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Resumen (en español) 
La avicultura intensiva del pollo de carne (broiler) es un sector estratégico en la economía y 

desarrollo de muchos países y regiones, entre ellos España y la Comunidad Valenciana. La 

producción intensiva del broiler se da confinando al animal en edificios específicos (granjas 

de pollos) bajo un microclima interno controlado. Tiene dos variantes fundamentales en 

función de su sistema de ventilación: producción en granjas con ventilación natural y 

producción en granjas con ventilación mecánica (generalmente por depresión negativa 

mediante ventiladores de extracción). Un inadecuado diseño de la ventilación es la causa 

principal del estrés térmico y de la mortalidad de los pollos. En este sentido, una solución 

para disminuir el estrés térmico por calor y la mortalidad de los pollos es ayudar en su 

termorregulación biológica mediante un aumento de la velocidad del aire sobre ellos. 

En esta tesis doctoral, se ha caracterizado y analizado la ventilación (rangos de velocidad 

del aire y su distribución, especialmente al nivel de presencia del pollo) en los principales 

sistemas de ventilación mecánicos instalados en las granjas de pollos. Pese a la envergadura 

de la actual problemática (estrés térmico y mortalidad de los pollos) y la sensibilidad de la 

sociedad hacia los aspectos del bienestar animal, hasta la fecha no se han caracterizado y 

analizado con rigurosidad científica los diferentes sistemas de ventilación mecánicos en las 

diferentes tipologías de granjas de pollos. En esta tesis doctoral se han estudiado los tres 

más relevantes: cruzado, túnel y de pared única. 

El enfoque metodológico en todos los casos de estudio ha sido muy similar: se han 

realizado unas mediciones mediante un sistema multisensor de registro isotemporal (de 

diseño y fabricación propios), se han realizado las correspondientes simulaciones 

Computational Fluid Dynamics (CFD) y finalmente se han validado estas simulaciones. 

Estas validaciones se han llevado a cabo mediante dos técnicas estadísticas: mediante 

técnicas de regresión lineal y mediante el estudio de la significatividad (en un análisis de la 

varianza) de la metodología utilizada (sensores o CFD) en sendos modelos de validación 

propuestos. Una vez validadas estas simulaciones CFD, se tiene la seguridad de poder 

utilizarlas para caracterizar y analizar la ventilación en todo el espacio interior de las 

granjas (los sensores sólo permiten caracterizarla en las localizaciones físicas de los 

mismos). 

El primer caso de estudio es el de una granja que tiene instalado un sistema de ventilación 

mecánico cruzado (habitual en el clima Mediterráneo). Las conclusiones de este estudio 

demuestran que este sistema de ventilación es adecuado para la crianza del pollo para casi 

todo el año en localizaciones climáticas templadas (por ejemplo, el clima Mediterráneo). 

Sin embargo, en días o periodos de calor (verano), no será adecuado porque no se pueden 
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alcanzar valores de velocidad del aire grandes que permiten disminuir el estrés por calor de 

los pollos. 

El segundo caso de estudio es el de una granja que instala el sistema de ventilación 

mecánico túnel. Las conclusiones de este estudio demuestran que es menos apropiado que 

el anterior (sistema de ventilación mecánico cruzado) para la crianza del pollo durante todo 

el año en localizaciones climáticas templadas. Sin embargo, en días o periodos de calor 

(verano), será muy adecuado porque se pueden alcanzar valores de velocidad del aire 

grandes que permiten disminuir el estrés por calor de los pollos. 

El tercer caso de estudio es el de una granja que instala el sistema de ventilación mecánico 

de pared única. Las conclusiones de este estudio demuestran que este sistema de ventilación 

es adecuado para la crianza del pollo para casi todo el año en localizaciones climáticas 

templadas. Sin embargo, en días o periodos de calor (verano), no será adecuado porque no 

se pueden alcanzar valores de velocidad del aire grandes que permitan disminuir el estrés 

por calor de los pollos. Los valores de velocidad del aire son discretamente superiores a los 

obtenidos con el sistema de ventilación mecánico cruzado. 

Con estos análisis y caracterizaciones, se concluye que la granja óptima de pollos para 

zonas geográficas con incertidumbre climática (incrementando su extensión por el efecto 

del cambio climático y el calentamiento global) y para localizaciones climáticas templadas 

(por ejemplo, el clima Mediterráneo) tiene que tener instalado un sistema mecánico híbrido 

de ventilación (transversal y túnel). En algunos casos, este sistema híbrido de ventilación 

será antieconómico pero respetuoso con el bienestar animal porque el sistema de 

ventilación tipo túnel sólo se utilizará ocasionalmente para pocos días o para la estación 

calurosa (verano). 

Además, como la caracterización de la ventilación es la clave para el diseño óptimo del 

sistema de refrigeración de un sistema por nebulización, se ha incluido un capítulo que 

optimiza la localización de las tuberías de distribución de agua y la orientación de las 

boquillas de pulverización del agua. El enfoque metodológico ha sido muy similar al de los 

otros capítulos de la tesis doctoral (uso de CFD, mediciones con sensores y validación). 

La presente tesis doctoral avala el uso de las técnicas CFD como herramienta poderosa para 

la búsqueda de modelos óptimos de granjas de pollos y de sus sistemas de ventilación 

instalados a través de concepciones de diseño y de funcionamiento ―virtuales‖ desarrollados 

fácilmente en gabinete mediante el software CFD. 
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Summary (in English) 
Intensive (broiler) poultry farming is a strategic sector for the economy and development of 

many countries and regions, including Spain and the Valencian Community region. 

Intensive production consists of keeping the animals in specific buildings (broiler 

buildings) under a controlled indoor microclimate. Two main options are found regarding 

the ventilation systems: production in broiler buildings with natural ventilation and 

production in broiler buildings with mechanical ventilation (commonly with negative 

depression by exhaust fans). Inadequate design is the main cause of thermal stress and the 

mortality of broilers. In this sense, one solution to decrease the broilers’ heat stress and 

mortality consists of assisting in their biological thermoregulation by increasing the air 

velocity over them. 

In this PhD dissertation, the ventilation (ranges of the air velocity and its distribution, 

mainly at the level and plane where the broilers are located) in the main mechanical 

ventilation systems installed in the broiler buildings is characterised and analysed. Despite 

the magnitude of the current difficulties (broilers’ thermal stress and mortality) and 

society’s sensitivity regarding aspects of animal welfare, to date, the different mechanical 

ventilation systems in the different types of broiler building have not been characterised and 

analysed with scientific scrupulousness. In this PhD dissertation, the three most relevant 

types have been studied: cross, tunnel and single-sided. 

The methodological approach has been very similar in all the cases of study: some 

measurements by means a multi-sensor system (with our own original design and building) 

has been used for isotemporal recordings, the corresponding Computational Fluid 

Dynamics (CFD) simulations have been carried out and finally these simulations have been 

validated. These validations were carried out by means of two statistical techniques: by 

means of linear regression techniques and by means of a study of the significance (in an 

analysis of the variance) for the method used (sensors or CFD) in each different proposed 

validation model. Having validated these CFD results, CFD techniques can safely be used 

to characterise and analyse the ventilation in all the indoor space of the broiler buildings 

(sensors only allow it to be characterised in their physical locations). 

The first case studied involves a broiler building which has a cross mechanical ventilation 

system (commonplace in Mediterranean climates) installed. The conclusions from this 

study show that this ventilation system is adequate for broiler rearing during nearly the 

whole year in mild climatic locations (e.g. Mediterranean climate). However, on certain 

days or in periods of heat (summer), it would not be adequate because it cannot reach high 

enough air velocity values to reduce the heat stress on the broilers. 



Ph.D. Thesis                                                        Universitat Politècnica de València 

 

6 

 

The second case studied is a broiler building with tunnel mechanical ventilation installed. 

The conclusions from this study show that it is less suitable than the first one analysed 

(cross mechanical ventilation) for broiler rearing over nearly the whole year in mild 

climatic locations. However, on certain days or in periods of heat (summer), it is very 

suitable because it can reach higher air velocity values to reduce the heat stress on the 

broilers. 

The third case studied is a broiler building with single-sided mechanical ventilation 

installed. The conclusions from this study show that this ventilation system is suitable for 

broiler rearing almost throughout the year in mild climatic locations. However, on certain 

days or in periods of heat (summer), it would be not adequate because it cannot reach high 

enough air velocity values to reduce the heat stress on the broilers. The air velocity values 

are slightly higher than those obtained in the cross mechanical ventilation system. 

Given these analyses and characterisations, it is concluded that the optimum broiler 

building for geographical areas with meteorological uncertainty (increasing in size as a 

consequence of the effects of climate change and global warming) and for milder climatic 

locations (e.g. Mediterranean climate) must have a hybrid mechanical ventilation system 

installed (transversal and tunnel). In some cases, this hybrid ventilation system may be 

uneconomical, but it promotes animal welfare because the tunnel type ventilation system 

will only be used occasionally for a few days or for the hot season (summer). 

Moreover, as the characterisation of the ventilation is essential for the optimal design of a 

spray or misting type cooling system, a chapter has been included that optimises the 

location of the pipes for water distribution and the orientation of the high pressure nozzles. 

The methodological approach has been very similar to the other chapters in the PhD 

dissertation (use of CFD, measurements by means of sensors and validation). 

The present PhD dissertation supports the use of CFD techniques as a powerful tool in the 

search for optimum models of broiler buildings and the ventilation systems installed in 

them, via ―virtual‖ design and management conceptions developed easily in the office using 

the CFD software. 
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Resum (en valencià) 
L’avicultura intensiva del pollastre de carn (broiler) és un sector estratègic en l’economia i 

desenvolupament de molts països i regions, entre ells Espanya i la Comunitat Valenciana. 

La producció intensiva del broiler es dóna confinant a l’animal en edificis específics 

(granges de pollastres) sota un microclima intern controlat. Té dues variants fonamentals en 

funció del seu sistema de ventilació: producció en granges amb ventilació natural i 

producció en granges amb ventilació mecànica (generalment per depressió negativa 

mitjançant ventiladors d’extracció). Un inadequat disseny de la ventilació és la causa 

principal de l’estrés tèrmic i de la mortalitat dels pollastres. En aquest sentit, una solució 

per disminuir l’estrés tèrmic per calor i la mortalitat dels pollastres és ajudar en la seua 

termoregulació biològica mitjançant un augment de la velocitat damunt d’ells. 

En aquesta tesi doctoral, s’ha caracteritzat i analitzat la ventilació (rangs de velocitat de 

l’aire i la seua distribució, especialment al nivell de presència del pollastre) en els principals 

sistemes de ventilació mecànics instal·lats a les granges de pollastres. Malgrat 

l’envergadura de l’actual problemàtica (estrés tèrmic i mortalitat dels pollastres) i la 

sensibilitat de la societat envers els aspectes del benestar animal, fins aquesta data no s’han 

caracteritzat i analitzat amb rigor científic els diferents sistemes de ventilació mecànics a 

les diferents tipologies de granges de pollastres. En aquesta tesi doctoral han sigut estudiats 

els tres més rellevants: creuat, túnel i de paret única. 

L’enfocament metodològic en tots els casos d’estudi ha sigut molt similar: han sigut 

realitzats uns mesuraments mitjançat us sistema multisensor de registre isotemporal (de 

disseny i fabricació propis), han sigut realitzades les corresponents simulacions 

Computational Fluid Dynamics (CFD) i finalment han sigut validades aquestes 

simulacions. Aquestes validacions s’han dut a terme mitjançant dues tècniques 

estadístiques: mitjançant tècniques de regressió lineal i mitjançant l’estudi de la 

significativitat (en una anàlisi de la variància) de la metodologia utilitzada (sensors o CFD) 

en sengles models de validació proposats. Una vegada validades aquestes simulacions 

CFD, es té la seguretat de poder utilitzar-les per a caracteritzar i analitzar la ventilació en 

tot l’espai interior de les granges (els sensors només permeten caracteritzar-la en les 

localitzacions físiques dels mateixos). 

El primer cas d’estudi és el d’una granja que té instal·lat un sistema de ventilació mecànic 

creuat (habitual en el clima Mediterrani). Les conclusions d’aquest estudi demostren que 

aquest sistema és adequat per a la criança del pollastre durant quasi tot l’any en 

localitzacions climàtiques moderades (per exemple, el clima Mediterrani). Tanmateix, en 
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dies o períodes de calor (estiu), no serà adequat perquè no es poden obtenir valors de 

velocitat de l’aire grans que permeten disminuir l’estrés per calor dels pollastres. 

El segon cas d’estudi és el d’una granja que instal·la el sistema de ventilació mecànic túnel.  

Les conclusions d’aquest estudi demostren que és menys adequat que l’anterior (sistema de 

ventilació mecànic creuat) per a la criança del pollastre durant tot l’any en localitzacions 

climàtiques moderades. Tanmateix, en dies o períodes de calor (estiu), serà molt adequat 

perquè es poden obtenir valors de velocitat de l’aire grans que permeten disminuir l’estrés 

per calor dels pollastres. 

El tercer cas d’estudi és el d’una granja que instal·la el sistema de ventilació mecànic de 

paret única. Les conclusions d’aquest estudi demostren que aquest sistema és adequat per a 

la criança del pollastre durant quasi tot l’any en localitzacions climàtiques moderades. 

Tanmateix, en dies o períodes de calor (estiu), no serà adequat perquè no es poden obtenir 

valors de velocitat de l’aire grans que permeten disminuir l’estrés per calor dels pollastres. 

Els valors de velocitat de l’aire són discretament superiors als obtinguts amb el sistema de 

ventilació mecànic creuat. 

Amb aquests anàlisis i caracteritzacions, es conclou que la granja òptima de pollastres per 

àrees geogràfiques amb incertesa climàtica (incrementant la seua extensió per l’efecte del 

canvi climàtic i el calfament global) i per a localitzacions climàtiques moderades ha de 

tindre instal·lat un sistema mecànic híbrid de ventilació (transversal i túnel). En alguns 

casos, aquest sistema híbrid serà antieconòmic però respectuós envers el benestar animal 

perquè el sistema de ventilació tipus túnel només s’utilitzarà ocasionalment per a pocs dies 

o per a l’estació calorosa (estiu). 

A més a més, com la caracterització de la velocitat és la clau pel disseny òptim del sistema 

de refrigeració d’un sistema per nebulització, ha sigut inclós un capítol que optimitza la 

localització de les canonades de distribució de l’aigua i l’orientació dels broquets de 

polvorització de l’aigua. L’enfocament metodològic ha sigut molt similar al dels altres 

capítols de la tesi doctoral (ús de CFD, mesuraments amb sensors i validació). 

La present tesi doctoral avala l’ús de les tècniques CFD com a ferramenta poderosa per a la 

recerca de models òptims de granges de pollastres i dels seus sistemes de ventilació 

instal·lats mitjançant concepcions de disseny i de funcionament ―virtuals‖ desenvolupats 

fàcilment en gabinet amb el software CFD. 



Ph.D. Thesis         Universitat Politècnica de València 

9 

Acknowledgements 

This PhD thesis was funded in part by the project GV04B-511 (Generalitat Valenciana, 

Spain) and by the Vicerrectorado of Investigación de la Universitat Politècnica de València 

(Programa de Apoyo a la Investigación y Desarrollo Multidisciplinar Project PAID register 

2614). 

In the first place, I would like to express my deep gratitude to my supervisors, Dr. Antonio 

Hospitaler and Dr. Antonio G. Torres. Both supervisors believed in me and in this work. It 

is obvious that without their implication beyond strictly academic matters, it would not 

have been possible to accomplish this PhD thesis. 

Three years ago, one of my supervisors retired (Dr. Antonio Torres). However, he has 

continued to guide me without any need to do so or compensation, simply to finish his ―last 

academic commitment,‖ as he puts it. In addition to my thanks to Dr. Antonio Torres for 

assuming ―this last commitment‖, I also thank Dr. Antonio Hospitaler who, again under no 

obligation, also provided more help and guidance after Dr. Torres’ retirement. I have been 

fortunate to find the best supervisors in the world. 

I wish to thank Dr. Fernando J. García-Diego for his wisdom in the field of sensors; I have 

learnt a lot about sensors and I have been able to apply this knowledge in this PhD thesis. 

Special thanks to him because his contributions and advice were key to finishing this PhD 

thesis. 

I also wish to thank the coauthors, professors and friends at the Universitat Politècnica de 

València for making this work easier and for the moments of amusement: Salvador Calvet, 

Fernando Estellés, Enrique Guijarro, Sebastian Balasch, Pedro Beltrán, María Cambra, 

Elisa Adell, Milagros Borrás, Elena Sanchís, Jose Vicente Martí, Mª Carmen Beltrán, Pau 

Ferrer, Nemesio Fernández, Cristòfol Peris, Paloma Merello and Claudia Scatigno, to 

mention a few. 



Ph.D. Thesis         Universitat Politècnica de València 

10 

Also, special thanks to Victor Rosa for his expert opinions and for allowing to me gain 

experience in his broiler building. 

Finally, I would like to give special thanks to my mother for my happy life, her continuous 

support and understanding. Special thanks to my father who died 19 years ago but is always 

present. Thanks in his name to Dr. Antonio Torres, because he commented to me that if I 

needed some advice or suchlike from the University, I should ask for him. 

      Eliseo Bustamante García 

    Valencia, October 2015 



Ph.D. Thesis                                                        Universitat Politècnica de València 

 

11 

 

Index 

Resumen (en español)                                                                                                            3 

Summary (in English)                                                                                                           5 

Resum (en valencià)                                                                                                              7 

Acknowledgements                                                                                                                9 

Index                                                                                                                                     11 

Index of Figures                                                                                                                   17 

Index of Tables                                                                                                                    19 

List of abbreviations                                                                                                            21 

Chapter 1: Introduction, objectives and structure of the thesis                                     23 

1.1. Interdepartmental approach and motivation                                              24 

1.2. Introductory overview                                                                                   25 

1.3. General context and initial reviews                                                              26 

1.3.1. General context: types of poultry farm, amount and location of broiler 

production and comparison to other animal meat production                         26 

1.3.2. Poultry housing for broilers                                                                       28 

1.3.3. Hot weather and cold weather. Climate change and uncertainty          29 

1.3.4. Effects of cold temperatures and hot temperatures on broilers             30 

1.3.5. Broiler housing ventilation: the main problem in Mediterranean climate 

and areas with climatic uncertainty. Introductory overview of cross and 

tunnel mechanical ventilation                                                                              31 

1.3.6. (State of the art) Review of the literature, publications, main 

contributions and current methodologies to characterise indoor environments 

and ventilation patterns in broiler buildings. CFD, electronic instrumentation 

(sensors) and validation                                                                                        32 

1.4. General aim and specific objectives of this PhD dissertation                    35 

1.4.1 General aim                                                                                                   35 

1.4.2. Specific objectives                                                                                        36 

1.5. Scope of the PhD dissertation                                                                        38 

1.6. PhD dissertation structure                                                                            38 

1.7. Published articles/conferences derived from this PhD dissertation. 

Awards                                                                                                                   39 

1.8. References                                                                                                       40 



Ph.D. Thesis                                                        Universitat Politècnica de València 

 

12 

 

Chapter 2: Instrumentation to measure indoor environments at broiler houses         47 

2.1. Introduction                                                                                                    49 

2.2. Materials and Methods                                                                                  52 

2.2.1. Measurement System Development                                                           52 

2.2.1.1. General Description                                                                                 52 

2.2.1.2. Temperature Material and Circuit                                                         53 

2.2.1.3. Temperature Calibration                                                                        54 

2.2.1.4. Air Velocity Material and Circuit                                                          55 

2.2.1.5. Air Velocity Calibration                                                                          56 

2.2.1.6. Differential Pressure Module                                                                  59 

2.2.2. Field Experiments                                                                                       60 

2.2.2.1. Assay Building                                                                                          60 

2.2.2.2. Measurement Conditions (Scenarios)                                                    61 

2.2.2.3. Statistical Procedures                                                                              63 

2.3. Results and Discussion                                                                                   63 

2.3.1. Sensor Calibration                                                                                      63 

2.3.1.1. Temperature Calibration                                                                        63 

2.3.1.2. Air Velocity Calibration                                                                          65 

2.3.1.3. Differential Pressure Calibration                                                           65 

2.3.2. Field Experiment                                                                                         66 

2.3.3. Discussion                                                                                                     67 

2.3.3.1. Measurement System Development                                                        67 

2.3.3.2. Field Experiments                                                                                    69 

2.4. Conclusions                                                                                                     71 

2.5. References                                                                                                       71 

Chapter 3: Cross mechanical ventilation in broiler houses                                             77 

3.1. Introduction                                                                                                    79 

3.2. Materials and Methods                                                                                  81 

3.2.1. Experimental Poultry Farm                                                                       81 

3.2.2. Test Sections and Multi-sensor System for Direct Measurements         82 

3.2.3. CFD Background                                                                                        83 

3.2.4. Turbulence Models and Boundary Conditions (BC)                               84 

3.2.5. Statistical Validation Model                                                                       90 

3.3. Results and Discussion                                                                                   91 

3.3.1. CFD vs. Direct Measurements                                                                   91 



Ph.D. Thesis                                                        Universitat Politècnica de València 

 

13 

 

3.3.2. CFD-Air Velocity Results                                                                           92 

3.3.3. Results of the Validation Model                                                                 94 

3.4. Conclusions                                                                                                     97 

3.5. References                                                                                                       98 

Chapter 4: Tunnel mechanical ventilation in broiler houses                                        101 

4.1. Introduction                                                                                                  103 

4.2. Materials and Methods                                                                                105 

4.2.1. The Building                                                                                              105 

4.2.2. Experimental Scenarios (Operations)                                                     106 

4.2.3. CFD Background and Turbulence Models                                             107 

4.2.4. Geometry, Mesh and BC                                                                          108 

4.2.5. Validation of CFD Results                                                                       110 

4.2.5.1. General Context: the Multi-Sensor System and Points of 

Measurement                                                                                                       110 

4.2.5.2. Statistical Model and Variables                                                            112 

4.2.5.3. Regression Line (CFD vs. Measurements)                                           113 

4.2.5.4. Relative Error at Each Point                                                                 113 

4.3. Results                                                                                                           114 

4.3.1. Results of the Validation Model                                                               114 

4.3.2. CFD Results and the Direct Measurements                                            115 

4.3.3. Results of the Relative Error at Each Point                                            117 

4.3.4. CFD-Air Velocity Results                                                                         119 

4.4. Discussion                                                                                                      120 

4.5. Conclusions                                                                                                   123 

4.6. References                                                                                                     123 

Chapter 5: Single-sided mechanical ventilation in broiler houses                                127 

5.1. Introduction                                                                                                  129 

5.2. Materials and methods                                                                                130 

5.2.1. Assay building                                                                                           130 

5.2.2. Fans, inlets and diffusers                                                                          131 

5.2.3. Scenarios                                                                                                    132 

5.2.4. Multi-sensor system and points of measurement                                   132 

5.2.5. CFD techniques                                                                                         133 

5.2.6. Geometry, meshed and BC                                                                       134 

5.2.7. Validation of CFD results                                                                         136 



Ph.D. Thesis         Universitat Politècnica de València 

14 

5.2.7.1. General context         136 

5.2.7.2. Regression model comparing CFD vs. measurements, errors      136 

5.2.7.3. ANOVA for validation           137 

5.2.8. Characterisation of the ventilation model              137 

5.3. Results          138 

5.3.1. Regression line  138 

5.3.2. ANOVA results of the validation Models      139 

5.3.3. CFD numerical results in the sensor coordinates  140 

5.3.4. CFD-air velocity isosurfaces           141 

5.4. Discussion  146 

5.5. Conclusions  149 

5.6. References      150 

Chapter 6: CFD applications in the heating and cooling systems of broiler 

houses: Designing a fogging system using CFD and sensors         155 

6.1. Introduction      157 

6.2. Materials and Methods      160 

6.2.1. The building  160 

6.2.2. Scenarios and field experimentation  160 

6.2.3. Instrumentation and measurements  161 

6.2.4. CFD techniques and General Validation          162 

6.2.4.1. CFD-isosurfaces      163 

6.2.4.2. CFD-air velocity at fog spray nozzles and pipes   163 

6.2.5. Testing the final fogging system design. 

Additional CFD Validation      164 

6.2.5.1. Testing the nozzles and determining the water in use 

 in the fogging system          164 

6.2.5.2. Additional CFD Validation. Comparing CFD air velocity 

 results with direct measurements at nozzles  164 

6.2.5.3. Number of fog spray nozzles tested. 

Sample size in finite populations  165 

6.3. Results          166 

6.3.1. CFD isosurfaces  166 

6.3.2. Location of pipes and nozzle orientation   168 

6.3.3. CFD-air velocity at the fog spray nozzles 

(points) and at pipes (lines)      170 



Ph.D. Thesis         Universitat Politècnica de València 

15 

6.3.4. Regression line of CFD-air velocity results and 

measurements in the studied fog spray nozzles      172 

6.3.5. Water used in fogging system  174 

6.4. Discussion  174 

6.5. Conclusions  178 

6.6. References      179 

Chapter 7: General Results and Discussion  183 

7.1. Introduction      184 

7.2. General Discussion and Results  184 

7.3. Achievement of the PhD dissertation’s general aim and  

specific objectives. Acquisition of skills in the PhD dissertation    198 

7.4. References      200 

Chapter 8: Conclusions  205 

8.1. Summary of brief statements and specific conclusions of each 

chapter          206 

8.2. General conclusions  218 

8.3. Future work           221 

8.4. References      222 





Ph.D. Thesis         Universitat Politècnica de València 

17 

Index of Figures 

Figure 1.1. Twenty main broiler meat producer countries. Production in tonnes     28 

Figure 2.1. Scheme of the measurement system  52 

Figure 2.2. Circuit of the temperature sensor  53 

Figure 2.3. Circuit of the air velocity sensor  56 

Figure 2.4. A scheme of the wind tunnel showing the position of the air velocity  

and temperature sensors      57 

Figure 2.5. Differential pressure electronic circuit  59 

Figure 2.6. Tripod with a multiplexer at its centre and two air velocity and  

temperature sensors at the level of the birds (0.25 metres) and at 1.75 metres  62 

Figure 2.7. Location of the measurements in the two sections of the poultry farm      62 

Figure 2.8. Regression curve of a velocity sensor calibration    65 

Figure 3.1. Test sections in the experimental poultry farm      82 

Figure 3.2. Screen of geometry and meshed of poultry farm at  

GAMBIT (FLUENT). Orientation of walls and covers  89 

Figure 3.3. Contours of air velocity in Planes 1 and 2 of the Section A in a  

trial scenario (Scenario II). Air velocity is expressed in m s
−1

          93 

Figure 3.4. Vectors of air velocity showing trajectories in Planes 1 and 2  

of the Figure 3.3. Air velocity is expressed in m s
−1

                 93 

Figure 3.5. Regression curve of CFD results vs. direct measurements in the  

studied points  95 

Figure 4.1. Measurements in the tunnel broiler building  105 

Figure 4.2. (a) Grid in an inlet; (b) Inlets in the building  110 

Figure 4.3. Test sections          111 

Figure 4.4. Regression curve of CFD results vs. direct measurements in the  

90 points studied     115 

Figure 4.5. Relative error in each operation               118 

Figure 4.6. Air velocity values at broiler level (0.25 m) in the Operation IV  

(5 fans in action)      119 

Figure 5.1. Mechanical single-sided ventilated broiler house              131 

Figure 5.2. Inlets, outlets (fans) and diffusers  131 

Figure 5.3. Test section in the broiler house           132 

Figure 5.4. Regression line of CFD results vs. direct measurements in the  

180 points studied           138 



Ph.D. Thesis         Universitat Politècnica de València 

18 

Figure 5.5. Air velocity (values in m s
-1

) in a plane perpendicular to floor 

at 0.24 m of fans without diffusers (using colour scale). Scenario I  141 

Figure 5.6. Air velocity (values in m s
-1

) in a plane perpendicular to floor 

at 0.24 m of fans with diffusers (using colour scale). Scenario II  142 

Figure 5.7. Air velocity (values in m s
-1

) in a plane (X=18 m) without diffusers 

(using colour scale). Scenario III  142 

Figure 5.8. Air velocity (values in m s
-1

) in a plane (X=18 m) without diffusers 

(using vectors). Scenario III     143 

Figure 5.9. Air velocity (values in m s
-1

) in a plane (X=18 m) with diffusers 

(using colour scale). Scenario IV            144 

Figure 5.10. Air velocity (values in m s
-1

) in a plane (X=18 m) with diffusers 

 in another scenario (using vectors). Scenario IV     144 

Figure 5.11. Air velocity (values in m s
-1

) in the broiler level plane without 

diffusers (using colour scale). Scenario V  145 

Figure 5.12. Air velocity (values in m s
-1

) in the same plane as Figure 5.11 with 

diffusers (using colour scale). Scenario VI    145 

Figure 6.1. Minimum elements of a fogging system in a broiler building         158 

Figure 6.2. Some broiler building design variants. Mechanical ventilation 

 systems installed    159 

Figure 6.3. Fans in action. Summary of scenarios    161 

Figure 6.4. Air velocity vectors (in m s
-1

) in a transversal section (plane X=15 m) 

at the inlets area. Circuits of air velocity     167 

Figure 6.5. Air velocity (in m s
-1

) at the plane at the height of the 

sidewall (Plane Z=2.20m)   167 

Figure 6.6. Air velocity path lines (in m s
-1

) changing the air 

velocity orientation. Scenario IV (5 fans in action)  168 

Figure 6.7. Broiler building, pipes and nozzles  169 

Figure 6.8. Regression line of CFD results vs. measurements in the 184 points studied  172 

Figure 7.1. CFD simulation of a ―virtual‖ broiler building  

(with four transversal fans in action)  197 

Figure 7.2. Searching specific optimums of broiler buildings (involving CFD, 

instrumentation and heuristic algorithms)       198 



Ph.D. Thesis                                                        Universitat Politècnica de València 

 

19 

 

Index of Tables 

Table 1.1. Meat animal production in tones (FAO, 2015)                                                   27 

Table 2.1. Trial scenarios                                                                                                     61 

Table 2.2. Results of regressions of temperature calibrations                                              64 

Table 2.3. ANOVA of the air velocity scenarios                                                                 66 

Table 2.4. Air velocities in m s
-1

 (average ± standard deviation) in the field experiment. 

The number of data is indicated in parenthesis                                                                     67 

Table 3.1. Coordinates of sensors                                                                                         83 

Table 3.2. Main inputs and BC at CFD simulations                                                             86 

Table 3.3. Air velocity in m s
−1

 (average ± standard deviation) in the field experiment by 

direct measurements and by CFD simulations. The number of data is indicated in 

parenthesis                                                                                                                             91 

Table 3.4. ANOVA of air velocity at different scenarios                                                     94 

Table 4.1. Main inputs and BCs at CFD simulations                                                         109 

Table 4.2. Sensor coordinates                                                                                             112 

Table 4.3. ANOVA of air velocity at different scenarios                                                  114 

Table 4.4. Air velocity in m·s
−1

 (average ± standard deviation) in the field experiment 

based on direct measurements and CFD simulations. The number of averaged data is 

indicated in parenthesis                                                                                                       115 

Table 5.1. Sensor coordinates (the origin of the coordinates is indicated in Figure 5.3)   133 

Table 5.2. Constants and computational settings in all CFD simulations                          134 

Table 5.3. Specific BCs and particular characteristics to perform the CFD simulations   136 

Table 5.4. ANOVA for air velocity at different scenarios excluding ―diffuser‖  

variable (from Equation 5.6)                                                                                               139 

Table 5.5. ANOVA for air velocity at different scenarios including ―diffuser‖  

variable (from Equation 5.7)                                                                                               139 

Table 5.6. Air velocity in m s
-1

 (average ± standard deviation) obtained in  

CFD simulations                                                                                                                  140 

Table 6.1. Coordinates of pipes (lines in CFD) and number of nozzles                             170 

Table 6.2. Studied 21 fog spray nozzles in the pipes. Orientation in design                      170 

Table 6.3. Minimum and maximum relative error (in %) in each scenario                       173 

Table 6.4. Air velocity (in m s
-1

) in each pipe and at each scenario using the  

―Area Weighted Average‖ command of Fluent                                                                  173 





Ph.D. Thesis         Universitat Politècnica de València 

21 

List of abbreviations 

The following list contains the main abbreviations used in this thesis. 

ANOVA Analysis of Variance 

ASABE American Society of Agricultural and Biological Engineers 

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning 

Engineers. 

BC Boundary Condition. 

BS British Standard 

CFD Computational Fluid Dynamics 

DEFRA Department for Environment, Food and Rural Affairs 

DIN Deutsches Institut für Normung 

EU European Union 

FAO Faostat Agriculture 

GAMBIT Geometry and Mesh Building Intelligent Toolkit. 

GLM Generalized Linear Model 

LES Large Eddy Simulation 

Max Maximum 

Min Minimum 

MV Mechanical Ventilation 



Ph.D. Thesis         Universitat Politècnica de València 

22 

MVAC Mechanical Ventilation and Air Conditioning 

PC Personal Computer 

PDEs Partial Differential Equations 

RAM Random Access Memory 

RANS Reynolds Averaged Navier-Stokes 

RSM Reynolds Stress Model 

RH Relative Humidity 

RTD Resistance Temperature Detector 

SIMPLE Semi-Implicit Method for Pressure-Linked Equations. 

TFD Thin Film Detector 

UNE Una Norma de España. 

UPV Universitat Politècnica de València 

USA United States of America 

V&V Verification and Validation 

VOF Volume Finites 

3D Three Dimensional. 



Ph.D. Thesis                                                        Universitat Politècnica de València 

 

23 

 

Chapter 1 
 

Introduction, objectives and structure of the thesis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter presents: 

- The interdepartmental approach and motivation. 

- An introductory overview. 

- The general context and the initial reviews (state of the art). 

- The general aim and specific objectives of this PhD dissertation. 

- The scope of this PhD dissertation. 

- The structure of this PhD dissertation. 

- The published and submitted articles/conferences derived from this PhD 

dissertation. 
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1.1. Interdepartmental approach and motivation 

This doctoral thesis ―Optimisation of design for broiler poultry farms‖ depends on the 

Department of Construction Engineering and Civil Engineering Projects of the Universitat 

Politècnica de València (Spain). However, this doctoral thesis is also developed in the 

Department of Animal Science of the same University. Therefore, this PhD dissertation 

opens a new research line that involves two vital departments of this University. 

Multidisciplinary approaches, creativity and originality among other characteristics are 

crucial in modern PhD dissertations in a globalised world. Science merges disciplines, 

cultures, points of view and methodologies creating enthusiasm. ―Inter‖ and ―multi‖ are key 

prefixes that enrich. 

Under the supervision of Dr. Hospitaler (Department of Construction Engineering and Civil 

Engineering Projects) and Dr. Torres (Department of Animal Science), we hope to create 

interests and relevant results and conclusions through the contribution and integration of 

different points of view, methodologies and strategies. On one hand, from the general basis 

of construction and Computational Fluid Dynamics techniques (CFD) and on the other, in 

terms of the biological issues of the animals and the peculiarities of animal houses. The 

synergy of both extraordinary contributions in these two important sides of knowledge 

creates great initial motivation and interest. Thus, I hope that this interdepartmental line of 

research will continue in further studies in other livestock buildings. 

Among other important objectives and motivations explained through the formal corpus of 

the doctoral thesis, I wish to outline here one important paragraph on motivation of this 

type of work, with special relevance for the whole of society and raising awareness of the 

problem: 

―Planet Earth is overpopulated and a large percentage of its inhabitants suffer from famine 

or are not properly fed. For the future, biological, agricultural, industrial and civil engineers 

face a great challenge: to provide the necessary food knowing that the land is limited, and 

supply it at a reasonable price-quality ratio to achieve food supplies for all social strata, 

considering the rapid increase in population. At this point, intensive production (not exempt 

from controversy) in agriculture, livestock and fisheries is crucial to provide food to the 

Earth’s population. This PhD, entitled «Optimisation of design for broiler poultry farms», 

may form a modest part of the contribution to intensive livestock or ―livestock 

industrialisation‖ and particularly focuses on intensive poultry production for meat 

(broilers) in this great challenge, which the scientific community must address and 

resolve.‖ 
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Every day, adults and children alike die from the simple lack of food or water. Production 

of the necessary food, ethical prices for the producers (farmers), absence of speculation on 

essential foodstuffs and their ethical distribution in an overpopulated world with limited 

land and resources are compulsory and highly motivating for the whole of society. We 

think that the primary needs (justice, food, water, work...) of our society come before 

anything else. 

1.2. Introductory overview 

Intensive poultry production for meat (broilers) generally involves confining the animals in 

specific buildings, which are generally mechanically ventilated. Ventilation is a key 

variable to optimise their indoor environments and find the optimal designs for these 

buildings. Surprisingly, there is currently no optimum model for broiler buildings with 

mechanical ventilation, either in terms of dimensions and/or design or from the point of 

view of the ventilation system. The absence of this precise guideline in broiler house design 

gives rise to uncertainty in the building design. Empiricism or intuition is not the way to 

build animal houses in the third millennium. 

For these reasons, it is necessary to characterise and analyse the air velocity distribution and 

the associated values to discover the deficiencies of the different ventilation systems in the 

different typologies of these specific buildings. In fact, broilers suffer from great episodes 

of thermal stress and mortality in different typologies of broiler buildings in some climatic 

events. These fatal episodes are especially relevant in the hot seasons of the Mediterranean 

climate, where an important number of broiler buildings are concentrated. Proper air 

velocity values around the birds are crucial to assist in their biological thermoregulation 

and to diminish or eliminate the negative effect on the birds of the adverse climatic events. 

Unfortunately, climate change and global warming increase the areas of climatic 

uncertainty and occasional unexpected extreme weather (heat or cold waves). 

To characterise these air velocity values and their distribution: 

(i) We conceived and built the electronic instrumentation, i.e., suitable sensors (a 

multi-sensor system composed of a large number of air velocity, air 

temperature and differential pressure sensors) able to operate in the tough 

conditions of broiler buildings, receiving isotemporal signals. 

(ii) We carried out the field experiments using this original instrumentation system, 

experimenting in the three main mechanical ventilation systems: cross, tunnel 

and single-sided. 
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(iii) We performed the Computational Fluid Dynamics (CFD) simulations in the 

same scenarios of the aforementioned field experiments using the appropriate 

computational settings and the best CFD protocols (most approximate CFD-

geometry of the building, better mesh, test convergence studies...). 

(iv) We validated the CFD results by means of regression lines and validation models, 

concluding that the CFD tools are fully valid to explore ―virtual‖ geometries 

of broiler buildings in order to find the optimum broiler buildings and the 

most suitable ventilation system. 

(v) The results show that cross and single-sided ventilation systems cannot achieve 

high enough air velocity values to decrease the excess heat of the broilers and 

reduce the mortality and heat stress in hot seasons of the Mediterranean 

climate. On the contrary, tunnel ventilation can achieve these high air velocity 

values, although it is less appropriate for the cold seasons in Mediterranean 

climate. 

(vi) CFD techniques can also serve to optimise other relevant devices installed in 

broiler buildings. This way, the indoor air velocity characterisation is the main 

variable in the best design of a fogging system and the orientation of the fog 

spray nozzles. For this reason, this study is also included in this PhD 

dissertation. 

According to the results, the optimum broiler building for the Mediterranean climate or 

areas with climatic uncertainty will install a hybrid mechanical ventilation system 

consisting of a transversal mechanical system (cross or single-sided) and a longitudinal 

mechanical ventilation system (tunnel). In the majority of cases, installing this hybrid 

mechanical ventilation system will be uneconomical, as the tunnel ventilation system will 

only be valid for occasional hot days or hot seasons, but entirely respectful with animal 

welfare issues. 

1.3. General context and initial reviews 

1.3.1. General context: types of poultry farm, amount and location of 

broiler production and comparison to other animal meat production 

There are currently two major groups of poultry farms: for laying hens and for meat 

production (broilers). Poultry production for meat (broilers) is one of the most important 

food industries, with a 633.34 % increase in world production in the period from 1972 to 

2012 (FAO, 2015). This percentage increase is the highest compared to the five main types 
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of meat animal production: broiler (633.34 %), turkey (399.18 %), swine (268.61 %), cattle 

(164.22 %) and sheep (149.62 %). Table 1.1 shows the world production of these five 

sectors in tonnes. Table 1.1 shows that swine is the main important food production, 

although the highest percentage increase is in broiler production. 

Table 1.1. Meat animal production in tones (FAO, 2015). 

Type of 

meat 

1972 1982 1992 2002 2012 

Pig 
40624567 53198527 72166373 88780643 109122261 

Broiler 
14653581 25184501 39017741 63581332 92812054 

Cattle 
38539081 45915112 52741876 56822921 63288605 

Sheep 
5660347 5887957 7026158 7770001 8470307 

Turkey 
1405256 2174970 4043669 5417422 5609529 

 

In this huge increase for broiler meat, three issues are key: 

(i) The high quality of the meat and the reasonable price to consumers (Slingenbergh 

et al., 2007). 

(ii) Poultry meat is accepted by almost all cultural and religious groups, whereas pig, 

cattle or rabbit meet with acceptance issues in some cultures or religions. 

(iii) Among all types of intensive livestock production, broiler production is the most 

efficient in terms of feed conversion (Steinfeld et al., 2006). 

Moreover, broiler production has developed genetic improvements, better and concentrated 

feed, an improvement in preventive disease controls and biosecurity measures, and the use 

of technology to exhaustively control in-house environmental conditions (Havenstein et al., 

2003). 

In the context of production by countries, the USA is the main producer (18.35 % of total 

world production), China is the second (13.64 %), Brazil is the third (12.43 %) and Russia 

comes fourth (3.56 %) (FAO, 2015). These four countries concentrate nearly half of all 

world production. Spain is the thirteenth broiler meat producing country worldwide and an 

important amount of this broiler production is concentrated in the Valencian Community 

(Martínez et al., 2008). Figure 1.1 shows the twenty main broiler meat producing countries 

(FAO, 2015). 
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Figure 1.1. Twenty main broiler meat producer countries. Production in tonnes. 

According to the colossal volume of this production (Figure 1.1), intensive poultry farming 

for meat is a strategic sector in the economy of many countries and regions. 

1.3.2. Poultry housing for broilers 

Modern intensive broiler production consists of confining the birds in animal houses and 

has two fundamental variants: production in animal houses with natural ventilation and 

production in animal houses with mechanical ventilation. On the other hand, there is also an 

emergent variety of poultry meat in developed countries known as ecological/organic 

production for the type of consumer who does not mind paying a much higher price for the 

product compared to that obtained in intensive production. This type of production takes 

place in open air, yards or rooms rather than specific buildings and is usually very limited. 

Of course, another type of minority production is non-commercial or for family 

consumption, typical of primitive societies, developing countries or rural settings. 

Intensive production (not exempt from controversy) takes place in modern buildings that 

resemble factories and the animal production process has several analogies with an 

industrial process in the whole sense. Thus, we can incorporate new terms: the terms 
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―livestock industrialisation‖ to describe the progress and industrialisation of the livestock 

sector and the terms ―factory farms‖ to speak about modern animal houses. 

In broiler buildings, the most prominent ventilation system uses mechanical or forced 

ventilation, mainly through negative-pressure systems (ASAE, 1986; MWPS, 1990; 

Pedersen, 1999). In these broiler buildings, energy savings have become increasingly 

important due to climate change and rising energy prices (Rajaniemi et al., 2012). Lighting, 

ventilation and fans are shown to account for over 80% of the total electrical consumption 

(Corkery et al., 2013; Teagasc, 2011). Of course, the energy consumption depends on many 

factors: climate, season, building type, management, age of the broilers… In cold-temperate 

weather, in the broiler buildings of Ireland, heating the indoor environment represents 84 % 

of the total direct energy consumption (mainly by using fuel) and the ventilation issues 

represent 7 % of the total direct energy consumption and the main spend in total electricity 

consumption (45 %). The outlay on lighting is slightly lower (37 % of total electricity 

consumption) (Corkery et al., 2013; Teagasc, 2011). Evidently, in countries with hot 

weather the ventilation needs will be greater and the expenditure on electricity consumption 

will be higher. Of course, the greatest energy input (indirect energy consumption) in broiler 

production is in the feed (Baughman et al., 1977). 

In intensive poultry housing for broilers, it is necessary to control different key variables 

that strongly affect the bird: ventilation, lighting, stocking density, feed supply, health, 

nutrition, temperature, water supply and vaccinal status (Ross, 1996). 

Mechanical ventilation systems allow a high density of broilers and more thermal comfort 

compared to naturally ventilated broiler buildings (Charles et al., 2002). According to 

Dawkins et al., 2004, housing conditions are acknowledged as having greater impact than 

animal density on broiler welfare. Surprisingly, there is currently no optimum model for 

broiler buildings with mechanical ventilation, either in terms of dimensions and/or design 

or from the point of view of the ventilation system. The absence of this precise guideline in 

broiler house design leads to uncertainty in the building design. Thus, several retrofits were 

found after the first functional conception of the broiler building. 

Empiricism or intuition is not the way to build animal houses in the third millennium. 

Broiler production in the third millennium needs to be revised, incorporating recent 

technological advances and scientific approaches. 

1.3.3. Hot weather and cold weather. Climate change and uncertainty 

According to the climatic conditions, broiler building conceptions are different and the 

problems are different. In cold or temperate weather, the building will need more specific 
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designs and strategies to heat the indoor space to achieve the proper temperature for the 

birds. On the contrary, in hot weather, the building will need more specific designs and 

strategies to decrease the indoor temperature and the excess heat on the birds. 

In Mediterranean climate, the weather is not constant; the seasonal changes can be greater. 

Evidently, broiler buildings must be designed taking each climatic season into account. 

Thus, both functional conceptions in design (for hot and cold weather) need to be present in 

the broiler building model in Mediterranean climate. 

As in any building, each broiler building needs to be designed according to the 

requirements for the entire period of its useful life. However, climate change and global 

warming cause climatic uncertainty in the designs of any building (Holmes et al., 2007) and 

evidently in livestock systems (Nardone et al., 2010). For these effects, some constructed 

broiler buildings require adaptation after their initial design and conception. Of course, new 

broiler buildings must take into account in their functional conception the possible effects 

of climate change and unexpected periods of hot weather (e.g. heat waves) or cold weather 

(e.g. cold waves). 

In the short/mid-term, the status of some climatic areas will change. Moreover, a high 

percentage of broiler buildings will need to be designed to solve both extreme climatic 

conditions (cold and hot weather). 

1.3.4. Effects of cold temperatures and hot temperatures on broilers 

Temperatures cause a great range of effects on broilers. Cold broilers are less active, so do 

not eat and do not gain weight. During winter or cold weather, birds exposed to lower 

temperatures suffer cold stress. The cold stress significantly affects broiler health, welfare 

and performance (Blahova et al., 2007; Yang et al., 1999). In cold weather, broiler 

buildings must be heated to increase the indoor temperature. Broilers need to increase their 

metabolism levels through an increase in this indoor temperature and feed. In this sense, the 

indoor oxygen requirements are greater on one hand to contribute to devices that heat the 

building (heating systems) and on the other, to help in the feed consumption of the animals. 

Of course, the rearing phase of the birds is an important factor, because if the broilers are 

younger or featherless it is necessary to heat the building more than if the birds are older. 

On the other hand, older broilers need to breathe greater amounts of oxygen than younger 

ones (Czarich et al., 2003). 

Hot temperatures also affect broiler health, welfare and performance by causing heat stress 

(Daghir, 2001; Deaton et al., 1997; DEFRA, 2008; Sohail et al., 2012; Yanagi et al., 2002; 

Yavah et al., 2004). During this heat stress, broilers are less active, panting or breathing 
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with difficulty, and the blood parameters are altered, especially the stress hormones 

(corticosteroid, adrenocorticotrophic and glucocorticoid hormones) (Altan et al., 2000; 

Edens et al., 1975). Thus, corticosteroid concentrations are used to measure the 

environmental stress in broilers (Altan et al., 2000; Siegel, 1975). DEFRA, 2008 refers to 

the changes in the broiler metabolism and the need for thermoregulation to reduce the 

internal heat of the animals. In this thermoregulation, broiler housing ventilation (by means 

of high air velocity values) can help by increasing the convective flux heat of broilers and 

therefore decrease their heat stress and associated mortality. 

In both extreme cases (very high or low temperature), the fatal consequences will be 

thermal stress (heat or cold stress) and, in some cases, mortality of the broilers. In the 

Mediterranean summer climate, the episodes of mortality by heat stress are repetitive, with 

several mortality rates (El País, 2003). The economic losses due to heat stress are huge; in 

the US poultry industry alone, the total annual estimated losses range from $128 to $165 

million (St-Pierre et al., 2003). 

1.3.5. Broiler housing ventilation: the main problem in Mediterranean 

climate and areas with climatic uncertainty. Introductory overview of 

cross and tunnel mechanical ventilation 

Ventilation plays a critical role in ensuring appropriate indoor conditions to achieve high 

broiler productivity (growth and food conversion) and low mortality (Charles et al., 2002; 

Lott et al., 1998). Ventilation design is based on three basic principles: the rate of air 

exchange, air distribution and air velocity range at the animal level (ASAE, 1986; MWPS, 

1990; Pedersen, 1999). In this context, the dominant intensive production system for 

broilers takes place in buildings with mechanical ventilation, mainly by negative pressure 

by means of exhaust fans. These mechanically ventilated broiler buildings allow higher 

broiler density and independence from the outdoor weather, thereby improving the internal 

microclimate and increasing the animals’ comfort. 

In cold, temperate and Mediterranean climate (where an important part of broiler 

production is concentrated), cross-mechanical ventilation is the most widespread ventilation 

system in broiler production (Blanes-Vidal et al., 2008). 

In hot or tropical climates, the principal ventilation system is mechanical tunnel ventilation 

(Daghir, 2001). In tunnel mechanical ventilation, it is possible to achieve air velocities in a 

wide range from ~0.5 m s
-1

 to ~3 m s
-1

. These high velocities can help in the 

aforementioned process of thermoregulation of broilers in hot weather (DEFRA, 2008, 
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Simmons et al., 2003). It is essential to differentiate the needs of air velocity and the needs 

of oxygen. Using only a small number of fans, the renewals of air and the quantity of 

oxygen (approximate a 20% of air is oxygen) are considerably lower than when using a 

greater number of fans (independently of the ventilation system used). Controlling both 

crucial variables of broiler building management (air velocity and demands of oxygen) is 

key. It is also crucial to control the level of pollutants (the maximum ammonia 

concentration levels for broilers must be around 20 ppm, while for carbon dioxide, about 

5,000 ppm (Carvalho et al., 2012). 

In addition, heterogeneity of air velocity distribution is undesirable, as it causes indoor 

migration of broilers and higher concentrations of birds in some areas of the building. An 

excess of density or birds is adverse (Dawkins et al., 2004) and the same indoor migration 

can cause stress (Blanes-Vidal et al., 2008). 

Nowadays, broiler buildings equipped with these mechanical ventilation systems (cross and 

tunnel) have thermal problems. These thermal problems are frequently described by the 

farmers interviewed and objectively verified by the high number of deaths and blood stress 

parameters of the broilers (Altan et al., 2000; Siegel, 1975). Higher or lower concentrations 

of the birds are also observed in some specific areas of the broiler buildings. For these 

reasons, new mechanical ventilation systems have been introduced, with new disposition of 

fans, the use of heat exchangers and cones at fans among other strategies. These new 

ventilation systems and strategies are especially experienced in Mediterranean climate, 

where the heat stress on broilers in hot seasons is an important and cyclic problem. 

1.3.6. (State of the art) Review of the literature, publications, main 

contributions and current methodologies to characterise indoor 

environments and ventilation patterns in broiler buildings. CFD, 

electronic instrumentation (sensors) and validation 

There is an important lack of publications and specific literature about the characterisation 

of indoor environments and ventilation in broiler buildings. Despite the sector’s economic 

importance, the colossal production volume and the huge increase in confined intensive 

broiler production shown in Table 1.1, it is very difficult to find an important review of the 

microclimate characteristics of the buildings. The importance of broiler production does not 

entail the supposed equivalent amount of specific scientific literature, precise values, 

references, contributions or guidelines. The constant complaints of the producers (farmers) 

and news of massive deaths of broilers in national newspapers (El País, 2003) and in 
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specific websites of the sector (World Poultry, 2012) merely confirm and outline the big 

thermal problem in a non-scientific way or approach. However, it is possible to find a lot of 

published scientific literature, contributions and proposed methodologies for studying the 

indoor environments in other important agricultural buildings, such as greenhouses. Of 

course, taking into account their peculiarities, it is possible to apply all the equivalent 

published scientific literature on buildings for human activities (houses, flats, museums, 

stadiums...) and for plants (greenhouses) to broiler buildings. Besides, the influence of 

indoor environment of broiler buildings on humans (farmers, vets...) who work in them 

must be considered in some specific branches of research. 

According to the current state of the art, the trends to characterise indoor environments of 

agricultural buildings (greenhouses and livestock buildings) and also for buildings for 

human activities have two major methodologies: direct measurements with the appropriate 

electronic instrumentation (sensors) and indirect methods such as Computational Fluid 

Dynamics (CFD) techniques. The use of these CFD techniques applied to agricultural 

buildings such as greenhouses (Bartzanas et al., 2004; Boulard et al., 2002; Bournet et al., 

2010; Campen et al., 2003; Fatnassi et al., 2006; Mistriotis et al., 1997; Molina-Aiz et al., 

2004; Norton et al., 2007; Valera et al., 2006) and livestock buildings (Bartzanas et al., 

2007; Bjerg et al., 2002; Blanes-Vidal et al., 2008; Lee et al., 2007; Norton et al., 2007; 

Pawar et al., 2007; Xia et al., 2002) has exponentially increased in recent years. On the 

other hand, the use of CFD in buildings for human occupation is much more developed, 

with more years of experience leading to an immense body of published literature. 

In all cases, a key point in the use of CFD techniques is the need for validation of the 

numerical simulations (Oberkampf et al., 2002) by means of suitable instrumentation. To 

this end, interesting instrumentation and data acquisition systems have been developed to 

validate these CFD simulations applied in agricultural buildings: in greenhouses (Boulard 

et al., 1995; López et al., 2011; Pawlowsky et al., 2009; Shilo et al., 2004) and in livestock 

buildings (Berckmans et al., 1991; Blanes-Vidal et al., 2010; van Wagenberg et al., 2003; 

Wilhelm et al., 2001; Zhang et al., 1996). It should be noted that the use of CFD techniques 

and associated instrumentation for validation is widespread in other engineering fields (e.g. 

aerodynamic, automotive, spatial, chemistry, nuclear, fire simulation...), but in agricultural 

engineering they are less developed, particularly in the study of indoor livestock building 

environments. 

Focusing on broiler buildings, the published literature is very scarce and the points of 

departure and the necessary references of this PhD dissertation are two articles: the article 

focused on CFD applications in broiler buildings by Blanes-Vidal et al., 2008 and the 
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article on electronic instrumentation for validation of these CFD simulations of air velocity 

(Blanes-Vidal et al., 2010). Unfortunately, these two articles only analyse one mechanical 

ventilation system (cross) and the number of sensors used to validate the CFD simulations 

is very limited (3 sensors). In the CFD article of necessary reference for this PhD 

dissertation (Blanes-Vidal et al., 2008): CFD Fluent (Fluent, 2001) was used to perform the 

numerical simulations and Gambit (Gambit, 2001), the pre-processor of Fluent, was also 

used to create the geometry of the broiler building and the mesh. This commercial CFD 

software is widely used in different fields of engineering, such as in greenhouses or in 

buildings for human occupation. CFD Fluent (Fluent, 2001) is powerful commercial CFD 

software and a guarantee of good numerical results. 

On the other hand, as in all building types, there is a strong relation between the nature and 

characteristics of the buildings (geometry, doors, windows, building materials...) with the 

resulting indoor environments. Unfortunately, from the point of view of construction, 

geometry and facilities, it is necessary to indicate that livestock buildings are usually very 

heterogeneous in terms of building materials, geometry, dimensions, location of windows, 

doors and ventilation systems, etc. Likewise, broiler buildings are even more 

heterogeneous, as there is currently no optimum model for broiler buildings. Consequently, 

a great variety of broiler building typologies and installed ventilation systems are found. A 

repertory or catalogue of broiler buildings by categories (building typology and installed 

ventilation system) is the first step to begin the case studies in this PhD dissertation. In the 

case of the Valencian Community (Spain), a database collated by Martinez et al., 2008 was 

the initial reference. From this database and from new inspections of broiler buildings, we 

found three major cases for study: broiler buildings equipped with cross-mechanical 

ventilation, with tunnel mechanical ventilation and with single-sided mechanical 

ventilation. Cross and tunnel are commonly installed in broiler buildings (traditional 

ventilation systems), whereas single-sided is an emergent and experimental ventilation 

system. 

To sum up in a single sentence, the uncertainty and anarchy in broiler building design and 

the ventilation systems installed is the current essence of the nature of broiler buildings. 

However, we find three important cases to study: broiler buildings equipped with cross-

mechanical ventilation, with tunnel mechanical ventilation and with single-sided 

mechanical ventilation. Therefore, the indoor microclimate trends and characterisation of 

the indoor ventilation will depend on the typology of the building and the ventilation 

system installed. 
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1.4. General aim and specific objectives of this PhD dissertation 

This section describes the general aim of this PhD dissertation, as well as the specific 

objectives set for its consecution. 

1.4.1 General aim 

There is a huge lack of previous studies and specific literature on the characteristics of 

indoor environments and characterisation of the ventilation in the different broiler 

buildings. Surprisingly, there are currently no optimum models for broiler buildings, either 

in typologies or the ventilation systems installed. The absence of this precise guideline in 

design causes uncertainty in the building design, in the ventilation system and in other key 

devices installed, such as the cooling system. Thus, several retrofits were found after the 

first functional conception. Empiricism or intuition is not the way to build animal houses in 

the third millennium. In recent decades, the ―livestock industrialisation‖ process 

characterised by a huge increase in the number of livestock buildings with operational and 

automation procedures similar to those of factories has led to broiler buildings being 

designed with several deficiencies. Among these defects, the main problem is the 

ventilation and the consequent thermal problems on the broilers, especially relevant in the 

hot days of the Mediterranean climate. Optimising all the colossal variables of design and 

functioning of these complex buildings is an immense work. Moreover, it is necessary to 

take into account the interaction with the birds and their biological performance, which can 

change depending on the type, genetics, age or weather conditions... Thus, this PhD 

dissertation strikes a necessary balance between the ―agricultural and biological 

surroundings and conception‖ and ―industrial sense‖. 

Therefore, the general aim of this PhD dissertation is to characterise the ventilation and 

indoor air velocities (ranges and distribution) of the main mechanical ventilation systems in 

different broiler building typologies, in order to outline an optimum general model. As 

mentioned previously, the air velocity issue is the key variable to solve the current 

problems of mortality and thermal stress on the animals in broiler buildings in the 

Mediterranean climate. Through these analyses, we shall discuss and draw conclusions on 

the advantages or disadvantages of each type of ventilation system installed and building 

architecture, establishing future trends and design protocols for new broiler buildings and 

retrofits of the broiler buildings already constructed, under the premise of efficiency and 

optimisation in the fullest sense of the words. To perform these analyses, we used powerful 

methodologies: the CFD techniques and the suitable electronic instrumentation. CFD 
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simulations are validated using an original multi-sensor system specifically designed and 

conceived for this PhD dissertation. Validation of the numerical results is carried out 

through statistical approaches: regression lines and validation models. From this 

dissertation, CFD techniques can be used to explore broiler building architectures that 

install ―virtual‖ ventilation systems in order to find the optimum broiler building geometry 

and the best ventilation system. 

On the other hand, as the key variable in designing the cooling system (in this case, a 

fogging system) is full knowledge of the indoor air velocity characterisation, this PhD 

dissertation also includes a chapter on the design of a fogging system for the tunnel 

mechanically ventilated broiler building in chapter 6. 

Finally, taking into account the results of the different air velocity characterisations in the 

case studies, the general optimum models for broiler houses are proposed. In this way, and 

in the case of Mediterranean climate or areas with climatic uncertainty, the optimum broiler 

building will have a hybrid mechanical ventilation system installed, consisting of a 

transversal mechanical system (cross or single-sided) and a longitudinal mechanical 

ventilation system (tunnel). 

1.4.2. Specific objectives 

To achieve the general aim of this PhD dissertation, the following specific objectives must 

be covered: 

1. Initial reviews of the introductory items, the context and the state of the art on beginning

the research for this thesis. 

2. To conceive and build the electronic instrumentation (sensors) to measure environmental

parameters in broiler buildings. For this PhD dissertation, a multi-sensor system has been 

conceived and built with 24 air velocity sensors, 24 air temperature sensors, 2 differential 

pressure sensors and 7 multiplexers able to receive isotemporal signals. This multi-sensor 

system designed will be able to verify and validate (V&V) the CFD simulations developed 

for broiler buildings and able to work perfectly under the tough conditions in which the 

field measurements will be taken. 

3. To characterise and analyse cross mechanical ventilation experimenting in the

corresponding broiler building by using current scientific methodologies (the multi-sensor 

system designed and CFD simulations). By means of this characterisation and analysis, 

some possible deficiencies in the ventilation system will be detected, as well as in the 

geometry of the broiler building, the thermal problems in the broilers, the suitability of this 

ventilation system for rearing broilers throughout the year, and the methodologies and 
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strategies to optimise the ventilation system, proposing future corrective management and 

actions. 

4. To characterise and analyse the tunnel mechanical ventilation experimenting in the 

corresponding broiler building by using current scientific methodologies (the multi-sensor 

system designed and CFD simulations). By means of this characterisation and analysis, 

some possible deficiencies will be detected in the ventilation system as well as in the 

geometry of the broiler building, the thermal problems in the broilers, the suitability of this 

ventilation system for rearing broilers throughout the year, and the methodologies and 

strategies to optimise the ventilation system, proposing future corrective management and 

actions. 

5. To characterise and analyse single-sided mechanical ventilation experimenting in the 

corresponding broiler building by using current scientific methodologies (the multi-sensor 

system designed and CFD simulations). By means of this characterisation and analysis, 

some possible deficiencies will be detected in the ventilation system and in the geometry of 

the broiler building, the thermal problems in the broilers, the suitability of this ventilation 

system for rearing broilers throughout the year, and the methodologies and strategies to 

optimise the ventilation system, proposing future corrective management and actions. 

6. To design a cooling system (a fogging system) based on the characterisation of the 

ventilation of a broiler building. This cooling design will focus mainly on the location of 

the pipes, the orientation of the fog spray nozzles and the easy calculation of the amount of 

water used during the cooling period. Design strategies in case of failures and 

methodologies for maintenance will be also proposed. 

7. To propose general optimum broiler buildings for climatic areas with constant cold 

weather, constant hot weather and areas of Mediterranean climate or areas of climatic 

uncertainty (the main cases). 

7.1. To propose protocols to achieve specific optimum broiler buildings under the 

requirements of the building, customers, investment, etc. 

7.2. To introduce heuristic procedures in order to achieve these specific optimum 

broiler buildings. 

These specific objectives are structured and numbered by this procedure so that they will be 

achieved in the corresponding chapters of the doctoral thesis (e.g. specific objective 7.X 

will be achieved in chapter 7). This structuring of the specific objectives enables better 

coherence and gradation of the doctoral thesis. 
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1.5. Scope of the PhD dissertation 

The scope of this thesis is limited to experiments in empty broiler buildings and to 

analysing the air velocity characterisation in the main mechanical ventilation systems in 

different broiler building typologies. However, the multi-sensor system designed and 

conceived is able to work with birds and the CFD techniques can easily be implemented in 

the presence of the broilers and the emitted heat source. 

The scope of this thesis was broad because the thresholds were very low in all spheres from 

the outset: we needed to conceive and build all the electronic instrumentation; databases 

and cataloguing of the broiler buildings were obsolete; the field experiments involved a lot 

of time and resources without specific previous guidelines; CFD simulations took up a lot 

of time, improving the numerical results in this dissertation because we adopted more 

accurate boundary conditions and better computational settings and options (turbulence 

models, better geometry, better quality of the mesh...). 

We have opened a strong line of research, with solid fundamentals to enable us to analyse 

other design variables, to easily include the presence of birds in CFD, to also perform the 

field experiments with birds using this instrumentation and, finally, to extrapolate these 

protocols and methodology to other livestock buildings. 

1.6. PhD dissertation structure 

In this PhD dissertation, eight chapters are developed. These chapters are organised in the 

most suitable order for better coherence and comprehension for the readers, resulting in a 

monographic work. Development of the instrumentation is dealt with first, before going on 

to develop the chapters that analyse and characterise the indoor air velocity of the three 

main mechanical ventilation systems (cross, tunnel and single-sided) in different broiler 

building typologies. Then, a chapter related to the design of a fogging system in the tunnel 

broiler building of chapter 4 is also included, as the main variable in their optimal design is 

characterisation of the ventilation. 

Some chapters have been published (chapter 2, 3 and 4) in or submitted (chapter 5 and 6) to 

an international journal indexed in Journal Citations Report. Miscellaneous excepts and 

outlines of chapters have been presented at conferences (obtaining an award at the 

International Conference of Évora (Portugal)) and a brief summary of the state of the art 

and future perspectives on ventilation in intensive broiler production has also been 

submitted as a letter to an international journal indexed in Journal Citations Report. 

The chapters are structured as follows: 



Ph.D. Thesis         Universitat Politècnica de València 

39 

- An initial chapter for the introduction, objectives and structure of the thesis. 

- A second chapter on the instrumentation used to measure indoor broiler house 

environments. 

- A third chapter to study cross mechanical ventilation in broiler houses. 

- A fourth chapter to study tunnel mechanical ventilation in broiler houses. 

- A fifth chapter to study single-sided mechanical ventilation in broiler houses. 

- A sixth chapter to analyse the CFD possibilities in the cooling and heating 

systems of broiler houses, focusing on fogging systems. 

- A seventh chapter with general results and discussion. 

- An eight chapter with the conclusions. 

1.7. Published articles/conferences derived from this PhD dissertation. 

Awards 

Some articles have been published in an international journal indexed in Journal Citations 

Report and some conference articles were derived from the present PhD dissertation. In 

addition, an award was granted. These published articles and conferences are as follows: 

Refereed journal articles 

Bustamante E., Guijarro E., García-Diego F.J., Balasch S., Hospitaler A., Torres A.G. 

(2012). Multisensor system for isotemporal measurements to assess indoor climatic 

conditions in poultry farms. Sensors 2012, 12, 5752-5774. (Q1) 

Bustamante E., García-Diego F.J., Calvet S., Estellés F., Beltrán P., Hospitaler A., Torres 

A.G. Exploring Ventilation Efficiency in Poultry Buildings: The Validation of 

Computational Fluid Dynamics (CFD) in a Cross-Mechanically Ventilated Broiler Farm. 

Energies 2013, 6, 2605-2623. (Q2) 

Bustamante E., García-Diego F.J., Calvet S., Torres A.G., Hospitaler A. Measurement and 

numerical simulation of air velocity in a tunnel-ventilated broiler house. Sustainability 

2015, 7, 2066-2085. (Q3) 

Conference articles 

National Conferences 

Bustamante E., Montero M., Alós M., Guijarro E., Estellés F., Calvet S., Cambra M., 

Hospitaler A., Torres A.G. (2009). Diseño prévio de un protocolo para medir el caudal de 

los ventiladores en granjas mediante técnicas CFD. Proceedings of the V Congreso 

Nacional y II Congreso Ibérico AGROINGENIERÍA 2009, September 28-30, Lugo, Spain. 
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Bustamante E., Montero M., Alós M., Guijarro E., Estellés F., Calvet S., Cambra M., 

Fernández N., Hospitaler A., Torres A.G. (2009). Ensayos preliminares mediante la 

utilización de técnicas CFD para la optimización del diseño de granjas avícolas de pollos. 

Proceedings of the V Congreso Nacional y II Congreso Ibérico AGROINGENIERÍA 2009, 

September 28-30, Lugo, Spain. 

International Conferences 

Estellés F., Montero M., Bustamante E., Torres A.G., Calvet S. (2010). Effect of distance 

and number of measurement points when determining airflow rates in a conducted fan. 

Proceedings of the ASABE 2010 Annual International Meeting, June 20-23, Pittsburgh, 

USA. 

Bustamante E., F.J. García-Diego, Estellés F., Calvet S., Hospitaler A., Torres A.G. 

(2011). Influencia de las condiciones de entrada y salida del aire sobre los parámetros 

ambientales en granjas avícolas de pollos (Premio a la mejor comunicación en el área 

temática de Tecnología de la Producción Animal). Proceedings of the VI Congreso Ibérico 

AGROINGENIERÍA 2011, September 5-7, Évora, Portugal. 

Estellés, F.; Bustamante, E.; Torres, A.G.; Calvet, S. Evaluation of climate control 

strategies in rabbit houses. Proceedings of 10
th

 World Rabbit Congress, September 3-6, 

Sharm El Sheikh, Egypt, 2012. 

Awards 

Premio a la mejor comunicación del VI Congreso Ibérico AGROINGENIERÍA 2011, 

September 5-7, Évora, Portugal, 2011 en la temática de producción animal a: 

Bustamante, E.; García-Diego, F.J.; Calvet, S.; Estellés, F.; Hospitaler, A.; Torres, A.G. 

Influencia de las condiciones geométricas de la entrada y salida de aire sobre los 

parámetros ambientales en granjas avícolas de pollos. Proceedings of the VI Congreso 

Ibérico AGROINGENIERÍA 2011, September 5-7, Évora, Portugal, 2011. 
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Chapter 2 

Instrumentation to measure indoor environments at 

broiler houses 

An adapted version is published in: 

Multisensor System for Isotemporal Measurements to Assess Indoor Climatic 

Conditions in Poultry Farms. Eliseo Bustamante, Enrique Guijarro, Fernando-

Juan García-Diego, Sebastian Balasch, Antonio Hospitaler and Antonio G. Torres. 

Sensors 12 (2012), 5752-5774. 
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Abstract: The rearing of poultry for meat production (broilers) is an 

agricultural food industry with high relevance to the economy and 

development of some countries. Periodic episodes of extreme climatic 

conditions during the summer season can cause high mortality among birds, 

resulting in economic losses. In this context, ventilation systems within 

poultry houses play a critical role to ensure appropriate indoor climatic 

conditions. The objective of this study was to develop a multisensor system 

to evaluate the design of the ventilation system in broiler houses. A 

measurement system equipped with three types of sensors: air velocity, 

temperature and differential pressure was designed and built. The system 

consisted in a laptop, a data acquisition card, a multiplexor module and a set 

of 24 air temperature, 24 air velocity and two differential pressure sensors. 

The system was able to acquire up to a maximum of 128 signals 

simultaneously at 5 second intervals. The multisensor system was calibrated 

under laboratory conditions and it was then tested in field tests. Field tests 

were conducted in a commercial broiler farm under four different pressure 

and ventilation scenarios in two sections within the building. The calibration 

curves obtained under laboratory conditions showed similar regression 

coefficients among temperature, air velocity and pressure sensors and a high 

goodness fit (R
2
 = 0.99) with the reference. Under field test conditions, the 

multisensor system showed a high number of input signals from different 

locations with minimum internal delay in acquiring signals. The variation 

among air velocity sensors was not significant. The developed multisensor 

system was able to integrate calibrated sensors of temperature, air velocity 

and differential pressure and operated succesfully under different conditions 

in a mechanically-ventilated broiler farm. This system can be used to obtain 

quasi-instantaneous fields of the air velocity and temperature, as well as 

differential pressure maps to assess the design and functioning of ventilation 

system and as a verification and validation (V&V) system of Computational 

Fluid Dynamics (CFD) simulations in poultry farms. 

Keywords: poultry building; sensors; air velocity; isotemporal 

measurements; multipoint measurements; troubleshooting. 
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2.1. Introduction 

Broiler production is an essential food industry in many countries. Currently, modern 

poultry production chains supply safe, nutritious and relatively cheap high-quality protein; 

for this reason, large-scale commercial poultry production plays nowadays an essential role 

supplying food to a rapidly growing, urban middle class worldwide (Slingenbergh et al., 

2007). From 2000 to 2010, the production of the poultry meat sector has increased more 

than 4% per year, compared to 2.1% for pig and 1.1% for beef. As a result, its share in 

global meat production has increased from 15% in the 1970 decade to 33.5% at present 

2010 (FAO, 2010). This growth has been accompanied and supported by rapid 

technological, scientific and industrial changes associated with the development of highly 

industrialized landless intensive systems. Recent developments of poultry meat production 

have consisted in huge genetic improvements, the use of concentrated feed, an improvement 

of preventive disease controls and biosecurity measures, and the use of technology to 

exhaustively control in-house environmental conditions (Havenstein et al., 2003). In this 

context, ventilation of poultry houses plays a critical role to ensure appropriate indoor 

conditions for achieving a high animal productivity (growth and food conversion) and a 

low mortality (Bartzanas et al., 2007; Lee et al., 2003; Lott et al., 1998). 

The dominant ventilation system in modern broiler houses uses forced ventilation, mainly 

through negative-pressure systems. Ventilation design is based in three basic principles: the 

rate of air exchange, air distribution and air velocity range at the animal level (MWPS, 

1990; ASAE, 1986; Pedersen, 1999). However, the design of ventilation systems for 

poultry housing has seen a certain amount of development by trial and error in the absence 

of precise guidelines (Charles et al., 2002). Therefore, it seems that further research is 

necessary to establish standardised protocols to design ventilation systems for poultry 

houses. The air exchange rate is calculated according to animal age and number in the 

building and is achieved with exhaust fans. The number of fans installed and operated will 

depend on ventilation needs and the performance of each fan. The air exchange rate must 

ensure a proper control of indoor temperature as well as an effective evacuation of air 

moisture and air pollutants (ASAE, 1986). On the contrary, the uniform distribution of air 

inside the house and the air velocity at animal level depend mainly on farm design and 

operation factors which interact in a complex way. Design factors (building geometry and 

location) and also operational factors (fan operation, adjustment of air inlet openings and 

pressure drop) become essential to define an optimal ventilation system (ASAE, 1986; 

MWPS, 1990; Pedersen, 1999). However, the distribution of air may be affected under field 
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conditions by unplanned openings (open doors and windows as well as cracks in walls or 

ceilings), bad adjustment of openings or impaired performance of exhaust fans caused by 

equipment ageing, bad maintenance or changes in electricity supply (Boon et al., 1988; 

MWPS, 1990). 

Tao et al., 2003 have indicated that poultry farms with inadequate ventilation systems 

suffer from higher mortality rates when the indoor air is hot, humid and still in the zones 

occupied by animals. Even more, it has been reported that chicken’s welfare is more 

influenced by the ventilation system than by the animal stocking density (Dawkins et al., 

2004). For this reason, the inappropriate design or malfunctioning of ventilation systems 

can enhance the occurrence of lethal environmental conditions within production buildings, 

thus leading to significant economic losses. Moreover, even well designed and operated 

buildings may be insufficient to cope with extreme circumstances. In this context, massive 

deaths of approximately 500,000 birds occurred in 2003 because of heat stress in the 

Valencian Community (Spain), a region with an approximate stock of 9,000,000 birds (El 

País, 2003). 

To assess the design and operation of ventilation systems in livestock houses direct 

measurements with appropriate instrumentation and measurement protocols are required. 

Alternatively, there is an increasing use of computational fluid dynamics (CFD) to 

indirectly evaluate ventilation systems in agricultural systems (Bartzanas et al., 2007; 

Blanes-Vidal et al., 2008; Mistriotis et al., 1997; Norton et al., 2007; Pawar et al., 2007; 

Xia et al., 2002). However, this indirect method also needs verification and validation 

(V&V), and thus using adequate instrumentation is also necessary. This instrumentation 

must allow simultaneous measurement of air velocity at different locations inside the 

house, but at the same time must be precise enough in the usual range of air velocity in 

broiler houses, which is normally lower than 3 m s
-1

. Current commercial instrumentation 

systems, however, are not thought to evaluate ventilation systems of commercial farms 

because they normally measure only point values and their measurement thresholds are 

higher than the usual air velocity found in the farms. Furthermore, complex measurement 

systems should be avoided. Wheeler et al., 2003 indicated that an instrumentation operator 

may produce distortions in the airflow inside the farm and its use may be unpractical under 

field conditions. 

Recent studies have focused on the use of electronic instrumentation and sensors in farms. 

Some authors have developed systems to measure ventilation rates in livestock buildings, 

which are based on different sensors. So, turbinemeters have been used to determine the 

ventilation rate in livestock buildings (Berckmans et al., 1991) or a portable anemometer to 
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determine the fan performance curve (Simmons et al., 1998). Wilhelm et al., 2001 

implemented an instrumentation system for performing environmental measurements in 

broiler and swine housing, whereas Van Wagenberg et al., 2003 used an ultrasonic 

anemometer to measure the air velocity in animal-occupied zones in a swine farms. Another 

interesting study used hot-wire anemometry to measure the air velocity based on monitoring 

thermal losses in a heated measuring element (Ligęza et al., 2008). However, in all cases, 

research until now has recorded only measurements taken at one or a few points and not 

addressed long term measurements using a large number of sensors. 

Recently, a basic system for measuring temperature and air velocity in poultry houses was 

described (Blanes-Vidal et al., 2010), which has been used in later experiments (Blanes-

Vidal et al., 2008). The same authors suggested that the described measurement system 

could be used as a basis to develop a measurement system equipped with a larger number 

of sensors fulfilling the essential premise of simultaneous measurement at multiple points. 

To achieve this premise, the time delay between two consecutive acquisitions needs to be 

minimized and a multiplexing system arises as an essential element in the design of this 

ideal measurement system. A multiplexer allows for data acquisition in a quasi-

simultaneous regime at different locations including animal level and other heights, 

minimising potential distortions of airflow inside the farm. 

It must be considered that the airflow inside a mechanically ventilated building is turbulent 

by nature. The presence of animals intensifies this internal turbulent atmosphere, creating 

sudden changes of environmental parameters both in time and space. An instrumentation to 

evaluate the indoor climate of a livestock building must therefore receive as many input 

signals per time unit as possible, from a large number of widely distributed measuring 

locations, particularly from zones occupied by animals (Blanes-Vidal et al., 2010; Strøm et 

al., 2002; Wheeler et al., 2003). As indicated above, it is also necessary to measure 

differential pressure because of its critical influence on ventilation performance of a 

mechanically ventilated farm. 

The main objective of this study was to develop a multisensor system to evaluate the design 

of the ventilation system in broiler houses. The system was designed to measure 

simultaneously air velocity, temperature and differential pressure with different sensors. 

This system was calibrated and then tested under farm conditions and may serve as a useful 

tool to evaluate the indoor environment of poultry farms, as affected by farm design, for 

troubleshooting, and as a V&V system of CFD simulations. 
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2.2. Materials and Methods 

In this section, the developed measurement system, as well as the methodology followed 

for its field validation, will be described. 

2.2.1. Measurement System Development 

2.2.1.1. General Description 

A configurable multi-sensor device aimed at measuring air velocity, temperature and 

differential pressure in multiple locations at the same time was designed and built. The 

system consisted in a portable PC (Pentium III, 64 Mb RAM) and a National Instruments 

Corporation (Austin, TX, USA) DAQCARD 6024E data acquisition card with 16 analogue 

inputs and a maximum sampling rate of 200 kS/s. Its absolute accuracy at full scale was 

10.568 mV. As 16 channels were less than those needed, a central multiplexor data 

collection module was designed. The multiplexing modules were able to concentrate eight 

signals into a single channel. Therefore, the system extended the 16 channels of the 

acquisition card to a maximum of 128 signals. To reduce interferences, all information was 

sent in current mode instead of voltage mode. The card also had eight digital input-output 

channels, which were used to control multiplexing units. 

In this paper, we describe a system adapted to operate with 24 air velocity sensors, 24 

temperature sensors, two differential pressure modules and seven multiplexers. A schematic of 

the system is shown in Figure 2.1. 

Figure 2.1. Scheme of the measurement system. 
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Data was acquired in the PC by using specifically developed software. This software was 

based on the National Instruments Corporation LabVIEW 8.2 platform (National 

Instruments, LabView). The software was able to acquire and monitor signals from sensors, 

as well as control the multiplexing and demultiplexing functions. 

Two programs were developed in LabVIEW. One to monitor all the sensors used in the 

installation at real time, and another one that shows on the screen the time evolution of the 

sensors and can record data on the PC at the programmed rate. In this experiment, data of 

all sensors is taken every five seconds and kept for an average of 120 readings (every ten 

minutes). 

2.2.1.2. Temperature Material and Circuit 

A platinum resistance temperature detector (RTD) thin film detector Pt100 (Omega, Inc., 

Stamford, CT, USA) printed on a ceramic substrate (TFD, Omega Engineering) was chosen 

as the temperature sensor; the technical characteristics of the device are consistent with 

Deutsches Institut für Normung (DIN)-43760 and British Standard (BS)1904. Figure 2.2 

shows the circuit of the temperature sensor. It is used to linearise the response of the Pt100 

and to regulate the zero offset by the variable resistor of 200 Ω. 

Figure 2.2. Circuit of the temperature sensor. 
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2.2.1.3. Temperature Calibration 

In order to calibrate temperature sensors, a Fluke Corporation (Everett, WA, USA) 

temperature calibrator Fluke-724 that simulates a Pt100 was used. The sensor was 

disconnected from the electronic circuit and connected to the simulator. It was also 

connected to the acquisition system in the temperature module to measure the output 

voltage from the different temperatures simulated using the Fluke-724. Calibration 

temperature ranged from 0 °C to 44 °C. This range is found within the common range of 

temperatures in commercial poultry farms. For each of the 24 sensors, two consecutive 

calibrations were conducted to study potential hysteresis. The first calibration lay between 0 

°C and 44 °C, whereas the second lay between 44 °C to 0 °C. Each calibration was 

performed at 2 °C intervals within each range. Therefore, a total of forty six temperature 

values were used to calibrate each sensor. 

For each calibration, the output potential (Ut) was measured as a linear function of 

temperature, including a quadratic term following Equation (2.1). The quadratic term was 

used to account for those cases where the linear effect varied with increases in temperature: 
2TTU t    (2.1) 

To detect differences between sensors a unique regression analysis integrating all sensors 

with dummy variables was used following the model: 
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where: 

E(Ut): Mean value of the measured potential Ut (volts) in both calibrations with the 

multimeter. 

T: Air temperature (°C). 

Si: Sensor i (dummy variable) that takes 0 and 1 values; for any specific sensor, the variable 

takes a value of 1 and 0 in all cases (1 for the sensor that corresponds to the observation and 

0 for the rest of the sensors). 

α0: Independent coefficient of regression. 

β0: Regression coefficient of variable temperature (T) simulated at calibrator ―Fluke 724‖ 

(in °C). 

βi : Regression coefficient of the interaction between variables T and Si. 

γ0: Regression coefficient of the variable for the square of the temperature (T
2
). 
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αi: Regression coefficient of the variable sensor (Si). 

γi: Regression coefficient of the interaction between variables T
2
 and Si.

The dummy variables (Si) had to be created so that they assume a value equal to the number 

of variables minus 1; thus, a reference sensor was used to determine all variables. If the 

sensor assumes a value of 0, the rest assume a value 1 with respect to one of these variables 

(Kutman et al., 2005). Differences between sensors in the model were detected in three 

ways: changes in the intercept (α coefficients), changes in the slope (β coefficients) and the 

square coefficients (γ). 

The model in Equation (2.2) provided the equation of the reference sensor (Equation (2.3)) 

and the coefficients of the other sensors (Equation (2.4)): 
2

000)( TTUE t   (2.3) 

2

000 )()()()( TTUE iiit   (2.4) 

This analysis was performed with the PROC REG procedure of SAS (SAS, 1998). 

Maximum and minimum differences between measures and estimated observations were 

taken as a practical criterion of the accuracy of the model. 

2.2.1.4. Air Velocity Material and Circuit 

Among the different available technologies used to measure air velocity (Glaninger et al., 

2000), hot-wire anemometry was chosen because of its various advantages. The basic 

principle of hot-wire anemometry is very simple: a fluid (in this case air) crosses an 

(electrically) heated wire at a constant temperature; thus, an energy balance can be 

established between the power supply to the heated wire and the dissipation, which is 

proportional to the air velocity. 

Based on hot-wire anemometry, an RTD was chosen as air velocity sensor. An RTD 

consists of a thin wire, sheet or metallic component that is generally supported by a 

ceramic. In this case, the RTD featured a thin platinum piece, whose processing offered a 

resistance of 100 Ω at 0 °C; thus, the RTD was referred to as Pt100. In fact, Pt100 has great 

advantages: minimal thermal mass, the ability to detect small mass velocity, mechanical 

robustness and no moving components, easy mounting, very fast response time, ability to 

perform a simple electronic analysis, the best price-performance ratio, good repeatability 

and great stability over time (Ibrahim, 2002). For these reasons, the same sensor as in 

temperature determinations (platinum resistor Pt100, printed on a ceramic substrate, thin 

film detector (TFD), Omega Inc. (TFD, Omega Engineering)) was chosen for the velocity 

measurements. The electronic circuit of the air velocity sensor is shown in Figure 2.3. 
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The circuit operates as follows: the resistors of 10 Ω, 60.18 Ω and 19.6 Ω and the Pt100 

form a Wheatstone bridge. To make this bridge balanced, the resistance of the Pt100 should 

be 119.168 Ω which is equivalent to a temperature of 49.41 °C. If the bridge becomes 

unbalanced, the operational amplifier TL072/A and the transistor 2N2907 act until the 

bridge is balanced again. 

Figure 2.3. Circuit of the air velocity sensor. 

 

2.2.1.5. Air Velocity Calibration 

The equation governing the thermal equilibrium between the heating of the sensor to a 

constant temperature and the dissipation of the air is: 

HW
dt

dE
  

(2.5) 

where E is the thermal energy stored in the sensor, W is the electrical power applied to it 

and H is the energy dissipated to the surroundings. 

Under quasi-stationary conditions, the thermal energy stored is constant, so: 

HW 0  (2.6) 

)(

2

WTR
UW   

(2.7) 

where R(Tw) is the resistance of the Pt100 at a constant temperature (TW = 49.41 °C), and U 

is the voltage applied to the Pt100. 

Assuming convection is the main mode of heat transmission (neglecting radiation and 

conducting losses): 



Ph.D. Thesis         Universitat Politècnica de València 

57 

)·(· fW TTAhH   (2.8) 

where h is the film coefficient of heat transfer, A is the sensor surface and Tf is the 

temperature of fluid. In a forced convection regime, coefficient (h·A) may be expressed as: 
n

fVbaAh ··  (2.9) 

where a and b are constants dependent on the fluid, in this case air, and Vf is the velocity of 

the fluid. Replacing and rearranging Equation (2.6) produces an expression that relates 

voltage U, the fluid velocity Vf, the wire temperature TW and the fluid temperature Tf, 

resulting in: 

)·)·((
)(

2 n

ffw
W

VbaTT
TR

U 
(2.10) 

In this paper, n is assumed to be 0.5 (Champagne et al., 1967; Martin et al., 2002; Morrison 

et al., 1972; Sherif et al., 1998). Grouping and transforming the constants (a, b, R(TW)), 

results in Equation (2.11), known as King’s Law: 

5.0
2

f

fW

V
TT
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 



(2.11) 

A wind tunnel was designed to calibrate the velocity sensors (Figure 2.4). 

Figure 2.4. A scheme of the wind tunnel showing the position of the air velocity and 

temperature sensors. 
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Fifteen velocity values were measured in the wind tunnel within the range from 0.1 to 4.5 m s
-

1
. These velocities were obtained varying the fan power. A calibrated Testo 425 hot-wire 

anemometer was used to obtain reference values (Testo Inc., Sparta, NJ, USA; error 0.03 

m/s + 5% of the measured value) (Testo Inc., 2004). 

The calibration procedure was performed as follows (Zhang et al., 1996) according to the 

designed circuit  

(Figures 2.2 and 2.3) and from Equation (2.11). So, if we called: 

fW

v

TT

U
y




2

 

(2.12) 

fVx   
(2.13) 

The follow Equation (2.14) results: 

xy ·   (2.14) 

A least-square algorithm is used to obtain the coefficients of the linear regression (δ, λ) 

between the reference air velocity (Vf) measured with the reference anemometer and the 

terms included in y (Equation (2.12)), so that TW, the temperature of the wire that is fixed 

by the electronic circuit (TW= 49.41 °C), the output voltage of the velocity (Uv) and 

temperature (Ut) sensors was measured; in turn, the output voltage of the temperature it 

used to calculated the sensor temperature (Tf) through its corresponding calibration, as 

explained before. In conclusion, a collection of values (Uv, Vf, Ta) was measured 

simultaneously while controlling the fan power. 

MATLAB software (Matlab Central, The MathWorks, Inc.) was used to create a program 

to sum up the whole process, and then calculate the regression coefficients δ and λ of the 

Equation (2.14) by the PROC REG procedure of the SAS program (SAS, 1998). A curve of 

specific calibration was obtained for every module sensor. 

Once all regressions were obtained for the different sensors, in order to ascertain the 

validity of the calibrations a linear regression analysis between the velocity measured by 

the anemometer (Vf(real)) and the estimated velocity (Vf(e)) by the calibration procedure 

described, done as (Zhang et al., 1996). The statistical model used in order to compare 

calibration curves was a linear regression using the PROC REG procedure of SAS (SAS, 

1998) too: 
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where: 
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E(Vf(real)): Mean air velocity measured with the hot-wire anemometer (m/s). 

Vf(e): Estimated velocity determined by the calibration procedure for the sensors. 

Si: Sensor i (dummy variable) that take 0 and 1 values; for a specific sensor, the variable 

takes a value of 1 and 0 in all cases (1 for the sensor that corresponds to the observation and 

0 for the rest of the sensors). 

α0: Independent coefficient of regression. 

β0: Regression coefficient of the Vf(e) variable. 

αi: Regression coefficient of the variable Si. 

βi: The regression coefficient of the interaction Si by Vf(e). 

The model provided differences for the reference sensor (Equation (2.16)) and the others 

sensors (Equation (2.17)): 

)(00)( )( efrealf VVE    (2.16)

)(00)( )()()( efiirealf VVE   (2.17) 

Maximum and minimum differences between measures and estimated observations were 

taken as a practical criterion of the accuracy of the model. 

2.2.1.6. Differential Pressure Module 

A sensor with a range between 0 and 100 Pa was selected as the operating conditions rarely 

exceed 60 Pa. A HCXM010D6V differential pressure-sensing module based on a pre-

amplified silicon gauge pressure sensor (Sensortechnics Inc., Puchheim, Germany); 

nonlinear and hysteretic error <0.5% (Sensortechnics  Inc.) was used. This module has 

previously been used in mechanically ventilated poultry farms (Blanes-Vidal et al., 2008). 

An electronic circuit was designed to obtain a range between 0 and 100 Pa by a non-

inverting, operational amplifier with a gain of 11, as shown in Figure 2.5. 

Figure 2.5. Differential pressure electronic circuit. 



Ph.D. Thesis                                                        Universitat Politècnica de València 

 

60 

 

The differential pressure modules were calibrated using a differential manometer (U-shaped 

tube filled with distilled water), a dropper and the data acquisition system. The calibration 

was performed with water at 4 °C because, at this temperature, the water density is 1 g/mL. 

Different output voltages related to the displacements of the liquid column were measured. 

These displacements were observed along a vertical ruler using a magnifying glass. 

Moreover, in order to improve the precision, the volume of water injected was registered 

and counted drop by drop. The maximum range of calibration (100 Pa) corresponded to one 

centimetre of displacement and 13 drops of 100 µL. The calibration equation was as 

follows: 

dPU  10   (2.18) 

where: 

U: Measured voltage (in volts). 

α0: Independent coefficient of regression. 

β1: Regression coefficient of independent variables. 

P: Pressure (in Pa) calculated from the displacement of the water column. 

Through a regression analysis using SAS (SAS, 1998), the regression coefficients were 

estimated. 

A regression equation was developed for each of the two sensors. As with air temperature 

and air velocity sensors, maximum and minimum differences between measures and 

estimated observations were taken as a practical criterion of the accuracy of the model. 

2.2.2. Field Experiments 

2.2.2.1. Assay Building 

The system was tested in a commercial broiler farm which was selected for its location 

(Villarreal, Castellón, Spain) and climatic conditions that are representative of the 

Mediterranean region. These climatic conditions are characterized by high temperatures and 

high relative humidity (e.g., >30 °C, >70% RH). 

The farm featured a mechanical cross-ventilation system. The dimensions of the building 

were: length, 110 metres; width, 12.60 metres; sidewall height, 2.6 metres; slope cover, 

21.53%. Sixteen exhaust fans were installed: nine large fans with a diameter of 1.28 m 

(Gigola & Riccardi, Cazzago San Martino, Italy, model Gigola ES-140, with a power 

consumption of 0.74 kW and a nominal ventilation flow of 34,956 m
3
·h

−1
 to ∆P = 0 Pa) and 

seven 0.68 m diameter small ones (Ziehl-Abegg A.G., Küzelsau, Germany, model FC063-

6D, power consumption 0.58 kW and nominal ventilation flow 12,750 m
3
·h

−1
 to ∆P = 0 
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Pa). The farm was equipped with 66 Tuffigo© air inlets (Quimper, France, model Kan’Air, 

0.795 × 0.24 metres placed at 1.51 metres height) controlled by an automatic system for 

automatically management in three groups of 22 inlets. The building was empty during the 

experiments to avoid possible interference due to the presence of animals. 

2.2.2.2. Measurement Conditions (Scenarios) 

To test the measurement system, four different boundary conditions were established: (I) 30 

Pa using only large fans, (II) 38 Pa working all fans, (III) 50 Pa working large fans and (IV) 

50 Pa working all fans. Two sections were studied, one (Section A) was located near one 

extreme of the building, whereas the second (Section B) was in the centre. Table 2.1 shows 

trial scenarios. 

Table 2.1. Trial scenarios. 

Assay 

Section 

Differential 

Pressure (Pa) 

Ventilation Rate 
1
 

m
3
 h

-1
Operating Fans 

Boundary 

Condition 

Section A 

30 233,163 Large I 

38 276,204 Large + Small II 

50 193,518 Large III 

50 250,472 Large + Small IV 

Section B 

30 233,163 Large I 

38 276,204 Large + Small II 

50 193,518 Large III 

50 250,472 Large + Small IV 
1 Ventilation rates were measured in each scenario as indicated by Calvet et al., 2010. 

For each scenario, all 24 air velocity and temperature sensors, two differential pressure 

sensors and seven multiplexers were placed on 12 tripods; two sensors were placed on each 

tripod: one of them at the level of the birds (0.25 metres) and the other at a height of 1.75 

metres. A detail of a tripod when measuring in the building is shown in the photograph, 

Figure 2.6. 

To sum up, eight trials were conducted (two sections with four boundaries) with 12 

measurement positions as indicated in Figure 2.7. The location of the sensors was chosen 

according the situation of inlets and fans and considering where the farmer had observed 

any anomaly such as a greater or lesser concentrations of chicken or increased mortality. 

Acquisition time for each trial was 10 minutes. As the system was programmed for 

measuring each 5 seconds, each value was the mean of 120 data. 

For all tests, the two differential pressure sensors were used to control the opening of the 

inlets and performance of the fans precisely. 
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Figure 2.6. Tripod with a multiplexer at its centre and two air velocity and temperature 

sensors at the level of the birds (0.25 metres) and at 1.75 metres. 

 

Figure 2.7. Location of the measurements in the two sections of the poultry farm. 

Section A Section B
Sensor number* X-Coordinate(m). Y-Coordinate X-Coordinate(m). Y-Coordinate(m).

1-2 22.45 0.30 35.90 0.05
3-4 19.50 12.00 31.50 11.80
5-6 18.00 11.95 32.80 11.95
7-8 9.30 12.00 41.80 7.15

9-10 5.70 12.05 40.70 6.80
11-12 0.60 12.00 45.85 11.35
13-14 0.55 6.30 47.35 4.50
15-16 0.50 7.60 46.95 5.35
17-18 0.55 2.15 44.05 0.80
19-20 8.70 6.70 48.50 3.15
21-22 24.85 7.10 47.70 1.10
23-24 23.60 7.15 47.70 0.65

*: The first sensors at animal level, the second at 1.75 m

(m).

SECTION A

SECTION B
(30 m)

(30 m) Y

X

Z
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2.2.2.3. Statistical Procedures 

In order to study the effect of factors involved in the performance of the system under field 

conditions, an analysis of variance following the next model was developed: 

)()()(

)(

)()()(

)()()(

kijlkjlkil

ijkjkijklkjiijkl

SBZSBSZ

HBZHBBZSHBZY



  (2.19)

where: 

Yijkl: Air velocity measured in the Section i at conditions j at k height by sensor l. 

μ: Overall mean. 

Zi: Measurement Section (2). 

Bj: Boundary conditions (4). 

Hk: Height of sensor (2). 

Sl(k): Sensor (24) hierarchical to height. 

(Z × B)ij: Interaction Section-Boundary (8). 

(Z × H)ik: Interaction Section-Height (8). 

(B × H)jk: Interaction Boundary-Height (8). 

(Z × B × H)ijk: Triple interaction Section-Boundary-Height (16). 

(Z × S)il(k): Interaction Section-Sensor (48). 

(B × S)jl(k): Interaction Boundary-Sensor (96). 

(Z × B × S)ijl(k): Triple interaction Section-Boundary-Sensor (residual term of the model). 

Numbers in parentheses indicate number of factors. To study these effects, all factors were 

considered to be at random. The model was analysed by the GLM procedure of SAS 

systems (SAS, 1998). 

2.3. Results and Discussion 

2.3.1. Sensor Calibration 

2.3.1.1. Temperature Calibration 

Table 2.2 presents the regression coefficients resulting from applying the regression model 

in Equation (2.2). Five regression equations were obtained for different groups of sensors 

according to the nature of the calibration curves (Equations (20) to (24)). In all cases the 

regressions showed high significance (P < 0.001) and goodness fit (R
2
 = 0.99). The first 

line in Table 2.2 (Equation (2.20)), represents the reference sensor’s regression coefficients 
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after applying Equation (2.3), i.e., α0 = 2.00, β0 = 0.152 and γ0 = 0, and thirteen other 

sensors that were not significantly different from it, i.e., αi = 0, βi = 0 and γi = 0, after 

applying Equation (2.4). 

Table 2.2. Results of regressions of temperature calibrations. 

Numbers 

of Sensors 

N (Data 

Number) 

Regression Estimated Coefficient  
Intercept Temperature 

Coefficient 

Square 

Temperature 

Coefficient 

Equation 

)( 0 i   )( 0 i   )( 0 i   

14 644 2.00 0.152 0 (2.20) 

4 184 2.00 0.148 0 (2.21) 

4 184 1.98 0.154 −0.000053 (2.22) 

1 46 2.00 0.154 0 (2.23) 

1 46 1.98 0.152 0 (2.24) 

14 644 2.00 0.152 0 (2.20) 

 

The difference between Equations (2.20) and (2.21) was the temperature coefficient, 

representing the slope of the regression line. The four sensors grouped in Equation (2.21) 

showed a slightly lower slope than sensors grouped in Equation (2.20). Equations (2.23) 

and (2.24) only grouped one sensor each and showed a higher temperature coefficient 

(slope) (Equation (2.23)) or lower intercept (Equation (2.24)) than sensors grouped in 

Equation (2.20). Equation (2.22) grouped four sensors and showed the most different 

coefficients. Equation (2.23) showed a lower intercept and a higher slope than sensors 

grouped in Equation (2.20), but a negative quadratic term. The effect of the quadratic term 

indicated that an increase in the temperature reduced the slope of the regression equation. In 

this case, clearing the temperature produced a second-degree polynomial equation. 

For Equations (2.20) and (2.24) the maximum error measured was 0.33 °C and the 

minimum was<0.01 °C, for Equation (2.21) the maximum error measured was 0.07 °C and 

the minimum was<0.01 °C, for Equation (2.22) the maximum error measured was 0.05 °C 

and the minimum was <0.01 °C and finally for Equation (2.23) the maximum error 

measured was 0.32 °C and the minimum was<0.01 °C. As in all cases the minimum error 

was lower than the reading of the simulator (0.01 °C), we used these minimum errors for 

estimations. In all cases a very low error hysteresis value was obtained (±0.0227%). 
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2.3.1.2. Air Velocity Calibration 

Figure 2.8 shows an example of the result of the calibration of an air velocity sensor, where 

the regression parameters of Equation (2.11) are shown. 

Figure 2.8. Regression curve of a velocity sensor calibration. 

The estimated velocities (Vf(e)) (m s
-1

) were obtained from the regression of each sensor. 

Comparing these estimated velocities with real velocities Vf(real) (m s
-1

), using the model

of Equation (2.15), we obtained a high significance (P < 0.001) with a high goodness of fit 

(R
2
= 0.99), but no differences between sensors were detected. Consequently, only one 

calibration curve was obtained for all velocity sensors: 

)()( 9956.001431.0)( efrealf VVE   (2.25)

The maximum error measured was 0.018 m s
-1

, and the minimum was 0.002 m s
-1

. Since 

these errors were smaller than the error of the anemometer (0.03 m s
-1

 + 5% of the reading), 

we used the anemometer error for calculations. 

2.3.1.3. Differential Pressure Calibration 

The calibration results for the differential pressure sensors shows two similar calibration 

curves:  

Sensor 1: )001.0;99.0(045.06911.5 2  pRdPU  (2.26) 

Sensor 2: )001.0;99.0(0465.06381.5 2  pRdPU  (2.27) 
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The regressions were similar with respect to their intercepts and slopes. To obtain dP from 

the measured voltage (U), only Equations (2.26) and (2.27) had to be changed. The 

maximum error measured was 0.41 Pa, and the minimum was 0.22 Pa for differential 

pressure sensor 1 and the maximum error measured was 0.29 Pa, and the minimum was 

0.20 Pa for differential pressure sensor 2. 

2.3.2. Field Experiment 

Considering all scenarios and sensors, 23,040 data values of air velocity were measured 

with the designed system. Table 2.3 shows the results of the ANOVA analysis. The 

variable sensor resulted not significant, as section, boundary and height and some 

interactions. Only the interactions ―Section by Sensor (Height)‖ and ―Boundary by Sensor 

(Height)‖ were significant. 

Table 2.3. ANOVA of the air velocity scenarios. 

 DF 
Sum of 

Squares 

Mean 

Square 

F-

Ratio 
P-Value 

Section 1 0.37 0.37 3.06 0.7935 

Boundary 3 1.41 0.47 12.19 0.9051 

Height 1 >0.00 >0.00 0.00 0.9909 

Sensor(Height) 22 16.82 0.76 1.05 0.4428 

Section  Boundary 3 0.10 0.03 0.11 0.9471 

Section  Height 1 0.35 0.35 0.46 0.5076 

Boundary  Height 3 0.82 0.27 0.72 0.5760 

SectionBoundaryHeight 3 0.79 0.26 2.46 0.0700 

Section  Sensor(Height) 22 13.46 0.61 5.71 <0.0001 

Boundary  Sensor(Height) 66 14.69 0.22 2.08 0.0017 

Residual 66 7.08 0.11 - - 

Total (corrected) 191 55.88    
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Table 2.4. Air velocities in m s
-1

 (average ± standard deviation) in the field experiment. The 

number of data is indicated in parenthesis. 

Boundary 

Conditions 
Height Section A Section B All 

I 

0.25 m 0.62 ± 0.86 (12) 0.37 ± 0.30 (12) 0.50 ± 0.65 (24) 

1.75 m 0.37 ± 0.39 (12) 0.66 ± 1.00 (12) 0.52 ± 0.76 (24) 

All 0.50 ± 0.67 (24) 0.53 ± 0.74 (24) 0.51 ± 0.70 (48) 

II 

0.25 m 0.70 ± 0.35 (12) 0.71 ± 0.29 (12) 0.71 ± 0.33 (24) 

1.75 m 0.47 ± 0.32 (12) 0.68 ± 0.47 (12) 0.58 ± 0.41 (24) 

All 0.59 ± 0.35 (24) 0.70 ± 0.38 (24) 0.64 ± 0.37 (48) 

III 

0.25 m 0.78 ± 0.41 (12) 0.80 ± 0.31 (12) 0.79 ± 0.35 (24) 

1.75 m 0.63 ± 0.34 (12) 0.77 ± 0.50 (12) 0.70 ± 0.42 (24) 

All 0.71 ± 0.37 (24) 0.79 ± 0.41 (24) 0.75 ± 0.39 (48) 

IV 

0.25 m 0.42 ± 0.26 (12) 0.65 ± 0.59 (12) 0.54 ± 0.46 (24) 

1.75 m 0.72 ± 0.69 (12) 0.77 ± 0.87 (12) 0.74 ± 0.75 (24) 

All 0.57 ± 0.53 (24) 0.71 ± 0.71 (24) 0.64 ± 0.62 (48) 

All 

0.25 m 0.63 ± 0.53 (48) 0.63 ± 0.41 (48) 0.63 ± 0.47 (96) 

1.75 m 0.55 ± 0.47 (48) 0.72 ± 0.71 (48) 0.63 ± 0.61 (96) 

All 0.59 ± 0.50 (96) 0.68 ± 0.58 (96) 0.63 ± 0.54 (192) 

Table 2.4 shows the obtained air velocity values according the different variables (Section, 

Boundary and Height) and some interactions. These values shows that the air velocities 

achieved in all boundaries are very homogeneous, the minimum value is 0.37 ± 0.30 m s
-1

 

(Section B, Boundary I) and the maximum value is 0.80 ± 0.31 m s
-1

 (Section B, Boundary 

III) although there are peak measurements (not reflected in Table 2.4) between 0.06 m s
-1

 to

3.52 m s
-1

. 

2.3.3. Discussion 

2.3.3.1. Measurement System Development 

The measurement system developed in this study was able to integrate calibrated sensors of 

temperature, air velocity and differential pressure and operated succesfully in different 

conditions in a mechanically-ventilated poultry farm. 

It is currently accepted that wireless sensor networks can be applied to monitor 

environmental parameters in agricultural systems (Hwang et al., 2010; Ruiz-García et al., 
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2009). However, wired sensors were used because they were considered more appropriate 

for our measurement needs than wireless sensors. In this sense, hot-wire air velocity 

sensors operated with a frequent data collection interval (10 minutes in this work) which 

imply a high energy consumption. Therefore the batteries required for a wireless system are 

not able to guarantee energy supply for long-term measurements. This wired acquisition 

system can operate during one whole rearing cycle of broilers (6 to 7 weeks) with minimum 

maintenance, which avoids disturbing the normal operation in the farm. Similar wired 

systems to measure environmental parameters have also been used recently (Zarzo et al., 

2011) obtaining succesful results. 

In addition, this measurement system can receive the environmental signals without the 

physical presence of a technician (avoiding then the interference on measured values). This 

is due to its large data storing and adquisition capacity as well as its autonomy in terms of 

energy consumption (Wheeler et al., 2003). 

Regarding to sensors nature, air velocity and temperature are hot-wire type sensors and 

RTDs, respectively. They were chosen based on their advantages, such as their robustness 

observed for similar uses (Blanes-Vidal et al., 2010). On the other hand, there is still a need 

to test differential pressure sensors in mechanically ventilated poultry farms (Blanes-Vidal 

et al., 2008). 

According to the results of this work, a single calibration curve was obtained for all 

velocity sensors. The error of the calibration curve was lower than the measurement error of 

the anemometer used for the calibration (±5% of reading) which indicates a good 

agreement among all sensors. On the contrary, several calibration curves were required for 

different temperature sensors. The results indicated that the sensors in this study could be 

classified into five statistically different groups, but differences between the five calibration 

equations were irrelevant in practical terms. This indicates that slight differences among 

sensors could arise from differences in the fabrication process or components. Regarding 

the calibration of differential pressure sensors, similar calibration curves were obtained, as 

expected considering the nature of these sensors. 

The use of dummy variables for sensor calibration has been an innovative method for this 

purpose. So, using this tool allows obtaining optimum number of calibration curves 

according to statistical criteria. Ideally, a single calibration curve should be used, 

nevertheless a variety of factors including differences in fabrication, components or welds, 

make it not always possible in practice. Moreover, the precision required for measurement 

systems plays a crucial role, and using this methodology sensors can be grouped in 
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homogeneous groups when small differences are observed. As indicated above, this is the 

case of temperature sensors in this study. 

2.3.3.2. Field Experiments 

The sensors and the measurement system were tested in a commercial farm located in 

Eastern Spain. It is important to remark that despite commercial broiler farms do not follow 

any standard in terms of geometry or construction design, according to a wide knowledge 

base regarding the general construction characteristics of poultry farms in the region 

(Martínez et al., 2008), this farm had typical dimensions and can therefore be considered 

representative of typical mediterranean broiler buildings. 

Although the tests conducted in this study were performed in an empty broiler house, the 

configuration of the system and materials used, make the system robust enough to resist the 

aggressive environmental conditions (e.g., dust, high relative humidity, and gas 

concentration), occurring in buildings during animal rearing. Nevertheless, air velocity 

changes when psychometric conditions are modified by fluctuations of temperature or air 

density must be kept in mind. In this sense, in occupied farms, indoor environmental 

boundary conditions are more complex than in an empty farm. The reasons for this 

difference are the influence of broiler heat, chemical reactions of litter, as well as the 

cooling or heating systems. In any case, when using this system in occupied building, some 

improvements are recommendable. First, sensors placed at animal level must be protected 

(e.g., using a mesh) to avoid access by the animals. Second, it is also recommendable to 

include more sensors at a different level above the birds’ heads in order to reduce the effect 

of the animals on measurements. Other practices such as frequent revisions and cleaning of 

sensors are also recommendable. Nevertheless, it would be necessary to test the system 

with animals to study the system’s reliability. 

In this paper, only air velocity data were presented and discussed since temperature and 

differential pressure conditions were similar for all situations investigated. In this regard, 

despite the fact that in this work only air velocity data were presented, in the case of 

occupied farms, when cooling and heating systems are operating or when significative 

differences between exterior and internal temperatures occur, additional studies on the 

results of temperature should be developed. Moreover, additional sensors (i.e., humidity 

sensors, etc.) can be implemented at the other channels of the collecting module for wider 

studies, for example when measurement conditions take place under different environmental 

conditions. 

 



Ph.D. Thesis         Universitat Politècnica de València 

70 

According to the evaluation of the effects in the air velocity records, the results obtained 

show that the variation between sensors was not significant, as expected according to the 

information obtained in the calibration procedure. Moreover, the interactions ―Section by 

Sensor (Height)‖ and ―Boundary by Sensor (Height)‖ were the only significant interactions. 

The lack of statistical significance of the variable ―Sensor‖ in this simple effect indicates a 

homogeneous behaviour for all the sensors on average for the different sections and 

boundaries studied. However, the interaction ―Boundary by Sensor (Height)‖ indicates that 

the effects of the air velocity changing the boundaries are not identical in all of the sensors, 

i.e., this interaction indicates that the differences between the boundary conditions do not

appear in the average because this factor is not significant (boundaries). In the same way, 

the interaction ―Section by Sensor (Height)‖ indicates that the air velocity changes at each 

section are not identical in all the sensors; i.e., this interaction indicates the differences 

between sections do not appear in the average because this factor is not significant 

(sections). These results are in accordance with the continuity equation for the case of 

infinite points (Benedict, 1984), and they have important consequences in determining the 

locations of the sensors. 

Regarding the performance of the ventilation system, when the best scenarios under which 

high mortality would be prevented during summer months was explored and a high value of 

the air velocity was not obtained at the level of the birds (a maximum of 0.80 ± 0.31 m s
-1

 

in Section B, Boundary III). For this reason, it can be concluded that cross-mechanical 

ventilation is a good system for mild weather, but it is neccessary to explore other 

conditions of the ventilation system to prevent episodes of high mortality during summer 

months because this mechanical system of ventilation does not offer high air velocities at 

the level of the birds. 

Moreover, it was interesting to note the great fluctuation in the values of air velocity in a 

mechanically ventilated poultry farm. As observed in the Table 2.4, the overall mean is 

0.63 ± 0.54 m/s, the means by section are 0.59 ± 0.50 m s
-1

 (Section A) and 0.68 ± 0.58 m s
-

1
 (Section B) and 0.51 ± 0.70 m s

-1
 (Boundary I), 0.64 ± 0.37 m s

-1
 (Boundary II), 0.75 ± 

0.39 m s
-1

 (Boundary III) and 0.64 ± 0.62 m s
-1

 (Boundary IV). This variability is due air 

turbulence in farm building (Heber et al., 1996) and the location of sensors (Blanes-Vidal et 

al., 2010; Wheeler et al., 2003). Environmental parameters values obtained through this 

measurement system can be utilised for V&V procedures (Oberkampf  et al., 2002) of CFD 

works and futures studies. 
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2.4. Conclusions 

An on-line computerized multisensor system for measuring air velocities, temperatures and 

differential pressure in multiple locations in poultry houses at the same time was designed 

and built. The system consisted in a laptop, a data acquisition card, a multiplexor module 

and a set of 24 air temperature, 24 air velocity and two differential pressure sensors. The 

system was able to acquire up to a maximum of 128 signals simultaneously at 5 second 

intervals. 

The statistical procedures used to obtain calibration curves demonstrate the robustness of 

the system regarding temperature sensors. A single regression curve was obtained for 14 

sensors, two curves for four sensors, and only two individual curves. Moreover, for air 

velocity sensors a single calibration curve was obtained. The regression error was smaller 

than the error of the reference anemometer. 

Under field tests in a commercial broiler farm, the multipoint sensor system allowed for the 

measurement of a high number of input signals from different locations with minimum 

internal delay in acquiring signals. In terms of air velocity, the results allow to conclude 

that the variation among sensors was not significant. It also demonstrated to be robust and 

portable and could be used without presence of any operator which could disturb air 

velocity profiles. 

The developed multisensor system can be used to obtain quasi-instantaneous fields of the 

air velocity and temperature, as well as differential pressure maps to assess the design and 

functioning of ventilation system and as a V&V system of CFD simulations. 
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Abstract: Broiler production in modern poultry farms commonly uses 

mechanical ventilation systems. This mechanical ventilation requires an 

amount of electric energy and a high level of investment in technology. 

Nevertheless, broiler production is affected by periodic problems of mortality 

because of thermal stress, thus being crucial to explore the ventilation 

efficiency. In this article, we analyse a cross-mechanical ventilation system 

focusing on air velocity distribution. In this way, two methodologies were 

used to explore indoor environment in livestock buildings: Computational 

Fluid Dynamics (CFD) simulations and direct measurements for verification 

and validation (V&V) of CFD. In this study, a validation model using a 

Generalized Linear Model (GLM) was conducted to compare these 

methodologies. The results showed that both methodologies were similar in 

results: the average of air velocities values were 0.60 ± 0.56 m s
−1

 for CFD 

and 0.64 ± 0.54 m s
−1

 for direct measurements. In conclusion, the air velocity 

was not affected by the methodology (CFD or direct measurements), and the 

CFD simulations were therefore validated to analyze indoor environment of 

poultry farms and its operations. A better knowledge of the indoor 

environment may contribute to reduce the demand of electric energy, 

increasing benefits and improving the thermal comfort of broilers. 

Keywords: livestock building; design; efficiency; ventilation; cross-

mechanical ventilation; poultry farm; broilers. 
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3.1. Introduction 

In many areas, broiler production is affected every year by several episodes of massive bird 

mortality because of the confluence of high temperature and humidity values during 

summer seasons. This problem causes great economical losses and animal suffering, which 

is inconceivable in a modern society, which uses a high technological investment at these 

poultry farms and establishes regulations to ensure animal welfare. In the last decades, 

mechanical ventilation was incorporated at intensive poultry farms to improve the thermal 

comfort of the animals (Charles et al., 2002; MWPS, 1990), but the problems related with 

heat stress have not been solved yet (El País, 2003; WorldPoultry, 2012). Cross-mechanical 

ventilation is widely used in poultry farms but the problems of mortality and broiler stress 

appears more frequently in hot and humid climates, especially in summer. For this reason, 

it is crucial to explore thoroughly the efficiency of these ventilation systems in order to 

improve the whole livestock building design and to improve their indoor environment. 

Whereas natural ventilation does not consume electric energy to force air exchange, 

mechanical ventilation requires a certain amount of energy to activate the fans, the 

automation of inlets and other electric/electronic facilities. Obviously, an optimization of 

energy consumption is desired to reduce farm costs and to reduce the demand of electric 

energy. A great percentage of electric energy is provided by fossil fuels, nuclear or other 

non renewable sources. A reduction of electric energy consumption in livestock farms can 

be achieved by optimizing livestock building design and improving ventilation efficiency 

by an appropriate management. This may contribute to reduce costs for farmers, and 

indirectly may reduce the consumption of fossil fuel or other non-renewable sources 

contributing to the control of the global warming. In agricultural systems such as 

greenhouses or farms, two methodologies are used to analyze problems related to the 

indoor environment: direct measurements by the suitable electronic instrumentation and 

Computational Fluid Dynamics (CFD) techniques. The CFD procedures are very emergent 

techniques in many fields of science and engineering. However, it is necessary a suitable 

instrumentation system to validate the simulations. Whereas CFD techniques and associate 

instrumentation are widely developed in other fields of engineering (e.g., aerodynamic, 

automotive, spatial, chemistry, nuclear, simulation of fire...), in agricultural engineering 

they are less developed, particularly in the study of indoor environments of farms. A 

possible reason for this fact is that direct measurements by means of multi-sensor systems 

for poultry farms are complex and they have not been tested with great success yet 

(Bustamante et al., 2012). Previous research has focused on the design of sensors and data 

acquisition systems to measure the environmental parameters according with the ranges and 
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particularities of these complex buildings (large dimensions, automatisms of fans and air-

inlets, feeding and watering equipment, refrigerating and heating systems…), which is 

essential to carry out the validation. A robust measurement system adapted to the hard 

environmental conditions at poultry farms was designed, which allowed data acquisition at 

conditions of isotemporality at multiple points (Bustamante et al., 2012). Such a system is 

necessary to validate CFD measurements due to the great sudden fluctuations of air 

velocity in time and space generated at mechanical ventilation. 

Broiler production offers meat at reasonable price to the consumers and in the current 

context of economic crisis the consumption of broiler meat is increasing due to its price-

quality relation. In this sense, poultry meat must maintain its quality, reducing mortality 

and other costs. Intensive production normally takes place at mechanically ventilated farms 

that with a high level of investment which allows a high density of animals and more 

thermal comfort in comparison with naturally ventilated farms. In this way, housing 

conditions is acknowledged to influence animal welfare more than animal density 

(Dawkins et al., 2004). In the European Union (EU), a specific regulation related to 

intensive production and welfare of broilers has been developed (EU Council Directive 

2007/43/EC) (European Union, 2007). According to this Directive, the countries of EU 

must ensure that broiler facilities are constructed and operated to provide the animals with a 

proper environment in terms of temperature, relative humidity and gases (ammonia and 

carbon dioxide). Several studies have demonstrated the influence of thermal effects on the 

broiler performance: Lott et al., 1998 studied the effects of air and temperature on broiler 

performance; May et al., 2000 studied the effect of air velocity on broiler performance and 

feed and water consumption; Yavah et al., 2001 affirmed that the air velocity alters the 

broiler performance under harsh environmental conditions; Yanagi et al., 2002 studied the 

poultry responses to heat stress; Simmons et al., 2003 studied the effects of high-air velocity on 

broiler performance; Yavah et al., 2004 studied the ventilation, sensible heat loss, broiler 

energy and water balance under harsh environmental conditions. 

In mechanically ventilated broiler buildings, farmers usually control the indoor 

environment by changing the geometry of inlets and the activity of fans. These changes are 

carried out by automatisms that cause changes in the differential pressure and as a 

consequence, fluctuations in the air velocity values and directions are originated. These 

changes of air velocity are used to regulate the heat exchange of the broilers with their 

environment. For the farmers, modifying animal housing conditions is relatively simple 

using pressure difference, but normally, the farmer experience is a key factor to provide the 

animals with proper ventilation. However, to the moment very scarce information is 
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available on how to optimize ventilation, not only in terms of air exchange, but also of 

velocity distribution. As a consequence, massive deaths due to thermal stress still occur in 

hot conditions. For this reason, the CFD techniques will not be only used to find optimal 

design for poultry buildings and improve their thermal comfort; they will also be used to 

analyze the best poultry farms operations under the strong premise that economizes electric 

energy. 

In a general context of livestock buildings, CFD techniques have been already applied 

(Bartzanas et al., 2007; Mistriotis et al., 1997; Norton et al., 2007; Norton et al., 2009). 

Furthermore, it can found some applications of CFD simulations applied specifically at 

poultry farms (Blanes-Vidal et al., 2008; Lee et al., 2007; Pawar et al., 2007). 

The validation of CFD simulations is an important rule (Oberkampf et al., 2002). In this 

sense, it is essential to ensure that CFD can be used to explore trends of poultry farm design 

and its optimal operations in practice. For laying hens, Pawar et al., 2007 studied a 

mechanical ventilated building using the commercial code CFD FLUENT (Fluent Inc., 

2001). Similarly, Blanes-Vidal et al., 2008 studied a transversal, mechanically ventilated 

broiler farm with the same commercial code. However, they only used three measurement 

points in a single mobile support that had to be changed by an operator. In their experiment, 

the number of measurement points was reduced and the presence of an operator to change 

the mobile post could distort the airflow and air velocity values and trajectories (Wheeler et 

al., 2003). 

This study aims to validate CFD simulations of air velocity with direct measurements of a 

multi-sensor system. As the fluctuations of values and trajectories of air velocity is the most 

expanded method to control thermal comfort at poultry farms with forced ventilation 

systems, this paper focuses on the validation of the CFD-air velocity results with the direct 

measurements performed in a broiler farm located in the Valencia Community (Spain). 

3.2. Materials and Methods 

3.2.1. Experimental Poultry Farm 

Measurements and simulations were carried out at a commercial broiler farm located in 

Villarreal (Northern Hemisphere, Latitude 39°56’, Longitude 0°6’; 43 m above sea level) in 

Eastern Spain. The poultry building used forced ventilation by negative-pressure systems, 

in particular, a mechanical cross-ventilation system. Dimensions were: length, 110 m; 

width, 12.60 m; sidewall height 2.6 m; roof 21.53%, total height of the building 4 m. There 

were nine large exhaust fans (diameter 1.28 m) and seven small exhaust fans (diameter 0.68 
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m) installed, described in Bustamante et al., 2012. The building was empty during the

experimentation to avoid the possible interferences due to the presence of the animals in the 

airflow circuit and to prevent the inconveniences that the measuring system could cause in 

animal performance. 

3.2.2. Test Sections and Multisensor System for Direct Measurements 

Field experiments were conducted in two sections of the poultry farm of similar length (30 

m). As shown in Figure 3.1, the first section was located near one extreme of the building 

(Section A), whereas the second corresponded to the center of the building (Section B). A 

multisensor system for isotemporal measurements to assess indoor climatic conditions in 

poultry farms was used to measure air velocity. The measurement system was composed by 

24 air velocity sensors, 24 temperature sensors and 2 differential pressure sensors 

(Bustamante et al., 2012) and was able to acquire up to a maximum of 128 signals 

simultaneously at 5 s intervals obtaining one data of each sensor at a frequency of this 5 s 

(10 min in each section and in each Boundary Condition). In the two studied sections 

measurements were taken at two heights (0.25 m—birds’ level—and 1.75 m) using 12 

tripods. The location of the sensors was chosen according to the situation of inlets and fans 

and the sensor’s coordinates are shown in Table 3.1. During the field experiment, a total of 

23,040 measurements were taken in the same day at four scenarios and two sections of the 

poultry farm in 24 points of each section and eight CFD simulations for the same scenario and 

section where done. 

Figure 3.1. Test sections in the experimental poultry farm. 

Section A Section B
Sensor number* X-Coordinate(m). Y-Coordinate X-Coordinate(m). Y-Coordinate(m).

1-2 22.45 0.30 35.90 0.05
3-4 19.50 12.00 31.50 11.80
5-6 18.00 11.95 32.80 11.95
7-8 9.30 12.00 41.80 7.15

9-10 5.70 12.05 40.70 6.80
11-12 0.60 12.00 45.85 11.35
13-14 0.55 6.30 47.35 4.50
15-16 0.50 7.60 46.95 5.35
17-18 0.55 2.15 44.05 0.80
19-20 8.70 6.70 48.50 3.15
21-22 24.85 7.10 47.70 1.10
23-24 23.60 7.15 47.70 0.65

*: The first sensors at animal level, the second at 1.75 m

(m).

SECTION A

SECTION B
(30 m)

(30 m) Y

X

Z
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Table 3.1. Coordinates of sensors. 

Sensor 

number * 

Section A Section B 

X-coordinate 

(m) 

Y-coordinate 

(m) 

X-coordinate 

(m) 

Y-coordinate 

(m) 

1–2 22.45 0.30 35.90 0.05 

3–4 19.50 12.00 31.50 11.80 

5–6 18.00 11.95 32.80 11.95 

7–8 9.30 12.00 41.80 7.15 

9–10 5.70 12.05 40.70 6.80 

11–12 0.60 12.00 45.85 11.35 

13–14 0.55 6.30 47.35 4.50 

15–16 0.50 7.60 46.95 5.35 

17–18 0.55 2.15 44.05 0.80 

19–20 8.70 6.70 48.50 3.15 

21–22 24.85 7.10 47.70 1.10 

23–24 23.60 7.15 47.70 0.65 

*: The first sensors at animal level, the second at 1.75 m. 

3.2.3. CFD Background 

The commercial software FLUENT (Fluent Inc., 2001) was used to realize all the CFD 

simulations. The geometry model and mesh were developed using the pre-processor 

Gambit (Geometry and Mesh Building Intelligent Toolkit) of FLUENT (Gambit, Fluent 

Inc., 2001). CFD FLUENT was used at previous CFD simulations of poultry farms as 

mentioned before (Blanes-Vidal et al., 2008; Lee et al., 2007; Pawar et al., 2007). 

The basic idea of all CFD techniques is the resolution of a set of partial differential 

Equations (PDE’s) (Norton et al., 2007; Patankar et al., 1980) that corresponded to 

Equations of continuity [Equation (3.1)], conservation of momentum (Navier-Stokes’s law) 

[Equation (3.2)] and Equation of the energy [Equation (3.3)]. 

Those Equations for an uncompressible fluid with isothermal properties are: 
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where ρ: fluid density (kg m
−3

); t: time (s); x, xi, xj: length components (m); ui, uj: velocity 

component (m s
−1

); p: pressure (Pa); ηij: stress tensor (Pa); gi: gravitational acceleration (m 

s
−2

); Fi: external body forces in the i direction (N m
−3

); c: specific heat (W kg
−1

 K
−1

); T: 

temperature (K); K: thermal conductivity (W m
−1

 K
−1

 ); ST: thermal source term (W m
−3

). 

3.2.4. Turbulence Models and Boundary Conditions (BC) 

CFD FLUENT (Fluent Inc., 2001) has various available turbulence models: Inviscid, 

laminar, Spallard-Allmaras, standard k-ε, k-ε RNG, k-ε realizable, Reynolds Stress Model 

(RSM), standard k-ω, SST k-ω and Large Eddy Simulation (LES). Reynolds averaged 

Navier-Stokes Equations (RANS) determine the effect of turbulence on the mean flow field 

through time averaging (Norton et al., 2007); LES forms a solution given the fact that large 

turbulent eddies are highly anisotropic on both the mean velocity gradients and geometry of 

the flow domain (Norton et al., 2007). LES needs higher computing time and powerful 

computers and it is used for specific purposes when extreme accuracy is required. It should 

be noted that none of the existing turbulence models are complete, i.e., their prediction 

performance is highly reliant on turbulent flow and geometry (Norton et al., 2007). 

Traditionally, in agricultural engineering, (greenhouses and livestock buildings), the 

turbulence models commonly used were: standard k-ε, k-ε RNG, k-ε realizable and 

Reynolds Stress Model (RSM). In this paper, the standard k-ε model described by (Launder 

& Spalding, 1974) was used, also considering that (Blanes-Vidal et al., 2008) also used it in 

their CFD simulations in a cross-mechanical ventilated poultry farm. This model is widely 

used in engineering for agricultural applications such as the modeling of poultry farms 

(Blanes-Vidal et al., 2008; Lee et al., 2007; Pawar et al., 2007), because it is considered 

robust and reasonably accurate. The Equations of transport of this turbulence model were 

(3.4) and (3.5) (Fluent Inc., 2001): 
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where k: turbulent kinetic energy (m
2
 s

−2
); μ: fluid viscosity (m

2
 s); μt: turbulent viscosity

(m
2
 s); ζk: turbulent Prandtl number for k; Gk: the generation of kinetic energy due to the

variations of the components of the average velocity of the flow (kg m
−1

 s
−2

); Gb: the

generation of kinetic energy by boundary push (kg m
−1

 s
−2

); ε: turbulent dissipation rate (m
2
 

s
−3

); YM: contribution of the pulsatile expansion associated to the compressible turbulence

(kg m
−1

 s
−2

); ζε: turbulent Prandtl number for ε; C1ε: constant; C2ε: constant; C3ε=

tanh[u1/u2]; u1: velocity of flow parallel to gi (gravitational vector); u2: velocity of flow 

perpendicular to gi. Moreover, the constant values were C1ε = 1.44, C2ε = 1.92, ζk = 1.0 and 

ζε = 1.3 (Fluent Inc., 2001; Launder & Spalding, 1974). 

In this paper, we carried out eight final three-dimensional CFD simulations that 

corresponded with the four scenarios tested (four typical conditions of operation at two 

sections of the poultry farm). Each scenario was mainly characterized by the number of 

fans operating and the different opening of inlets, the differential pressure (Bustamante et 

al., 2012) and the ventilation rate was measured (Calvet et al., 2010) in each trial scenario. 

From these scenarios were obtained the BC to introduce at CFD software. 

Each final simulation was adopted when the numerical solutions were stabilized through 

successive numerical simulations increasing the density and refinement of the mesh (grid 

independence). As we have indicated above, the pre-processor GAMBIT (Gambit, Fluent 

Inc., 2001) was used to build the computational domain with these meshes assigning 

(without the numerical value) the BC’s at each surface and volume. To assure a good 

quality of the mesh (mainly composed by tetrahedral cells), the equiangular skewness of 

GAMBIT (Gambit, Fluent Inc., 2001) was used. For a good quality of the mesh, this value 

must be less than 0.8 (Gambit, Fluent Inc., 2001): 
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where θmax= Largest angle in face or cell; θmin= Smallest angle in face or cell; θe= Angle 

for equiangular face or cell. 

The mesh domain built in GAMBIT (Gambit, Fluent Inc., 2001) was exported to the CFD-

solver FLUENT (Fluent Inc., 2001), which solved the above mentioned governing partial 

differential Equations of continuity [Equation (3.1)], of momentum [Equation (3.2)] and 

energy [Equation (3.3)] in each mesh of the computational domain. The pressure and 

velocity coupling is solved by the SIMPLE algorithm (Patankar, 1980) with the second 

order upwind scheme (Patankar, 1980). The k-ε standard turbulence model and wall 

functions (Fluent Inc., 2001) were used in the CFD simulations. 



Ph.D. Thesis                                                        Universitat Politècnica de València 

 

86 

 

It was assumed that the flow is steady, three-dimensional, viscous, turbulent, 

incompressible and isothermal. The properties of the fluid (air in this case) are considered 

constants and their values were shown in Table 3.2. Gravitational acceleration was also 

considered. 

Table 3.2. Main inputs and BC at CFD simulations. 

(i) Constant and computational settings 

3D double precision  

Segregated  

Steady  

Turbulence model: Standard k-ε  

Wall treatment: Standard Wall Functions  

Pressure-velocity coupling: SIMPLE algorithm  

Discretization scheme: Pressure: standard; Momentum: Second order upwind; Turbulence kinetic 

energy: Second order upwind; Turbulence dissipation rate: Second order upwind; Energy: Second 

order upwind. Air properties: Density: 1.225 Kg m−3; Cp: 1006.43 J kg−1 K−1; Thermal conductivity: 

0.0242 W m−1 K−1; Viscosity: 1.789·10−5 kg m−1s−1.  

Wall material: Density: 2400 Kg m−3; Cp= 1125 J kg−1 K−1; Thermal conductivity: 1.2 W m−1 K−1. 

Atmospheric pressure: 101,325 Pa.  

Gravitational acceleration: 9.81 m s−2. 

(ii) Boundary Conditions 

CFD 

Simulation 

Assay 

Section 

Scenario Outlets (Fans)  

Mass Flux rate at 

each outlet (in kg 

s−1)  

Air temperature at 

each outlet (in K) 

Inlet Air (10% 

Turbulence 

Intensity (1))  

Air velocity  

(in m s−1) Air 

temperature (in 

K) 

Temperature at 

solid elements 

(in K) Floor 

North-Wall (2) 

South-Wall (2) 

East-Wall (2) 

West-Wall (2) 

East-Cover (2) 

West-Cover (2) 

I Section A I  Large = 9.60 Kg 

s−1 303.7 K  

Small = 0 

6.62 m s−1  

304.5 K 

303.0 K  

303.4 K  

304.7 K  

305.1 K  

304.1 K  
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305.5 K 

305.0 K 

II Section A II Large = 9.03 Kg 

s−1 301.9 K 

Small = 3.2 Kg 

s−1 301.9 K 

7.70 m s−1 

303.3 K 

303.0 K 

302.5 K 

303.0 K 

303.5 K 

302.0 K 

303.5 K 

302.0 K 

III Section A III Large = 8.17 Kg 

s−1 303.7 K 

Small = 0 

9.01 m s−1 

304.5 K 

302.0 K 

303.4 K 

304.6 K 

306.6 K 

303.1 K 

305.7 K 

305.0 K 

IV Section A IV Large = 7.82 Kg 

s−1 301.9 K 

Small = 2.78 Kg 

s−1 301.9 K 

10.67 m s−1 

303 K 

303.0 K 

302.5 K 

303.0 K 

304.0 K 

302.0 K 

303.5 K 

302.0 K 

V Section B I Large = 9.60 Kg 

s−1 304.8 K 

Small = 0 

4.66 m s−1 

305.6 K 

305.0 K 

305.0 K 

306.0 K 

307.0 K 

303.0 K 

305.0 K 

304.0 K 

VI Section B II Large = 9.03 Kg 

s−1 305.1 K  

Small = 3.2 Kg s−1 

305.1 K 

5.93 m s−1 

305.8 K 

304.0 K 

304.0 K 

306.0 K 

307.3 K 

303.5 K 
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305.7 K  

304.6 K 

VII Section B III Large = 8.17 Kg 

s−1 304.9 K  

Small = 0 

6.35 m s−1 305.8 

K 

304.0 K  

304.5 K  

306.0 K  

307.2 K  

303.2 K  

305.5 K  

304.3 K 

VIII Section B IV Large = 7.89 Kg 

s−1 305.1 K  

Small = 2.78 Kg 

s−1 305.1 K 

8.23 m s−1  

306.2 K 

304.0 K  

304.0 K  

306.0 K  

307.5 K  

303.5 K  

305.3 K  

304.7 K 

(1) Turbulence intensity is defined by (Fluent Inc., 2001) as the ratio of the root-

mean-square of the velocity fluctuations, ufluct , to the mean flow velocity, uaver 

(2) According to the main orientation reached by the walls and covers. 

Mass flux rate (in kg s
−1

) of each outlet (fan), air velocity at inlets and temperature at solid 

elements were BC used to carry out the CFD simulations. The air temperature was also 

measured at inlets and at outlets, as the temperature fluctuations at inlets and at outlets were 

negligible in each scenario (operation), one average from air temperature at inlets and 

another average from air temperature at outlets was introduced as indicates in Table 3.2. In 

the same way, two averages of mass flux rate (one average from each type of fans) and 

another average of air velocity at inlets from each scenario were introduced at CFD 

software as indicated in Table 3.2. These air velocity at inlets (m s
−1

) were obtained from 

thirty measurements (thirty seconds) at each inlet by means of a calibrated Testo 425 hot-

wire anemometer (Testo Inc., 2013); then, the average of all inlets was calculated and 

introduced in CFD software. Introducing these single values reduces time consumption of 

CFD calculations; in this sense, some authors have calculated and assumed uniform 

velocities and airflow rates for inlets or outlets in their CFD simulations (Bjerg et al., 2002; 

Blanes-Vidal et al., 2008; Davidson et al., 1989). In this paper, the individual ventilation 

rate of each outlet was measured by Calvet et al., 2010. This protocol of measurement 

(Calvet et al., 2010) consist of ducted the exhaust air 50 cm from the fan and then by means 
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of a hot wire anemometer measuring at 24 different locations in the section (ASHRAE, 

2001). On the other hand, the surface temperature of internal solid elements (wall, floor or 

covers) was measured by means of a portable model Optex PT-3LF non-contact (infrared) 

thermometer and the measured values were indicated in the same Table 3.2. Evidently, the 

specifications of a correct functioning of this model of thermometer were according to the 

range of values reached of any poultry farm from broiler production (an accuracy ±1 of the 

reading value or ±2 °C ±1 digit in an ambient temperature 0 °C to 50 °C, ambient humidity 

35% to 85% RH). The temperatures reached at solid elements were another BC requires by 

CFD program. Table 3.2 summarizes the main inputs and BC at CFD simulations. 

Geometry and mesh were developed using GAMBIT (Gambit, Fluent Inc., 2001). The CFD 

models were discretized in finite volumes in unstructured meshes as shown in Figure 3.2. 

For practical reasons of nomenclature expression of some BC (temperature at walls and 

covers), the terms North-Wall, South-Wall, East-Wall, West-Wall, East-Cover, West-Cover 

and floor will be used, according to the physical orientation as seen in Figure 3.2. 

Figure 3.2. Screen of geometry and meshed of poultry farm at GAMBIT (FLUENT). 

Orientation of walls and covers. 

The big exhaust fans and the small exhaust fans were modeled as circles of diameter 1.28 m 

and 0.68 m respectively (its real dimensions). The inlets were modeled for each scenario 

following the actual geometry adopted by the inlet windows. As the poultry farm was 

empty during the scenarios, the broiler metabolism and other elements such feeding and 

watering equipment were not modeled. 
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Model CFD locations with special interest were those corresponding to the location of the 

sensors, which coordinates were specified in the Table 3.1. 

3.2.5. Statistical Validation Model 

The validation consisted of a statistical treatment between CFD-air velocity results and the 

direct measurements with the multi-sensor system, by means of an analysis of variance 

(ANOVA). 

The model used to do this validation was: 

ln
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(3.7) 

where the different variables are explained below, and in brackets the number of levels 

within each variable is indicated: 

Yijk: Air velocity in the section i at boundary conditions j at height k by the sensor l and by 

methodology n; 

Zi: Measurement section (2); 

Bj: Boundary conditions (4); 

Hk: Height of the sensor (2); 

SNl: Sensor l (24); 

Mn: Methodology: CFD vs. direct measurements using the multisensor system (2); 

(Z X B)ij: Interaction between Section-Boundary (8); 

(Z X H)ik: Interaction between Section-Height (4); 

(Z X M)in: Interaction between Section-Methodology (4); 

(Z X SN)il: Interaction between Section-Sensor (48); 

(B X H)jk: Interaction between Boundary-Height (8); 

(B X SN)jl: Interaction between Boundary-Sensor (96); 

(B X M)jn: Interaction between Boundary-Methodology (8); 

(H X M)lk: Interaction between Height-Methodology (4); 

(SN X H)lk: Interaction between Sensor-Height (48); 

(Z X B X H)ijk: Triple interaction between Section-Boundary-Height (16); 

(Z X SN X M)iln: Triple interaction between Section-Sensor-Methodology (96); 

(B X SN X M)jln: Triple interaction between Boundary-Sensor-Methodology (192); 
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(Z X B X H X M)ijkn: Four interaction between Section-Boundary-Height-Methodology 

(384); 

εijkln: Error of the model 

For observing the effect of the methodology (CFD or direct measurements) all factors are 

considered random, the model was analyzed by the GLM procedure of SAS Systems (SAS, 

1998). It was considered that a factor has a statistically significant influence on a variable 

when the p-value obtained for this valor in the analysis of variance is equal or lower than 

0.05. On the contrary, higher p-values indicate that a factor has no significant influence. 

3.3. Results and Discussion 

3.3.1. CFD vs. Direct Measurements 

CFD-air velocity results and its direct measurements using the multisensor system are 

shown in Table 3.3. 

As shown in Table 3.3 minor differences were found between CFD results and direct 

measurements using the multi-sensor system. It has not appreciated any significant 

tendency in the results using both methodologies. The more discrepant case (CFD vs. direct 

measurements) was in scenario II at 0.25 m (broiler’s level) obtaining 0.70 ± 0.35 m s
−1 

from measurements and 0.60 ± 0.30 m s
−1

 from CFD. 

Table 3.3. Air velocity in m s
−1

 (average ± standard deviation) in the field experiment by 

direct measurements and by CFD simulations. The number of data is indicated in 

parenthesis. 

Scenario Height Methodology Section A Section B Mean 

I 

0.25 m 
Measured 0.62 ± 0.86 (12) 0.37 ± 0.30 (12) 0.50 ± 0.65 (24) 

CFD 0.52 ± 0.68 (12) 0.34 ± 0.29 (12) 0.43 ± 0.52 (24) 

1.75 m 
Measured 0.37 ± 0.39 (12) 0.66 ± 1.00 (12) 0.52 ± 0.76 (24) 

CFD 0.35 ± 0.40 (12) 0.62 ± 0.97 (12) 0.49 ± 0.74 (24) 

Mean 
Measured 0.50 ± 0.67 (24) 0.53 ± 0.74 (24) 0.51 ± 0.70 (48) 

CFD 0.43 ± 0.55 (24) 0.48 ± 0.71 (24) 0.46 ± 0.63 (48) 

II 

0.25 m 
Measured 0.70 ± 0.35 (12) 0.71 ± 0.29 (12) 0.71 ± 0.33 (24) 

CFD 0.60 ± 0.30 (12) 0.74 ± 0.36 (12) 0.67 ± 0.33 (24) 

1.75 
Measured 0.47 ± 0.32 (12) 0.68 ± 0.47 (12) 0.58 ± 0.41 (24) 

CFD 0.41 ± 0.34 (12) 0.68 ± 0.50 (12) 0.55 ± 0.44 (24) 
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Mean 
Measured 0.59 ± 0.35 (24) 0.70 ± 0.38 (24) 0.64 ± 0.37 (48) 

CFD 0.60 ± 0.30 (24) 0.71 ± 0.43 (24) 0.61 ± 0.39 (48) 

III 

0.25 m 
Measured 0.78 ± 0.41 (12) 0.80 ± 0.31 (12) 0.79 ± 0.35 (24) 

CFD 0.73 ± 0.36 (12) 0.89 ± 0.43 (12) 0.75 ± 0.36 (24) 

1.75 m 
Measured 0.63 ± 0.34 (12) 0.77 ± 0.50 (12) 0.70 ± 0.42 (24) 

CFD 0.50 ± 0.32 (12) 0.79 ± 0.55 (12) 0.65 ± 0.47 (24) 

Mean 
Measured 0.71 ± 0.37 (24) 0.79 ± 0.41 (24) 0.75 ± 0.39 (48) 

CFD 0.62 ± 0.35 (24) 0.84 ± 0.49 (24) 0.73 ± 0.44 (48) 

IV 

0.25 m 
Measured 0.42 ± 0.26 (12) 0.65 ± 0.59 (12) 0.54 ± 0.46 (24) 

CFD 0.37 ± 0.27 (12) 0.54 ± 0.38 (12) 0.46 ± 0.34 (24) 

1.75 m 
Measured 0.72 ± 0.69 (12) 0.77 ± 0.87 (12) 0.74 ± 0.75 (24) 

CFD 0.72 ± 0.87 (12) 0.80 ± 1.04 (12) 0.76 ± 0.94 (24) 

Mean 
Measured 0.57 ± 0.53 (24) 0.71 ± 0.71 (24) 0.64 ± 0.62 (48) 

CFD 0.54 ± 0.65 (24) 0.67 ± 0.78 (24) 0.61 ± 0.71(48) 

All 

0.25 m 
Measured 0.63 ± 0.53 (48) 0.63 ± 0.41 (48) 0.63 ± 0.47 (96) 

CFD 0.55 ± 0.44 (48) 0.63 ± 0.41 (48) 0.59 ± 0.43 (96) 

1.75 m 
Measured 0.55 ± 0.47 (48) 0.72 ± 0.71 (48) 0.63 ± 0.61 (96) 

CFD 0.50 ± 0.53 (48) 0.72 ± 0.78 (48) 0.61 ± 0.67 (96) 

Mean 
Measured 0.59 ± 0.50 (96) 0.68 ± 0.58 (96) 0.63 ± 0.54 (192) 

CFD 0.52 ± 0.49 (96) 0.68 ± 0.62 (96) 0.60 ± 0.56 (192) 

3.3.2. CFD-Air Velocity Results 

An advantage of CFD simulations is that they offer a visual representation which gives a 

comprehensive idea of the trends of airflow in which parameters are represented by colors 

or vectors at different trial scenarios (operations). Examples of some graphical outputs of 

CFD simulations are shown in Figures 3.3 and 3.4. Figure 3.3 shows air velocity fields in 

two vertical planes (Planes 1 and 2) of the section A at Scenario II. Plane 1 was placed in 

the same center of a fan and inlet and Plane 2 was placed between fans. According to this 

location, these two planes showed different air velocity distribution as seen in Figure 3.3. 

CFD also provides interesting knowledge of the trajectories of airflow using vectors as 

shows the Figure 3.4. 
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Figure 3.3. Contours of air velocity in Planes 1 and 2 of the Section A in a trial scenario 

(Scenario II). Air velocity is expressed in m s
−1

.

Figure 3.4. Vectors of air velocity showing trajectories in Planes 1 and 2 of the Figure 3.3. 

Air velocity is expressed in m s
−1

. 
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3.3.3. Results of the Validation Model 

Table 3.4 shows the results of the ANOVA. In this table, the main result is that the variable 

―Methodology‖ was not significant (p-value < 0.5271); i.e., it is indifferent using the CFD 

techniques or the direct measurements using the multisensor system. Using this model, it 

can be affirmed that the CFD results of air velocity are validated. 

Table 3.4. ANOVA of air velocity at different scenarios. 

Parameter DF 
Sum of 

squares 

Mean 

square 

F-

ratio 
p-value 

Section 1 1.31 1.32 2.94 0.4895 

Boundary 3 3.16 1.05 1.87 0.4551 

Height 1 0.01 0.01 0.02 0.9184 

Sensor 22 34.83 1.58 0.89 0.6041 

Methodology 1 0.11 0.11 0.46 0.5271 

Section × Boundary 3 0.24 0.08 0.20 0.8884 

Section × Height 1 0.59 0.59 0.36 0.5574 

Section × Methodology 1 0.11 0.11 –1.92 - 

Section × Sensor 22 30.31 1.38 51.55 <0.0001 

Boundary × Height 3 2.41 0.80 1.15 0.3829 

Boundary × Sensor 66 26.77 0.40 33.98 <0.0001 

Boundary × Methodology 3 0.01 0.003 –0.05 - 

Height × Methodology 1 0.01 0.01 –0.07 - 

Sensor × Height 22 0.66 0.03 –0.47 - 

Section × Boundary × Height 3 1.20 0.40 22.12 0.0012 

Section × Sensor × Methodology 22 0.59 0.03 0.26 0.9997 

Boundary × Sensor × Methodology 66 0.79 0.01 0.12 1.0000 

Section × Boundary × Height × 

Methodology 
6 0.11 0.02 0.17 0.9833 

Error 132 13.68 0.10   

 

Besides the mean of air velocities values using CFD techniques were 0.60 ± 0.56 m s
−1

 and 

using the direct measurements using the multisensor system were 0.64 ± 0.54 m s
−1

. For 

comparing both data a linear regression in the 192 studied points of the poultry building of 

the measured air velocity and the calculated by CFD was done. As expected, in this 
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regression the slope was near one and the independent term near zero. The coefficient of 

determination of the linear regression was 0.888 (Figure 3.5). 

The proposed statistical procedure for the validation of the CFD simulations concluded that 

the results by CFD procedures or direct measurements using the multisensor system 

(variable ―Methodology‖) was not significant, and the same was found for its interactions. 

Therefore, according to these results it was concluded that the use of these direct 

measurements or its correspondents CFD simulations is indifferent to explore indoor air 

velocity in a poultry farm. Nevertheless, little differences were found between CFD results 

and direct measurements as indicated in Table 3.3. The air velocity values obtained at 

animal level was very similar to those previously obtained for a poultry farm with cross 

mechanical ventilation (Blanes-Vidal et al., 2008), and therefore the ranges of air velocity 

were considered representative of a real situation. 

Figure 3.5. Regression curve of CFD results vs. direct measurements in the studied points. 

The ranges of air velocity values were small in all scenarios and very homogeneous in 

average. At broiler level, the maximum air velocity was 0.89 ± 0.43 m s
−1

 (CFD) and 0.80 ± 

0.31 m s
−1

 (measured). This was obtained for section B in scenario III. On the contrary, the 

minimum velocity was 0.34 ± 0.29 m s
−1

 (CFD) and 0.37 ± 0.31 m s
−1

 (measured) in the 

section B, scenario I. As indicated in literature, fluctuations of air velocity may have crucial 

effects on broiler rearing and performance (Lott et al., 1998; May et al., 2000; Simmons et 

al., 2003; Yanagi et al., 2002; Yavah et al., 2001; Yavah et al., 2004). Considering that 
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determining and evaluating this velocity pattern may help the climate control of farms, we 

have achieved a validation of CFD to determine this pattern of broiler buildings. 

Apart from obtaining accurate values of air velocity at certain locations, a visual 

representation of them can be obtained as well. This graphic representation also provides 

additional information on airflow characteristics and patterns, which may contribute to a 

more effective design of ventilation. 

The validation of CFD simulations is an important rule (Oberkampf et al., 2002) and we 

have corroborated it by means of the proposed model of validation, which results are shown 

in Table 3.4. The proposed model has included a large amount of input data of measured 

and modeled air velocity and has needed large field experiments and simulations to develop 

the analyzed variables. Simulations using CFD were used previously to study indoor 

environment of animal houses (Bartzanas et al., 2007; Mistriotis et al., 1997 ; Norton et al., 

2007 ; Norton et al., 2009) and also in poultry farms (Blanes-Vidal et al., 2008; Lee et al., 

2007; Pawar et al., 2007) using a similar methodology to that used in this paper showing 

that our results are mostly in agreement with their results. According to the results at this 

conventional geometry of poultry farm, we can affirm that cross mechanical ventilation 

systems was appropriate in terms of air velocity distribution under the most common 

weather conditions in mild climates. However, it does not prevent from episodes of thermal 

stress summer seasons because the air velocity values were too low for animal 

requirements. As remarked by Dawkins et al., 2004: ―the housing conditions influenced 

more than the bird’s density in the animal welfare‖, and therefore it is essential to find an 

optimal poultry building model and the best operations. New ventilation systems, other 

poultry farm geometries and effective climate control strategies must be explored in order 

to overcome this problem. To do this, CFD techniques may be very effective to identify 

potential solutions. It must be considered that CFD simulations can provide air velocity and 

direction, which would be probably time-consuming and costly if directly measured. Next 

designs of air velocity sensors must be guided to obtain direct measurements of air velocity 

components. Unfortunately, at this moment no research has been conducted to evaluate the 

biological response (heat) of broilers as influenced by air velocity directionality. However, 

some farmers and technicians tend to apply gradual changes in the operation of their 

poultry farms, in order to change the directionality and values of air velocity because they 

observe alterations in the animal behavior and performance. To avoid the critical effects of 

heat stress, it would be interesting to investigate from a biological and engineering point 

how changes in building design and boundary conditions affect the welfare of animals and 

their performance. 
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Future works in instrumentation must focus on multi-sensor systems with isotemporal 

measurements obtaining air velocity components. The thermal comfort of animals must be 

also considered to explore the building characterization and elements that have relevance in 

the optimal poultry farm design, such length vs. width, slopes of the roof, number of fans 

and inlets, their types and dimensions, geometrical location to the floor, among others. All 

above mentioned factors must be evaluated to find optimal poultry farms and the best 

operations by means of CFD techniques and associate instrumentation. A main issue of 

study should be how to obtain a homogeneous distribution of increased air velocity at 

animal’s level to reduce broiler stress and the associated mortality in summer seasons, and 

at the same time to keep an acceptable level of energy consumption. 

3.4. Conclusions 

Two methodologies were used to explore ventilation efficiency in a modern poultry farm 

with cross-mechanical ventilation: CFD techniques and direct measurements by 

instrumentation. In this paper, commercial CFD FLUENT was used to conduct the 

numerical simulations, whereas direct measurements were obtained using a multisensor 

system for poultry farms. To analyze this input data obtained were used the GLM 

procedure of SAS Systems. This model showed that both methodologies were similar in 

results: the mean of air velocity values were 0.60 ± 0.56 m s
−1

 for CFD techniques and 0.64 

± 0.54 m s
−1

 for direct measurements using the multisensor system. The ―methodology‖ 

variable was not significant (p-value < 0.5271), and the same was found for its interactions. 

Accordingly, it is indifferent using the CFD techniques or the direct measurements with the 

multisensor system used here. Then, CFD techniques have been validated by multisensor 

isotemporal direct measurements and they can be used to explore ventilation efficiency and 

to identify optimal poultry farm designs, as well as to assess their optimal management. On 

the other hand, from this work and the analysis of this typical geometry model of poultry 

farm, we can affirm that mechanical cross ventilation system is adequate under the most 

common weather conditions, but they do no prevent from episodes of mortality caused by 

heat stress, because they provide lower velocity values than those required by animals in 

these conditions. According to the results of this paper, new forced ventilation systems and 

other livestock buildings designs could be evaluated using both developed methodologies 

in order to improve the thermal comfort and diminish mortality of animals. In this way 

forced ventilation systems require electric energy to activate the fans and automatisms, 

which are not required in naturally ventilated livestock buildings. Finally, it must be noted 

that from the two analyzed methodologies to explore the ventilation efficiency in livestock 
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buildings, CFD techniques provide more points of knowledge and a more general view of 

indoor climatic conditions of poultry farms through the graphics than direct measurements. 
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Chapter 4 

Tunnel mechanical ventilation in broiler houses 

An adapted version is published in: 

Measurement and numerical simulation of air velocity in a tunnel-ventilated 

broiler house. Eliseo Bustamante, Fernando-Juan García-Diego, Salvador Calvet, 

Antonio G. Torres and Antonio Hospitaler. Sustainability 7 (2015), 2066-2085. 
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Abstract: A building needs to be designed for the whole period of its useful 

life according to its requirements. However, future climate predictions 

involve some uncertainty. Thus, several sustainable strategies of adaptation 

need to be incorporated after the initial design. In this sense, tunnel 

ventilation in broiler houses provides high air velocity values (2–3 m·s
−1

) at 

animal level to diminish their thermal stress and associated mortality. This 

ventilation system was experimentally incorporated into a Mediterranean 

climate. The aim was to resolve these thermal problems in hot seasons, as 

(traditional) cross-mechanical ventilation does not provide enough air 

velocity values. Surprisingly, very little information on tunnel ventilation 

systems is available, especially in terms of air velocity. Using Computational 

Fluid Dynamics (CFD) and a multi-sensor system, the average results are 

similar (at animal level: 1.59 ± 0.68 m·s
−1

 for CFD and 1.55 ± 0.66 m·s
−1

 for 

measurements). The ANOVA for validation concluded that the use of CFD or 

measurements is not significant (p-value=0.1155). Nevertheless, some 

problems with air velocity distribution were found and need to be solved. To 

this end, CFD techniques can help by means of virtual designs and scenarios 

providing information for the whole indoor space. 

Keywords: poultry building; sensors; air velocity; isotemporal 

measurements; multipoint measurements; troubleshooting. 



Ph.D. Thesis                                                        Universitat Politècnica de València 

 

103 

 

4.1. Introduction 

A building needs to be designed according to its requirements for the entire period of its 

useful life. Among these requisites, the geographical location and the climatic situation are 

prominent design features. Thus, the indoor environments of broiler house building are 

strongly conditioned by the climatology. Unfortunately, the uncertainty arising from 

climate change and global warming also causes uncertainty in the building design and the 

facilities installed (Holmes et al., 2007; Nardone et al., 2010). For these reasons, farms in 

areas of climatic uncertainty (e.g., Mediterranean climate) need to adapt their designs by 

means of sustainable strategies. To this end, new models of ventilation systems were 

incorporated after the initial conception of the building-farm design. Obviously, these 

experimental design adaptations and experimental ventilation systems must be analysed 

using scientific procedures (CFD techniques and direct measurements). 

Nowadays, broiler rearing involves the use of highly developed technology. In fact, modern 

broiler buildings can be considered intelligent buildings in the fullest sense (Clements-

Croome et al., 1997). In these buildings, forced ventilation is the most commonly-used 

ventilation system (Bustamante et al., 2012; 2013; Charles et al., 2002; MWPS; 1990), 

mainly through negative pressure-systems (Bustamante et al., 2012; 2013). Mechanical 

ventilation allows higher density of the broilers than natural ventilation. Moreover, 

mechanical ventilation diminishes the thermal stress and mortality of the birds in summer 

seasons or extreme climate, as it improves the control and values of the ventilation rates. 

Recently, Dawkins et al., 2004 affirmed that housing conditions had more impact than 

flock density on animal welfare. Despite the technical complexity of broiler buildings, 

discrete and repetitive episodes of high mortality occur every year in summer (El País, 

2003; WorldPoultry, 2012). In the Mediterranean climate, these fatal episodes of thermal 

stress and broiler mortality have been accentuated under the effects of global warming and 

climate change. In this climate, cross-mechanical ventilation is the most widespread 

ventilation system in broiler production (Blanes-Vidal et al., 2008). 

There are some important studies on the influence of excessively hot climate on broilers. 

Mitchell et al., 1998 describe its influence on high mortality rates, a decrease in meat 

quality and reduced welfare; Sohail et al., 2012 refer to the losses in feed intake (−16.4%), 

losses in body weight (−32.6%) and higher feed conversation ratio (25.6%) when a broiler 

reaches an age of 42 days. DEFRA, 2008 refers to the changes in the metabolism of the 

broilers and the need for thermoregulation to reduce the internal heat of the animals. In this 

thermoregulation, high air velocity values (~2 m·s
−1

) can help by increasing the convective 

flux heat of broilers and therefore decrease their thermal stress and associated mortality. 
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DEFRA, 2008 reports the effects on welfare of these high air velocities over the birds: they 

remove the hot air around the birds, adding to conventional heat loss, and they remove 

humid air from around the broiler’s head, making panting more efficient and imparting a 

sense of wind chill. To meet these high air velocity needs, tunnel ventilation has been 

experimentally incorporated in some Mediterranean climate areas. Moreover, it is also 

crucial to relate the number of fans in action with the associated air velocity values at 

broiler level. This is essential to determine the optimal programming of the fans and/or inlet 

automatisms of these tunnel broiler buildings. 

Mediterranean climate refers to the weather typical of the Mediterranean area (Spain, 

France, Italy, etc.), although it is also found in other geographic areas worldwide: sections 

of Central Asia, Western and South Australia, South Africa, central Chile, California 

(USA), etc. France is considered a reference in broiler building ventilation technology and 

exports its building and ventilation system models. Other nearby countries with this climate 

(e.g., Spain, Italy, Portugal, Greece...) adopted these models and ventilation. However, 

cross-mechanical ventilation is only an acceptable system for the moderate variant of this 

climate (Bustamante et al., 2012; 2013). Nowadays, new ventilation systems (mechanical 

single sided, tunnel variants, etc.) are tested in areas (e.g., Spain) where cross-mechanical 

ventilation entails thermal problems. A feature of these adapted buildings is that air inlets 

are located in the lateral walls near the opposite façade to the fans, because in the original 

cross-mechanical ventilation systems the tendency was to build an office or control room 

there, which would remain in place when tunnel ventilation was installed. 

In this work, we study a typical tunnel broiler building in Spain, using CFD techniques and 

a multi-sensor system (Bustamante et al., 2012) to determine the exact indoor environment 

of this imported ventilation system. To this end, CFD can be a powerful tool to analyse 

indoor environments of broiler houses and obtain the CFD results for the entire indoor 

space, whereas direct measurements only provide results for a limited number of points (the 

physical sensors). This analysis will serve to assess optimal management of the whole 

broiler building and, especially, the programming of the fans and inlets. 

Earlier works have broadly used CFD techniques to study the internal microclimate of 

livestock buildings (Bartzanas et al., 2007; Harral et al., 1997; Mistriotis et al., 1997; 

Norton et al., 2007) and poultry buildings with other ventilation systems (Blanes-Vidal et 

al., 2008; Bustamante et al., 2013, Lee et al., 2007; Pawar et al., 2007) and with tunnel 

ventilation under negative pressure-systems in (Mostafa et al., 2012; Osorio JA et al., 2011; 

Osorio R et al., 2013). Tunnel ventilation from broiler buildings is found in different 

countries, such as Brazil (Osorio JA et al., 2011; Osorio R et al., 2013), Korea (Mostafa et 
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al., 2012), USA (Lacey et al., 2003) and countries with a tropical climate (Daghir, 2001). 

According to these references, tunnel ventilation achieves high air velocity values. On the 

other hand, in some of these designs, the fans are placed on the opposite façade to the inlets 

(Daghir, 2001). Nevertheless, in this article we study a variant of tunnel ventilation with the 

inlets at the lateral end (Daghir, 2001) because in the original building design (with cross-

mechanical ventilation) the control room precluded any other disposition. 

To summarise: (i) we studied a typical tunnel broiler building in Spain; (ii) tunnel 

ventilation can be easily installed in all broiler buildings with only a retrofit of one wall to 

install the fans there; (iii) the study is carried out using CFD techniques and a multi-sensor 

system; (iv) the numerical results of air velocity are validated; (v) tunnel ventilation 

achieves high air velocity values to improve the birds’ welfare in hot seasons; (vi) future 

optimisation of design and assessments is required to improve this ventilation system; and 

(vi) CFD techniques can help by providing virtual designs and scenarios using information 

from the whole indoor space. 

4.2. Materials and Methods 

4.2.1. The Building 

A broiler building equipped with tunnel ventilation located at Alcalá de Xivert (Castellón-

Spain) was studied. The upper left corner of Figure 4.1 shows the exterior façade, with the 

eight frontal exhaust fans and one lateral fan. In other corners are the interior of the 

building in three operations; the fans in operation were in white, to allow the sunlight to enter; 

and in the central image of Figure 4.1 is the multi-sensor system with sensors at two heights 

(0.25 m and 1.75 m). 

Figure 4.1. Measurements in the tunnel broiler building. 
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Building dimensions were: length, 120 m; width, 12.2 m; sidewall height 2.2 m; double 

pitched roof (slope 21.3%). The ventilation was equipped with ten exhaust fans (Model 

Euromunters EM 50n) with a diameter of 1.28 m, 1.1 kW of power consumption and 

nominal ventilation flow 42,125 m
3
 h

−1
 at ∆P=0 Pa. Eight exhaust fans were located on the 

south façade (main façade) and the other two exhaust fans in the lateral façade, one fan in each 

lateral wall, near those located at the south façade as shown in Figure 4.1. The building was 

also equipped with twelve inlets measuring 4.7 × 0.45 m, placed at a height of 0.3 m, 

controlled by an automatic system of two groups of six inlets located in the lateral walls; all 

inlets were located near the north façade. The inlets are placed on the side walls because the 

control room is located behind the wall opposite the fans, preventing the fans being 

positioned there. According to Daghir, 2001, this is a variant of tunnel ventilation where the air 

entrance is equilibrated. The building was empty during the field experiments (as in other 

similar studies: (Blanes-Vidal et al., 2008; 2010; Bustamante et al., 2012; 2013; Harral et 

al., 1997) to prevent the broilers undergoing sudden changes of pressure and air flow 

during the experiment. 

This broiler building was built in 1983, and until a few years ago had natural ventilation, 

after which it was equipped with cross-mechanical ventilation; currently, it also has tunnel 

ventilation installed. The main orientations of walls and roofs were determined using a 

compass (we designated them North-Wall, South-Wall, East-Wall, West-Wall, East-Cover, 

West-Cover and floor, according to the main orientation reached). 

4.2.2. Experimental Scenarios (Operations) 

In this paper, the field experiments comprised nine experimental scenarios (operations) at 

different boundary conditions (BCs). By means of differential pressure sensors 

(Bustamante et al., 2012), differential pressure was fixed at a constant30 Pa—which, 

according to the farmer, was a typical differential pressure in the management of this building—

and the number of fans running was gradually increased. First, two fans were activated, and 

gradually we added one fan at a time until all eight fans on the south façade were on. 

Finally, the two lateral wall fans were also in action. (Operation I corresponds to two fans 

in action, Operation II with three fans in action, etc., until Operation IX, with ten fans in 

action). Operation I began with two fans because no typical real operation in the building 

uses a single working fan. In the cooler winter months, high air velocity values are not 

required; then, a minimum number of fans working (2, 3 or 4 fans located near the floor) is 

enough. In hot seasons, the air velocity requirements are higher and it is necessary to 

activate more fans (the 5 or 6 fans located near floor level), triggering the rest of the fans 
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(the two higher fans and the two laterals) if the weather is very hot. The two higher fans can 

improve the efficiency of the cooling system if it is activated (to improve indoor movement 

of the air on the whole). 

To maintain the differential pressure at 30 Pa during these operations, the flaps of the inlets 

change by means of the automatic system. 

4.2.3. CFD Background and Turbulence Models 

CFD FLUENT (Fluent Inc., Lebanon, NH, USA) (Fluent, 2001) was used to carry out the 

CFD simulations in this article. CFD FLUENT (Fluent, 2001) had been used with great 

success in previous CFD simulations of poultry buildings, as mentioned previously 

(Blanes-Vidal et al., 2008; Bustamante et al., 2013; Lee et al., 2007; Mostafa et al., 2012; 

Pawar et al., 2007). 

CFD techniques solve a set of partial differential equations (PDEs) (Norton et al., 2007; 

Patankar, 1980): equations of continuity (Equation (4.1)), conservation of momentum 

(Navier-Stokes law) (Equation (4.2)) and the energy equation (Equation (4.3)). 
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Where ρ: fluid density (kg·m
−3

); t: time (s); u, v, w: velocity (m·s
−1

); Sm: mass source

(kg·m
−3

); p: pressure (Pa); η: stress tensor (Pa); g: gravitational acceleration (m·s
−2

); F: 

external force vector (N·m
−3

); E: total energy (J); keff: heat transmission coefficient; T:

temperature (K); h: specific enthalpy (J·kg
−1

); Sh: total entropy (J·K
−1

).

Reynolds-averaged Navier-Stokes equation (RANS) turbulence models are commonly used 

in the study of indoor environments of livestock buildings. Moreover, from the RANS 

turbulence models, the RNG k-ε model was chosen to carry out the CFD simulations. The 

standard k-ε turbulence model has been used by some authors (Blanes-Vidal et al., 2008; 

Bustamante et al., 2013) because it offers reasonable precision and easy convergence 

(Launder & Spalding, 1974). However, in this article, the RNG k-ε model (a variant of the 

standard k-ε turbulence) was used because it performs well. The RNG k-ε turbulence model 

includes additional terms for the dissipation rates, describing more the physical 
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phenomenon in greater detail and improving the accuracy of the results. It should be noted 

that none of the existing turbulence models are complete, i.e., their prediction performance is 

highly reliant on turbulent flow and geometry (Norton et al., 2007). The transport equations 

of this turbulence model were 4.4 and 4.5 (Fluent, 2001): 

k eff k b M

i i
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Dt x x
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where k: turbulent kinetic energy (m
2
·s

−2
); αk: the generation of kinetic energy due to the

mean velocity gradient (kg·m
−1

·s
−2

); µeff: effective viscosity (m
2
·s); Gk: the generation of kinetic

energy due to the variations of the components of the average velocity of the flow 

(kg·m
−1

·s
−2

); Gb: the generation of kinetic energy by boundary push (kg·m
−1

·s
−2

); ε:

turbulent dissipation rate (m
2
·s

−3
); αε: the generation of kinetic energy due to buoyancy

(kg·m
−1

·s
−2

); YM: contribution of the pulsatile expansion associated to the compressible

turbulence (kg·m
−1

·s
−2

); R: the gas-law constant (8.314·10
3
 J·kg·mol

−1
·K

−1
); C1ε: constant;

C2ε: constant; C3ε= tanh[u1/u2]; u1: velocity of flow parallel to gi (gravitational vector); u2: 

velocity of flow perpendicular to gi. Moreover, the constant values were C1ε = 1.42, C2ε = 1.68 

(Fluent, 2001; Launder & Spalding, 1974). 

In this article, we carried out nine three-dimensional CFD simulations, corresponding to 

nine tested scenarios (nine typical conditions of operation of the building). 

4.2.4. Geometry, Mesh and BC 

The geometry and mesh of the broiler building were performed in the pre-processor 

GAMBIT (Gambit, 2001) (Geometry and Mesh Building Intelligent Toolkit) of FLUENT 

(Fluent, 2001). This building geometry was modelled in its real dimensions. The exhaust fans 

were modelled as circles 1.28 m in diameter and the twelve inlets were accurately modelled 

in the form adopted in each scenario as in similar studies (Blanes-Vidal et al., 2008; Bjerg 

et al., 2002; Bustamante et al., 2013). 

Each scenario was mainly characterised by the number of fans operating, maintaining the 

differential pressure at 30 Pa (Bustamante et al., 2012). In these setups, the ventilation rate 

was measured using the procedures of Calvet et al., 2010, although the fans are new and the 

values are very similar to those from the manufacturer. This measurement protocol (Calvet et 

al., 2010) consisted of ducting the exhaust air 50 cm from the fan and then measuring by 
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means of a hot wire anemometer at 24 different locations in the section, as indicated 

ASHRAE, 2001. 

A mesh dependency test was performed, analysing four different meshes: Mesh 1 (516,055 

cells & 105,427 nodes), Mesh 2 (908,025 cells & 174,979 nodes), Mesh 3 (1,937,181 cells & 

363,604 nodes) and Mesh 4 (3,627,052 cells & 661,559 nodes). In this study, the numerical 

results are stabilised and minor differences are observed from Mesh 3 to Mesh 4. 

According to this mesh study, Mesh 4 was chosen. By this procedure, we ensure that the 

numerical results obtained are not affected by the grid. 

The meshing comprised unstructured tetra and prism layers. Applying thin prism layers to 

the first rows near the surfaces provides a more accurate result near the boundary layers. In 

this way, the quality of the mesh is also studied using the equiangular skewness command 

in GAMBIT (Gambit, 2001). 

The geometry and mesh domain built in GAMBIT (Gambit, 2001) was exported to the CFD-

solver FLUENT (Fluent, 2001). Moreover, it was considered that the flow (air) is steady, 

three-dimensional, viscous, turbulent, incompressible and isothermal. The air properties are 

considered constants. Table 4.1 shows the properties of the air and associated values. 

To link the pressure and the velocity, the SIMPLE algorithm was used (Fluent, 2001) as 

well as the second order upwind scheme (Patankar, 1980). 

Table 4.1. Main inputs and BCs at CFD simulations. 

CFD 

Simulation 

Fans in 

Action 

Total Mass Flux Rate (1) 

(kg·s
−1

) 

Average of Air Velocity at 

Inlets (m·s
−1

) 

I 2 24.68 0.83 

II 3 37.02 1.23 

III 4 49.36 1.61 

IV 5 37.02 2.04 

V 6 61.70 2.45 

VI 7 74.04 2.85 

VII 8 86.38 3.25 

VIII 9 98.72 3.67 

IX 10 111.06 4.04 

(1) Measured by the procedures of Calvet et al., 2010. 

The air velocity at inlets (windows) and mass flux rate of each outlet (fans) were BC used 

to carry out the CFD simulations. For each operation and considering negligible fluctuations 

of values, we assumed that the air velocity at all inlets was the same and the mass flux rate 
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was the same for the fans, as in earlier studies (Blanes-Vidal et al., 2008; Bustamante et al., 

2013). The input of the air velocity at inlets was obtained from the measurements at each 

inlet using a Testo 425 hot-wire anemometer (Testo, 2014) (calibrated in a wind tunnel by 

Testo AG Lenzkirch (Spain) (Testo, 2014) according to UNE EN ISO 9001:2001), and the 

average from all inlets is the required input. The input of the ventilation rate of each fan 

was obtained using the protocol of Calvet et al., 2010. Table 4.1 indicates the main 

computational settings and the cited BC. 

Considering that the building was empty during the field experiments, the broiler presence 

was not modelled, nor other elements such as feeding and water equipment (Blanes-Vidal 

et al., 2008; Bustamante et al., 2013). Obviously, CFD points with special relevance are the 

physical location points of the sensors. Figure 4.2a shows the grid in an inlet and Figure 

4.2b the inlets in the building. In this Figure 4.2, we can observe that the inlets and 

associated flaps form an angle. This angle changes (from 4° to 38°) in order to maintain the 

differential pressure constant throughout the nine operations (30 Pa, in our field 

experiment). 

Figure 4.2.(a) Grid in an inlet; (b) Inlets in the building. 

4.2.5. Validation of CFD Results 

4.2.5.1. General Context: the Multi-Sensor System and Points of Measurement 

The indoor turbulence intensity generated in mechanical ventilation of livestock buildings 

is very high (from 1% to 20%), with sudden changes in the air velocity values in the same 

coordinate throughout the experiment (Bustamante et al., 2012; 2013; Heber et al., 1996). 

For this reason, a high-capacity measurement system is needed, both in number of sensors 
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and number and quality of signals. The validation of CFD simulations (Oberkampf et al., 

2002) was thus carried out by means of a specific measuring system (Bustamante et al., 

2012). This measuring system consisted of air velocity sensors and differential pressure 

sensors and was able to acquire up to a maximum of 128 signals simultaneously at 5 s 

intervals. The sensors of air velocity were platinum resistance temperature detectors (RTD), 

the thin film detector was the Pt100 from Omega Inc. (TFD, 2015) and the differential pressure 

sensors were HCXM010D6Vs from Sensortechnics Inc. (Sensortechnics, 2015). This 

measuring system is described in depth in (Bustamante et al., 2012). In our case, only 32 

sensors were read: 30 air velocity sensors and 2 differential pressure sensors (Bustamante et 

al., 2012). The sensors were placed on 15 tripods at two heights: at adult broiler level 0.25 

and at 1.75 m. These measurements were taken in three sections of the building: one section 

near the inlets, another section in a central zone (when the inlets were finished) and finally 

another section closer to the fans. The spatial distribution of the tripods was random, in an 

attempt to measure all areas of the test sections (central section, near the fans and the inlets). 

Moreover, Daghir, 2001 mentioned that the area of inlets and the area of fans are vital in 

the design of tunnel ventilation. At the centre of Figure 4.1, some tripods and the multi-

sensor system in an operation are shown. 

During this field experiment (10 min registering in each operation) we received the signals 

from the sensors. In each of the three sections for each operation we received 3600 

measurements of air velocity (30 s × 10 min × 60/5 data/min); thus, a total of 97,200 air 

velocity measurements (3600 × 9 scenarios × 3 sections) were taken at the 9 scenarios and 

three sections. Figure 4.3 shows the test section and Table 4.2 the sensor coordinates. 

Figure 4.3. Test sections. 
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Table 4.2. Sensor coordinates. 

Sensor 

number* 

Section A Section B Section C 

X-coord. 

(m) 

Y-coord. 

(m) 

X-coord. 

(m) 

Y-coord 

(m) 

X-coord. 

(m) 

Y-coord. 

(m) 

1–2 5.56 4.34 5.92 32.14 5.87 99.23 

3–4 5.39 8.42 5.62 36.54 5.42 103.90 

5–6 5.83 13.64 5.73 43.25 5.69 108.76 

7–8 5.61 16.51 8.57 39.36 5.58 110.33 

9–10 10.66 22.78 9.47 43.32 9.89 118.02 

11–12 8.16 18.65 10.60 40.22 8.78 115.14 

13–14 7.18 19.17 9.00 39.36 10.03 116.25 

15–16 5.50 20.20 9.04 36.88 6.21 118.93 

17–18 2.22 3.87 1.50 29.20 1.86 96.48 

19–20 2.52 7.06 3.47 33.65 2.94 101.15 

21–22 3.45 11.24 3.92 39.21 3.75 107.40 

23–24 10.61 3.55 11.48 34.83 11.26 98.06 

25–26 8.74 9.86 5.83 48.17 9.13 105.18 

27–28 1.54 19.54 1.54 52.00 2.34 117.49 

29–30 2.81 15.76 0.82 47.00 3.11 113.07 

* The first sensors at animal level, the second at 1.75 m.

During the operations in the same section there was no change in the tripods’ location, in 

order to measure and compare the fluctuations of values acquired as the number of fans in 

action increased. The 30 air velocity sensors (in their tripods) were moved from one section 

to another at each ventilation regime case. 

4.2.5.2. Statistical Model and Variables 

In the present article, the validation model consisted of a statistical procedure by means of 

an analysis of variance (ANOVA). 

The validation model for this article is: 

ijklijkl

jkliklijl

ijkkljljk

ilikijlkjiijkl

MHFS

MHFMHSMFS

HFSMHMFHF
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where the different variables and interactions are explained below: 

ijklY : Air velocity in the section i with j Fans in action at Height k and by the methodology l; 

iS : Measurement section (3); 

jF : Fans in action (9); 

kH : Height of the sensor (2); 

lM : Methodology: CFD vs. direct measurements by multi-sensor system (2); 

ijFS )(  : Interaction between Section-Fan (27); 

( )ikS H : Interaction between Section-Height (6); 

ilMS )(  : Interaction between Section-Methodology (6);  

jkHF )(  : Interaction between Fans-Height (18); 

jlMF )(  : Interaction between Fans-Methodology (18); 

klMH )(  : Interaction between Height-Methodology (4); 

ijkHFS )(  : Triple interaction between Section-Fan-Height (54); 

ijlMFS )(  : Triple interaction between Section-Fan-Methodology (54); 

iklMHS )(  : Triple interaction between Section-Height-Methodology (12); 

jklMHF )(  : Triple interaction between Fan-Height-Methodology (36); 

ijklMHFS )(  : Fourfold interaction between Section-Fan-Height-Methodology (108); 

ijkl : Error of the model. 

Numbers in parentheses indicated number of factors. To study these effects, all factors were 

considered random. The model was analysed using the GLM procedure from SAS systems 

(SAS, 1998). We shall perform an initial analysis to obtain first results. The non-significant 

interactions will then be eliminated from the model, and another analysis will be conducted 

to obtain the refined results. Using this procedure, the model will have improved results, 

making the significant effects more robust. 

4.2.5.3. Regression Line (CFD vs. Measurements) 

To compare the CFD results and the measurements, a linear regression is proposed. The 

model of this linear regression is: 

measCFD VV    (4.7) 

where, 

Vmeas is the average of the measured air velocity values 

VCFD is the air velocity obtained in the CFD simulations 

4.2.5.4. Relative Error at Each Point 

The indoor turbulence in broiler buildings equipped with mechanical ventilation is high 

(Bustamante et al., 2012; 2013; Heber et al., 1996). Thus, the fluctuations of the air 
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velocity values at the same point over time may be relevant (Bustamante et al., 2012). We 

used a robust measurement system in terms of number of sensors and in received signals; 

nevertheless, it is necessary to test a possible relative error in the i studied points. This 

relative error in the i point (Ei) can be defined as: 

meas

CFDmeas
i

V

VV
E




(4.8) 

where: 

Vmeas is the average of the measured air velocity using the multi-sensor system at point i 

taken as the real air velocity, and 

VCFD is the air velocity obtained in the CFD simulations at point i. 

4.3. Results 

4.3.1. Results of the Validation Model 

In Table 4.3, we can see the ANOVA results for the proposed validation model after the 

refinement. The main result is that the ―Methodology‖ variable is not significant (p-

value<0.1155), nor are the interactions; i.e., there is no difference between using the CFD 

techniques or the direct measurements using the multi-sensor system. At this point and by 

means of these results from Table 4.3, we validated the CFD results for air velocity. 

Table 4.3. ANOVA of air velocity at different scenarios. 

Variables DF 
Sum of 

Squares 

Mean 

Square 
F-ratio p-value 

Section 2 33.10 16.55 149.07 <0.0001 

Fans 8 555.09 69.39 625.08 <0.0001 

Height 1 1.07 1.07 9.61 0.0020 

Methodology 1 0.28 0.28 2.48 0.1155 

Section × Fan 16 45.75 2.86 25.76 <0.0001 

Section × Height 2 21.18 10.59 95.42 <0.0001 

Fans × Height 8 5.88 0.73 6.62 <0.0001 

Error 1581 175.50 0.111 

According to the proposed linear regression for the 90 points studied (physical location of 

the sensors), we obtained a dependent term near one (+1.7%) and an independent term near zero 
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(−0.1%). Moreover, we obtained a coefficient of determination of 0.98. In Figure 4.4, we 

can see this linear regression. 

Figure 4.4. Regression curve of CFD results vs. direct measurements in the 90 points 

studied. 

4.3.2. CFD Results and the Direct Measurements 

CFD-air velocity results and the measurements using the multi-sensor system have similar 

values, as shown in Table 4.4. 

Table 4.4. Air velocity in m·s
−1

 (average ± standard deviation) in the field experiment 

based on direct measurements and CFD simulations. The number of averaged data is 

indicated in parenthesis. 

Op. 
Height 

(m) 
Method. Section A Section B Section C Average 

I 

0.25 
Measur. 

CFD 

0.75±0.24 (15) 

0.77 ± 0.20(15) 

0.66 ± 0.18 (15) 

0.69 ± 0.18(15) 

0.47 ± 0.11(15) 

0.49 ± 0.12(15) 

0.63 ± 0.22(45) 

0.65 ± 0.21(45) 

1.75 
Measur. 

CFD 

0.62 ± 0.22 (15) 

0.62 ± 0.22(15) 

0.56 ± 0.11(15) 

0.60 ± 0.12(15) 

0.58 ± 0.09(15) 

0.60 ± 0.10(15) 

0.59 ± 0.15(45) 

0.61 ± 0.15(45) 

Aver. 
Measur. 

CFD 

0.69 ± 0.24 (30) 

0.70 ± 0.22 (30) 

0.61 ± 0.16(30) 

0.64 ± 0.16 (30) 

0.53 ± 0.12 (30) 

0.55 ± 0.13 (30) 

0.61 ± 0.19 (90) 

0.63 ± 0.18 (90) 

II 0.25  
Measur. 

CFD 

1.15 ± 0.35 (15) 

1.16 ± 0.30 (15) 

1.01 ± 0.24 (15) 

1.05 ± 0.25 (15) 

0.69 ± 0.14 (15) 

0.71 ± 0.13 (15) 

0.95 ± 0.32 (45) 

0.97 ± 0.30 (45) 
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1.75 
Measur. 

CFD 

0.85 ± 0.27 (15) 

0.90 ± 0.31 (15) 

0.84 ± 0.16 (15) 

0.88 ± 0.18 (15) 

0.84 ± 0.16 (15) 

0.90 ± 0.18 (15) 

0.84 ± 0.20 (45) 

0.89 ± 0.23 (45) 

Aver. 
Measur. 

CFD 

1.00 ± 0.34 (30) 

1.03 ± 0.33 (30) 

0.92 ± 0.22 (30) 

0.97 ± 0.23 (30) 

0.76 ± 0.17 (30) 

0.80 ± 0.18 (30) 

0.89 ± 0.27 (90) 

0.93 ± 0.27 (90) 

III 

0.25 
Measur. 

CFD 

1.42 ± 0.41 (15) 

1.43 ± 0.38 (15) 

1.28 ± 0.31 (15) 

1.29 ± 0.26 (15) 

0.91 ± 0.24 (15) 

0.95 ± 0.25 (15) 

1.20 ± 0.38 (45) 

1.22 ± 0.36 (45) 

1.75 
Measur. 

CFD 

1.11 ± 0.36 (15) 

1.13 ± 0.36 (15) 

1.13 ± 0.24 (15) 

1.20 ± 0.28 (15) 

1.20 ± 0.22 (15) 

1.22 ± 0.20 (15) 

1.15 ± 0.28 (45) 

1.19 ± 0.29 (45) 

Aver. 
Measur. 

CFD 

1.26 ± 0.41(30) 

1.28 ± 0.40(30) 

1.21 ± 0.28 (30) 

1.24 ± 0.27 (30) 

1.05 ± 0.27 (30) 

1.09 ± 0.26 (30) 

1.17 ± 0.33 (90) 

1.20 ± 0.32 (90) 

IV 

0.25 
Measur. 

CFD 

1.50 ± 0.35 (15) 

1.57 ± 0.36 (15) 

1.57 ± 0.34 (15) 

1.64 ± 0.36 (15) 

1.15 ± 0.22 (15) 

1.17 ± 0.22 (15) 

1.40 ± 0.36 (45) 

1.46 ± 0.38 (45) 

1.75 
Measur. 

CFD 

1.28 ± 0.35 (15) 

1.32 ± 0.40 (15) 

1.43 ± 0.24 (15) 

1.47 ± 0.28 (15) 

1.46 ± 0.23 (15) 

1.51 ± 0.22 (15) 

1.39 ± 0.28 (45) 

1.43 ± 0.31 (45) 

Aver. 
Measur. 

CFD 

1.39 ± 0.36 (30) 

1.44 ± 0.40 (30) 

1.50 ± 0.30 (30) 

1.55 ± 0.33 (30) 

1.30 ± 0.27 (30) 

1.34 ± 0.28 (30) 

1.40 ± 0.32 (90) 

1.45 ± 0.34 (90) 

V 

0.25 
Measur. 

CFD 

1.61 ± 0.29 (15) 

1.67 ± 0.34 (15) 

1.81 ± 0.31 (15) 

1.89 ± 0.33 (15) 

1.39 ± 0.30 (15) 

1.40 ± 0.32 (15) 

1.60 ± 0.35 (45) 

1.66 ± 0.38 (45) 

1.75 
Measur. 

CFD 

1.38 ± 0.33 (15) 

1.45 ± 0.38 (15) 

1.71 ± 0.27 (15) 

1.75 ± 0.32 (15) 

1.76 ± 0.24 (15) 

1.82 ± 0.23 (15) 

1.62 ± 0.33 (45) 

1.67 ± 0.35 (45) 

Aver. 
Measur. 

CFD 

1.49 ± 0.33 (30) 

1.56 ± 0.37 (30) 

1.76 ± 0.29 (30) 

1.82 ± 0.33 (30) 

1.57 ± 0.33 (30) 

1.61 ± 0.34 (30) 

1.61 ± 0.33 (90) 

1.66 ± 0.36 (90) 

VI 

0.25 m 
Measured 

CFD 

1.63 ± 0.33 (15) 

1.69 ± 0.37 (15) 

2.12 ± 0.36 (15) 

2.20 ± 0.35 (15) 

1.60 ± 0.31 (15) 

1.62 ± 0.31 (15) 

1.78 ± 0.40 (45) 

1.84 ± 0.43 (45) 

1.75 
Measur. 

CFD 

1.48 ± 0.34 (15) 

1.56 ± 0.40 (15) 

2.03 ± 0.37 (15) 

2.04 ± 0.35 (15) 

2.00 ± 0.29 (15) 

2.09 ± 0.28 (15) 

1.84 ± 0.42 (45) 

1.90 ± 0.42 (45) 

Aver. 
Measur. 

CFD 

1.55 ± 0.34 (30) 

1.63 ± 0.39 (30) 

2.08 ± 0.36 (30) 

2.12 ± 0.35 (30) 

1.80 ± 0.36 (30) 

1.85 ± 0.38 (30) 

1.81 ± 0.41 (90) 

1.87 ± 0.42 (90) 

VII 

0.25 
Measur. 

CFD 

1.77 ± 0.36 (15) 

1.83 ± 0.36 (15) 

2.40 ± 0.34 (15) 

2.52 ± 0.36 (15) 

1.83 ± 0.37 (15) 

1.85 ± 0.40 (15) 

2.00 ± 0.45 (45) 

2.06 ± 0.49 (45) 

1.75 m 
Measur. 

CFD 

1.61 ± 0.43 (15) 

1.69 ± 0.49 (15) 

2.27 ± 0.36 (15) 

2.35 ± 0.40 (15) 

2.33 ± 0.32 (15) 

2.41 ± 0.30 (15) 

2.07 ± 0.49 (45) 

2.15 ± 0.51 (45) 

Aver. 
Measur. 

CFD 

1.69 ± 0.40 (30) 

1.76 ± 0.43 (30) 

2.33 ± 0.35 (30) 

2.43 ± 0.39 (30) 

2.08 ± 0.42 (30) 

2.13 ± 0.45 (30) 

2.03 ± 0.47 (90) 

2.11 ± 0.50 (90) 
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Table 4.4.Cont. 

Op. 
Heig. 

(m) 

Method

. 
Section A Section B Section C Average 

VIII 

0.25 
Measur. 

CFD 

1.74 ± 0.45 (15) 

1.77 ± 0.48 (15) 

2.58 ± 0.29 (15) 

2.72 ± 0.31 (15) 

2.03 ± 0.42 (15) 

2.07 ± 0.42 (15) 

2.12 ± 0.52 (45) 

2.19 ± 0.56 (45) 

1.75 
Measur. 

CFD 

1.76 ± 0.55 (15) 

1.85 ± 0.60 (15) 

2.63 ± 0.32 (15) 

2.68 ± 0.34 (15) 

2.55 ± 0.35 (15) 

2.69 ± 0.35 (15) 

2.32 ± 0.61 (45) 

2.41 ± 0.59 (45) 

Aver. 
Measur. 

CFD 

1.75 ± 0.49 (30) 

1.81 ± 0.53 (30) 

2.61 ± 0.30 (30) 

2.71 ± 0.32 (30) 

2.30 ± 0.46 (30) 

2.38 ± 0.49 (30) 

2.22 ± 0.55 (90) 

2.30 ± 0.58 (90) 

IX 

0.25  
Measur. 

CFD 

1.79 ± 0.50 (15) 

1.88 ± 0.54 (15) 

2.59 ± 0.44 (15) 

2.68 ± 0.53 (15) 

2.35 ± 0.47 (15) 

2.37 ± 0.49 (15) 

2.24 ± 0.57 (45) 

2.31 ± 0.61 (45) 

1.75 
Measur. 

CFD 

1.91 ± 0.61 (15) 

2.00 ± 0.66 (15) 

2.83 ± 0.26 (15) 

2.97 ± 0.27 (15) 

2.75 ± 0.33 (15) 

2.92 ± 0.37 (15) 

2.50 ± 0.59 (45) 

2.63 ± 0.64 (45) 

Aver. 
Measur. 

CFD 

1.85 ± 0.55 (30) 

1.94 ± 0.60 (30) 

2.71 ± 0.38 (30) 

2.82 ± 0.44 (30) 

2.55 ± 0.45 (30) 

2.65 ± 0.51 (30) 

2.37 ± 0.59 (90) 

2.47 ± 0.64 (90) 

X 

0.25 
Measur. 

CFD 

1.48 ± 0.48 (135) 

1.53 ± 0.50 (135) 

1.78 ± 0.73 (135)  

1.85 ± 0.77 (135) 

1.38 ± 0.67 (135)  

1.40 ± 0.67 (135) 

1.55 ± 0.66 (405) 

1.59 ± 0.68 (405) 

1.75 
Measur. 

CFD 

1.33 ± 0.56 (135)  

1.39 ± 0.60 (135) 

1.72 ± 0.79 (135)  

1.77 ± 0.82 (135) 

1.72 ± 0.76 (135)  

1.79 ± 0.80 (135) 

1.59 ± 0.73 (405) 

1.65 ± 0.77 (405) 

Aver. 
Measur. 

CFD 

1.41 ± 0.53 (270) 

1.46 ± 0.56 (270) 

1.75 ± 0.76 (270) 

1.81 ± 0.80 (270) 

1.55 ± 0.74 (270) 

1.60 ± 0.76 (270) 

1.57 ± 0.70 (810) 

1.62 ± 0.73 (810) 

Despite the fact that the CFD simulations are performed in steady state (obtaining a single 

value for a point), the number of averaged data leads to results in this form similar to those of 

the direct measurements (average ± standard deviation). The studied 90 points (30 points in 

each section, 15 points at 0.25 m and 15 points at 1.75 m) by the 9 scenarios leads to 810 

data (810 data for CFD and 810 data for direct measurements). At broiler level (0.25 m), 

the average (an average of 405 data for CFD and 405 data for direct measurements) of the 

air velocity values is very similar in CFD (1.59±0.68 m·s
−1

) and by means of the direct 

measurements (1.55±0.66 m·s
−1

). 

4.3.3. Results of the Relative Error at Each Point 

Despite the fact that the average air velocity value is very similar when comparing CFD and 

direct measurements, as seen in Table 4.4, the relative error defined in Equation (4.8) at 

some points is occasionally significant. Figure 4.5 shows this relative error. 
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Figure 4.5 shows the discrepancies of the relative error. The red triangle indicates the 

maximum and minimum error in each section. In Section A, the maximum error was 12.7% 

(Operation I) and the minimum was −14.5% (Operation III); in Section B, the maximum 

error was 12.6% (Operation III) and the minimum was −6.9% (Operation VI) and in 

Section C, the maximum error was 12.1% (Operation I) and the minimum was −11.0% 

(Operation III). The results for these relative errors are common and in the expected ranges, 

as they do not exceed 20% (Posner et al., 2003). Moreover, the averaged relative error is 

small and very similar in all sections (+1.7% in Section A, +2.07% in Section B and 

+1.25% in Section C). 

Figure 4.5. Relative error in each operation. 
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4.3.4. CFD-Air Velocity Results 

CFD simulations provide very visual and interesting outputs that give an idea of the trends 

in air flow and an estimation of values by vectors or colours. 

Figure 4.6 shows the air velocity values by colours at broiler level (0.25 m) in a typical 

operation (Operation IV, 5 fans in action) in summer seasons. Here, we can clearly observe 

three different indoor behaviours in terms of air velocity distribution. Near the inlets, we can 

see a zone with very heterogeneous values, where very high air velocity values are found 

close to an area with very low values (―dead zone‖). In the central zone, we observe 

homogeneous air velocity values (very good area). Near the fans, we can again observe the 

heterogeneity of the air velocity values, notably the high air velocity values near the fans, which 

can seriously disturb the birds (―damaging zone‖), causing feeding or health problems 

(colds, respiratory diseases) (Lott et al., 1998). 

It is necessary to distinguish the use of this ventilation system for winter (cold seasons) or 

summer (hot seasons). As shown in Figure 4.6, all the air enters via Section A (inlets 

section); in summer, only air velocity is required, but in winter it is also necessary to heat 

the cold air. In cross-ventilation systems, the air inlets are located along the whole length of 

the building and less energy is needed to heat the incoming air than in a shorter entry 

section to the tunnel ventilation. 

Figure 4.6. Air velocity values at broiler level (0.25 m) in the Operation IV (5 fans in 

action). 
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4.4. Discussion 

In this paper, we have analysed air velocity values in tunnel ventilation in a broiler building 

in Spain (Mediterranean climate). Whereas this ventilation system is quite commonplace in 

some countries (Daghir, 2001; Lacey et al., 2003), it has only recently been incorporated in 

countries with a medium-extreme Mediterranean climate. The aim of adopting this 

ventilation system is to resolve repetitive mortality and stress for the animals in summer, 

accentuated by the effects of climate change and global warming. 

As this ventilation system has only recently been installed in these areas due to the 

widespread use of cross-mechanical ventilation, no published article addressing 

management and the air velocity distribution vs. fans in action could be found. This issue is 

crucial to optimise the management of these buildings. In this article, we respond to this 

question using powerful methodologies such as CFD and a multi-sensor system that also 

validated the numerical simulations. After the validation, CFD techniques can play an 

important role in developing virtual buildings and BCs in order to choose the best designs and 

managements. Moreover, they can provide information on the whole indoor environment, 

whereas the number of physical sensors is limited. 

The field experiment took place in a broiler building in the Valencian Community (Spain), 

but it must be emphasised that there are diverse subclimatic areas within large countries 

such as Spain, and adopting a uniform ventilation system for the whole country is not an 

ideal solution. 

In this article, we address the indoor air velocity distribution; obviously, other environmental 

parameters such as temperature or relative humidity are also relevant, especially if the 

broiler building is occupied. Along these lines, some interesting articles on occupied broiler 

buildings in other climatic areas were found, related to temperature (Osorio JA et al., 2011) 

and the temperature and ammonia distribution (Mostafa et al., 2012). Since we found that 

the air temperature had already been analysed by (Mostafa et al., 2012; Osorio JA et al., 

2011) and due to limitations on the length of this article, we focused only on the air velocity 

distribution as the crucial parameter for our needs and for automation of the broiler 

building. 

Hence, an excessive number of fans working will waste unnecessary energy, cause colds in 

broilers or decrease the consumption of feed or water, whereas an insufficient number of 

fans running will lead to thermal stress and associated mortality. 

The field experiments took place at a constant differential pressure measured as per 

Bustamante et al., 2012, and the number of fans in action was gradually increased from two 
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fans to ten fans in order to compare air velocity development, as indicated in Table 4.4. 

According to the specific literature on tunnel ventilation (Daghir, 2001), the inlets area and 

fans area are key in tunnel ventilation design; thus, almost three main areas need to be analysed 

(near fans, near inlets and the intermediate area). Moreover, due to the large dimensions of 

the building and as indicated in the literature, the measurements only covered these areas of the 

building (Section A, Section B and C). As the building has no background of mortality in 

specific points and this ventilation system had recently been installed, the location of the 

tripods was randomly trying to cover the entire area of the study. 

CFD simulations and direct measurements will confirm these three sections have different 

air velocity behaviour. In this sense, Figure 4.6 shows this different behaviour in terms of 

air velocity distribution: 

(1). Section A showed great changes in air velocity and trajectories; we find a ―dead zone‖ 

(very low air velocities) very close to zones with high values and turbulence. 

(2). Section B was very homogeneous in air velocity distribution and presented high values 

if several fans were working; the trajectories did not show multi-directionality, as they are 

almost perpendicularly oriented to the fans. 

(3). Section C showed very high air velocity values with a discrete number of fans working; 

air velocity trajectories are oriented to the fans the same as in Section B, but the air velocity 

values were higher than in Section B mainly when the number of fans was increased. 

One simple assumption in tunnel ventilation is to calculate the air exchange and to divide it 

by the section (Daghir, 2001); the result is estimative, because it is assumed equal for the 

whole horizontal plane and this is not true, as shown in Figure 4.6. Turbulence, roughness 

or the assumptions of dimensions give rise to estimative results in comparison with 

accurate methods such as CFD or direct measurements. CFD also provides the trends of 

airflow in planes as we can see in Figure 4.6. For example, in the case of the Operation IV, 

the air exchange of the five fans is 190,000 m
3
·h

−1
(38,000 m

3
·h

−1
× 5 fans), the section is 

34.77 m
2
; thus, 190,000/34.77= 5464.48 m·h

−1
(=1.52 m·s

−1
) while the CFD results are 

1.45± 0.34 m·s
−1

 (Table 4.4) and for direct measurements the outcomes are 1.40± 0.30 m·s
−1

. 

The results are similar in finding discrepancies in this method for the above mentioned 

reasons (turbulence, roughness...). 

In Table 4.4, we can see very high air velocity values if the number of fans working is 

increased; these values can be dangerous for the broilers, as they may suffer from colds, 

respiratory diseases or feeding problems. 

According to Table 4.4 and Figure 4.6, tunnel ventilation is a good system to lower heat in 

broilers and the associated mortality, as it achieves high air velocity values. At broiler level, 
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the maximum air velocity was 2.72±0.31 m·s
−1

 (CFD) and 2.58±0.29 m·s
−1

 (measured) in 

Operation VIII, Section B and the minimum was 0.49±0.12 m·s
−1

 (CFD) and 0.47±0.11 

m·s
−1

 (measured) in Operation I, Section C. 

The Validation model for CFD simulations concluded that the variable ―Methodology‖ 

(results by CFD simulations or direct measurements) and its interactions were not 

significant, as shown in Table 4.3. So, there is no difference between the use of these direct 

measurements or the corresponding CFD simulations to explore indoor air velocity in a tunnel 

ventilated broiler building, as in other similar studies of other ventilation systems (Bustamante 

et al., 2013). Therefore, CFD procedures are confirmed as suitable to explore this ventilation 

system using virtual geometries. Although we can obtain the exact values of air velocities 

using CFD simulations, as shown in Table 4.4, with CFD simulations we can also obtain 

excellent visual displays that provide a lot of information on the air flow characteristics and 

magnitude, as in Figure 4.6. After the good compromise between measurements and CFD, 

the main reason to have a dead zone is the location of the inlets in the lateral walls. If the 

tunnel building had the inlets in the opposite wall to the fans, this ―dead zone‖ would 

disappear, according to some virtual CFD simulations to be developed in future works. Of 

course, tunnel ventilation has a predominant dimension in air velocity (the longitudinal 

axis) and we observed minor deviations between measurements and CFD results. These 

small deviations are found in all sections, with the least punctual (maximum and minimum) 

relative error in the central section (Figure 4.5), as it is the most one-dimensional. However, the 

averaged relative error is very similar and small in all the sections. The amount of the data 

minimises the deviations in the averaged relative error. The sources of these errors can 

come from both sides (the CFD or the direct measurements). 

A broiler building which installs both mechanical ventilation systems (cross and tunnel) can 

be an interesting design. Combined periods using each ventilation system can be developed 

(cross in cold periods and tunnel in warm periods). In any case and in terms of air velocity 

values (obtained in Table 4.4), tunnel ventilation can be used for cold and warm periods. 

In subsequent studies, it will be interesting to compare empty and occupied broiler 

buildings by the specific nature of the broiler metabolism. In any case, an empty building is 

a permanent state to be analysed in depth. In fact, in this building, the level of occupation can 

be 22,000 broilers. A one-day-old broiler weighs around 44 grams and a broiler on the last 

day of rearing has a weight of 4202 grams (Zuidhof et al., 2014). The broiler metabolism at 

different levels and the same type of birds (also the feather, etc.) will lead to great changes 

in the measurements and numerical results. In this sense, it will be necessary to adapt the 

measurement system for the tough conditions in occupied broiler buildings. 
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4.5. Conclusions 

In this study, a CFD model of tunnel ventilated broiler building has been validated with 

direct measurements. No statistical difference has been found between measured and 

modelled data and therefore this model allows exploring practical management options of a 

tunnel ventilated building. 

Under warm conditions, tunnel ventilation is adequate in general terms to achieve a proper 

air velocity for broilers with a relatively low number of fans in action. CFD simulations allow 

prediction of the behaviour of airflow under different circumstances. This is essential 

information to optimise the management of tunnel ventilation. 

A tunnel ventilation system with lateral air entrances at one end of the building and exhaust 

fans at the other end, and three areas were identified according to ventilation patterns. Most of 

the building area achieves an adequate air velocity distribution for broiler growth under warm 

conditions. However, ventilation patterns are not optimal near building ends due to dead areas 

or excessive air velocity. Therefore, design of tunnel ventilation systems could be improved 

to avoid or minimise this effect and contribute to a sustainable broiler production. 
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Chapter 5 

Single-sided mechanical ventilation in broiler houses 

An adapted version is submitted to an international journal indexed in Journal 

Citations Report. 
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Abstract: In recent years, some broiler production farmers have incorporated 

mechanical single-sided ventilation (air inlets and fans located in the same 

lateral wall), especially in Mediterranean areas. Nevertheless, very little 

scientific information on the performance of mechanical single-sided 

ventilation systems is available to date. This ventilation system is fitted 

because it seems appropriate for these climatic areas and to diminish the 

stress and mortality of broilers in hot seasons. Obviously, it is essential to 

carry out studies using the scientific method. To this end, two powerful 

methodologies were found to study the indoor environments of broiler 

houses: CFD (Computational Fluid Dynamics) simulations and sensors 

(direct measurements). Thus, by means of a specific multi-sensor system, the 

CFD air velocity simulations were validated under very different typical 

scenarios in this type of livestock building. The ANOVA for the proposed 

validation leads to a p-value of 0.3908. In regard to this result, the 

methodology employed (CFD or sensors) is not significant. These CFD 

simulations were focused on this environmental parameter because its control 

and values were the most widespread method used to regulate the convective 

heat of broilers, which causes stress and mortality in hot seasons. The results 

show a wide range of air velocity values: the minimum CFD-value of air 

velocity at broiler level was 0.52±0.40 m s
-1

 and the maximum was 

1.29±0.41 m s
-1

. In this study, two major conclusions are drawn in terms of 

the indoor air velocity values: (i) excessively heterogeneity in their 

distribution on the plane of presence of the animals; and (ii) insufficient 

values to contribute to the thermoregulation of the birds and lower their 

internal heat and associated thermal stress in occasional periods of hot 

weather. In this article, mechanical single-sided ventilation was evaluated in 

a Mediterranean broiler house using CFD and sensors. This study can serve 

as guidance to explore other broiler house architectures and their 

management. 

Keywords: mechanical ventilation; single-sided; broiler house; 

Computational Fluid Dynamics (CFD); sensors. 
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5.1. Introduction 

Mechanical ventilation systems are needed in warm climates for broiler production. The 

configuration and management of these systems has been under investigation for decades 

(Charles et al., 2002; MWPS, 1990). Nowadays, cross ventilation systems are the most 

frequent in the Mediterranean area (Blanes-Vidal et al., 2008; Bustamante et al., 2013). 

However, in recent years, poultry houses from Mediterranean broiler production areas have 

been built installing mechanical single-sided ventilation as an emergent system. As its 

name suggests, mechanical single-sided ventilation consists of the inlets and outlets (fans) 

being located in the same wall. Scientific information on the performance of mechanical 

single-sided ventilation systems is not available today. All these experimental ventilation 

systems attempt to diminish the global energetic cost of the farms, while at least 

maintaining the needs of the animals, minimising pollutant emissions and using energy and 

water consumption efficiently, together with an improvement in the work of the farmers 

and their economic income. 

Due to the great importance of intensive broiler production farms worldwide, it is essential 

to explore all these ventilation systems to compare them. In fact, these studies were 

essential because the housing conditions influenced the animal welfare more than the flock 

density did (Dawkins et al., 2004). Basically, the mechanical single-sided ventilation 

system consists of exhaust fans located at the same wall as the inlets (Figure 5.1), and its 

effectiveness must be analysed using scientific methodologies. 

Earlier works have used CFD techniques to study the internal microclimate of poultry 

houses with other mechanical ventilation systems (Blanes-Vidal et al., 2008; Bustamante et 

al., 2013; 2014; Osorio et al., 2011; Mostafa et al., 2012; Pawar et al., 2007). A suitable 

control of some environmental parameters such as air velocity, temperature and differential 

pressure might lead to a reduction of energy and water consumption (May et al., 2000; 

Yavah et al., 2004) as well as improving broiler performance (Lott et al., 1998; Yanagi et 

al., 2002). On the other hand, we can find very interesting articles referring to the 

application of CFD techniques in naturally single-sided ventilation (Allocca et al., 2003; 

Dascalaki et al., 1996; Mokhtarzadeh-Dehghan et al., 1990; Papakonstantinou et al., 2000), 

but neither applied to livestock buildings nor to mechanical single-sided ventilation. 

Evidently, the validation of CFD simulations by specific measurement systems in broiler 

buildings and livestock buildings was necessary. In this sense, Bustamante et al., 2012 

developed a multi-sensor system for isotemporal measurements of air velocities that will 

validate the CFD results. Moreover, in this article, we study the exact effect of the 

installation of diffusers in fans in this ventilation system, as their influence has not been 
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analysed to date. These diffusers are used to prevent direct air flow to the birds located in 

front of the fans, avoiding colds or respiratory diseases of the birds, especially when they 

are featherless (early stages of the bird’s life). Nevertheless, farmers think that this 

installation worsens the indoor environment in the fatal episodes of hot seasons. 

Summarising, the objectives of this article are to study the indoor air velocity distribution 

achieved in mechanical single-sided ventilation on broiler houses. In this research, by 

means of two methodologies (CFD procedures and the direct measurements using a multi-

sensor system), we shall obtain several results to characterise this ventilation model. In this 

sense, direct measurements can only provide values at the discrete coordinates of location 

of sensors, whereas the CFD results can offer knowledge of the whole indoor environment. 

For this reason, a validation of the CFD results is performed. Therefore, considering this 

validation, the CFD results are accepted as a valid methodology to study the whole indoor 

environment and also to analyse the effect of the diffusers. The field experiments are 

performed in different typical scenarios on a broiler house in Western Europe (Spain) and 

focused on the distribution of the air velocity values, because the control of this 

environmental parameter is the most widespread method to regulate the convective heat of 

broilers, which causes stress and mortality in hot seasons. 

5.2. Materials and methods 

5.2.1. Assay building 

A broiler building equipped with mechanical single-sided ventilation located in Western 

Europe (Spain) was evaluated. Figure 5.1 shows the broiler building and how the inlets and 

outlets (exhaust fans) were located in the same wall. The building dimensions were: length, 

110 m; width, 12.60 m; sidewall height 2.6 m; doubled pitched roof (slope 21.53 %). As 

shown in Figure 5.1, several exhaust fans (nine) were installed. The building was also 

equipped with 66 inlets placed at 1.51 metres height, with automatic management. The 

building was empty during the field experiments. Due to the dimensions and the complexity 

of measurements, the test zone was set to be a 24 m section of the building in which there 

were 2 exhaust fans and 14 inlets. This section approximation can be considered 

representative, as previously suggested by Blanes-Vidal et al., 2008 and Bustamante et al., 

2013. 
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Figure 5.1. Mechanical single-sided ventilated broiler house. 

 
5.2.2. Fans, inlets and diffusers 

The degree of opening of inlets is the same when selecting the operation settings. The 14 

inlets were located at the same height from the floor (1.51 m), distributed equally, and only 

three inlets were longitudinally displaced (a few centimetres) to locate the exhaust fans (see 

Figure 5.2). 

Figure 5.2. Inlets, outlets (fans) and diffusers. 
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The exhaust fans were located at 1.14 m height on the same wall. The diffusers were also 

used to hermetically close the fans when they were not in action; the diffusers can easily be 

dismantled and the fans can operate without them. In the experimental broiler building, the 

diffusers opened a length of 0.24 metres when the fans were in action and this distance was 

also calibrated from all diffusers (see Figure 5.2). 

5.2.3. Scenarios 

The field tests comprised 6 experimental scenarios at different Boundary Conditions (BCs). 

These scenarios were used in the habitual management of this broiler building. Three 

scenarios were performed using the fans without diffusers, while the other three scenarios 

were performed repeating the same BCs (degree of opening of inlets and fans in action) but 

including the diffusers at fans opening to the maximum length of 24 cm. The first three 

scenarios without diffusers were performed at a differential pressure of 30 Pa, 38 Pa and 50 

Pa and the degrees of opening of inlets for each scenario were 90º, 50.56º and 28.95º 

respectively. This degree of opening of the inlet refers to the angle formed by the inlet and 

the associated flap, as shown Figure 5.2. 

5.2.4. Multi-sensor system and points of measurement 

By means of a multi-sensor system previously designed (Bustamante et al., 2012) with 

sensors of air velocity, temperature and differential pressure, the air velocity was measured 

at 30 different points. The 30 air velocity sensors were placed in 15 different locations at 

two heights: at the level of one adult broiler (0.25 metres) and at 1.75 metres. The spatial 

distribution of the tripods was set randomly, trying to measure at all areas of the test 

section. Figure 5.3 shows the test section and Table 5.1 the coordinates of sensors. 

Figure 5.3. Test section in the broiler house. 
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Table 5.1. Sensor coordinates (the origin of the coordinates is indicated in Figure 5.3). 

Sensor number 
Test Section 

X-coordinate (m) Y-coordinate (m) 

1–2 2.74 6.44 

3–4 5.50 4.70 

5–6 8.98 7.13 

7–8 19.28 6.34 

9–10 14.61 6.31 

11–12 18.37 1.52 

13–14 15.57 2.74 

15–16 14.55 4.96 

17–18 1.75 11.33 

19–20 5.00 8.89 

21–22 6.91 7.77 

23–24 3.81 1.65 

25-26 5.63 3.67 

27-28 21.33 11.31 

29-30 15.33 9.98 

5.2.5. CFD techniques 

In the present study, CFD FLUENT (Fluent, 2001) was used to perform the CFD 

simulations. The geometry model and mesh were developed using the pre-processor 

GAMBIT (Gambit, 2001) by FLUENT. These CFD techniques resolve a set of partial 

differential equations (PDEs) (Norton et al., 2007; Patankar, 1980) that corresponded to 

equations of continuity (Equation 5.1), conservation of momentum (Navier-Stokes's law) 

(Equation 5.2) and the energy equation (Equation 5.3). 
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where ρ: fluid density (kg m
-3

); t: time (s); u, v, w: velocity (m s
-1

); Sm: mass source (kg m
-

3
); p: pressure (Pa); τ: stress tensor (Pa); g: gravitational acceleration (m s

-2
); F: external 

force vector (N m
-3

); E: total energy (J); keff: heat transmission coefficient; T: temperature 

(K); h: specific enthalpy (J kg
-1

); J: component of diffusion flux (kg m
-2

 s
-1

); Sh: total 

entropy (J K
-1

). 

Moreover, CFD simulations were conducted using the standard k-ε turbulence model. 

Reynolds Averaged Navier-Stokes (RANS) turbulence models are generally used to 
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perform CFD simulations in livestock buildings (Bartzanas et al., 2007; Norton et al., 

2007). This standard k-ε turbulence model is robust with good results and easy convergence 

(Launder and Spalding, 1974); besides, it was already used to study transversal mechanical 

ventilation (cross) in broiler houses (Blanes-Vidal et al., 2008; Bustamante et al., 2015). 

5.2.6. Geometry, meshed and BC 

The geometry of the farm was modelled in its real dimensions. The exhaust fans are 

considered circles of diameter 1.28 m and the inlets were accurately modelled, including 

the flap in the degree of opening at each scenario (Bjerg et al., 2002). 

Following the same experimental set up as in direct measurements, CFD simulations were 

developed which corresponded with the six scenarios tested (three with diffusers and three 

without them). The mesh domain built in GAMBIT (Gambit, 2001) was exported to the 

CFD-solver FLUENT (Fluent, 2001), which solved the above mentioned governing PDEs 

(Equations 5.1, 5.2 and 5.3) in each mesh of the computational domain. In the present 

article, three-dimensional CFD simulations discretised in finite volumes using SIMPLE 

(Semi-Implicit Method for Pressure-Linked Equations) algorithm (Patankar, 1980), second 

order discretisation schemes (Patankar, 1980), standard k-ε turbulence model and wall 

functions (Fluent, 2001) were used in the numerical simulations. Concluding CFD 

simulations were selected as the numerical results were stabilised when refinement of the 

mesh was increased. To this end, a mesh convergence test was performed. In this test, four 

different meshes were analysed: Mesh A (~0.6 millions of cells), Mesh B (~1.8 millions of 

cells), Mesh C (~2.3 millions of cells) and Mesh D (~3.5 millions of cells). Increasing the 

number of cells, the numerical results are stabilised and for this reason, we chose Mesh D 

to perform the CFD simulations. By this procedure, we ensure that the numerical results are 

not affected by the mesh (grid independence). Moreover, to also study the quality of the 

mesh (composed mainly of tetrahedral cells), the equiangular skewness command of 

GAMBIT (Gambit, 2001) was used. 

It was assumed that the flow is steady, three-dimensional, viscous, turbulent and 

incompressible. The air properties are considered constants and their values are shown in 

Table 5.2. Gravitational acceleration was also considered. Table 5.2 summarises the 

constants and computational settings applied to all CFD simulations. 

Table 5.2. Constants and computational settings in all CFD simulations. 

Computational settings and constants in all CFD simulations 

Precision 3D double precision 

Turbulence Mode Standard k-ε 
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Wall Treatment Standard Wall Functions 

Pressure-velocity coupling SIMPLE algorithm 

Discretization Scheme for: 

Pressure 

Momentum 

Turbulent kinetic Energy 

Turbulent Dissipation Rate 

Energy 

 

Second Order Upwind 

Second Order Upwind 

Second Order Upwind 

Second Order Upwind 

Second Order Upwind 

Air properties: 

Density 

Cp 

Thermal Conductivity 

Viscosity 

 

1.225 Kg m
-3

 

1006.43 J kg
-1

K
-1

 

0.0242 W m
-1

 K
-1

 

1.789·10
-5

 kg m
-1

s
-1

 

Atmospheric Pressure 101,325 Pa 

Gravitational acceleration 9.81 m s
-2

 

In addition, some specific Boundary Conditions (BCs) for each CFD simulation were 

required as particular inputs. In this study, the air velocity at inlets and the airflow and 

pressure at outlets were measured. The average of air velocity at inlets from each scenario 

was entered into the CFD software, as indicated in Table 5.3. The air velocity at inlets (m s
-

1
) was obtained from the measurements at each inlet using a calibrated Testo 425 hot-wire 

anemometer (Testo, 2015); then, the average of all inlets was calculated and entered into 

the CFD software. The % of airflow from each outlet was determined considering a same 

equal value for each single fan (outlet) at each scenario, and the same equal value of 

pressure was considered from each fan (outlet) at each scenario. The air flow was measured 

using the procedures of Calvet et al., 2010; these procedures consist of ducting the exhaust 

air 50 cm from the fan and then measuring at 24 different locations in the section using a 

hot wire anemometer (ASHRAE, 2001). The pressure at outlets was measured using 

HCXM010D6V differential pressure sensors from Sensortechnics Inc (Sensortechnics, 

2015). These differential pressure sensors are already used and calibrated again from this 

study by the procedures described in depth in Bustamante et al., 2012. Blanes-Vidal et al., 

2008 concluded that both BC options (% of airflow or pressure) led to good numerical 

results but the best fit and results were obtained when the BCs are the air velocity at inlets 

and % of airflow at outlets. In this study and in accordance with this comment, we 

performed the CFD simulations using these two BC options, but only developing the 

validation and characterisation of this ventilation system from the option with best fit and 

accuracy. 

On the other hand, the air temperatures at inlets and at outlets was also measured, as the 

temperature fluctuations at inlets and at outlets were negligible in each scenario; one 

average from air temperature at inlets and another average from air temperature at outlets 
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was introduced, as indicated in Table 5.3. The surface temperature of internal solid 

elements was measured using a portable non-contact thermometer. Table 5.3 summarises 

the specific BCs and particular characteristics set to perform the CFD simulations. 

Table 5.3. Specific BCs and particular characteristics to perform the CFD simulations. 

CFD 

Simul 

(Scen.) 

Diffus

ers 

Degre

e of 

openi

ng of 

inlets 

Total 

airflow 

of the 

broiler 

house 

(m3 h-1) 

% 

Airflow 

of each 

single 

fan 

(m3 h-1) 

[kg s-1] 

Press. 

at 

outlets 

(Pa) 

Air 

temper. 

at outlets 

(K) 

Air 

veloc. 

at 

inlets 

(m s-1) 

Air 

tempe

rature 

at 

inlets 

(K) 

I No 90º 333,000 37,000 

[12.34] 

30 304.6 7.70 305.3 

II Yes 90º 329,850 36,650 

[12.22] 

32 304.6 7.63 305.3 

III No 50.56º 320,400 35,600 

[11.87] 

38 304.3 7.41 305.1 

IV Yes 50.56º 314,100 34,900 

[11.63] 

42 304.3 7.26 305.1 

V No 28.95º 301,500 33,500 

[11.16] 

50 304.6 6.97 305.5 

VI Yes 28.95º 293,400 32,600 

[10.87] 

55 304.6 6.78 305.5 

5.2.7. Validation of CFD results 

5.2.7.1. General context 

The validation was carried out in two ways: a regression line and an ANOVA analysis. As 

explained above, the validation of CFD simulations was performed by comparing the 

simulation results with direct measurements at 30 locations. During the field experiment 

(10 minutes registering in each scenario), a total of 21,600 air velocity measurements were 

taken at the 6 scenarios. 

5.2.7.2. Regression model comparing CFD vs. measurements, errors 

To compare both types of data (CFD vs. direct measurements), a lineal regression was 

done. This lineal regression model is in the form: 

measCFD VV  
 

(5.4) 

where, 

Vmeas is the average of the measured air velocity using the multi-sensor system 
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VCFD is the air velocity obtained in the CFD simulations 

The slope of Equation 5.4 (β) is an indicator of systematic errors if significantly differs 

from 1. 

Moreover, the relative error in the i point (Ei) can be calculated by Equation (5.5): 

meas

CFDmeas
i

V

VV
E




(5.5) 

where, 

Vmeas is the average of the measured air velocity the multi-sensor system at point i 

VCFD is the air velocity obtained in the CFD simulations at point i 

5.2.7.3. ANOVA for validation 

The validation consists of a statistical comparison between CFD-air velocity results and the 

direct measurements. By means of an analysis of variance (ANOVA), we can study the 

significance of the different variables (―Pressure‖: P, ―Height‖: H, ―Methodology‖: M and 

―Diffuser‖: D) with the most important being the ―Methodology‖ (M) variable and the 

―Diffuser‖ (D) variable. 

The proposed models for the validation are Equation (5.6) (eliminating the ―Diffuser‖ 

variable) and the Equation (5.7) (including the ―Diffuser‖ variable): 

ijkijk

jkikijkjiijk

MHP

MHMPHPMHPY









)(

)()()( (5.6) 

ijklijkleqjklikleq

ijleqijkeqkljljk

ileqikeqijeqlkjeqiijkl

DMHPDMHDMP

DHPMHPDMDHMH

DPMPHPDMHPU











)()()(

)()()()()(

)()()( (5.7) 

In both models, we also included all the possible interactions between the deployed 

variables: P, H, M and D as shown in Equation (5.6) and Equation (5.7). 

5.2.8. Characterisation of the ventilation model 

CFD techniques offer an important variety of resources and commands able to characterise 

this ventilation system. In this way, we highlight the strategy of creating points of interest 

and isosurfaces. Thus, we can create points of interest in the three-dimensional space of the 

broiler building that correspond to real or ―virtual‖ sensors and obtain the numerical results 

there. On the other side, we can create isosurfaces; by definition, an isosurface is a surface 
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that connects points of equal nature. For the needs of this study, we created isosurfaces that 

connect points of equal height. In this sense, we created isosurfaces at 0.25 m from the 

floor because they can correspond to the height of an adult broiler. By this procedure, we 

obtained an easy visualisation mode to understand the behaviour of this ventilation system 

in crucial surfaces such as the plane of presence of animals or the diffuser areas. These 

isosurfaces can incorporate a variety of scales of colours very illustrative of the desired 

parameter, in our study, for the air velocity distribution. 

5.3. Results 

5.3.1. Regression line 

The lineal regression in the 180 studied points of the measured air velocity and that 

obtained by CFD simulations were performed (Equation 4). As we expected and according 

to the comments of Blanes-Vidal et al., 2008, the best fit is achieved when the BCs are the 

air velocity at inlets and the % of airflow at outlets, although both numerical results are 

very similar (differences of less than 4 %). For the best option and fit (air velocity at inlets 

and % airflow at outlets), the coefficient of determination of the linear regression was 0.98 

(Figure 5.4). 

Figure 5.4. Regression line of CFD results vs. direct measurements in the 180 points 

studied. 

 

The independent term is 0.934; thus, CFD results overestimate the direct measurements by 

6.6 % (systematic error). The dependent term is 0.020, nearly 0. 
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The relative error (Equation (5.5)) shows maximums and minimums. The maximum 

relative error for the whole experiment was 14.70 % (Scenario II) and the minimum was -

14.62 % (Scenario V). 

5.3.2. ANOVA results of the validation Models 

Using the analysis of variance (ANOVA) in SAS system (SAS, 1998) from the proposed 

models of validation (Equations 5.6 and 5.7), we determined that the ―Methodology‖ 

variable (CFD results or direct measurements) is not significant (P-value<0.3908), i.e., the 

methodology used is indifferent. Similarly, the ―Diffuser‖ variable (inclusion or elimination 

of the diffuser) is not significant either (P-value<0.6106), i.e., the incorporation of the 

diffusers is indifferent because it did not significantly affect the indoor environment. In 

contrast, we determined that the ―Height‖ variable and the ―Pressure‖ variable are both 

significant (P-value<0.0001); therefore, both variables have a significant effect on the 

resulting indoor air velocities. Table 5.4 and Table 5.5 show all of the ANOVA results from 

the proposed validation models (Equations 5.6 and 5.7 respectively). 

Table 5.4. ANOVA for air velocity at different scenarios excluding the “diffuser” variable 

(from Equation 5.6). 

Variables DF Sum of 

squares 

Mean 

Square 

F-ratio p-value 

Pressure 5 12.82 2.56 24.47 <0.0001 

Height 1 11.33 11.33 108.12 <0.0001 

Methodology 1 0.08 0.08 0.74 0.3908 

Pressure × Height 5 4.93 0.99 9.41 <0.0001 

Pressure × 

Methodology 

5 0.01 0.002 0.02 0.9999 

Height × 

Methodology 

1 0.02 0.02 0.18 0.6739 

Pressure × Height × 

Methodology 

5 0.02 0.003 0.03 0.9996 

Error 336 35.22 0.10 

Table 5.5. ANOVA for air velocity at different scenarios including the “diffuser” variable 

(from Equation 5.7). 

Variables DF Sum of 

squares 

Mean Square F-ratio p-value 

Pressure 2 12.58 6.29 60.00 <0.0001 

Height 1 11.33 11.33 108.12 <0.0001 
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Methodology 1 0.08 0.08 0.74 0.3908 

Diffuser 1 0.03 0.03 0.26 0.6106 

Pressure × Height 2 4.89 2.44 23.31 <0.0001 

Pressure × 

Methodology 

2 0.007 0.004 0.04 0.9655 

Pressure × Diffuser 2 0.22 0.11 1.04 0.3549 

Height × 

Methodology 

1 0.02 0.02 0.18 0.6739 

Height × Diffuser 1 0.0003 0.0003 0.00 0.9553 

Methodology × 

Diffuser 

1 0.00002 0.00002 0.00 0.9880 

Pressure × Height × 

Methodology 

2 0.01 0.006 0.06 0.9422 

Pressure × Height × 

Diffuser 

2 0.05 0.02 0.22 0.8033 

Pressure × 

Methodology × 

Diffuser 

2 0.001 0.0007 0.01 0.9934 

Height × 

Methodology × 

Diffuser 

1 0.003 0.003 0.002 0.8754 

Pressure × Height × 

Methodology × 

Diffuser 

2 0.00008 0.00004 0.00 0.9996 

Error 336 35.22 0.10 

5.3.3. CFD numerical results in the sensor coordinates 

Using the strategy of the creation of points of interest in CFD at the same coordinates (30 

coordinates, 6 scenarios) that correspond to the location of the physical sensors, we 

obtained the average of the numerical results of air velocity in these coordinates. These 

values (in m s
-1

) are expressed in Table 5.6. 

Table 5.6. Air velocity in m s
-1

 (average ± standard deviation) obtained in CFD 

simulations. 

Scenario Diffusers Height Air 

velocity 

(m s
-1

)

Scenario Diffusers Height Air 

velocity 

(m s
-1

)

I No 0.25 m 0.52±0.40 II Yes 0.25 m 0.54±0.37 

1.75 m 0.44±0.30 1.75 m 0.53±0.36 

III No 0.25 m 1.29±0.41 IV Yes 0.25 m 1.26±0.39 

1.75 m 0.69±0.23 1.75 m 0.62±0.22 

V No 0.25 m 1.08±0.39 VI Yes 0.25 m 1.01±0.36 

1.75 m 0.63±0.25 1.75 m 0.58±0.23 

In Table 5.6, we can observe the minimum influence of the inclusion of the diffusers in the 

indoor air velocity values, comparing the results of Scenario I vs. II (differences of 0.02 m 

s
-1

 at 0.25 m), Scenario III vs. IV (differences of 0.03 m s
-1

 at 0.25 m) and Scenario V vs. 
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VI (differences of 0.07 m s
-1

 at 0.25 m). Moreover, in all the scenarios, we can observe the 

great variability (large standard deviation) in the air velocity results. According to Table 

5.6, the highest ventilation rates of the broiler building (much exhausted air) do not 

necessary imply much air velocity at one space or surface of the broiler building (in this 

study, at the crucial level of the broilers’ life). Whereas the maximum exhausted air (the 

airflow is specified in Table 5.3) is in Scenario I and II, the air velocity values are less than 

half compared to Scenario III and IV with less exhausted air (Table 5.3). Thus, the adopted 

physical geometry of the broiler building (inlets and outlets) is essential to determine the air 

velocity distribution and values at each resulting scenario. 

5.3.4. CFD-air velocity isosurfaces 

Using the isosurface creation strategy, we obtained very illustrative planes that give an idea 

of the airflow trends and an estimation of values by colours or vectors in different critical 

spaces that are considered in the figures below. 

Comparing Figure 5.5 vs. Figure 5.6, we can observe the obstructive effect of the diffusers 

in the air in the plane of the diffusers (Y=0.24 m). In both figures, we can see the high 

values of the air entrance at the inlets. Despite the clear obstructive effect shown in the 

plane of Figure 5.6, the ranges of the air entrance at inlets are similar in both cases. 

Figure 5.5. Air velocity (values in m s
-1

) in a plane perpendicular to floor at 0.24 m of fans 

without diffusers (using colour scale). Scenario I. 
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Figure 5.6. Air velocity (values in m s
-1

) in a plane perpendicular to floor at 0.24 m of fans 

with diffusers (using colour scale). Scenario II. 

Figure 5.7 and Figure 5.8 show the air velocity circuit, indicating poor development of the 

air circuit in the opposite wall to the fans. 

Figure 5.7. Air velocity (values in m s
-1

) in a plane (X=18 m) without diffusers (using 

colour scale). Scenario III. 
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Figure 5.8. Air velocity (values in m s
-1

) in a plane (X=18 m) without diffusers (using 

vectors). Scenario III. 

 

 

In these Figures 5.7 and 5.8, we can appreciate the shape and intensity of the air circuit; the 

air passes through the inlets at high velocity, adopting a direction parallel to the roof and 

towards the opposite wall. Nevertheless, the intensity of the air velocity decreases rapidly 

and does not reach the opposite wall forcefully. The great influence of the geometry of the 

broiler building in the air velocity circuit is perceptible, especially the width and the slope 

of the roof. Moreover, the characteristics of the inlets (geometry and adopted form) and the 

fans (exhaust air) are also crucial in the development and intensity of these air velocity 

circuits. 

In Figure 5.9 and Figure 5.10, the undesired effect of poor ventilation in the opposite wall 

of fans can also be clearly appreciated. This air velocity distribution shows very low 

velocities in the wall opposite the fans. On the other side, we can see good ventilation near 

the roof and some stratification of the air velocity in parallel planes from the roof near the 

wall of inlets. This effect indicates the influence of the inlets and adopted geometry (flap 

orientation) in this air velocity distribution. 
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Figure 5.9. Air velocity (values in m s
-1

) in a plane (X=18 m) with diffusers (using colour 

scale). Scenario IV. 

Figure 5.10. Air velocity (values in m s
-1

) in a plane (X=18 m) with diffusers in another 

scenario (using vectors). Scenario IV. 
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Finally, the planes at broiler level (0.25 m) in Figure 5.11 and Figure 5.12 are also crucial, 

because they show the air velocity distribution in the huge living space of the bird. 

Figure 5.11. Air velocity (values in m s
-1

) in the broiler level plane without diffusers (using 

colour scale). Scenario V. 

 

Figure 5.12. Air velocity (values in m s
-1

) in the same plane as Figure 11 with diffusers 

(using colour scale). Scenario VI. 
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As we expected, poor ventilation in the opposite wall of the fans (especially between fans) 

and enormous heterogeneity are visibly appreciated. Thus, the heterogeneity in the air 

velocity distribution is one of the main characteristics and a big problem in mechanical 

single-sided ventilation. Furthermore, we can use the visualisation of these planes to choose 

the suitable scenario for each season (summer or winter, for example) or climatic situation. 

As we can observe in Table 5.6, the highest rates of ventilation on the broiler building do 

not necessary imply much air velocity at broiler level and this illustrative CFD-isosurfaces 

strategy may be an easy way to choose the best scenario for each climatic situation in terms 

of air velocity distribution. 

According to the visualisation of all the figures, the heterogeneity is mainly caused by a 

poor development of the air velocity circuit, which does not reach the opposite wall to the 

fan and between fans with intensity. In this sense, the mortality of broilers in hot seasons on 

this experimental broiler building is observed in these areas of poor ventilation. 

5.4. Discussion 

In the present article, mechanical single-sided ventilation in livestock buildings was studied 

in a poultry house under a negative pressure system applied for broiler production. This 

emergent ventilation system has recently been incorporated, especially in Mediterranean 

areas and designed for some businesses in the sector (Serupa, 2015; Warkup, 2015). 

Surprisingly, no published scientific literature was found referring to mechanical single-

sided ventilation in livestock buildings or broiler houses; only some papers referring to 

naturally single-sided ventilation (Allocca et al., 2003; Dascalaki et al., 1996; 

Mokhtarzadeh-Dehghan et al., 1990; Papakonstantinou et al., 2000), but neither applied to 

livestock buildings nor to mechanical single-sided ventilation. This ventilation system was 

analysed using two methodologies: direct measurements by means of a multi-sensor system 

and CFD simulations. To this end, we validated the CFD simulations and also analysed 

mechanical single-sided ventilation in a typical broiler house of Spain (Europe). 

The results of field experiments (direct measurements) and CFD simulations showed that 

the ranges of air velocities at broiler’ level were between ~0.40 m s
-1

 to ~1.30 m s
-1

. Both 

methodologies (CFD and direct measurements) showed similar air velocities, with values at 

the average. In this sense, the validation models for CFD simulations by means of a 

Generalised Linear Model (GLM) using SAS systems (SAS, 1998) concluded that the 

―Methodology‖ variable (results by CFD simulations or direct measurements) is non 

significant (P-value<0.3908), along with its interactions. Thus, we can use direct 

measurements or CFD simulations to explore indoor air velocity in this ventilation system 
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in broiler buildings. Moreover, it was also confirmed by ANOVA that the ―Diffuser‖ 

variable is not significant (P-value<0.6106), as well its interactions. Thus, the inclusion of 

the diffuser altered the air velocity distribution, but no significant variations or tendencies 

were observed. On the contrary, the ―Pressure‖ variable and ―Height‖ variable had a 

significant effect (P-value<0.0001) on the indoor air velocities. 

The results of Table 5.6 are very interesting, as they show that highest ventilation rates on 

the broiler building (much exhausted air) do not necessary imply much air velocity at level 

of the broilers. If the maximum exhausted air (the airflow is specified in Table 5.3) took 

place in Scenario I, the air velocities reached at broilers’ level are the minimum of all the 

scenarios (less than half, compared with Scenario III with less exhausted air). Thus, the 

adopted geometry of the broiler building (physical configuration of inlets and outlets, 

associated BCs…) is crucial to obtain a determinate air velocity distribution and values, 

more than the rates of ventilation of the whole broiler building. In this sense, we can use 

CFD techniques to explore ―virtual‖ geometries of broiler buildings and to find the optimal 

building designs, best scenarios and associated best managements. Obviously, according to 

the season (summer, winter…) or climatic situation, the management of a broiler building 

will be different in order to obtain some ranges of values of air velocity or others. 

Moreover, we can use CFD techniques and their strategies to compare with other 

mechanical ventilation systems (cross, tunnel…). Validation was essential in order to use 

CFD procedures securely to explore and characterise this ventilation system and in future 

comparisons with other ventilation systems. In this sense, we also obtained a good fit 

(R
2
=0.98) in the regression line and a minimum acceptable systematic error (overestimation 

of CFD simulations by 6.6 %). Having validated the CFD simulations, we have obtained a 

powerful tool to understand the whole indoor air velocity behaviour, as they can offer more 

possibilities (full knowledge of the indoor environment, easy building of ―virtual‖ farms 

and geometries, illustrative graphics…) than complex direct measurements. 

In this broiler building, the air velocity values are acceptable in normal weather of 

Mediterranean climate and discretely superior to those obtained in cross mechanical 

ventilation (Blanes-Vidal et al., 2008; Blanes-Vidal et al., 2010; Bustamante et al., 2013) 

although a future precise comparison is necessary. The minimum CFD-value of air velocity 

at broiler level was in Scenario I (0.52±0.40 m s
-1

) and the maximum was in Scenario III 

(1.29±0.41 m s
-1

), as shown in Table 5.6. Unfortunately, this forced ventilation is a good 

ventilation system for broiler production only in normal weather conditions, as it does not 

provide much air velocity at broiler level (Table 5.6) to prevent occasional episodes of high 

mortality or thermal stress in hot seasons or hot climate. 
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However, the exact values of air velocities can be obtained by CFD techniques (Table 5.6) 

at points that may represent real or ―virtual‖ sensors. CFD outputs using isosurfaces (Figure 

5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11 and 5.12) are a very illustrative strategy, as commented 

above. These figures are essential in showing the characteristics of the ventilation system. 

According to the ANOVA and these figures, we can observe that the diffusers ―break‖ the 

airflow and diminish the air velocity only in their immediate vicinity, but do not affect the 

overall indoor air velocity significantly in other areas of the broiler building. Figure 5.6 

showed very clearly that they ―obstructed‖ and ―strangulated‖ airflow near them. On the 

other hand, Figure 5.9 (colours) and Figure 5.10 (vectors) showed their ―obstructive effect‖, 

as though forming a wall. Moreover, these two figures showed that the air velocity vector 

was altered only near the diffusers, without affecting the indoor air velocity; the air velocity 

module was ―broken up‖, gaining in multidirectionality. This effect was homogenised and 

decreased the high air velocities values near the diffusers, with a gain in multidirectionality 

of air velocity and a decrease in ventilation rates of fans. In this sense, the height location of 

fans (at 1.14 metres height) minimises their effect, as shown in Figure 5.11 and Figure 5.12. 

Figure 5.7 and Figure 5.8 are crucial in understanding the main drawback of this ventilation 

system: the air velocity circuit has poor development and the intensity of the air velocity 

drops rapidly and does not reach the opposite wall and between fans forcefully. In this 

sense, the characteristics of the inlets (geometry and adopted form) and the fans (exhausted 

air) are also crucial in these air velocity circuits. Logically, the fatal episodes of high 

mortality of broilers are precisely observed by the farmer in these areas of poor ventilation. 

According to this article, the use of the diffusers is recommended because they do not 

significantly alter the values of indoor air velocities at broiler level, as the farmers 

erroneously used to believe, and they prevent high air velocities near the broilers. 

Furthermore, considering their non significant global consequences in indoor air velocity 

behaviour, their installation is positive because they could prevent colds or respiratory 

diseases, especially in the early stages of broiler life. 

In line with the results, mechanical single-sided ventilation does not solve occasional 

problems of thermal stress and mortality of broilers in hot seasons or hot climate. In 

addition, two important problems are currently found: the great hetereogeneity of the air 

velocity distribution and the poor ventilation in some areas of the broiler building. In this 

sense, the ventilation efficiency can be improved by optimising the geometry of the broiler 

building (especially width and slope of the roof), building ―virtual‖ geometries by means of 

CFD techniques, because in this experimental standard model of geometry of a 

Mediterranean broiler building the air circuits do not reach the opposite wall of fans and 
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between them with intensity. According to Dawkins et al., 2004, which affirmed « housing 

conditions had a greater influence than flock density on animal welfare», it is essential to 

find an optimal ventilation system and the best broiler building design for suitable 

management. 

5.5. Conclusions 

In this article, a mechanical single-sided ventilated poultry house from broiler production 

was studied using powerful methodologies: direct measurements by means of a multi-

sensor system and CFD techniques. Before this article, no scientific published literature of 

mechanical single-sided ventilation for livestock buildings can be found; only some 

interesting articles referring to naturally single-sided ventilation, but neither applied to 

livestock buildings nor to mechanical single-sided ventilation. 

CFD simulations are an important tool to explore the ventilation systems, offering more 

possibilities (exploration of ―virtual‖ broiler houses and geometries, knowledge of the 

whole indoor environment, illustrative planes or surfaces…) than complex direct 

measurements. In this sense, we validated the CFD simulations using a regression line and 

an ANOVA analysis. 

In the present article, we have obtained the first results of indoor air velocity in a broiler 

building in Spain (Europe) that has installed this ventilation system. At the present time and 

on this broiler building, we can affirm that mechanical single-sided ventilation is a good 

system, but does not achieve a great increase in air velocity at broiler level. The air velocity 

values are similar (discretely superior) to those obtained in cross mechanical ventilation, 

but more precise comparisons of both transversal mechanical ventilation systems must be 

done in the future. 

In this way, this ventilation is appropriate under normal weather conditions in 

Mediterranean climate but does not prevent occasional episodes of high mortality or 

thermal stress in hot seasons, because very high air velocities cannot be reached. In future 

studies, we can use both methodologies (direct measurements or CFD simulations) to 

explore indoor environments of this type of broiler houses, although CFD offers more 

possibilities and strategies. 

In this article, we can conclude that the highest rates of ventilation on the broiler building 

do not necessary imply much air velocity at broiler level, because the adopted geometry of 

the building (inlets, outlets…) is crucial and CFD techniques can help in this sense. 
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The influence of the diffusers was also tested and their use is recommended as they do not 

significantly alter indoor air velocity behaviour at broiler level, as the farmers previously 

and erroneously believed, and their use also prevents direct air flow to the broilers. 

The heterogeneity of the air velocity distribution and poor ventilation in some areas of the 

broiler building are a great problem in this ventilation system. To this end, the efficiency of 

the ventilation system can be improved by an optimisation of the geometry of the building 

(especially width and slope of the roof) using ―virtual‖ geometries by means of CFD 

simulations, as in this standard model of geometry of Mediterranean broiler house the air 

circuits do not reach the wall opposite the fans and between them with intensity. In this 

research line, it is essential to find the best ventilation system and the best broiler house 

design, developing the suitable management for each season or climatic situation. 

Future works must be carried out comparing empty and occupied broiler houses and also 

comparing all the current ventilation systems (cross, tunnel, single-sided...). 
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Chapter 6 

CFD applications in the heating and cooling systems 

of broiler houses: Designing a fogging system using 

CFD and sensors 

An adapted version is submitted to an international journal indexed in Journal 

Citations Report. 



Ph.D. Thesis         Universitat Politècnica de València 

156 

Abstract: Modern broiler houses have different variants of geometrical 

designs and ventilation systems installed. A properly designed cooling 

system is crucial to optimise their indoor environments, especially in hot 

weather. Fogging systems are usually installed in these broilers houses and 

require comprehensive knowledge of the indoor air velocity profiles. This 

complete knowledge and behaviour is essential to optimise the location of the 

pipes and the orientation of the fog spray nozzles. CFD simulations can 

provide this in-depth information and contribute to the design. Although each 

broiler house model needs a different fogging system design, the protocol and 

steps described in this study can be extrapolated to other broiler house 

models. Finally, an estimation of the cooling system water consumption is 

proposed and performed. 

Keywords: cooling, fogging systems, water-in-use, livestock buildings, 

broiler house, CFD. 
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6.1. Introduction 

The use of water in livestock buildings is vital to meet the biological needs of the animals. 

On the other hand, water is also indispensable to develop associated key functions of the 

livestock buildings and installed devices. In terms of installed devices and essential 

functions of these buildings, the heating and cooling systems are indispensable to ensure 

suitable indoor microclimate and psychometric conditions. Moreover, intensive animal 

production nowadays generally involves confining the animals in specific and 

technologically complex livestock buildings. Moreover, modern broiler houses usually 

install mechanical ventilation under negative pressure systems (Charles et al., 2002; 

MWPS, 1990). 

Livestock building cooling systems need an important amount of water to operate and their 

design and consumption must be optimised using current scientific procedures. In this 

sense, Computational Fluid Dynamics (CFD) can help in the general design and geometry 

of agricultural buildings (greenhouses or livestock facilities) (Bustamante et al., 2013; 

Mistriotis et al., 1997; Norton et al., 2007). These CFD techniques can also help in specific 

parts of the building design, such as the heating and cooling systems. In the case of heating 

systems, CFD techniques can incorporate the radiators or heat surfaces (Sevilgen et al., 

2011; Zajicek et al., 2014) in their simulations. For cooling systems, they can include 

analysis of the pad cooling (Franco et al., 2011) or fogging systems (Kim et al., 2008). 

Among livestock buildings, broiler houses are of great interest in terms of production and 

economic significance. Poultry production for meat (broilers) is a crucial food sector, with a 

total world production of 92,811,674 tonnes in 2012 alone (FAO, 2015). In this sense, a 

well-designed heating (for winter or cold weather) or cooling system (for summer or hot 

weather) is crucial to optimise animal production in modern broiler houses. Heating 

systems are required in cold weather, being especially necessary when the animals are 

younger and in the case of featherless birds. On the other hand, cooling systems are 

required in hot weather, developing two main variants: (i) use of pad cooling; (ii) use of 

fogging systems or nebulisation. However, in some discrete cases, both variants (pad 

cooling and fogging systems) may coexist in the same livestock building. 

The main purpose of cooling is to diminish the internal heat of the building (and therefore, 

the heat of the animals) to decrease the thermal stress on the animals. In some cases of 

medium-low temperature, an increase in air velocity is all that is required to increase the 

convective flux rate of the broilers and thereby reduce their thermal stress. However, if the 

temperatures are high, the assistance of the cooling systems is necessary because the 

increase in air velocity alone is not enough to adjust the thermoregulation of the broilers. 
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Moreover, bad indoor conditions such as high temperatures cause physiological responses 

including animal depression, exhaustion, a decrease in feed consumption and an increase in 

mortality (Donkoh, 1989; European Union Report, 2000). In these adverse conditions, the 

final weight of the broiler will decrease and it will be necessary to extend the rearing time 

in the broiler house to achieve the desired final weight of the broilers, involving an increase 

in costs and resources such as feed, water, electricity, human resources... 

As there is no single model for broiler building geometry and the ventilation possibilities 

can vary greatly, the design of the location of the pipes and the orientation of the fogging 

system nozzles will change. However, we can find minimum elements of any fogging 

system common to all broiler buildings: a water tank, a pump, filters, pipes and nozzles. 

Figure 6.1 shows the schematic of a fogging system in a broiler building. 

Figure 6.1. Minimum elements of a fogging system in a broiler building. 

 
The pump drives the water from the tank to the pipes (generally stainless steel) and the fog 

spray nozzles are located in these pipes. The fog spray nozzles expel the water in droplets 

of different size (diameter) according to the nature of the nozzles and the water pressure. 

This process is also called ―nebulisation‖ and the greater the pressure, the smaller the 

droplets will be, in order of microns (generally between 10-20 microns) (Li et al., 2008). It 

is essential to control the diameter of the water droplets, because if they are large they will 

drip down and soak the litter in the broiler building. This excess humidity in the litter could 

provoke sanitary problems and corns may also appear on the feet of the broilers, decreasing 

the quality of their meat (Almeida et al., 2010; Ross Breeders, 1996). Comprehensive 
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knowledge of the indoor air velocities (magnitude and direction) is crucial for the best 

design of the localisation of the pipes and the orientation of the fog spray nozzles when 

expelling water. To this end, CFD techniques provide this complete information. 

Obviously, direct measurements provide only some points of knowledge (the physical 

sensors), but it is necessary to validate the CFD outcomes to be able to use the numerical 

results reliably. Of course, Verification and Validation (V&V) of CFD results is crucial in 

these studies (Oberkampf et al., 2002). To this end and for broiler houses, we validated the 

CFD results for air velocity in a previous article (Bustamante et al., 2015 -chapter 4- ) using 

a multi-sensor isotemporal system (Bustamante et al., 2012). For these reasons and in this 

article, we use the same CFD procedures as in Bustamante et al., 2015 (chapter 4), but 

focused on these particular needs. 

The different variants of broiler building geometries and the different mechanical 

ventilation systems installed are a great drawback. Thus, there is no single optimum design 

for a fogging system, as the broiler buildings are different. Each broiler building model 

needs to be analysed separately, because the nature of the indoor air velocity can be 

different. Figure 6.2 shows some variant broiler building designs and the mechanical 

ventilation system installed: transversal ventilation (cross and single-sided), semi-tunnel or 

Mediterranean tunnel, (pure) tunnel.... 

Figure 6.2. Some broiler building design variants. Mechanical ventilation systems 

installed. 
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Although each broiler building model needs to be analysed separately, the protocol for their 

study will be the same; i.e., implementing the use of CFD techniques to understand the full 

behaviour of the indoor air velocity and then, to determine the best location of the pipes and 

orientation of the nozzles. Of course, some models may be more or less complicated 

depending on the nature of the indoor air velocity profiles. 

To sum up, in this study we focused on the design of the fogging systems, especially on the 

best geometrical disposition of the pipes and orientation of the fog spray nozzles. Finally, 

we calculated the water in use during a fogging period in order to estimate future 

consumption and maintenance procedures. In the present study, we experimented in a 

broiler building with mechanical tunnel ventilation under a negative pressure system 

described in depth in chapter 4 with very different indoor air velocity behaviour. 

Nevertheless, the protocol and procedures described in this study can be applied to any 

broiler house model. 

6.2. Materials and Methods 

6.2.1. The building 

In this study, we designed the location of the fogging system pipes and orientation of the 

nozzles of an important broiler house model: the Mediterranean tunnel or semi-tunnel. The 

geometry of this broiler house model appears in the upper right corner of Figure 6.2. The 

experimental broiler building is located in the Valencian Community (Spain) and is 

described in depth in chapter 4. Main dimensions were: length, 120 metres; width, 12.2 

metres; sidewall height 2.2 metres; double pitched roof (slope 21.3 %). Ten exhaust fans 

1.28 metres in diameter were installed. Eight exhaust fans were located on one façade 

(main façade) and the other two exhaust fans on the lateral façade, one fan on each lateral, 

near those located on the main facade of fans, as shown in the upper right corner of Figure 

6.2. The broiler building was also equipped with twelve inlets of dimensions 4.7x0.45 

metres placed at 0.3 metres height, controlled by an automatic system of two groups of six 

inlets located in the lateral walls; all inlets were located near the opposite façade of fans. 

6.2.2. Scenarios and field experimentation 

The combination of scenarios (fans in action) can be huge. However, we analysed an 

important number of scenarios that provide enough significant knowledge of the behaviour 

of the indoor air velocity characteristics (magnitude and direction) to successfully pursue 

our objective. In this study, we analysed nine typical settings, the same scenarios described 

in chapter 4. Initially, we started up the fans nearest the floor, followed by the fans farthest 
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from the floor and, finally, the fans located on the lateral walls. In scenario I, two fans were 

run at first, gradually adding one fan at a time until all eight fans on the main façade were 

on (scenario VII). Finally, the two lateral wall fans were also in action (scenario IX). Figure 

6.3 shows an illustrative summary of the nine scenarios analysed. 

Figure 6.3. Fans in action. Summary of scenarios. 

 

6.2.3. Instrumentation and measurements 

For the needs of this study, we used different types of instrumentation depending on the 

specific requirements: 

a) A multi-sensor system to measure the indoor air velocity values at different 

locations (this system has 30 physical sensors of air velocity measuring in isotemporal 

regime). These measurements were used to perform the validation of CFD results carried 

out and described in depth in chapter 4. 

b) Three 425 Testo hot-wire anemometers (Testo, 2015) for discrete measurements 

such as the air velocity at the inlets (windows) and the air velocity at the fog spray nozzles 

after design and construction of the fogging system. 
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c) Two 2000 mL graduated test-tubes to measure the water expelled by some fog 

spray nozzles (the same nozzles at which we measure the air velocity by means of 

anemometers). 

6.2.4. CFD techniques and General Validation 

CFD techniques can be used to explore ―virtual geometries‖ to construct new broiler 

buildings or to retrofit those already built to achieve greater efficiency (by retrofitting new 

walls, changing the slope of the roof, installing of new equipment…). CFD is already used 

to study indoor environments of poultry farms (Blanes-Vidal et al., 2008; Bustamante et 

al., 2013; 2015; Mostafa et al., 2012, Norton et al., 2007; Osorio et al., 2011). Obviously, 

validation of CFD is mandatory for this exploration, to ensure that the numerical results are 

valid and accurate. Likewise, it is also necessary to validate the procedures applied 

(Boundary Conditions adopted, protocol to obtain grid independence…). In chapter 4, we 

validated the CFD simulations of air velocity corresponding to the scenarios in the present 

study. For the needs of this study, we performed the CFD simulations of these scenarios 

and chose the best location for pipes based on these numerical simulations, which provide 

ample information on the indoor air velocity (magnitude and orientation). Then, we 

distributed the fog spray nozzles evenly along the pipes, orienting the direction of the water 

expelled from these nozzles, taking the magnitude and orientation of this air velocity into 

account. In CFD, we introduced the pipe coordinates (lines in CFD) and the coordinates of 

the fog spray nozzles to obtain these magnitudes and components (x, y and z) of the air 

velocity vectors. 

Although CFD procedures are described in depth in chapter 4, we summarise these CFD 

procedures here: 

a) We used the CFD commercial software Fluent (Fluent, 2001) and Gambit (Gambit,

2001). In the pre-processor of Fluent (Gambit) (Gambit, 2001), we created the broiler 

building geometry and the mesh. 

b) We studied the mesh sensitivity (grid independence) in a convergence test study. In this

way, increasing the refinement of the mesh, we achieved stability of the numerical results 

in meshed of roughly 3,6 millions of cells. 

c) We used the same Boundary Conditions (BCs) and the same protocols to obtain these

BCs for the inlets and outlets (fans). Hot-wire anemometry by means of Testo anemometers 

(Testo, 2015), the procedures of Calvet et al., 2010 to measure the airflow at fans and the 

differential pressure sensors described in Bustamante et al., 2012 to measure this parameter 

at fans. 
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d) We used the same turbulence model (RNG k-ε turbulence model) and wall functions 

(Patankar, 1980). 

e) Pressure and velocity were linked using the SIMPLE algorithm (Fluent, 2001) as well as 

the second order upwind scheme (Patankar, 1980). 

f) The air was considered steady, three-dimensional, viscous, turbulent and incompressible. 

Thus, the air properties are considered constants. 

In chapter 4, we validated the CFD simulations, concluding that there was no difference 

between the use of CFD or direct measurements by means of a multi-sensor system 

designed for online measurements in broiler houses. 

6.2.4.1. CFD-isosurfaces 

In CFD, we can use interesting strategies with illustrative outputs that quickly show the 

general trends of the indoor air velocity. In this way, we can create isosurfaces. An 

isosurface is a surface that connects points of equal nature. In our case, we can create 

planes of interest in some strategic locations in the broiler building. Thus, we can create 

transversal isosurfaces (planes) at the different transversal sections of the broiler building. 

On the other side, we can create other planes at different level of height from the floor 

(among others, the main interesting sections are the plane at broiler level and at the level of 

the sidewall - fog spray nozzle height -). In those isosurfaces which show the air velocity 

parameter, we can incorporate the colour scale and use of vectors. 

6.2.4.2. CFD-air velocity at fog spray nozzles and pipes 

In CFD, we can also create points and lines that represent the fog spray nozzles and pipes, 

respectively. By this strategy, we can obtain the CFD numerical results at the fog spray 

nozzles and at the pipes. As mentioned previously, it is crucial to know the air velocity 

characteristics; in our case, the magnitude and the direction or vector components (the main 

component of air velocity: in the three axes -X, Y or Z-) in order to best orient the fog spray 

nozzles when expelling water inside the broiler building. CFD Fluent (Fluent, 2001) 

provides the values of the air velocity in the different axes (vx, vy and vz). Of course, it is 

also important to know the air velocity value in the fog spray nozzle in order to determine 

whether this air velocity can assist the trajectory of the expelled water. 

In addition, using the ―Area Weighted Average‖ command of Fluent (Fluent, 2001), we can 

determine the average air velocity in the whole pipe (line). To do so in Fluent (Fluent, 

2001), we simply enter the coordinates of the line (pipe) corresponding to the physical pipe. 
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6.2.5. Testing the final fogging system design. Additional CFD 

Validation 

6.2.5.1. Testing the nozzles and determining the water in use in the 

fogging system 

After designing the fogging system and before its current use, we perform a final check. 

This final check consists of: 

(i) A visual inspection of the fogging system in operation. Before the current use in the 

broiler building with the birds, we start up the fogging system. This way, we can check that 

the nozzles expel water, as in some cases they may be blocked or not working properly. In 

this step, we check that they expel water and the orientation of the expelled water. 

(ii) By means of the graduated test-tubes (of 2000 mL), we estimate the exact amount of 

water expelled by each fog spray nozzle. In a broiler building, the number of nozzles is 

usually high and after an initial positive visual inspection (if they are not obstructed), we 

measure the exact quantity of expelled water. To do so, we place the graduated test-tube 

inside the fog spray nozzle and without losing any expelled droplets, we estimate the 

quantity of water in the graduated test-tube. In this experiment, we calculate the amount of 

water expelled over a 12 minute period. 

By this procedure, testing a set number of fog spray nozzles; e.g. analysing 3 nozzles per 

pipe (at the beginning, middle and end of the pipe), we obtain the minimum sample size 

with information and standard error and a % of confidence interval. The overall quantity of 

water in the cooling period in the broiler house will be the quantity of water from each fog 

spray nozzle by the total number of nozzles. As the fog spray nozzles share the same 

characteristics, in normal conditions (if the cooling system works well) each fog spray 

nozzle must expel the same quantity of water. In the present study, the expelled water will 

be measured in the same nozzles in which the air velocity is measured by means of the hot-

wire anemometers. 

6.2.5.2. Additional CFD Validation. Comparing CFD air velocity results 

with direct measurements at nozzles 

Although we performed a general validation of the CFD results described in depth (chapter 

4) and the entire CFD air velocity results are justified for the whole indoor space of the

broiler building, we also deployed an additional and specific final validation at some key 

points, such as the location of the nozzles. As commented above, a typical broiler building 
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usually contains a huge number of nozzles. For this reason, only in some discrete nozzles 

(in this case, in the same nozzles used to measure the expelled water), we shall measure the 

air velocity using three calibrated 425 Testo hot-wire anemometers (Testo, 2015). The 

protocol to measure air velocity at fog spray nozzles is very easy and rudimentary, using 

the shape of the fog spray nozzles and the pipe. Using wire, adhesive tape and brackets, we 

hang the three hot-wire anemometers up to measure for 20 minutes in each scenario. To 

save time, we keep the three anemometers in these fog spray nozzles and so can easily 

change the scenario from the PC in the control room. We repeat this procedure (hang and 

fasten the three anemometers in the fog spray nozzles) each time, changing the scenarios 

until a set number of nozzles (the sample size) has been studied. We follow this protocol 

when the nozzles are not expelling water. 

Using the CFD results and these measurements with the anemometers, a lineal regression 

will be performed. This lineal regression model is in the form (Equation 6.1): 

measCFD VV    (6.1) 

where, 

α is the dependent term 

β is the independent term 

Vmeas is the measured air velocity using the hot-wire anemometers 

VCFD is the air velocity obtained in the CFD simulations 

Additionally, we shall calculate the relative error of air velocity (EVel_i) in each fog spray 

nozzle (Equation (6.2)), 

meas

CFDmeas
iVel

V

VV
E


_  

(6.2) 

6.2.5.3. Number of fog spray nozzles tested. Sample size in finite 

populations 

The total number of fog spray nozzles in a broiler building is high. To test them in their 

entirety is impractical. Of course, a visual inspection of the fogging system can determine if 

the whole array expels more or less water. If one fog spray nozzle is blocked by the limes 

or impurities, it is easily noticeable. However, the exact quantity of expelled water due to 

partial obstructions or minor technical deficiencies in the nozzle is difficult to discover, due 

to the large number of nozzles. For this reason, from the total of fog spray nozzles, we 

studied a determinate number of nozzles. 
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In this study, we test key locations of the nozzles in the pipes: near the beginning of the 

pipe, in the middle and near of the end of the pipe. In a scientific approach, we can translate 

this into statistical terms: the number of nozzles studied can represent the minimum sample 

size of a finite population with information with a standard error in a confidence interval. 

For this aim, Equations 6.3 and 6.4 can be used to find this minimum sample size with a 

standard error in a confidence interval. 

N

n

n
n
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
(6.3) 
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2

'


s
n 

(6.4) 

Where, 

n is the number of studied fog spray nozzles that represents the minimum sample size 

N is the total of the fog spray nozzles 

n’ is the initial minimum sample size 

s is the sample standard deviation 

σ is the population standard deviation 

Moreover, the relation between σ
2
 and the standard error is (Equation 6.5): 

σ
2
 = (standard error)

2
(6.5) 

Additionally, the relation between s
2
 and the confidence interval is (Equation 6.6): 

s
2
 = p(1-p) (6.6) 

Where, 

p is the confidence interval 

In this study, we choose a confidence interval of 95 % (0.95). 

6.3. Results 

6.3.1. CFD isosurfaces 

In this type of Mediterranean tunnel broiler houses, we found three different indoor 

behaviours of air velocity: near inlets, near fans and a central zone (chapter 4). Near inlets, 

the air enters and rises to the roof of the broiler house. The air velocity vectors are mainly 

oriented to the roof and sense to the centre of the broiler house, describing circuits. In 

Figure 6.4, we can see these air velocity circuits and the mentioned effect. However, at the 
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end of the inlets area, the trajectories of the air velocity change, now being oriented in the 

longitudinal sense in direction to the fans. If the high fans are not in action, homogeneity in 

air velocity values is achieved in the central area and fans area at the plane of the sidewall 

height (Z=2.20 m), as we can see in Figure 6.5, which depicts a typical scenario with 5 fans 

in action (scenario IV). However, in scenarios with more fans in action, and especially 

when the high fans are in action, high air velocities are found near the fans area, as we 

concluded in chapter 4. 

Figure 6.4. Air velocity vectors (in m s
-1

) in a transversal section (plane X=15 m) at the 

inlets area. Circuits of air velocity. 

 

Figure 6.5. Air velocity (in m s
-1

) at the plane at the height of the sidewall (Plane 

Z=2.20m). 
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When the inlets area finishes, the air velocity vectors gradually change orientation, 

becoming more oriented towards the fans. In Figure 6.6, we can see this effect in the path 

lines of air velocity and the curvature that it describes, showing this changing from 

transversal components (to the centre of the building) to longitudinal components oriented 

towards the fans. Approximately, in the transversal plane Y = 40 m, the main component of 

air velocity in all scenarios is vy (longitudinal sense with sense to the fans). 

Figure 6.6. Air velocity path lines (in m s
-1

) changing the air velocity orientation. Scenario 

IV (5 fans in action). 

6.3.2. Location of pipes and nozzle orientation 

According to the nature of the indoor air velocity and the CFD outputs, we proposed this 

pipe layout: 

We placed a first pipe (Pipe 1) at the height of the sidewall (Z=2.20 m) parallel to the 

longitudinal axis of the broiler house (parallel to the lateral wall of inlets), with the fog 

spray nozzles oriented in horizontal sense to the centre of the broiler house. 

We installed a second pipe (Pipe 2) at the height of the sidewall (Z=2.20 m) parallel to the 

longitudinal axis of the broiler house (parallel to the lateral wall of inlets), with the nozzles 

oriented in horizontal sense to the centre of the broiler house. 

We put five pipes at the height of the sidewall (Z=2.20 metres) perpendicular to the 

longitudinal axis of the broiler house, with the nozzles oriented in horizontal sense to the 

fans. These five pipes are equidistant from each other. According to the possible high air 
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velocity values near fans, the pipe (Pipe 7) closest to the fans is slightly more separate from 

the fans to prevent water seeping through from outside or damp affecting the fans (causing 

breakdown in electric circuits, rusting…). 

Approximately 50% of the fog spray nozzles, i.e., half of the cooling system output, will be 

located in the two pipes of the inlets section. The other 50% of the fog spray nozzles are 

located in the other 5 transversal pipes. All nozzles are equally distributed on all the pipes 

at a distance of 0.70 metres. 

In Pipe 1, we find 43 nozzles, In Pipe 2, another 43 nozzles, and Pipes 3, 4, 5, 6 have 17 

nozzles each. Pipe 1 and Pipe 2 have 86 nozzles and Pipe 3. 4, 5, 6 and 7 have 85 nozzles. 

This cooling system design comprises a total of 7 pipes and 171 nozzles, as shown in 

Figure 6.7. 

Although one only stopcock could be used for the all the pipes, it is better to use seven 

stopcocks, as the economic cost and human effort involved in installing one stopcock in 

each pipe is minimal. This way, each pipe has its own stopcock, so can be more easily 

controlled, avoiding the use of one or several pipes during the cooling period; for example, 

in the event of unexpected occasional escapes in one pipe. This way, the rest of the pipes 

can work to keep the cooling system going. Figure 6.7 shows the broiler building and the 

pipes proposed. 

Figure 6.7. Broiler building, pipes and nozzles. 
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Moreover, in Table 6.1, we indicated the coordinates of the lines and the number of fog 

spray nozzles in each pipe (line). 

Table 6.1. Coordinates of pipes (lines in CFD) and number of nozzles. 

Pipe 

number 

(0)_Coordinates(0) (1)_Coordinates Number of 

nozzles in 

each pipe 

X0 Y0 Z0 X1 Y1 Z1

1 0.30 0.70 2.20 0.30 30.10 2.20 43 

2 11.90 0.70 2.20 11.90 30.10 2.20 43 

3 0.50 40.00 2.20 11.90 40.00 2.20 17 

4 0.50 55.00 2.20 11.70 55.00 2.20 17 

5 0.50 70.00 2.20 11.70 70.00 2.20 17 

6 0.50 85.00 2.20 11.70 85.00 2.20 17 

7 0.50 100.00 2.20 11.70 100.00 2.20 17 

6.3.3. CFD-air velocity at the fog spray nozzles (points) and at pipes 

(lines) 

As the whole validation for the entire broiler house is performed in chapter 4, another test 

or set of measurements would be not compulsory. However, as we want to study the 

expelled water in some fog spray nozzles, we can also easily measure the air velocity at 

these nozzles when they are not expelling water. Table 6.2 shows the coordinates of these 

fog spray nozzles studied and the pipe where they are located (3 by pipe). 

Table 6.2. Studied 21 fog spray nozzles in the pipes. Orientation in design. 

Nozzle 

Number 

Pipe X-Coord 

(in m) 

Y-Coord 

(in m) 

Z-Coord 

(in m) 

Main 

component of 

air velocity 

(vx,vy,vz) 

Orientation 

of the nozzle 

1 1 0.30 2.80 2.20 +vx +X 
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2 1 0.30 15.40 2.20 +vx +X 

3 1 0.30 28.00 2.20 +vx +X 

4 2 11.90 2.80 2.20 -vx -X 

5 2 11.90 15.40 2.20 -vx -X 

6 2 11.90 28.00 2.20 -vx -X 

7 3 1.90 40.00 2.20 +vy +Y 

8 3 6.10 40.00 2.20 +vy +Y 

9 3 11.00 40.00 2.20 +vy +Y 

10 4 1.90 55.00 2.20 +vy +Y 

11 4 6.10 55.00 2.20 +vy +Y 

12 4 11.00 55.00 2.20 +vy +Y 

13 5 1.90 70.00 2.20 +vy +Y 

14 5 6.10 70.00 2.20 +vy +Y 

15 5 11.00 70.00 2.20 +vy +Y 

16 6 1.90 85.00 2.20 +vy +Y 

17 6 6.10 85.00 2.20 +vy +Y 

18 6 11.00 85.00 2.20 +vy +Y 

19 7 1.90 100.00 2.20 +vy +Y 

20 7 6.10 100.00 2.20 +vy +Y 

21 7 11.00 100.00 2.20 +vy +Y 

The study of 21 fog spray nozzles of the total 171 nozzles represents the minimum sample 

size with information with a standard error less than 0.045 in 95% of the confidence 

interval. 

As the standard error is 0.045, from the Equation 6.5: 

σ
2
 = 0.045

2
 = 2.025·10

-3
 (6.7) 

As we choose a 95% of the confidence interval, from the Equation 6.6: 
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s
2
 = 0.95(1-0.95) = 0.0475 (6.8) 

Substituting in Equation (6.4): 

456.23
10·025.2

0475.0
'

32

2




s
n  

(6.9) 

As, N = 171 (the total of the fog spray nozzles), 

Substituting in Equation (6.3): 

2163.20

171

456.23
1

456.23

'
1

'










N

n

n
n  fog spray nozzles 

(6.10) 

Thus, studying 21 fog spray nozzles, we have the minimum sample size with information 

with a standard error less than 0.045 in a 95% of confidence interval. 

6.3.4. Regression line of CFD-air velocity results and measurements in 

the studied fog spray nozzles 

The lineal regression (Equation 6.1) in the 184 studied points (21 points x 9 scenarios) 

shows a good fit. The coefficient of determination of the linear regression was 0.98 (Figure 

6.8). 

Figure 6.8. Regression line of CFD results vs. measurements in the 184 points studied. 
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The whole results show a good fit, as observed in Figure 6.8. However, we found some 

important relative errors. Table 6.3 shows the minimum and maximum relative error in 

each scenario. 

Table 6.3. Minimum and maximum relative error (in %) in each scenario. 

Scenar

io 

I II III IV V VI VII VIII IX 

Max. 

error 

(%) 

7.61 6.52 7.77 8.95 6.98 7.13 8.45 11.29 10.43 

Min. 

error 

(%) 

-12.02 -11.20 -14.72 -13.88 -11.51 -11.52 -8.96 -11.95 -12.11 

Moreover, using the ―Area Weighted Average‖ command of Fluent (Fluent, 2001), we 

obtained the average air velocity at each pipe and in each scenario (Table 6.4). 

Table 6.4. Air velocity (in m s
-1

) in each pipe and at each scenario using the “Area 

Weighted Average” command of Fluent. 

Pipe 

number 

Scenario 

I II III IV V VI VII VIII IX 

1 0.802 1.239 1.646 1.807 1.977 2.096 2.251 2.322 2.485 

2 0.774 1.140 1.545 1.706 1.879 1.996 2.143 2.132 2.328 

3 0.546 0.788 1.281 1.349 1.626 1.915 2.207 2.661 2.995 

4 0.586 0.873 1.123 1.455 1.749 2.047 2.335 2.517 2.778 

5 0.588 0.880 1.157 1.468 1.739 2.050 2.330 2.636 2.926 

6 0.581 0.869 1.153 1.455 1.730 2.022 2.309 2.615 2.927 
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7 0.582 0.870 1.157 1.455 1.746 2.044 2.335 2.609 2.934 

Average 

of all 

pipes 

0.746 1.123 1.511 1.693 1.885 2.040 2.217 2.304 2.502 

6.3.5. Water used in fogging system 

Using graduated test tubes, we collected and measured the amount of water expelled in 12 

min in a cooling system at 80 bar operating pressure, obtaining a value of 1601.90 ±20 mL. 

As 12 minutes is a fifth of one hour, the expelled water in one hour is 1601.90 x 5= 8009.52 

mL ~ 8010 mL (8.01 l). As the number of fog spray nozzles is 171, the total water in use in 

one hour is (8.01 l x 171 fog spray nozzles =) 1369.71 l. 

Thus, the whole cooling system consumption is 1369.71 l h
-1

. 

6.4. Discussion 

The indoor air velocity profiles are crucial in the best location of the pipes and orientation 

of the fog spray nozzles in a fogging system. However, we can find different geometrical 

models of broilers buildings and installed ventilation systems. Thus, the cooling design will 

change, although the protocol to determine the optimum will be the same: the use of CFD 

simulations that provide full information on the indoor air velocity profiles (especially 

magnitude and components). In the experimental Mediterranean tunnel broiler house, we 

found three important different indoor behaviours: near inlets, near fans and central area 

(chapter 4). According to the present study, the pipes in the inlets area must be located at 

the height of the sidewall (Z=2.20 m) parallel to the lateral walls of inlets, with the fog 

spray nozzles oriented in horizontal sense to the centre of the broiler house. In Figure 6.4, 

we can see the air velocity circuits to support this decision on the location of pipes and 

orientation of the fog spray nozzles. We installed two pipes, one pipe on each lateral wall, 

and 50 % of the fog spray nozzles (i.e. the half of the cooling system) in this crucial area, 

where all the air enters the broiler building. The air velocity circuits assist the trajectory of 

the expelled water to the centre of the broiler building with a slight tendency to rise towards 

the roof (due to the elliptic shape of the air velocity circuits shown in Figure 6.4) without 

soaking. 

According to Figure 6.6, the main air velocity component changes from transversal to 

longitudinal with sense to the fans when the area of inlets ends. In this Figure 6.6 and at the 
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plane Y = 40 m, the main component of the air velocity is already +vy. Thus, when the 

inlets area ends, we change the layout of the pipes and place the first of the transversal 

pipes at the plane Y = 40 m. In addition, Table 6.2 shows the main component of the air 

velocity obtained in the CFD simulations (vx, vy or vz) to support this disposition of pipes 

and orientation of the fog spray nozzles. The air velocity of the central area and fans’ area 

helps in the trajectory of the expelled water with sense to the fans. Figure 6.5 shows a 

typical scenario with 5 fans in action (scenario IV). However, in scenarios with more fans 

in action and especially when the high fans are in action, high air velocities are found near 

the fans area, as we concluded in chapter 4. High fans can be activated in hot weather and 

to assist the whole indoor air movement during the cooling time, increasing this described 

phenomenon. For this reason, the last pipe (the Pipe 7, the closest to the fans) is kept 

slightly more separate from the fans, to avoid water coming through from outside or damp 

reaching the fans (causing breakdown in electric circuit, rusting of the metallic pieces of the 

fans…). 

All the fog spray nozzles are separated the same distance (0.70 metres in this study) from 

the pipe, because the ―spray‖ phenomenon is the same in all cases, and only depends on the 

cooling system operating pressure (80 bar in this study) and the type of fog spray nozzle 

(these fog spray nozzles are commercial and designed by a company that builds them 

specifically for broiler houses and recommends this distance and this operating pressure). 

The cooling system is equilibrated, as 50 % of the fog spray nozzles are in the inlets area 

through which all the air enters and the other 50 % of the fog spray nozzles are in the rest of 

the broiler building. The designed system consists of a total of 7 pipes and 171 fog spray 

nozzles. Figure 6.7 summarises this proposed fogging system, Table 6.1 shows the pipe 

coordinates (lines in CFD) and Table 6.2 the 21 studied fog spray nozzles. In CFD, we can 

create points that represent the nozzles or lines that represent the pipes simply by entering 

their coordinates in CFD (Table 6.1 and 6.2). This is a powerful tool to determine the 

magnitude and components of the air velocity, knowledge indispensable for optimal design 

of the fogging system. A whole validation is performed in chapter 4; nevertheless, we 

perform a final validation in a determinate number of nozzles. Of course, to study the total 

fog spray nozzles in a broiler house would be impractical and it is necessary to determine a 

size. In this study, we study three nozzles per pipe (one nozzle near the beginning of the 

pipe, near the end and in the middle of the pipe). As we have 7 pipes, we study 21 fog spray 

nozzles, i.e. 12.28 % of the total 171 fog spray nozzles. According to the formulation of the 

sample size in a finite population (Equation 6.3 and 6.4), this number of fog spray nozzles 
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represents the minimum sample size with information with a standard error less than 0.045 

in a 95% of the confidence interval. 

The use of the ―Area Weighted Average‖ command of Fluent (Fluent, 2001) is very 

interesting. By this validated command, because we have validated the whole CFD space in 

chapter 4, we can determine the average air velocity in the whole pipe in each scenario, as 

shown in Table 6.4. This command of Fluent (Fluent, 2001) is very interesting to ascertain 

the whole air velocity profiles by means of virtual CFD broiler buildings that also 

incorporate virtual designs of fogging systems. In this study, the ranges of values are wide 

(from 0.746 m s
-1

 to 2.502 m s
-1

 on average from all lines at each scenario). The minimum 

air velocity (0.546 m s
-1

) is obtained in scenario I in pipe 3, and the maximum air velocity 

(2.995 m s
-1

) is obtained in scenario IX in pipe 3. 

Using three Testo hot-wire anemometers (Testo, 2015), we measured the air velocity values 

for 20 minutes in each fog spray nozzle. This procedure may be unnecessary, as the whole 

space was validated in chapter 4. However, we wanted to perform this final validation. The 

regression line shows a good fit similar to that obtained with the multi-sensor system. Of 

course, we use calibrated anemometers and the same hot anemometry principles as Blanes-

Vidal et al., 2008 and Bustamante et al., 2012. Whereas it took four people four entire days 

to install and measure just at the 21 points (nozzles), measuring using the multi-sensor 

system at the level of broilers is very easy in terms of time and minimum human resources 

(using the multi sensor system we can measure more points and scenarios in only one 

morning or a single day, with minimal human resources-one or two people maximum-). It 

is true that taking measurements in the fog spray nozzle is complicated due to their 

location, calling for rudimentary and intuitive procedures (using wire, adhesive tape and 

brackets, we hang the three hot-wire anemometers following the shape of the nozzle and 

pipe…). We also spent 20 minutes on each three measurements per scenario when with the 

multi-sensor system we took only half the time (10 minutes) for thirty indoor 

measurements. We use three measurements per time because Blanes-Vidal et al., 2008 use 

isotemporal three measurements per time with a good CFD validation; besides, we have a 

limited number of hot-wire anemometers and human resources (operators). The regression 

shows a good fit with similar results as in chapter 4 with relevant relative errors as shown 

in Table 6.3. Of course, the multi-sensor system (Bustamante et al., 2012) is also based on 

hot-wire anemometry principles, but measuring isotemporally with more sensors (30 

sensors, i.e., multiplying by ten the field measurements of the present study). For this 

reason, we want to increase the quality of the measurements, extending the measuring time 

100% (20 minutes). We recall that Blanes-Vidal et al., 2008 measured isotemporally in 
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three points using a sensor system that uses hot-wire anemometry principles with good 

results in a difficult place (at the level of the broilers). Although we used three people to 

measure and control the hot-wire anemometers (and the fourth person to monitor the 

control room PC and fans in action), the average height of these people is about 1.70 

metres, whereas the fog spray nozzles are located at 2.20 metres from the floor (0.50 metres 

distance over their heads). It is true that operators inside the broiler building can disturb the 

measurements, but the people remain still in their place and the disturbance is minimal, 

because the measurements are not at the level of the broilers and in the surroundings of 

their legs; the measurements are over their heads at sufficient distance (0.50 metres 

approx.). Moreover, the location of the fog spray nozzles leads to better numerical results 

there than the numerical results in locations very near the floor, such as from the sensors at 

the broiler level. Thus, in chapter 4, an equal roughness (0.5) was assumed for the whole 

floor of the broiler building and this is an approximation that can affect the numerical 

results near the floor (the numerical results at the level of the broiler), because it is an 

assumption. Besides, to obtain good numerical results near the floor we need to be able to 

solve the boundary layer problem by means of good and precise meshed, such as thin 

prisms near the floor. Of course, direct measurements with the multi-sensor system can also 

have inaccuracies due to the small influence of the tripods. In this study, we find good 

results in fit due to the nature of the locations of the nozzles (net and high locations), the 

use of experienced operators and the important amount of time preparing the field 

experiment and doubling the time of direct measurements and complexity. However, in 

other field measurements for other purposes, the use of people (operators) to measure at the 

space of the presence of birds near the floor is impractical in terms of time and human 

resources and the distortion of measurements there can be relevant. Also, for precise 

measurements it is necessary to measure during the whole rearing cycle (about 7 weeks) 

and with the animal presence, totally avoiding the use of human operators or hot wire 

anemometers. 

Water technology studies need to implement a protocol to estimate the consumption and a 

protocol for maintenance of the fog spray nozzles. No protocol was found in the published 

literature to perform this water consumption when broiler production needs a colossal 

amount of water for cooling; in this study alone, we have estimated 1369.71 l h
-1

. The use 

of graduated test tubes to measure the expelled water in a sample size of nozzles may be an 

interesting protocol, because the vast number of them in a typical broiler building precludes 

testing all the nozzles. As mentioned above, using the formulation of the determination of 

the sample size in finite populations we have measured in 21 fog spray nozzles. To be 
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consistent, we studied the same nozzles in which we measured the air velocity by the hot 

wire anemometers and there are keys in the pipes (near the beginning of the pipe, in the 

middle and near of the end of the pipe). In this study, working the cooling system one day 

(24 h), the consumption of water is 8873.04 l (24 h x 1369.71 l h
-1

). Future periodic 

maintenance works using this protocol for measuring expelled water must be carried out, 

because whereas total obstructions are easily detected, partial obstructions or minor 

technical deficiencies are more difficult to find, deteriorating the litter. Incorrect 

functioning of fog spray nozzles can create dry areas or pools on the litter, with several 

potential sanitary problems for the broilers (infections, corns on their feet decreasing the 

quality of their meat (Almeida et al., 2010; Ross Breeders, 1996)). Although one only 

stopcock could be used for all the pipes, it is better to use seven stopcocks, because the 

economic costs and human effort to install one stopcock in each pipe is minimal. This way, 

each pipe has its own stopcock and can be more easily controlled, avoiding the use of one 

or several pipes during the cooling cycle; for example, in case of unexpected occasional 

escapes in one pipe; this way, the rest of the pipes can keep working, keeping the cooling 

system running. Figure 6.7 shows the broiler building and the proposed pipes. 

The protocol and steps described in this model of broiler building may be extrapolated to 

any broiler building model. A future second phase of this chapter would analyse the 

different commercial fog spray nozzles in order to compare them and to optimise their 

design. Thus, CFD techniques could analyse the different droplet sizes or the spraying 

phenomenon. It is clear that some designs for the location of the pipes and orientation of 

the fog spray nozzles may be easier depending on the nature of the indoor air velocity 

profiles of the broiler building model. Moreover, depending on the geographical area, the 

lime, impurities and the quality of the water provided can cause more obstructions and 

technical problems in the nozzles, so in these areas the revision time must be shortened. 

6.5. Conclusions 

In this study, we have designed the optimum location for the pipes and the best orientation 

for the fog spray nozzles of a cooling system in a Mediterranean tunnel broiler house. A 

well-designed cooling system is indispensable to maintain the proper indoor environment 

of broiler houses. The optimal fogging system design requires comprehensive knowledge of 

the indoor air velocity profiles (magnitude and main components of the air velocity 

vectors). CFD simulations can provide this complete knowledge much better than the 

physical sensors (which only offer information from a limited number of points: the 

physical sensors), which also require complex measurements. Although each broiler house 
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model needs a different layout of pipes and nozzles according to the specific building 

geometry and the ventilation system installed, the protocol and the requirement to build it 

will be the same: full knowledge of the indoor air velocity patterns. After the design of the 

fogging system, an estimation of the consumption of water in use is performed and can be 

considered a valid protocol for futures maintenance of the fogging system. Water 

technologies in livestock buildings need studies using powerful scientific approaches to 

optimise water consumption and proper indoor animal house conditions. 
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Chapter 7 
 

General Results and Discussion 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter presents: 

- An introductory overview. 

- General discussion and results. 

- Achievement of the PhD dissertation’s general aim and specific objectives. 

- Acquisition of skills in the PhD dissertation. 
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7.1. Introduction 

As indicated in Chapter 1, this PhD thesis aimed to characterise the ventilation and indoor 

air velocities (ranges and distribution) of the main mechanical ventilation systems in 

different types of broiler buildings in order to outline an optimum general model. Despite 

the technology deployed in these animal houses, they are not optimised, which leads to 

repeated episodes of animal mortality with the associated economic costs and greater 

animal suffering. In this vein, in the Mediterranean climate (an important geographical area 

in broiler rearing worldwide), the heat stress on the broilers in hot seasons is a significant, 

cyclic problem. By means of CFD techniques and suitable electronic instrumentation, the 

different mechanical ventilation systems can be characterised. 

This PhD thesis is broken down into different chapters towards this aim: 

Chapter 1 to introduce the doctoral thesis, objectives, and structure of the thesis. 

Chapter 2 to develop the instrumentation to measure indoor environmental parameters in 

broiler houses. 

Chapter 3 to analyse one mechanical ventilation system (cross) in a typical Mediterranean 

broiler house. 

Chapter 4 to analyse the mechanical tunnel ventilation system in one retrofit, with a view to 

installing this ventilation system in other Mediterranean broiler houses. 

Chapter 5 to analyse another emergent mechanical ventilation system (single-sided). 

Chapter 6 to analyse one crucial variable of broiler design of buildings, such as the cooling 

system using fogging systems. 

Chapter 7 to present the general results and discussion. 

Chapter 8 to conclude and discuss further studies. 

7.2. General Discussion and Results 

Empiricism in Broiler Building Design And in the Ventilation Systems 

Installed 

The status of broiler building design and the ventilation systems installed before this PhD 

dissertation may be summarised in a single paragraph: ―Empiricism or intuition is not the 

way to build animal houses in the third millennium. The uncertainty and customisation in 

broiler building design and the ventilation systems installed is currently the essence of the 

nature of broiler buildings.‖ This was the main reason in deciding to carry out this PhD 

dissertation. 
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Modern intensive broiler production (not exempt from controversy, as seen in other 

intensive farming systems) arose from the recent introduction of ―livestock 

industrialisation‖. 

The world’s human population is large, land is limited, and it is imperative to produce food 

for this population at a reasonable price and good quality. Poultry meat is accepted by 

nearly all cultural and religious groups, whereas other types of meat have problems in being 

accepted. Amongst the different intensive livestock production systems, poultry production 

is the most efficient in terms of feed conversion (Steinfeld et al., 2006). Poultry production 

for meat (broilers) is one of the most important food industries, with a 633.34 % increase in 

world production from 1972 to 2012 (FAO, 2015). Perhaps most importantly, broiler meat 

is also cheap and of high quality (Slingenbergh et al., 2007). In terms of intensive 

production, broilers are confined in buildings of two fundamental types: production in 

broiler buildings with natural ventilation, and production in broiler buildings with 

mechanical ventilation. Modern broiler buildings generally use mechanical ventilation by 

negative pressure through exhaust fans (ASAE, 1986; MWPS, 1990; Pedersen, 1999). 

Ventilation is crucial in ensuring the appropriate indoor conditions to achieve high broiler 

productivity (growth and food conversion) and low mortality (Charles et al., 2002; Lott et 

al., 1998). Surprisingly, there are no precise guidelines or an optimum model for a broiler 

building with mechanical ventilation from the point of view of dimensions and/or design or 

from the point of view of the ventilation system per se. However, there are three important 

types of mechanical ventilation installed: cross, tunnel and single-sided. 

Thermal Stress and Mortality of the Broilers 

Broilers can suffer from great episodes of thermal stress and mortality in different types of 

broiler buildings during some meteorological events. These fatal episodes are especially 

relevant in the hot seasons of the Mediterranean climate, where a significant number of 

broiler buildings are found. Proper air velocity values around the birds are crucial to assist 

in their biological thermoregulation and to diminish or eliminate the negative effect of the 

adverse meteorological events on the birds (DEFRA, 2008, Simmons et al., 2003). 

Unfortunately, climate change and global warming are increasing the geographical areas of 

meteorological uncertainty and occasional unexpected extreme weather (heat or cold 

waves). 

Current Methods to Characterise Ventilation in Broiler Buildings. 

Verification and Validation (V&V) 

Current trends to characterise the ventilation of agricultural buildings (greenhouses and 

livestock buildings, including broiler buildings, of course) use two major methods: direct 
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measurements with the appropriate electronic instrumentation (sensors) (Berckmans et al., 

1991; Blanes-Vidal et al., 2010; van Wagenberg et al., 2003; Wilhelm et al., 2001; Zhang 

et al., 1996) and indirect methods such as Computational Fluid Dynamics (CFD) 

techniques (Bartzanas et al., 2007; Bjerg et al., 2002; Blanes-Vidal et al., 2008; Lee et al., 

2007; Norton et al., 2007; Pawar et al., 2007; Xia et al., 2002). However, this indirect 

method (CFD) also needs verification and validation (V&V) (Oberkampf et al., 2002). 

Electronic Instrumentation (Sensors) 

It was essential to develop and build instrumentation to measure the indoor environment of 

mechanically ventilated broiler buildings, bearing in mind the specific nature and 

requirements. The main issue was to build the instrumentation to assess the design and 

function of the ventilation systems and to verify and validate (V&V) the CFD simulations. 

As these indoor environments are turbulent by nature (Heber et al., 1996), we need to 

receive sufficient signals from a large number of physical sensors. Thus, discrete 

measurements or a small number of sensors are not suitable for these studies. 

Isotemporality in measuring is important due to changing air velocity values at the same 

point and in the same scenario. Therefore, the standard deviation of air velocity is nearly 

the average, and so a multi-sensor isotemporal system is the most suitable instrumentation 

to perform the research. It was also necessary to automate measurement taking, to avoid the 

physical presence of a technician which might distort the records (Wheeler et al., 2003). 

The choice of the type of sensors was also an important factor. Air velocity and temperature 

sensors (hot-wire type sensors) and RTDs were chosen based on several advantages such as 

their observed robustness in other documented cases (Ibrahim, 2002). 

Wired systems were used instead of wireless systems, as wireless sensors consume large 

amounts of energy necessitating battery changes. Wired systems are currently applied in 

other fields of engineering to measure environmental parameters with great success (Zarzo 

et al., 2011), and are sufficient to conduct the field experiment throughout a whole rearing 

season (6-7 weeks). 

Calibration was also essential and original, because we used dummy variables (Kutman et 

al., 2005) for sensor calibrations as an innovative method. Obtaining a single calibration 

curve is ideal, but slight differences among the calibration of sensors were found as a 

consequence of differences in the fabrication process or components. A single calibration 

curve was obtained for all velocity sensors, whereas we found five calibration curves for 

the air temperature sensors, although these differences were irrelevant in practical terms. 

The calibration of differential pressure sensors demonstrated similar calibration curves, as 

was expected. 
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In summary, the measurement system consisted of a laptop, a data acquisition card, a 

multiplexor module and a set of 24 air temperature sensors, 24 air velocity sensors and two 

differential pressure sensors. The system was able to acquire up to a maximum of 128 

signals simultaneously at 5 second intervals. 

The measurement system is robust enough to resist the aggressive environmental conditions 

(e.g. dust, high relative humidity, gas concentration) that prevail in buildings during animal 

rearing. Additional sensors (i.e. humidity sensors) can be implemented using other channels 

in the collecting module for wider studies in occupied broiler buildings. 

This measurement system was used in all field experiments included in this PhD 

dissertation to compare the different types of mechanical ventilation systems at broiler 

buildings. 

The first field experiment was conducted in a cross mechanically ventilated broiler building 

demonstrating interesting statistical results - the variation between air velocity sensor 

measurements was not significant (P-value <0.4428). This lack of statistical significance of 

the ―Sensor‖ variable indicates homogeneous behaviour of all sensors on average for the 

different sections and boundaries studied. In this field experiment, the overall average of 

the measurements of the air velocity was 0.63 ± 0.54 m s
-1

. The averages by section were 

0.59 ± 0.50 m s
-1

 (Section A) and 0.68 ± 0.58 m s
-1

 (Section B) and 0.51 ± 0.70 m s
-1

 

(Boundary I), 0.64 ± 0.37 m s
-1

 (Boundary II), 0.75 ± 0.39 m s
-1

 (Boundary III) and 0.64 ± 

0.62 m s
-1

 (Boundary IV). The maximum (0.80 ± 0.31 m s
-1

 Section B, Boundary III) was 

not obtained at the bird height level (0.25 metres). This variability is due to air turbulence 

in broiler buildings and the location of the sensors. 

Cross-Mechanical Ventilation 

CFD simulations were performed for the cross-mechanical ventilation system in 

experiments on the broiler building where the first evaluation of the multi-sensor system 

designed was carried out. As expected, similar air velocity values were obtained in the 

numerical simulations compared with those obtained by direct measurement. The average 

of these values using CFD techniques was 0.60 ± 0.56 m s
−1

 and using the direct 

measurements the average was 0.64 ± 0.54 m s
−1

. 

Validation was conducted using an ANOVA model and linear regression. The results of the 

ANOVA found that the ―Methodology‖ variable was non-significant (P-value <0.5271), 

and the same was found for its interactions. Therefore, CFD techniques and direct 

measurements using the multi-sensor system designed will give similar results. The 

regression line slope value was close to 1 and the independent term was near zero, while the 

determination coefficient of the linear regression analysis shows a good fit (R
2
= 0.888). 
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CFD outputs provide illustrative graphics that show the trends of air velocity distribution 

and good visualisations. These graphic representations also provide additional information 

on airflow characteristics and patterns which may contribute to a more effective ventilation 

design. The scale of colours and the use of vectors that incorporate these outputs are 

explicatory in themselves. Compared to direct measurements, CFD techniques can present 

more information and a more general view of indoor climatic conditions of broiler 

buildings through these graphics. 

Our results show that mechanical cross ventilation systems are suitable under most 

common weather conditions in the Mediterranean region, but they do not prevent episodes 

of mortality caused by heat stress, as they provide lower air velocity values than those 

required by animals in these conditions. At broiler level (0.25 metres), the maximum air 

velocity was 0.89 ± 0.43 m s
−1

 for CFD and 0.80 ± 0.31 m s
−1

 for direct measurement. The 

minimum velocity was 0.34 ± 0.29 m s
−1

for CFD and 0.37 ± 0.31 m s
−1

for direct 

measurements. The distribution at the broiler level is heterogeneous and so the 

homogenisation of air velocity should be compulsory in future broiler buildings designs. 

Having validated the CFD techniques, we can now explore and find the best geometry for 

broiler buildings that wish to install cross-mechanical ventilation. In this endeavour, the 

building characterisation and relative elements must be evaluated and suitable management 

operations will be assessed. We note that forced ventilation systems require electric energy 

to activate the fans and automation, which are not required in naturally ventilated broiler 

buildings, and so electric energy consumption efficiency is also an important factor to 

study. 

Mechanical Tunnel Ventilation 

While mechanical tunnel ventilation is commonplace in some countries, it has only recently 

been installed in southern Europe, in countries with a medium-extreme Mediterranean 

climate. The purpose of adopting this ventilation system is to solve the repetitive mortality 

and stress on animals which occurs in warmer seasons (El País, 2003). In these latitudes, 

cross-mechanical ventilation is the most widespread ventilation system (Blanes-Vidal et al., 

2008), but this system is not effective during hot seasons/weather as it does not provide 

sufficiently high air velocity. Mechanical tunnel ventilation may be the solution, but 

detailed analysis of this system is required. In this study we took direct measurements using 

the multi-sensor system and by means of CFD simulations. 

The studied broiler building was a retrofit of the traditional cross broiler building with 

inlets concentrated at the end of the laterals of the opposite wall of fans, as it was 

impossible to place them exactly opposite the wall of fans (pure tunnel). Currently, the 
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control room in Mediterranean broiler buildings using cross ventilation is precisely located 

at one end of the building to avoid placing new inlets on the opposite wall of fans. We ran 

different numbers of fans (moving from two fans to ten fans in increments of one) to obtain 

―air velocity distribution‖ vs. ―fans in use‖ in order to address fan management in summer 

seasons. The results of both methodologies (CFD and direct measurements) demonstrated 

similar results for air velocity at the height of the broiler (0.25 metres). The maximum air 

velocity was 2.72±0.31 m·s
−1

 (CFD) and 2.58±0.29 m·s
−1

 (direct measurement), and the 

minimum air velocity was 0.49±0.12 m·s
−1

 (CFD) and 0.47±0.11 m·s
−1

 (direct 

measurement). Therefore, this type of ventilation system can provide high air velocity 

values to increase the convective flux heat of broiler farms and thereby decrease the 

thermal stress and associated mortality. This system can be used for normal weather or 

winter in Mediterranean regions, as we also obtained low air velocity values. Unfortunately, 

this system is still not optimised, as there is high air velocity heterogeneity at the broiler 

level (0.25 metres), finding full valid behaviour only in the central zone of the studied 

broiler building. From the CFD outputs, we observed three different zones: the inlet zone, 

central zone and near the fans. Near the fans, we found very high air velocity values, 

preventing the normal presence of broilers; in contrast, in the area of the inlets, a ―dead 

zone‖ (low air velocities) and high variability were found. Thus, optimisation of this 

ventilation system is required through the application of ―virtual‖ geometries by means of 

CFD techniques, as these are more complete and easier to use than complex direct 

measurements. 

To optimise this ventilation system by means of CFD simulations, it is crucial to assure 

their validity. In a similar manner as for cross-mechanical ventilation, we performed the 

validation of CFD simulations of air velocity using an ANOVA model and a linear 

regression analysis. The ANOVA analysis showed that the ―Methodology‖ variable (results 

by CFD simulations or direct measurements) is non-significant (P-value<0.1155), along 

with its interactions. The regression line slope had a value near 1 and the independent term 

near zero, while the determination coefficient was R
2
= 0.98. Therefore, we can use CFD 

simulations or direct measurements to explore indoor air velocity in this ventilation system 

in broiler buildings. 

The CFD outputs indicated that mechanical tunnel ventilation was not the ideal design for 

broiler buildings of short length because the best and most homogeneous indoor 

environment was only located in the central zone. It remains the best solution for hot 

seasons in the Mediterranean region, as high air velocity values can be obtained. Farmers 

can save the energy as a smaller number of fans can achieve the same air velocity values as 
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when using a large number of fans and a traditional ventilation system. However, while 

high air velocity values are easily reached, inappropriate management can easily lead to 

animal health problems due to excessive ventilation. Although mechanical tunnel 

ventilation can be used for normal weather in the Mediterranean region, the traditional 

ventilation system (cross) is more suitable as broiler density is higher, as in tunnel-type 

ventilation there are areas of the broiler buildings that cannot be occupied by animals due to 

air velocity distribution problems. During winter/cold seasons, higher electricity 

consumption is required to heat the incoming air flow compared to traditional ventilation 

systems (cross). Tunnel ventilation management is also more complicated and the 

programming of fans requires more time and experience than cross (traditional) ventilation. 

Despite mechanical tunnel ventilation solving the problems of thermal stress and associated 

mortality, it is only fully valid for hot seasons. Future studies must optimise this ventilation 

system using ―virtual‖ geometries by means of CFD techniques. 

Single-sided Mechanical Ventilation 

Mechanical single-sided ventilation under a negative pressure system was studied in a 

Mediterranean broiler building. Apart from the associated publication of this chapter, little 

published scientific literature was found which referred to mechanical single-sided 

ventilation in broiler buildings. The need to explore new ventilation types arises from the 

need to reduce mortality and thermal stress of broilers in hot seasons in the Mediterranean 

climate. To this end, this emergent ventilation system has recently been incorporated and 

designed for some businesses in the sector (Serupa, 2015; Warkup, 2015), albeit without 

scientific justification or publication. We have analysed mechanical single-sided ventilation 

by means of designed instrumentation and CFD techniques. We performed the validation of 

the CFD simulations of air velocity in the same manner as for cross mechanical ventilation: 

an ANOVA model and a linear regression analysis. The ANOVA analysis demonstrated 

that the ―Methodology‖ variable (results by CFD simulations or direct measurements) is 

non significant (P-value<0.3908), along with its interactions. The regression line slope had 

a value close to 1 and the independent term near zero, while the coefficient of 

determination was R
2
= 0.98. A minimum acceptable systematic error (overestimation of 

CFD simulations by 6.6 %) was found. Therefore, we can use direct measurements or CFD 

simulations to explore indoor air velocity for this ventilation system in broiler buildings. 

The expectations for this ventilation type were not fulfilled, as it is very similar to cross-

mechanical ventilation and does not serve to solve the problems of mortality and thermal 

stress. The average air velocity (using CFD or direct measurements) ranged from ~0.40 m 

s
-1

 to ~1.30 m s
-1

 at the animal level (0.25 metres). Several heterogeneity issues were found 
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at this level, especially for the walls opposite the fans and the areas between the fans. So, 

we believe that investment in this ventilation system is a bad decision, as it does not 

provide sufficient air velocity at broiler level, although it does represent an excellent 

ventilation system for broiler production in normal weather conditions in the Mediterranean 

region. 

We also studied the use of fan diffusers, as these are included in building designs. Farmers 

currently believe that that their use worsens the indoor environment during hot seasons, and 

prevents direct airflow to the animals located near the fans avoiding respiratory diseases or 

colds. Therefore, we included the ―Diffuser‖ variable in the ANOVA model. The results of 

the ANOVA showed that their installation was non-significant (P-value<0.6106) in the 

indoor environment. However, the ―Pressure‖ variable and ―Height‖ variable did have a 

significant effect (P-value<0.0001) on the indoor air velocities. The CFD outputs do show 

that diffuser inclusion altered the air velocity distribution near the fans, but not at broiler 

height (0.25 metres). So, we recommended the use of diffusers, as they do not significantly 

alter the indoor air velocities values at broiler level, as the farmers erroneously used to 

believe, and they prevent high air velocities near the broilers that can cause respiratory 

diseases. 

It is important to note that the high ventilation rates on the broiler building do not necessary 

entail high air velocity at broiler level. Thus, the geometry of the building is crucial in 

obtaining proper air velocity distribution and values, with respect to the ventilation rates of 

the whole farm. Whereas the maximum exhaust air output was in Scenario I and II, the air 

velocity values are less than half compared to Scenario III and IV with less air output. 

Therefore, having validated the CFD simulations, we can use CFD techniques to explore 

―virtual‖ geometries of broiler buildings and to find the optimal building designs, best 

scenarios and associated management of this ventilation system. CFD techniques provide 

resources and commands to characterise ventilation systems, highlighting the strategy of 

creating points of interest and isosurfaces. By definition, an isosurface is a surface that 

connects points of equal nature, and we created isosurfaces that connect points of equal 

height, such as the plane of the broiler presence. 

In summary: (i) CFD simulations provide more possibilities than complex direct 

measurements; (ii) Mechanical single-sided ventilation involves two important problems: 

high heterogeneity of the air velocity distribution at the height of the broilers presents low-

medium values and so does not provide sufficient air velocity at broiler level to prevent 

high mortality or thermal stress in hot conditions, and the poor ventilation in some areas of 
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the broiler building (opposite wall from the fans and between the fans). We propose that 

CFD simulations will be the best way to optimise these ventilation systems. 

Design of Cooling Systems (Fogging Systems) in Broiler Buildings 

The equipment installed in broiler buildings can also be studied using CFD techniques and 

sensor approaches. Heating systems can be studied by simulating radiators or hot surfaces 

(Sevilgen et al., 2011; Zajicek et al., 2014). Cooling systems can analyse pad cooling 

(Franco et al., 2011) or the profiles of indoor air velocities to optimise the proper location 

of the pipes and the best orientation for the fog spray nozzles. 

As the main aim of this PhD dissertation is to characterise the ventilation systems and this 

issue is the key to an optimum design for a fogging system, the mechanical tunnel 

ventilation for the broiler building from chapter 4 was designed for this. Of course, this 

protocol and these steps can be applied to any broiler building design and ventilation 

system installed. In addition, a protocol is proposed for maintenance and estimation of 

water consumed in a period of cooling. 

The Optimum broiler building and ventilation system installed 

(An adaptation of this part forms the body of a publication submitted about the state of the 

art and future perspectives of poultry housing for meat (broilers)). 

Throughout the different chapters of this PhD dissertation, the different mechanical 

ventilation systems in different types of broiler buildings were analysed and characterised. 

By means of these characterisations, it is possible in this chapter to discuss and outline the 

optimum broiler building and the optimal ventilation system installed. A differentiation has 

been made between the general optimums and the specific optimums because the specific 

optimums are conditioned by particular needs (the specific requirements of the clients, 

specific dimensions and size of the broiler buildings, planned investment, number of 

animals, etc.), on the basis of the general optimum model outlined here. 

General Optimum for Broiler Building and Ventilation System Installed 

Broiler buildings must be designed to remain stable and useful for the whole period of their 

useful life, while the weather is also an important factor in the design of the building, as it 

affects the animals during the rearing process. Unfortunately, meteorological predictions 

have a high degree of uncertainty due, among other variables, to the effects of climate 

change and global warming. Indeed, climates may change over the short term in some 

areas. Heat or cold waves or unexpectedly extreme seasons are therefore highly probable. 

Although it is certain that advances are expected in terms of the materials for the buildings’ 
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design (i.e. insulating materials) or livestock turbo-machinery, meteorological events will 

affect animal mortality and their stress if broiler buildings are not equipped sufficiently 

well. In this vein, poultry housing ventilation for meat (broiler) in the 3
rd

 millennium needs 

to integrate all the advantages of all the types of current mechanically ventilated systems 

(cross, single-sided and tunnel) analysed in this PhD dissertation. Cross and single-sided 

are transversal ventilation systems, whereas the tunnel is a longitudinal system. Cross-

mechanical ventilation is the current and fully valid ventilation system for mild climates 

(e.g. Mediterranean climate), except for one-off days of very hot weather (in summer) when 

this system has several thermal problems. In this PhD dissertation, it is demonstrated that 

the higher air velocity values needed to diminish the heat stress and the mortality of the 

broilers cannot be reached. Single-sided mechanical ventilation is a ventilation system still 

in its early stages. In this PhD dissertation, it was also demonstrated that it cannot solve 

these thermal problems despite the air velocity values obtained being slightly higher than in 

cross-mechanical ventilation. Therefore, neither of the two transversal mechanical 

ventilation systems (cross or single-sided) is able to achieve high enough values of air 

velocity to solve the heat stress on the birds. On the other hand, mechanical tunnel 

ventilation is commonplace in some climatic locations and this was tested in a broiler 

building in a Mediterranean climate (Valencia, Spain), an area in which it has been recently 

incorporated. The results of the characterisation carried out in this PhD dissertation showed 

that tunnel mechanical ventilation is less suitable than the transversal mechanical 

ventilation systems (cross or single-sided mechanical ventilation) in mild climatic 

locations, except for days of unusually hot weather (in summer). In these hot events, it 

becomes necessary and fully valid because it can reach higher air velocity values to 

diminish the heat stress on the broilers and their mortality rates. 

Therefore, the general optimum broiler building for the future and for current complicated 

climatic areas with both extreme conditions (hot and cold weather) must install a hybrid 

mechanical ventilation system (transversal and longitudinal). These general optimums of 

broiler buildings need to install a transversal mechanical ventilation system such as a cross 

or single-sided one for cold or fair weather (with low to medium values of air velocity). In 

addition, it is also indispensable to install a longitudinal ventilation system (tunnel 

mechanical ventilation) for hot seasons (summer) or heat waves. By means of tunnel 

mechanical ventilation, it is possible to obtain higher air velocity values in order to 

minimise the heat stress and the associated mortality in unusually hot events. Indoor 

environments of future broiler buildings will need full control over the air velocity, as this 

is the key variable to assist in the biological thermoregulation of the broilers in order to 
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minimise their thermal stress. However, in climatic regions where the hot weather is always 

constant throughout the year (e.g. tropical climate) and without meteorological uncertainty, 

the broiler building model would include only the optimised tunnel ventilation system. On 

the other hand, in climate regions where the temperature is always cold and without 

meteorological uncertainty, the optimum broiler building model will include only the 

optimised transverse ventilation system (cross or single-sided). This hybrid mechanical 

model is correct for the current mild climate (e.g. Mediterranean climate) and for 

geographical areas with meteorological uncertainty (accentuated by the effects of climate 

change and global warming). It is necessary to remark that in some cases and geographic 

locations, it may be uneconomical to install the hybrid mechanical system, but it does 

promote animal welfare. In my opinion, there are two key issues in the current absence of 

this hybrid mechanical ventilation system in modern broiler buildings: 

(i) A lack of the knowledge about the different characterisations of ventilation before 

this PhD dissertation was written. 

(ii) Economic criteria: in some cases, the losses in mortality and broiler weight due to 

thermal stress are lower than the investment required when installing a hybrid 

mechanical ventilation system only to solve unexpected meteorological events 

or for a small part of the broilers reared. 

In this regard and in the Mediterranean climate of the Valencia Community region (Spain), 

in broiler buildings with hybrid mechanical ventilation the tunnel type ventilation system 

should only be used occasionally in the hot season (summer) during heat waves. From an 

economic point of view, the losses in the final weight and mortality of the broilers will be 

less than the investment in a mechanical tunnel ventilation system, which is only used for a 

small part of the hot season. From an ethical and an animal welfare point of view, it is 

immoral to maintain only the traditional cross-mechanical ventilation system in the 

Mediterranean climate because, in this PhD dissertation, we have demonstrated that the 

animals’ mortality and heat stress can be resolved by installing a tunnel mechanical 

ventilation system for the hot season or days, even though it may not be economical. 

The days of use of each of the two installed mechanical ventilation systems will depend on 

the location or the possible meteorological events. Of course, using both ventilation 

systems involves twice the investment and training for farmers. We should also remember 

that in cold seasons the transversal mechanical ventilation system is more economical in 

terms of the energy used to heat the air (chapter 4). Therefore, the climatic location of the 

broiler building and the predictions for the useful life of the building are crucial. In my 

opinion, planning laws should exist to regulate broiler buildings depending on their 
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geographical location, making it compulsory to install both mechanical ventilation systems 

(the hybrid system) in certain areas. In addition, in my opinion financial assistance is 

necessary in some areas, such as in the Mediterranean climate, since given the lack of 

financial help, many farmers may refuse to install both mechanical ventilation systems. 

In this general optimum broiler building, it is also a good trend to eliminate the slope of the 

roof because this will diminish the indoor volume of air that needs to be heated (in hot 

weather), cooled (in cold weather) or moved (always). Furthermore, as we commented in 

chapter 2, changes in the direction of the air velocity affects the broilers’ behaviour and for 

this reason it is also a good idea to gradually change the ventilation systems by means of 

transitional fans near corners (see Figure 7.1). 

As we concluded in chapter 4, broiler buildings of short length are not optimum when they 

have tunnel mechanical ventilation. 

Therefore, the general optimum broiler building involves a hybrid mechanical ventilation 

system (transversal plus tunnel), elimination of the roof’s slope, transitional fans and a long 

length to avoid instability in the distribution of the air velocity when tunnel mechanical 

ventilation is being used. 

A transversal mechanical ventilation system can be considered to mean cross, single-sided 

or the use of heat exchangers (if the ventilation needs are lower; i.e., when the broilers are 

featherless or during the first days of rearing). In this sense, a cross mechanical ventilation 

setup can be used as the preferable transversal system, because it is already installed and 

the farmers are familiar with managing it (at least in the Mediterranean climate). 

In this general optimum broiler building, it is necessary to make the air velocity values 

uniform at the level where the animals are present so as to avoid indoor migration and 

dense concentrations of the broilers in some areas inside the building, which can also cause 

stress and mortality (Blanes-Vidal et al., 2008). 

Specific Optimums 

The clients’ specific requirements (dimensions and size of the broiler building, planned 

investment, number of animals, etc.) will determine the specific optimums for each 

particular need and case. Based on these precise requirements and on the general 

optimum’s outlined trends, the specific optimum for each particular need and location will 

be found. 

As commented above, in clear climatic areas of constant hot weather, the optimum will be 

an optimised mechanically ventilated tunnel broiler building. In areas of constant cold 

weather, the optimum will be an optimised mechanically ventilated transversal broiler 

building. 
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In most climatic areas (e.g. Mediterranean climate and areas with meteorological 

uncertainty), the optimum broiler building should install the aforementioned hybrid 

mechanical ventilation system (longitudinal plus transversal). The elimination of the roof’s 

slope and transitional fans are some compulsory general trends that need to be present in 

the search for specific optimums. Using ―virtual‖ broiler buildings, ―virtual‖ ventilation 

systems‖ and ―virtual‖ management in CFD software under the guidance of heuristics 

algorithms (Gen et al., 2000; Goldberg, 1989; Tam, 1992) will be the way to find this 

specific optimum for each particular need and possible client. In this search for specific 

optimums, the influence of the inlets and outlets (fans) is essential (Bustamante et al., 

2011). The variables (building dimensions, investment, number of animals, stocking, 

demands of oxygen, demands from ventilation renewal rates, characteristics of inlets and 

their location, characteristics of outlets (fans) and their location, days of use of each 

mechanical ventilation system if there is a hybrid model, capacity of the lorry to transport 

the broilers to the slaughterhouse, etc.) must be well weighted, included in the restrictions 

and optimised in the objective function of the heuristic algorithm (Gen et al., 2000; 

Goldberg, 1989; Tam, 1992). It is necessary to point out that altitude changes the levels of 

oxygen. At high altitude, the atmospheric pressure, and hence oxygen, is lower than at sea 

level, influencing the broiler rearing and performance (Tekeli, 2014). Thus, the renewals 

and specific demands of oxygen need to take into account the specific altitude of the 

specific projected broiler building. Furthermore, in mechanical tunnel ventilation (chapter 

4), it was demonstrated that with a discrete number of fans (2 or 3) in action, it is possible 

to obtain the same air velocity values as working with 8 or 9 fans in the transversal 

mechanical ventilation systems (chapter 3 and 5). In this sense, it is necessary to remark 

that equivalent indoor air velocity values are not equivalent to the broilers’ adequate 

required oxygen. Moreover, the age of the air (the time the air spends inside the broiler 

building) is greater in tunnel ventilation than in transversal mechanical ventilation systems 

(chapter 4). Under these circumstances and in tunnel ventilation, the concentration of 

pollutants in some scenarios will be higher, especially near the fans (at the end of the air 

velocity trajectories) (Carvalho et al., 2012). Therefore, the animals’ oxygen requirements 

and low concentrations of pollutants must be especially taken into account when 

researching optimum broiler buildings. 

To sum up, it is necessary to spend time working with CFD under the premises of the 

specific requirements of the projected broiler building and under the guidance of a heuristic 

algorithm that optimises the search, gives weight to the variables and accelerates the 

process of conception and design. As an example of this work, Figure 7.1 shows a ―virtual‖ 
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broiler building that has a hybrid mechanical ventilation system (cross and tunnel) installed 

for a specific client that demands a broiler building with a specific investment. In this 

simulation, four mechanical cross ventilation fans are running; the other fans are off. In this 

Figure 7.1, we have created three interesting planes: Plane A, at the level of the broilers 

(0.25 metres); Plane B, halfway along the broiler building; and Plane C, halfway across the 

broiler building, in order to describe the indoor air velocity trends. 

Figure 7.1. CFD simulation of a “virtual” broiler building (with four transversal fans in 

action). 

 

 

In this broiler building (Figure 7.1) some of the trends described for the general optimum 

can be seen: elimination of the slope in the roof and transitional fan in the corner to 

gradually change the ventilation system. In hybrid mechanical ventilation systems 

(transversal plus longitudinal), the search must optimise both ventilation systems at the 

same time. Figure 7.2 shows a diagram of a protocol to search for specific optimums for 

broiler buildings. 
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Figure 7.2. Searching for specific optimums of broiler buildings (involving CFD, 

instrumentation and heuristic algorithms). 

Other Mechanically Ventilated Livestock Buildings 

These analyses and characterisations of the different mechanical ventilation systems in 

different types of broiler buildings studied in this PhD dissertation can be extrapolated to 

other animal houses. Of course, the nature of broiler production (without internal walls or 

other elements) enables easier simplifications of building space so as to attain more precise 

results. Pig, cattle or rabbit farms can use CFD techniques and direct measurements 

(specific sensors) to analyse their indoor environments. In our country and in 

Mediterranean countries, the analysis of the indoor environments of rabbit houses will be 

an interesting field of study. In this sense and for rabbit houses, some motivating articles 

have appeared in local journals (Estellés et al., 2011) and at certain congresses (Estellés et 

al., 2012). 

7.3. Achievement of the PhD dissertation’s general aim and specific 

objectives. Acquisition of skills in the PhD dissertation 

The general aim and specific objectives proposed at the beginning of this PhD dissertation 

have been achieved in depth and to a more suitable extent in the corresponding chapters as 

planned. 

The planned research for the PhD dissertation has been accomplished, as well as the general 

aim and the specific objectives. This PhD dissertation has led to some articles published in 

an international journal indexed in Journal Citations Report (3) and some other submitted 
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articles (3). Moreover, several contributions to conferences that have been made obtained 

an award in an international conference. 

The formal presentation of this PhD dissertation has been guided and accepted in this 

format by the supervisors. The whole process of this PhD dissertation was assessed and 

guided by the supervisors and by specific assessments by the co-authors 

(professors/lecturers at the university) regarding the published/submitted articles and 

conferences. Therefore, in this PhD dissertation, the skills needed for a well-guided and 

well-planned PhD dissertation have been achieved. Some of these acquired skills are 

described below: 

S1: Systematic understanding of this field of study. 

S2: Mastery of skills and research methods in this field of study. 

S3: Skill and ability to conceive of a substantial research process with academic 

meticulousness. 

S4: Skill and ability to design a substantial research process with academic scrupulousness. 

S5: Skill and ability to carry out a substantial research process with academic rigour. 

S6: Skill and ability to implement a substantial research process with academic 

thoroughness. 

S7: Skill and ability to make several contributions via this original research work that push 

back the frontier of knowledge by creating a substantial corpus, part of which has already 

been published (in international journals indexed in Journal Citations Report) and has been 

recognised on appearing in publications of national and international renown. 

S8: Skill and ability to make several contributions thorough this original research that 

broaden the frontier of knowledge by creating a substantial corpus, part of which may be 

recognised in future publications of national and international renown. 

S9: Skill and ability to make a critical analysis, evaluation and summary of new and 

complex ideas. 

S10: Skill and ability to communicate with colleagues, lecturers, supervisors, the academic 

community as a whole and with society in general about the areas of expertise developed 

during the doctoral period and previous training. 

S11. Skill and ability to foster and develop technological, social and cultural progress in an 

academic context, in a society based on knowledge via the training achieved during the 

doctoral period. 

S12. Skill and ability to foster and develop technological, social and cultural progress in a 

professional context, in a society based on knowledge via the training achieved during the 

doctoral period. 
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S13: Skill, capability and perspectives for applying the results of this PhD dissertation. 

S14: Skill, capability and perspectives for transferring the results of this PhD dissertation. 
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Chapter 8 
 

Conclusions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter presents: 

- Summary of brief statements and specific conclusions for each chapter. 

- General conclusions. 

- Future work. 
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8.1. Summary of brief statements and specific conclusions for each 

chapter 

A summary of the main statements and the specific conclusions of each chapter is listed 

below: 

Chapter 1 

 There are currently two major groups of poultry farms: for laying hens 

and for meat production (broilers). 

 Broiler production is increasing more than other livestock sectors with a 

633.34 % increase in world production in the period from 1972 to 2012 (FAO, 2015), 

producing high-quality meat at a reasonable price (Slingenbergh et al., 2007). 

 Among the different types of intensive livestock production, poultry is the 

most efficient in terms of feed conversion (Steinfeld et al., 2006). 

 Poultry meat (broiler) is accepted by almost all cultural and religious 

groups, whereas pig, cattle or rabbit meet with acceptance issues in some cultures or 

religions. 

 Intensive agricultural systems (not exempt from controversy) are one way 

to provide food at reasonable price-quality to all social strata. 

 In this vein, the trend in the livestock sector is towards this intensive 

production in a process called ―livestock industrialisation‖. 

 Broiler production has developed genetic improvements, better and 

concentrated feed, an improvement in preventive disease controls and biosecurity measures, 

and the use of technology to exhaustively control in-house environmental conditions 

(Havenstein et al., 2003). 

 Intensive broiler production consists of confining the birds in animal 

houses and has two fundamental variants: production in broiler buildings with natural 

ventilation and production in broiler buildings with mechanical ventilation. 

 The dominant intensive production system for broilers takes place in 

broiler buildings with mechanical ventilation, mainly with negative pressure by means of 

exhaust fans (ASAE, 1986; MWPS, 1990; Pedersen, 1999). 

 Ventilation plays a critical role in ensuring appropriate indoor conditions 

to achieve high animal productivity (growth and food conversion) and low mortality 

(Charles et al., 2002; Lott et al., 1998). 
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 The ventilation issues represent the main spend in total electricity 

consumption (45 %) (Corkery et al., 2013; Teagasc, 2011). 

 Housing conditions are acknowledged as having a greater impact than 

animal density on broilers’ welfare (Dawkins et al., 2004). 

 There are currently no optimum models for broiler buildings, either in 

terms of the types or the ventilation systems installed. 

 According to the climatic conditions, broiler building conceptions are 

different and the problems are different. 

 Cold stress significantly affects broiler health, welfare and performance 

(Blahova et al., 2007; Yang et al., 1999). 

 Cold stress significantly affects broilers’ health, welfare and performance 

(Blahova et al., 2007; Yang et al., 1999). 

 Heat stress significantly affects broilers’ health, welfare and performance 

(Daghir, 2001; Deaton et al., 1997; DEFRA, 2008; Sohail et al., 2012; Yanagi et al., 2002; 

Yavah et al., 2004). 

 An important part of world broiler production is located in mild climate 

(e.g. Mediterranean climate). 

 Spain is the thirteenth broiler meat producing country worldwide (FAO, 

2015) and an important amount of this broiler production is concentrated in the Valencian 

Community (Martínez et al., 2008). 

 Nowadays, repetitive and massive episodes of broiler mortality and 

animal stress occur in hot seasons (El País, 2003) or climates with high temperatures and 

high relative humidity, especially in this strategic Mediterranean climate. 

 Poultry production for meat in the third millennium needs to be revised to 

prevent these inadmissible thermal problems in terms of animal welfare and economic 

criteria, among others. 

 Empiricism or intuition is not the way in the third millennium to build 

animal houses. 

 As in any building, each broiler building needs to be designed according 

to the requirements for the entire period of its useful life. However, climate change and 

global warming cause meteorological uncertainty in the designs of any building (Holmes et 

al., 2007) and evidently in livestock systems (Nardone et al., 2010). 

 Current broiler buildings are very heterogeneous in terms of dimensions, 

location of windows, doors, ventilation systems... 
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 Despite this heterogeneity, we can group the broiler buildings into 

categories or groups according to the mechanical ventilation system installed: cross, single-

sided and tunnel. 

 Current trends in studying the indoor environments and the 

characterisation of the ventilation in poultry buildings have two important methodologies: 

direct measurements with the appropriate instrumentation (Berckmans et al., 1991; Blanes-

Vidal et al., 2010; van Wagenberg et al., 2003; Wilhelm et al., 2001; Zhang et al., 1996) 

and indirect methods such as Computational Fluid Dynamics (CFD) techniques (Bartzanas 

et al., 2007; Blanes-Vidal et al., 2008; Lee et al., 2007; Norton et al., 2007). 

 Using these methodologies, we can analyse and characterise the 

ventilation in different mechanical ventilation systems in different broiler buildings 

typologies. 

 Each type of broiler building will be analysed by CFD techniques and 

direct measurements using suitable electronic instrumentation (sensors). 

 The CFD simulations will be validated, as this point is crucial to ensure 

the results of the numerical simulations (Oberkampf et al., 2002). 

 We shall discuss the characteristics (advantages and disadvantages) of 

each type of the mechanical ventilation system. 

 Through these analyses and characterisations, we shall establish futures 

design trends and protocols for new broiler buildings and retrofits of the broiler buildings 

already constructed, assessing the best operations in management terms. 

 This PhD dissertation will be a big step towards finding optimum models 

for broiler buildings and the associated best ventilation systems. 

 To meet these objectives, other related variables of the broiler building 

design such as the cooling system will also analysed and designed. 

Chapter 2 

 A multi-sensor system is necessary to receive enough signals from a large 

number of points due to the turbulent nature of mechanical ventilation (Heber et al., 1996). 

 Due to the turbulent nature of the airflow in mechanical ventilation, the 

changes in values of air velocity at the same point and in the same scenario are large. 

 Field measurements show great fluctuation in the values when measuring 

air velocity and in some cases the standard deviation is nearly the average. 

 Isolated measurements only, or small numbers of sensors, are not valid to 

perform studies of broiler building indoor environments. 
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 The isotemporality in receiving signals from the sensors is crucial. 

 Absence of operators and minimum maintenance are required to prevent 

possible distortions of the measurements during the field experiments (Wheeler et al., 

2003). 

 For their advantages, hot-wire type sensors and RTDs, respectively, were 

chosen for air velocity and temperature (Ibrahim, 2002). 

 The sensors are calibrated with great success. 

 The use of dummy variables (Kutman et al., 2005) for sensor calibration 

has been an innovative method for this purpose. 

 The different calibration curves (very similar) indicate that slight 

differences among sensors could arise from differences in the fabrication process or 

components. 

 This isotemporal multi-sensor system was able to integrate the calibrated 

sensors of temperature, air velocity and differential pressure. 

 The measurement system included a laptop, a data acquisition card, a 

multiplexor module and a set of 24 air temperature, 24 air velocity and 2 differential 

pressure sensors. The system was able to acquire up to a maximum of 128 signals 

simultaneously at 5 second intervals. 

 A wyred system is preferable to wireless, because more energy 

consumption is involved and it is necessary to change the batteries, distorting the operator 

recordings. Moreover, a wireless system is not suitable for our needs when measuring 

throughout rearing. 

 According to the evaluation of effects on air velocity measurements, 

results obtained show that the variation between sensors was not significant (P-value< 

0.4428). 

 The lack of statistical significance of the ―Sensor‖ variable in this simple 

effect indicates homogeneous behaviour of all sensors on average for the different sections 

and boundaries studied. 

 A measurement system for these aims must be robust to withstand the 

aggressive environmental conditions (e.g., dust, high relative humidity and gas 

concentration), occurring in broiler buildings during poultry rearing. 

 Although the field experiments were conducted in an empty broiler 

building, the measurement system is robust to work with poultry. 



Ph.D. Thesis         Universitat Politècnica de València 

210 

 In occupied broiler houses, indoor environmental boundary conditions are 

more complex than in an empty broiler building, making it necessary to measure not only 

air velocity, but also indoor temperature, differential pressure and relative humidity. 

 Additional sensors (i.e., humidity sensors) can be implemented at the other 

channels of the collecting module for wider studies in occupied broiler houses. 

 In occupied broiler houses, sensors placed at poultry level must be 

protected (e.g., using a mesh) to avoid access by the poultry. It is also recommendable to 

include more sensors at a different level above the birds’ heads in order to reduce the effect 

of the animals on measurements. 

 This multi-sensor system was tested in a cross mechanically ventilated 

broiler building of the Valencia Community (Spain). 

 From these measurements, we concluded that cross-mechanical 

ventilation is a good system for mild weather, but it is neccessary to explore other 

conditions of the ventilation system to prevent episodes of high mortality during summer 

months, as this mechanical ventilation system does not provide high air velocities at broiler 

level. 

 The overall average of these measurements is 0.63 ± 0.54 m s
-1

. 

 The multi-sensor system developed can be used to obtain quasi-

instantaneous fields of the air velocity and temperature, as well as differential pressure 

maps to assess the design and functioning of ventilation system and as a V&V system of 

CFD simulations. 

Chapter 3 

 CFD simulations were performed in the same broiler building and 

scenarios of the chapter 2. 

 As we expected in the previous chapter, the CFD results of this cross 

mechanically ventilated broiler building show low air velocity values. 

 Minor differences were found between CFD results and direct 

measurements using the multi-sensor system. Thus, the average air velocities values using 

CFD techniques were 0.60 ± 0.56 m s
−1

, whereas in direct measurements using the multi-

sensor system they were 0.64 ± 0.54 m s
−1

. 

 An ANOVA model and a regression line were proposed to perform the 

validation of CFD results. 

 In this ANOVA model, we concluded that the ―Methodology‖ variable 

was not significant (P-value <0.5271), and the same was found for its interactions. 
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Accordingly, there is no difference in using the CFD techniques or the direct measurements 

with the multi-sensor system employed here. 

 In the regression line the slope was near one and the independent term 

near zero. The coefficient of determination of the linear regression shows a good fit, R
2
= 

0.888. 

 An important advantage of CFD simulations is that they provide a visual 

representation which gives a comprehensive idea of the airflow trends, in which parameters 

are represented by colours or vectors at different trial scenarios. 

 These graphic representations also provide additional information on 

airflow characteristics and patterns, which may contribute to a more effective ventilation 

design. 

 CFD techniques provide more points of knowledge and a more general 

view of indoor climatic conditions of broiler buildings through the graphics than direct 

measurements. 

 As we concluded in chapter 2, we can affirm that mechanical cross 

ventilation systems are adequate under the most common weather conditions, but they do 

not prevent episodes of mortality caused by heat stress, as they provide lower velocity 

values than those required by animals in these conditions. 

 A main issue of study should be how to achieve a homogeneous 

distribution of increased air velocity at poultry level to reduce broiler stress and the 

associated mortality in summer seasons, and at the same time to keep an acceptable level of 

energy consumption. 

Chapter 4 

 Tunnel-type mechanical ventilation was studied in a broiler building in 

Mediterranean climate. 

 It was analysed using two methodologies: direct measurements by means 

of the multi-sensor system and CFD simulations. 

 Both methodologies (CFD and direct measurements) showed similar air 

velocity results. 

 At broiler level (0.25 metres), the maximum air velocity was 2.72±0.31 

m·s
−1

 (CFD) and 2.58±0.29 m·s
−1

 (measurements). 

 An ANOVA model and a regression line were proposed to perform the 

validation of CFD results. 
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 The validation for CFD simulations performed in the ANOVA analysis 

concluded that the ―Methodology‖ variable (results by CFD simulations or direct 

measurements) is non significant (P-value<0.1155), along with its interactions. Thus, we 

can use direct measurements or CFD simulations to explore indoor air velocity in this 

ventilation system in broiler buildings. 

 In the regression line the slope was near one and the independent term 

near zero. The coefficient of determination of the linear regression shows a good fit R
2
= 

0.98. 

 As the experimental broiler building is a retrofit of a traditional cross 

mechanically ventilated broiler building of these areas, the inlets are concentrated in the 

lateral end of the opposite wall of fans. 

 This ventilation system is very commonplace in some countries (USA, 

Brazil, countries of tropical climate...); it has only recently been incorporated in southern 

Europe. 

 The aim of adopting this ventilation system is to solve the repetitive 

mortality and animal stress in summer seasons in southern Europe (Mediterranean climate). 

 Mechanical tunnel ventilation provides high air velocity values to 

increase the convective flux heat of broilers and thereby decrease the thermal stress and 

associated mortality. 

 Thermoregulation of the broilers by high air velocities around the poultry 

is crucial to decrease their thermal stress and mortality (DEFRA, 2008). 

 The current traditional ventilation system (cross mechanical) in 

Mediterranean climate is not valid for hot seasons or weather, as it does not provide high 

enough air velocity. 

 Except for the publication of this chapter, no published article addressing 

management and air velocity distribution vs. fans in action is found. 

 In this experimental broiler building, we observed three differentiated 

zones: inlets zone, central zone and near the fans. Relevant problems of very high air 

velocity values near the fans are found; in contrast, near the inlets a ―dead zone‖ (low air 

velocities) and great changes are also found. 

 Mechanical tunnel ventilation is still not optimised, due to the issue of air 

velocity heterogeneity at broiler level (0.25 metres), finding full valid behaviour in the 

central zone of the experimental broiler building. 
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 Mechanical tunnel ventilation was not the ideal design for broiler 

buildings of short length because the best and most homogeneous indoor environment is 

only located in the central zone. 

 Higher electricity consumption is needed than in the traditional 

ventilation system (cross) in winter or cold seasons to heat the incoming air. 

 In summer seasons, the farmers in these areas can save the energy used to 

run the fans, as with a small number of fans working they can achieve the same air velocity 

values as when using a large number of fans in the traditional ventilation system. 

 Due to the ease with which high air velocity values are reached, 

inappropriate management can easily lead to health problems in broilers due to possible 

excessive ventilation. 

 Although tunnel mechanical ventilation can be used for normal weather 

in Mediterranean climate, the traditional ventilation system (cross) is more suitable because 

the broiler density is higher, as in tunnel-type ventilation there are areas of the broiler 

building that cannot be occupied by broilers due to problems of air velocity distribution. 

 Management of tunnel ventilation is more complicated and the 

programming of fans in action requires more time and experience than in cross (traditional) 

ventilation. 

 Mechanical tunnel ventilation solves the problems of thermal stress and 

associated mortality in some latitudes of the Mediterranean climate, but is only fully valid 

for the hot season. 

 In future works, we can optimise this ventilation system using ―virtual‖ 

geometries and BC by means of CFD techniques validated in this chapter. 

Chapter 5 

 Mechanical single-sided ventilation in livestock buildings was studied in 

a broiler building under a negative pressure system. 

 Except for publication of this chapter, no published scientific literature 

was found referring to mechanical single-sided ventilation in livestock buildings or broiler 

buildings. 

 This emergent ventilation system has recently been incorporated, 

especially in Mediterranean areas and designed for some businesses in the sector (Serupa, 

2015; Warkup, 2015) without scientific justification or publication. 
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 Mechanical single-sided ventilation was analysed using two 

methodologies: direct measurements by means of the multi-sensor system and CFD 

simulations. 

 Both methodologies (CFD and direct measurements) showed similar air 

velocities, (at broiler level, between ~0.40 m s
-1

 and ~1.30 m s
-1

). 

 An ANOVA model and a regression line were proposed to perform the 

validation of CFD results. 

 The validation for CFD simulations performed in the ANOVA analysis 

concluded that the ―Methodology‖ variable (results by CFD simulations or direct 

measurements) is non significant (P-value<0.3908), along with its interactions. Thus, we 

can use direct measurements or CFD simulations to explore indoor air velocity in this 

ventilation system in broiler buildings. 

 In the regression line the slope was near one and the independent term 

near zero. The coefficient of determination of the linear regression shows a good fit R
2
= 

0.98. 

 A minimum acceptable systematic error (overestimation of CFD 

simulations by 6.6 %) was found. 

 The ―Diffuser‖ influence (an element to avoid direct airflow to the 

poultry, which may suffer from colds or respiratory diseases) has been also tested 

concluded that its use is not significant (P-value<0.6106), as well its interactions. Thus, the 

inclusion of the diffuser altered the air velocity distribution, but no significant variations or 

tendencies were observed. 

 Highest ventilation rates in the broiler building (much exhausted air) do 

not necessary imply much air velocity at broiler level. Thus, the adopted geometry of the 

broiler building (physical configuration of inlets and outlets, associated BC…) is crucial to 

obtain a determinate air velocity distribution and values, more than the rates of ventilation 

of the whole broiler building. 

 Having validated the CFD simulations, we can use CFD techniques to 

explore ―virtual‖ geometries of broiler buildings and to find the optimum building designs, 

best scenarios and associated best management practices of this ventilation system. 

 CFD simulations offer more possibilities (full knowledge of the indoor 

environment, easy building of ―virtual‖ broiler houses and geometries, illustrative 

graphics…) than complex direct measurements. 
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 The air velocity values are acceptable for normal weather in 

Mediterranean climate and slightly higher than those obtained in cross-mechanical 

ventilation, although a future precise comparison is necessary. 

 The minimum CFD-value of air velocity at broiler level (0.25 metres) 

was 0.52±0.40 m s
-1

 and the maximum was 1.29±0.41 m s
-1

. 

 Mechanical single-sided ventilation is a good ventilation system for 

broiler production only in normal weather conditions, as it does not provide much air 

velocity at broiler level to prevent occasional episodes of high mortality or thermal stress in 

hot seasons or hot climate. 

 Use of the diffusers is recommended because they do not significantly 

alter the values of indoor air velocities at broiler level, as the farmers erroneously used to 

believe, and they prevent high air velocities near the broilers that can cause respiratory 

diseases. 

 Mechanical single-sided ventilation entails two important issues: the great 

heterogeneity of the air velocity distribution at broiler level and the poor ventilation in 

some areas of the broiler building (opposite wall of the fans and between them). 

Chapter 6 

 It is possible to use CFD procedures to design heating or cooling systems 

in broiler buildings. 

 In the case of heating systems, the radiators or heat sources can be 

modelled in CFD (Sevilgen et al., 2011; Zajicek et al., 2014). 

 In the case of cooling systems, it is possible to analyse the pad cooling 

(Franco et al., 2011) or the fogging system using CFD. 

 An optimum fogging system design needs a full knowledge of the indoor 

air velocity. 

 By means of CFD it is possible to know the full behaviour of the indoor 

air velocity profiles (magnitude and directionality). 

 In a tunnel mechanical broiler building, the location of the pipes and 

orientation of the fog spray nozzles was designed based on the information obtained from 

CFD air velocity results (magnitude and directionality). 

 Each broiler building model will have a specific optimum design of the 

location of the pipes and orientation of the fog spray nozzles according to the specific 

indoor nature of the air velocity. 
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 CFD techniques can determine the optimum design of the location of the 

pipes and orientation of the fog spray nozzles for each type of broiler building and 

ventilation system installed. 

 A protocol for maintenance and estimation of water consumption within a 

cooling time is proposed. 

Chapter 7 

 Broiler production in the third millennium needs to incorporate all the 

advantages of all type of the current mechanical ventilation systems (transversal and 

longitudinal). 

 An important premise when designing a broiler building is to know the 

exact climatology at the moment and for the future. 

 A building needs to be entirely designed for the whole period of its useful 

life. 

 It is necessary take into account future breakthroughs in building design 

and devices. 

 Weather predictions entail great uncertainty due to the effects of climate 

change or global warming. In this sense, some climate areas can be converted into other 

areas within short and/or unexpected periods of time. 

 The general optimums and the specific optimums were differentiated 

because the specific optimums are conditioned by particular needs (the specific 

requirements of the clients, specific dimensions and size of the broiler building, planned 

investment, number of animals, etc.) based on the general optimum model outlined here. 

 In areas with some climatic uncertainty or average climate such as the 

Mediterranean, the ideal is a hybrid mechanical ventilation system: one ventilation system 

for winter or cold seasons (medium-low air velocities) and another ventilation system for 

hot seasons (medium-high air velocities). 

 In some cases, the installation of a double (hybrid) mechanical ventilation 

system can be uneconomical in some areas because the losses in mortality and efficiency in 

the final weigh of broiler are outweighed by the investment in a mechanical ventilation 

tunnel system for only a small part of the hot seasons. 

 From an ethical and animal welfare standpoint, it is immoral to maintain 

only one mechanical ventilation system if there are possibilities of mortality or animal 

suffering due to thermal stress. 
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 There must be planned laws to regulate, depending on the geographical 

location where it is compulsory to install both ventilation systems. 

 Farmers of Mediterranean areas would choose as the transversal system 

the cross-mechanical ventilation, because it is already installed and/or known, more than 

single-sided. 

 Using CFD techniques, validated in this PhD dissertation, we can build 

―virtual‖ geometries of broiler buildings to determine the specific optimum broiler design, 

the best ventilation system and assess the most appropriate management operations. 

 In this search of optimum broiler building design, it is necessary to 

homogenise the required air velocity to avoid indoor migration and larger concentrations in 

some areas of the building, which also cause stress and mortality. 

 Adequate indoor air velocity is not equivalent to the adequate required 

oxygen of the broilers. In mechanical tunnel ventilation, it is possible to obtain the required 

air velocity with a discrete number of fans in action but the oxygen needs must be 

controlled. 

 Due to the specific nature of mechanical tunnel ventilation, the age of the 

air (the time inside the broiler building) is greater that in mechanical transversal ventilation 

systems (cross, single-sided…). Thus, the concentrations of pollutants of the air in tunnel 

systems may be higher, especially at the end of air trajectories (near fans) (Carvalho et al., 

2012). Pollutant concentrations affect the indoor environment as well as the broilers. 

 These different design variables must be evaluated and quantified. The 

use of heuristic algorithms making restrictions on the variables (investment, days of use of 

one mechanical ventilation system, number of broilers…) determining an objective 

function (Gen et al., 2000; Goldberg, 1989; Tam, 1992) will be the means to search for 

specific optimum broiler building designs. 

 In future studies, it will be necessary to choose the appropriate heuristic 

algorithm (Gen et al., 2000; Goldberg, 1989; Tam, 1992) to achieve easy convergence of 

results. 

 It is possible to extend the protocols of this PhD dissertation to other 

livestock buildings such as cattle, pigs, rabbits… 

 In our region (Valencian Community) and in Mediterranean countries, the 

indoor environments of rabbit houses have not yet been analysed in depth. This animal 

house model can be analysed using CFD and sensors in a similar methodology as that for 

broiler buildings described in this PhD dissertation. 
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8.2. General conclusions 

All the chapters have followed a logical, chronological order according to the general aim, 

specific objectives and particular needs with the aim of analysing and characterising the 

different mechanical ventilation systems installed in different types of broiler buildings. In 

this PhD dissertation, three-dimensional CFD simulations were developed in order to 

analyse and characterise the three main mechanical ventilation systems (cross, single-sided 

and tunnel) installed in broiler buildings. In this vein, an original multi-sensor system 

conceived and built for this PhD dissertation carried out the corresponding measurements in 

large field experiments. The precise validation of CFD simulations by means of regression 

lines and validation models shows the good accuracy of these numerical results. Finally, 

and according to these characterisations, the general optimum for a broiler building was 

outlined. Thus, the general conclusion is that the general aim and the associated specific 

objectives have been sufficiently covered in this PhD dissertation. 

By means of this PhD dissertation, several contributions to the scientific and academic 

community have been made, obtaining the fourteen skills in the general discussion 

described above. In this way, important perspectives for application and transference in 

academic and professional contexts can be found in this PhD dissertation. Of course, the 

research methods (CFD, sensors and validation of CFD) make up the bulk of the 

contribution (the numerical setups such as the turbulence models’ analyses, boundary 

conditions and simulations, etc. were improved). However, in my opinion the main 

contribution is the ability to integrate and improve all of the very different spheres of 

knowledge involved in this PhD dissertation at the same time. In this sense, I think that the 

resulting monographic work (the PhD dissertation) has exponentially improved the isolated 

chapters or spheres of specific knowledge (CFD, sensors, validation, field experiments, 

biological issues, aviculture, etc.). The entire systematisation, organisation, integration, 

evaluation, coherence, synthesis of ideas, skills, methods, results and their critical analyses 

within the monographic work has all enriched the chapters already published and submitted 

much more. 

Although the different statements and particular conclusions for each chapter have been 

outlined above, they can be summarised as follows: 

1. Broiler production is very important and intensive production takes place in broiler

buildings with mechanical ventilation, mainly by negative pressure by means of exhaust 

fans. 
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2. These broiler buildings are not optimised and there is currently no optimum model of a 

broiler building with mechanical ventilation, either in term of dimensions and/or design or 

from the point of view of the ventilation system. 

3. Ventilation plays a critical role in ensuring appropriate indoor conditions to achieve high 

animal productivity (growth and food conversion) and low mortality. 

4. Empiricism or intuition is not the way to build animal houses in the third millennium. 

5. Current trends in studying indoor environments and the characterisation of the 

ventilation of broiler buildings apply two important methodologies: direct measurements 

with the appropriate instrumentation and indirect methods such as CFD techniques. 

6. The instrumentation (measurement system) must be integrated for a large number of 

sensors receiving signals in an isotemporal regime, due to the turbulent nature of 

mechanical ventilation. In broiler buildings, the main environmental parameter to be 

studied is the air velocity, since this can serve to control the biological thermoregulation of 

the broilers to minimise their thermal stress. On hot days or hot seasons in a mild climate, 

high air velocity values reduce the heat stress and associated mortality. 

7. Validation of CFD simulations is crucial, as using CFD techniques we can achieve fuller 

knowledge of the ventilation (not only the discrete physical sensors), to build ―virtual‖ 

geometries of broiler buildings and ―virtual‖ ventilation systems to search the optimum 

models. 

8. There are many variants of mechanical ventilation in broiler buildings, the main ones 

being transversal (cross or single-sided) and longitudinal (tunnel). 

9. Cross mechanical ventilation is the traditional ventilation system in Mediterranean 

climate, but cannot solve the problems of mortality and thermal stress of the broilers 

because it does not achieve high air velocity values. Thus, the biological thermoregulation 

of the birds by means of high air velocity values is the key point. On the other hand, tunnel 

mechanical ventilation provides high air velocity values and is the solution for the hot 

seasons (summer). 

10. We can optimise each ventilation system and associated architecture separately using 

CFD simulations or the hybrid mechanical ventilation system (transversal plus longitudinal) 

if the broiler building is located in an area with climatic uncertainty. This optimisation 

involves an integration of different design variables and requires the proper air velocities 

needed by the animals at each period of rearing. Homogeneity of air velocity at the level of 

presence of the animals is required because indoor migrations and bigger concentrations in 

some areas of the building also cause stress and mortality. The oxygen requirements and 

low levels of pollutants must be controlled. 
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These large general statements and conclusions can be summarised to the minimum length 

in five spheres: 

1. Instrumentation: We built and tested the instrumentation to measure indoor

environmental parameters (especially the air velocity parameter, as it is the key to reducing 

thermal stress and mortality by controlling their thermoregulation) in modern broiler 

buildings. 

2. CFD: We used the CFD tool to analyse and characterise the different mechanical

ventilation systems in different broiler building typologies. 

3. Validation: We have validated the CFD simulations.

4. The analysis and characterisation of each main type mechanical ventilation in

different broiler buildings: We analysed the different ventilation systems (cross, single-

sided and tunnel), concluding that transversal ventilation systems (cross and single-sided) 

are appropriate for broiler rearing all year round in a mild climate, except in hot seasons or 

heat waves, as the air velocity cannot achieve sufficiently high values. On the other hand, in 

mechanical tunnel it is possible to achieve high air velocity values and it is valid for hot 

seasons or heat waves. In all cases, the heterogeneity at the plane of presence of the animals 

is found and this fact is an important problem, as indoor migration and larger 

concentrations of animals appear, which also cause stress. 

5. The optimum broiler building design: In mild climate (e.g. Mediterranean climate) and

some areas with climatic uncertainty, the broiler building will need to incorporate a hybrid 

mechanical ventilation system (tunnel and another transversal) to solve all the possible 

climatic events. Tunnel ventilation system for some occasional days of hot seasons or heat 

waves and a mechanical transversal system (cross or single-sided) for the whole year, 

except for hot periods. Climate change and global warming must be taken into account, as a 

broiler building needs to be designed for the entire period of its useful life and these effects 

strongly condition the concept of the broiler building. In some cases and in some 

geographical locations, the hybrid mechanical system will be uneconomical, but can solve 

the problems of improving thermal comfort in animal welfare. 

In some areas of constant hot weather, the optimum broiler building design will incorporate 

a single optimised tunnel ventilation system. On the contrary, in some areas of constant 

medium/cold weather, the broiler building optimum design will incorporate a single 

optimised transversal ventilation system. 
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8.3. Future work 

The first paragraph of the motivation to this PhD dissertation was: «Earth’s planet is 

overpopulated and a great percentage of its people suffers famine or is not properly fed. For 

the future, biological, agricultural and industrial engineers face a great challenge: to provide 

the necessary food knowing that the land is limited, offer it at a reasonable price-quality to 

reach all social strata and supplying food considering the rapid increase in population. At 

this point, intensive production (not exempt from controversy) in agriculture, livestock and 

fisheries is crucial to provide food to the earth’s population». I hope that this modest PhD 

dissertation has contributed in some way to help find methods to increase the production of 

broilers through procedures respectful with nature, animals and humans. In this sense, this 

sustainable increase in production must lower the cost of this meat to reach all social strata, 

while at the same time increasing the economic benefits for the farmers. 

In future works, we can continue to seek specific optimum models for broiler buildings 

using CFD simulations under the guidance of heuristic algorithms. 

Future CFD simulations should include the presence of the broilers. These broilers could be 

modelled in CFD as heat sources or radiators, taking different heat emission values 

depending on the week of rearing. 

In the study of occupied broiler buildings, additional sensors (i.e., humidity sensors...) can 

be developed and integrated into the multi-sensor system. 

New prototypes of multi-sensor systems (e.g. air velocity sensors that determine the 

components...) can be developed by first experimenting with the ventilation in laboratories 

and later in the broiler buildings. 

In occupied broiler buildings, new CFD results can be validated and analysed (i.e. 

temperature, humidity...). 

Each ventilation system and associated architecture of the broiler building can be optimised 

separately. In some clear areas (milder climate or tropical climate without climatic 

uncertainty) a mechanical hybrid system will not be the optimum choice. Nevertheless, in 

areas with climatic uncertainty, the hybrid ventilation systems composed of a longitudinal 

mechanical ventilation system and a mechanical ventilation transversal system must be 

optimised together using these CFD simulations under the guidance of the heuristic 

algorithms. 

Other variables of broiler building design such as the heating systems (hothouses) or 

different cooling systems (pad cooling...) can be also studied using the synergy of direct 

measurements and the CFD simulations. 
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Livestock fans or other turbo-machinery can be studied using CFD techniques and direct 

measurements to obtain easy boundary conditions such as the ventilation rate without the 

current complex procedures. 

Other livestock buildings such as animal houses for pigs, cattle, rabbits or turkeys… can be 

studied using CFD techniques and their buildings optimised by the procedures described in 

this PhD dissertation, because some parts of these studies can be extrapolated to other 

animal houses. A good line of research in our culture and country is the analysis of indoor 

environments of rabbit houses. 
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