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1 Introduction

The investigation of the so-called Fréchet and (LB)-spaces of Moscatelli type was started
by Susanne Dierolf and the first author of this survey in the late 1980’s in [13, 14]. It was
continued later by several authors, as will be seen below. The motivation to call these spaces
“of Moscatelli type” came from important works of Bruno Moscatelli mainly related to the
approximation theory and Schauder bases on Banach spaces, Fréchet spaces and more general
locally convex spaces (l.c. spaces for brevity).

A sequence (xn)n in a l.c. space E is called a basis if every x ∈ E determines a unique
sequence (an)n in the scalar field such that the series

�
anxn converges to x in the topology

of E. Any l.c. space with a basis is separable. The basis (xn)n is called a Schauder basis of E
if its coefficient functionals un(x) := an, n ∈ N, are continuous. Every basis in a Fréchet space
is a Schauder basis. From this point on we will always write ‘basis’ and mean ‘Schauder basis’.

The problem whether every separable Banach space has a basis appeared in 1931 for the
first time in the Polish edition of Banach’s book [9, Chapter 7, section 3]. It was clear to
Banach, Mazur and Schauder that this question was related to an approximation problem
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mentioned by Mazur in the “Scottish Book” in 1936. This approximation problem was equiva-
lent to the question whether every l.c. space has the approximation property, a question which
was analyzed deeply by Grothendieck in his “thèse” [36]. A locally convex space E has the
approximation property (a.p.) if the identity of E is the limit of a net of finite rank operators
for the topology of uniform convergence on the absolutely convex compact subsets of E. If the
net is equicontinuous, it is said that E has the bounded a.p.

Banach’s problem was solved in the negative by Enflo in [31]: Each space �p (1 ≤ p ≤ ∞,
p �= 2), as well as c0, has a closed subspace without the a.p. The case �p, 1 ≤ p < 2, is due to
Szankowski in 1978. For a detailed account on approximation properties in Banach spaces see
Casazza [23].

Grothendieck [36] proved that every nuclear space has the approximation property. In 1960,
Dynin and Mitjagin proved that every equicontinuous basis in a nuclear space is absolute. For
a long time it was an open problem whether there exists a nuclear Fréchet space without a
basis. The first example of such a space was given by Mitjagin and Zobin; we refer the reader
to [37]. It was an open problem of Grothendieck since 1955 if every nuclear Fréchet space
had the bounded approximation property. This was solved in the negative by Dubinsky in
1981; the example was simplified considerably by Vogt in [55]. All the known examples are
based in a celebrated observation of Pelczyński that a Fréchet space with a continuous norm
and the bounded approximation property must be countably normable, i.e. the intersection
of a decreasing sequence of Banach spaces. Moscatelli presented a new construction in [48]
in 1991. Very recently, Vogt [58] gave an easy and transparent example of a nuclear Fréchet
space failing the bounded approximation property and consisting of C∞ functions on a subset
of R3. A nuclear Fréchet space of C∞ functions which has no basis had been constructed also
by Vogt in [57].

A different way to construct examples of nuclear Fréchet spaces without basis had been
presented by Moscatelli [47] in 1980. In fact, in this paper he answered negatively the following
question posed by Dubinski: Is every Fréchet space without continuous norm isomorphic to
a countable product of Fréchet spaces with a continuous norm? His approach is based on
the following result due to Floret and Moscatelli [33] (see also [50, 8.4.38]): Every Fréchet
space with an unconditional basis is topologically isomorphic to a countable product of Fréchet
spaces with a continuous norm and unconditional basis. Moscatelli’s idea is to use a “shifting”
device which is implicit in the example of Grothendieck and Köthe of a non-distinguished
echelon space. Moscatelli also utilized his method to construct a Fréchet space which is the
projective limit of a sequence of Banach spaces with surjective linking maps and which is not
isomorphic to a complemented subspace of a countable product of Banach spaces. A Fréchet
space E is called a quojection if it is the projective limit of a sequence of Banach spaces with
surjective linking maps or, equivalently, if every quotient with a continuous norm is a Banach
space for the quotient topology. Several authors proved that every quojection is a quotient of a
countable product of Banach spaces. We refer the reader to the excellent survey by Metafune
and Moscatelli [46] on quojections.

Constructions of Moscatelli type with a shifting device have been used since the mid 1980’s
several times to construct various counterexamples. For example, Dierolf and Moscatelli [27]
used this construction to find Fréchet spaces with a continuous norm such that its bidual does
not have a continuous norm. Examples of this type in the context of Köthe echelon spaces
were obtained by Terziouglu and Vogt [54]. Moscatelli type constructions also played a role in
Taskinen’s counterexamples [52] to the problem of topologies of Grothendieck [36]. Bonet and
Dierolf investigated this type of constructions in [13,14]. Albanese and Moscatelli studied in a
series of articles starting in 1996 the topological structure and the isomorphic classification of
Fréchet spaces of smooth functions which appear as an intersection of two spaces and turned
out to be of Moscatelli type in many cases. See Section 3 below.
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It is well-known that every non-normable Fréchet space admits a quotient isomophic to
ω, and that it has a subspace topologically isomorphic to ω if and only if it does not admit
a continuous norm; e.g. see [50]. In 1961, Bessaga, Pe�lczyński and Rolewicz showed that a
Fréchet space contains a subspace which is topologically isomorphic to an infinite dimensional
nuclear Fréchet space with basis and a continuous norm if and only if it is not isomorphic to
the product of a Banach space and ω. As a consequence of the results mentioned above, every
non-normable Fréchet space always contains a subspace which is isomorphic to a nuclear Köthe
echelon space. The situation for quotients is more complicated. Bellenot and Dubinsky in the
separable case in 1982, and Önal and Terzioğlu in general in 1990, proved the following result:
A Fréchet space E does not have a quotient which is nuclear with a basis and a continuous norm
if and only if the bidual E�� of E is a quojection. Fréchet spaces satisfying this condition were
introduced with another definition. Vogt showed that the original definition was equivalent
to the one mentioned above. Dierolf, Moscatelli, Behrends and Harmand constructed Fréchet
spaces E such that E�� is a quojection, but E is not a quojection. Fréchet spaces E such that
E�� is a quojection are called prequojections. More information about prequojections and the
results just mentioned can be seen in [46].

In Section 2 we recall the definition of Fréchet and (LB)-spaces of Moscatelli type, and
collect the main results obtained by Susanne Dierolf and the present authors. Section 3 presents
some results by Albanese and Moscatelli on Fréchet spaces of Moscatelly type consisting of
smooth functions. (LF)-spaces are discussed in Section 4. A sample of further related results
is contained in the final Section 5. Undefined notation about functional analysis and locally
convex spaces can be seen in the books [38], [37], [41], [50] and the survey paper [11].

2 Fréchet spaces of Moscatelli type

Definition 1. A normal Banach sequence space is a Banach space (L, � �) satisfying (α)
ϕ ⊂ L ⊂ ω with continuous inclusion, (β) For all a = (ak)k ∈ L and all b = (bk)k ∈ ω with
|bk| ≤ |ak|, k ∈ N, we have b ∈ L and � b �≤� a � .

Let Pn denote the projection onto the first n-coordinates. We assume that for all a ∈ L
(γ) � a �= limn � Pn(a) � .

We also consider the following properties on (L, � �)

(δ) If a ∈ ω and sup
n
� Pn(a) �< ∞, then a ∈ L and � a �= limn � Pn(a) � .

(�) limn � a− Pn(a) �= 0 for each a ∈ L.

If the sequence space L satisfies (ε), its dual can be identified with its α-dual (cf. [38]),
hence it is also a normal Banach sequence space.

Typical examples of normal Banach sequence spaces are (�p, � �p), 1 ≤ p ≤ ∞ or (c0, � �).

Definition 2. Given a sequence of Banach spaces (Xk, rk)k∈N and a normal Banach
sequence space (L, � �), we put

L((Xk, rk)k∈N) = { (xk)k∈N ∈

�

k∈N
Xk | (rk(xk))k∈N ∈ L }

endowed with the norm x →� (rk(xk))k∈N �. It is easy to check that L((Xk, rk)k∈N) is a Banach
space.

Definition 3. Given a normal Banach sequence space (L, � �) and two sequences of Ba-
nach spaces (Xk, rk)k∈N and (Yk, sk)k∈N with unit balls Ak and Bk respectively, and for every
k ∈ N let fk : Yk → Xk be a linear map such that fk(Bk) ⊂ Ak and having dense range.
For every n ∈ N we denote by Fn = L((Yk)k<n, (Xk)k≥n) and by gn : Fn+1 → Fn the norm
decreasing linear map given by gn((zk)k) = ((zk)k<n, fn(zn), (zk)k>n).
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The Fréchet space of Moscatelli type with respect to (L, � �), (Xk, rk)k∈N, (Yk, sk)k∈N,and
fk : Yk → Xk is the projective limit of the projective sequence of Banach spaces (Fn)n∈N with
linking maps (gn)n∈N.

Remark 1. The Fréchet space of Moscatelli type defined above coincides algebraically
with F = { (yk)k∈N ∈

�
k∈N Yk | (fk(yk))k∈N ∈ L((Xk, rk)k∈N) } and it has the initial topology

with respect to the inclusion j : F →
�

k∈N Yk and the map f : F → L((Xk, rk)k∈N), defined
as f((yk)k∈N) = (fk(xk))k∈N.

In case Xk = X and Yk = Y for all k ∈ N the assumption on the unit balls simply means
that there is a continuous linear map f : Y → X. If in addition Y is continuously included in
X, the Fréchet space of Moscatelli type is Y N �L(X) endowed with the intersection topology.

Fréchet spaces of Moscatelli type are Montel only when they reduce to a finite dimensional
space or to the space of all scalar sequences.

Proposition 1. The Fréchet space of Moscatelli type with respect to (L, � �), (Xk, rk)k∈N,
(Yk, sk)k∈N and fk : Yk → Xk is Montel if and only if each Yk is finite dimensional and there
exists k0 such that Xk = 0 for all k ≥ k0.

Albanese [1] proved even more.

Proposition 2. Complemented Montel subspaces of a Fréchet space F of Moscatelli type
are isomorphic to ω or finite dimensional.

To study other relevant properties of Fréchet spaces in this frame we need to investigate
the structure of duals. To this end we introduce the (LB)-spaces of Moscatelli type.

Definition 4. Given a normal Banach sequence space (L, � �) and two sequences of Ba-
nach spaces (Xk, rk)k∈N and (Yk, sk)k∈N such that, for every k ∈ N, Yk is a subspace of Xk

and sk ≥ rk|Yk . We set, for every n ∈ N, En = L((Xk)k<n, (Yk)k≥n), obtaining this way
an increasing sequence of Banach spaces. The (LB)-space of Moscatelli type with respect to
(L, � �), (Xk, rk)k∈N and (Yk, sk)k∈N is the inductive limit E = indn En.

In fact (LB)-spaces of Moscatelli type were studied before Fréchet spaces in connection
with complete and regular (LB)-spaces. The last question of Grothendieck on functional anal-
ysis which still remains open is whether every regular (LF)-space is complete. It is open even
for (LB)-spaces. A positive solution to this problem would imply that the completion of every
(LB)-space is also an (LB)-space. Since Bonet and Dierolf [14] showed that each regular (LB)-
space of Moscatelli type is complete and Dierolf and Kuß [30] proved that the completion of
an (LB)-space of Moscatelli type is again an (LB)-space, no counterexample to Grothendieck’s
problem can be constructed with this shifting device.

Theorem 1. Let (L, � �) be a normal Banach sequence space such that L satisfies property
(ε) and let F be the Fréchet space of Moscatelli type with respect to (L, � �), (Xk, rk)k∈N,
(Yk, sk)k∈N and fk : Yk → Xk. Then the inductive dual F �

i of F coincides algebraically and
topologically with the (LB)-space of Moscatelli type with respect to the duals.

Definition 5. A locally convex space F is distinguished if its strong dual F �
b is barrelled.

As Grothendieck proved, a metrizable space is distinguished if and only if F �
b is bornological.

Distinguished Fréchet spaces have a good behavior concerning the duality between (re-
duced) projective limits of Banach spaces and inductive limits of Banach spaces. In fact, if F
is the reduced projective limit of a sequence (Fn)n∈N of Banach spaces, F is distinguished if
and only if the strong dual F �

b coincides with the inductive dual F �
i := indnF

�
n.

Proposition 3. Let F be the Fréchet space of Moscatelli type with respect to (L � �),
(Xk, rk)k∈N, (Yk, sk)k∈N, and fk : Yk → Xk.

(i) If L and its dual L� have property (ε), then F is always distinguished.
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(ii) If Xk = X, Yk = Y and fk = f for all k and

(ii1) L has property (ε) but L� does not, or

(ii2) L does not satisfy property (ε),

then F is distinguished if and only if f is surjective.

Parts (i) and (ii1) for L = �1 follow from [13, 14] and use the representation of the duals
given in Theorem 1. For L = �∞ the characterization was given in [18]. The picture was
completed in [32].

The first example of a non-distinguished Fréchet space was given by Köthe and Grothen-
dieck in 1954 [35]. It is the echelon space λ1(A) where A = (an) where an(i, j) = 1 for i ≥ n
and an(i, j) = j when i < n. This space is of Moscatelli type. However these two classes,
echelon spaces and those of Moscatelli type, are fairly different. The former contains nontrivial
Schwartz (hence Montel and quasinormable) spaces but no non-normable quojections, whereas
the latter contains only trivial Montel spaces and nontrivial quojections.

We refer the reader to [11] and [41] for the density condition, the property (Ω) and quasi-
normable Fréchet spaces.

Proposition 4. Let F be the Fréchet space of Moscatelli type with respect to (L, � �),
(Xk, rk)k∈N, (Yk, sk)k∈N, and fk : Yk → Xk. The following conditions are equivalent:

(i) F has the density condition.

(ii) F is quasinormable.

(iii) F has property (Ω).

(iv) F is a prequojection.

(v) F is a quojection.

(vi) There is m such that for all k ≥ m the map fk is surjective.

Corollary 1. Let F be the Fréchet space of Moscatelli type with respect to (L, � �), X, Y
and f : Y → X. If L has property (ε) but L� does not or L does not satisfy property (ε), F is
distinguished if and only if it is a quojection.

The following result is due to Moscatelli [47].

Theorem 2. Let F be the Fréchet space of Moscatelli type with respect to (L, � �),
(Xk, rk)k∈N, (Yk, sk)k∈N, and fk : Yk → Xk. Assume that each fk : Yk → Xk is surjective. The
Fréchet space F is isomorphic to a countable product of Banach spaces if and only if the kernel
of fk is complemented in Xk for each k ≥ k0.

Theorem 3. Let X, Y be two reflexive Banach spaces such that Y is a proper subspace
of X with continuous and dense inclusion. Let F = Y N � c0(X) be the corresponding Fréchet
space of Moscatelli type, then F is distinguished but

(i) �1
�̃

π
F is not distinguished, and

(ii) F �� is not distinguished.

Part (i) follows from the theorems stated above and [10]. Part (ii) uses that F �� is the
Fréchet space of Moscatelli type with respect to �∞, X and Y . This result was presented
in [18] and solved in the negative a problem of Grothendieck [35]. The first example of a

distinguished Fréchet space such that �1
�̃

π
F is not distinguished was given in [26], thus

solving in the negative a question by Grothendieck whether the complete projective tensor
product of two distinguished Fréchet spaces is also distinguished.

Proposition 5. (i) A Fréchet space of Moscatelli type has a continuous norm if and
only if there is m such that for all k ≥ m the map fk is injective.
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(ii) If L has (ε), F ��
b has a continuous norm if and only if there is m such that for all k ≥ m

the set f t

k(X
�
K) is norm dense in Y �

k .

Taking L with (ε), Yk = �1, Xk = �2 and fk the inclusion for all k in Proposition 5, the
corresponding Fréchet space of Moscatelli type has a continuous norm but its bidual does not.
Compare with [27].

Definition 6. (a) ( [54]) A locally convex space Z is called locally normable if there is a
continuous norm on Z such that on every bounded set in Z the norm topology and the space
topology coincide.

(b) Let Z be a Fréchet space with fundamental sequence of seminorms (� �n). Z satisfies
property (DNϕ) for some increasing continuous function ϕ :]0,∞[→]0,∞[ with limr→∞ ϕ(r) =
∞ if

∃n0 ∀m ∃n, C > 0 ∀z ∈ Z ∀r > 0

� z �m≤ Cϕ(r) � z �n0 +
1
r
� z �n .

If ϕ(r) = r, (DNϕ) is called (DN).

Proposition 6. Let F be the Fréchet space of Moscatelli type with respect to (L, � �),
(Xk, rk)k∈N, (Yk, sk)k∈N, and fk : Yk → Xk. The following conditions are equivalent:

(i) F is locally normable.

(ii) F has property (DN)ϕ for some ϕ.

(iii) F has property (DN).

(iv) F is a Banach space.

(v) There is m such that for all k ≥ m the map fk is a topological isomorphism.

3 Moscatelli spaces of smooth functions

In this section we see how several natural spaces of continuous or smooth functions can
be represented as spaces of Moscatelli type. Several properties of these spaces are then easily
obtained. These representations were obtained by Albanese, Metafune and Moscatelli in a
series of papers. See for instance [3–5, 7]. In this section Hk,p denotes the Sobolev space of
measurable functions with distributional derivatives up to order k in Lp.

In [53] Taskinen proved that C(R)∩L1(R) is not distinguished showing that this space has
a complemented subspace isomorphic to a non-distinguished space of Moscatelli type. Because
of the criterion in Proposition 3, it is easy to decide when a Fréchet space of Moscatelli type
is distinguished. Up to that moment all examples of non-distinguished Fréchet spaces were
artificial and constructed on purpose. A direct and easier proof of this result was given by Bonet
and Taskinen in [21]. In that paper they showed that the spaces Cm(Ω)∩Hk,p(Ω), 0 ≤ k ≤ m,
1 < p < ∞, are distinguished, by proving that they are isomorphic to complemented subspaces
of distinguished Fréchet spaces of Moscatelli type. It was natural to conjecture that all spaces
Cm(Ω) ∩Hk,p(Ω) should themselves be of Moscatelli type.

Theorem 4. [5] For 1 ≤ p ≤ ∞ and m ∈ N0, C
m(R)∩Lp(R) is isomorphic to C

m([0, 1])N∩
�p(L

p([0, 1])).

Corollary 2. (i) C
m(R) ∩ Lp(R) is distinguished if and only if 1 < p < ∞.

(ii) C
m(R) ∩ Lp(R) does not satisfy the density condition, does not have neither property

(DN) nor property (Ω) and is not locally normable.
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The spaces C
m(RN ) ∩ Hk,p(RN ) for 1 ≤ p ≤ ∞ and 0 ≤ k ≤ m, endowed with their

natural intersection topology, were represented as Fréchet spaces of Moscatelli type in [3]. The
obtained representations complemented earlier ones by the same authors [4]. More precisely, if
QN denotes the N−dimensional cube [0, 1]N , the space C

m(RN ) ∩Hk,p(RN ) is isomorphic to
the Fréchet space of Moscatelli type with respect to L = �p, Y = C

m(QN ) and X = Hk,p(QN ).

Theorem 5. (i) C
m(RN ) ∩Hk,p(RN ) is isomorphic to C

m(QN )N ∩ �p(H
k,p(QN )).

(ii) The spaces C
m(RN ) ∩Hk,p(RN ), 1 ≤ p < ∞, have basis.

From statement (i) we conclude that these spaces are distinguished only for 1 < p < ∞

and that they do not satisfy the density condition, they are not locally normable and do not
have properties (DN) and (Ω) of Vogt. Moreover, the strong duals of Cm(RN ) ∩ Hk,p(RN ),
1 ≤ p < ∞, are (LB)-spaces of Moscatelli type.

The Fréchet-Sobolev spaces C∞(RN ) ∩Hk,p(RN ) are isomorphic to spaces belonging to a
more general class of Fréchet spaces of Moscatelli type. See Section 5.

Theorem 6. [7] C∞(RN ) ∩Hk,p(RN ), 1 ≤ p ≤ ∞ is isomorphic to
C
∞(QN )N ∩ �p(H

k,p (QN )).

The topological properties of a more general class of Fréchet spaces of Moscatelli type
were investigated in [28]. In particular, the first two statements in the next result, previously
obtained by Bonet and Taskinen [21], also follow from the representation in the previous
theorem and [28].

Proposition 7. [21], [7]

(i) The spaces C
∞(RN ) ∩Hk,1(RN ) are not distinguished.

(ii) The spaces C
∞(RN ) ∩ Hk,p(RN ), 1 < p < ∞, are distinguished but do not satisfy the

density condition, hence they are not quasinormable.

(iii) C
∞(RN ) ∩Hk,p(RN ), 1 ≤ p < ∞, has a basis.

In [2] Albanese, Dı́az and Metafune represented the spaces Hk

loc(R)∩L2(R) as Köthe spaces
of Moscatelli type. More precisely, denote by λ(nk) the Köthe sequence space

{x = (xij) | pk(x) =:
k�

i=1

∞�

j=1

j i
|xij |

2 +
�

i>k

∞�

j=1

|xij |
2 < ∞, for allm ∈ N },

which is the Fréchet space of Moscatelli type with respect to L = �2, Yk = �2(j
k) and Xk = �2.

This space is also the Köthe sequence space λ2(N2, A) where the Köthe matrix A = (ãk) is
defined by

ãk(i, j) =

�
1 if i > k, j ∈ N
j i if i ≤ k, j ∈ N

Then,

Theorem 7. For each k ∈ N

Hk

loc(R) ∩ L2(R) � λ(nk)

This representation permitted the authors of [2] to conclude that Hk

loc(R) ∩ L2(R) and
Hr

loc(R) ∩ L2(R) are isomorphic only if k = r.

4 (LF)-spaces of Moscatelli type

We refer to Chapter 6 of the monograph of Wengenroth [60] and the survey of Vogt [56]
for undefined terminology on (LF)-spaces.
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In 1988 Bonet and Dierolf [12] used a variant of the Moscatelli shifting device to give a
negative solution to the following open problem of Grothendieck [35]: Is the bidual of a strict
(LF)-space again an (LF)-space?

They proceeded as follows: Let X be a Fréchet space and Y ⊂ X a Fréchet subspace, and
for each n denote by Fn the topological product

�
k≤n

X ×
�

k>n
Y . Clearly Fn is a Fréchet

space and the natural inclusion Fn �→ Fn+1 is a topological isomorphism onto its range. We
may form the inductive limit F := indnFn, which is a strict (LF)-space.

If Y = λ1(A) is the Köthe-Grothendieck non-distinguished echelon space and X is a
countable product of Banach spaces containing Y as a topological subspace, they showed that
the bidual of the strict (LF)-space constructed above is not an (LF)-space.

In the eighties and early nineties, the following questions about arbitrary (LF)-spaces were
open:

(A) Does every sequentially retractive (LF)-space satisfy property (M) of Retakh?

(B) Is every regular (LF)-space complete?

The first question was known to have a positive answer for (LB)-spaces [49], whereas, as we
have already mention, the second one is still open even in the case of (LB)-spaces. The positive
answer to the first question was given by Wengenroth in 1996 [59]. Mainly motivated by these
two questions a variant of the Moscatelli shifting device was used to construct (LF)-spaces as
follows.

Definition 7. Let (L, � �) be a normal Banach sequence space and let Y and X be two
Fréchet spaces such that Y is continuously included in X. For every n we form the space
Fn :=

�
k<n

X
�

×L((Y )k≥n), where

L(Y ) = { (yk)k∈N ∈

�

k∈N
Y | (p(yk))k∈N ∈ L for each continuous seminorm p }.

We define the (LF)-space of Moscatelli type with respect to L, X and Y as F := indFn.

These spaces were introduced and studied by Bonet, Dierolf and Fernández [20] for L = �∞
and the generalization for arbitrary L was investigated by Meléndez [42].

One has the continuous inclusions L(Y ) ⊂ F ⊂ L(X) and
�

k∈N X ⊂ F . Moreover, the
continuous linear surjection

�

k∈N
X × L(Y ) → F, ((xk)k, (yk)k) → (xk + yk)k,

is open. Therefore a basis of zero-neighborhoods is
�

k∈N Uk + V N
∩ L(Y ), where (Uk)k∈N is

a sequence of absolutely convex zero neighborhoods in X and V is a balanced and convex
neighborhood in Y.

Proposition 8. For the (LF)-space of Moscatelli type F with respect to L, X and Y , the
following conditions are equivalent:

(i) F is sequentially retractive.

(ii) F is strict.

(iii) Y is a topological subspace of X.

Proposition 9. For the (LF)-space of Moscatelli type F with respect to L, X and Y , the
following conditions are equivalent:

(i) F is regular.

(ii) F is complete.
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(iii) Y has an X-closed 0 neighborhood.

To prove this result a convenient projective hull, generalizing the one in [14], was con-
structed.

In [20] another more complicated class of (LF)-spaces was constructed. Starting with three
Fréchet spaces Y ⊂ Z ⊂ X with continuous inclusions, we form G :=

�
k∈N X+c0(Z)+�∞(Y ),

which is the countable inductive limit of the Fréchet spaces Gn =
�

k<n
X × (c0((Z)k≥n) +

�∞((Y )k≥n)). For these (LF)-spaces the equivalence between regularity and completeness was
shown only under additional assumptions. For instance, this was the case if Y was supposed
to be Banach or a Fréchet-Schwartz space.

In a recent paper, Dierolf and Kuß [30] consider the class of (LF)-spaces obtained when
�∞ and c0 are replaced by any other normal Banach sequence space L and by ϕL, respectively.
They were able to show the following result

Theorem 8. Let Y ⊂ Z ⊂ X be Fréchet spaces with continuous inclusions, let L be a
normal Banach sequence space and M := ϕL. If the (LF)-space G :=

�
k∈N X+M(Z)+L(Y )

is regular, then it is complete.

As a consequence they proved that the completion of every (LB)-space of Moscatelli type
is again an (LB)-space.

5 Further Results

5.1 Generalized projective and inductive limits of Moscatelli
type

In 1990 in her thesis written under the advice of Bonet and Dierolf, Meléndez [44] applied
Moscatelli’s shifting device to general locally convex spaces X, Y and thus obtained a larger
class of inductive and projective limits of Moscatelli type. In the case of projective limits she
considered locally convex spaces of the form

F = { (yk)k∈N ∈ Y N
| (f(yk))k∈N ∈ L(X) }

where X and Y are locally convex spaces, f : Y → X is a continuous linear map and L is
a normal Banach sequence space. In 1994, S. Dierolf and Khin Aye Aye [28] characterized
semireflexivity and quasinormability for projective limits of Moscatelli type when the entries
X and Y are general locally convex spaces. They also characterized when F has the density
condition and when it is a quojection under the assumption that X and Y are Fréchet spaces.
A characterization of distinguishedness is given in case Y is Fréchet, X is Banach and L = �1.

In 1998 Albanese and Moscatelli [6] studied the class of Fréchet spaces obtained when all
entries in the former construction are allowed to be Fréchet spaces. More precisely, let L be
a Fréchet sequence space which is an intersection of a decreasing sequence of normal Banach
spaces, and let (Yk)k∈N and (Xk)k∈N be two sequences of Fréchet spaces. For each k denote by
(pk,n)n∈N and (qk,n)n∈N fixed increasing sequences of seminorms defining the topologies of Yk

and Xk respectively. Assume that for each k a continuous linear map uk : Yk → Xk is given
such that

qk,n(uk(yk)) ≤ pk,n(yk)

for all yk ∈ Yk and all k, n. Proceeding as in the Section 2 they obtain the Fréchet space
F = F ((Yk)k∈N, (Xk)k∈N, (uk)k∈N, L)

F = { (yk)k∈N ∈

�

k∈N
Yk | (qk,n(uk(yk)))k∈N ∈ L, for all n }
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with its natural topology.
When all entries are Banach spaces, we recover the spaces studied in [13]. If all entries are

nuclear Fréchet spaces and the maps uk are nuclear, the spaces are like the ones in [47]. This
larger class contains non-trivial Montel, Schwartz or nuclear spaces.

Theorem 9. The space F ((Yk)k∈N, (Xk)k∈N, (uk)k∈N, L) is

(i) nuclear (resp. Schwartz) provided that L, Yk and Xk for all k are nuclear (resp. Schwartz.)

(ii) Montel if L is Schwartz and each Yk is Montel.

As an application of the construction we have just described, Mangino [40] proved that
the class of Fréchet spaces satisfying property (DN)ϕ for some strictly increasing unbounded
function ϕ is not closed under complete projective tensor product.

5.2 The problem of topologies of Grothendieck

Grothendieck [36] asked whether every bounded set in the complete projective tensor

product E
�̃

π
F of two Fréchet spaces can be lifted by bounded sets, i.e. whether it is contained

in the closed absolutely convex hull of a set A
�

B = {x
�

y | x ∈ A, y ∈ B } where A and
B are bounded sets in E and F , respectively. This is the so-called Grothendieck’s problème
des topologies. In his thesis J. Taskinen [52] solved in the negative this long standing open
problem. The counterexample is a very elaborate Fréchet space of Moscatelli type. In fact,
starting with a Banach space (G, p) he constructs suitable equivalent norms pn,k ≥ p, takes
(Y, s) := �1((G, pn,k)n,k), (X, r) := �1((G, p)n,k) and forms the Fréchet space of Moscatelli
type with respect to L = �1, (Y, s), (X, r) and the non-surjective injection j : (Y, s) → (X, r).
This space is not a quojection. In [22] Bonet and Taskinen refined the original construction

of Taskinen to obtain a quojection E such that E
�̃

π
�2 contains a bounded set which cannot

be lifted by bounded sets. In [25] Dı́az and Metafune gave new examples of quojections F and
Banach spaces X such that the problem of topologies of Grothendieck has a negative answer
for F

�̃
π
X, and they characterized those quojections F of Moscatelli type such that every

bounded subset of F
�̃

π
X is localized for every Banach space X. This is precisely the case

when the bidual F �� of F is a countable product of Banach spaces. We refer the reader to
Section 6 of the survey paper by Bierstedt and Bonet [11] and the original papers by Taskinen
for more details on the problem of topologies of Grothendieck and related results.

5.3 Primary Fréchet spaces

A Fréchet space E is said to be primary if E = G
�

H implies that G or H is isomorphic
to E. While this property has been thoroughly studied for Banach spaces, very little is known
for non-Banach Fréchet spaces. Metafune and Moscatelli [45] proved that �Np (1 ≤ p ≤ ∞)
is primary. The space �p+ is also primary by [46, Theorem 3.9]. Köthe sequence spaces of
Moscatelli type are not primary [24]. The complemented subspaces of the spaces of Moscatelli
type (lp)N ∩ lq(lq), with 1 ≤ p < q < ∞ or q = 0 are studied in [8]. They show that if
(lp)N ∩ lq(lq) = F

�
G then either F or G contains a complemented copy of the whole space.

They conjecture that these sequence spaces are primary.

5.4 The relevance of (LB)-spaces of Moscatelli type

(LB)-spaces of Moscatelli type of the form
�

k∈N E + c0(F ) have been used by Bonet
and Dierolf in [16] to answer in the negative a question by Rump that asked whether there
is a pullback in the category of bornological spaces. The relevance of this example to solve a
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longstanding conjecture of V.A. Raikov in category theory can be seen in [51] and [34]. The
same construction was used by Bonet, Dierolf and Aye-Aye [17] to construct (DF)-spaces,
in fact a countable direct sums of Banach spaces, containing a dense subspace which is not
quasinormable.

In 1995, Mangino [39] constructed an (LB)-space E = indEn of Moscatelli type such that

E
�̃

π
M(S) �= ind(En

�̃
π
M(S)). Here M(S) is the Banach space of measures on the unit

circle. In this way she solved in the negative the following question which was open for a long
time: If E = indn En and F = indn Fn are complete inductive limits of Banach spaces En

and Fn, is it true that indn(En

�̃
π
Fn) = (indn En)

�̃
π
(indn Fn) holds algebraically and hence

topologically?
(LB)-spaces of Moscatelli type have also played a role in the theory of projective spectra

of (LB)-spaces, derived functors and functional analytic applications of category theory [60].
In fact, examples of (LB)-spaces of Moscatelli type were used by S. Dierolf, Frerick, Mangino
and Wengenroth [29] to clarify the relation between the vanishing of the first derived functor of
a projective spectra of (LB)-spaces and the properties of the inductive spectrum of the duals.

5.5 Weighted spaces of Moscatelli type

Weighted Fréchet and (LB)-spaces are studied in [43]. The idea is to combine the structure
of Köthe sequence spaces and the structure of Fréchet and (LB)-spaces of Moscatelli type. In
this setting one has non-trivial Montel or Schwartz spaces, too.
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9–33.

[15] J. Bonet, S. Dierolf: On the lifting of bounded sets in Fréchet spaces, Proc. Edinburgh
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