.3 2.9 29.6 - 38.8 28.1 3.4 87.3 12.7 37.1 30.8 22.8 9.3 

PPy/GO 30% 54.3 - 22.8 - 12.2 10.7 - 39.5 - 50.0 9.1 1.4 90.9 9.1 - 68.1 31.9 - 

PES-PPy/GO 10% - 71.1 - 16.1 - 10.8 2.0 - 63.1 - 36.9 - 88.7 11.3 49.3 32.4 12.8 5.4 

PES-PPy/GO 20% - 68.9 - 16.8 - 11.8 2.5 - 66.6 - 33.4 - 87.3 12.7 51.3 33.6 11.2 3.9 

PES-PPy/GO 30% - 65.9 - 16.5 - 15.7 1.9 - 78.7 - 21.3 - 89.2 10.8 34.9 34.8 22.6 7.7 

 

 

Table 2



 

Table 3. Results of the fitting of impedance data of PES-PPy/GO (10, 20 and 30% GO) 

in 0.1 M H2SO4 solution.  

 

Chi-Sqr Ren (Ω) Rfsi (Ω) W-R (Ω) W-T (s) W-P Cfsi (F) Rfsie (Ω) 

PES-PPy/GO (10%) 0,0038 53,63 3,963 2,651 0,15 0,41 1,41·10
-6

 601 

PES-PPy/GO (20%) 0,0043 56,88 6,72 1402 120,50 0,77 3,77·10
-7

 815 

PES-PPy/GO (30%) 0,0043 55,06 12,61 1973 116,00 0,81 5,92·10
-6

 1082 

 

 

Table 3
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Supplementary information: 

 

Fig. S1. High-resolution deconvoluted XPS spectra with relative areas of the C1s 

binding energy region of PES-PPy/GO powder with 10, 20, 30% of GO content (a, b 

and c, respectively) and PPy/GO coated on PES fabrics with 10, 20, 30% of GO content 

(d, e and f, respectively). 

 

Fig. S2. High-resolution deconvoluted XPS spectra with relative areas of the O1s 

binding energy region of PES-PPy/GO powder with 10, 20, 30% of GO content (a, b 

and c, respectively) and PPy/GO coated on PES fabrics with 10, 20, 30% of GO content 

(d, e and f, respectively). 

 

Fig. S3. High-resolution deconvoluted XPS spectra with relative areas of the N1s 

binding energy region of PES-PPy/GO powder with 10, 20, 30% of GO content (a, b 

and c, respectively) and PPy/GO coated on PES fabrics with 10, 20, 30% of GO content 

(d, e and f, respectively). 

 

Fig. S4. High-resolution deconvoluted XPS spectra with relative areas of the Cl2p 

binding energy region of PES-PPy/GO powder with 10, 20, 30% of GO content (a, b 

and c, respectively) and PPy/GO coated on PES fabrics with 10, 20, 30% of GO content 

(d, e and f, respectively). 

 

Fig. S5. Bode plots for PES-PPy/GO (10%), PES-PPy/GO (20%) and PES-PPy/GO 

(30%). Sample located between two metallic conductors. Frequency range from 10
5
 Hz 

to 10
-2

 Hz. a) |Z| vs. frequency plot, b) –phase angle vs. frequency plot. 
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Fig. S6. a) Cyclic voltammogram for a 25 μm diameter Pt microelectrode in 0.01 M 

Ru(NH3)6
3+

 and 0.1 M KCl. The potential was scanned from +0.1 V to -0.7 V (vs. 

Ag/AgCl, KCl 3.5 M) at 20 mV·s
-1

. b) Cyclic voltammogram for the 100 μm diameter 

Pt microelectrode in 0.01 M Fe
3+

 and 0.5 M H2SO4 solution. The potential was scanned 

from +0.7 V to -0.1 V (vs. Ag/AgCl, KCl 3.5 M) at 20 mV·s
-1

. 

 


