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Abstract — This paper presents a transformerless topology for a grid tied single-phase inverter capable of performing the 

simultaneous maximum power point tracking of two independent and series connected photovoltaic sources. This topology is derived 

from the Neutral Point Clamped multilevel inverter in half-bridge configuration. The use of a half-bridge topology reduces the leakage 

current to very low values, whereas the multilevel topology presents an output voltage quality similar to that of a full-bridge inverter. In 

order to simultaneously track the maximum power of both photovoltaic sources a Generation Control Circuit is used. With this 

topology it is possible to improve the performance of the converter under partial shadowing conditions, very common in photovoltaic 

facilities operating in residential areas. A 5 kW prototype of this topology has been implemented and tested in the laboratory. 

 

I. INTRODUCTION 

Photovoltaic (PV) and renewable energy sources (RES) have experimented a great development in recent years [1], mainly due to 

the growing concern about climate change and the oil price increase, which has led many countries to adopt new regulations to 

promote this kind of energy. 

In power converters for RES, and especially in grid-connected PV inverters, efficiency and cost are key factors [2]. Many of 

these inverters use an isolation transformer between the PV panels and the grid, but these low frequency transformers are bulky 

and expensive. Furthermore, they produce additional losses [3;4]. Using a two stage topology with high frequency isolation can 

reduce the size and price of the transformer, but the overall efficiency of the system is reduced, since at least two cascaded power 

stages are used (dc-dc + inverter). Therefore, a large number of transformerless inverter topologies have been proposed in the last 

years [5]. These inverters are cheaper, more compact and more efficient [4;6] than their counterparts. 

Regarding the size of grid-connected photovoltaic inverters, a change of paradigm has been observed in the last few years. 

Large central inverters (above 100kW) are being substituted by string inverters around a few kilowatts that process the energy of a 

small group of photovoltaic panels, improving the maximum power point tracking (MPPT) of a photovoltaic system, as the 

modules could be exposed to different solar irradiation levels. In this context, the use of single-phase inverters up to 5kW has 

gained great interest [7], especially in residential areas, to solve problems like different orientation of photovoltaic panels, partial 

shadows or accumulated dust. Furthermore, the possibility of producing energy close to the consumption points by means of a 

large number of small distributed energy generators has raised many expectations [8-10]. 

The distributed generation scenario is promoting the research about power converters to reduce the impact of the partial 

shadowing problem [11;12]. Thus, module-integrated converters (MIC), microinverters and multi-input string inverters are being 

developed. However, MICs and microinverters usually require cascade conversion stages that decrease the efficiency and make 

the system more complex. Therefore, string inverters are most commonly used. Besides, there are some topologies of string 

inverters that reduce the partial shadowing problem, by means of independent control of the multiple photovoltaic inputs. The 

principle of serial connection of PV strings with maximum power extraction from each individual string by means of a single 

inverter has raised a high interest in the last years [13-15]. 

The grid-connected PV inverter presented in this paper is a 5kW multi-input transformerless string inverter with simultaneous 

MPPT of two PV sources. This topology, called NPC+GCC, solves the typical issues of transformerless PV inverters related to 

leakage currents from the PV panels to ground due to high frequency common mode voltages [6;16]. Moreover, the auxiliary DC-

DC converter used in this topology (the GCC circuit) exhibits low losses, since it only processes the power difference between 

both PV strings. Therefore, the efficiency of this double-stage converter is similar to that of a single-stage inverter. 

II. THE COMMON MODE VOLTAGE PROBLEM 

Photovoltaic modules have a very large conductive surface which may have a large parasitic capacitance to ground under 

certain operating conditions (e.g. humidity, dust or in some kinds of facility), with capacitance values up to 150nF/kW for 

crystalline-silicon cells and up to 1μF/kW for thin-film cells [6]. The parasitic capacitances between ground and both terminals of 

the PV source, Cparasitic1 and Cparasitic2, are depicted in the single-phase transformerless grid connected PV inverter of figure 1.  

 

A grid-tie inverter topology with maximum power 

extraction from two PV arrays 
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Fig. 1.  Common mode leakage currents in a transformerless grid connected PV inverter 

 

The AC voltages at the PV module terminals (V1 and V2) produce leakage currents to ground through the parasitic 

capacitances Cparasitic1 and Cparasitic2. The currents induced by those voltages can be classified into differential mode currents and 

common mode currents. The differential mode voltage, VDM=V1-V2, generates a current that flows from one pole of the PV 

modules to the other one; this current does not generate leakage problems. The common mode voltage, VCM=(V1+V2)/2, 

generates a leakage current (ILeakage) that flows from the poles of the PV source, through the ground of the PV source, to the 

ground of the grid, which is connected to the neutral of a single-phase utility grid [13]. 

This current may produce problems in the photovoltaic system (e.g. protections triggering, efficiency degradation, safety 

problems, and electromagnetic compatibility problems) [6;16]. When using the newest technologies of photovoltaic cells, like 

back-contact cells, amorphous-Silicon thin-film cells (a-Si) or cadmium telluride cells (CdTe), the leakage current can produce 

irreversible effects on the PV cells, affecting the efficiency of the overall system permanently [6]. 

If the common mode voltage at the PV module is purely sinusoidal with an RMS value VCM_RMS, and both parasitic 

capacitances are similar (Cparasitic1  Cparasitic2  Cparasitic), the RMS value of the leakage current can be derived as (1), where 

Cparasitic_eq=2∙Cparasitic, and f denotes the frequency of the common mode voltage. As the leakage current is proportional to the 

frequency of the common mode voltage, the most disturbing common mode voltages are those containing switching frequency 

harmonics. 

 Therefore, current research on transformerless inverters focuses on finding new topologies and modulation strategies which 

have an almost DC or low frequency common mode voltage, thus generating very low leakage currents [5;17]. 

 

𝐼𝐿𝐸𝐴𝐾_𝑅𝑀𝑆 = 2 · 𝜋 · 𝑓 · 𝐶𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐_𝑒𝑞 · 𝑉𝐶𝑀_𝑅𝑀𝑆 (1) 

 

III. THE PARTIAL SHADOWING PROBLEM 

A string is a group of photovoltaic modules connected in series, where the total PV source voltage is the sum of the individual 

modules voltages, whereas all modules share the same current. When the solar irradiation level at one individual module of the 

string decreases, its maximum current decreases too, limiting the current in the whole string, because of the series connection. 

When limiting the current of the string it is also being limited the maximum power of the PV source, so that it is impossible to 

have all the modules working at its maximum power point (MPP) [18]. In these conditions, the voltage-power curve of the PV 

source presents some local MPPs, all of them with a power lower than the sum of the achievable MPPs of the individual modules.  

To reduce the partial shadowing problem, many string inverters use as a first stage a dc-dc converter (e.g. a boost converter) for 

each module or for a small group of series connected modules. It is worth pointing out that the smaller the number of 

interconnected PV modules, the better is the MPP tracking under partial shadowing. The dc-dc converter performs the maximum 

power point tracking (MPPT) of each module or group of modules. The outputs of the dc-dc converters are connected in parallel 

to the grid connected inverter. However, the overall efficiency and reliability of the whole power conversion system is affected, 

as it is formed by power converters connected in series [19]. 

IV. PROPOSED TOPOLOGY 

The proposed topology for a transformerless inverter working from two PV sources connected in series is called NPC+GCC, 

and it is formed by a Neutral Clamped Inverter (NPC) in a half-bridge configuration and a Generation Control Circuit (GCC) 

running together and sharing the input stage. 

The Generation Control Circuit is an electronic power converter based on the classical buck-boost dc-dc converter, with its 

output connected to the midpoint of both PV sources, as it is shown in figure 2.a. It is composed by two semiconductor switches 

(IGBT1 and IGBT2) in series and one inductor (Lgcc) connected between the switches and the midpoint of the PV source [20]. 

Note that the GCC needs a splitted input dc-link. 

This circuit manages the voltage at the midpoint of the dc-link, allowing the operation of each PV string at a different current-

voltage point. This feature avoids the partial shadowing problem, in which the maximum current of the most shaded photovoltaic 

module limits the current of the string. 
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The main advantage over other dc-dc converter topologies is that the GCC only manages the power difference between both 

strings instead of the full power, thus reducing the overall power losses. The requirement of a splitted dc-link it is not a 

disadvantage for this topology, because the topology of the NPC inverter requires that kind of dc-link, which can be shared with 

the GCC. 

The NPC half-bridge inverter consists of four active switches connected in series (IGBT1 to IGBT4) and two clamping diodes 

(D1 and D2), connected as shown in figure 2.b. The topology provides three levels at the output voltage, like a full-bridge 

topology with unipolar pulse with modulation (PWM). The output LC filter (Lnpc, Cout) provides the required attenuation of the 

switching frequency harmonics of the grid injected current, allowing the connection to the grid. 

On one hand, the NPC half-bridge has a similar structure to that of a classical half-bridge, since it requires the connection of the 

grid neutral to the midpoint of the dc-link, but the NPC provides a better efficiency and a smaller current ripple. Furthermore, the 

NPC half-bridge has a low ripple-low frequency common mode voltage, thus reducing the leakage current.  On the other hand, 

the NPC topology has a performance similar to that of the full-bridge with unipolar PWM, since it has 3 output voltage levels and 

a similar derivative of the output voltage (dv/dt) before filtering. Consequently, the output filter design of the NPC half-bridge is 

similar to that of a unipolar PWM full-bridge. As it was reported in [21], the grid connected NPC half bridge inverter has small 

leakage currents, because the common mode voltage has only low frequency (line frequency) components. 

 

 

 
a) b) 

Fig. 2.  a) Generation control circuit (GCC), b) Neutral point clamped half-bridge inverter (NPC). 

 

The modulation technique used by the NPC inverter of this work is the sinusoidal PWM, using two triangular carrier 

waveforms with in-phase disposition (IPD). The concept of the IPD PWM modulator used by the NPC inverter is shown in figure 

3.a. The modulator is composed by a pair of comparators and two in-phase carrier signals with different offset voltages. A 

schematic representation of the gate signals and of the resulting three-level output voltage, Vout, is shown in figure 3.b. 

 

 

 
 a) b) 
Fig. 3.  a) Concept of the IPD PWM modulator of the NPC inverter, b) Schematic representation of the gate signals and of the output voltage of the NPC inverter 

 

The proposed topology, shown in figure 4.a, is composed by a GCC converter and an NPC inverter. Switches IGBT1 to IGBT4 

and D1-D2 make up the NPC inverter, whereas the GCC converter is made of IGBT5 and IGBT6.  Both the GCC and the NPC 
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need a midpoint at the dc-link, so that they can work together, leading to a new high-efficiency transformerless inverter topology 

with independent MPPT of its two input voltages, avoiding the use of cascaded converters processing the whole PV power. The 

NPC inverter injects the available power to the grid, whereas the GCC converter manages the current unbalance at the input, 

processing a small power. 

 

a) 

 

b) 

Fig. 4.  Proposed topology (NPC+GCC). a) Circuit schematic; b) equivalent circuit of the inverter at the grid fundamental frequency for calculation of the LNPC 

inductance. 

 

The inductance value of the NPC inverter inductor, LNPC, has been calculated based on the circuit of figure 4.b, which depicts 

the equivalent circuit of the inverter at its fundamental frequency (50 Hz), being VINVERTER the fundamental component of the 

voltage generated by the inverter, and ω = 2··50 Hz. All the phasors correspond to fundamental frequency components. The grid 

voltage has been chosen as the phase origin of the phasors. 

 

�⃗� 𝐼𝑁𝑉−𝑅𝑀𝑆 = �⃗� 𝐺𝑅𝐼𝐷−𝑅𝑀𝑆 + �⃗� 𝐿−𝑅𝑀𝑆 → �⃗� 𝐼𝑁𝑉−𝑅𝑀𝑆 = �⃗� 𝐺𝑅𝐼𝐷−𝑅𝑀𝑆 +
𝑗 · 𝜔 · 𝐿𝑁𝑃𝐶 · 𝑃

𝑉𝐺𝑅𝐼𝐷−𝑅𝑀𝑆

 

 

(2) 

𝑉𝐼𝑁𝑉−𝑅𝑀𝑆 = √𝑉𝐺𝑅𝐼𝐷−𝑅𝑀𝑆
2 + (

𝜔 · 𝐿𝑁𝑃𝐶 · 𝑃𝑀𝐴𝑋

𝑉𝐺𝑅𝐼𝐷−𝑅𝑀𝑆

)
2

 

 

(3) 

The condition (4) must be fulfilled in order to make the inverter to work in the linear modulation region, where min(VPV1, 

VPV2) = VPV-min represents the minimum expected operation value of the voltage at any of the strings. 

 

𝑉𝐼𝑁𝑉−𝑅𝑀𝑆 = √𝑉𝐺𝑅𝐼𝐷−𝑅𝑀𝑆
2 + (

𝜔 · 𝐿𝑁𝑃𝐶 · 𝑃𝑀𝐴𝑋

𝑉𝐺𝑅𝐼𝐷−𝑅𝑀𝑆

)
2

≤
𝑚𝑖𝑛(𝑉𝑃𝑉1, 𝑉𝑃𝑉2)

√2
 

 

(4) 

From (4), the maximum value of LNPC can be derived: 
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𝐿𝑁𝑃𝐶 ≤
𝑉𝐺𝑅𝐼𝐷−𝑅𝑀𝑆 · √

𝑉𝑃𝑉−𝑚𝑖𝑛
2

2
− 𝑉𝐺𝑅𝐼𝐷−𝑅𝑀𝑆

2

𝜔 · 𝑃𝑀𝐴𝑋

 

 

(5) 

The following values have been used for the calculation of the inductor value. Note that this is a conservative calculation 

because for 5 kW the strings will have a higher value than 370 V. 

- VGRID-RMS = 230 V 

- VPV-min = 370 V 

- ω = 2··50 = 314.16 rad/s 

- PMAX = 5 kW 

 

Thus, the maximum value for the output inductor is LNPC < 18 mH. The selected value for the output inductance is 2 mH, much 

lower than the calculated limit. 

The value of the GCC inductor is calculated to limit the current ripple in that inductance. It has been chosen a value of 16 kHz 

for the switching frequency, in order to minimize magnetic hysteresis losses in the core, thus maximizing the converter efficiency. 

The price that must be paid for this relatively low switching frequency is the inductor size. 

The maximum value of the current ripple, ΔIGCC, in the GCC inductor is selected to be 25 % of the maximum value of the 

inductor current dc value, IGCC, which is the short-circuit current of one PV string: IGCC-MAX = 8 A. Therefore, the value of LGCC 

has been calculated to obtain a maximum value of the current ripple ΔIGCC-MAX = 2 A. The equation used to calculate the value of 

the inductor is (6). 

 

LGCC =
VPV−MPP

∆IGCC−MAX · fSW

 

 

(6) 

The design of the GCC inductor has been performed by means of Micrometals© software. With a core type T400-40D from 

Micrometals© and 550 turns the resulting inductance at 8 A is: LGCC = 14.62 mH  15 mH.  

The power losses in the GCC have been calculated, starting from the knowledge of its operation point and both the IGBTs and 

the GCC inductor datasheets. Three different unbalance scenarios have been taken into account for calculating the power losses in 

the GCC, with a constant output power and different power unbalances at the input. The results, shown below, demonstrate how 

the losses in the GCC strongly depend on the power unbalance between both strings, being the worst case that with a higher 

unbalance. 

 

Balanced generation: 

- VPV1 = 468.5 V; IPV1 = 3.25 A 

- VPV2 = 468.5 V; IPV2 = 3.25 A 

- IGRID = 12.93 Arms (PGRID = 3 kW) 

- Power losses in the GCC converter (IGBT5, IGBT6 and GCC inductor): 4.1 W 

 

Unbalanced generation: 

- VPV1 = 452.3 V; IPV1 = 4.58 A 

- VPV2 = 482.1 V; IPV2 = 2.03 A 

- IGRID = 12.93 Arms (PGRID = 3 kW) 

- Power losses in the GCC converter (IGBT5, IGBT6 and GCC inductor): 26.4 W 

 

Severely unbalanced generation: 

- VPV1 = 428 V; IPV1 = 6.05 A 

- VPV2 = 490.9 V; IPV2 = 0.98 A 

- IGRID = 12.93 Arms (PGRID = 3 kW) 

- Power losses in the GCC converter (IGBT5, IGBT6 and GCC inductor): 59 W 

 

The GCC stage can be compared with a usual alternative providing double MPPT at the input like the double-boost converter 

(+ NPC half-bridge) depicted in figure 5. In that topology the input voltage of each boost converter is lower than that of the 

NPC+GCC converter and, therefore, the inductance value is also lower. Nevertheless, two equal inductors are required instead of 

a single one. Besides, the double-boost requires a higher number of semiconductors and sensors: a voltage sensor for each PV 

source, additionally to a voltage sensor for the input voltage of the NPC inverter, and a current sensor for the current delivered by 

each PV source.  
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Fig. 5.  Double-boost + NPC half-bridge converter 

 

Some simulations by means of the PSIM
TM

 Thermal Module software have been performed in order to compare the efficiency 

of the GCC circuit with that of the double-boost converter. The IGBTs selected for the simulations are the Infineon 

IKW15N120H3 and the diodes the Infineon IDP18E120. Both circuits have been simulated using the same IGBTs and diodes 

under the three unbalance scenarios described above. 

 

In table 1 only the power losses in the switches and in the inductance of both dc-dc stages under comparison are shown, since 

the losses of the NPC inverters are identical in both cases. Note that both NPC inverters work from the same dc voltage of 800 V, 

managing the same power. 

 

 Double-boost dc-dc GCC 

Balanced generation 39.7 W 4.1 W 

Unbalanced generation 46.4 W 26.4 W 

Severely unbalanced generation 69.5 W 59 W 
Table 1. Power losses in the dc-dc stage 

 

The GCC converter has lower power losses than the double-boost in all the scenarios under study, since it only manages the 

power difference between both strings. Note that the losses strongly depend on the degree of unbalance, being the higher, the 

higher the unbalance. The double-boost scheme has a lower variation of the losses when the unbalance scenario is changing. The 

simulations indicate that the GCC has a higher efficiency than the more common double-boost solution. 

V. CONTROL STRUCTURE 

The control structure proposed for the NPC+GCC is shown in figure 6. It is worth pointing out that the description of the 

converter dynamic model and the adjustment of the controllers is beyond the scope of this paper, but a short description of the 

control structure is provided. The control of the NPC inverter and of the GCC converter is independent: each one has its own 

current and voltage regulators and PWM modulator. The inverter regulates the total dc-link voltage (VPV1+VPV2), and the GCC 

regulates the voltage in the string PV2 (VPV2). In this way both PV voltages are independently controlled. 

 

 

 
a) b) 
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Fig. 6.  Control structure and double-MPPT algorithm of the NPC+GCC converter. a) Current and voltage loops, b) double-MPPT P&O algorithm 

 

The voltage regulator of the NPC inverter (GV-NPC) modifies the reference for the output current amplitude, IOUT-REF, in order to 

regulate the total input voltage (VDC=VPV1+VPV2) at the desired level. A Phase-Locked Loop (PLL) module ensures that the 

output current phase matches the grid voltage phase. The PLL is based on an SRF-PLL, as reported in [22]. 

The GCC voltage regulator (GV-GCC) adjusts the GCC current reference (IGCC-REF) in order to set the voltage VPV2 at the desired 

level. Since the current through the GCC inductor is the current difference between PV strings, the GCC transfers energy between 

strings. 

Regarding the structure of the regulators, for the GCC voltage and current regulators Proportional-Integrator (PI) structures are 

chosen. For the NPC current regulator (GI-NPC) a P+Resonant regulator structure is selected [23], whereas a PI regulator is used 

for the input voltage regulator (GV-NPC). More details about the design of the regulators in single-phase grid-tied PV inverters can 

be found in [23]. The continuous-time expressions of those regulators are given by equations (7) to (10). They are implemented 

digitally after discretization with the Tustin method at a sampling frequency of 32kHz. 

 

𝐺𝐼−𝐺𝐶𝐶(𝑠) =
−15

𝑠
·

1 + 𝑠
200⁄

1 + 𝑠
30000⁄

 (7) 

 

𝐺𝑉−𝐺𝐶𝐶(𝑠) =
1 + 𝑠

5⁄

𝑠
 (8) 

 

𝐺𝐼−𝑁𝑃𝐶(𝑠) = 0.05 +
10 · 𝑠

𝑠2 + 7 · 𝑠 + (2 · 𝜋 · 50)2

+
25 · 𝑠

𝑠2 + 21 · 𝑠 + (2 · 𝜋 · 150)2

+
30 · 𝑠

𝑠2 + 35 · 𝑠 + (2 · 𝜋 · 250)2

+
35 · 𝑠

𝑠2 + 49 · 𝑠 + (2 · 𝜋 · 350)2
 

(9) 

 

𝐺𝑉−𝑁𝑃𝐶(𝑠) = −4 ·
1 + 𝑠

20⁄

𝑠
 (10) 

 

The MPPT algorithm is a double-MPPT based on the Pertub&Observe (P&O) technique with a fixed step size [24-26], which 

modifies the references for both PV sources voltages: VPV1-REF and VPV2-REF. As it is observed from the control structure of figure 

6.a, the algorithm is formed by a pair of independent P&O algorithms. The flowchart of the MPPT algorithm is shown in figure 

6.b. Two variables, signPV1 and signPV2, are used by the algorithm. Those variables can take the values +1 or -1, which can be 

changed at each interaction of the MPPT algorithm. 

The MPPT step size has been chosen of 2V, which represents the 0.5% of the MPP voltage. Lower steps works worse because 

the noise affects the power measurement. The chosen step size results from a compromise between MPPT accuracy and noise in 

the experimental prototype. 

 

VI. EXPERIMENTAL RESULTS 

A prototype of a 5kW NPC+GCC PV inverter has been implemented to validate the concept. The components and values of the 

prototype are the following: 

 

- IGBT1 to IGBT4 and diodes D1to D2: module Microsemi APTGL60TL120T3G 

- IGBT5 and IGBT 6: IR G4PH40KD 

- DC-link capacitors: C1=3 mF, C2=3 mF  

- Output LC filter: Lnpc=2mH, Cout=9.4µF 

- GCC inductor: Lgcc=15mH 

- Switching frequency: 16kHz 

- Sampling frequency: 32kHz 

- MPPT update period: 300ms 

- MPPT step size: 2V 
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The control of the converter is performed by a Texas Instruments TMS230F28335 digital signal processor. For the 

experimental setup the converter is connected to a grid of 230Vrms and 50Hz. The photovoltaic (PV) modules are emulated by 

means of two PV-source emulators. The emulated PV-sources are 2 strings each one composed by 14 230W PV modules model 

SLK60P6L from the manufacturer Siliken connected in series. 

In order to test the performance of the converter regarding leakage currents, a parasitic capacitance must be emulated. The 

capacitance to ground of any terminal of the PV strings is estimated as 100nF. These capacitances are emulated by placing film 

capacitors of 100nF/1100 V connected between the terminals P, Z and N of the converter and ground (see figure 4). Each PV-

source emulator is configured as 14 PV modules connected in series, with an irradiation of 1000W/m
2
 and T=25ºC., with a 

maximum output power of 2.93kW at an irradiation level of 1000W/m
2
 and T=25ºC. 

The waveforms of the output voltage of the inverter before filtering, VINV, and the current through Lnpc, IOUT, are shown in 

figure 7.a. The operation point is: VPV1=448.2 V, IPV1=3.6 A, PPV1=1614 W, VPV2=446 V, IPV2=3.81 A, PPV2=1699 W, Igcc=0 A, 

PPV=3313 W. Figure 7.b shows the grid voltage and the current Igrid. The THD of the grid voltage in the lab is THDV=1.46%, 

whereas the measured THD of the output current is THDi=2.9%. Figure 7.c depicts the low-frequency FFT of the grid current, 

and figure 7.d depicts the first frequency band of the high-frequency harmonics of Igrid. The low frequency harmonics have been 

measured by means of a low frequency Fluke 43B Power Quality Analyzer (DC to 3.5 kHz) and a LEM PR 30 current probe (DC 

to 100 kHz), capable of measuring the DC level of the grid current. The high frequency harmonics have been obtained by means 

of a FRA5097 frequency response analyzer (0.1 mHz to 15 MHz). 

 

  

a) b) 

 

 
c) d) 

Fig. 7. a) Inverter output voltage before filtering (green trace) and current through Lnpc (blue trace). b)  Grid voltage (green trace) and current injected by the 

inverter to the grid, Igrid (blue trace). The irradiation level in strings PV1 and PV2 is 1000W/m2; c) Low frequency FFT of Igrid; d) First frequency band of the high 

frequency harmonics of Igrid 
 

The leakage current is produced by the voltages from the poles of the PV strings to ground. As the leakage current flows 

through capacitances, it is mainly affected by the voltage ripple and its frequency. In the NPC+GCC topology the voltage ripple 

in the PV modules is mainly of 50Hz, since it is a half-bridge inverter topology with the neutral connected to the midpoint of the 

input voltage. The Fast Fourier Transform (FFT) of the common-mode voltage and of the leakage current has been obtained by 

means of a frequency response analyzer NF FRA5097, as shown in Figures 8.a and 8.b, respectively. It is observed that the 

harmonic contents of this voltage is very low (lower than 6 V at VPV450V) and at low frequency. The 50Hz component of the 

leakage current has a very low RMS value, lower than 2mA. The harmonics placed at higher frequencies are even lower. The total 
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RMS value of the leakage current to earth is around 2.1 mARMS.  According to the German DIN VDE 0126-1-1 standard, the 

leakage current value is limited to 300 mARMS. This result confirms that the NPC+GCC topology is suitable for transformerless 

operation in photovoltaic power plants. 

 

  
 a)  b) 

Fig. 8.a) FFT of the common-mode voltage. b) FFT of the leakage current 

 

In order to test the double-MPPT performance of the proposed converter, the PV-source emulators are configured as shown 

below, so that the partial shadowing in a photovoltaic power plant can be emulated: 

 

- Emulator PV1: 600W/m
2
 (VMPP=393.8V; IMPP=4.51A) 

- Emulator PV2: 800W/m
2
 (VMPP=394.5V; IMPP=6.07A) 

 

In a first test the GCC converter is disconnected in order to show the MPP mismatch under partial shadowing. The inverter 

runs with a classical Perturb&Observe MPPT algorithm working from the measurement of total input voltage (VPV=VPV1+VPV2) 

and from the current through both the strings, which are working in series when the GCC is disconnected. In figure 9.a the 

evolution of the experimental I-V values are plotted over the emulated characteristic curves of both strings. It is observed how the 

current of the string PV2 is limited by PV1, which is under a lower irradiation level, thus limiting the power obtained from the 

string PV2. In steady state the power obtained from PV1 is PPV1=1.753W (PMPP=1.776W), and the power obtained from PV2 is 

PPV2=1.990W (PMPP=2.395W). The overall extracted power is PPV=3.743W, whereas the maximum power that can be extracted is 

PMPP=4.171W. The power loss can be clearly observed in figure 9.b, which depicts the evolution of the experimental P-V values 

and the emulated P-V characteristics of the strings. 
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 c)  d) 
Fig. 9. a) I-V evolution with the GCC disconnected. b) P-V evolution with the GCC disconnected. c)I-V evolution with the GCC enabled. d) P-V evolution with 

the GCC enabled.  Lines: characteristic curves. Dots: measured points. 

 

Figures 9.c and 9.d shows the performance of the GCC working in conjunction with the double-MPPT algorithm. In figure 9.c 

it is observed that the currents in PV1 and PV2 are different in steady state, resulting in the extraction of the maximum power 

from both PV sources (see figure 9.d). As a result, the overall power extracted from both strings is increased: PPV1=1.755W, 

PPV2=2.384W, PPV=PPV1+PPV2=4.139W. The power from PV2 is higher than without GCC circuit, because this circuit allows the 

current through string PV2 to be different to that through PV1. From the P-V evolution shown in figure 9.d it is observed that in 

steady state the individual MPPs of both strings are practically reached when connecting the GCC circuit. 

Note that the increment in the generated power (from 3.743W to 4.139W, yielding an increment of 396W) achieved by the 

GCC circuit is much higher than the additional power losses in the GCC (19W) in the unbalance situation corresponding to figure 

9. It can be concluded that the proposed converter increases the overall efficiency of the energy injected to the grid. 

The Total Harmonic Distortion of the inverter output current (THDi) has been evaluated under an ideal grid voltage 

(THDv=0%), using a linear AC power supply PACIFIC POWER 360-AMX. The inverter has been fed by the PV emulators and 

variations of irradiance have been applied. The THDi under equal irradiation levels in both PV emulators is shown in table 2.  

 

Irradiance 

(W/m
2
) 

PV1 power 

(kW) 

PV2 power 

(kW) 

Output power 

(kW) 

THDi 

(%) 

200 0.54 0.54 1.03 3.15 

400 1.13 1.14 2.17 3.01 

600 1.73 1.75 3.32 2.90 

800 2.33 2.35 4.45 3.15 

1000 2.91 2.92 5.56 3.50 
Table 2. THDi(%) for several irradiation levels. Same irradiation levels at PV1 and PV2 

 
 

However, when the irradiance at the strings PV1 and PV2 is unbalanced, the THDi is slightly affected, because the three-level 

voltage provided by the NPC inverter before filtering, VINV, has different values of the positive and negative amplitudes. 

Nevertheless, it will be shown in the following that the THDi of the proposed topology is inside the maximum limits of the 

IEEE1547 standard in spite of an important irradiance unbalance at both PV sources. To show the influence of this unbalance, the 

irradiance at string PV1 is fixed at 500W/m
2
, and the irradiance at string PV2 is varied in the range 200W/m

2
 to 1000W/m

2
. The 

data for the THDi is shown in table 3. It is observed that the THDi is lower than 5% in all cases, as required by the IEEE1547. It 

is observed in table 3 that the higher the unbalance, the higher is the THDi. In the experimental results the maximum unbalance in 

the PV generators has been limited to a maximum irradiation difference of 500W/m
2
. 

 

PV2 Irradiance (W/m
2
) Power PV1 

(kW) 

Power PV2 

(kW) 

Output power 

(kW) 

THDi(%) 

200 1.44 0.54 1.85 3.32 

400 1.44 1.13 2.43 2.93 

600 1.44 1.74 3.01 2.94 
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800 1.44 2.35 3.58 2.97 

1000 1.44 2.90 4.08 3.22 
Table 3. THDi(%) for several irradiation levels. Different irradiation levels at PV1 and PV2. PV1 at a constant irradiation level of 500W/m2, PV2:200W/m2 to 

1000W/m2 

 

The waveforms of the grid voltage and grid injected current at different operation conditions are depicted in figure 10. In figure 

10.a it is shown the grid voltage and the grid injected current for an identical irradiance level at PV1 and PV2 of 200 W/m
2
. The 

injected power in this case is 1 kW, whereas the THDi is 3.15%. In figure 10.b it is shown the first frequency band of the high 

frequency harmonics of the grid current at a low irradiance level (200 W/m
2
 at both strings). Figures 10.c and 10.d are analog to 

10.a and 10.b, respectively, corresponding to the test of the proposed topology under severely unbalanced conditions 

(PV1:200W/m
2
, PV2:800W/m

2
). The voltage mismatch in the PV strings is 46 V (VPV1=362V, VPV2=408V), whereas the measured 

THDi is 4.08%. 

 

 

 
a) b) 

 

 
c) d) 

Fig. 10.  Grid voltage (pink trace) and grid current, Igrid (blue trace) under extreme operating conditions. a) Low irradiance level (PV1:200 W/m2; PV2:200 W/m2); 

b) First frequency band of the high frequency harmonics of Igrid at a low irradiance level (PV1:200 W/m2; PV2:200 W/m2); c) Severely unbalanced irradiation 

conditions (PV1:200 W/m2; PV2:800 W/m2); d) First frequency band of the high frequency harmonics of Igrid at a severely unbalanced irradiation conditions 
(PV1:200 W/m2; PV2:800 W/m2). 

 

The low frequency FFT of the grid current in the conditions of figure 10, from DC up to the 25
th

 harmonic, is shown in figure 

11. It is verified that the standard IEEE1547 is complied, both regarding the limits for the harmonics and the limits for DC current 

injection (lower than 108 mARMS = 0.5% of the nominal output current). 
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a) b) 

Fig. 11. a) Low frequency FFT of for a low irradiance level (PV1:200 W/m2; PV2:200 W/m2; b) Low frequency FFT for severely unbalanced irradiation conditions 

(PV1:200 W/m2; PV2:800 W/m2); 

 

The efficiency of the NPC+GCC converter has been measured. The efficiency is calculated as the ratio between the output 

power and the sum of the powers extracted from both PV sources, following (9). 

 

𝜂(%) = 100 ·
𝑃𝑂𝑈𝑇

𝑃𝑃𝑉1 + 𝑃𝑃𝑉2

 
(9) 

 

 The efficiency is measured at different output power levels in order to obtain the value of the European efficiency, calculated 

as shown in (10), where 𝜂𝑖%
 is the efficiency at i% of the converter output rated power [27]. 

 

𝜂𝐸𝑈𝑅𝑂 = 0.03 · 𝜂5% + 0.06 · 𝜂10% + 0.13 · 𝜂20% + 0.10 · 𝜂30% + 0.48 · 𝜂50% + 0.20 · 𝜂100% (10) 

 

The measured efficiency vs. power data with an identical power level in both PV sources is shown in figure 12.a. The 

European efficiency is 95.7%, and the maximum efficiency is 96.2%. 

The efficiency is also affected by the unbalance, as it is depicted in figure 12.b. In this figure the input power of the input PV1 

is fixed at different values and the power of input PV2 is varied. The converter efficiency has been plotted for different values of 

the power from PV1. It is observed that the dispersion of efficiency values is lower than 1% in a wide range. 

 

  
a) b) 

Fig. 12.  a) Efficiency versus output power. Identical operating point of both PV sources b) Efficiency versus input power in PV1 and PV2 

 

VII. CONCLUSION 

A new topology of single-phase transformerless PV inverter capable of operating from two PV sources has been presented. To 

test the performance of the NPC+GCC topology a 5kW prototype has been implemented and tested. The experimental results 

show that the common mode voltage at the PV source terminals doesn´t contain high frequency components, so that the leakage 
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currents to ground are minimized. Therefore, the inverter is suitable for transformerless operation. 

Besides, with a minimum quantity of additional elements, the topology includes a dc-dc converter that allows the independent 

tracking of the MPP of both PV strings connected at the input. A double MPPT algorithm has been proposed to achieve that task, 

resulting in an improvement of the PV facility efficiency under partial shadowing conditions. This improvement has been tested 

in the laboratory using two photovoltaic emulators. 

The European efficiency takes a value around 96%, whereas the efficiency dispersion at a power mismatch of both PV sources 

is lower than 1%. 
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