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Research Highlights 

 

 

  Characterisation of dynamic urban areas is complex but necessary. 

  Object-based features from LiDAR and imagery are extracted for classification. 

  New internal and external urban object context features are proposed. 

  Contextual information clearly improves the classification of certain urban types. 

  These techniques are suitable for geo-spatial database updating. 
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1. Introduction 1 

Urban areas concentrate most of the socio-economical activities, jobs, educational and health 2 

services, and many cultural and leisure activities. These concentrations are important financial 3 

locations for business development and, consequently, for economic growth. These centres 4 

attract population because they offer greater opportunities for development. Approximately half 5 

of the world’s population live in cities (United Nations, 2007) and this proportion is expected to 6 

increase progressively to 70% by 2050 (United Nations; 2010). The global increase in urban 7 

population has been produced by the rapid urbanisation processes experienced in developed 8 

countries in the middle of the twentieth century. 9 

Fast growing cities produce urban sprawl with diverse consequences: mobility problems, 10 

atmospheric pollution, unplanned development, social exclusion, etc. At an environmental level, 11 

urban sprawl increases the dependence on cars, and the resulting reliance on fossil fuel causes a 12 

rise in pollution and greenhouse gas emission. Eventually, new transit infrastructures are 13 

required. Uncontrolled building and impervious surface construction leads to an increase in flood 14 

risk and a less effective absorption of rainfall into ground water aquifers, producing a decrease in 15 

land and water quality. As a consequence, it is necessary to develop technologies and 16 

methodologies that permit monitoring the effects of the various problems that are partially 17 

caused by urban sprawl. These technologies would help enable the rapid adoption of policies that 18 

minimise the negative effects of urban sprawl. Solutions require a precise knowledge of the 19 

current urban environment to enable the development of more efficient urban and territorial 20 

plans. 21 

Urban areas are composed of different materials and objects (concrete, asphalt, plastic, glass, 22 

trees, grass, etc.) arranged in complex structures (transportation systems, recreational zones, 23 
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residential, industrial, and commercial areas, etc.), (Welch, 1982). Analogously to both levels – 24 

material and structure – the terms land cover and land use are defined. Land cover is a 25 

biophysical indicator that describes the materials on the surface of a territory. Land use is an 26 

abstract concept that represents a socio-economic criterion referring to the dominant activity of a 27 

place, and may include category subdivisions with differing levels of detail. Urbanisation has 28 

been an important component of land use and land cover change, and its significance will 29 

undoubtedly continue to increase as the majority of the world’s population move to cities 30 

(Breuste et al., 1998; Pickett et al., 2001; Whitford et al., 2001). The high dynamism of urban 31 

areas produces a continuous alteration of land cover and use, and consequently, cartographic 32 

information is quickly outdated. Therefore, the availability of detailed and up-to-date 33 

cartographic and geographic information is imperative for an adequate management and 34 

planning of urban areas. The amount of geographical data currently available is much higher 35 

than several years ago. New massive acquisition techniques generate high volumes of 36 

information with a constant increase in frequency. In addition to the spectral response of land 37 

covers, altimetric information, and information about the roughness of the surface are commonly 38 

acquired using laser scanners and radar sensors. However, this volume of data requires 39 

processing prior to being added to land use/land cover geospatial databases. 40 

Usually the process of creating land-use/land-cover maps of urban areas involves field visits and 41 

classical photo-interpretation techniques using aerial imagery. These methodologies are 42 

expensive, time consuming, and also subjective as they require skilled operators with a 43 

knowledge of the area being studied. Digital image processing techniques help reduce the 44 

volume of information that needs to be manually interpreted. These techniques satisfy current 45 

demands for continuously precise data that accurately describes a territory. As a result, the 46 
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international cartographic community aims to develop useful methodologies for the automatic 47 

processing and/or updating of spatial information in urban areas. 48 

Early attempts to automatically derive land use information using digital image processing 49 

techniques failed in the precision and level of detail required for urban planning because of the 50 

low spatial resolution of the satellite imagery. The subsequent availability of high resolution 51 

spatial multi-spectral imagery could not fulfil expectations for increased classification 52 

accuracies. This problem, referred to as ‘scene noise’ (Gastellu-Etchegorry, 1990), is related to 53 

the spatial heterogeneity in the spectral response of urban areas. Pixel-level analysis of high 54 

resolution imagery makes the extraction of robust descriptive features representing urban land 55 

use extremely difficult, because these cities are composed of different cover types that produce 56 

different spectral responses (Barnsley et al. 1991). This spatial variation of the spectral response 57 

is partially conditioned by size, shape, and spatial organisation of the buildings in intra-urban 58 

open spaces. However, spectral heterogeneity may constitute a useful feature for providing 59 

information about urban areas. According to Barnsley and Barr (2000) the main disadvantage for 60 

remote sensing is that while there is often a simple direct relationship between land-cover type 61 

and spectral reflectance, the same is rarely true of land use. Therefore, the image classification 62 

process to produce land-cover maps in urban areas can be considered straightforward when 63 

compared to the problematic process of deriving information on urban land use (Eyton, 1993). 64 

Various methodological solutions dealing with high spatial resolution data suggest analysing the 65 

area at different levels, or scales, by using geo-referenced ancillary information (Sadler et al., 66 

1991). After a preliminary classification of land cover and the recognition of key urban elements, 67 

urban land-use classification is achieved by applying object-based classification techniques over 68 

cartographic units. In an object-based approach, image analysis is performed by considering 69 
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objects instead of pixels. An image object, or simply an object, is a group of pixels with common 70 

characteristics created by means of a determined segmentation criterion (Blaschke, 2010). The 71 

segmentation method employed is key in the descriptive features of objects because the resultant 72 

objects will differ depending on the algorithm and selected parameters. Plot-based image 73 

classification is a particular object-based classification case that uses cartographical limits to 74 

create objects. These limits better enable the definition of significant objects in the real world 75 

than automatic pixel aggregation. This is an especially suitable methodology for anthropogenic 76 

environments such as urban areas, where landscape units present unambiguous boundaries that 77 

are relatively stable over time.  78 

The human recognition techniques employed for identifying elements in maps or images are 79 

performed by means of an intuitive analysis of individual characteristics and the spatial context 80 

of topological features within the overall environment (Hussain et al., 2007). The analysis and 81 

interpretation of spatial phenomena is a difficult task. According to Anders et al. (1999), the aim 82 

of retrieving structured information translated into more meaningful homogeneous regions can 83 

be achieved by identifying meaningful structures within the initial random collection of objects 84 

and by understanding their spatial arrangement. Urban areas can be decomposed in different 85 

aggregation levels, based on the categorisation, relationships, functions, and attributes of their 86 

various elements (Thomson and Béra; 2008): buildings, plots, and urban blocks. The urban 87 

cadastral plot, or simply a plot, represents a distinguishable administrative unit in terms of land 88 

ownership of an urban area. Buildings correspond to basic elements of urban areas and the 89 

analysis of their particular characteristics enables the establishment of morphological differences 90 

between urban zones at an internal plot level. The aggregation of contiguous plots produces 91 

higher level units: urban blocks. These blocks are groups of plots, surrounded by public roads, 92 
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that combine open spaces and built-up areas whose geometrical shape and topological 93 

relationships significantly determine the appearance of urban environments, influencing spatial 94 

experience and defining local particularities related to a spatial identity (Laskari et al., 2008). 95 

The analysis of urban blocks enables the definition of urban morphology at a higher level than 96 

plots. 97 

As the precise characterisation of complex intra-urban patterns is a highly complex task it is 98 

common to use two stage approximation methods (Bauer and Steinnocher; 2001). Initially, the 99 

main land-cover types or significant elements in the image are detected and this information is 100 

then analysed in a spatial context to determine land use. Two methods have been principally 101 

employed to represent patterns and define contextual relationships: fragmentation metric 102 

descriptors (Alberti and Waddell, 2000; Zhang et al., 2004; Vanderhaegen and Canters, 2010), 103 

which are frequently used in ecological and landscape analysis (McGarigal et al., 2002); and 104 

graph theory, which extends the concept of relational graphs and enables the representation of 105 

both intrinsic features and extrinsic relationships. This approach has been used by Barnsley and 106 

Barr (1997), Barr and Barnsley (1998), Barnsley and Barr (2000), Zhan et al. (2002a), and 107 

Almeida et al. (2007). 108 

Depending on the objective, urban characterisation has been focused on two units: buildings 109 

(particularly in cartographic generalisation issues) and urban blocks (especially in classification 110 

approaches using remotely sensed data). When working on cartographical generalisation issues, 111 

the absence of spectral and, frequently, three-dimensional information leads to the description of 112 

buildings using geometric features, i.e. size, main orientation, or shape complexity indices.  113 

Several contextual relationships are established, and these are based on adjacency (Hussain et al., 114 

2007), spatial arrangement (Boffet and Rocca, 2001; Burghardt and Steiniger, 2005), ancillary 115 
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thematic data (Boffet and Coquerel, 2000), zone building density (Boffet and Coquerel, 2000; 116 

Steiniger et al., 2009), or open areas (Boffet and Rocca, 2001). The neighbouring areas that 117 

provide context are defined using urban block limits, or by using distance buffers. However, 118 

buffer techniques produce misclassifications and identification errors in areas bordering different 119 

urban typologies (Burghardt and Steiniger, 2005).  120 

Classification of urban blocks using remotely sensed imagery usually uses two-stage 121 

approximation methods. After classifying land-cover type or identifying significant urban 122 

elements – commonly buildings – a land use is assigned to each plot (Zhan et al., 2000) or urban 123 

block by examining their contextual relationships (Bauer and Steinnocher, 2001; Zhan et al., 124 

2002b; Herold et al., 2003; Zhang et al., 2004b; Wijnant and Steenberghen, 2004; Herold et al., 125 

2005; Laskari et al., 2008; Novack et al., 2010). Several descriptive features have been employed 126 

to characterise the land use of urban elements. The most frequently and successfully employed 127 

descriptor is the building-to-land ratio (BTL)(Van de Voorde et al., 2009). This feature is often 128 

complemented with height information and volumetric descriptors when three-dimensional data 129 

is available. Yoshida and Omae (2005) and Yu et al. (2010) define descriptor sets with a 130 

quantitative interpretation for the analysis of urban areas using LiDAR data. Vanderhaegen and 131 

Canters (2010) aim to classify urban land use by using metric descriptors in an indirect analysis 132 

based on deriving and studying the concentric and radial urban block profiles that characterise 133 

the volumetric distribution of buildings.  134 

When urban environments are being analysed, due to the hierarchical structure of urban 135 

landscapes, it may be worthwhile considering the various aggregation levels of their elements. It 136 

has been shown that the consideration of the plot as an urban landscape analysis unit and its 137 

subsequent examination with lower and higher level aggregation units (represented by buildings 138 
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and urban blocks) may provide information that is useful for a more accurate classification of 139 

land uses. Consequently, this paper aims to define and analyse context-based descriptive features 140 

for classifying land use in urban environments – using object-based image classification 141 

techniques and combining high spatial resolution imagery, LiDAR, and cartographic data. 142 

Context is described by analysing the plots at internal and external levels. At an internal level a 143 

comprehensive description of various land cover types contained inside the object is performed. 144 

The external level refers to the features of the upper units to which an object belongs. The 145 

meanings of defined feature groups, and their particular influence and contribution to 146 

classification accuracy, are studied in this paper. 147 

 148 

2. Data and study area 149 

The study area was defined in the city of Sagunto in the province of Valencia (Spain), as shown 150 

in Figure 1. Sagunto contains a variety of urban zones with urban industrial areas and several 151 

suburban areas. Large areas of citrus orchards and farmlands surround the city. 152 

Imagery and LiDAR data were collected in the framework of the Spanish Programme of Aerial 153 

Orthophotography (PNOA), which provides periodic coverage (every two years) of very high 154 

resolution aerial orthophotography (10, 25, or 50 cm/pixel) of the entire national territory. Aerial 155 

images were acquired in June 2006 with a spatial resolution of 0.5 m/pixel and three spectral 156 

bands: infrared, red, green. The images were already orthorectified, geo-referenced, 157 

panchromatic and multi-spectral band fused, and radiometrically adjusted. LiDAR data was 158 

acquired in August 2009 with a nominal density of 0.5 points/m
2
. The limits of the plots were 159 

provided by vectorial cadastral cartography at a scale of 1:1000, produced by the Spanish 160 

national land registry office (Dirección General de Catastro). 161 
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3. Methodology 162 

Urban land use classification was carried out following an object-based approach. The main 163 

steps of this approach were: class definition; sample selection; descriptive feature extraction; 164 

classification of the objects; and evaluation of the results. Objects were defined by means of 165 

cartographic boundaries derived from the cadastral geospatial database. These were exhaustively 166 

described through image derived features (i.e. spectral and texture features), three-dimensional 167 

features computed from LiDAR data, and geometrical features describing the shape of each 168 

object. In addition, a set of contextual features were defined at two levels: internal and external. 169 

Many of the features derived from both contextual levels are related to buildings, obtained using 170 

automatic building detection techniques.  171 

 172 

 173 

3.1. Definition of classes and sample selection 174 

The definition of urban land use classes was based on the specifications of the Land Cover and 175 

Use Information System of Spain (SIOSE) database, created using different criteria from 176 

different land-cover/land-use databases (urban, agricultural, forested, natural, and wetland areas). 177 

This data was generated by Spanish public administrations at a scale of 1:25,000. SIOSE divides 178 

territory in polygons that separate different environments or uses (Valcárcel et al., 2008). 179 

The urban land use classes considered were: historical, urban, open urban, detached housing, 180 

terraced housing and industrial (Figure 2). The main characteristic of historical areas (Figure 181 

2.a) is their irregularity, and that they feature long thin plots, very narrow roads, and few green 182 

zones. Buildings in this area are terraced, and grouped in compact urban blocks. Urban areas 183 

(Figure 2.b) represent zones designed to an urban plan, and usually developed around the 184 
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historical area. These are characterised by regular urban blocks, broad streets, and more 185 

extensive green areas than historical areas. Buildings are both commercial and residential, and 186 

attached together in compact and large urban blocks. Open urban zones (Figure 2.c) are planned 187 

areas composed of isolated buildings, commonly unrelated to the road network and surrounded 188 

by open and green areas. Suburban residential land uses are represented by detached housing 189 

(Figure 2.d) and semi-detached/terraced housing (Figure 2.e). The first group is composed of 190 

single family residential buildings; whereas the second group refers to semidetached or terraced 191 

houses. These constructions tend to appear in dispersed urban blocks that contain green zones. 192 

Industrial areas (Figure 2.f) are artificial zones populated with buildings and structures for 193 

manufacturing, transforming, repairing, storing, and distributing goods. Buildings are usually 194 

large and may be detached or attached. In addition to the urban classes, agricultural/vegetation 195 

related classes were defined into orchards, bare/arable lands and croplands in order to fully 196 

classify the study zone. These last two classes were finally merged in a single category. 197 

According to the internal variability of the defined classes, a total of 1309 samples were 198 

collected – distributed as shown in Table 1. 199 

3.2. Data pre-processing  200 

A normalised digital surface model (nDSM), i.e. the difference between the digital surface model 201 

and the digital terrain model (DTM), was generated from LiDAR data. An algorithm that 202 

eliminates points belonging to any above ground objects, such as vegetation or buildings, was 203 

used to generate the DTM, with minimum elevation points being selected in a series of 204 

progressively smaller windows. Firstly, an initial DTM was computed using the points selected. 205 

New minimum elevations were then chosen by using smaller windows that were compared with 206 
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the initial DTM. The definition of a height threshold enabled the removal of ground points. This 207 

algorithm is fully described in Estornell et al. (in press). 208 

A thresholding-based building detection approach was used. This method is founded on the 209 

establishment of two threshold values: one referring to the height, applied over the nDSM; and 210 

other referring to the presence of vegetation, defined using the normalised difference vegetation 211 

index (NDVI) image. The threshold value was determined in a semi-automatic manner by 212 

collecting samples of both classes to be differentiated. With the average and standard deviation 213 

values of both sample classes, Gaussian curves modelling their histogram were computed. The 214 

threshold value was defined as the point where both curves intersected. The binary images 215 

produced during the thresholding steps were softened using morphological opening and closing 216 

filters, and small objects were eliminated to remove noise. Finally, both binary images 217 

(vegetation and height) were intersected revealing the detected buildings. Buildings and 218 

vegetation masks were used to define several descriptive features. The building detection 219 

methodology is fully described and evaluated in Hermosilla and Ruiz (2009). 220 

 221 

 222 

3.3. Definition of descriptive features 223 

Visual techniques used by a photo-interpreter are based on the recognition of elements 224 

represented in images and the identification of their particular characteristics. These are related 225 

to shape, colour, texture, and also to the spatial context of the topological attributes of the 226 

internal components (spatial arrangement, land cover distribution) and the overall environment. 227 

The proposed descriptive features aim to emulate human cognition by numerically quantifying 228 

the properties of the image elements and so enable each to be distinguishable.  229 
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Descriptive features related to three different object aggregation levels were defined: object-230 

based, internal context, and external context. Object-based features describe each object as a 231 

single entity based on several aspects that reflect the information typology used: multi-spectral, 232 

three-dimensional, geometry, etc. These features are computed using object-based image 233 

analysis FETEX 2.0 software, described in Ruiz et al. (2010). Object-based features are divided 234 

in two feature groups: image-based features (group I), and geometrical and three-dimensional 235 

features (group II). Internal context features (group III) describe an object with respect to the 236 

land cover types contained within the object (denoted as sub-objects), in this case were buildings 237 

and vegetation. External context features (group IV) characterise each object by considering the 238 

common properties of adjacent objects that when combined create an aggregation that is higher 239 

than plot level. These are termed super-objects and in urban areas these coincide with urban 240 

blocks.  241 

Two different types of image-based features (group I) are used: spectral and textural. Spectral 242 

features provide information about the intensity values of objects in the different spectral bands. 243 

Mean, standard deviation, minimum and maximum descriptors have been computed for each 244 

object in the available bands and in the NDVI image. Textural features quantify the spatial 245 

distribution of the intensity values in the analysed objects. The following descriptive features are 246 

derived: kurtosis and skewness of the histogram; contrast, uniformity, entropy, covariance, 247 

inverse difference moment, and correlation, descriptors proposed by Haralick et al. (1973) and 248 

derived from the grey level co-occurrence matrix (GLCM), which are computed using a per-249 

object approach (Balaguer et al., 2010); and the mean and standard deviation of the edgeness 250 

factor (Sutton and Hall, 1972), representing the density of the edges present in the 251 

neighbourhood of each pixel. 252 
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Group II is composed of geometrical and three-dimensional features. Geometrical features 253 

describe the dimensions of the objects and their contour complexity. Area, perimeter, 254 

compactness (Bogaert et al., 2000) (see Equation (1)), shape index (see Equation (2)), and fractal 255 

dimension (Krummel et al., 1987; McGarigal and Marks, 1995) (see Equation (3)) descriptors 256 

are calculated. 257 
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Three-dimensional features are derived from the nDSM computed from LiDAR data. Each 258 

object is characterised by the mean, standard deviation, and maximum values of the heights. 259 

Table 2 summarises the object-based feature set computed. 260 

Internal-context features (group III) describe an object by characterising the sub-objects 261 

contained within it. When applying the automatic building detection process explained in Section 262 

3.2. and the vegetation mask produced in that step, two covers are considered: buildings and 263 

vegetation. Buildings correspond to basic elements of urban areas, and their characteristics shape 264 

our perception of the various urban morphological areas. Bi-dimensional and three-dimensional 265 

features describing the buildings inside each object were computed. Bi-dimensional features 266 

refer to built-up surface and built-up percentages in an object. This feature – usually referred to 267 

as building coverage ratio (BCR) or sealed surface – has been often used in literature (Yoshida 268 

and Omae, 2005; Van de Voorde et al., 2009; Yu et al., 2010), and is computed as described in 269 

Equation (4): 270 
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100·
Object

Building

A

A
BCR   (4) 

where ABuilding is the built-up area, and AObject is the surface of the considered object. Building 271 

sub-objects were also characterised using a set of three-dimensional features describing their 272 

height using mean, standard deviation, and maximum values from nDSM. 273 

The presence and density of vegetation is strongly related to the different urban areas. 274 

Analogously to Equation (4), the percentage of surface covered by vegetation within an object is 275 

defined. Additionally, statistical descriptors (mean and standard deviation) are computed to 276 

describe height and photosynthetic development of sub-objects identified as vegetation from 277 

nDSM and NDVI, respectively. 278 

The external-context features (group IV) provide information about the properties of the super-279 

object created by merging adjacent objects, and these produce new entities with a higher 280 

aggregation level (corresponding to urban blocks in urban areas). External context is described 281 

by considering the spatial relationships of adjacent objects by means of building-based, 282 

vegetation-based, geometrical and adjacency features.  283 

Adjacency between objects was characterised using graph theory, based on the study of graphs, 284 

or mathematical structures used to model pairwise relations between objects from a collection. 285 

Graph theory (Laurini and Thompson, 1992; Almeida et al, 2007) has been described as an 286 

extremely valuable and efficient tool in storing and describing the spatial structure of 287 

geographical entities and their spatial arrangement. This theory was introduced for image 288 

classification purposes by Barnsley and Barr (1997), to describe the spatial relationship of 289 

adjacency – corresponding with edges in the graph – between geographical objects represented 290 

by vertices. To quantify the adjacency relationships between objects, several features were 291 

defined: the number of correspondences with surrounding objects; the mean distance of these 292 
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adjacencies; and the standard deviation value of the distances between adjacent objects. These 293 

features are closely related to both object and super-object dimensions (Figure 3) and provide 294 

information about the spatial distribution of objects (plots) inside the super-object (urban block) 295 

by analysing the distances and variability of the edges. 296 

According to Yoshida and Omae (2005), the shape, size, and number of buildings per block 297 

(often related to their socio-economic function) determine area and volume for an urban block. 298 

This implies the possibility that the land use of an urban block may be indicated by the 299 

quantitative observations related to the buildings present in it. These descriptors are often 300 

mentioned as urban morphology features. Super-objects are characterised with the built-up area 301 

and the BCR. The heights of the buildings contained in an urban block are described using the 302 

mean and standard deviation values. Features related with the volumetric information of 303 

buildings have also been computed. The volume of a building is given by Equation (5) (Yu et al., 304 

2010): 305 

2
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where r is the spatial resolution and hi is the relative height obtained from nDSM for the pixel i 306 

in a surface detected as a building, composed of n pixels. Using the volume of each building, the 307 

mean volume is computed as the total volume of buildings divided by the number of buildings 308 

contained in an urban block as shown in Equation (6): 309 

n

V

V

n

i

i

m


 1  

(6) 

where Vi is the volume of the building i and n the building total in the analysed super-object.  310 
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Equivalently to the internal context features, vegetation is characterised using the vegetation 311 

covered ratio, mean, and standard deviation values of nDSM and NDVI, from the vegetation 312 

detected within a super-object. 313 

The geometrical properties of the polygons produced with the super-object are described using 314 

area, perimeter, compactness, shape index, and fractal dimension features. Table 3 summarises 315 

the internal and external feature set computed. 316 

Figure 4 shows examples of the typical differences in building and vegetation coverage for the 317 

different urban classes considered. In general, buildings in the historical and urban classes 318 

include plots and urban blocks with small inner light wells. The open urban class usually has 319 

only a portion of built-up area in a plot or urban block; while a higher variability is found in the 320 

industrial class. The detached housing class tends to include several small buildings distributed 321 

in variable size plots and large urban blocks. The semi-detached/terraced housing class has 322 

larger built-up areas in small plots and urban blocks. Suburban residential areas show abundant 323 

vegetation. Little vegetation is found in industrial areas and in other urban classes. 324 

At both internal and external levels, height (Figure 5) and volume are strongly related to the type 325 

of buildings. Historical class is mainly characterised by the irregularity of building heights and 326 

dimensions. Urban class contains taller buildings with more uniformity, larger dimensions, and 327 

higher volume values. Open urban class buildings have a diversity of dimensions and heights, 328 

but these are regular and lack internal variability. Individual semi-detached/terraced housing 329 

buildings normally have smaller dimensions, but taller buildings than the detached housing class. 330 

Semi-detached/terraced housing constructions are attached and so produce elongated building 331 

rows with high unitary volumes at the urban block level. Industrial class buildings are 332 

characterised by medium and constant heights and large dimensions that produce elevated 333 
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unitary volume values. Building dimensions shape the geometrical aspect of urban blocks. 334 

Historical blocks are characterised by the extreme irregularity of their contours and by small and 335 

medium surface areas. In contrast, the urban class blocks show regular shapes with an abundance 336 

of perpendicular junctions that are similar to the open urban block. This class reveals especially 337 

variable dimensions. The industrial class blocks contain regular contours based on squared 338 

shapes and very large dimensions. Suburban single-family blocks also present a variety of sizes. 339 

Detached housing blocks are commonly square, while semi-detached/terraced housing reveals 340 

significantly elongated rectangular shapes. 341 

3.4. Classification 342 

To analyse the effect of using contextual features to classify urban land uses, four classification 343 

tests were applied. In the first test, a description of the objects was merely based on the image-344 

based features (group I). In the second test, the geometrical and three-dimensional features 345 

(group II) were combined with the feature group I. In the third test, objects were described with 346 

features from group I and II, and combined with the defined internal context features (group III). 347 

In the final test, all the descriptive feature groups were combined by adding the external context 348 

features (group IV). 349 

Objects were classified by applying the decision-trees obtained using the training samples. A 350 

decision-tree is a set of conditions organised in a hierarchical structure in such a way that the 351 

class assigned to an object can be determined following the conditions that are fulfilled from the 352 

tree roots (the initial dataset) to any of its leaves (the assigned class). The algorithm employed in 353 

this study was C5.0. The process of building a decision-tree begins by dividing the collection of 354 

training samples using mutually exclusive conditions. This algorithm searches partitions to 355 

obtain purer data subgroups, which are less mixed than the previous group from where they were 356 
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derived. For each possible division of the initial data group, the degree of impurity of the new 357 

subgroups is computed; and the condition that gives the lowest degree of degree is chosen. This 358 

is iterated until the original data is divided into homogeneous subgroups by using the gain ratio 359 

as a splitting criterion until all the elements in a subgroup belong to the same class, or a stopping 360 

condition is fulfilled (Quinlan, 1993). 361 

The boosting multi-classifier method was used. This methodology is based on the assignment of 362 

weights to the training samples. The greater the weight of a sample, then the greater its influence 363 

on the classifier. After each tree construction, the weight vector is adjusted to show the model 364 

performance. In this way, samples erroneously classified retain their weights, whereas the 365 

weights of correctly classified samples are decreased. Thus, the model obtained in the following 366 

iteration gives more relevance to the previously wrongly classified samples. 367 

3.5. Methods for evaluation of feature influence and classification 368 

The influence and usefulness of the proposed descriptive features for the particular classification 369 

problem was assessed using forward stepwise linear discriminant analysis (LDA). In this 370 

method, all variables are reviewed and evaluated at each step to determine which will contribute 371 

most to the discrimination between classes. That variable is included in the model and the 372 

process is iterated. 373 

The evaluation of the four classifications performed is based on the analysis of the confusion 374 

matrix (Congalton, 1991), by comparing the class assigned to each evaluation sample with the 375 

information contained in the reference database. The overall accuracies of the classifications 376 

were computed, as well as the producer and user accuracies for each class (which respectively 377 

reveal the errors of omission and commission). In addition, a specific confusion index was 378 

defined to quantify the confusion between a pair of classes, computed as the sum of their mutual 379 
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errors divided by the total objects from that pair of classes. Confusion index value ranges 380 

between 0 (absence of per-class-pair errors) and 1 (all the objects of both considered classes are 381 

misclassified). 382 

To improve the efficiency of the number of samples, the leave-one-out cross-validation 383 

technique was employed. This method uses a single observation from the original sample set as 384 

validation data, and the remaining observations as training data. This is iterated until each 385 

observation in the sample set is used once as validation data.  386 

4. Results and discussion 387 

4.1. Feature analysis 388 

The predicted overall classification accuracy evolution for the 25 first variables included in the 389 

LDA model, considering descriptive features from all the groups defined, is shown in Figure 7. 390 

Several variables coming from the four different groups considered are selected among the most 391 

relevant features included in the model: image-based features (IDM, Entropy, MeanG, MeanIR, 392 

StdevNDVI, MinR, StdevIB, MinG); geometrical and three-dimensional features (Perim_O, 393 

Fractal_O); internal-context features (VCR, MeanH_B, BCR); and external-context features 394 

(BCR_SO, Volume). This illustrates their complementary nature, as well as the possibility of 395 

increasing the efficiency of the classification in terms of accuracy and reducing the number of 396 

variables by using only a selected and highly discriminant group of features. See Table 2 and 397 

Table 3 for feature code description.  398 

The distinctive aspects of the different urban classes that enable their discrimination –399 

analogously to the human interpretation process – are numerically expressed by means of the 400 

defined features. In Figure 6, four examples of the distribution of classes according to the ranges 401 

of values of different context-based descriptive features are shown. Thus, when analysing the per 402 
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plot distribution of BCR and VCR feature values (Figure 6.a and Figure 6.b), the historical and 403 

urban classes reveal buildings covering almost the entire area of their plots with low vegetation 404 

coverage. In contrast, semi-detached/terraced housing and, particularly, detached housing had 405 

less built-up zones and more vegetation. The industrial class showed a high variability for BCR 406 

feature values and reduced values of VCR features. At the urban block level, significant 407 

differences between urban classes were also found. As seen in Figure 6.c, the detached housing 408 

class had the lowest values for mean volume of buildings, and semi-detached/terraced housing 409 

reached slightly higher values. The remaining classes generally showed high volumes. Urban 410 

and historical classes (Figure 6.d) were located in small urban blocks, whereas the industrial 411 

class usually appeared in the largest urban blocks. The suburban classes (detached housing and 412 

semi-detached/terraced housing) were distributed in urban blocks with highly variable sizes. 413 

4.2. Urban land use classification 414 

As shown in Table 4, the progressive addition of feature groups increases the classification 415 

accuracy, indicating the complementary nature of these feature groups. The lowest values were 416 

obtained when only image-based object features (group I) were considered. Three-dimensional 417 

data offered valuable information. Internal and external context features also produce noticeable 418 

increases in accuracy. 419 

Per class user and producer accuracies for the various feature group combinations are shown in 420 

Figure 8. Analogously to the overall accuracy values, the least accurate performances were 421 

achieved when image-based object features were considered. The combination of different 422 

feature groups increases accuracy values. This increase was especially irrelevant in the case of 423 

the agricultural classes: bare soil/arable and croplands and orchards, which performed well 424 

when only considering feature group I. Among the urban classes, the highest accuracy result with 425 
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the lowest number of descriptive features was obtained in the industrial class, attributable to the 426 

homogeneity of textures and the particular spectral response shown by this type of construction. 427 

Due to the high initial accuracy values, the subsequent inclusion of feature groups had little 428 

impact in this class, producing a slight land-use accuracy increase when adding external context 429 

features. Figure 10 a shows a classification result example in an industrial area. This figure 430 

shows that even though all the objects included in a super-object were characterised with 431 

identical features in group IV, their different classes were correctly assigned. In contrast, the 432 

lowest user and producer accuracies when considering feature group I were obtained in the open 433 

urban class, as it was confused with the urban class. The successive addition of the descriptive 434 

feature groups significantly enhanced the accuracy values for this class. 435 

The pairs of classes detached housing and semi-detached/terraced housing, and historical and 436 

urban mutually revealed high levels of confusion due to their spectral similarities and the 437 

absence of a framework for contextualising differences. The per-class-pair confusion index (see 438 

Figure 9) noticeably decreased when three-dimensional and geometrical based features were 439 

considered, because plots contained in the semi-detached/terraced housing class are 440 

characterised by smaller dimensions and taller buildings than detached housing plots. The 441 

successive addition of contextual features –especially when these refer to the external context – 442 

reduces the confusion between both classes up to a value of 0.04. An example of the 443 

classification result of a suburban area with predominance of detached housing and semi-444 

detached/terraced housing classes is shown in Figure 10.b. 445 

Historical and urban classes also show an elevated initial per-class-pair confusion index – which 446 

was remarkably reduced as three-dimensional and contextual features were used in the 447 

classification. Objects belonging to both classes presented similar object level features, their 448 
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main differences being found at super-object level. Super-objects of the urban class usually 449 

belong to a previously planned and ordered environment. Urban blocks of historical areas have 450 

irregular and complex shapes, as a consequence of a sporadic and unplanned growth over time. 451 

Figure 10.b graphically shows how historical and urban classes are in general efficiently 452 

discriminated, in spite of some minor errors produced in isolated objects, which may be 453 

decreased by applying a further analysis of objects that are isolated among different classes.  454 

5. Conclusions 455 

A set of context-based descriptive features for urban environment land-use classification is 456 

analysed in this paper. These features are computed from high spatial resolution imagery and 457 

airborne LiDAR data, and aim to imitate human cognition though the numerical quantification of 458 

the discrimant properties of image elements. The use of object-based image analysis facilitates 459 

the combination of information from different data sources and enables the multi-scale analysis 460 

of the images. By combining different data and aggregation levels, image objects are described 461 

in greater depth than in the pixel approach. This is true for diverse aspects of the objects (spectral 462 

response, geometry, altimetry, properties of internal elements, properties of the container object, 463 

etc). The results of the classification tests performed show that internal and external context 464 

features suitably complement the image-derived features, improving the classification accuracy 465 

values of urban classes – especially between classes that show similarities in their image-based 466 

and three-dimensional features. The proposed methodology, based on automated descriptive 467 

feature extraction from LiDAR data and images, is applicable for mapping cities, urban 468 

landscape characterisation and management, and updating geospatial databases, providing new 469 

tools to increase the frequency and efficiency of urban studies. 470 
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Table 1. Number of samples selected per class. 

Class Number of samples 

Historical 170 

Urban 244 

Open urban 103 

Detached housing 121 

Semi-detached/terraced housing 161 

Industrial 115 

Orchards 157 

Bare/arable and croplands 238 

Total 1309 
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Table 2. Description and codification of image based and geometrical and three-dimensional 

object features. 

Group I: image-based features 

 Spectral (for each band and NDVI image) 

 Mean (MeanIR, MeanR, MeanG, MeanNDVI) 

 Standard deviation (StdevIR, StdevR, StdevG, StdevNDVI) 

 Minimum (MinIR, MinR, MinG, MinNDVI) 

 Maximum (MaxIR, MaxR, MaxG, MaxNDVI) 

 Texture 

 Mean edgeness factor (MeanEDG) 

 Standard deviation of edgeness factor (StdevEDG) 

 Skewness  

 Kurtosis 

 Uniformity 

 Entropy 

 Contrast 

 Inverse difference moment (IDM) 

 Covariance 

 Correlation 

Group II: geometrical and three-dimensional features 

 Geometrical 

 Compactness (Compac_O) 

 Shape index (Shape_O) 

 Fractal dimension (Fractal_O) 

 Area (Area_O) 

 Perimeter (Perim_O) 

 Three-dimensional 

 Height mean (MeanH) 

 Height standard deviation (StdevH) 

 Height maximum (MaxH) 
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Table 3. Internal and external context descriptive features compilation. 

Group III: internal context features 

 Building related 

  Height mean (MeanH_B) 

 Height standard deviation (StdevH_B) 

 Height maximum (MaxH_B) 

 Building covered area (BCA) 

 Building covered ratio (BCR) 

 Vegetation related 

 Height mean (MeanH_V) 

 Height standard deviation (StdevH_V) 

 NDVI mean (meanNDVI_V) 

 NDVI standard deviation (Stdev_NDVI_V) 

 Vegetation covered ratio (VCR) 

Group IV: external context features 

 Connectivity 

 Number of adjacencies (NAdj) 

 Mean distance (MeanDist) 

 Standard deviation of distance (StdevDist) 

 Urban morphology 

 Mean volume (Volume_SO) 

 Building covered ratio (BCR_SO) 

 Building covered area (BCA_SO) 

 Mean height of buildings (MeanH_SO) 

 Standard deviation of building height (StdevH_SO) 

 Vegetation related 

 Height mean (MeanH_VSO) 

 Height standard deviation (StdevH_VSO) 

 NDVI mean (meanNDVI_VSO) 

 NDVI standard deviation (StdevNDVI_VSO) 

 Vegetation covered ratio (VCR_SO) 

 Geometric 

 Compactness (Compac_SO) 

 Shape index (Shape_SO) 

 Fractal dimension (Fractal_SO) 

 Area (Area_SO) 

 Perimeter (Perim_SO) 
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Table 4. Overall classification accuracy values  

when successively combining descriptive feature groups.  

 

Feature groups Overall accuracy 

Group I 72.9 % 

Groups I+II 82.7 % 

Groups I+II+III 87.1 % 

Groups I+II+III+IV 91.8 % 
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Figure 1. Location of the study area (Sagunto). 
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Figure 2. Examples of the urban classes defined in colour-infrared composition: a. historical; b. 

urban; c. open urban, d. detached housing; e. semi-detached/terraced housing; and. f. industrial. 
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Figure 3. Examples of adjacency relations derived using graph theory for the urban classes 

defined: a. historical; b. urban; c. open urban, d. detached housing; e. semi-detached/terraced 

housing; and f. industrial. 

 

Figure



   

a. b. c. 

   

d. e. f. 

Figure 4. Examples of detected building (in pink) and vegetation (in green) for the defined urban 

classes: a. historical; b. urban; c. open urban, d. Detached housing; e. semi-detached/terraced 

housing; f. industrial. 
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Legend: 0  20 m 

Figure 5. Examples of building height distribution for the urban classes defined: a. historical; b. 

urban; c. open urban, d. detached housing; e. semi-detached/terraced housing; and. f. industrial. 
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Figure 6. Distribution of classes according to the ranges of values of different descriptive 

features: (a) plot building covered ratio, (b) Plot vegetation covered ratio, (c) Mean urban-block 

building volume, and (d) urban-block area. 
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Figure 7. Predicted overall classification accuracy when the 25 first features are progressively 

included in the discriminant model. See Table 2 and Table 3 for feature code description. 
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Feature groups: 

 
Figure 8. Per-class user (left) and producer (right) accuracies when different feature groups are 

combined. 
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Figure 9. Per-class-pair confusion index as successive descriptive feature groups are combined in 

classification comparing historical vs. urban, and detached housing vs. semi-deteached/terraced 

housing classes. 
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Legend: 

 

Figure



 2 

Figure 10. Three details of colour infrared images (left) and a land-use thematic map (right) 

derived from the classification using the most efficient set of features. 

 


