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 
Abstract—In this paper, a full-wave method for the 

electromagnetic analysis of dielectric-loaded cylindrical and 
coaxial waveguides and cavities is developed. For this purpose, a 
new 4-port ring network is proposed, and the mode-matching 
method is applied to calculate the Generalized Admittance 
Matrix (GAM) of this new structure. A number of analyses on 
dielectric-loaded waveguide structures and cavities have been 
conducted in order to validate and to assess the accuracy of the 
new approach. The results have been compared with theoretical 
values, numerical modeling from the literature, and data from 
commercial electromagnetic simulators. The method has been 
also applied to the accurate determination of dielectric 
properties, and we provide an example of these measurements as 
another way to validate this new method. 
 

Index Terms—Electromagnetic modeling, dielectric resonator, 
microwave filter, mode-matching, circuit analysis, dielectric-
loaded waveguides, dielectric measurements. 
 

I. INTRODUCTION 

ielectric-loaded waveguides and cavities are 
increasingly being employed in passive devices, such as 

microwave filters or dielectric resonators, that are integrated 
into satellite and mobile communications systems because of 
their small size, low loss, and temperature stability [1]. 
Dielectric materials also have many important functions in the 
microelectronics industry. For example, new packaging 
technologies require substrates with low permittivity. High-
permittivity materials are used to reduce the dimensions of 
circuits at lower frequencies. Other important new areas of 
applications include  microwave heating [2] and sensors [3-5]. 

This broad range of microwave applications demands a 
detailed knowledge of the dielectric properties of materials, 
including solids, liquids, emulsions and powders [6-10]. As 
electrical components are miniaturized, the need for well-
characterized dielectric measurements on materials increases 
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[11, 12]. Dielectric properties measurement strategies include 
waveguide cells (in reflection or/and transmission), resonators 
and free-space methods [13-16]. Dielectric-loaded cylindrical 
waveguides and cavities can provide new and accurate 
dielectric measurement procedures to be applied under these 
methodologies [17-20]. 

As a consequence, the study of dielectric inhomogeneities 
in waveguides and cavities has been a main task of microwave 
researchers over the last decades. The technical literature 
offers a large number of papers about the numerical solutions 
of the eigenmodes and eigenvectors of canonical metallic 
cavities loaded with dielectric resonators. The finite-element 
method (FEM) [21] and finite-difference time-domain 
(FDTD) [22] procedures have been primarily employed to 
solve this problem. The need to employ refined 3D meshes, 
and the frequency dependence of calculations, make these 
methods very demanding in terms of computation time and 
memory resources. 

To overcome these limitations, the Mode-Matching (MM) 
method [23-26] has emerged as an efficient and accurate 
technique to solve waveguide discontinuities and cavities. The 
boundary integral–resonant-mode expansion (BI–RME) 
technique [27, 28] has also been efficiently applied to the 
analysis of dielectric-loaded cavities of rectangular shape. For 
complex or large size waveguides or cavities, however, the 
MM method may suffer from convergence problems, and it 
has been combined with other analytical techniques [29-32]. 
Circuit analysis and segmentation have also proved to be 
powerful tools for analyzing complex dielectric-filled 
structures [33-35]. The generalized circuital analysis is a 
method for solving electromagnetic problems that consists of 
the segmentation of the whole geometry of the microwave 
structure into simpler elements, which then can be solved in 
an easier way [25, 36-41]. Once the simpler structures have 
been solved separately, they can be joined or combined 
through the use of the Generalized Admittance Matrix (GAM) 
in order to give the complete solution of the complex 
structure. 

In this paper, the calculation of the GAM matrix of a new 
4-port dielectric ring network is proposed. The term 4-port 
does not refer to the terminals of the entire structure that is 
being analyzed. As shown in Figure 2, this 4-port ring 
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network is only one of the elements, used in conjunction with 
other circuit elements, to model the larger structure. A 4-port 
dielectric ring network is necessary because of the multiple 
dielectric layers that can occur in both the radial (ports 1 and 
2) and axial (ports 3 and 4) directions, as shown in Figure 1. 
The GAM will be computed using the MM method, where the 
field in each port is approximated by a series expansion of 
basis functions. The set of basis functions has been chosen so 
that one can solve the resulting integrals analytically, without 
having to employ numerical methods. The combination of this 
new network with other circuit elements, such as cylindrical 
or coaxial waveguides, will allow an efficient and accurate 
tool to the full-wave solution of the scattering matrix or the 
resonant frequencies of dielectric-loaded cylindrical 
structures. Dielectric resonator filters and dielectric-filled re-
entrant coaxial waveguides and cavities can be solved 
straightforwardly with the use of the developed full-wave 
analysis method. Moreover, the use of microwave cavities 
partially filled with two dielectrics shows a clear application 
of the method for measuring the  dielectric properties of 
materials [42, 43]. 

The validity of the proposed 4-port dielectric ring network 
is examined by modeling different well-known cylindrical 
transmission-line and cavity structures and then comparing the 
results with those included in the technical literature as well as 
with those given by other numerical techniques. 
Measurements of some microwave devices are also included 
for validation purposes. 

II. THEORY 

Figure 1 shows the proposed 4-port network to be analyzed. 
It consists of a toroid with inner radius a, outer radius b, and 
height h, with permittivity r (r´-j·´´) and permeability r 
(r´-j·´´). The four ports are defined as follows: port 1 at 
r=a, 0≤z≤h, port 2 at r=b, 0≤z≤h, port 3 at a≤r≤b, z=h and 
port 4 at a≤r≤b, z=0. 

The 4-port network can be combined with other networks 
by circuit analysis to model more complex structures. As an 
example, Figure 2 shows how this 4-port network can be 
interconnected to other 3-port networks [44] to model a 
multilayer structure composed of several dielectric materials. 
The proposed circuit analysis enables the calculation of either 
the scattering parameters, in the case of a transmission-line 
structure, or the resonant frequencies for cavities or 
resonators. 

The GAM of a 4-port network is defined by the general 
expression (1): 
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It is important to note that each element in the GAM is a 

matrix that relates the modes in one port to the modes in 
remaining ports [26, 45, 46]. 

In general, the elements in (1) represent TEM, TM or TE 
modes. However, the analysis described here is restricted to 
the TM modes with symmetry of revolution (TM0n). 
Therefore, because of the particular geometry of the structures 
defined in Fig. 1, only TEM and TM modes are taken into 
account in the model. This restriction is strictly due to the type 
of the structures we are interested in, and it does not represent 
a loss of generality of the GAM technique. The procedure is in 
fact similar to the one followed in [47], where only TE0np 
modes were employed to analyze the split post dielectric 
resonator. 

With these assumptions, we define the components of the 
electromagnetic fields in the inner region (a≤r≤b) as [48]: 
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where  rf n0

 and  rf n0  are: 

 

 
Fig. 1. 4-port ring network. 

 
Fig. 2. Example of several 4-port and 3-port interconnection networks to 
model a multilayer structure. 
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In (3), the values of 

nck 0
 (cut-off wave number) depend on 

the boundary conditions and the value of 
n . The mode n=0 

corresponds to the TEM mode, where 0
00 

nnck . However, 

in order to define (2) and (3) with more generality, and to 
include TEM mode, the criteria of 100 ck  is adopted 

hereinafter. 
The propagation constant 

n  and the cut-off wave number 

nck 0
 are related as follows: 

 
 222

0 nnc kk   (4) 

 
where k is the free-space wave number k . 

The functions  nJ  and  nY  in (3) are, respectively, the 

Bessel functions of the first and second kind with order n (0 or 
1), and 

n  is a coefficient that depends on the boundary 

conditions. 
The next subsection describes the calculation of the set of 

parameters 
1iY , (i=1,2,3,4) of (1). 

A. Parameters Yi1 

To calculate the 
1iY  parameters, electric wall conditions are 

imposed on ports 2, 3 and 4, therefore, fields in (2) become: 
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By substituting the above relations in (2), the 

electromagnetic fields in the inner region are: 
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Given the propagation constant 

n , the value of the cut-off 

wave numbers can be calculated as: 
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In this case, the TEM mode does not exist because of the 

resulting geometry when short-circuiting ports 2, 3 and 4. 
However, it must be noted that when computing the 

3iY  and 

4iY  parameters, the TEM mode does exist and thus it must be 

included.  
The incident electric field at port 1 is: 
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where we assume a Fourier series expansion, based on 
trigonometric basis functions, for this port. 

Next, we equate (8) and the Ez field in (6) at r=a, and 
calculate the amplitudes an using the orthogonal properties of 
the trigonometric functions. We then obtain : 
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where  s

mnI ,  c
mnI  and 

n  are defined in Appendix, section A. 

Parameter Y11  
In (10) the magnetic field at port 1 is written as a series 

expansion similar to the incident electric field defined in (8): 
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The magnetic field at port 1 and the inner magnetic field 

from (6) must be equal at r=a, which leads to the following 
expressions: 
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Since parameter 

11Y  is defined as the relation between the 

electric and magnetic fields at port 1, we have: 
 

 
   

    



























β

α

YY

YY
eY

d

c
h

cccs

scss

1111

1111
1111

 (12) 

 
where each submatrix  xy

11Y , being    csyx ,,  , is derived 

from (11) as follows: 
 

    
 

 
 








0 0

0

0

0
11 2

2

n

c
qn

s
mn

n
n

n

nc

r

qm

ss I
h

I

af

af

k

j

h
Y   (13a) 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

4

   011 
qm

scY  (13b) 

   011 
qm

csY  (13c) 

    
 

 
 








0 0

0

0

0
11 2

2

n

c
qn

c
mn

n
n

n

nc

rq

qm

cc I
h

I

af

af

k

j

h
Y 

  (13d) 

 
Parameter Y21 

The calculation of parameter Y21 is obtained in a similar 
way to the Y11 parameter, noting that port 2 is now placed at 
r=b. 

 
Parameter Y31 

The magnetic field at port 3 is written as a series expansion 
of the basis functions    rhq

3 : 
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where the basis functions    rhq

3  used at port 3 and at port 4 

are orthogonal in the range a≤r≤b. They are a complete set of 
Bessel functions, which makes them suitable for structures 
that can be described in circular-cylindrical coordinates. The 
series expansion used is a generalization of the Dini series 
expansions [49] as they were developed in [50]. This series 
expansion is included in Appendix, section B (superindex (3) 
in function    rq

3
1  refers to port 3). The term  3e

qN  is a 

normalization term for the electric field [51, 52]. This term is 
also calculated in Appendix, section C. 

By equating the magnetic field at port 3 with the inner 
magnetic field, defined in (6), over the region z=h, we get: 
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where  3e

qN  has been defined in (37) and  3
qB  in (34) and 

 
qnI  is defined in Appendix, section D. 

Defining the parameter 
31Y  as the relation between the 

magnetic field at port 3 and electric field at port 1, we have: 
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where each submatrix  x

31Y , being    csx ,  is from (15): 

 

 
 

   

 
 

 
 










0 00

0

3331

cos
2

1

n
qn

s
mn

n
n

nc

r

e
qq

qm

s

I
h

I

af

n

k

j

NB
Y




 (17a) 

 
 

   

 
 

 
 










0 00

0

3331

cos
2

1

n
qn

c
mn

n
n

nc

r

e
qq

qm

c

I
h

I

af

n

k

j

NB
Y




 (17b) 

 
Parameter Y41 

The calculation of parameter Y41 is obtained in a similar 
manner to the Y31 parameter, but in the region z=0. 

B. Parameters Yi2, Yi3 and Yi4 

Since the remaining parameters of columns 2, 3 and 4 of the 
Y-matrix are calculated in a similar way to the parameters in 
the first column, Yi1, we do not include here (for the sake of 
space) how their expressions are determined. 

 

C. Losses in the Electric walls  

Dielectric or magnetic losses of the material in the ring 
circuit of Figure 1 are included in the imaginary parts of the 
complex permittivity and complex permeability respectively, 
as defined in previous paragraphs, but the conductive losses 
associated with the electric walls requires an additional 
explanation. The impedance associated with a finite 
conductivity electric wall can be calculated with the well-
known expression [53- 55]: 
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The same expression can be retrieved from the computed 

GAM matrix. Assuming b→∞, we obtain a 1-port element 
where the unique GAM parameter is Y11. From the second 
Maxwell equation, a good dielectric satisfies   1  

and a good conductor satisfies   1  (see [48, 56]). 

Thus, for a good conductor, we can assume that the following 
permittivity relationship applies: 
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The open space wave number k associated with this 

permittivity is: 
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where  is the penetration depth used in (18). Using (20) in 
parameter Y11, we obtain the following expression: 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

5

 
 
 

   
   

   
   

  
  ak

ak

ak
bk

bk
ak

ak
bk

bk
ak

af

af

nc

nc

b

nc
nc

nc
nc

nc
nc

nc
nc

n

n

0
2

0

0
2

1

00
00

00
00

01
00

00
01

0

0

H

H

Y
Y

J
J

Y
Y

J
J













 (21) 

 
where the cut-off wave number 

nck 0
 is (7): 
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For most metals, the value of the conductivity σ is relatively 

high, so the expression for the wave number can be 
approximated by: 

 
 jk nc 2

0
 (23) 

 
Then, with respect to Y11 we have: 
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 (24d) 

 
where    is the Dirac delta function. As expected, the 1-

port network GAM for the finite conductive electric wall 
results in a diagonal matrix with the impedance value of (18). 
The sign discrepancy comes from the Poynting vector flux 
that in the present paper is outgoing from the network and not 
ingoing as usual. Applying this standard criterion, the sign of 
the magnetic field changes, which also changes the the sign of 
the GAM, leading to the same value for (18). 

 

III. NUMERICAL RESULTS AND DISCUSSION 

In order to validate the accuracy of the numerical model 
described in the previous section, and demonstrate the 
usefulness of the combination of this new 4-port network with 
cylindrical or coaxial waveguides, modeling results of typical 
dielectric-loaded microwave structures are compared with 
analytical expressions, general-purpose FEM simulators and 
with results previously published in the literature. This is 
shown in sections III.A, III.B, III.C and III.D. Section III.E 
includes an example of permittivity measurements as 
illustrative of another application of the proposed network. 

A. Coaxial waveguide loaded with a dielectric disk 

Fig. 3-(a) shows a coaxial waveguide with a cylindrical 
dielectric sample positioned between the two inner 
conductors. Figure 3-(b) shows how this structure is broken 
down into different networks, where the proposed 4-port ring 
network is combined with 1-port (short-circuit), 2-port 
(coaxial line), and 3-port (node) networks (see [33, 44] for 
details of this networks). 

 
(a) 

 
(b) 

Fig. 3. Re-entrant coaxial waveguide and its circuit segmentation. 

Fig. 4. Magnitude and phase of the S parameters with air gap when
a=7.25mm, b=24.9mm, as=10mm, Ls=2mm, L=15mm and r=1. 
 
 

Fig. 5. Magnitude and phase of the S parameters with air gap when
a=7.25mm, b=24.9mm, as=10mm, Ls=2mm, L=15mm and r=2-j·0.002. 
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Figs. 4 and 5 show the magnitude and phase of the S-
parameters of the 2-port structure calculated by joining the 
nodes and networks described in Figure 3-(b) for a dielectric 
disc of permittivity of air and permittivity of r=2-j·0.002, 
respectively. Dimensions of the geometry are given in the 
figure caption. Only 15 modes over 50 frequency points were 
required to solve the dielectric-loaded coaxial in less than 6 
seconds with a PC (Intel Core i5-2320 and 6 GB RAM). The 
computed results (labeled MODAL) are in very good 
agreement with those provided by the commercial code 
Ansoft HFSS (labeled HFSS) also included in the Figures for 
comparison. Of course, the accuracy of the modeling depends 
on the number of modes selected to perform the calculations. 
The number of modes has a direct impact on the required 
processing time. In this, and in the rest of the simulated cases, 
good accuracy has been reached, when compared with 
references in the literature, by selecting only a few modes (i.e. 
15 modes in this first example), which allows one to analyze 
the structures in a reasonable amount of time. 

By short-circuiting (perfect electric walls are assumed in 
the simulation) both ends (ports 1 and 2), and imposing 
resonant condition [57], this structure becomes a re-entrant 
cavity, which is a common device for measuring the complex 
permittivity of dielectric materials, as described in [29, 58-62]. 

 

B. Cylindrical Dielectric Resonant (DR) Filters 

The second structure considered is a 4-pole TM01 Dielectric 
Resonator (DR) filter shown in Figure 6 [63]. It consists of a 
set of spaced dielectric-loaded cylindrical waveguides 
coupled by coaxial lines. The dielectric support of the 
dielectric resonator has a relative permittivity of 1.031, and 
the rest of parameters are given in the figure caption. To solve 
for the S-parameters of this structure, the schematic of Figure 
6 is segmented by connecting the nodes of the 4-port network 
to cylindrical waveguides in a similar manner to the coaxial of 
Figure 3. 

The computed S-parameters for the 4-pole filter are shown 
in Figure 6. To obtain an accurate S-parameters over  150 
frequency points, we included 30 modes, which resulted in a 
total computation time of 60 seconds using a laptop (Intel 
Core i5 and 6 GB RAM). The computed performance of the 4-
pole filter is compared in Figure 6 with simulations and 
measurements of the same structure carried out in [63]. Very 
good agreement with measurements is observed from the 
figure. 

 

C. Cylindrical cavity coaxially-loaded with two dielectric 
materials 

The third structure to be studied with the proposed method 
is a cylindrical cavity coaxially-loaded with two dielectric 
materials that extends along the cavity height, as shown in 
Figure 7. This inhomogeneous cavity can be solved 
analytically, giving us the opportunity to compare the 
accuracy of the proposed model with previously-published 
analytical results. For this configuration, ports 1 and 2 of the 
4-port network are joined with the materials in contact, 
whereas ports 3 and 4 are short-circuited (see Figure 8). The 
3-port network of Fig. 8 is described in [44]. Short-circuits 
can be modeled either as perfect conductors (PEC) or 
conductors with a finite conductivity, as described previously 
in the Theory section. Resonant frequencies and quality 
factors have been calculated using the resonant condition [57] 
and the complex resonant frequency concept [56]. 

Table I shows the first two resonant frequencies and Q-
factors corresponding to the TM0np (TM010 and TM020) modes 

 
Fig. 6. 4-pole TM01 Dielectric Resonator Filter (see dimensions in [63]). 

 
Fig. 7. Coaxially loaded cavity with container. 

 
Fig. 8. Circuit segmentation of a coaxially loaded cavity. 

 
(a) 

 
(b) 

Fig. 9. Cylindrical cavity partially loaded with a dielectric disk (a) and circuit 
segmentation (b). 
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of a cylindrical cavity coaxially-loaded with dielectric 
materials of different permittivity, and first resonant mode 
TM010 when the dielectric is inside a dielectric tube. In both 
cases (with and without tube), the calculated values are 
identical to those provided by an analytical solution of this 
structure [48] so that we can assess the accuracy and 
performance of this technique. In order to compare with the 
analytic solutions, the conductivity of the walls is assumed 
infinite (=∞). In all the cases the resonant frequencies 
provided by the Ansoft HFSS simulations are included, and 
the relative errors are about 1.3% in the resonant frequencies 

and 0.05% in the quality factors. 
 

D. Cylindrical cavity partially loaded with a dielectric disk 

The next structure analyzed is a cylindrical cavity partially-
filled with a dielectric disc that can be located at different 
height (see Figure 9-a). This cavity can be split into simple 
circuit elements, as shown in Figure 9-b, where the 4-port ring 
network is connected to the other 4-port ring networks (up 
and down) and terminated with short-circuits [44]. 

Figure 10 shows the calculated resonant frequencies of the 
first two modes (TM01 and TM02) as a function of the rate 
between the cavity height and the dielectric disk diameter 
when the material is placed at the bottom (hd=0) and for a 
given value of permittivity (comb-line resonator). For 
comparison, the figure also reproduces the results given by 
[64] of the same structure, showing again very good 
agreement between both approaches. 

The cavity loaded with the dielectric disk at the center 
(hd=hu), as represented in Figure 9-(a), has been extensively 
used in the literature to compare different methods of analysis. 
Therefore, we compare our results with those obtained by the 
orthonormal basis method [1] and with the mode-matching 
method of [65]. Table II presents a list with some of these 
results corresponding to the TM0n modes. Again, we find 
excellent agreement between our results and those using other 
approaches, which confirm the validity of the developed 
method (the conductivity is assumed to be infinite, because no 
information about it is provided in the references). 

In order to compute each resonant frequency, the Nelder-
Mead minimization method was used [66], with an average of 
180 evaluations when we included 30 modes, resulting in a 
computation time of 180 seconds per frequency point. 

 
 
 

E. Dielectric measurements with cylindrical cavity partially 
loaded with a dielectric disk 

TABLE I 
RESONANT FREQUENCY COMPARISONS 

a=15 mm; b=20 mm; c=50 m; h=20 mm 
 

  f (GHz) Q 

MODE 1 
rm=2·(1-j·10-2) 
rtt=2·(1-j·10-2) 

Analytic 1.8736 144.536 

This paper 1.8736 144.536 

HFSS 1.8988 144.466 

MODE 2 
rm=2·(1-j·10-2) 
rtt=2·(1-j·10-2) 

Analytic 4.5788 265.069 

This paper 4.5788 265.069 

HFSS 4.6409 264.948 

MODE 1 
rm=5·(1-j·10-4) 
rtt=5·(1-j·10-4) 

Analytic 1.3020 11444.3 

This paper 1.3020 11444.3 

HFSS 1.3192 11442.2 

MODE 2
rm=5·(1-j·10-4) 
rtt=5·(1-j·10-4) 

Analytic 3.7356 16965.3 

This paper 3.7356 16965.3 

HFSS 3.7857 19938.0 

MODE 1
rm=5·(1-j·10-4) 
rtt=2·(1-j·10-2) 

Analytic 1.4322 698.79 

This paper 1.4322 698.79 

HFSS 1.4515 698.88 

 
Fig. 10. Resonant frequency of the first 2 TM modes, with a/b=0.3, a=20 
mm, hm/h=0.9 and r=36. 

TABLE II 
SIMULATIONS OF RESONANT FREQUENCIES (IN GHZ) 

r=35.74; a=0.8636 cm; b=1.295 cm; hm=0.762 cm; hu=hd=0.381 cm 
 

Mode [1] [65] This paper 
Relative error (%) 
with [1] and [65] 

respectively 

TM01 4.568 4.5442 4.5410 
0.60 
0.07 

TM02 6.384 6.361 6.3732 
0.17 
-0.19 

TM03 7.323 7.254 7.2622 
0.84 
-0.11 

TM04 7.685 7.641 7.6614 
0.31 
-0.27 

TM05 9.169 9.093 9.1078 
0.67 
-0.16 

TM06 10.031 9.942 9.9827 
0.48 
-0.41 
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Finally, we included an example of permittivity 
measurements of a dielectric disk in the cylindrical cavity 
depicted in Figure 9-(a), with hd=0. Table III shows the 
measurements of the resonant frequency and Q-factor of the 
cylindrical cavity containing samples of ceramic materials 
(with high and low permittivity values) and the calculated 
permittivity of the samples using the circuital representation 
of Figure 9-(b). Resonance measurements have been carried 
out following the procedures described in [67]. Dimensions of 
cavity and samples are also given in the table, as well as the 
measured conductivity, which is determined through a 
measurement of the empty cavity. 

The calculated results show very good agreement with the 
values provided by the material manufacturer’s data sheet and 
with other measurements performed in a split-cylinder 
resonator at NIST, thereby confirming the validity of the 
developed approach to accurately measure the dielectric 
properties of materials. 

 

IV. CONCLUSION 

In this paper, the GAM of a novel 4-port cylindrical ring 
network has been successfully solved. The combination of the 
proposed ring circuit network with coaxial and cylindrical 
waveguides can be used to model a variety of complex 
structures. For instance, they have been used for solving 
dielectric-loaded structures widely employed as microwave 
devices and resonators, including those with finite 
conductivity walls. 

This new element has been used to calculate the S-
parameters, resonant frequencies and quality factor of some 
dielectric loaded structures with dielectric disks. 

The results provided by this new element have been 
compared with theoretical results, as well as with data 
included in the technical literature, with commercial FEM 
software values and with measurements, showing very good 
agreement in all cases. 

 
 

APPENDIX 

 

A. Values of  s
mnI  and  c

mnI  in (9) 

Integrals  s
mnI  and  c

mnI  are: 
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and 

n  is defined as: 
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B. Basis functions used in port 3 

The basis functions used for the series expansion at port 3 
(see magnetic field in port 3 in (14)) and port 4 are based on a 
generalization of the Dini series expansion [49] as reported in 
[50]. 

The general expression for the series expansion of a 
function f(r) is: 
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where order  is an arbitrary value and where the weights of 
the series expansion are: 
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The basis function  ar mm  ,  is: 
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Then, following these definitions, the series expansion in 

(27) is true if: 
 

TABLE III 
PERMITTIVITY MEASUREMENTS OF TRANS-TECH MATERIALS 

b=49.07 mm; hTotal=20 mm; hd=0 mm; =0.955·107 S/m 
 

Material 
dimensions 

Meas. 
fr [GHz] 

Meas. 
Q 

r 
Data 
sheet 

This paper NIST 

D8623 
a=29.83 mm 
hm=3.36 mm 

2.09567 2819 75 75.09-j·0.0020 79.6 

D6 
a=29.83 mm 
hm=5.98 mm 

2.03163 3510 6.3 6.54-j·0.0026 6.59 
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The first equation is always true (and can be easily proved) 

and the second one implies that, for a given h1 and h2: 
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The zeros of this equation are the parameters m used in the 

series expansion. In our case, we are using =1 and h1=a and 
h2=b, and then the basis function is: 
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where the function 1m(r) has been defined, and used in (14), 
and where m are the zeros of: 
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It is important to remark that, apart from the trivial zero 

0=0, the rest of the zeros are the cut-off wave numbers of 
TM0m modes in the coaxial waveguide. 

Finally term B(m), the normalization term in (28), is: 
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and it is important to note the zero in the origin (m=0, m=0), 
where function 1m(r) is: 
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where the coefficient cm, m=0, in the series expansion is: 
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Note that this case is the TEM mode. 
 

C. Normalization term  3e
qN  

 3e
qN  is a normalization term for the electric field [51, 52], 

and is calculated as: 
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D. Value of integral  
qnI  in (15) 

Integral  
qnI  is: 
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