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The stabilization problem of positive linear discrete-time systems (PLDS) by linear state feedback is considered. A method based
on a Brauer’s theorem is proposed for solving the problem. It allows us to modify some eigenvalues of the system without changing
the rest of them. The problem is studied for the single-input single-output (SISO) and for multi-input multioutput (MIMO) cases
and sufficient conditions for stability and positivity of the closed-loop system are proved. The results are illustrated by numerical
examples and the proposed method is used in stochastic systems.

1. Introduction

Positive systems are used to model many applications fields
such as biology, chemistry, ecology, economy, and sociology
(see [1] and the references therein). These systems have the
peculiar property that any nonnegative input and nonnega-
tive initial state generate a nonnegative state trajectory and a
nonnegative output for all time.The positivity of the variables
often emerges as the immediate consequence of the nature of
modeled process, such as any variable representing a different
type of resource like time, money and goods, buffer size and
queues, data packets flowing in a network, water and air
flows, populations, concentration of any substance, electric
charge, and light intensity levels. For a good introduction to
the theory of positive systems see [2, 3].

Many well-established results for general linear systems
cannot be directly applied to positive systems. This feature
makes the study of positive systems very interesting andmany
results have been obtained in this area both for continuous
and for discrete-time systems [4, 5].

The stability property is fundamental to the correct
functioning of any control system and in particular of positive
control systems. Stabilization of linear systemsusing feedback
has attracted considerable interest during the last decades.
Various approaches have been used to study the aspects of the
stabilization problem, namely, the condition under which the

linear system described in the state-space can be stabilized
via feedback. For instance, some fundamental results on
stability property of linear systems are given in [6–8]. When
considering the stabilization problem of positive systems, the
additional conditions exist on the feedback, ensuring that
the closed system remains positive. In this case, it is possible
that the generated feedback can be entrywise nonpositive.
For example, in biology a nonnegative input means that the
species can never be killed, and this situation is not realistic
[9].

This problem has been studied by several authors, but
it is not completely solved yet. For instance, in [10] it is
considered for discrete-time periodic linear systems and in
[11] for positive switched systems.

The goal of this paper is to propose a new method for
stabilization of positive unstable linear discrete-time systems,
maintaining its positivity, that is, to use linear state feedback
such that the eigenvalues of the closed-loop system have
magnitude less than one. For that, we use a Brauer’s theorem
to modify some eigenvalues of the state matrix without
changing any of the remaining eigenvalues (see [12, 13] and
the references given there).

The obtained results on stability property are applied to
stochastic matrices to construct a closed-loop system whose
eigenvalues are less than one and it maintains the positivity.
Stochastic systems are included in systems theory that deals
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with dynamic as well as static systems, whose processes
are characterized by probability distributions or spectral
measures. These systems can be modeled by a discrete-time
system where the matrix 𝐴 has a stochastic structure and it
can be used, for example, to model the evolution of non-
deterministic events. Moreover, it is known that stochastic
matrices play an important role in economicmodels; see [14].
Some results concerning eigenvalues of stochastic matrices
and their applications to nonnegative matrices are presented
in [15]. The development of the stochastic stability theory is
based on Markov parameters and on a Lyapunov approach
(see more information in [16] and references therein).

The paper is organized as follows. In Section 2 we present
the main results for the stability and the positivity of the
single-input single-output (SISO) system. In Section 3 we
extend the SISO results for a particular multi-input multiout-
put (MIMO) system. In Section 4 we show an application to
stochastic systems. Finally, in Section 5 concluding remarks
and some perspectives are given.

2. Stabilization of SISO PLD System

We consider a SISO positive linear discrete-time system

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝑏𝑢 (𝑘) , 𝑘 ∈ Z
+
, (1)

where 𝑥(0) ≥ 0, 𝐴 = (𝑎
𝑖𝑗
) ∈ R𝑛×𝑛
+

, 𝑏 = (𝑏
𝑖
) ∈ R𝑛×1
+

, 𝑥(𝑘) is the
state vector, and 𝑢(𝑘) is the control vector.This system can be
represented by the pair of matrices (𝐴, 𝑏).

It is known that the linear discrete-time system (1) is
asymptotically stable if and only if the dominant eigenvalue
𝜌 = 𝜌(𝐴) is smaller than 1. If 𝜌 > 1, then the system is
unstable and if𝜌 = 1 the system is said to bemarginally stable.

We consider a positive system (1) with 𝜌 ≥ 1. Our goal
is to construct a state feedback vector 𝑓 ∈ R𝑛×1 such that
𝑢(𝑘) = 𝑓

𝑇
𝑥(𝑘) and the closed-loop system

𝑥 (𝑘 + 1) = (𝐴 + 𝑏𝑓
𝑇

) 𝑥 (𝑘) = 𝐴
𝑐
𝑥 (𝑘) (2)

is positive; that is,𝐴
𝑐
≥ 0 and is asymptotically stable; that is,

𝜌(𝐴
𝑐
) < 1.

For solving the above problem, we use Brauer’s theorem
[17] that shows how to modify one single eigenvalue of 𝐴
using a rank-one perturbation without changing any of the
remaining eigenvalues.

Theorem 1 (see [12, 13, 17, 18]). Let 𝐴 be an 𝑛 × 𝑛 arbitrary
matrix with eigenvalues 𝜎(𝐴) = {𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑛
}. Let 𝑥

𝑘
be an

eigenvector of 𝐴 associated with the eigenvalue 𝜆
𝑘
, and let 𝑞

be any 𝑛-dimensional vector. Then the matrix 𝐴 + 𝑥
𝑘
𝑞
𝑇 has

eigenvalues {𝜆
1
, . . . , 𝜆

𝑘−1
, 𝜆
𝑘
+ 𝑥
𝑇

𝑘
𝑞, 𝜆
𝑘+1
, . . . , 𝜆

𝑛
}.

Remark 2. Note that if 𝑥𝑇
𝑘
𝑞 = 0 then the eigenvalues of the

updated matrix𝐴+𝑥
𝑘
𝑞
𝑇 are the same as the initial matrix𝐴.

In [12, 13, 18] several applications of the above theorem are
presented concerning the stabilization, nonnegative inverse
eigenvalue, and pole assignment problems for SISO systems.

Proposition 3 (see [12, proposition 2.4]). Consider the pair
(𝐴, 𝑏) that represents a single-input single-output linear time
invariant control system. Let 𝜎(𝐴) = {𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑛
} and let

𝑥
𝑘
be an eigenvector of 𝐴𝑇 associated with 𝜆

𝑘
. If 𝑏𝑇𝑥

𝑘
̸=

0, then there exists a vector 𝑓 such that 𝜎(𝐴 + 𝑏𝑓
𝑇
) =

{𝜆
1
, . . . , 𝜆

𝑘−1
, 𝜆
𝑘
+ 𝑥
𝑇

𝑘
𝑏, 𝜆
𝑘+1
, . . . , 𝜆

𝑛
}.

Remark 4. By Remark 2, if 𝑥𝑇
𝑘
𝑏 = 0 then the eigenvalues do

not change and the closed-loop system with 𝐴
𝑐
= 𝐴 + 𝑏𝑓

𝑇

has the same stability property as the initial system (1).

From the theory of nonnegativematrices [19], the Perron-
Frobenius theorem states that if 𝐴 (the same for 𝐴𝑇) is a
nonnegative matrix, then it has a nonnegative eigenvalue 𝜌 =
𝜌(𝐴) = 𝜌(𝐴

𝑇
), that is, the Perron root, which is greater than

or equal to the modulus of each of the other eigenvalues,
and its corresponding eigenvector V = V

𝜌
∈ R𝑛×1, which

is referred to as the Perron-Frobenius eigenvector of 𝐴, is
also nonnegative. Furthermore, if 𝐴 is irreducible then 𝜌 is
positive and the entries of V are strictly positive.

Next theorem studies the stabilization problem for a SISO
PLD system (1) given by the pair (𝐴, 𝑏). Note that 𝑏𝑇V = V𝑇𝑏 ̸=

0 is a consequence of Remark 4.

Theorem 5. Consider the pair (𝐴, 𝑏) that represents a SISO
PLD system. Let 𝜎(𝐴) = {𝜌, 𝜆

2
, . . . , 𝜆

𝑛
} and suppose that 𝜌 ≥ 1

and |𝜆
𝑖
| < 1, 𝑖 = 2, . . . , 𝑛. Let V ≥ 0 be an eigenvector of 𝐴𝑇

associated with 𝜌. If

(a) �̂� = 𝑏𝑇V ̸= 0,
(b) for each 𝑎

𝑖𝑗
= 0 the corresponding 𝑏

𝑖
= 0, for 𝑖, 𝑗 =

1, 2, . . . , 𝑛,
(c) 𝛼 ∈ ]𝑀

1
,𝑀
2
[ where

𝑀
1
= max{

−𝜌

�̂�

,max
𝑏𝑖V𝑗 ̸=0

{

−𝑎
𝑖𝑗

𝑏
𝑖
V
𝑗

}} , 𝑀
2
=
1 − 𝜌

�̂�

, (3)

then the control 𝑢(𝑘) = 𝑓𝑇𝑥(𝑘) with 𝑓 = 𝛼Vmakes the closed-
loop system positive and asymptotically stable.

Proof. Let𝜇 = 𝜌+𝛼�̂�, with �̂� = 𝑏𝑇V ̸= 0, be the new eigenvalue
of𝐴
𝑐
. From condition (c), if 𝛼 > 𝑀

1
, it follows that 𝛼 > −𝜌/�̂�;

then 𝜇 > −1. Thus, the closed-loop system is asymptotically
stable.

Nowwewill prove the positiveness of the system.The zero
entries of 𝐴 do not change by condition (b). As 𝛼 > 𝑀

1
,

𝛼 > max
𝑏𝑖V𝑗 ̸=0

{

−𝑎
𝑖𝑗

𝑏
𝑖
V
𝑗

} (4)

and this implies that for every ℎ and 𝑘 such that 𝑏
ℎ
V
𝑘

̸= 0 (and
hence they are both positive) we have

𝑎
ℎ𝑘
+ 𝑏
ℎ
𝛼V
𝑥
> 𝑎
ℎ𝑘
+ 𝑏
ℎ
max
𝑏𝑖V𝑗 ̸=0

{

−𝑎
𝑖𝑗

𝑏
𝑖
V
𝑗

} V
𝑘

≥ 𝑎
ℎ𝑘
+ 𝑏
ℎ
{
−𝑎
ℎ𝑘

𝑏
ℎ
V
𝑘

} V
𝑘
= 0.

(5)
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This proves that 𝑎
ℎ𝑘
+ 𝑏
ℎ
𝛼V
𝑥
is a positive entry because 𝑏

ℎ

and V
𝑘
are both positive. On the other hand, if either 𝑏

ℎ
or V
𝑘

is zero, then 𝑎
ℎ𝑘
+ 𝑏
ℎ
𝛼V
𝑥
= 𝑎
ℎ𝑘
≥ 0.

Therefore, the closed-loop system is positive and asymp-
totically stable.

Remark 6. The assumption that 𝑏 has a zero entry in every
position in which 𝐴 has a row containing a zero entry means
that in this position the matrix 𝐴 is not perturbed and its
values are not modified. An application is given in [20].

Remark 7. If the matrix 𝐴 is irreducible the condition (a)
from Theorem 5 is unnecessary since, for V > 0 and 𝑏 ≥ 0,
�̂� = 𝑏
𝑇V is always different from 0.

By Theorem 5 we introduce the next procedure to obtain
the value of 𝛼 and the corresponding feedback vector𝑓 = 𝛼V.

Procedure Input: (𝐴𝑇, 𝑏).

(1) Obtain the spectral radius 𝜌 of 𝐴𝑇 and let V be a
nonnegative eigenvector of 𝐴𝑇 associated with 𝜌.

(2) If 𝜌 < 1, then the pair (𝐴, 𝑏) is asymptotically stable.
END.

(3) Otherwise, if �̂� = 𝑏𝑇V = 0, then this algorithm cannot
be applied to stabilize the system. END.

(4) For 𝑖 = 1, 2, . . . , 𝑛, check if 𝑏
𝑖
= 0 when there exists

an element 𝑎
𝑖𝑗
= 0 for 𝑗 = 1, . . . , 𝑛. Otherwise, the

feedback matrix 𝐴
𝑐
is not positive. END.

(5) Calculate 𝑑
𝑖𝑗
= −𝑎
𝑖𝑗
/𝑏
𝑖
V
𝑗
for all (𝑖, 𝑗) such that 𝑏

𝑖
V
𝑗
̸= 0.

𝐷 = max(𝑑
𝑖𝑗
).

(6) Calculate 𝐸 = −𝜌/�̂�. Consider 𝑀
1
= max(𝐷, 𝐸),

𝑀
2
= (1 − 𝜌)/�̂�.

(7) If 𝑀
1
≥ 𝑀
2
, then the closed-loop matrix 𝐴

𝑐
is not

positive. END.

(8) Otherwise, choose 𝛼 ∈]𝑀
1
,𝑀
2
[. Consider 𝑓 = 𝛼V

and 𝐴
𝑐
= 𝐴 + 𝑏𝑓

𝑇.

Example 8. Consider the pair (𝐴, 𝑏) that represents a SISO
PLD system

𝐴 = (

0.5 0 0.6

0.6 0.8 1.2

0.8 1 0.8

) , 𝑏 = (

0

1

1

) . (6)

Next, we follow the procedure as follows.

(1-2) Consider 𝜎(𝐴) = 𝜎(𝐴
𝑇
) = {2.1458, 0.3542, −0.4};

then 𝜌 = 2.1458 and an associated eigenvector V of
𝐴
𝑇 is given by V = (0.7570, 0.7430, 1)

𝑇. Since 𝜌 > 1,
then the pair (𝐴, 𝑏) is not asymptotically stable.

(3) Consider �̂� = 𝑏
𝑇V = 1.7430 ̸= 0; then the algorithm

can be applied to stabilize the system.

(4) For 𝑎
12
= 0, 𝑏
1
= 0.

(5-6) Consider 𝑑
21
= −0.7926, 𝑑

22
= −1.0767, 𝑑

23
= −1.2,

𝑑
31

= −1.0568, 𝑑
32

= −1.3459, 𝑑
33

= −0.8, 𝐷 =

𝑑
21

= −0.7926, 𝐸 = −1.2311, 𝑀
1
= −0.7926, and

𝑀
2
= −0.6574.

(7-8) Since 𝑀
1
< 𝑀
2
, 𝛼 ∈] − 0.7926, −0.6574[. Consider

𝑓 = 𝛼V and 𝐴
𝑐
= 𝐴 + 𝑏𝑓

𝑇.

Now we consider, for instance, 𝛼 = −0.7. In this case

𝑓 = (−0.5299, −0.5201, −0.7)
𝑇 (7)

and the closed-loop matrix is

𝐴
𝑐
= (

0.5 0 0.6

0.0701 0.2799 0.5

0.2701 0.4799 0.1

) ≥ 0, (8)

with 𝜎(𝐴
𝑐
) = {0.9257, 0.3542, −0.4}. Then, the closed-loop

system is positive and asymptotically stable.

As it is seen from the above theorem and corresponding
procedure we can select any value of the parameter 𝛼 in
the interval ]𝑀

1
,𝑀
2
[. The question which arises is how to

use this freedom of choice to improve system behavior. In
the context of our main goal to improve stability of the
system, good idea is to choose parameter 𝛼 in such way that
it maximizes the stability radii of closed-loop system. The
concept of stability radii is developed in [21, 22].

The stability radii measure the robustness of stability of
the systems under perturbations with structure, defined by
the matrices𝐷 and 𝐸, and it is defined by

𝑟
𝐾
(𝐴) = 𝑟

𝐾
(𝐴,𝐷, 𝐸)

= inf {‖Δ‖ : Δ ∈ 𝐾𝑙×𝑞, 𝜌 (𝐴 + 𝐷Δ𝐸) ≥ 1} ,

(9)

where ‖ ⋅ ‖ is given operator norm and𝐾 = 𝑅, 𝐶.
If complex perturbations are allowed, the complex sta-

bility radius is obtained and is denoted by 𝑟
𝐶
. If only

real perturbations are considered the real stability radius is
obtained and it is denoted by 𝑟

𝑅
. The real and complex sta-

bility radii are in general distinct and their computation is
difficult problem. Fortunately for positive systems the real
and complex stability radii coincide (𝑟

𝑅
= 𝑟
𝐶
= 𝑟) and they

can be determined via an easy computable formula.

Proposition 9 (see [23]). Suppose that (𝐴,𝐷, 𝐸) ∈ R𝑛×𝑛
+

×

R
𝑞×𝑙

+
× R
𝑞×𝑛

+
, 𝜌(𝐴) < 1, and 𝐾𝑙 and 𝐾𝑞 are provided with

monotonic norms, 𝐾 = 𝑅 or 𝐶. Then

𝑟
𝐶
(𝐴;𝐷; 𝐸) = 𝑟

𝑅
(𝐴;𝐷; 𝐸)

= 𝑟 (𝐴;𝐷; 𝐸) = ‖𝐺(1)‖
−1

,

(10)

where 𝐺(𝑠) = 𝐸(𝑠𝐼 − 𝐴)
−1

𝐷 and ‖𝐺(1)‖ is the operator norm
of 𝐺(1) : R𝑙 → R𝑞.

Let J∗ denotes the set of all state feedbacks preserving
Shur stability and positivity of the closed-loop system with:

J
∗

= {𝐹 ∈ R
𝑚×𝑛

: 𝐴 + 𝐵𝐹 ≥ 0, 𝜌 (𝐴 + 𝐵𝐹) < 1} . (11)

The following proposition is proved in [21].
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Proposition 10. The map 𝑟(𝐹) : R𝑚×𝑛 → R
+
is continuous

and monotone onJ∗; that is, 𝐹
1
≤ 𝐹
2
⇒ 𝑟(𝐹

1
) ≥ 𝑟(𝐹

2
).

Hence we can use freedom to choosee the parameter 𝛼 to
maximize the stability radii of the system; in other words, the
closed-loop systemmatrix𝐴

𝑐
will haveminimal sensitivity to

the affine system perturbation type 𝐴 → 𝐴(Δ) = 𝐴 + 𝐷Δ𝐸.
From Theorem 5 it is clear that the parameter 𝛼 is negative
and, according to Proposition 10, if we chose the parameter
close to the left bound of the interval, the stability radii will
be larger, the sensitivity of the system to perturbation will be
better, and the robustness of the system will be guaranteed.

3. Stabilization of MIMO PLD System

In this section we consider the MIMO PLD system with only
one eigenvalue greater than or equal to 1 and we apply the
obtained result from SISO systems in this case. Let theMIMO
PLD system

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) , 𝑘 ∈ Z
+
, (12)

where 𝑥(0) ≥ 0, 𝐴 = (𝑎
𝑖𝑗
) ∈ R𝑛×𝑛
+

, and 𝐵 = (𝑏
𝑖𝑗
) ∈ R𝑛×𝑚
+

; 𝑥(𝑘)
is the state vector and 𝑢(𝑘) is the control vector. This system
can be represented by the pair of matrices (𝐴, 𝐵).

We consider a positive system (12) with its spectral radius
𝜌 = 𝜌(𝐴) ≥ 1. Our goal is to construct a state feedback
matrix 𝐹 ∈ R𝑚×𝑛 such that 𝑢(𝑘) = 𝐹

𝑇
𝑥(𝑘) and the closed-

loop system

𝑥 (𝑘 + 1) = (𝐴 + 𝐵𝐹
𝑇

) 𝑥 (𝑘) = 𝐴
𝑐
𝑥 (𝑘) (13)

is positive; that is,𝐴
𝑐
≥ 0 and is asymptotically stable; that is,

𝜌(𝐴
𝑐
) < 1.

From now on, we denote by 𝑒
𝑖
= (0, . . . , 0, 1, 0, . . . , 0)

𝑇

∈

R𝑚×1 the 𝑖th canonical vector with a 1 in the 𝑖th coordinate
and 0’s elsewhere. The next theorem follows directly from
Theorem 5.

Theorem 11. Consider the pair (𝐴, 𝐵) that represents aMIMO
PLD system. Let 𝜎(𝐴) = {𝜌, 𝜆

2
, . . . , 𝜆

𝑛
} and suppose that 𝜌 ≥ 1

and |𝜆
𝑖
| < 1, 𝑖 = 2, . . . , 𝑛. Let 𝑥 ≥ 0 be an eigenvector of 𝐴𝑇

associated with 𝜌. Let 𝐵
𝑖
be the 𝑖th column of 𝐵, 𝑖 = 1, 2, . . . , 𝑚.

If there exists at least one column 𝐵
𝑘
of 𝐵 such that

(a) 𝐵
𝑘
= 𝐵
𝑇

𝑘
V ̸= 0,

(b) for each 𝑎
𝑖𝑗
= 0 the corresponding 𝑏

𝑖𝑘
= 0, for 𝑖, 𝑗 =

1, 2, . . . , 𝑛,

(c) 𝛼
𝑘
∈]𝑀
1
,𝑀
2
[, where

𝑀
1
= max{

−𝜌

𝐵
𝑘

, max
𝑏𝑘𝑖V𝑗 ̸=0

{

−𝑎
𝑖𝑗

𝑏
𝑘𝑖
V
𝑗

}} , 𝑀
2
=
1 − 𝜌

𝐵
𝑘

, (14)

then the control 𝑢(𝑘) = 𝐹
𝑇
𝑥(𝑘) with 𝐹 = 𝛼

𝑘
V𝑒𝑇
𝑘
, makes the

closed-loop system positive and asymptotically stable.

Example 12. Consider the pair (𝐴, 𝐵) that represents aMIMO
PLD system

𝐴 = (

0.5 0 0.6

0.6 0.8 1.2

0.8 1 0.8

) ,

𝐵 = (

0 1 0

1 0 0.5

1 1 0.8

) .

(15)

Note that 𝐴 is the same as in Example 8. Now, we check
the conditions of the theorem for each column of 𝐵.

(i) For 𝐵
1
we consider the results obtained in Example 8.

Then 𝛼
1
∈] − 0.7926, −0.6574[:

𝐹 = 𝛼
1
V𝑒𝑇
1
= 𝛼
1
(

0.7570

0.7430

1

) (1, 0, 0)

= 𝛼
1
(

0.7570 0 0

0.7430 0 0

1 0 0

)

(16)

and 𝐴
𝑐
= 𝐴 + 𝐵𝐹

𝑇, with 𝐴
𝑐
≥ 0 and 𝜌(𝐴

𝑐
) < 1.

(ii) For 𝐵
2
, since 𝑎

12
= 0 but 𝑏

12
̸= 0, then the procedure

cannot be applied to stabilize the system using this
column of 𝐵.

(iii) For 𝐵
3
, using the procedure for SISO PLD systems we

obtain that 𝛼
3
∈] − 1, −0.9781[.

For this example, we conclude that there exist two col-
umns of 𝐵 such that the conditions of Theorem 11 are satis-
fied and different feedbackmatrices can be obtained for stabi-
lization of the system in such way that positiveness is guar-
anteed.

4. Application: Stochastic Systems

Stochastic systems are becoming extensively used as realistic
models of physical phenomena.They are at the core of a num-
ber of disciplines in engineering, social systems, markets,
management actions, molecular biology, and epidemiology;
see, for example, [24]. The theory of Markov processes com-
prises the largest and the most important part of the theory
of stochastic processes. This is well recognized in the theory
of queues and in branching processes [25].

Different problems concerning modeling, analysis, syn-
thesis, and simulation of stochastic systems can be found in
the literature. On stability property, in this section we apply
the obtained results in previous sections to stochastic systems
in order to obtain a closed-loop system asymptotically stable
and positive.

For that, we consider the system (1) where𝐴 is a nonnega-
tive left-stochastic matrix. A left stochastic matrix𝐴 is square
with nonnegative elements satisfying

𝑛

∑

𝑖=1

𝑎
𝑖𝑗
= 1, 𝑗 = 1, 2, . . . , 𝑛. (17)
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Note that the system is not asymptotically stable, because
𝜌 = 1 is an eigenvalue of 𝐴. Thus, 𝜎(𝐴) = 𝜎(𝐴

𝑇
) = {1, 𝜆

𝑖
},

being |𝜆
𝑖
| < 1, 𝑖 = 2, 3, . . . , 𝑛, and V = (1, 1, . . . , 1)

𝑇 is an
eigenvector of 𝐴𝑇 associated with 𝜌 = 1.

The following result is a consequence ofTheorem 5where
the condition (a) is fulfilled because �̂� = 𝑏𝑇V = 𝑏

1
+ 𝑏
2
+ ⋅ ⋅ ⋅ +

𝑏
𝑛

̸= 0.

Proposition 13. Consider the pair (𝐴, 𝑏) that represents a
SISO PLD system, where 𝐴 is a left-stochastic matrix. Let
𝜎(𝐴) = {1, 𝜆

2
, . . . , 𝜆

𝑛
} and let V = (1, 1, . . . , 1)

𝑇 be an eigen-
vector of 𝐴𝑇 associated with 𝜌 = 1. If

(b) for each 𝑎
𝑖𝑗
= 0 the corresponding 𝑏

𝑖
= 0, for 𝑖, 𝑗 =

1, 2, . . . , 𝑛,
(c) 𝛼 ∈]𝑀, 0[, where

𝑀 = max{−2
�̂�

,max
𝑏𝑖 ̸=0

{

−𝑎
𝑖𝑗

𝑏
𝑖

}} , (18)

then the feedback law 𝑢(𝑘) = 𝑓
𝑇
𝑥(𝑘) with 𝑓 = 𝛼V makes the

closed-loop system positive and asymptotically stable.

Note that the above proposition is useful when𝐴 is also a
doubly stochastic matrix.

Corollary 14. For a MIMO PLD system (12), where 𝐴 is a
left-stochastic matrix or 𝐴 is a double stochastic matrix with
only one eigenvalue equal to 1, we combine the results given in
Theorem 11 and Proposition 13 as the following examples show.

Example 15. Consider the pair (𝐴, 𝑏) that represents a SISO
PLD system, where 𝐴 and 𝑏 are given by

𝐴 = (

0.1 0.2 0.3 0.4

0.7 0 0 0.1

0.2 0.8 0.2 0.3

0 0 0.5 0.2

) , 𝑏 = (

0.1

0

0.3

0

) . (19)

In this case 𝐴 is a left-stochastic matrix and 𝜎(𝐴) = 𝜎(𝐴𝑇) =
{1, −0.3454, −0.0773+ 0.4131𝑖, −0.0773 − 0.4131𝑖}.

Note that 𝑎
22
= 𝑎
23
= 0 and 𝑏

2
= 0; and 𝑎

41
= 𝑎
42
= 0 and

𝑏
4
= 0.That is, the condition (b) of Proposition 13 is satisfied.

Moreover, �̂� = 0.4, −2/�̂� = −5 and max{−𝑎
𝑖𝑗
/𝑏
𝑖
} = −𝑎

31
/𝑏
3
=

−𝑎
33
/𝑏
3
= −2/3 and

−
2

3
< 𝛼 < 0. (20)

If, for instance, 𝛼 = −0.5, then 𝑓 = −0.5𝑒,

𝐴
𝑐
= 𝐴 + 𝑏𝑓

𝑇

= (

0.05 0.15 0.25 0.35

0.7 0 0 0.1

0.05 0.65 0.05 0.15

0 0 0.5 0.2

) ≥ 0, (21)

and 𝜎(𝐴
𝑐
) = {0.8, −0.3454, −0.0773 + 0.4131𝑖, −0.0773 −

0.4131𝑖}. Then the closed-loop system is positive and asymp-
totically stable.

Now, we consider the system (1) where the doubly sto-
chastic matrix 𝐴 and the vector 𝑏 are given by

𝐴 = (

0.5 0.2 0.3

0.5 0.4 0.1

0 0.4 0.6

) , 𝑏 = (

0.1

0.3

0

) . (22)

We have 𝜎(𝐴) = 𝜎(𝐴
𝑇
) = {1, 0.2500 + 0.1936𝑖, 0.2500 −

0.1936𝑖}. Then, the condition (b) of Proposition 13 is satis-
fied. In this case, �̂� = 0.4, −2/�̂� = −5, and max{−𝑎

𝑖𝑗
/𝑏
𝑖
} =

−𝑎
23
/𝑏
2
= −1/3. Then −1/3 < 𝛼 < 0.

If we consider, for instance, 𝛼 = −0.1, then 𝑓 = −0.1𝑒,

𝐴
𝑐
= (

0.49 0.19 0.29

0.47 0.37 0.07

0 0.4 0.6

) ≥ 0, (23)

and 𝜎(𝐴
𝑐
) = {0.96, 0.2500 + 0.1936𝑖, 0.2500 − 0.1936𝑖}. Then

the closed-loop system is positive and asymptotically stable.

5. Conclusions

Motivated by results obtained in [12] concerning application
of Brauer’s theorem for solving several control problems, we
have considered a stabilization problem for both SISO and
MIMO positive linear discrete time system by using linear
state feedback.We have given simple sufficient conditions for
the system matrices ensuring solvability of the stabilization
problem. In this paper we consider the case when the only
spectral radius is greater or equal to 1. We have shown that
several choices for feedback matrix are possible according
to the parameter 𝛼. That fact gives us possibility to satisfy
other requirements on system behavior. In the future the
same problems will be solved for the case when more than
one eigenvalue is greater than or equal to 1. In this case Rado’s
theoremwill be used, which is extension of Brauer’s theorem.
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