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Abstract

Common audio systems are designed with the intent of creating real and
immersive scenarios that allow the user to experience a particular acoustic
sensation that does not depend on the room he is perceiving the sound.
However, acoustic devices and multichannel rendering systems working in-
side a room, can impair the global audio effect and thus the 3D spatial
sound.

In order to preserve the spatial sound characteristics of multichannel
rendering techniques, adaptive filtering schemes are presented in this dis-
sertation to compensate these electroacoustic effects and to achieve the
immersive sensation of the desired acoustic system. Adaptive filtering of-
fers a solution to the room equalization problem that is doubly interesting.
First of all, it iteratively solves the room inversion problem, which can be-
come computationally complex to obtain when direct methods are used.
Secondly, the use of adaptive filters allows to follow the time-varying room
conditions.

In this regard, adaptive equalization (AE) filters try to cancel the echoes
due to the room effects. In this work, we consider this problem and propose
effective and robust linear schemes to solve this equalization problem by
using adaptive filters. To do this, different adaptive filtering schemes are
introduced in the AE context. These filtering schemes are based on three
strategies previously introduced in the literature: the convex combination of
filters, the biasing of the filter weights and the block-based filtering. More
specifically, and motivated by the sparse nature of the acoustic impulse
response and its corresponding optimal inverse filter, we introduce different
adaptive equalization algorithms.

In addition, since audio immersive systems usually require the use
of multiple transducers, the multichannel adaptive equalization problem
should be also taken into account when new single-channel approaches are
presented, in the sense that they can be straightforwardly extended to the
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multichannel case.

On the other hand, when dealing with audio devices, consideration must
be given to the nonlinearities of the system in order to properly equalize
the electroacoustic system. For that purpose, we propose a novel nonlinear
filtered-x approach to compensate both room reverberation and nonlinear
distortion with memory caused by the amplifier and loudspeaker devices.

Finally, it is important to validate the algorithms proposed in a real-
time implementation. Thus, some initial research results demonstrate that
an adaptive equalizer can be used to compensate room distortions.

Keywords: Room Equalization, Filtered-x Structures, Linear and Non-
Linear Distortion, Adaptive Algorithms, Mean-square Error, Convex Com-
bination Filters, Blocked-based Algorithms, Biased Filters, Real-time Im-
plementation.



Resumen

Los sistemas de audio actuales estan diseniados con la idea de crear escena-
rios reales e inmersivos que permitan al usuario experimentar determinadas
sensaciones acusticas que no dependan de la sala o situaciéon donde se esté
percibiendo el sonido. Sin embargo, los dispositivos actsticos y los sistemas
multicanal funcionando dentro de salas, pueden perjudicar el efecto global
sonoro y de esta forma, el sonido espacial 3D.

Para poder preservar las caracteristicas espaciales sonoras de los sis-
temas de reproduccién multicanal, en esta tesis se presentan los esque-
mas de filtrado adaptativo para compensar dichos efectos electroacusticos
y conseguir la sensacién inmersiva del sistema sonoro deseado. El filtrado
adaptativo ofrece una solucién al problema de salas que es interesante por
dos motivos. Por un lado, resuelve de forma iterativa el problema de in-
versién de salas, que puede llegar a ser computacionalmente costoso para
los métodos de inversién directos existentes. Por otro lado, el uso de filtros
adaptativos permite seguir las variaciones cambiantes de los efectos de la
sala de escucha.

A este respecto, los filtros de ecualizacién adaptativa (AE) intentan
cancelar los ecos introducidos por la sala de escucha. En esta tesis se con-
sidera este problema y se proponen esquemas lineales efectivos y robustos
para resolver el problema de ecualizacién mediante filtros adaptativos. Para
conseguirlo, se introducen diferentes esquemas de filtrado adaptativo para
AE. Estos esquemas de filtrado se basan en tres estrategias ya usadas en la
literatura: la combinacion convexa de filtros, el sesgado de los coeficientes
del filtro y el filtrado basado en bloques. Mas especificamente y motivado
por la naturaleza dispersiva de las respuestas al impulso acusticas y de sus
correspondientes filtros inversos éptimos, se presentan diversos algoritmos
adaptativos de ecualizacion especificos.

Ademsds, ya que los sistemas de audio inmersivos requieren usar nor-
malmente multiples trasductores, se debe considerar también el problema
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de ecualizacién multicanal adaptativa cuando se disenan nuevas estrategias
de filtrado adaptativo para sistemas monocanal, ya que éstas deben ser
facilmente extrapolables al caso multicanal.

Por otro lado, cuando se utilizan dispositivos actsticos, se debe con-
siderar la existencia de no linearidades en el sistema elactroactstico, para
poder ecualizarlo correctamente. Por este motivo, se propone un nuevo
modelo no lineal de filtrado-x que compense a la vez la reverberacién in-
troducida por la sala y la distorsiéon no lineal con memoria provocada por
el amplificador y el altavoz.

Por tltimo, es importante validar los algoritmos propuestos mediante
implementaciones en tiempo real, para asegurarnos que pueden realizarse.
Para ello, se presentan algunos resultados experimentales iniciales que mues-
tran la idoneidad de la ecualizacién adaptativa en problemas de compen-
sacion de salas.

Keywords: Ecualizacién de salas, estructuras de filtrado-x, distorsién lin-
eal y no lineal, algoritmos adaptativos, error cuadratico medio, filtros de
combinacién convexa, algoritmos basados en filtros, filtros sesgados, imple-
mentacion en tiempo real.



Resum

Els sistemes d’audio actuals es dissenyen amb l'objectiu de crear ambi-
ents reals i immersius que permeten a 'usuari experimentar una sensaci
acustica particular que no depen de la sala on esta percebent el so. No
obstant aixo0, els dispositius acustics i els sistemes de renderitzacié multi-
canal treballant dins d’una sala poden arribar a modificar ’efecte global de
I’audio i per tant, lefecte 3D del so a I’espai.

Amb I'objectiu de conservar les caracteristiques espacials del so obtingut
amb tecniques de renderitzacié multicanal, aquesta tesi doctoral presenta
esquemes de filtrat adaptatiu per a compensar aquests efectes electroacustics
i aconseguir una sensacié immersiva del sistema actstic desitjat.

El filtrat adaptatiu presenta una solucié al problema d’equalitzacié de
sales que es interessant baix dos punts de vista. Per una banda, el filtrat
adaptatiu resol de forma iterativa el problema inversié de sales, que pot
arribar a ser molt complexe computacionalment quan s’utilitzen metodes
directes. Per altra banda, I'is de filtres adaptatius permet fer un seguiment
de les condicions canviants de la sala amb el temps.

Més concretament, els filtres d’equalitzacié adaptatius (EA) intenten
cancel-lar els ecos produits per la sala. A aquesta tesi, considerem aquest
problema i proposem esquemes lineals efectius i robustos per a resoldre
aquest problema d’equalitzacié mitjancant filtres adaptatius. Per aconseguir-
ho, diferent esquemes de filtrat adaptatiu es presenten dins del context del
problema d’EA. Aquests esquemes de filtrat es basen en tres estrategies ja
presentades a l’estat de 'art: la combinacié convexa de filtres, el sesgat dels
pesos del filtre i el filtrat basat en blocs. Més concretament, i motivat per la
naturalesa dispersa de la resposta a I'impuls actstica i el corresponent filtre
optim invers, presentem diferents algorismes d’equalitzacié adaptativa.

A més a més, com que els sistemes d’audio immersiu normalment re-
quereixen 1'is de multiples transductors, cal considerar també el problema
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d’equalitzacié adaptativa multicanal quan es presenten noves solucions de
canal simple, ja que aquestes s’han de poder estendre facilment al cas mul-
ticanal.

Un altre aspecte a considerar quan es treballa amb dispositius d’audio
és el de les no linealitats del sistema a I’hora d’equalitzar correctament
el sistema electroactustic. Amb aquest objectiu, a aquesta tesi es proposa
una nova tecnica basada en filtrat-x no lineal, per a compensar tant la
reverberacié de la sala com la distorsié no lineal amb memoria introduida
per amplificador i els altaveus.

Per 1dltim, és important validar la implementacié en temps real dels algo-
rismes proposats. Amb aquest objectiu, alguns resultats inicials demostren
la idoneitat de I’equalitzacié adaptativa en problemes de compensacié de
sales.

Paraules Clau: Equalitzacié de sales, estructures de filtrat-x, Distorsié
lineal i no lineal, algorismes adaptatius, error quadratic mig, filtres combi-
nats convexes, algorismes basats en blocs, filtres sesgats, implementacié en
temps real.
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Introduction and Scope

1.1 Background

This thesis fits into the field of Information Technology and Communica-
tions, especially in the area of Digital Signal Processing. In recent years,
multimedia immersive systems that allow real and reliable user experiences,
including audio and image processing, are sought. With the focus on signal
processing for multichannel audio reproduction systems, the main goal of
this thesis is to render a desired audio signal at the listening area.

Audio rendering systems working inside a room can exhibit a behav-
ior different to the desired one due to the acoustical room properties and
the elements inside the acoustic space. Thus, the final audio signal at the
listening point will contain the contribution of all these echoes, which de-
teriorates the three dimensional sound effect of the original sound source.
In this regard, a comprehensive analysis of room acoustic properties can be
found in [1],[2].

Moreover, in sound reproduction systems, the electroacoustic path in-
volves the room enclosure and the loudspeaker and microphone devices.
The basic electronic components, such as digital-to-analog (D/A) and analog-
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Figure 1.1. Sound equalization system.

to-digital (A/D) converters, amplifiers, loudspeakers and microphones, usu-
ally present linear responses, but when they are driven with large amplitude
inputs or even when are built with cheap components, nonlinear distortions
that severely degrade the audio quality can arise.

In order to remove these effects and to render the desired signal at the
listening area, an equalizer is used before driving the output signal through
the loudspeakers. That way, the combination of the equalizer filter and
the electroacoustic path will reproduce the desired audio signal. Fig.1.1
illustrates a sound equalization system in the simplified case of a single
source and a single receiver. Furthermore, this scheme will allow not only
to cancel the electroacoustic system, but also to recreate a specific acoustic
environment, such as a concert hall.

Those equalization filters can be implemented in two different forms:
direct or adaptive. Direct equalization techniques, whether in the time [3]
or frequency [4] domain, have been used for years. They usually com-
pute the equalization filter once and at an earlier stage than the rendering
one. However, real systems imply time-varying scenarios, when the room
conditions change or even when the temperature varies [5], and direct fil-
ters do not properly follow those changes. On the other hand, adaptive
equalization (AE) strategies allow to iteratively obtain the equalization fil-
ter while following the time-varying room conditions. Adaptive algorithms
have been used in a wide range of signal processing applications for audio
and communications [6].

Regarding the listening area, the equalization can be achieved in a
single listening point using a single source and a single receiver (SISO sys-
tem). Such a setup is the most straightforward to analyze, but real world
systems normally imply multiple inputs and multiple outputs (MIMO sys-
tem), where the inputs are the loudspeaker sources and the outputs the
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microphone devices. These MIMO systems or global control systems would
obtain the desired sound field in a large zone of the space, allowing the algo-
rithm to work independently of the listener position. For MIMO systems,
the system inversion can be normally adressed with adaptive algorithms.

These strategies require a high computational burden to implement the
adaptive algorithms, particularly for MIMO systems. In the last decade,
multi-core processors and many-core hardware accelerators as parallel sys-
tems have been designed and used to implement real time applications for
audio signal processing, which imply real immersive audio systems with a
high number of transducers.

1.2 Motivation and objectives

Audio applications are designed to implement real and immersive systems.
However, when rendering with loudspeakers inside an enclosure and due
to the weak functionality of the transducers, the global audio effect can
be lost and thus the 3D spatial sound. Due to this, equalization filters
are required to keep these systems as close as possible to the desired ones.
Regarding adaptive equalization, recent hardware advances allow an easy
real-time implementation of adaptive equalization filters, although the ren-
dering audio system can imply a high number of loudspeakers and listening
positions.

With this in mind, the main objective of this thesis is the following:

To develop and optimize adaptive algorithms to compensate linear and
nonlinear distortions of the electroacoustic path when rendering an audio
stgnal inside an enclosure in order to obtain the desired audio signal at the
listening area.

In order to achieve this major objective, the following particular scopes
should be met:

e To implement adaptive algorithms in order to identify and linearize
the nonlinear distortions of a loudspeaker. For this purpose, efficient
nonlinear adaptive algorithms have to be developed. Particularly,
novel and promising algorithms will be considered such as the non-
linear filtered-x structure using Volterra kernels. These schemes will
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be developed for channel identification and compensation of the non-
linear response of the loudspeaker. For this last case, a time-varying
virtual channel approach will be implemented.

e To design and develop different adaptive algorithms for room equali-
zation applications in order to compensate the electroacoustic path.
For this purpose, novel combination and blocked-based schemes will
be applied to the linear equalization system using a filtered-x struc-
ture.

The equalization filters of the whole electroacoustic chain, which in-
volves loudspeaker and the acoustic path, will be implemented using
two different structures:

— In the first scheme, referred to as p-order equalization, the pro-
cess is split into two steps: Firstly, the nonlinearities of the
loudspeaker will be cancel. Meanwhile, a second filter, tandemly
connected to the first one, will compensate the linearities of the
electroacoustic path.

— The second structure, referred to as whole nonlinear equaliza-
tion, will allow to equalize at the same time both the linearities
and the nonlinearities of the audio chain, with independency of
the nonlinearities of the system.

e To implement the adaptive equalization algorithms in real-time sys-
tems using current hardware.

1.3 Organization of the thesis

This thesis describes the research that has been undertaken to develop the
previous aims. The chapters are organized and presented as follows:

e Chapter 2. This chapter presents the basic knowledge of adaptive
signal processing and its use in audio applications, particularly for
room equalization, which will be necessary to understand this disser-
tation. It includes, among other concepts, adaptive filtering, room
equalization, and both linear and nonlinear distortion, existent in
room rendering scenarios.
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Chapter 3. This chapter introduces the adaptive room equalization
problem for single-input single-output (SISO) systems, but also for
multiple-input multiple-output (MIMO) systems. Different schemes
for the room adaptive equalization application are proposed for these
systems, which give robustness to the equalization problem for differ-
ent room conditions. In particular, the filtered-x IPNLMS algorithm
is introduced to exploit the different structure capabilities.

Chapter 4. This chapter introduces the block-based adaptive sche-
mes, that can improve the performance of the structures presented
in the previous chapter in the context of room equalization applica-
tions. The use of filters split into blocks is useful in audio applications
due to the sparse nature of the acoustic channels, where each filter
block is independently updated depending on the coefficients energy
distribution. The drawback of the block-based structures is the huge
computational cost required as the number of block increases.

Chapter 5. This chapter presents the nonlinear adaptive equaliza-
tion scheme. Acoustic devices exhibit usually a nonlinear behavior.
For that reason, nonlinear equalization is required when dealing with
audio rendering and recording. In this chapter, a particular solution
is provided for the loudspeaker-enclosure-microphone path when it
presents nonlinearities with memory.

Chapter 6. Finally, the conclusions obtained throughout this the-
sis are presented, including some guidelines for future research lines.
Also, a list of published work related to this thesis is given.

Appendix A. In the first appendix, a real time room equalization
algorithm is implemented using a multi-core processor. Particularly,
the Fx-NLMS algorithm is developed in frequency domain to allow
the equalization algorithm be implemented in real-time conditions.

Appendix B. The second appendix shows direct multichannel equa-
lization efficient techniques, that can be employed when rendering
with a high number of loudspeaker and microphone signals. In par-
ticular, these techniques are employed in a rendering Wave Field Syn-
thesis system.
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Problem formulation and Fundamentals

This chapter introduces some concepts that are necessary to better
understand this dissertation. An introduction to the room equalization
problem is included, where acoustic room properties are described in order
to successfully tackle the room inversion problem. Next section presents
adaptive filtering, particularly the least-mean square algorithms. Thereby,
the implementation of adaptive filtering in the context of room equalization
is also introduced. Moreover, the nonlinear characteristics of the electronic
devices are also presented, which also affect the acoustic transmission chain
and present an additional issue to the inversion problem. Furthermore, the
multichannel equalization problem is also discussed. Finally, to study the
equalization system behavior, some performance measures are introduced,
such as the excess mean square error (EMSE) and the normalized projection
misalignment (NPM).

2.1 Room equalization

In sound rendering systems using loudspeakers, the listening room adds
echoes not considered by the reproduction system, thus deteriorating the
rendered audio signal and loosing the immersive effect of the audio repro-
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duction system. Fig. 2.1 shows the impulse response between two points of
an acoustic space, where each line represents the direct sound and echoes
present in this acoustic channel, with a different amplitude and time delay.
The first line corresponds to the direct path between the sound source and
the measurement or microphone position. The first following echoes are
due to the first room reflections (walls, ceiling, floor and close objects).
They show high amplitude and are sparser than the last echoes, with lower
energy and more dispersive behavior, which are called reverberation.

A

Level

»
>

Figure 2.1. Room impulse response between two points in-
side an enclosure.

To measure this reverberation, the reverberation time (7gg) is em-
ployed, which was introduced by Sabine [7]. This parameter is defined
as the period of time that takes to the level of sound to decay 60 dB from
the level of the original sound when it ceases. Tgg allows to define if a room
presents a more reverberant or more ’dry’ response, which gives an idea of
the level of reflected sound, higher as the Tgg increases.

The room impulse response of Fig. 2.1 can be transformed into the
frequency domain. Fig. 2.2 shows a room frequency response, where the
room reflections are represented by peaks and notches at different frequen-
cies. Ideally, when rendering in free field conditions, the frequency response
would show a flat response for all frequencies. On the other hand, the ideal
room impulse response in free field conditions would correspond to the first
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echo of Fig. 2.1. In some situations, the aim of the equalizer will be not
to get the ideal response, but a smoother or simple response. In fact, to
achieve an ideal inverse response usually requires a high computational cost
or even it would not be possible to cancel all the peaks and notches of the
frequency response. For other applications, such as speech enhancement,
the aim is not to cancel all the echoes but to keep the first ones, as they
allow to improve the speech intelligibility.
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Figure 2.2. Room frequency response between two points
inside an enclosure.

A deep study of the acoustic room properties can be found in [1] and
[2]. To compensate these echoes, a passive canceller can be used, which
consist on using absorbent material that will cancel some of the acoustic
reflections. The problem of this method is that it does not work properly
for low frequencies and implies to use absorbent material in all possible
reflectors. Another possibility is to use active compensation, which is based
on using a filter to process the acoustic input signal and rendering the new
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generated signals. That way, the combined effect of the filter and the
acoustic path will give a desired response at the listening area. For an ideal
acoustic compensation, this filter will be the inverse of the room impulse
response.

2.1.1 Active compensation

For active audio compensation a filter is used in the transmission chain
to invert the room impulse response (see Fig. 1.1). This inversion can
be achieved using direct or adaptive strategies. Direct strategies normally
compute the inverse filter once in a previous stage to the audio rendering.
For its inversion, the room impulse response has to be previously measured.
Room acoustic responses have normally nonminimum phases, for that rea-
son inverse filters do not provide the exact inverse, [8]. To achieve an exact
inverse filter of the acoustic impulse response in a room, a method is pro-
posed in [3] which is based on the multiple-input/output inverse theorem
(MINT). This method gets an exact inversion for multiple responses when
(2.1) is satisfied

M (Ly —1)
J—M

where L,, and Ly, are the finite impulse response (FIR) filter length of the
inverse and the channel filters, respectively. Moreover, J is the number
of loudspeakers and M the number of microphones. Thus, from (2.1) the
number of loudspeakers must be higher than the number of microphones.

Ly = (2.1)

This condition is not always fulfilled and it requires a high computa-
tional cost for the inversion. For that reason, there exist another strategies
that try to achieve an approximated solution with a more efficient inversion,
as the fast deconvolution with regularization in the frequency domain [4].

On the other hand, adaptive strategies do not always converge to the
exact inverse response, but tend to an optimal solution. Moreover, their
implementation can be efficiently deal in the frequency domain for imple-
menting real-time applications.

In order to obtain this optimal solution, the length of the inverse FIR
filter with respect to that of the channel filter has to be chosen to ensure
that the convolution between them achieves the desired compensation, but
without highly increasing the number of samples. The longer the filter,
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the higher the computational cost requirements. A good compromise is
to choose a length double than that of the acoustic channel. From (2.1)
and using 2 loudspeakers an 1 microphone, the exact inversion can be ob-
tained with L,, = Ly — 1, whereas a longer filter will provide also a good
approximation.

Regarding the inversion of the acoustic channel, which can present
nonminimum-phase responses, for both direct and adaptive methods, the
desired response should be built using a proper delay to allow a good and
stable inversion of the system. For that purpose, a delay close to half the
length of the inverse filter is used which provides a inverse filter with a
central response, that allows a two-sided stable inverse [9].

2.1.2 Sparsity degree

One of the properties of the acoustic channel is the degree of sparsity. This
parameter gives an idea of the impulse response components, telling how
many coefficients have a significant magnitude, whereas the rest of them
are zero or small. Room channel responses are normally sparse, that means
that only a small percentage of the components have high values.

This sparseness characteristic is used in the proportionated algorithms
[10], that will be introduced in the next section, to take advantage on the
knowledge of the coefficient energy distribution using this sparsity degree.

There are different functions that are used to measure the sparseness
of the impulse response h, [11], which are based on different ¢, norms for
p=0,1,2 and co. Where £, = |-, of h is defined as,

Ly, 1/p
[hll, = <Z Ihi!p> : (2.2)
=1

If the sparseness measure gives a value closer to 1, the impulse response
is very sparse; on the contrary, the closer the measure to 0, the denser
or more dispersive the impulse response. For other responses its value
interpolates smoothly between these two extremes. The difference between
these measures, that use a different ¢, norm, is the variation or transition
between the 0 and 1 values. A sparseness measure that is broadly used is
that based on the ¢; and ¢2 norms [11], which is defined in (2.3). Further
in this document, we will refer to these sparseness measure as £(h).
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2.2 Adaptive filtering algorithms

Adaptive filters have been applied to signal processing for multiple applica-
tions, such as prediction, system identification, equalization and, noise and
echo cancellation. A description of the adaptive signal processing and their
applications can be found in [6]. Furthermore, a comprehensive description
of the main adaptive algorithms can be read in [12].

Adaptive filters update the filter coefficients using an iterative process.
Depending on the recursive algorithm they employ, they can be based on:
Wiener filter and Kalman filter, which could be computed directly using
a statistical knowledge of the signal. Another kind of adaptive filter uses
the Least Square method, which employs a deterministic formulation to
achieve the adaptive solution.

Among these adaptive methods, the least-mean square (LMS) algo-
rithm, the recursive least-square (RLS) algorithm, the affine projection
algorithm and variations and combinations of them can be employed in an
equalization context, in both time and frequency domain. In this work, we
focus mainly in the LMS-type algorithm.

2.2.1 Least mean-square algorithm

The LMS algorithm has been chosen in this work for its simplicity and
also because it exhibits a good performance with a proper configuration.
It can be implemented with a transversal filter, where the weights of the
filter define its finite impulse response. This algorithm is based on the
method of steepest descendent [13], which finds the minimum value of the
mean squared error (MSE) J(n) = E {|e(n)|*}, which corresponds to the
mean square value of the difference between the desired response and the
transversal filter output, see Fig 2.3.

Thus, each recursion follows the direction of the negative of the gradient
vector leading to the minimum mean squared error, Jyi,, at which point
the weight vector assumes its optimum value or Wiener solution, w,. g is
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Figure 2.3. Block diagram of an adaptive filter.

the step size of the adaptive algorithm.

1 9J(n)

w(n)=w(n-—1)— i'uf)w(n)

(2.4)

The LMS algorithm uses as the estimator of the mean-square error its
instantaneous value, J(n) = E {|e(n)|*} = |e(n)|*. Thus, for the adaptive
algorithm of Fig 2.3, the error signal can be obtained as

e(n) = d(n) —y(n), (2.5)

being d(n) the output of the system and y(n) the output of the adaptive
filter.

The derivation of the MSE in (2.5) with respect to the filter coefficients
can be obtained as

0J(n)
ow(n)

= —2e(n)x(n), (2.6)

where x(n) is a vector containing the last L,, samples of the input signal,
being L,, the number of samples of the adaptive filter.
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By substituting (2.6) in (2.4), the adaptive filter update can be rewrit-
ten as follows:

w(n) =w(n —1) + pe(n)x(n). (2.7)

The choice of the step size u is critical. A large value accelerates the
initial convergence, but it must not be too high to prevent from divergence.
On the other hand, a small value has a slow initial convergence, but allows
to reduce the final excess mean square error. In order to do the algorithm
independent of the input signal, the normalized LMS (NLMS) algorithm is
defined, which uses a time-varying adaptation speed fi(n) in (2.7), that has
been normalized with the power of the input signal x(n), as

w(n :#, 2.8
) = S )P (28)

where 0 < p < 2 and being ¢ a small constant to avoid division by zero.

Regarding LMS-type algorithms, one of their main drawbacks is that
they distribute the adaptation energy equally among all filter coefficients
with p and thus, they suffer from slow convergence speed. This applies to
both the LMS and the NLMS algorithms.

2.2.2 Proportionated LMS algorithms

To overcome this problem, the proportionate adaptive filter (PNLMS) algo-
rithm [14] has been introduced to accelerate filter convergence in scenarios
where the optimal solution presents a high degree of sparsity, that means,
&(h) is close to 1. PNLMS spends more energy on adapting the active co-
efficients, thus it converges faster than the NLMS. The adaptation filter is
defined by

w(n) =w(n —1) + p(n)e(n)x(n), (2.9)

. uG(n —1)
b = 2.1
eing 1) = 5T (G (n = Dx(n)’ (2.10)
where G(n — 1) = diag{g1(n —1),...,9r,(n — 1)} is a diagonal matrix of
L, size, that adjusts the individual filter coefficients, using the following
expression for each coefficient,
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max {plé,o(n)a ]wl(n)\}

gi(n) = T : (2.11)
> gk(n)
k=0
I..(n) = max {e, max {jwi(n)], ..., |wr, (n)}}, (2.12)

where p and € are small regulation parameters.

However, it assumes the filter solution is sparse and its performance
degrades significantly when the optimal filter is not so sparse. Thus, the
improved proportionate NLMS (IPNLMS) [10] tries to alleviate this prob-
lem improving filter convergence for different degrees of sparsity using a s
variable. For the IPNLMS algorithm, the elements of the diagonal matrix
in (2.10), G(n — 1) = diag{gi(n — 1),...,9L,(n — 1)}, are defined by

|wi(n)]|
Ly—1 ’

c+2 Y fug(n)]
k=0

where ¢ is a small constant to avoid division by zero.

_ 9
Ilg(m)lly

:(1—n)i+(1+/{)

2.1
I (2.13)

ai(n)

However, its major drawback is that it requires to know the degree of
sparsity of the optimal solution, which rarely occurs in practical systems.
In [10], a x value between 0 and —0.5 is recommended to achieve a good
behavior of the algorithm. Moreover, the IPNLMS algorithm can be seen
as a generalized expression of the LMS-type algorithms, where x € [—1, 1]
arranges from the NLMS algorithm (for a value of k = —1) to k = 1 for
the PNLMS algorithm.

Some successful applications of the proportionated adaptive filters in-
clude system identification [15], acoustic echo cancellation [14], ANC [16],
as well as AE [17].

2.2.3 Convex combination of adaptive filters

In the last decade, there has been an interest in adaptive combination
of two or more filters, where the outputs of several filters are mixed to
obtain an improved overall output. These filtering schemes are introduced
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Figure 2.4. Block diagram of a convex combination of adap-
tive filters.

to improve robustness when several kinds of adverse scenario conditions can
impair the filter performance and also looking for the filter that provides
the best solution.

In this work, we focus on the convex combination, where two filters are
combined with A and (1 — X), where A € [0,1]. In fact, they can alleviate
the different tradeoffs to which adaptive filters are subject involving mainly
speed of convergence and steady-state misadjustment.

The output of the combination filter y(n) is obtained as the weighted
sum of the single outputs y;(n) and ya2(n), with the combination factor
A(n) € [0,1] for the convex combination scheme.

y(n) = AMn)yi(n) + [1 — AMn)] ya(n), (2.14)

where A\(n) can be adapted using a sigmoid activation function,

1

= o (2.15)

sgm[a(n)]
where a(n) is updated in order to minimize the mean square error of the
combination filter, by using for instance a gradient descent method.

The error signals that are used to update each adaptive filters of the
combination scheme, are obtained in order to minimize the mean square
value of the difference between the desired response and the correspondent
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filter output as

ei(n) =dn) —yi(n), i=1,2, (2.16)

where the desired response d(n) for each filter is the same as that of the
combined filter.

To achieve a good trade off between convergence speed and final mean-
square error (MSE), the use of a combination of two LMS filters was first
introduced for system identification in [18]. Such adaptive scheme has been
successfully applied to other acoustic applications, such as acoustic echo
cancellation [18][19] and ANC [20][21][16]. As it is shown in these works,
any other algorithm can be used instead of the LMS-type algorithms, as ap-
propriate. As an example of this, two affine projection algorithms are used
in [20], and the combination of IPNLMS filters is considered in [16]. Good
results are obtained also when different kinds of filters are combined [22].
Several authors have also used the combination strategy to solve the opti-
mal filter-length search problem by using the LMS algorithm either with a
sparse filter [23] or in a high noise environment [24].

2.3 Adaptive room equalization

Adaptive filtering algorithms have been broadly used for equalization ap-
plications. The adaptive schemes proposed usually consider the LMS algo-
rithm or some variations of it, which represent a stable and simple solution.
Several contributions have been recently proposed in the time, frequency
or wave domain for adaptive room equalization (AE).

Whereas some authors address the problem of inverse filtering in time
domain [25][17], others use the LMS adaptive algorithm in frequency do-
main for the previous identification of the channel response and a direct fre-
quency or warped domain method with regularization, [26][27][28]. Also the
time and the frequency domain version of a decoupled Fx-LMS algorithm
are presented in [25] and [29], respectively, for multichannel equalization.
Other frequency approaches try to compensate a specific frequency band as
in [30]. Finally, different techniques have been developed in wave domain
as those in [31][32][33] or with modal decomposition in [34], to reduce the
number of adaptive filters.
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Figure 2.5. Block diagram of an acoustic audio system in-
cluding equalization.

2.3.1 Filtered-x structure

A remarkable difference introduced by adaptive room equalization (AE)
systems (and also by active noise control (ANC) systems) compared to a
system identification problem is due to the presence of the LEM channel h
between the adaptive filter output and the error signal. Fig. 2.5 illustrates a
scheme where the adaptive algorithm is updated using the input signal z(n)
and the error signal e(n), where e(n) is obtained by subtracting the micro-
phone response z(n) from the desired response d(n). Thus, e(n) is obtained
after propagating the output of the adaptive filter through the channel re-
sponse h. This propagation degrades the behavior of the LMS algorithm,
which presents an increase in the residual error, a lowered convergence rate
and can even become unstable. The usual way to take into account this re-
sponse h and avoid negative effects on the algorithm performance consists
in using a particular filtering structure named filtered-x scheme [35], that
requires a previous estimation of the acoustic channel. Fig. 2.6 shows the
same acoustic audio system of Fig. 2.5, but with a filtered-x structure.

This filtering scheme has been frequently used in ANC systems, [36][37]
[38][39]. For room equalization, a brief description of the filtered-x scheme
is given in the next section.

2.3.2 Adaptive equalization

Fig. 2.6 shows the block diagram of a single channel acoustic audio equali-
zation system with a filtered-x embedded structure, where the error signal
e(n) is obtained by subtracting from the desired signal d(n), the input sig-
nal z(n) filtered through the adaptive filter and then propagated through
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Figure 2.6. Block diagram of an acoustic audio equalization
system with a filtered-x structure.

the channel response to the listening position (or microphone). For AE
applications, the desired signal is formed with the input signal with a suit-
able source-listening point delay, d(n) = x(n — 7). Thereby, the equalizer
will correspond to the inverse of the LEM channel. The acoustic signal
measured at the microphone can be modeled as

z(n) =hxy(n), (2.17)

where * denotes the discrete linear convolution.
For the LMS-type algorithm, the derivation of the MSE, J(n), with
respect to the adaptive filter coefficients for AE can be approximated by
aJ(n)
ow(n)

= —2e(n)x¢(n), (2.18)

where the f-term of the x¢(n) vector refers to the filtered-x structure. In
order to implement this filtering, a previous estimation of the acoustic
channel is needed, thus the input signal is filtered through this estimated
acoustic channel h.

The filtered-x version of the NLMS algorithm is called Fx-NLMS filter.
The Fx-NLMS weights are updated at each iteration from (2.4) and (2.18)
according to

w(n) =w(n —1) + a(n)e(n)x¢(n), (2.19)

where w(n) is the adaptive weight vector of L,-length. x¢(n) is a vector
containing the last L,, samples of the input signal z(n) filtered through



24 Problem formulation and Fundamentals

the Lp-length estimated impulse response h. Furthermore, the adaptation
speed for each filter weight of the Fx-NLMS algorithm has been normalized
as in (2.7),

an) = —*H 2.20
R TR (220)

where ¢ is a small constant to avoid division by zero.

For the Fx-IPNLMS algorithm, the adaptation of the filter coefficients
wi(n) is obtained as

wi(n) =w(n —1) 4+ w(n)e(n)xze(n —1), 1 =0,..., Ly — 1, (2.21)
being p;(n) = Lw_lﬂgl(n —b , (2.22)
5+ > grln—1)ai(n— k)
k=0

where g;(n — 1) is the adaptation gain factor of the [th filter coefficient
as defined in (2.13).

2.3.3 Frequency domain

One of the first adaptive filtering works in frequency domain can be found
in [40], where the LMS algorithm is transformed into the frequency do-
main, FLMS. This approach improves the computational cost when the
number of taps of the adaptive filter is high, which occurs in equalization
applications. This reduction in the computational cost allows to implement
this algorithms in real time. Since this first contribution, different papers
in frequency domain have been presented as it reduces the computational
burden, but also presents a higher convergence speed using the orthogonal-
ity of the Fourier transform. All these works try to optimize one of the two
indicated properties.

In order to implement real-time applications using audio devices, con-
tinuous signals have to be sampled to obtain a discrete signal, which can
be processed. Sound cards allow this conversion from analog to discrete
signals and vice versa, using a sampling frequency. Moreover, they operate
with signals, recording and rendering them, using block of samples. Thus,
block-operations are inherent to sound cards. For that reason, the devel-
oped algorithms are efficiently performed when adapted to block-update
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equations. That means, that the filter is updated not sample by sample,
but after a block of samples.

Thus, although the different schemes presented in this thesis are han-
dled in time domain, a transformation to the frequency domain is necessary
if we want to implement this schemes with real-time performance.

There are different possibilities to implement the frequency domain Fx-
LMS algorithm. As they work with block of samples, one implementation
consists in updating the filter weights after receiving L samples, being L
the block size. This way, the algorithm has to wait L samples before to
compute the new filter. This method is called block LMS algorithm in the
frequency domain, FBLMS. Moreover, the block size used in the algorithm
is important for real-time applications. On the one hand, if it is too small,
the time to take input samples, process them and send the output samples
to the sound card would be not enough to allow all these operations to be
performed. On the other hand, if the block size is too long, the latency of
the algorithm could be too long for some real-time applications. Moreover,
if the sound source moves or the acoustic scenario changes, the algorithm
will take more time to adjust the new values or even some information
could be lost. For that reason, this block size should be long enough to be
able to process the AE algorithm, but small enough to reduce the latency.

The linear convolution is related with the filtering process of audio
signals in time domain. The convolution theorem states that the circular
convolution of two periodic sequence can be computed by using the Discrete
Fourier Transform (DFT) [41]. This theorem states that sequence y is
obtained as the inverse discrete Fourier transform of Y, which is obtained
as the element-wise multiplication of the DFTs of x and h, X and H.

X DFT(z), (2.23)
H = DFT(h),
Y = X®AH,
y = iDFT(Y)

where ® represents element-wise multiplication.

Convolution theorem can be also applied to linear convolution. To this
end, both sequences, x and h must be zero-padded up to a size of [, +1{;, —1
as a minimum. In this case, the result of the linear convolution matches
with the result of the circular convolution. To work in frequency domain,
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the fast Fourier transform (FFT) is employed to effectively compute the
discrete Fourier transform using a power-of-two size samples. The inverse
FFT (iFFT) is used for the inverse Discrete Fourier Transform. If we
want to apply FFT to the sequences, then the zero-padding length must
be increased from I + I;, — 1 to the following power of two [41].

Furthermore, when dealing with sequences longer than the block size,
as happens with AE applications, the overlap-save or overlap-add methods
have to be employed to properly address the linear convolution [42]. These
methods split the input signal in block sizes and operate with them, first
overlapping and then discarding or adding samples, respectively. However,
the overlap-save method is usually selected in real-time applications, since
the overlap-add method involves an additional step of summing up the
results with the previous block.

In appendix A the coefficients of the adaptive filter are updated with
the LMS method in the frequency domain, [43]. Particularly, the overlap-
save method has been used. Initially, the block size of the input signal
has been chosen as that of the adaptive filter, since it presents a lower
computational burden, [44]. Moreover, the employed overlapping factor is
50%, as it is considered the most efficient one (fast block LMS [45]).

2.4 Nonlinear distortion

In the context of audio processing, the acoustic signals can be a priori
assumed to have a linear relation f in (2.24). However, due to the audio
devices involve in audio processing, f can be best expressed as a nonlinear
function when the output signal is not linearly related with the input signal

y(n) = f(z(n)). (2.24)

The basic components of sound reproduction systems, such as digital-
to-analog (D/A) and analog-to-digital (A/D) converters, amplifiers, loud-
speakers and microphones, usually present linear responses, but when they
are driven with large amplitude inputs, nonlinear distortions that severely
degrade the audio quality can arise. Fig. 2.7 shows the acoustic equalization
transmission chain including these components. For audio equalization, if
the system has a linear behavior, an adaptive linear filter can properly com-
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pensate for the distortion (e.g. [46; 17]). However, if the system exhibits

nonlinearities, a linear filter performs poorly and the nonlinear distortion
must be accounted for in the design of the equalization system.

" Acoystic path |

2(n) Yy(n) VAN ‘ 2(n)

— | Prefilter D/A D w’;,\:,,,,‘;o_‘, D ——>{A/D —

Figure 2.7. Acoustic equalization transmission chain.

The nonlinear distortion can potentially occur in each of the system
components (see Fig. 2.7). Typically, the main sources of nonlinearities oc-
cur in the first blocks, that represents the D/A converter, the loudspeaker
and its amplifier, and are due to the high input signal levels and the loud-
speaker physical properties [47]]48].

Nonlinear distortion is a topic of huge interest, that arranges from
identification and elimination of nonlinearities of a loudspeaker [49] [50], to
more specific applications, which require a further development to achieve
a desired solution when the system exhibits nonlinearies.

In order to model the nonlinearities of a loudspeaker, some direct or
adaptive methods using the measured physic (mechanical and electrical)
properties of the loudspeaker have been proposed, using the Mirror filter
in [47] and comparing different methods in [48].

Without the measured physic properties of the loudspeaker and with
regard to audio signal processing applications, two adaptive methods to
modelled nonlinearities can be highlighted: functional link artificial neural
network (FLANN) filters and Volterra filters.

FLANN filter is based on a single layer of a multilayer neural net-
work [51] and was initially proposed in [52]. This method expands the
input signal z(n) using a set of basis functions. Different basis functions
have been employed, such as trigonometric, Chebyshev, Legrende or La-
grange. Standard FLANN filter strategy does not use products of input
samples with different time shifts, thus, its performance can be deterio-
rated in some situations. To alleviate this problem, different modifications,
such as the generalized FLANN (GFLANN) [53], the completed FLANN
(CFLANN) [54] and finally the Fourier nonlinear (FN) filter [55], have been
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proposed with application to nonlinear active noise control. However, when
used in room equalization, the nonlinear expansion of the input signal of
order P produces M = 2P+1 functions that have to be filtered through the
estimated acoustic channel for its use in the nonlinear filtered-x algorithm.

On the other hand, nonlinearities have been shown to be effectively
modelled using a particular case of polynomial filters, the truncated Volterra
series [56]. The output of these Volterra filters or kernels is given by the
contribution of each Volterra kernel hy (i1, ..., iq)

Mg—1  My—1

Q
y(n) => " 0> hglin, .. iga(n—in) ..o x(n—dg),  (2.25)
q=1 41=0

iq=0

where z(n) is the input signal to the nonlinear systems and M, represents
the memory length of each Volterra kernel.

The drawback of the Volterra series is the increasing number of coeffi-
cients required for higher-order kernels, which implies a huge computational
cost. For that reason, only second-order and third-order Volterra filters are
usually implemented [57][58].

The idea of using FLANN filters for acoustic echo cancellation (AEC)
has appeared in [59][60][61] and for ANC in [62][63][54][64][65]. In [65] a
comprehensive review of ANC works with emphasis on nonlinear methods
is included. On the other hand, numerous authors have proposed Volterra
filters for different audio applications, such as, [66][67][68] for echo cancel-
lation and [69][70][71] for ANC. Regarding the computatuional burden of
Volterra series, in [72] a simplified Volterra filters for AEC is presented by
setting to zero some coefficients far from the main diagonal of the quadratic
kernel. Moreover, adaptive algorithms are also proposed to compute the
number of coefficients of the quadratic kernel using a combination of differ-
ent sizes of the filters, estimating both the optimum length and the number
of necessary diagonals of a quadratic Volterra kernel [73][74].

Concerning the general inversion problem of nonlinear transmission
systems, such as communication and audio channels, different strategies
have been proposed in [75][76]. As regards to the particular nonlinear
room equalization problem, recently and in the best of our knowledge, no
work has been reported in the literature in this context. In [77] a nonlinear
signal processing method for designing equalizing filters is proposed, which
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uses the fuzzy c-means clustering technique. It designs minimum phase
equalizing filters from the room response prototypes, and reports good
results by suppressing the resonant peaks in the room transfer functions.

2.4.1 p-order method

The nonlinear acoustic system H in Fig.2.8, can be modeled with a linear
filter L and nonlinear filters (denotes as V). The nonlinear inverse system
employed in [76] is based on the p-order method [49], which uses a tandem
connection of filters to linearize a system up to this p-order. That means,
to eliminate the nonlinearities (N) of a system up to the p-order when a
p-order filter [50][58] is implemented.

This scheme adaptively identifies the linear and nonlinear components
of the nonlinear system and the inverse of the linear filter. Then, it copies
the nonlinear filter and the inverse of the linear filter in the preprocessor
block, as can be seen in Fig. 2.8.

Adaptive linearization of loudspeakers has been widely studied using
this p-order preprocessor strategy [49]. Fig. 2.8 shows the adaptive lin-
earization scheme for a 2-order preprocessor filter.

Assuming that the following constraints are hold:

e The convolution between L and its inverse L' should correspond to
a delay 6 > 0 so that the adaptive filter can converge.

e The assumption that the nonlinearity is weak must be fulfilled,

!:U(n - 5)‘ >

L [N N [x(n)]H | (2.26)

The microphone signal z(n) corresponds to the input signal with a
certain delay x(n —d) filtered through the linear component of the acoustic
system L [49]

2(n) = L [m(n - 5)] . (2.27)

As the preprocessor filter is based on both the perfect identification of
the linear and nonlinear filters and the inversion of the linear block, this
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Figure 2.8. Adaptive linearization using a 2-order preproces-
sor filter.

method is very sensitive to channel estimation misadjustment. On the other
hand, if the nonlinearities are not weak, this method produces high-order
nonlinearities.

A first attempt to equalize nonlinear systems could be to use this lin-
earization scheme with a previous filter block that includes the inverse of
the linear filter [50], see Fig. 2.9, which can be called p-order equalization.
If the equalization is perfectly achieved the signal at the listener point will
correspond to the input signal with a delay 26, from (2.27) we get

z(n) =L [u(n - (5)} = z(n — 29). (2.28)

This equalization method, based on the p-order strategy, has the ad-
vantage that it does not require to use the filtered-x structure. However,
as stated before, the linearization or equalization of the acoustic system
is not always successfully achieved. For that reason, a nonlinear filtered-
x scheme is presented in Section 5 for loudspeaker and room equalization
applications.
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Figure 2.9. Adaptive equalization using a 2-order preproces-
sor.

2.5 MIMO systems

As commented in Section 1, when the audio processing system tries to
control a single point inside a listening area using a loudspeaker, we talk
about a single-input single-output (SISO) system, or with multiple loud-
speakers, of multiple-input single-output (MISO) systems. Whereas, the
use of multiple sensors and only one loudspeaker, single-input multiple-
output (SIMO) system, allows to control a larger area. The general system
is that composed of multiple-input multiple-output (MIMO) system.

Thus, when a SISO or MISO systems are used, the control area is
reduced to the recording sensor and a A/10-area around this point, where
A = ¢/f is the signal wavelength, being ¢ = 343 m/s the speed sound
at room temperature and atmospheric pressure, and f corresponds to the
frequency of the signal source. On the other hand, global (MIMO) systems
allow to control a wide listening area, achieving a real and immersive spatial
sensation.

2.5.1 Multichannel rendering techniques

Several 3D audio reproduction systems are currently being used. For in-
stance, binaural and transaural techniques are based on the human auditory
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system to provide all-round images and reverberation. On the other hand,
multichannel audio systems, such as 5.1, 6.1 and 7.1 channel systems, try
to re-create these types of three dimensional acoustics sensation. Alterna-
tively, Ambisonics or Virtual Surround Panning are more advanced than the
typical surround systems, and are adequate for less restricted areas. Am-
bisonics encodes sounds from all directions in terms of sound pressure and
velocity components, and decodes these signals to a number of loudspeak-
ers. Generally speaking, the solution to increase the listener’s area size of
these systems guides to raise the number of loudspeakers, thus increasing
the complexity and difficulty. [78] presents a comprehensive description of
the spatial audio properties and these multichannel rendering systems.

Nowadays, one of the most promising audio reproduction system is the
Wave Field Synthesis (WEF'S, [79][80]), where sound field is synthesized in
an wide area by means of arrays of loudspeakers. This system is based
on the Huygens principle, which states that the wavefront radiated by a
source behaves like a distribution of secondary sources that are placed in
the wavefront up to a certain aliasing frequency. This physical principle
allows WFS to synthesize an acoustic field with high quality using a high
number of loudspeakers. Appendix B shows the synthesis operator of each
loudspeaker. Whereas, a detailed description of the WFS theory can be
found in [81].

2.5.2 Multichannel equalization

Some of the main problems to implement these multichannel rendering
systems are related to the interaction of the loudspeakers with the listening
room. The listening room distortion alters the synthesized sound field
and reduces the spatial effect, and thus, the promised potentiality of these
systems. Since last years, inverse filtering and equalization of multichannel
acoustic systems is becoming a field of growing interest. This is mainly due
to the upcoming applications of audio reproduction systems such as three-
dimensional audio, or active noise control techniques, and the availability
of new technology resources which allow to implement more complex signal
processing algorithms. Realism of rendered sound and spatial sensation are
sought.

Active multichannel equalization can be implemented applying direct
solutions that solve the inverse filtering problem using a bank of multi-
channel filters. In the MIMO system, the input signals correspond to the
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loudspeakers and the output channels to the microphone or listening points,
where the room responses are equalized. Various papers can be found in
time and frequency domain to equalize multichannel room responses when
rendering with WES [82][83][84].

Figure 2.10 shows a diagram of a typical multichannel inversion prob-
lem. The inverse filtering problem in practical multichannel audio repro-
duction systems basically consists of designing a matrix H of digital finite
duration filters (each column of H represents a different vector of filters for
each signal to be rendered), whose convolutions with the signal transmission
channels (matrix C), or electroacoustic system matrix, best approximates
a desired response (matrix A).

° AMXK ° dm
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Figure 2.10. Multichannel inverse filtering problem.

Figure 2.10 illustrates a multichannel deconvolution problem where ma-
trix C represents the actual transmission channels and matrix H is the bank
of inverse filters used for deconvolution. The K source signals to be ren-
dered are represented by ug, the L signals that feed the transducers are
denoted as v; and the K desired signals at the control points are d,,. The
difference between the received signals, represented by w,,, and the de-
sired signals are named error signals and denoted by e,,. Driving signals
pass through inverse filters prior to feed the transmission channels. This
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configuration is typical in multichannel sound reproduction systems where
inverse filters are usually calculated by the least squares method in time
domain [85].

This problem of computing the inverse bank of FIR filters for MIMO
system in signal processing, is commonly called multichannel deconvolu-
tion. Appendix B presents the work carried out to develop this MIMO
equalization, where the multichannel deconvolution has been developed us-
ing efficient methods to reduce the computational burden.

Due to the high computational cost of these schemes, another meth-
ods propose to achieve this multichannel active equalization from a wave
domain point of view. They transform the MIMO responses from the space-
time domain to the plane wave domain using a Fourier transform [31][86][32].
Thus, reducing the MIMO dimensions. These strategies also try to adap-
tively compute these inverse filters taking into account the time-varying
acoustics conditions. As instance, a study of the time-varying room im-
pulse response can be found in [5], when the room conditions change or
even with variations of the room temperature. In [87], an adaptive method
based on radiations modes is applied to both WFS and Ambisonics render-
ing systems.

On the other hand, adaptive multichannel equalization systems are also
recently found in the time and frequency domain. For SIMO systems in
[88][27] and for MIMO systems [29][17]. In [89], an equalization MIMO
system is developed using Graphic Processing Units (GPUs) to parallelize
the computational cost.

2.6 Performance measures

In order to measure the performance of the proposed methods employed
in room equalization problems, different indexes can be used. The excess
mean square error (EMSE) is very used in the context of adaptive filtering
applications. For room equalization it shows the difference between the
desired signal and the signal measured at the microphone. On the other
hand, the normalized projection misalignment (NPM) quantifies directly
how the adaptive filter tends to the inverse channel, thus its convolution
with the channel response converges to the ideal response. Finally, the
subjective evaluation concept is introduced.
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2.6.1 Excess mean square error

The mean square error (MSE) is the mean-square value of the error signal
e(n), which is given in (2.5) for room equalization. The excess MSE is
defined by subtracting the noise signal r(n) in (2.17) from (2.5). Thus, it
is defined as

EMSE(n) = E {[e(n) — r(n)]*} (2.29)

2.6.2 Normalized projection misalignment

The normalized projection misalignment (NPM) index [90] have been adapted
from blind channel identification to channel equalization and is given by

[(w(n) * h) = (Wo(n) + h)|l2
[(wo(n) * h)|j2 ’
being || - |2 the 2-norm. Moreover, w(n) is the inverse filter at time n and

h the acoustic channel. Where w,(n) *h = [|§(n — 7)||2 = 1 is we consider
an ideal cancellation and the optimal filter tends to the exact inverse of the

NPM(n) = 20log;, (2.30)

room reponse.

This measure shows the difference between the inverse filter and the
channel convolution with regard to the ideal response d(n—7). This is, how
”well” the convolution filter converges to the ideal response. The lower its
value, the better its performance.

2.6.3 Subjective evaluation

These previous indexes are objective measures that give an objective value
of the algorithm performance. However, the human auditory system has a
complex and nonlinear behavior. As instance, [91] shows that the human
ear can tolerate some kind of distortion, depending on the level and char-
acteristics of the audio signal, ambient noise and even the listener. Thus,
when the study involves rendering audio signals, also a subjective analysis
has to be taken into account, since the objective measure can not provide
the proper evaluation for the audio rendering immersion or sensation.

Different subjective evaluation for inverse filtering of linear systems can
be found in [27][28][92][93][94].
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Adaptive room equalization

This chapter presents different schemes to solve the room equalization
problem. First and as the underlying structure, the single channel adaptive
filtering algorithm introduced in Section 2.3 for room equalization applica-
tions is studied in this chapter. Moreover, an adaptive equalization scheme
is presented that provides a robust performance when room rendering prop-
erties present different conditions that can impair the filter behavior. This
scheme corresponds to an adaptive combination of filters, where the com-
bined factor seeks minimizing the mean square error of the total equalizer.
Furthermore, a biased equalization structure is proposed that shows a good
performance under low SNR conditions.

Additionally, the adaptive room equalization problem is also extended
to the multichannel case. The MIMO formulation allows to apply the
previous single case to real situations, which normally imply more than
one source signal and listening position.

3.1 Single channel equalization

For clarity, we will rewrite here the single channel case of the Fx-IPNLMS
algorithm introduced in Section 2.3 for the adaptive equalization problem.
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Figure 3.1. Block diagram of an acoustic audio equalization
system with a filtered-x structure.

The output of the adaptive filter y(n) can be expressed as:
y(n) =w"(n—1)x(n), (3.1)
where w(n) = [wo(n),wi(n),...,wr,_1(n)]" is the weight vector of L,-
length, and x(n) = [z(n), z(n—1),...,2(n—(Ly,—1))]T includes the last L.,
samples of the input signal x(n). The signal measured at the microphone

z(n) is subtracted from the desired signal in order to obtain the error signal
e(n) which will be used to update the adaptive filter weights,

z(n) =h=*y(n) (3.2)

e(n) =d(n) — z(n). (3.3)

For a perfect cancellation of the room echoes, the desired signal d(n)
corresponds to the input signal with a suitable source-microphone delay;,

d(n) =z(n —71). (3.4)

The coefficients of the Fx-IPNLMS algorithm are updated at each it-
eration according to

wi(n) =wi(n—1)+ w(n)e(n)xg(n —1), for L =0,..., Ly, —1,  (3.5)
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where x¢(n) is the input signal x(n) filtered through the estimated impulse
response h, which is obtained using the vector product x{. (n)h, where xy, (n)
is a vector column containing the last Lj samples of the input signal z(n).

Furthermore, the adaptation speed for each filter weight, with p being
the step size, is computed as:

pgi(n —1)
w(n) = = , (3.6)
O+ Y ge(n—1)af(n—k)
k=0
with the adaptation gain factors given by
1 wi(n)|
aln) = (1= w5+ (1) (3.7

e+2)  |wg(n)|
k=0

where ¢ and e are small constants to avoid division by zero, and k € [—1, 1]
arranges from an Fx-NLMS algorithm for Kk = —1 to an Fx-PNLMS algo-
rithm for x = 1, where the adaptation is proportional to the absolute value
of each filter weight.

3.2 Combined filtered-x scheme

The convex combination of two adaptive filters can combine two filters with
complementary capabilities so that the overall performance of the global
adaptive filter is at least as good as the performance of the component
filters working separately [18].

The convex combination scheme apply to the equalization problem is
illustrated in Fig. 3.2. When the two algorithms employed are the Fx-
IPNLMS, the benefits of this approach are twofold. On the one hand,
it allows to improve the robustness of the Fx-IPNLMS mainly in terms of
convergence speed for different degrees of sparsity of the optimal filter when
used with different « values. On the other hand, and as any other gradient-
base adaptive filters, it achieves a good tradeoff between convergence speed
and steady-state behavior when used with different step sizes.

The output of the parallel filter y(n) is obtained as the weighted sum
of the single outputs y1(n) and ya(n),
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Figure 3.2. Block diagram of convex combination of filtered-
x adaptive filters.
y(n) = Amyyr(n) + (1= A(m) )2 (m), (3.8)

being A(n) € [0, 1] the mixing parameter which is defined by using a sigmoid
activation function

_ sgmfa(n) — sem[—a’
M= Sgnfa ]~ sgml—a*] 39

1

being sgmla(n)] = 55,

(3.10)

where a(n) has been restricted to the interval [—a™,a™] [95] and it is up-
dated in order to minimize the instantaneous square error of the overall
filter, J(n) = e(n)?, by using the gradient descent method. Thus, a(n) is
given by the following normalized LMS adaptation rule,
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. e2(n
a(n+1)=a(n) — pu;;) %a((n)) =
ol + el o) = i) somfa(i{ 1 - sgmlatul . 311

being 71, the step size parameter for the combination factor,

— Ha
= 3.12
Ha sgmlat] — sgm[—at]’ (3:12)

and y;¢(n) (i = 1,2 for each component adaptive filter) corresponds to the
filter output signal y;(n) filtered through the estimated impulse response
fl, whose substraction plays the role of the input signal to the adaptive
combination factor. Moreover p(n) is an estimate of its power obtained
that could be obtained from

2
p(n) = Bp(n — 1) + (1 - B) [y1f<n> - y2f<n>] , (3.13)

being [ a forgetting factor defined between 0 and 1, that we have set close
to one (8 = 0.9) according to [96].

The error signal of each adaptive filter is obtained by subtracting from
the desired signal its output filtered through the estimated channel

ei(n) = d(n) —hxy;(n) = d(n) — yi(n), fori=1,2. (3.14)
Thus, the updated filters in (3.5) can be rewritten as

wi(n) = wi(n—1) 4+ i (n)e;(n)ze(n — 1), (3.15)

pigia(n — 1
pii(n) = y— ( ) , (3.16)

54> gipln—)at(n — k)
k=0
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lwi(n)|
Ly—1 ’

e+2 Z |w; 1 (n)]
k=0

gii(n) = (1 — ki) 57— + (1 + k) (3.17)

2Ly,

fori=0,...,L,—1andi=1,2.

It has to be noticed that, for linear systems, the error combination
corresponds to the overall error signal obtained from the proposed scheme
as follows,

e(n) = A(n)ex(n) + (1 - )\(n))eg(n)
= A(n) (d(n) _hs yl(n)> v (1 - )\(n)) (d(n) “hs yQ(n))

~

= d(n) — {)\(n)yl(n) n (1 - /\(n))yg(n)] sh=d(n) - 2(n). (3.18)

The combined Fx-IPNLMS (CFx-IPNLMS) algorithm is described in Al-
gorithm 1, where diag(-) is a diagonal matrix with the elements defined
in the vector (-).
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Algorithm 1 CFx-IPNLMS algorithm.
Input: Reference signal z(n), desired signal d(n) and microphone signal

Output: Output of the parallel filter y(n)

1. Update the vectors x(n) and xp(n)

2. z¢(n) = xi (n)h

3 yi(n) = wl(n—1)x(n), i=1,2

4: Update the vectors xt(n), y1(n) and y2(n)
5 yie(n) =yL (n)h, i=1,2

6: e(n) =d(n) — z(n)

7. ej(n) =d(n) —yi(n), i=1,2

8 p(n) = Bp(n — 1) + (1 = B)[y1e(n) — y2,e(n))?
YT Sgmlat] = sgml—a]

10: a(n) = a(n—1)+ p‘;;:) e(n) [yr5(n) — y2,5(n)] sgmla(n)| {1 — sgm[a(n)]}
4 A = SEnlan)] = sl

sgm[at] — sgm[—at]
12: y(n) = A(n)yr(n) + [1 = A(n)]y2(n)

13 gun—1) = (1— K;Z-)Q;w F (4 k) Kjiill(n -yl
e+2)  |wig(n—1)]
for 1=1,...,L, andi=1,2 o
14: pg(n) = Lwil'uigi’l(n —1) ,for 1=1,...,L,
5+ > gixln—)at(n—k)

k=0
and i = 1,2

15: Gi(n) = diag(pi,1(n), pi2(n), ..., ki, (n)), i=1,2
16: w;(n) = w;(n — 1) + Gi(n)x¢(n)e;(n), i=1,2
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3.3 Biased filtered-x scheme

A novel scheme that bias the weights of the adaptive filter was introduced
in [97] for channel identification in order to improve the behavior of adaptive
filters, mainly for low SNRs. This scheme uses an adaptive scaling factor
a(n) to reduce the output of the filter signal when the energy of the noise
is high with regard to the input signal. For equalization applications, the
main difference is that the scaling factor also requires the use of a filtered-x
structure.

In this section and motivated by the noisy scenarios that can be found
in sound reproduction systems, we apply the idea of biasing the filter
weights to the equalization context, where in case of low SNRs, the loud-
speaker signal goes close to zero and can wait to better room conditions to
update or render the input signal.

Fig. 3.3 shows the block diagram of a biased single channel AE system.

o i o
i |

=

: Adaptive 6(77,)
L, Adaptive _ ylf(n) Algorithm

flff(n) Algorithm 4_@
el(n)T d(n)

Figure 3.3. Block diagram of a biased single channel filtered-
x equalization scheme.

For this scheme, we will adaptively bias the weights of the Fx-IPNLMS
algorithm providing the biased Fx-IPNLMS (BFx-IPNLMS) algorithm.
This strategy requires to rewrite (3.2) and (3.5) as:

2(n) = h* <a(n)y1 (n)). (3.19)

wi(n) =wi(n — 1) + p(n)er(n)xe(n —1). (3.20)
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for 1 =0,...,L, — 1. Where e1(n) = d(n) — y1¢(n) is the error due to the
output of the adaptive filter y; (n) filtered through h (left adaptive block in
Fig. 3.3). Moreover, the adaptive step size p;(n) is the same as in (3.16).

The biased scheme can be considered as a particular implementation
of the previous combined structure, where all the filter coefficients of one
of the adaptive filters are zero. Thus, only one branch of the block con-
vex combination remains. The scaling factor of the algorithm (a(n)) is
defined by using a sigmoid activation function defined as in (3.9)-(3.13),
but considering that in this case ya2(n) = 0.

_ sgmla(n)] — sgm[—4]
a(n) = sgmd] — sgm[—4] (3.21)

— ) Fa 0¢(0)
a(n+1) =a(n) pﬁ”) da(n)
— () + Fectmi(n)sgmlaml{ 1 - sgma(o)] ), (322

being 7, the step size for the combination factor defined in (3.12) and p(n)
is estimated as

p(n) = Bp(n — 1) + (1 = B)yie(n). (3.23)

The biased Fx-IPNLMS (BFx-IPNMLS) algorithm is described in Al-
gorithm 2.
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Algorithm 2 BFx-IPNLMS algorithm.

Input: Reference signal x(n), desired signal d(n) and microphone signal

z(n)

Output: Output of the filter y(n)

—
@

11:

12:

13:

14:

15:
16:

P W e g w e

: Update the vectors x(n) and xy(n)
zi(n) = x|, (n)h
yi1(n) = w' (n—1)x(n)
Update the veciors x¢(n) and y1(n)
yis(n) = yi (n)h

e(n) = d(n) — z(n)

e1(n )Zd( ) = yie(n)

p(n) = Bp(n — ll)a+ (1 - B)yir(n)
e = sgmla¥] - sgml=a*]
a(n) =a(n—1)+ Z%G(H)yu(n)sgm[a(n)] {1 — sgm[a(n)]}

sgmla(n)] — sgm[—a"]

M) = o] ~ sg[—a7]
y(n) = A(n)yi(n)

1 |wi(n —1)|
gn—1)=1- >2L + (1+ k) y—=l ,
e+2)  |wp(n—1)
k=0
for 1=1,...,Ly
-1
w(n) = Hgi(n = 1) Jfor 1=1,..., Ly

Ly—1

0+ Z gr(n — Daf(n — k)

G(n) = ding(y (n), (). .. iz, ()
w(n) = w(n — 1) + G(n)xe(n)ex (n)
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3.3.1 Steady-State analysis of the biased filtered-x scheme

The biased filtered-x structure is mainly proposed for low SNRs scenarios.
At this point, it will be suitable to analyze the performance of this scheme
to prove that it is at least as good as its unbiased version. For that purpose,
we analyze the steady-state performance of the excess mean square error.

In real situations, the error measured at the microphone includes a
noisy signal that depends on either the system performance or the ambient
noise, 7(n). Moreover, the desired signal can be written as,

d(n) = wix¢(n), (3.24)
where wq corresponds to the optimal filter solution.

For the development of this analysis, we take into account the following
assumptions:

1. For low variations of the weight vector, h and w’ (n) are considered

linear systems and can be interchanged.
2. r(n) is an additive Gaussian noise with zero mean and variance o2

and uncorrelated with the input signal x(n).

3. After convergence, x¢(n) and w’ (n) are uncorrelated.

Using assumption 1, the error signal of Fig. 3.3 can be written as,

e(n) = d(n) — 2(n) +r(n) = d(n) — a(n) [a"y1(n)] +r(n)
o x¢(n) — a(n) [w'(n - 1)Xf(n)] +7(n)
af ){[W%—WT(H—l] (n)} +[1 — a(n)] {ngf(n)}—l-?“(n)
= a(n) (W (n — )x¢(n) } + [L — a(n)] {wgx¢(n)} +7(n)
a(n)

n)eq(n) + [1 — a(n)] {wix¢(n)} +r(n)

aa(n) +7(n), (3.25)

where e,(n) is the a priori error of the unbiased algorithm previously de-
fined and e, (n) is the a priori error of the biased algorithm. Moreover,
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yi(n) = [y1(n),y1(n —1),...,y1(n — {L, — 1})]? includes the last L; sam-
ples of the output of the adaptive filter y;(n).

For the sake of simplicity, we use the EMSE of the unbiased algorithm,
Jez(n), to define the EMSE of the biased one as Jeg o(n),

Jer.a(m) = B {lea,(m)*} = B {[laea(m) + [1 = a(m)] wixe(m)|* |
= B{a?(n)[ea(m) } +[1 - a()]* B { [wyxi(m)]"}
+2a(n)[l —a(n)]| E {ea(n)onXf(n)}

+2a(n) [1 — a(n)] E {w x¢(n)x{ (n) [Wg; —w(n—1)]} (3.26)

where R, corresponds to Ry, = F {xf(n)x?(n)}

In steady state, the last term at the right-hand side of (3.26) can be
removed using assumptions 3 and the fact that the estimation of the optimal
filter tends to the optimal solution, E {w(n)} — wg as n — co..

Thus, the EMSE of the biased algorithm can be obtained from its
unbiased version as,

Jew.o(00) = a2(00) Jez (00) + [1 — a(00))* Wi Ryywo (3.27)

Moreover, to obtain the optimal value in steady state of the scaling
factor, the previous equation is derived with respect to a and set equal to
Zero,

0J ez 0(00)

da(n) = 20(00)Jez(00) — 2WE Ry wo + 20(00) Wi Ryywo = 0

a(00) [Jez(00) + W Rywo| = Wi Rywo

WERIfWQ
OZ(OO) = T
Jez(00) + wy Ry wo
1
a(o0) = ) (3.28)

1+

ngxfwo
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In this case, the existence of the estimated channel response h in the
term wg R, wo allows to suitably manipulate it as,

wi R, wo = w) E {I:ITXLM (n)xigwh (n)I:I} wo
= {WgﬂT] FE {wah (n)xgwh (n)} [I:IWO}
- [WOT ﬂT] R, [ﬂwo} , (3.29)

where x7,, (n) is a vector with the last L,, + Lj, — 1 samples of the input
signal z(n) and H corresponds to the discrete linear convolution of the
estimated channel response fl, expressed in matrix form as a Toeplitz matrix
of dimensions (L, + L — 1) X Ly,

h(0) 0 0 ]
h(1) h(0) 0
: h(1) 0
H=| i1, -1 : h(0) (3.30)
0 h(Lp — 1) h(1)
0 0 : :
0 0 0 h(Lp-1) |

If the equalization works properly, the matrix vector product [ﬂwo]

corresponds to a (L, + Lp — 1) x 1 column vector containing the delta
function d(n — 7). Therefore, the term wi Ry, wo can be simplified as

Wi Ry Wo = 02, (3.31)
where o2 is the variance of the input signal.

Then, substituting (3.31) in both (3.27) and (3.28), we find that

Jewo(00) = 2(00) Jez (00) + [1 — a(00)]? 02, (3.32)
a(oco) = 14_(]1@1(00) (3.33)

Iz

As the scaling factor has a value between 0 and 1, the steady-state
EMSE of the biased approach will always be equal to or lower than its
unbiased version.
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For the biased Fx-IPNLMS (BFx-IPNLMS) algorithm, the optimal
value of the scaling factor in (3.28) is derived from (3.34), (3.35) and (3.36),

L w

— uo2(n 91(0)
Jea(00) = por( )E T 11(o3) (3:34)
giloc) = (1 — /@-)2;0 +(1+k) ‘Lf‘};(”)’ , (3.35)
e+2>  |wo,(n)
k=0
1
a(oo) = e (3.36)

1+

Also it is important to notice that for this kind of application, the adap-
Ly

tive filter has at least a hundred of coefficients and as Z g1(n) = 1, the fol-
1=1

lowing expression can be approximated Z

P 12*N91 — 2/91

o Zgl )/2=1/2, as 2/g;(c0) > p. This results in a general EMSE ex-

pressmn independent of the k-value

Jex(oo) = . (337)

The EMSE development of the biased scheme can also to be applied to
the Fx-NLMS algorithm. Thus, (3.32) can be also used, where the EMSE
value of the unbiased Fx-NLMS algorithm at steady state Jez(0c0) and the
optimal value scaling factor a(oco) are defined respectively as,

0.2
Jea(00) = 2“_—# (3.38)
a(oo) = — 1+ (3.39)

po?
1+ gofez

(3.34), (3.36) and (3.39) show that when the SNR is reduced, the scaling
factor decreases its value and thus it biases the final EMSE of the biased
scheme.
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3.4 Multichannel room equalization

A generic multichannel adaptive equalization system, with L loudspeakers
and M microphones, is considered and illustrated in Fig. 3.4 to extend the
single channel scheme to a MIMO system. This MIMO system presents
J X M room responses, multiple error signals and multiple adaptive filters
to be updated simultaneously. The management of those signals is not
straightforward and becomes the main difficulty in extending the single
channel adaptive equalization problem to the multichannel case.

Adaptive filters Acoustic
channels ()
‘( Loudspeakers Microphones

?&: - HI"hI!‘L o :4('9' -O—> €i(n)

Sources 2(n) _>|4‘ 1T ':_EEIQ___:/ / ,
2(n) \ /e ew(n)
o/ 2i(n)
]t

&

S
B
2

Y

I h, E 90 S b !
By Adaptive €i(n)
> Algorithm ex(n)
hlJ
BMJ

Figure 3.4. Block diagram of a multichannel AE system,
with 1 primary source, L loudspeakers and M microphones.

For the specific case of the Fx-IPNLMS algorithm, the previous equa-
tions defined in Section 3.1 can be rewritten as follows. For simplicity,
we are considering only a single primary input signal x(n), but it can be
straightforward extended to any number of input signals.

The rendering signal of each loudspeaker y;(n), for j = 1,...,J, can
be expressed as,

yj(n) = W]T(n — D)x(n), (3.40)
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where w;(n) denotes the coefficient vector of the j-th adaptive filter.

The signal measured at each microphone and its corresponding error
are given, respectively, by (3.41) and (3.43),

J

2m(n) =Y By xy;(n), m=1,...,M. (3.41)
j=1

em(n) =dm(n) — zm(n), (3.42)

where h,, ; is the room channel response between loudspeaker [ and micro-
phone m, and the desired signal d,,(n) corresponds to the input signal with
its corresponding source-microphone delay

dm(n) = x(n — 7). (3.43)

Each component adaptive filter follows its own update equation, thus,
among the different possibilities, we use the Fx-IPNLMS algorithm to min-
imize the sum of the mean square errors. The L,, weights of each adaptive
filter are updated according to

w;(n) =w;(n —1) + Gj(n)

NE

em(n)xg, (1), (3.44)

m=1

being w;(n) a column vector, WJT(n) = [wjo(n),wji1(n),...,wjr,—1(n)l,
and X, ) (n) corresponds to the last L,, samples of the source signal filtered
through the estimated room channel from loudspeaker j to microphone m,
h(,, ;. Moreover, G;(n) is a diagonal matrix that contains the L., step-size

parameters of every coefficient of the filter w;(n).

For the Fx-IPNLMS algorithm and similarly to (3.6) and (3.7), the
elements of Gj(n) are obtained for j =1,...,J as,
pgj(n —1)

Gi(n) = —F— : (3.45)

o+ Z gjk(n — 1)93%(m’j) (n—k)
k=0

where gj(n) = (1— /1)2[1% + (1+ k) L!ijl(nH . (3.46)

e+2>  |wir(n)l
k=0
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Algorithm 3 MFx-IPNLMS.
Input: Reference signal z(n), desired signals d,,(n) and microphone sig-

nals z,(n) form=1,..., M.
Output: Output of the filter y;(n) for j =1,...,J.
: Update the vectors x(n) and xy,(n)
L xg,, () = Xg(n)fl(m,j) forj=1,...,Jandm=1,..., M.

: Update the vector xf(m’j)(n) forj=1,...,Jandm=1,..., M.

1

2

3 yj(n) = W]T(n —Dx(n), forj=1,...,J.
4

5 em(n) =dpn(n) — zpm(n), form=1,..., M.

6: ng(n—l):(l—li)Qlljw%-(l-f-ﬁ) Efll(n_l)‘ :
e4+2 3 Jwjuln— 1)
for j=1,....,Jandl=1,..., L. =
7 pji(n) = y—= Hgji(n = 1) yfor j=1,...,J
6+ Y gip(n—1)af (n—Fk)
k=0

and [ =1,..., Ly,.
8 Gyi(n) = diag (151 (1), 2(R), o i, (1)), For j =1, .
9: w;(n) =wj(n—1)+ Gj(n)x¢(n)ej(n), forj=1,...,J

The multichannel Fx-IPNLMS (MFx-IPNLMS) algorithm is summa-
rized in Algorithm 3.

With regard to the combined and biased schemes proposed in Section
3.2 and 3.3, they can be also extended to the multichannel case, combining
or biasing each adaptive filter w;(n) for j = 1,...,J. Due to the high
number of filtered-x operations that are required for the combined and
biased multichannel structure and for the sake of clarity, these multichannel
algorithms, the combined MFx-IPNLMS (CMFx-IPNLMS) and the biased
MFx-IPNLMS (BMFx-IPNLMS) algorithm, are summarized and described
in Algorithm 4 and Algorithm 5, respectively.



56 Adaptive room equalization

Algorithm 4 Combined MFx-IPNLMS.
Input: Source signal x(n), desired signals d,,(n) and microphone signals
Zm(n), form=1,.... M
Output: Output of the parallel filters y;(n), forj=1,...,J.
1: Update the vector x(n) and xy,(n).
2 xg,, o (n) = Xg(n)ﬂ(m,j) forj=1,...,Jandm=1,..., M.
3 yij(n) = WZ-TJ(n —1)x(n), fori=1,2and j=1,...,J.
4: Update the vector xf<m,j)(n), yi; and yo; for j=1,...,J
andm=1,..., M.
em(n) =dpn(n) —zn(n), form=1,..., M.
6: yif(mm(n) = y%(n)fl(m,j), fori=1,2,m=1,.... Mandj=1,...,J.

, forj=1,...,J

&

sgm[4] — .Jsgm[—4]

2
8 3 (0) = Bpy(n— 1)+ (1=8) [ynr,,., (1) = vr,,,, ()] forj = 1.,
andm=1,..., M.

T Haj =

M

o ayn) = gt 1)+ 2 S fen) [ (), 0]

pj(n) ~—
sgmfaj(n—1)|{1— sgm[aj(n D]}, forj=1,...,Jandm=1,..., M.

10: \j(n) = sgmla; (W] = sgml—4] e Jandm=1..... M.

sgml[4] — sgm|[—4]
11: y;(n) = Aj(n)y1,j(n) + (1 —Aj(n )>y2J( ), forj=1,...,J.

12: elmJ(n) =dmn(n) = Yif,, ,(n), fori=12j=1,...J
andm=1,..., M.

13 giyun—1) = (1 H,»)in 4 (14 ) Jmato =L
e+2 Z \w; jk(n— 1)
for i=1.2j=1.. Jandl=1,. .. Ly
14: piji(n) = e Hgiga(n —1) ,for i=1,2,
5+ Z gijr(n—1)zi  (n—k)
j= ,J and l =1,..., L.

15: Gm(n) = dlag(,qu( ),uwg(n), ---aMi,j,Lw(n)>7 for i = 1,2 and
j=1,...,J.

M
16: Wy j(n) =w;j(n—1)+ Gi,j(n Ze m,j(M)Xg, . (n), fori=1,2and
=1
j=1,...,J.
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Algorithm 5 Biased MFx-IPNLMS.

Input: Source signal x(n), desired signals d,,(n) and microphone signals
zZm(n), form=1,.... M

Output: Output of the filters y;(n), forj=1,...,J.

Update the vector x(n) and xy,(n).

s, (n) = Xg(n)fl(myj) forj=1,...,Jandm=1,...,M.

yj(n) = W]T(n —Dx(n), j=1,...,J.

Update the vector xf(my].)(n) andy,forj=1,...,Jandm=1,..., M.

em(n) =dpn(n) —zyn(n), form=1,..., M.

Yt ;(n) = ij(n)fl(m,j), form=1,...,.Mand j=1,...,J.

, forj=1,....J

aj

Fa; = sgml4] — sgm|[—4]

8: pj(n) =PBpj(n—1)+(1— B)y?(mﬂj)(n), forj=1,...,J and
m=1,..., M.
o M
e em(n (n
pj(n) mzz:l[ ( )yf(m,])( )]
sgmlaj(n—1){1—sgm[aj(n—1)]}, for j=1,...,Jand m=1,..., M.

sgmla; (n)] = sgm[—4] forj=1,...,.Jandm=1,..., M.

9: aj(n) = aj(n — 1) +

10: a/j (n) = sgml4] — sgm[—4]

11: yy(n): ( n)y;(n), forj=1,...,J.

12: ey, 5(n) = dm(n) —yg,, ,(n), forj=1,....Jandm=1,..., M.
13 gya(n—1) = (L= 0)—+ (1 +5) Jojatn = DI
423 Jugaln — 1)
for j=1.. Jandl=1,. .. Ly
14: pji(n) = = Hgsi(n = 1) yfor j=1,...,J
d + Zg;k Vg, (n—k)

and [ =1,. Lw.
15: G;(n) = diag(ﬂj,l(n),ﬂj,Q(n),...,M,Lw(n)), for j=1,...,J.
M

16: wj(n) =wj(n—1)+ Gj(n) Z e;n,j(n)Xfm,j)(n), forj=1,...,J.

m=1
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3.5 Results

In this section we carry out three different sets of experiments to study
the behavior of the algorithms proposed in this chapter. The first experi-
ment aims at assessing the effectiveness of the combined filtered-x scheme.
The second set is performed to evaluate the biased filtered-x structure in
low SNRs scenarios. The last experiment includes a MIMO equalization
algorithm, with 2 loudspeakers and 2 microphones, to validate the previous
schemes for the multichannel case.

3.5.1 Combination scheme

This experiment shows the performance of the convex combination of two
adaptive filters of Fig. 3.2, with regard to using only one adaptive filter as
in Fig. 3.1. If the component adaptive filters are set with complementary
capabilities, for instance, with different step sizes, the combination scheme
allows to achieve both a good convergence speed and a low steady-state
EMSE. For this purpose, the combination of two filters with different step
size parameters has been considered in this experiment.

The acoustic channel of Fig. 4.5 has been used. It has been measured in
a room with Tgo = 180 ms and a sampling frequency of 8 kHz. The input
signal z(n) is a white Gaussian noise with zero mean and unit variance.
Moreover, an additive noise r(n) has been added to the microphone signal,
which is also a Gaussian noise uncorrelated with z(n) and its variance is
adjusted to provide an SNR of 30 dB.

Fig. 3.6 (a) shows the EMSE performance of the CFx-IPNLMS algo-
rithm (round marker line) with k1 = ko = —0.5 and different step sizes of
p1 = 0.01 and pg = 0.1. For the Fx-IPNLMS algorithm of the combined
scheme a value of K = —0.5 has been chosen, as recommended in [10] to
achieve a good behavior. On the other hand, p = 0.1 allows a fast conver-
gence without getting unstable, meanwhile a lower p value of 0.01 exhibits
a lower steady state. The step size of the combination factor u, has been
set to 0.1 to allow a fast adaptation from one algorithm to the other. Also,
the individual Fx-IPNLMS algorithms, with x = —0.5 and p = 0.01 (dia-
mond marker line) and with K = —0.5 and p = 0.1 (square marker line),
are plotted.
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Figure 3.5. (a): Acoustic channel response and (b) its inverse
filter.
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Figure 3.6. (a): EMSE(n) for CFx-IPNLMS and their indi-
vidual algorithms. (b): A(n) of the CFx-IPNLMS approach.
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3.5.2 Biased scheme

In this section and using the analysis developed in Section 3.3.1, theoretical
predicted values are compared to the averaged estimated ones for the EMSE
expressions and the scaling factor a(n) in steady state, for both Fx-NLMS
and the Fx-IPNLMS schemes and their biased versions, BFx-NLMS and
BFx-IPNLMS, respectively.

Considering that the performance of the models is not dependent on
the acoustic channel length considered as emerges from (3.32), a 64-samples
channel is used for simplicity. This channel has been measured in a real
listening room [17], but artificially modified to get a quasi-sparse inverse
impulse response, see Fig. 3.7. The optimal filter wq in Fig. 3.7 (b) has been
computed as the inverse filter of the acoustic channel showed in Fig. 3.7 (a)
by using the least squares error method (LSE) [3]. A length twice the length
of the acoustic channel and a delay 7 = 78 samples have been considered.

Fig. 3.8 compares the theoretical results (in dashed line) for the scaling
factor at steady state, a(co) in (3.33), with the averaged estimated ones
(in solid line for the BFx-IPNMLS schemes and in dotted line for the BFx-
NLMS ones) for different values of both SNR and p. For the improved
proportionated algorithms, x = —0.5 has been chosen. Each curve repre-
sents a different p value and for various SNR values along x-axis, keeping
constant 0925 = 1 and varying 03. Fig. 3.8 also shows that for high values of
SNR the scaling factor is close to 1, and from (3.32) Jeg ,(00) = Jez(00).
For low SNR and high p values a(oo) tends to 0. It can be observed that
the estimated results for the BFx-IPNLMS agree with the theoretical ones
especially for low u values.

As was developed in the theoretical analysis, the unbiased EMSE ex-
pression (3.34) can be approximated by (3.37) providing the same theoret-
ical results of Jez(c0) for both the Fx-IPNLMS and the Fx-NLMS algo-
rithms. Fig. 3.9 shows the EMSE value in dB for the unbiased algorithms,
Jez(00) (3.34) and (3.38). Estimated results (solid line for the Fx-IPNLMS
and dotted line for the Fx-NLMS algorithms) fall close to the theoretical
ones (dashed line), their values increase with o2 and y, and are almost sim-
ilar to the theoretical ones. Fig. 3.10 shows the Je; ,(c0) in (3.32) for the
BFx-IPNLMS and the BFx-NLMS algorithms. Also the simulated results
agree well with the theoretical ones, but are upper limited by 0dB as the
SNR decreases. As in Fig. 3.8, a worst performance is obtained for high
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Figure 3.7. (a) Acoustic channel; (b) Inverse of the channel.

1 values. Although perfect secondary path estimates have been considered
in the present simulations, it has been also found that the derived models
predict quite accurately the simulated results with not very high modelling
errors.
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Figure 3.8. Theoretical (dashed line) and estimated
(solid line for the Fx-BIPNLMS and dotted line for the
Fx-BNLMS algorithms) a(oco) for different ;1 and SNR
values.
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Figure 3.9. Estimated (solid line for the IP type algo-
rithms and dotted line for the NLMS ones) and theoret-
ical (dashed line) EMSE curves in steady state for their
unbiased versions J,(c0) defined in (3.34) and (3.38).
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The second experiment shows the ability of the biased IPNLMS algo-
rithms to improve the convergence speed performance of the normalized
versions. Fig. 3.11 shows the EMSE evolution for the different algorithms
with ¢ = 0.1 and a low value of SNR= —5dB, thus the biased versions
achieve lower EMSE values in steady state. Furthermore, after 75,000 sam-
ples the channel h slightly changes and thus its optimal inverse filter wy,
showing the ability of the adaptive algorithms to follow system variations.

2 : —— Fx-BIPNLMS
¥ - Fx-BNLMS
¥ - % Fx-IPNLMS

06 .- FxNLMS ||

Samples [x104]

Figure 3.11. EMSE evolution with time-varying channel for
the Fx-IPNLMS and Fx-NLMS algorithms and their biased

versions.

3.5.3 Multichannel 1:2:2 system

In the third experiment we consider a 1:2:2 MIMO system (2 loudspeak-
ers and 2 microphones) which involves 4 room impulse responses. A per-
formance comparison of the MFx-IPNLMS and the BMFx-IPNLMS algo-
rithms has been carried out. The evaluation of the algorithms behavior is
based on the NPM index defined in Section 2.6.2, where lower values mean
a better performance.
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The robustness of the algorithms has been analyzed with different chan-
nel responses of different degrees of sparsity (see Section 2.1.2) and with
time-varying SNRs. To this end, the simulations start with non-so-sparse
impulse responses. These room channels have been measured in a real au-
dio room, with a reverberation time, 749, of approximately 250ms. Fig. 3.12
shows these impulse responses (with 256 taps) of the 1:2:2 system. In the
second part of the simulations, the room channels commute to sparser ones.
The new impulse responses have been artificially obtained from the previ-
ous paths by taking the first 50 samples and zero-padding to length 256 (see
Fig. 3.13). An uncorrelated noise signal has been added to the microphones
to simulate a real scenario. The power of the additive noise has been set
to get two different SNRs (5 and —5dB).

The adaptive filters have a length of L,, = 256 taps, the same length of
the room responses. A step size p = 0.2 and an asymmetry factor kK = —0.5
have been fixed for the IPNLMS type algorithms. Other parameters for the
biased method have been set to yu, = 0.1 and 5 = 0.9.

As expected, a behavior similar to the single-channel case is obtained.
Fig. 3.14 shows the NPM evolution at the two microphones. The conver-
gence performance of both algorithms is very similar when SNR = 5dB,
independently of the degree of sparsity of the impulse responses. However,
when SNR = —5dB the biased approach clearly outperforms the MFx-
IPNLMS algorithm (between n = 100,000 and n = 300,000 iterations).
The evolution of A(n) in Fig. 3.15 evidences the inclusion of a bias differ-
ent to zero when the SNR is low. Moreover, the evolution of the two bias
parameters is slightly different between n = 200,000 and n = 300, 000, due
to the different NPM performance obtained at both microphones.
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Figure 3.12. No-so-sparse room impulse responses.
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Figure 3.14. NPM evolution for the 1:2:2 configuration for:
(a) microphone 1, and (b) microphone 2.
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3.6 Conclusions

In this chapter the adaptive filtered-x structure has been applied to the
room equalization problem. Firstly, for the single channel case, the filtered-
x IPNLMS algorithm has been presented. Moreover, the combination of
filters has been introduced, which exhibits a robust performance in different
scenarios. For low SNRs, the biased scheme has been proposed and ana-
lyzed in terms of steady state, with an improvement in the EMSE measure
for low SNRs conditions. Due to the fact that the scaling factor decreases
its value and thus biased the final EMSE, as the SNR is reduced.

In the following chapter and motivated by the sparseness characteristic
of the acoustic channels, we use the combination and biased strategies to
develop robust filtering schemes based on a block scheme.

The multichannel adaptive equalization problem has been also intro-
duced. It requires to filter each input signal through all the acoustic
channels measured between the loudspeakers and microphones. Thus, the
filtered-x structure has to be applied. For acoustic applications, the estima-
tion of the acoustic paths usually requires at least a thousand of samples.
For that reason, the computational burden of the multichannel structures
highly increases with the number of loudspeakers and microphones.

Keeping this in mind, it is appropriate to seek for adaptive algorithms
that require a lower computational cost, the use of parallel computing to
provide efficient and real-time equalization and the use of collaborative
filtering techniques that allow to distribute the filtering process between
different nodes.
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In the previous chapter we have seen interesting results for the proposed
algorithms for the adaptive room equalization problem. For instance, the
adaptive combination of filters allows to combine the performance of dif-
ferent filters to improve the overall result. However, they do not always
provide optimal performance for this specific application. This is due to
the particular form of the inverse room response, which presents different
energy distribution among its coefficients, whereas the combination factor
is the same for all of them. Since working with each coefficient of the adap-
tive filter independently is computationally expensive, the coefficients are
put together in a block-based concept.

Taking this in mind, this chapter introduces different block-based sche-
mes for the room equalization problem.

First, in Section 4.2, the adaptive block-based convex combination
of filtered-x filters is presented, where the different combination factors
seek minimizing the mean square error of the block filter and thus the
mean square error of the total equalizer. Moreover, the block-based biased
filtered-x scheme is also proposed, which allows to biased independently
each block of the adaptive filter for a given SNR.

Secondly and based on the a priori knowledge of the energy distribution
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of the optimal filter, the fitted-block schemes are presented in Section 4.3,
which suitably select the coefficients of each filter block to fit the energy
distribution of the adaptive filter. Although these schemes are specifically
designed for adaptive equalization applications in this work, they can be
successfully applied to other applications where the energy distribution of
the optimal solution is roughly a priori known.

Particularly, the fitted combination of block-based filtered-x schemes
and the fitted block-based biased filtered-x scheme are introduced.

Within the fitted-block schemes, the partitioned fitted-block scheme
is also presented, which uses different parameter values for each block,
depending on the desired filter performance.

However, first of all in this chapter it is necessary to introduce the
block-based concept and the energy distribution of the coefficients of the
inverse filter.

4.1 Block-based approach

The idea of this block distribution is based on the concept that acoustic
room channel responses have room impulse responses that are normally
sparse with only a small percentage of the components that have high
values and the rest with values close to zero, as it has been commented in
Section 2.1.2.

Nevertheless, for room equalization applications, the adaptive filter
tends to the inverse of the room response which is normally not-so-sparse
and even is not directly related to the sparsity of its room response. Ex-
amples of these responses and their sparsity degree are given in the result
section of this chapter. For instance, for the room response and inverse
filter of Fig. 4.5, the sparsity degree measured with (2.3) is £(h) = 0.70
and &(w) = 0.30, respectively. Despite this not-so-sparse behavior, the
inverse responses still exhibit a sparse response and thus, this block-based
approach can be used.

The aim of the block-based structure is to divide the adaptive filter in
various blocks, so each can have a different adaptation based on the energy
of this part of the inverse acoustic channel w,. Moreover, when used in
combination of different algorithms, it will allow to select the best option
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for each block, improving the one-single block scheme.

For the block algorithms, the adaptive filter w(n) is divided in M-
blocks, that is, w(n) = [wyi(n), ..., wa(n)]T, where each block has
Q = Ly/M samples, wy,(n) = [w(m,l)QH,w(m,l)QH,...,wmQ]T. The
update of each block is independent, allowing each adaptive block filter
W, (n) to converge to the block solution

Wom = [wo,(m—l)Q+17 Wo,(m—1)Q+25++ +» wo,mQ]T- (41)

It has to be noticed that the equalization filters tend to obtain a stable
inversion of the acoustic channel, which is introduced using a modelling
delay. For that reason, the response of the inverse filter has a central
response with high energy, whereas the lateral coefficients present lower
values. On this basis, the fitted-block schemes tries to adjust the block
position to the coefficient energy distribution. Although we are using in
this chapter adjacent coefficients to form a block, the aim of fitted-blocks
involves the combination of non-adjacent coefficients.

4.2 Block-based schemes

To start with, in this section we present the convex combination of two
block-based adaptive filters, which allows to combine each block indepen-
dently. In fact, as the optimal filter can exhibit different sparseness degree
in each block, it can outperform the one-single combination scheme of the
previous chapter. Secondly, the block-based biased filtered-x structure is
also introduced that can provide an improved final residual error for low
SNRs and a wide range of sparseness degrees, as well. Although all the pro-
posed filtering schemes can be implemented with different kinds of adaptive
filters depending on both the application and performance requirements,
our work as in the previous chapter is focused on efficiently increase the
robustness of the Fx-IPNLMS algorithm for adaptive equalization applica-
tions.

4.2.1 Block-based convex combination of filtered-x schemes

For the adaptive convex combination of block-based filtered-x schemes
(CBFx), the structure takes at each n-sample and for a given m-block
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(being m = 1,..., M), the best w;,,(n)-block or a combination of both
Wi m(n)-blocks (being ¢ = 1,2). These combinations allow to finally obtain
the whole adaptive filter w(n) as a combination of each filter block.

€,(n)

Adaptive
Algorithm

A

Figure 4.1. Adaptive combination of block-based adaptive
filtered-x filters for equalization.

Fig.4.1 shows the different input and output signals and the errors that
control the adaptive filters and combination factors of this structure. For
simplicity, only the adaptation block of the wy ,,(n)-block and the A, (n)
combined factor are drawn. The output of the adaptive filter y(n) can be
expressed as a weighted combination of each block filter:

m=1

S|

m=1

M
yn) =3 {Amm) W (1— 1)xm(m)] }
[1— A

()] [WE (1 — 1)xn(m)] } (42)

where w1 ;,(n) and wo (1) are the adaptive weight block vectors of Q@ =
L,,/M-length. Meanwhile, the xr,, (n) vector containing the last L,, sam-



4.2. Block-based schemes 79

ples of the input signal z(n) has been divided in M input blocks with @
samples each, X, (n) = [z(n — [m — 1]Q),z(n — [m — 1]Q — 1),...,z(n —
m—11Q —[Q — 1))
The final expression at the microphone signal will be
z(n) =h=xy(n) (4.3)
The error signal e(n) is given by,

e(n) =d(n) — z(n), (4.4)

where d(n) is defined as previously to allow each block to converge to a
specific block solution wyq ,,, such that the desired signal is given by

d(n) = z(n — 1) = wlx¢(n). (4.5)
This error signal e(n) will be used in the block case to update the M

scaling factors Ay, (n), which are defined as in the previous chapter by using
a sigmoid activation function

sgmlam(n)] — sgm[—4]

Am(n) = for m=1,...,M, (4.6)

sgm[4] — sgm[—4]

where a,,(n) is updated according to the following expression

Ha,,
pm(n)
- sgmlam(n)] (1 — sgm[am(n)]), (4.7)

am(n+1) =anp(n) +

() [y1,mt(n) = v2me(m) -

where y; mi(n) (i = 1,2 for each branch of the convex structure for a given
m-block) is the output signal y; ,,(n) of the adaptive m-block filter w; ,,(n)
filtered through the estimated impulse response h. Besides, p,,, is the
adaptation speed and p,,(n) the normalization factor that are defined by

— Hap,
Mam - ng[4] . ng[_4] ) (48)

Pun(n) = Bpm(n = 1) + (1= ) [y i) ~ voe(n)] . (49)
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The weights of each block of the convex combination structure for the
LMS-type algorithm are updated at each iteration according to

Wim(n) = Wim(n —1) + Gim(n)ei(n)xme(n), fori=1,2; (4.10)

being G; ., (n) a diagonal matrix containing in the main diagonal the adap-
tation speed for each filter weight pi;m,(n), for i = 1,2 and my = (m —
1Q,...,(m—1)Q+ (Q — 1), are the Q-coefficients of the mth-block filter.
Xmt(n) is a vector containing ) samples of the input signal z(n) filtered
through the estimated impulse response h.

Whereas, e;(n) represents the input error to the adaptive i-block algo-
rithm, which is computed as

ei(n) =d(n) — yir(n), (4.11)

M
where y;¢(n) = Z Yime(n), fori=1,2.
m=1

Furthermore, the adaptation speed for each filter block is the same for
each weight for a CBFx-NLMS algorithm gy, (n) = pi,m(n), with p; being
a constant step size, for the ith adaptation filter of the combination scheme:

pim(n) = (4.12)

Hi
5—|—Zx%(n—k:)7
k

fork=m-1)Q,....(m—-1)Q+(Q—-1),i=1,2and m =1,..., M.
Where § is a small positive constant to avoid division by zero.

Meanwhile, for a CBFx-IPNLMS algorithm, the adaptation speed for
each filter block, for m =1,..., M, is different for each weight fi; m,(n):

_ iGimg(n — 1)
o+ Zgi7mq(n — 1)&:?(71 — l<:)7
k

Himg (1) (4.13)

fork=m-1)Q,....(m—-1)Q+(Q—-1),i=1,2, m=1,...,M and
myq refers to the gth coefficient of the m-block. Where the adaptation gain
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factors are given by

|wii(n)]
Luy—1 ’

e+2>  |wik(n)|
k=0

gii(n) = (1= kKim) + (1 + Kim) (4.14)

1
2L,

where w;;(n) for [ =1,..., L, refers to the lth-coefficient of the ith filter
vector. d and ¢ are small constants to avoid division by zero.

The computation of the mixing parameters and the update of the @)
coefficients of the mth block of every component filter for the Fx-IPNLMS
algorithm are illustrated in Algorithm 6.
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Algorithm 6 CBFx-IPNLMS algorithm.

Input: Reference signal xz(n), desired signal d(n) and microphone signal

z(n)

Output: Output of the parallel filter y(n)

o

10:

11:

12:

13:

14:

15:

1: Update the vectors x,,(n) (for m =1,..., M) and x(n)
2: xg(n) = X;Y;(TL)}AI

3:

4: Update the vectors X,,¢(n), y1.m(n) and ya ,(n)

Yim(n) =wi, (n—Dxp(n), i=1,2 m=1,...,M

form=1,...,M
Yimi(n) = y;{m(n)h, 1=1,2, m=1,...,.M
e(n) = d(n) — z(n)

M

ei(n) =d(n) — Z Yime(n), i=1,2

m=1
pm(n) = ﬁpm(n - 1) + (1 - ﬁ)[yl,mf(n) - y2,mf(n)]2,
form=1,....M
am(n) = am(n —1)
+ p:z(’;’;) e(n) [y1,me(n) — y2,me(n)] sgmlam(n)] {1 — sgm[am(n)]},
form=1,..., M,
sgm|am (n)] — sgm[—a™]

Am(n) = ng[aﬂ o — m=1,....,M
Z A (m)1m(7) + [1 = Ao ()] 2 ()
gia(n—1) = (1~ ﬂi,m>2;w (1 gy =D
e+2 Z lw; k(n — 1)
forl=1,...,L,, ©¢=1,2and mzl,...,?\jo
iy (1) = WiGimg (M — 1)

5+Zgzmq xf(n—k)’

fork::(m—l)Q,...,(m—l)Q+(Q—1),z':1,2, m=1,...,M and
g=1,...,0Q.

Gl,m(n) = diag(:uim"u (n)v i ma (77,), oy Hiymg (n))v

fori=1,2, m=1,...,M,

Wim(n) =wim(n—1)+ Gi’m(n)xmf(n)ei(n),

fori=1,2, m=1,....M
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4.2.2 Block-based biased filtered-x scheme

The used of the biased scheme proposed in the previous chapter in the
block-based approach allows to bias each block independently. Thus, for a
given SNR, as the energy distribution of each block is different, the block-
based biased scheme will provide a different scaling factor for each block
output.

For the block-based biased filtered-x (BBFx-) scheme, we consider a
CBFx structure where all the block filters of one branch are equal to zero.

Fig. 4.2 shows the BBFx scheme, where ¢-subscripts have been omitted,
as they are not necessary. The previously defined expressions in 4.2.1 can
be rewritten as follows,

"ﬂ wi(n)

- |—> wy(n)

h | x/n
M( ) ' Adaptive 6(n)
J;f(n) ! Algorithm<_
X 4¢(12) :

: Adaptive

gX n
|M—f()>A1gorithm

Figure 4.2. Block diagram of an adaptive block-based biased
filtered-x scheme for equalization.

M
y(n) = > {om(n) [wh(n— 1xm(n)]}. (4.15)

m=1

The error signal e(n) defined as in (4.4) will be used in the block case
to update the M scaling factors a,,(n), which are defined as in the previous
section by using a sigmoid activation function

sgmlam(n)] — sgm[—4]

am(n) = JdJorm=1,..., M, (4.16)

sgml4] — sgm|[—4]
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where a,,(n) is updated for the block-based filtered-x algorithm according
to the following expression,

am(n+1) = am(n) +

e(n)yme(n)sgmlam(n)} (1 — sgmlam(n)]),

(4.17)
where y,,¢(n) is the output signal y,,(n) of the adaptive m-block filter
W (n) filtered through the estimated impulse response h. Besides, 7,
is the adaptation speed defined as in (4.8) and pp,(n) the normalization
factor,

pm(n)

Pm(1) = Bpm(n —1) + (1 = B)yme(n). (4.18)

The weights of each block of the biased structure are updated at each
iteration according to

Win(n) = Win(n — 1) + G (n)e (n)xpme(n), (4.19)

being G, (n) a diagonal matrix containing in the main diagonal the adap-
tation speed for each filter weight ji,,,(n) defined as in (4.12) - (4.14).

Meanwhile, €’(n) represents the input error to the adaptive block weight
filter, which is computed as

/ !/

¢ (n) = d(n) - y;(n), (4.20)

M
where y;(n) = > yme(n).
m=1

The BBFx-IPNLMS algortihm is summarized in Algorithm 7.
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Algorithm 7 BBFx-IPNLMS algorithm.

Input: Reference signal x(n), desired signal d(n) and microphone signal
z(n).

Output: Output of the parallel filter y(n)

Update the vectors x,,(n), for m =1,..., M and x3(n).

z¢(n) = x} (n)h

Ym(n) =wl (n—1)xpu(n), m=1,...,M.

Update the vectors x,¢(n), ym(n), for m=1,... M.

Yme(n) = y,Tn(n)ﬂ, m=1,....M

e(n) =d(n) — z(n)

m=1
8 pm(n) = Bpm(n — 1) + (1 — B)y2e(n), for m=1,.... M
:am(n) = am(n —1)
+%e(n)ymf(n)sgm[am(n)] {1 —sgmlam(n)]}, form=1,....M
10: ap(n) = sgmam(n)] = sgm[—aﬂ, for m=1,...,.M

sgmlat] — sgm[—at]

M
11: y(n) = Z (1) ym (n)
m=1
lwi(n —1)|

12: gi(n —1 :(1_’%771) )
e+ ZZ |wg(n — 1)]
k

+ (14 km)

2L,

forl=1,..., Ly.
[gm, (1 — 1)

T 6+ geln— Dad(n— k)

k
fork=(m-1)Q,....(m—1)Q+(Q—1),m=1,...,M and
g=1,...,Q.

14: Gpp(n) = diag(fmy s fmys - - -5 g ), for — m=1,..., M.
15: Wi (n) = wp(n — 1) + G (n)xme(n)e’ (n), for m=1,..., M.

13: fipm, (1)




86 Block-based adaptive room equalization

4.2.3 Steady-state analysis of the BBFx-IPNLMS algorithm

In this section the EMSE of the BBFx scheme is computed as it was devel-
oped for the BFx scheme in Section 3.3.1.

For the sake of simplicity, we consider each coefficient separately. Thus,
we use the filter coefficients w;(n) for I = 1,..., Ly, and the scaling factors
that multiplies each block, a,(n) for m = 1,..., M can be rewritten as
arL (n). That means, m is assigned to each filter coefficient w;(n) depend-

ing on the filter block it belongs to, rounding up the division i/Q towards
the nearest integer. As in the one-block algorithm, we consider that for low
variations of the weight vector, h and w’ (n) are considered linear systems
that can be interchanged. Thus, the microphone signal z(n) and the error
signal of Fig. 4.2 can be written respectively as

L.y

ZOO::E:c”éWOﬂwaﬁxxn—l) (4.21)

=1

Lu T
e(n) =Y [wor = o (mwi(n)] at(n = 1) +r(n)
=1
— 0T (n)xs(n) + r(n) = W) H xun(n) = ea(n) + r(n),  (4.22)

where 7(n) is an additive Gaussian noise with zero mean and variance o2

and uncorrelated with the input signal x(n). Being ¥(n) a vector containing
the ¢y(n) terms for [ = 1,..., Ly, U(n) = [¢1(n),... 95, (n)]", where
Pi(n) = woy — L (n)w;(n) has been used for compactness. x,,(n) is a
column vector containing the last L,, + Lj, — 1 samples of the input signal
z(n) that multiplied by the convolution matrix H” of size Ly, x Ly + L, — 1
represents the filter vector x¢(n).

h(0) 0 0
h(1)  h(0) 0
. h(1) :
H=| . _ ) (4.23)
h(L, —1) h(0)
0 0 h(Lp —1)
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Following the analysis in [98], the EMSE of the filter is therefore given
by

Jeo(n)= B{ed(n)} = B {07 ()T H x, (m)x, () H U () }
~E {qu(n)ﬁTE {xun(n)xZ, (n)} ﬁqf(n)} , (4.24)

where E{-} denotes the mathematical expectation.

Assuming the step size is small enough to allow the filter coefficients to
follow the average statistics of the input signal (see the Direct Averaging
Method applied in [12]), the term x,p,(n)x%,(n) can be approximated
by its expected value. If we consider the statistics of the input signal,
for a white noise signal of zero mean and 033 variance, the following term
in (4.24) can be simplified, £ {th(n)xgh(n)} = aiI(Lw+Lh_1), where I is
the identity matrix. (4.24) can be rewritten as

Jew(n) = 02E {\I’T(n)ﬁTﬁ\P(n)} (4.25)

After some manipulations and using the symmetrical property of the
correlation matrix, (4.25) can be rewritten as,

Jex(n) = 02 E [9T(n)®(n)] DHY h, (4.26)

where matrix ®(n) of size L,, x Lj is a convolution matrix built with the
1(n) coefficients, whose first column is ¥(n) and the following columns are
built by shifting down this vector and zero-padding at the beginning.

\IJT(n)CD(n) = [ Yi(n) o(n) ... ¢r,(n) ] .

) 0o .. 0
) Y1(n)

<

1\n

(
Ya(n :
: b1 (n) (4.27)

| i) Vraa(n) . Yre-pa(n)

D is a diagonal matrix of Lj length, whose first element is equal to
1, and the rest of the elements of the main diagonal are 2 to implement
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the symmetric factor. Furthermore, ﬁ{hﬁ implements the correlation of
the channel response, where ﬁfh is a matrix composed with the first Ly
columns of H”.

For h = §(n—7) (propagation in free field conditions), H'h = [1,0,...,0]%,
and the multiplication by matrix D gives also the Ly length vector [1,0, ..., O]T.
This vector activates only the first column of ®(n) in (4.27), and thus ex-

pression (4.26) is the same as the one obtained in [98], when the filtered-x
structure is not considered.

Jew(n) = o2 U7 (n)¥(n)] (4.28)

Expression (4.27) shows the influence of the channel filtering among
the U;(n) coefficients. Thus, (4.26) can be rewritten as

Jea(n) = o2||0|3E [97 (n) ¥ (n)]

Lyp—1 Ly—1

#20 Y 7(r) Y Elir(mnr (o) (4.29)

Lp—1
where r(7 Z h(k — 7) is the correlation of the channel response.

For 7 =0, r(0 ) = HhH2 which appears as the first term in (4.29).

After some manipulations and in steady state (n — o0), using the
coefficient weight error w;(n) in ¢;(n) = w, ;— o (n)wi(n) = oy (n)wi(n)+
[1 — am(n)]w,; and assuming independence of the filter coefficients and
that they tend to their optimal solution, E{w;(n)w;1-(n)} = E{w;(n)}
E{w;1;(n)} = 0, where E{w;(c0)} = wp;, we get (4.30). The first term
has the effect of the channel energy HﬂHg, and there is an additional second
term dependent on the correlation of the channel response r(7) for 7 =
1, Ly — 1.
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M
Jea(00) = 02| |13 [Z A B { || Wi (00) |3}
m=1

Ln—1

+ 203 Z r(T)
T=1

S (1 a) (1) wOvlwoﬁzw] S @)

M
+Y (1= am)? [wouml3
m=1

If only one block is considered (a,, = «) as in Section 3.3.1, the coef-
ficients in (4.22) can be rewritten as ¢;(n) = a(n)w;(n) + [1 — a(n)|w,,.
Leading to the EMSE in steady state for the BFx scheme,

Ly
Je(00)= 22 BIZY_ B {ll@(o0) I3 ]
=1
+02(1—a)? WOTfITﬁWO, (4.31)

where WOTIA{TIA{WO =1 for a perfect equalization.

In order to compute the EMSE in steady state, we have to obtain the
terms E {[|Wp, (co) H%} and «,,. For simplicity, we assume that the channel
correlation terms 7(7) for 7 =1,..., Lj, — 1 can be discarded respect to the
7(0) = ||h|3 coefficient.

Following the development as in [99], the weight error coefficients can
be obtained as,

; (00)
E{fﬁoo 2}: Bor 91 . l=1,...,Ly 4.32
(ool U%HhH%Q_HQl(OO) (4.32)

|w071’

Mol oy L, (433)
5—1—22 |wo,,, |
k

g1(c0) = (1 — /1)211,% +(1+k)

Finally,

Q
E{[on)B} = S B {[Fm-noa(oli}  (434)
=1
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In steady state, if the scaling factors tend to the optimal solution a,,
ex (oo

) — 0. The biased terms
ooy,

we can obtain this solution from (4.30) as

can be obtained as

1
= : 4.35
“m 1 4 El¥m(eo)I3} (4.85)

[wo,ml3

In the result section of this chapter, this theoretical values are compared
to the experimental ones to provide an insight of this analysis.

4.3 Fitted block-based schemes.

Taking advantage of the a priori knowledge of the inverse channel coeffi-
cient distribution, we proposed in this section two new block approaches
based on the idea of adjusting the block position to the coefficient energy
distribution.

Firstly, we introduce a modification of the two block-based structures of
the previous section (the CBFx and BBFx schemes) when used in a room
equalization context, that consists in designing the block filter location
depending on the energy distribution of the adaptive filter.

Secondly, a partitioned fitted-block scheme is proposed. This new
structure uses different parameters settings for each filter block depend-
ing on the goal we want to achieve. For instance, if we know a priori
the sparsity degree of each block, we can apply a different s value to the
Fx-IPNLMS algorithm of each block.

4.3.1 Fitted CBFx and BBFx schemes.

From the CBFx and BBFx schemes of Sections 4.2.1 and 4.2.2, we de-
rive directly the combination of fitted BFx (CFBFx) and the fitted BBFx
(FBBFx) schemes. The expressions and algorithms of these fitted struc-
tures are the same as those defined in Sections 4.2.1 and 4.2.2, with the
difference that the block coefficients are not define from the first coefficient
to the Q-coefficient for the first block, but taking the central coefficients
with more energy in the same block.
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Figure 4.3. Block-coefficient distribution of a fitted-block
algorithm with: (a) 2 blocks and (b) 4 blocks, with the third
block containing the central coefficients.

The simplest fitted-block algorithm consists in a filter with only two
blocks (see Fig. 4.3 (a)). The first block comprised of the L. central co-
efficients and the second block that includes the remaining coeflicients at
both sides with a total length of L; coefficients. Thus, the whole adaptive
filter has a length of L,, = L. + L; taps.

It is important to note that although we have used a fitted-block ap-
proach with two blocks, it is straightforward to extend to any number of
blocks, provided that the central coeflicients are located in the same block
filter, as can be seen in Fig. 4.3 (b).

The question that arises is the size of the central block L. that depends
on the acoustic channel. That way, the performance of the adaptive filter
can be deteriorated if the size of the central block is not properly selected.
This fact suggests the use of a combined algorithm with different central-
blocks sizes. Fig. 4.4 shows a combination of two FBBFx algorithms, that
leads to the combined FBBFx scheme (CFBBFx). For simplicity, only two
blocks are used in each algorithm, see Fig. 4.3 (a). As the central (c¢) and
lateral (1) blocks have a different number of coefficients, the combination of
both algorithms is done after adding the biased weights. For this reason,
we consider different input vectors named x.,(n) and x;,(n) for i = 1,2,
showing that there is a different number of input signal samples for each
filter block.



92 Block-based adaptive room equalization

x (n) ) r(n) d(n)
x(n) . wiy () W i__) e(n)
o Xcz(n) ! -t A

WC2 ( ’Il) A-adaptive
(n) v y | ?Algorithnl
wi,(n) o) y%Tf(n)

. a..-adaptive
n c
Yi Wf( 4),%_)_, Aléorithm
N Adaptive -

Algorithm|[«—@<«— €in(n) i Ye. f( n)
1.

Figure 4.4. Combination of fitted 2-block biased filtered-x
algorithms.

4.3.2 Partitioned fitted-block schemes.

For the partitioned FBFx (PFBFx) scheme, each block is modeled using
a different parameter setting based on the algorithms goal, using the a
priori knowledge of the coefficient energy distribution. For instance, the
partitioned block algorithm presented in [100] for echo cancellation, which
uses a different s value for each block depending on the degree of sparsity of
each block, can be implemented in an adaptive equalization context, where
the Fx-IPNLMS algorithm with a high s value can be used for the block
with a high degree of sparsity and a Fx-NLMS algorithm can be used to
estimate the coefficients of the block with a dispersive response.
Ly
For the partitioned scheme, to ensure the constraint on Z g(n) =
=1

Le Ly
Z g1.(n) + Z g, (n) = 1 to avoid problems during regularization of the
le=1 =1
PFBFx-IPNLMS algorithm, a normalized factor has to be applied to the
adaptation gain factors g;(n) given in 4.14. Results in [100] showed that

a good convergence speed is achieved for dispersive and sparse responses
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with a normalized factor (defined as Iwellx and [will
[[wil [[wlly

lwell1, [[wy|l1 and ||w||; correspond to the ¢;-norm of the central, lateral
and completed adaptive filters, respectively. Meanwhile, normalized factors
close to 0 and 1 get a slower convergence speed, especially for dispersive
filters.

) close to 0.5, where

Some experiments are carried out to study the performance improve-
ment of the PFBFx scheme. As it will be shown experimentally, this
roughly a priori knowledge is not so accurate to determine both the best
block sizes and « values, which depend on the inverse filter. For that rea-
son, a combination partitioned fitted-block scheme (CPFBFx) that usually
exhibits a good performance is also implemented.

4.4 Computational Cost

In this section, we analyze the computational complexity of the proposed
algorithms in terms of multiplications per iteration. This study tries to
bring up the number of operations that highly increase for block-based
schemes when dealing with filtered-x structures. For that reason, we will
also give, for comparison purpose, the computational burden of the schemes
of the previous chapter, that is when only 1 block is considered.

Regarding the Fx-IPNLMS adaptive filter, it requires 6 L,, + 2 multipli-
cations more than the simplest of the LMS-type algorithm, the Fx-NLMS.
In the case of the combination schemes, computation of the combination
factor involves (2L 4+ 11) M multiplications more, including also the addi-
tional filtering through the estimated channel.

For the CFBBFx algorithm, see the block diagram of Fig. 4.4, the
computational cost in Table 4.1 is given for both blocks using the same
parameter settings, first using two Fx-NLMS algorithms and secondly using
two Fx-IPNLMS algorithms. In case the partitioned block scheme is used
(as explained in Section 4.3.2) with a Fx-IPNLMS algorithm for the central
block and a Fx-NLMS algorithm for the lateral blocks, the computational
burden of the adaptive filter will be of Ly +2(2L,,+6L.+5) multiplications.

The computational complexity of the different schemes considered is
summarized in Table 4.1, where also an example has been given at the
last column for L = 512, L, = 1024 and M = 16. As the proposed
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Table 4.1. Summary of the computational complexity of the
proposed schemes. Complexity is measured as the number
of multiplications per iteration of the considered algorithms.
Typical case: Lp =512, L, = 1024, M = 16.

Algorithm Multiplications Typical
case
Fx-NLMS Ly + 3Ly +2 3586
Fx-IPNLMS Ly, +9Ly, +4 9732
CFx-NLMS 3Ly + 5Ly + 15 6671
CFx-IPNLMS 3Ly +17Ly + 19 18963
CBFx-NLMS Lh(2M +1) + 5Ly + 11M + 4 22196
CBFx-IPNLMS Lh(2M +1)+17Ly, + 11M + 8 34488
BBFx-NLMS Lhn(M+1)+ 3Ly + 10M + 2 11938
BBFx-IPNLMS Lpn(M+1)+ 9Ly + 10M + 4 18084
CFBBFx-NLMS 7Ly + 5Ly, + 54 8758
CFBBFx-IPNLMS 7Ly + 17L + 59 21051

CFBBFx algorithm of Fig. 4.4 requires only 2 blocks (M = 2), it reduces
the computational burden, when compared with the CBFx schemes with
higher M values, although it also provides good results.

4.5 Results

In this section, we present several experiments to evaluate the behavior of
the different proposed blocked-based schemes for room equalization. More-
over, the Fx-IPNLMS with different « values will be used for comparison
purposes. Hereafter, we will refer to the Fx-NLMS algorithm also with
the Fx-IPNLMS algorithm with x = —1. The evaluation of the algorithms
behavior is based on the figure of merit EMSE, previously defined, that has
been estimated by averaging over 100 independent runs of the algorithms.

The input signal z(n) is a white Gaussian noise with zero mean and unit
variance, while the additive noise r(n) is also a Gaussian noise uncorrelated
with z(n) and its variance is adjusted to obtain different SNR. For the
acoustic impulse responses, three acoustic paths with different degrees of
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sparsity have been considered (see Fig. 4.5 (a): £ = 0.89, (c): & = 0.70
and (e): £ = 0.46), all with 512 samples.

The corresponding inverse filters have been modelled with FIR filters
of 1024 samples. As it has been previously commented, the sparseness of
the inverse filters is lower than their respective acoustic channels (£ = 0.86,
¢ = 0.30 and £ = 0.38). Note that the most dispersive acoustic response
does not match with the most dispersive of the three inverse channels.

For the experiments, we also assume that the channel paths are per-
fectly estimated. For the combination schemes, a value of a™ = 4 has been
set to update the mixing parameter [95].

4.5.1 Block-based schemes.

The inverse filter has normally nonuniform energy distribution among its
coefficients. For that reason, the convex combination of blocks showed in
Fig. 4.1 with different x values will allow the CBFx-IPNLMS scheme to take
advantage of the different coefficient distribution of each block. Thus, those
blocks with higher energy will behave as the Fx-IPNLMS algorithm with
lower  value, meanwhile blocks with low energy will follow the Fx-IPNLMS
algorithm with a higher &, to reduce the EMSE of the CFx structure.

The acoustic channel of Fig. 4.5 (a), whose inverse channel shows a
high nonuniform energy distribution (see Fig. 4.5 (b)), has been used in
this section with an additive Gaussian noise with an SNR= 30 dB. A 32-
block filter has been chosen for the CBFx-IPNLMS algorithm. Fig. 4.6 (a)
shows the EMSE evolution of the CBFx-IPNLMS with k1 = 0.9, ko = —1
and g1 = pe = 0.1. The step size of the combined factors p, = 0.01 allows
a smooth transition for the combination factors. Its EMSE value tends to
the lower of the individual filters and shows a better performance at steady
state.

It has to be noticed that the performance of the combination scheme
with complementary capabilities greatly improves with regard to each single
algorithm for a given k value. Due to the fact that, blocks with low energy
slows down the convergence speed of the algorithm, whereas blocks with
high energy deteriorates the final EMSE. In steady state, the combination
allows to those blocks with high energy tend to the Fx-IPNLMS with x =
—1 and thus reducing its EMSE.
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(f)

Acoustic channels (a, ¢ and e) and their re-

spective inverse filters (b, d and f). These responses present
different degrees of sparsity. (a): £ = 0.89, (b):£ = 0.86, (c):
€=10.70, (d): £€=0.30, (e): & =0.46 and (f): £ = 0.38
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Fig. 4.6 (b) shows the combination factors of the 32-block CBFx-
IPNMLS algorithm, where a A, value close to 1 means a behavior similar
to a block with x = 0.9 and a value close to 0 behaves like a Fx-IPNLMS
filter with x = —1. In steady state, the central blocks (dotted line) with
high energy exhibits a factor closer to the Fx-IPNLMS with x = —1, mean-
while the blocks with lower energy behave mainly as the Fx-IPNLMS with
k = 0.9. Combination factors of blocks 15 and 18 get intermediate values
as they have mixed energy values.
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Figure 4.6. (a): EMSE(n) for CFx-IPNLMS and their indi-
vidual algorithms. (b): A(n) of the CFx-IPNLMS approach.



45. Results 99

45.2 Steady-state EMSE for unknown SNRs.

In this subsection we will illustrated how the BBFx algorithm of Fig. 4.2
outperforms the standard Fx algorithm, specially for low SNR. For this
purpose, we show a comparison between the simulation results and the
theoretical results obtained by means of the analysis in Section 4.2.3. We
compare the EMSE with M = 1,..., L,,/4 of the block algorithm (EMSE/)
referred to the EMSE of the standard filtered-x algorithm, AEMSE(co) =
EMSE(o0) — EMSE)/(00). For inverse filters with a high degree of sparse-
ness, the BBFx adaptive filter sketched in Fig. 4.2 allows to improve the
steady-state EMSE value when increasing the number of blocks. Fig. 4.7 (a)
shows with round markers the estimated AEMSE(co0). Meanwhile, the the-
oretical AEMSE(o00) has been represented with asterisk markers and dotted
line.

The results are represented for different values of SNR and different
number of blocks M, for the impulse response of Fig. 4.5 (a). For higher
SNR the results are similar to that of the standard algorithm as the scaling
factors are equal or close to 1. For the inverse filter of Fig. 4.5, which has a
high number of coefficients close to zero, there will be scaling factors that
are zero, as it is shown in Fig. 4.7 (b), leading to a performance improvement
using the BBFx. Meanwhile, for lower SNR values the difference is more
evident. Also, the block-based algorithm improves the EMSE results when
increasing the number of blocks. However, when the block size is too small,
as that for M = 256 and a block size of ) = 4, this improvement is
limited to almost 4 dB for the represented SNR range. This is due to
the gradient noise of the scaling factors a,,(n), for m = 1,..., M [101].
A good performance is achieved with M = 16, which corresponds to a
block-length of 64 samples. For this number of blocks, Fig. 4.7 (b) shows
the 16 steady-state scaling factors for different SNR values. For low SNR
values, the factors of the adaptive blocks with low energy bias these outputs
almost to 0. Meanwhile, the blocks with energy, the central ones for room
equalization, exhibit a lower bias. For higher SNR values this central scaling
factors get a higher value.

The theoretical values fall close to the experimental ones, but differ-
ences are more significant when the number of blocks increases. This can
be due to the assumptions considered in the theoretical analysis and also to
the gradient noise of the scaling factors, as can be appreciate in Fig. 4.7 (b).
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Figure 4.7. (a): AEMSE(co) = EMSE(c0) — EMSE;(c0)
for different number of blocks (x-axis) and SNR (curve) values.
(b) Scaling factors at steady state, au,(c0), for M = 16 and
different SNR values.
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4.5.3 Fitted block-based biased filters.

As it has been showed in the previous experiments, the CBFx and the BBFx
adaptive filters improve their behavior in terms of EMSE as the number of
blocks increase, but with an increase in the computational load as can be
seen in Table 4.1. In an AE context, the use of a fitted-block scheme, as
detailed in Section 4.3.1, improves the performance of the BBFx filter with
the same number of blocks. For this experiment, the fitted-block structure
will consider a central block, as it will take the central coefficients with
higher energy in the same block.

Fig. 4.8 shows a FBBFx-IPNLMS algorithm with a central block of
512 coefficients and another block with the 512 remaining taps (2-FBBFx),
which is compared the BBFx-IPNLMS filter with M = 1,2 and 8 blocks,
referred in Fig. 4.8 as M-BBFx. For this experiment SNR= 0 dB has been
used, although higher SNR values obtain a similar behavior provided that
the scaling factors are not 1. However, lower SNR lead to more significant
differences. p = 0.3 and k = —0.5 have been chosen. Results in Fig. 4.8 (a)
show that the 2-FBBFx-IPNLMS algorithm (black dotted line) outperforms
the 2-BBFx-IPNLMS one (red dotted line), although it does not achieve
the stationary EMSE of the 8-BBFx-IPNLMS algorithm (green solid line).
In order to obtain this performance a 5-FBBFx-IPNLMS is enough (yellow
dotted line). Although, the convergence speed of the FBBFx schemes is
slower than those of the BBFx schemes.

Fig. 4.8 (b) shows the biased parameters of the 2—block approaches.
On the one hand, the 2—BBFx-IPNLMS algorithm presents coefficients
with energy that are distributed among the two blocks (in solid lines), due
to that as(n) ~ 0.9 and a;(n) ~ 0.45 have both high values for SNR=
0dB. In contrast, for the 2—FBBFx-IPNLMS algorithm (in dashed lines),
ai(n) ~ 0.9 for the central coefficients with higher energy, but for the
lateral coefficients with low energy as(n) = 0.1, which allows to reduce the
EMSE of the 2—FBBFx-IPNLMS algorithm. The computational cost for
both algorithms is the same, but if we want to achieve a similar EMSE
value, a higher block number is needed for the BBFx-IPNLMS scheme,
which implies a higher computational cost.
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Figure 4.8. (a): EMSE evolution of the 1, 2 and 8-BBFx-
IPNLMS algorithm and the 2 and 5-FBBFx-IPNLMS algo-
rithm. (b): Scaling factors a;(n) for the two-block schemes,
2-BBFx (in solid lines) and 2-FBBFx (in dashed lines).
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4.5.4 EMSE behavior for different central-block lengths and sparsity
degree.

For this experiment, in order to study the influence of the central-block
length, the partitioned fitted-block BEx-IPNLMS algorithm (PFBFx-IPNLMS)
is used with different length. Thus, the notation PFBFx-1Po56N7gs refers
to a central block with kK = —0.5 and L. = 256 samples, and a lateral
block with kK = —1 and L; = 768 samples. To assure the constraint on

Lu Le
Zgl(n) ~ 1, the sum of Z g1.(n) and Z gi,(n) are multiplied by 0.5.
=1 le=1 =1

For the experiments, L. = L, /2 = 512, L. = L,/4 = 256, L. =
L, /16 =64 and L. = L,, — L,,/16 = 960 samples have been used as block
sizes. Also the Fx-NLMS and Fx-IPNLMS (with x = —0.5) are computed
as reference. The other parameters are set to p, = 0.01 and SNR= 15dB.

Fig. 4.9 corresponds to the EMSE evolution of the adaptive inverse filter
of Fig. 4.5 (f) with a sparseness degree of & = 0.38. The fastest conver-
gence is achieved with the PFBFx-1P256N763 and PFBFx-NogIP7gg sche-
Iwells  Iwille o5
fwili  lwlh
For this block-size, £, = 0.23 and & = 0.27 show a lower sparseness value
for both blocks. Moreover, a narrow block size of L,,/16 = 64 samples for
L. or L; results in a slower convergence. This can be due to the dispersive
character of the block filters and their normalized factors close to 0 or 1.

mes, which corresponds to the normalized factors

The steady state of these algorithms is similar, but a lower value is
obtained for a wider central block of L,,/2 and L, /4, and also with the
Fx-NLMS and Fx-IPNLMS algorithms.

Fig. 4.10 represents the EMSE evolution of the adaptive filter of Fig. 4.5
(b) with a sparseness degree of £ = 0.86. For this inverse channel with a
lot of coefficients close to zero, the normalized factors near 0.5 are obtained
with Lc = 16 = L,,/64. For this scheme, & = 0.24 and & = 0.75, which
corresponds with the results shown in Fig. 4.10 where the PFBFx-N15IP 1908
algorithm exhibits a fast convergence. Although, the steady state of this
schemes with a narrow central block is higher than the others. Further-
more, the lower results in steady state are obtained with a central block
of L,/2. Meanwhile, the L,,/4-samples, Fx-NLMS and Fx-IPNLMS sche-
mes achieved an intermediate value. Also, the L. = L,,/2 and L. = L,,/4
algorithms exhibit a fast convergence, especially for the PFBFx-IP956N7gg
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Figure 4.9. EMSE value for the partitioned fitted-block algo-
rithm with different block sizes and k values for the adaptive
filter of Fig. 4.5 (f). PFBFx-IP;N; refers to the partitioned
fitted-block algorithm with a central block with k = —0.5 and
L. = i samples, and a lateral block with kK = —1 and L; = j
samples. Also the Fx-NLMS and Fx-IPNLMS are shown as
reference.

algorithm, because the filters coefficients are initialized to zero and the
L; = 768 samples of the lateral blocks are close to zero.

To summarize, the PFBFx-IPNLMS filter can exhibit a faster conver-

[Wellx

gence speed than the Fx-IPNLMS, when the normalized factor ——— and

[[wll

—— are close to 0.5. Meanwhile, to reduce the EMSE in steady state,
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Figure 4.10. EMSE value for the partitioned fitted-block al-
gorithm with different block sizes and k values for the adaptive
filter of Fig. 4.5 (b).
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a wide center block of L,,/4 or Lw/2 with a Fx-NLMS algorithm and a
Fx-IPNLMS algorithm for the lateral block will be used.

4.5.5 Convex combination of partitioned fitted-block schemes

From the results of the previous experiment, as the energy distribution of
the filter coefficients is located at the center of the inverse filter, a wide
center block of L,,/2 with a Fx-NLMS algorithm and a Fx-IPNLMS algo-
rithm for the lateral block will allow to reduce the EMSE in steady state,
although it exhibits a slow convergence. On the other hand, a narrower
central block of L,,/4 samples with a Fx-IPNLMS algorithm has shown
a good convergence speed. For that reason, a tradeoff between the final
EMSE value and a fast convergence speed is to use a convex combination
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Figure 4.11. EMSE value for the combined partitioned
fitted-block algorithm for the adaptive filter of Fig. 4.5 (b).

of a PFBFX—N512IP512 and a PFBFX—IP256N768 algorithms.

Fig. 4.11 illustrates the EMSE evolution of the adaptive filter of Fig. 4.5
(a). This figure is the same as Fig. 4.10, but some schemes have been re-
moved for clarity. The CPFBFx-IPy56N763-N5121P512 exhibits a fast con-
vergence speed and the lowest steady state error. Although it is not the
best solution for the convergence speed, that it is best achieved with a
central block of L. = L,,/16 samples.

A different channel response has been used in Fig. 4.12, which shows the
EMSE evolution of the adaptive filter of Fig. 4.5 (d). Also in this case, the
combination scheme exhibits a fast convergence speed and a lower steady
state.
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Figure 4.12. EMSE value for the combined partitioned
fitted-block algorithm for the adaptive filter of Fig. 4.5 (d).

4.5.6 Convex Combination of fitted-block and BFx-NLMS Algorithms

In order to get a better steady-state performance without reducing the
convergence speed, a good solution is to combine two algorithms with dif-
ferent p values. The filter combination can be done between any kind of
algorithms. Thus, the fitted-block scheme can be combined with an al-
gorithm with both lower p value and lower computational cost. For this
purpose we consider the convex combination (red dotted line and round
markers) of a 1-block biased Fx-NLMS algorithm with p = 0.01 (blue solid
line) and a FBBFx-IPNLMS with 1 = p2 = 0.3, kK1 = k2 = —0.5 and
a central-block of 512 coefficients (green dotted line and square markers).
Fig. 4.13 illustrates the EMSE values obtained for the channel response
of Fig. 4.5 (c). The combination achieves both good convergence speed
and low steady-state error, even outperforming the individual algorithms
in some iterations. The biased version of the Fx-NLMS algorithm as been
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used to prevent low SNR situations (for this experiment, SNR=10dB). We
can conclude that if the computational burden is not a constraint, a bet-
ter performance at steady state can be achieved using the BBFx-NLMS
algorithm with more than 1 block.

0
-2 — BFx-NLMS, 1-block, p=0.01 1
4 m FBBFx-IPNLMS, Lc=512, p=0.3, k=-0.5
T ®. Combined BFx-NLMS & FBBFx-IPNLMS
6 ,
m gt ]
AN
M-10 ¢ :
O
%—125‘*‘%!5;:;5l e et e R B
e
147 B S _ 7
16 i
-18 ,
-20 : :
0.5 1 1.5

Iterations [x100]

Figure 4.13. Combination of a fitted-block algorithm with a
Fx-BNLMS algorithm with different p values.
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4.6 Conclusions

In this chapter different block-based schemes are proposed for room equa-
lization applications based on the non-uniform energy distribution of the
inverse adaptive filter.

On the one hand, the CFx-IPNLMS algorithm allows to combine the
different blocks independently, getting a better behavior in most cases than
the previous combination, but with an increase in the computational cost.

On the other hand, the BBFx-IPNLMS presents an improvement with
respect to the Fx-IPNLMS algorithm, particularly for low SNR. Meanwhile,
for high SNR values (with the scaling factors close to 1), the results are
similar, but with an increase in the computational burden due to the update
of the scaling factors, that will not be required for high SNRs.

Based on the inverse filter response, the fitted block-based schemes are
developed to take advantage of this central energy distribution for the tap
filters. The new approaches are derived from the previous combinations
by using the fitted-block based approach showing a good performance and
even better response for the same computational cost. Moreover, the par-
titioned fitted-block scheme allows to obtain good results, specially when
the characteristics of the inverse channel are a priori known.

Furthermore, the computational cost of these block-based schemes has
been presented to show the computational burden increase with the number
of blocks for filtered-x structures. Otherwise, experimental results show
that filters with block of sizes too small can impair the filter performance.
Thus, a good tradeoff between computational cost and final performance is
required.
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Nonlinear adaptive equalization

This chapter introduces a new scheme for nonlinear equalization of
loudspeaker and room responses which is based on Volterra filters. the
aim is twofold, to identify the nonlinear system and to invert the existent
linearities and nonlinearities. With this purpose, a nonlinear filtered-x
(NFx) structure is employed that uses the virtual channel concept in order
to obtain a good performance of the proposed scheme. For that reason, a
previous identification of the nonlinear acoustic system is required. On the
other hand, a simplified strategy is proposed when the nonlinear system can
be considered weakly and only the linearities of the system are identified.
Different results are presented to support these schemes.

5.1 Nonlinear system identification problem

We briefly describe the nonlinear system identification problem, which is
depicted in Fig. 5.1. This scheme is also required in the nonlinear equaliza-
tion system, similarly as it was addressed in Section 2.3 for linear adaptive
room equalization. Moreover, this problem is inherent to other audio ap-
plications, such as nonlinear AEC and ANC, that also require to solve the
identification problem.
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Assuming that the nonlinear system can be modeled by a Qth-order
Volterra kernel and filters of finite memory M,. From Fig. 5.1 the output
signal d(n) can be expressed as

M;—1
d(n) = Hz(m)] = 3 Llir)e(n — i)
i1*0
My—1

Q
+Z[Z ZN it i — i) - a(n—ig) |, (5.1)

q=2 11=0 1q=0

being H the nonlinear system modeled by @ parallel block filters and
M, is the memory or number of coefficients in the gth dimension of the
Volterra kernel. Moreover, L(i;) is the ij-coefficient of the first kernel and
Ny(it, ..., iq) refers to the (i1, ...,iq)-coefficient of the gth-kernel, where a
symmetric form is considered for the Volterra kernels [56]. This symmetry
can be written for the second-order kernel as Na(i1,i2) = Na(iz, 1), which
can be extrapolated to any order.

For some applications, an identification of the nonlinear electroacoustic
path that involves the loudspeaker-enclosure-microphone (LEM) channel
is required. Fig. 5.1 shows the block diagram of an adaptive nonlinear
identification problem using a second-order Volterra filter. The first kernel
w;(n) corresponds to the linear filter (a FIR filter with M; coefficients) and
the second kernel w,(n) to the quadratic filter (a second-order filter matrix
with Ms x Ms taps), which are are given by:

wi (n) = [wi(1;n), ..., w(Mi;n)] and
we(1,1;n) we(1,2;m) -+ we(1, Ma;n)
wq(2,1;n) we(2,2;m) -+ we(2, Ma;n)
wo(n) = : : N : (5.2)
wq(Ma, 1;n)  we(Mz,2;n) -+ wq(Ma, Ma;n)

The output of the adaptive filter is obtained as,

Aﬁfl Ab 1Ab 1
y(n) = Z wi (i n)x(n — i) Z Z w(i1,i2;n)x(n —i1)z(n — ig).
i1:0 ’L1 =0 ’LQ =0

(5.3)
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Nonlinear
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Figure 5.1. Adaptive nonlinear identification system using a
second-order Volterra filter.
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The error signal e(n) is computed as in (2.5) and is rewritten here for
clarity

e(n) = d(n) — y(n). (5.4)

However, the adaptive filters w;(n) and wy(n) can be linearly updated
as in (2.9) for the LMS-type algorithm,

wi(it;n) = wi(in;n — 1) + w(iy;n)e(n)x(n — i), for iy =1,...,M; (5.5)

wq(in,ig;n) = wq(ir, iz;n — 1) + pg(i1,i2;n)e(n)x(n — i)z (n — iz),
fOI‘ilzl,...,Mzandigzl,...,Mg, (56)

being p(i1;n) and pq(iq,i2;n) the step-size factors that are computed de-
pending on the LMS-type algorithm.

Due to the symmetry of the kernel, another usual form of representing
MQ(MQ + 1)

the quadratic kernel is using the abbreviated vector form with 5

elements,
wo(n) = wg(n — 1) + pe(n)e(n)xq(n), (5.7)

MQ(MQ + 1)

where p4(n) is a diagonal matrix containing the step-size fac-

tors. wg(n) corresponds to the elements of the upper part of matrix (5.2),

including the main diagonal, rewritten as qu(n) = [wq(l, 1;n),we(1,2;n),. ..,

wq(1, Ma;n), we(2,2;n),. .. ,wq(Mg,Mg;n)}. Moreover, Xg(n) = [:p(n)x(n),

z(n)x(n—1),...,z(n)x(n—Ms),z(n—1)z(n—1),..., x(n—Mg)x(n—Mg)]
represents the multiplication of the elements of the input vectors.

5.2 Nonlinear equalization problem

Similarly to linear room equalization, adaptive nonlinear room compensa-
tion requires filtered-x ad hoc treatment to avoid instability in the filter
coefficient update, where the input signal z(n) is filtered through the elec-
troacoustic path. Thus, the filtering of x(n) involves the use of a nonlinear
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filtered-x scheme as it was introduced in [75]. This structure has been
previously used in ANC (using the so-called virtual secondary path) by us-
ing either adaptive Volterra filters [62][102] or FLANN filters [62][103][54].
Meanwhile in [104] and [62], a nonlinear system with a memoryless block
in the secondary path is studied.

In [62], a general function expansion is used for both FLANN and
Volterra filters, where the nonlinear secondary paths are modeled as non-
linear memoryless systems. However, to the best of our knowledge, none
of the previous works have addressed the problem of nonlinear distortion
with memory in room equalization systems.

Fig. 5.2 illustrates the nonlinear AE problem, where L represents a
linear filter, and the nonlinear function with memory is denoted by the
symbol N. This nonlinear acoustic system can be modeled with eq. (5.1).
The virtual channel has been denoted as H and is obtained in a similar way
to the linear equalization problem presented in Section 2.3.2. Moreover, the
coefficients of the adaptive filters are updated using this virtual channel for
the filtered-x structure.

Nonlinear acoustic

Figure 5.2. Adaptive equalization block diagram using a
filtered-x adaptive nonlinear algorithm (Fx-ANA).

5.2.1 Nonlinear loudspeaker and room equalization

The block diagram of Fig. 5.3 shows an acoustic equalization system, where
the inversion is applied to the specific problem of the acoustic equalization
transmission chain of Fig. 2.7, which includes the LEM path.
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' Ampl. /Loudsp.' ' Acoust./ Micro.!

—| Equalizer

Figure 5.3. Nonlinear model of an acoustic equalization sys-
tem with two nonlinear filters tandemly connected.

As commented before, the main sources of nonlinearities occur in the
first filter, that corresponds to the D/A converter, the loudspeaker and its
amplifier, due to the high input signal levels and the loudspeaker physical
properties. While the amplifier can be modeled as a memoryless system,
the loudspeaker behavior is more properly described as nonlinear distortion
with memory [105]. In contrast, the propagation path between loudspeaker
and microphone can be considered as a linear filter and it is reasonable to
expect a linear behavior for the microphone, too. For that reason, a rea-
sonable representation of the loudspeaker and room adaptive equalization
problem can be seen in Fig. 5.4.

Figure 5.4. Adaptive equalization block diagram of Fig. 5.3.

The output signal z(n) of the nonlinear system H has been modeled
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using a second-order Volterra filter as

Mi;—1

() = L2 (]} = £2{ Y- Lalinlyto— )
11=0
Mo—1 My—1
+ ) > Nilini2)y(n —in)y(n — iz)}, (5.8)

11=0 i2=0

being H; the nonlinear system modeled with the first nonlinear filter and
M,, for ¢ = 1,2, is the memory or number of coefficients in the gth-
Volterra kernel. Moreover, Lq(i1) is the ij-coefficient of the first kernel
and Nj(i1,i2) refers to the (i1,is)-coefficient of the 2th-kernel, whith a
symmetric form [56].

To implement the adaptive compensation equalization filter, a second-
order Volterra filter VW has been used in Fig. 5.4 to remove nonlinearities
up to the 2nd-order. The relationship between input and output of the
adaptive filter is given by

Ni—1
y(n) =Wlz(n)] = Z wy(ir;n)x(n — i)
11=0
No—1Np—1
+ Y > wylinyizin)a(n —i)a(n —iz), (5.9)
11=0 i2=0

where N, is the number of coefficients of the pth-Volterra kernel (p = 1,2).
Moreover, w;(i1;n) and wg(i1,12; n) are the specific coefficient of the linear
and quadratic kernel, respectively, at time n.

The error signal e(n) is computed as the difference between the signal
z(n) measured at the microphone (5.8) and the desired signal d(n), which
corresponds to the input signal with a proper time delay (7)

e(n) =d(n) —z(n) =xz(n — 1) — 2(n). (5.10)

The filter coefficients are updated as in (2.4), using the LMS algorithm,
that leads to
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. . De?
wy(in;n) = wy(i;n —1) — /;lawle(l%
. 5]
— wisin = 1)+ () g s, (.11)

.. . Hq 862(n)
wq(Zl, ZQ;TL) = wq(Zl, 2N — 1) — ?W

q 5 02,
Oe(n)

= wq(i1,92;n — 1) + pge(n) , (5.12)

8wq(z’1, ig; n)
where p1 and po are the step size parameters.

If the system takes the structure shown in Fig. 5.4, we can derive

Oe(n) B M-1 0z(n) . dy(n —m)
Butinn = 20— owGrm) O
86(71) - = az(n) . ay(n _ m)

where M is the memory size of the estimated LEM system, which is given
by M = max (M, M2)+ M, —1, being M, the length of the second linear
block L.

Moreover, when the step sizes are small enough to allow slow variations
of the filter coefficients, from (5.9) it can be written

y(n —m) ~xz(n—m—1
Butm ( 1), (5.15)
dy(n —m) o x(n —m—i)z(n —m —is). (5.16)

8wq(z’1, ig; n)

For simplicity, we are using the concept of virtual path as in [62; 75] to
refer to the derivative of the nonlinear system defined in (5.8) with respect
to the delayed inputs
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~ 0z(n)
Hmin) = ——— =0,...,M—1. 5.17
(mim) = s, m=0,.... (5.17)
Finally, combining (5.13 - 5.17) into (5.11) and (5.12), we obtain the
update equations of the nonlinear Fx-LMS algorithm

M-1
wi(ip;n) = wi(i;n — 1) + we(n) Z H(min)z(n —m —1iy), (5.18)
m=0
wq(il,ig;n) = wq(il,ig;n — 1)
M-1 R
+ pge(n) H(m;n)z(n —m —iy)z(n —m —i2). (5.19)
m=0

Notice the similarity between (5.18) and the conventional filtered-x
LMS (Fx-LMS) algorithm in (2.21) used for linear applications.

Since the implementation of (5.18) and (5.19) is not straightforward,
next section will provide the specific implementation of the virtual channel
for this loudspeaker and listening room compensation approach.

5.2.2 Virtual channel description

The virtual channel defined in (5.17) is a time-varying filter of M-length
whose coefficients depend on the input signal y(n). From the block diagram
depicted in Fig. 5.5, (5.17) can be expressed as

ML2 9 ,( l)
N (777 - n y (n —
N(m;n) = ay (n—m oy’ n—l 8y(n—m)
_ [ 9y ay(n—l) ay'(n — My, + 1)1
=1L; dy(n—m) Jy(n—m) dy(n —m) ) (5.20)

where the derivative of the output of the nonlinear system #; is filtered
through the enclosure/microphone linear block, modeled as a FIR filter
defined by vector Lo.
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J

Figure 5.5. Block diagram of the loudspeaker-enclosure-
microphone system.

In order to obtain (5.20) as in [75], we should also take into account
the linear filter Lo to relate the input samples y(n —m) to the loudspeaker
output signal for different time delays yl(n —1). Thus, the coefficients can
be expressed as

Mao—1

W=D _p “D+2 ) M- Liym-i=h, (521

dy(n —m)

when 0 < (m — 1) < max(M;, Ms). In other cases, the coefficients are 0.
Finally, substituting (5.21) into (5.20), and (5.20) into (5.18) and (5.19),
we will obtain the adaptive algorithm for the equalization filter coefficients
of the system W.

Note, that if H is linear (N7 = 0), only the linear coefficients in (5.21)
are considered and the overall virtual channel is the linear convolution of the

linear components (£ and L2), which leads in (5.18) to the conventional
Fx-LMS algorithm.

5.3 Results

In this section, the robustness and effectiveness of the NFx-LMS algorithm
is evaluated in nonlinear equalization scenarios. A normalized adaptation
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of NLMS type has been used in the NFx-LMS, that leads to the NFx-NLMS
algorithm.

To model the nonlinear LEM scheme, the system #, that includes a
loudspeaker, has been measured in low-reverberant conditions at a sampling
frequency of 8 kHz using a second-order Volterra filter with My = My =
M' = 64 coefficients. The linear and quadratic kernels are shown in Fig. 5.6.
As the second-order kernel presents a symmetric behavior [56], a triangular
representation has been used in Fig. 5.6 (b). The impulse response of the
acoustic path and the microphone (L, system) has been also measured
with 8 kHz and 512 samples, within a room with a reverberation time of
Tso = 170 ms, see Fig. 5.7.

Different Linear-to-NonLinear Ratio (LNLR) setups will be considered.
The LNLR level is defined as the ratio between the powers of the linear
and nonlinear components (yl/ (n) and v, (n), respectively). To modify the
LNLR value, a positive constant a has been used to control the LNLR.

y (n) = y(n) + ay,(n) = y" (n)L1 + ay” (n)Ny2y(n), (5.22)

where L and Ny 3 represent the linear and quadratic kernels of size M "x1

and M’ x M /, respectively. Moreover, y(n) is a column vector that contains
the last M samples of y(n).

The algorithm performance is evaluated in terms of convergence speed
and steady-state error by inspecting the excess mean-square-error, EMSE
= E{[e(n) — r(n)]Q} that has been estimated by averaging over 100 inde-
pendent runs of the algorithm. The input signal z(n) is a white Gaussian
noise with zero mean and unit variance. Moreover, an uncorrelated noise
signal r(n), with zero mean and SNR of 40 dB, has been added to the mi-
crophone signal. The adaptive filters have been designed to have Ny = 1024
and No = 64 coefficients for the first and second kernel, respectively. The
delay of the desired signal has been chosen closed to Nj/2, specifically
T = 549.

Fig. 5.8 illustrates the EMSE evolution of the NFx-NLMS algorithm
(solid line) with v =1 (LNLR= 20 dB). The performance of the algorithm
is compared to the linear Fx-NLMS algorithm (dotted line), which implies
that the nonlinear component (A7) is not considered and the virtual channel
is only obtained from linear component filters (£; and L2). Also a simplified
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Figure 5.6. Linear (a) and quadratic (b) kernels of the system
H.
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Figure 5.7. Impulse response of the acoustic path including
the microphone response.

approach derived from the NFx-NLMS algorithm has been implemented
(named as simplified NFx-NLMS, in dashed line and with square markers),
which uses a virtual channel which depends only on these linear components
to compute the 2-nd-order Volterra kernel. The step sizes are set to u; =
o = 0.1. Although the three adaptive filters exhibit a similar convergence
rate, that is even faster for the Fx-NLMS, only the NFx-NLMS approach
has a stable behavior. Thus, a suitable design of the virtual path is essential
in this context.

5.3.1 Equalization with a high degree of nonlinearities

To study the behavior of the NFx-NLMS algorithm when the nonlinearities
exhibit a high output with respect to the output of the linear filter, a =7
has been used to provide an LNLR of 0 dB. Fig. 5.9 shows the evolution
of EMSE, with puy = ps = 0.01. As it can be observed, the NFx-NLMS
filter exhibits a stable behavior reaching a steady-state EMSE of approxi-
mately —11 dB. Furthermore, the simplified and linear algorithms are also
shown, which do not converge and get unstable as expected. The adaptive
filter coefficients obtained for the NFx-NLMS algorithm at steady state are
shown for each kernel in Fig. 5.10.
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Figure 5.8. EMSE evolution of the NFx-NLMS algorithm
(solid line), the simplified NFx-NLMS algorithm (dashed line
and square markers) and linear Fx-NLMS algorithm (dotted
line).
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5.3.2 Weakly nonlinear systems

When the electroacoustic path presents a slightly nonlinear behavior, the
system is called weakly nonlinear system, [47].

()] > [y ()], (5.23)

where y;(n) and y, (n) denote the outputs of the linear and nonlinear com-
ponents of the nonlinear system.

In that case, the virtual channel in (5.21) of the nonlinear filtered-x
structure can be approximated by the linear system components

0z(n)

N = Gyt = m)

= Lq % Lo, (5.24)
where M = M+ My, —1 is the memory size of the estimated LEM system,
which corresponds to the linear convolution of the linear channel in Fig. 5.5.

For weakly nonlinear systems, the filtered-x equalization structure cor-
responds to the classic linear filtered-x scheme. Consequently, only the
linear component of the acoustic channel has to be identified.

The inversion of weakly nonlinear systems has been previously pre-
sented in [106][107], where only the linear kernel is estimated for computing
the nonlinear adaptive filters. In [62], the virtual secondary path is esti-
mated with the linear component when the nonlinearities of the system are
considered weakly. to do this, the authors use the phase response differ-
ence between the virtual secondary path and the linear component of the
virtual secondary path. If this phase is within +90°, the virtual path can
be approximated by its linear part.

Here, we use a variable a(n) parameter in (5.22) to provide a high
LNLR and to assure a weakly system, where (5.23) can be accomplished.
Also, we compute the adaptive equalization filter with a linear filter and
with a 2nd-order Volterra kernel, which have been called in the previous
experiment as linear Fx-NLMS and simplified NFx-NLMS algorithms.

For this simulation, the same filters of the previous experiments have
been used. To assure a weakly nonlinear system, a LNLR= 25 dB has been
chosen, with a variable «(n) that has been computed with a exponentially
weighted moving average.
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Figure 5.10. Adaptive linear and second-order Volterra fil-
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Fig. 5.11 shows the evolution of the EMSE, with 1 = p2 = 0.1 and
for the same input and noise signals. For comparison purpose, the curves
of Fig. 5.8 are also represented, when a = 1 for all the iterations. As it is
shown, the linear Fx-NLMS and the simplified NFx-NLMS did not properly
perform in that case. However, when the relation between the nonlinear
output with respect to the linear output is weak, both the linear Fx-NLMS
and simplified NFx-NLMS algorithms exhibit a good performance. This is
expected as the nonlinearities are low, and the coefficients of the quadratic
kernel have values close to 0.
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Figure 5.11. EMSE evolution of the NFx-NLMS algorithm
for a weakly nonlinear system.

5.4 Conclusions

This chapter presents a nonlinear adaptive filter based on a nonlinear
filtered-x structure embedded for room equalization applications. This
structure is motivated by the fact that linear filtered-x schemes perform
poorly when the system exhibits nonlinear distortion. For this scheme,



5.4. Conclusions 131

both the nonlinear system and the adaptive compensation filters are com-
puted using a second-order Volterra kernels.

In particular, it has been studied a novel nonlinear filtered-x scheme to
compensate both room reverberation and nonlinear distortion with memory
for the amplifier and loudspeaker devices. This approach is based on the
development of a time-varying virtual filter that avoids problems of instabil-
ity due to filter delays. The effectiveness and robustness of the NFx-NLMS
algorithm has been evaluated in terms of the EMSE for different LNLR val-
ues. These results show that the proposed approach outperforms the linear
Fx-NLMS type algorithm even with high LNLR conditions. Moreover, it
exhibits a good performance in high nonlinear conditions, that is, for low
LNLRs.

Finally, some simulations has been carried out to study the performance
of the nonlinear filtered-x scheme when the LEM channel presents weakly
nonlinear conditions, [106]. In that case, it has been shown that the virtual
channel can be estimated using only the linear component of the LEM path
and the filter performance achieves good results.
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Conclusions

6.1 Conclusions and future research

Immersive systems are becoming a main topic for most applications, which
includes audio systems to give a real and immersive sensation. To achieve
this, audio rendering, recording and processing techniques are required.

The main motivation which underlie this dissertation is to accomplish
this audio immersive sensation. However, the use of reproducing audio
systems through rendering audio devices and inside enclosures, impairs the
global audio effect and thus the 3D spatial sound.

For that purpose, an equalization system will be able to cancel these
electroacoustic effects and will provide the spatial sound sensation of the
desired 3D audio rendering system.

To this end, the equalization system should provide an efficient solu-
tion, but also take into account the time-varying conditions and the real-
time requirements. An appropriate way to achieve this is to employ adap-
tive filtering algorithms.

In this dissertation, we have studied adaptive algorithms specifically
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designed for electroacoustic equalization. With this aim, the work is struc-
tured in three main parts.

e The first part, which is described in Chapter 3, includes different
linear adaptive filtered-x schemes in order to cancel the acoustic im-
pulse response, but also providing robust solutions for different room
scenarios. With the aim of achieving a good performance, the combi-
nation of filters has been introduced. Furthermore, the biased scheme
has been proposed to improve the EMSE for low SNRs. The steady-
state behavior of this approach has been theoretically analyzed, with
an improvement in the EMSE measure for low SNRs conditions.

Since audio immersive systems require the use of multiple transduc-
ers, the multichannel adaptive equalization problem has been also
presented in this chapter, for both the combined and the biased mul-
tichannel schemes.

The simulation results carried out show a good performance. On the
other hand, the high computational burden require for the proposed
schemes has to be taken into account when these schemes are used in
equalization applications. This increase in the computational cost is
mainly due to the filtered-x structure that has to be applied to the
input signals of the combining and scaling factors. Moreover, it is
highly increased when applied to MIMO systems.

Keeping this in mind and for future research, it is appropriate to
seek for adaptive algorithms that require a lower computational cost,
there should be a tradeoff between computational burden and algo-
rithm performance. A way to solve this problem is to use parallel
computing, for instance with GPUs, to provide efficient and real-time
equalization. On the other hand, collaborative filtering techniques
will allow to distribute the filtering processes between different nodes,
thus reducing the computational time.

With regard to adaptive combination of filters, many choices exist to
pursue this research. Because only a convex combination of two filters
with the same length has been considered, it would be a natural choice
to study the performance of other kind of combinations with filters
of different lengths and even using different updating algorithms.

e In the second part, included in Chapter 4, the block-based schemes
are proposed for AE applications considering the combined and biased
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schemes. Motivated by the non-uniform energy distribution of the
inverse adaptive filter, the approaches provide better performance, at
the expense of increasing the computational burden.

Based on the optimal filter, the fitted block-based schemes have been
also developed in this chapter to take advantage of the central energy
distribution. Then, a class of new algorithms have been proposed to
incorporate this a priori information into CBFx and BFX schemes.
They show a better performance for the same computational cost.
Furthermore, the proposed partitioned fitted-block schemes allow to
obtain good results, specially when the characteristics of the inverse
channel are a priori known.

Furthermore, the computational cost of these block-based schemes
has been presented to put forward the increasing computational bur-
den require with the number of blocks for filtered-x structures.

When dealing with audio devices, the nonlinear effects caused by
the introduction of loudspeaker distortion in the electroacoustic path
should be taken into account. The third part of this dissertation is
presented in Chapter 5. This chapter develops a nonlinear adaptive
filter based on a nonlinear filtered-x structure for room equalization
applications, which uses a time-varying virtual filter. This structure
is required since linear filtered-x schemes perform poorly when the
system exhibits nonlinear distortion. For this scheme, both the non-
linear system and the adaptive compensation filters are computed
using a second-order Volterra kernels.

A novel nonlinear filtered-x scheme has been presented to compen-
sate both room reverberation and nonlinear distortion with memory
for the amplifier and loudspeaker devices. Particularly, the nonlinear
Fx-NLMS algorithm outperforms the linear Fx-NLMS type algorithm
even with high LNLR conditions. Moreover, it exhibits a good per-
formance in high nonlinear conditions, that is, for low LNLRs.

In that chapter, the performance of the NFx scheme has been also
studied when the LEM channel presents weakly nonlinear conditions,
[106]. In that case, it has been shown that the virtual channel can be
estimated using only the linear component of the LEM path and the
filter performance achieves good results.

Since the nonlinearities of the system are a priori not known and tak-
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ing into account the combination schemes, a first attempt to improve
nonlinear equalization systems should be the use of combination fil-
ters, as it has been previously proposed in [74][108], even combining
different kinds of filters, as in [64][102].

With regard to the Volterra filter, in this work only second-order
Volterra filters have been used to identify and cancel nonlinearities.
However, this assumption is not always correct when dealing with
loudspeakers and a third kernel of the Volterra filter may be required.
Its implementation is straightforward, but it requires a higher com-
putational cost as the number of coefficients of the adaptive filter of
each kernel increases with its order.

Moreover, two appendices are included in this work. The first one
gives an idea of the real-time implementation of the adaptive equalization
system. For this purpose, the Fx-NLMS algorithm in frequency domain has
been implemented, which shows good results, but also requires a high time
to converge. With respect to the computing cost it will be easily reduced
using parallel computing. Moreover, some frequency band methods are
introduced in the first appendix, that will be interesting to implement as a
future research.

The second appendix presents direct solutions to the equalization prob-
lem for its use in MIMO systems with a high number of loudspeakers and
microphones. It includes objective and subjective measures when rendering
with a WF'S system.

To conclude this dissertation, it has to be noticed that all research
works focus on audio applications require of a subjective analysis to give
some insight of the real sensation achieved with the proposed algorithms.

To this end, some experiments, that are not described in this work, have
been carried out with listeners, which show that although the cancellation
of the acoustic echoes can be achieved, some other audio effects are added
to the render signal, impairing the final acoustic sensation.

Thus, even if the objective measures show good results of the proposed
algorithms, the subjective assessment provides results not as good as de-
sirable. This is due to the fact that we are trying to ideally cancel the
room response and it can not be always achieved and even can lead to im-
practical inverse responses. For that reason, the desired response should be
smoothed to allow this equalization be consistent with the audio sensation.
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The author recommends that further work must be undertaken to explore
this.
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Real-time equalization

This appendix includes some initial research to study the frequency
algorithms presented in this dissertation. In particular and as a starting
point, the constrained frequency domain adaptive algorithm has been im-
plemented.

Firstly, the mathematical formulations and constraints for frequency
algorithms are presented. After that, some laboratory experiments are
included.

A.1 Real time room equalization in frequency domain

Fig. A.1 shows the block diagram of the AE system when implemented in
frequency domain with block operations. Moreover, h(k) corresponds to
the FFT of h, zero-padding the vector to the FFT size. The coefficients
filter update is implemented using the Fx-NLMS method in the frequency
domain. For this purpose, an FFT of 2L,, samples has been chosen, being
L., = 2Ly twice the length of the estimated channel response, Lj,.

As commented before, for the adaptive filtering of Fig. A.1, the overlap-
save method has been used. Initially, the block size of the input signal (2NV)
has been chosen as the double of the adaptive filter for the FFT operation,
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Figure A.1l. Block diagram of an AE system in frequency
domain with the overlap-save method.

to allow L,, = N, for an overlapping factor of 50%. Then, this factor uses
in each iteration the last N samples of the input signal and the previous
N samples, to perform the overlap operation. Thus, the FFT is computed
over the last 2L,, input samples, x(k) = FFT([X(TL - N),x(n]), where

vectors x1 (n) = [z(n),z(n —1),...,2(n — (N + 1))]7 and x"(n — N) =
[2(n — N),z(n — N —1),...,2z(n — 2N +1)]” have N = L,, samples each.

Furthermore, this frequency algorithm introduces a temporal constraint
(constrained frequency domain adaptive filter) in order to be able to imple-
ment the linear convolution. This restriction (in dashed line of Fig. A.1)
replaces the last N elements of the product vector HY (k)X (k)e(k) by
zeros, which corresponds to the filtered-x structure. Using this constraint,
the number of coefficients of the adaptive filter, that has to be taken into
account, is N. Also for the output signal of the filter, y(n), N samples are
useful, taking only the last N samples of the output vector I FFT[y(k)].

In order to compute this constraint, the matrices G and K are used,
_ ( T(N)O(N)
&= oo (A1
K = (0(N)I(N)), (A2)
where I(V) is the identity matrix of size N x N and O(NN) is a zero matrix
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of size N x N. G and K allow to simplify the previous operations taking
only the desired samples of the vectors.

Another point to consider is the time domain used to compute the error
e(n). In this case, e(n) is obtained subtracting from the desired vector d(n)
the last N samples of the microphone signal, z(n), where the desired signal
for the equalization problem will correspond to the input signal with a 7
sample delay d(n) = x(n—7). For this error vector and in order to compute
the FFT, N zeros are added before e(n), to discard the first N samples of
the circular convolution. With this operations, the error e(k) can be used
to update the coefficients of the adaptive filter in frequency domain, w(k).

The following expressions summarized the frequency domain Fx-NLMS
algorithm with the overlap-save method:

X (k) = diag(FFT([x(n ~N), x(n)])), (A.3)

where diag(-) represents a diagonal matrix, whose main diagonal corre-
sponds to the FFT of the last 2N input samples.

y(k) = X(k)w(k). (A4)

y(n) = KIFFT(y(k)), (A.5)

where K matrix allows to remove the first NV samples and to take only the
last N samples of the output IFFT (y(k)).

To compute the desired vector d(n) two delays have to be considered:
a delay of NV samples as a result of working with blocks of size N due to the
latency of the system and another delay is necessary to center the response
of the inverse filter. For this last delay, a delay of [N/2] samples will be
considered.

d(n) = x(n - [N + ﬂ ) (A.6)

Thus, the error vector e(n) is given by,
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where z(n) corresponds to the electroacoustical vector recorded by the mi-
crophone that includes the last N samples.

e(k) = FFT < O(N) > (A.8)

é(n) = IFFT (ﬂH(k)XH(k)e(k)), (A.9)

where H (k) is also a diagonal matrix that includes the ﬁ(k) vector in its
main diagonal.

The adaptive coeflicients for the Fx-NLMS in the frequency domain
are given by,

w(k) = w(k — 1) — diag(za(k))FFT < on(n) ) L (A10)
0(N)
where ¢ (n) corresponds to the first N samples of ¢(n) and matrix O(N)
replaces the last N samples of the IFFT in (A.9) to implement the linear
convolution. (k) is a column vector containing the adaptive step size
parameters of each ¢th frequency coefficient 1;, for « = 0,1,...,2N — 1,
which is computed as,

My = & (A.11)

where p is the step size and P; has been estimated for each frequency
component k =0,1,...,2N — 1, of the FFT, as in [43]:

Pi(k) = yBilk — 1) + (1 = 7)), (A.12)

where 0 < v < 1 exponentially weights the actual P;(k) value respect to the
previous value P;(k—1) and |z¢(k)|? is the power of the input signal filtered
through the estimated channel response for the kth frequency component.

There is another algorithm, the unconstrained frequency domain adap-
tive filter, that has not restrictions in the adaptation algorithm (without
the dashed block of Fig. A.1) and directly uses the product of the error
with the filtered input signal. It computes then the circular convolution,
not the linear one.
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w(k) = w(k — 1) — diag(@(k)H" (k)X (k)e(k) (A.13)

This algorithm has a lower computational cost, but it doubles the num-
ber of iterations required to achieve the same final error, [109]. Also in [109],
the self-orthogonalizing frequency domain adaptive filter is studied, which
improves the convergence speed. It uses the autocorrelation matrix to com-
pute the filter weights and the discrete cosine transform, [110], to cancel
some correlation of the input signal.

The problem with these systems is the slow convergence speed of these
algorithms when using correlated audio signal. Goetze et al. in [29] and
[111], introduce a decoupled filtered-x LMS algorithm to improve the con-
vergence of the algorithm. It does not employ the recorded audio signal,
but a estimated signal to invert the filter channel. It is based on the con-
cept that audio rendering signals are correlated and can not contain all
frequencies, thus the convergence speed is reduced, as it depends on the
direction taken to reach the minimum value ([12]) and will be not able to
compensate all frequencies. With the decoupled algorithm the inverse filter
is computed using a white Gaussian noise, which has a faster convergence,
as it has a nondirectional convergence, and allowing the filter to compen-
sate all frequencies. Whereas the rendering and recording are done with
the desired sound.

Another approaches work with frequency bands, as in [26] and [112],
where the input signal is band-pass filtered and it requires one adaptive
filter with 2N samples for each frequency band.

A.2 Laboratory experiments

Although different algorithms in the frequency domain have been proposed
in the literature, as an initial step to study the frequency algorithms pre-
sented in this dissertation, the constrained frequency domain adaptive filter
has been implemented. Moreover and to ensure a good convergence of the
algorithm, an input Gaussian noise signal has been used.

With regard to the equalization system, experiments with SISO sys-
tems for different loudspeaker-microphone positions and distances have
been carried out.
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In order to use the filtered-x structure in the equalization algorithm, a
real time identification frequency domain NLMS algorithm has been previ-
ously involved to identify the impulse response.

A.2.1 Laboratory setup

The laboratory experiments have been carried out in the listening acoustic
room located at the laboratories of the Audio and Communications Signal
Processing Group of the Institute of Telecommunications and Multimedia
Applications of the Universitat Politecnica de Valéncia.

Figure A.2. Equipment and acoustic room.

The algorithms were programmed in C language on an Intel Core i7
(3.07 GHz) CPU platform that communicates with an audio card MOTU
241/0 through the ASIO (Audio Stream Input Output) drivers. The ren-
dering loudspeaker was a Event PS6 model (Project Studio 6 Biamped
System) with a frequency range from 45 Hz to 20 kHz, +£3 dB. Whereas
the microphone was an omnidirectional Earthworks QTC (Quiet Time Co-
herent) with frequency range 4 Hz - 40 kHz +£1 dB. A sampling frequency of
44.1 kHz and a buffer size of 2048 samples have been employed. The buffer
time corresponds to 2048/44100 = 46.4 ms and has to be greater than the
processing time to allow the real time implementation of the algorithm.
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A.2.2 Laboratory results

For the first experiment, the microphone and loudspeaker were close located
to 27 cm and at a distance of 1.25 m to the floor.

The impulse response measured with the adaptive identification algo-
rithm is shown in Fig. A.3, where the first 2048 samples correspond to the
latency of the real-time system and therefore are zero. As the impulse re-
sponse is sparse, the size of the inverse filter has been computed also with
4096 samples. The step size parameter has been set to g = 107°. As can be
observed in Fig. A.4 the time delay has been properly selected to obtained
a centered response.

The evolution of the error signal (in linear magnitude) and the NPM
parameter (in dB) can be seen in Fig. A.5 and Fig. A.6, respectively, which
shows a good performance. Although the convergence speed is low. In this
case, a modified version of the algorithm used will improve the convergence
behavior.

Moreover, the convolution of the two responses after the final conver-
gence is shown in Fig. A.7, which corresponds almost to the desired response
with a low noise level.
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Figure A.3. Experiment 1: Room channel response measured
after convergence.
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Figure A.5. Experiment 1: Evolution of the error signal e(n).
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For the second experiment, the distance between the microphone and
loudspeaker was 1.7 m. Moreover, the microphone was located close to a
wall to increase the echoes. In this case, the number of samples of the RIR
was 10240 to assure that all echoes were included (see Fig. A.8). Also the
length of L., was 10240 samples, in Fig. A.9. For the step size parameter,
© was set to 3 - 1078,

The convergence of the algorithm has been slow down and it requires
more iterations than the experiment 1 to converge. The evolution of the
error signal and the NPM parameter can be seen in Fig. A.10 and Fig. A.11,
respectively.

The convolution of the two responses after 8 - 10° iterations is not as
good as in experiment 1 (see Fig. A.12). Moreover, the NPM evolution is
depicted in Fig. A.11.
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Figure A.8. Experiment 2: Room channel response measured
after 40 ms.
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Direct multichannel equalization in a WFS system

This appendix includes some experiments that have been carried out
to show the performance of MIMO equalization systems, when dealing with
audio rendering systems that require the use of a high number of loudspeak-
ers, such as for WF'S system, and also a huge amount of listening positions
to achieve a global equalization.

To compute these massive MIMO inverse channels, previous algorithms
that have been efficiently implemented in [4] and [113] have been used.

In the following, an introduction to massive MIMO channels is given.
Details of the experiments carried out, including a subjective analysis, are
also provided.

B.1 Wave Field Synthesis

Wave Field Synthesis (WFS) is a method of sound reproduction, based on
fundamental acoustic principles [79],[80]. It enables the generation of sound
fields with natural temporal and spatial properties within a volume or area
bounded by secondary sources (arrays of loudspeakers). This method offers
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a large listening area with uniform and high reproduction quality.

The theoretical basis of WFS is given by the Huygens’ principle. Ac-
cording to this, the propagation of a wave front can be described by re-
cursively adding the contribution of a number of secondary point sources
distributed along the wave front. This principle can be used to synthesize
acoustic wave fronts of an arbitrary shape.

A synthesis operator for each loudspeaker can be derived using this
theoretical basis. The general 3D solution can be transformed into the 2-D
solution, which is sufficient for reconstructing the original sound field in
the plane of listening [81],[114],[115]. For that purpose a linear array of
loudspeakers is employed to generate the sound field of virtual sources.

R 4

Figure B.1. Geometric representation of the primary point
source Y., at point R using an arbitrary distribution of sec-
ondary sources over the line L.

The field rendered by a source at a point R (see Fig. B.1) within the
area surrounded by the loudspeakers can be expressed as equation (B.1).

efjchrn

N
P(R) = ZQn(w)Ta (B.1)
n=1 n

e—jkArn
Ary,

ondary source (loudspeaker) and the point R within the listening area.

Qn(w) corresponds to the expression of the nth loudspeaker driving signal

where represents the free field propagation between the nth sec-
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for a rendering system of N loudspeakers. These driving signals are depen-
dent on the virtual source, loudspeakers and listening area positions [81]
and are given by

Ak eAikrn

Qn(w) = 4o (rL,n) 75((00) COs ‘Pinc,nﬁv

o (B.2)

where 7,, represents the distance between the primary source and the nth
loudspeaker. @jpncr is the angle between the vector r, (from the primary
source to the nth loudspeaker) and the normal vector n of the loudspeaker
array at the nth loudspeaker position. Furthermore, A = 1 for primary
sources located between the loudspeakers and the listener positions, and
A = —1 for exterior primary sources. Moreover, the amplitude factor
go(rrn) is defined by

I'L,n) — )\A’I"o(I'L,n) ’

Aro(rr.n,
go(rrn) = \/ orLn) (B.3)
’I“o(
being Arg(ry, ) the distance between the nth loudspeaker and the point

over the K line with the same stationary phase that the nth loudspeaker
(see Fig. B.1), expressed as

Aro(rrn) = |tro(rLn) — Tinl (B.4)

Because of the separation between the loudspeakers, there exists an
spatial aliasing frequency that allows the render system to work properly
up to this frequency. This frequency is given by

Cc

Jor = 2Az sin O,,,00

(B.5)

being ¢ the speed of sound, Az represents the separation between loud-
speakers and ©,,4, corresponds to the maximum angle of incidence of the
synthesized wave field relative to the loudspeaker array.
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B.2 Application of MIMO room equalization to WFS
reproduction systems

The multichannel inverse filtering problem introduced in Fig. 2.10 can be
straightforwardly applied to a WFS system (see Fig. B.2).

Room Compensation System
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Figure B.2. Room correction system for WFS.
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The filter matrix H is calculated using the transmission channels actual
responses, which are measured a priori (matrix C), and the desired signals
at the listening or reproduction points. In contrast to the multichannel
inverse filtering problem depicted in Fig. 2.10, the input signals to matrices
A and H are not the original K sources, but the L excitation signals for
the secondary sources provided by the WFS rendering algorithm. Thus,
the filter matrix H is composed of L x L inverse filters in WFS systems.

Using this approach, as can be seen from Fig. B.2, the room compen-
sation system is independent of the previous reproducing system that is
used. In this case, the WFS, where the number of inputs to our MIMO
WEFS compensation system will be equal to the number of loudspeakers.

B.3 Time-direct computation of the MIMO inverse
system

In order to compute a possible inverse filters bank by using a finite number
of coefficients, that enables to equalize a given MIMO system, we have used
the algorithm proposed in [113]. This algorithm can efficiently cope with
time domain deconvolution problems where a huge set of linear equations
should be solved to design optimal filters under the least squares error
criterion.

The specific MIMO inverse system considered is described below. This
system, depicted in Fig. B.2, can be described in the time domain by the
set of equations: A = CH, where C is composed of M x L blocks C;;
and H is composed of L x L vectors hj, of n, samples. Each block C;;
is a Toeplitz matrix that involves the convolutions with the ¢jth channel.
Each product between matrix C;; and vector hj;, performs the convolution
between ijth transmission channel and jkth inverse filter. The bank of
filters is usually calculated by the least squares method solving CTCH =
CTA. The symmetric matrix CTC is given by,
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M M
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where R = Cz;Ckl is a Toeplitz matrix.

Therefore matrix CT C is composed of L x L blocks of ny, x ny, elements.
Each block has a Toeplitz structure. In the case of WFS, the multichannel
system has L input signals from the WFS matrix. There will be L different
sets of equations where the terms on the right-hand side, the columns of
CTA are different, but sharing the same main matrix, C’C, of CTCH =
CTA.

Furthermore, the main matrix CTC has a Toeplitz-block structure.
This structure itself does not allow the use of efficient solution techniques.
However, performing simple rows and columns permutations, a Block Toeplitz
matrix can be achieved from the Toeplitz-block one. Thus a generalization
of the fast methods used in the scalar Toeplitz case can be used for solving
the Block Toeplitz case.

It is important to note that an FFT algorithm can be employed to
compute the transmission channels autocorrelation and cross-correlation
matrices that appear in equation (B.6).

While the solution of a general linear equations set of order n requires
O(ng) operations, there exist several methods for taking advantage of the
structure of a Toeplitz matrix. We refer to the well known Levinson and
Trench as fast Toeplitz solvers because they require O(n2) arithmetic op-
erations for the solution of an n x n Toeplitz set of equations.

In order to save computation time, we solve the generic set of equations
Rh = [1,0,...,0]” using the Durbin’s algorithm [116]. This algorithm ex-
ploits the simplified form of the right-hand side term and provides a further
computational cost reduction compared to Levinson algorithm. Durbin al-
gorithm provides first column of the inverse matrix with a computational
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saving of 50% compared to the general case. In order to solve the set of
equations, the Gohberg-Semencul formula [117] can be used.

B.4 Frequency-direct computation of the MIMO in-
verse system

As an alternative to the computation of multichannel inverse filters in time
domain, a fast deconvolution method was proposed in [4]. Fast deconvo-
lution computes the inverse filters in frequency domain by using the FFT.
The main benefit of the algorithm is the reduction in computation time.

In frequency domain, matrix H (or control filter matrix) which mini-
mizes the quadratic error between the desired response (matrix A) and the
room response (matrix C) is given by:

Hysp(z) = [C7(=7)C() + 817 CH (= HA(2) (B.7)

where 3 is the regularization parameter, which allows C* C + 81 to be
no singular for 8 > 0, despite a high g implies a more biased solution to
the original least squares problem.

A detailed explanation of the fast deconvolution method can be found
in [4]. This method has proved to be very useful and easy to use, but
can suffer from circular convolution effects when the inverse filters are not
long enough compared to the duration of the responses of the transmission
channels.
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B.5 Experimental setup

The purpose of the laboratory experiments was to validate the multichan-
nel inversion of MIMO systems as a possible practical solution to room
compensation for WFS reproduction systems. The following laboratory
experiment has been carried out. An opened U-shaped WFS array of 32
loudspeakers (4 of arrays of 8 loudspeakers each) was installed in a real
room of dimensions 4 x 7 x 2.5 m. The room is acoustically conditioned
with slight reflections in walls, ceiling and floor. Fig. B.3 shows the array
of loudspeakers inside the listening room.

Figure B.3. Setup of WF'S array and the laboratory.

For this loudspeaker distribution (18 cm separation), the spatial alias-
ing frequency is fy; ~ 950H z. The room impulse responses (RIR) between
each loudspeaker and 577 listening points were measured. The microphones
were located in a circular distribution inside the listening area at the loud-
speakers horizontal plane, as it is shown in Fig. B.4.

A set of 32 x 577 RIR were obtained using a Maximum Length Se-
quences (MLS) measurement method, which has been specially adapted
for fast measuring of multichannel systems [118]. From these RIR, the ma-
trix C containing the room responses with the direct signal and the first
reflections was built. Concretely, the signals were obtained with a sampling
frequency of 48 kHz, and decimated by 6 to get a sampling frequency of 8
kHz, because frequencies above 2 kHz were no considered due the aliasing
frequency. Each RIR was windowed in time domain taking only the first
500 samples (about 62 ms).

Then, the bank of inverse filters H was computed to correct the unde-
sired effects of the room. The algorithm previously explained was used to
obtain an ideal channel up to 2kH z with the corresponding delay. In the
algorithm, matrix A is designed to emulate free field conditions.
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Figure B.4. Wave-Field Synthesis array of 32 loudspeakers
and position of the control points.

In order to evaluate the system, measures were taken at the same lis-
tening points with the bank of inverse filters working. For every virtual
source the driving signal of each loudspeaker was computed with the WFS
system. These driving signals were filtered through its corresponding in-
verse filter bank and added at each loudspeaker before being rendered. The
acoustical path was simulated by performing the convolution of the loud-
speaker excitation signal with the previously measured acoustic channel.
A meaningful improvement was observed at these points, obtaining better
listening quality.

B.6 Results

A set of experiments have been included in this appendix to show the
performance of MIMO equalization when using a WFS rendering system.
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B.6.1 Time-domain vs. frequency-domain performance

In order to compare the results obtained using the Block Toeplitz solvers
in time domain and the fast deconvolution algorithm in frequency domain,
a comparison of the compensation achieved with both algorithms has been
carried out. A randomly selected RIR between a loudspeaker and a control
point has been taken for this purpose.

Fig. B.5 shows the frequency response before applying the compensa-
tion filter. Fig. B.6 (a) represents the same response after the bank of filters
computed in time domain. The upper plot shows the response with a bank
of inverse filters of length of 512 samples and the lower plot for a length of
1024 samples (10 dB apart). Both responses are very similar.

dB

e R0 .
10 10
Hz

Figure B.5. Frequency response before the compensation
algorithm.

In the same way, Fig. B.6 (b) shows the response for the fast deconvo-
lution algorithm using a regularization parameter of 0.01. For a 512 length
(upper plot), the filters computed in frequency domain contain peaks and
deeps in the whole range of frequencies. These peaks and notches are due
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to the circular convolution effects. With a inverse filter length of 1024 sam-
ples, the results for the fast deconvolution algorithm has a plainer response
than before, but it does not achieve the good performance exhibit by the
fast Block Toeplitz solvers with 512 samples, figure B.6 (a).

B.6.2 Global inversion performance

In order to evaluate the acoustic field rendered by the WFS system inside
the listening room, a single source has been simulated within this area.
Fig. B.7 (a) represents the field rendered by a single real source of 750 Hz.
Whereas, the response of Fig. B.7 (b) simulates the field produced with the
WFS array in free field, both are very similar. Fig. B.7 (c) shows the same
source but into the real room, which is far from an ideal performance. The
field obtained this way does not seem as perfect as the obtained in free field
conditions due to the room reflections. The field rendered after applying
the inverse filter bank is shown in Fig. B.7 (d). In this case, a very similar
field to the original one is achieved. The improvement is clearly noticeable.
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dB

dB

Figure B.6. Frequency response for filters with length of
512 and 1024 samples: (a) after compensation by fast Block
Toeplitz solvers and (b) after the compensation by fast decon-
volution algorithm.
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Figure B.7. Rendered field by a source signal of 750 Hz:
(a) original source in free field conditions, (b) reproduced by
WFS in free field, (c) measured field in a real room and (d)
after applying the inverse filter bank.
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B.6.3 Subjective analysis

In order to prove the efficiency of this bank of filters not only form an
objective point of view, a subjective analysis has been carried out.

The original input signal is a singing voice, which has been resampled
to 8 kHz before convolving it with the WFS and the inverse filters. For the
WES system, without inversion, the input signal has been convolved with
the 32 WF'S filters and resampled to 44.1 kHz before rendering it through
the soundcard and loudspeakers. For the equalize WFS systems, the 32
WES filters have been first convolved with the 32 x 32 inverse filters, and
later with the input signal, before interpolating and rendering it.

For the subjective test, a software has been implemented which renders
the different audio signals for a given number of loudspeakers. This software
adds no delay to the secondary sources (loudspeakers) because it is included
in the WF'S filters.

The test was presented to 10 spatial audio experts, who listened to the
two different audio signals. First, inside the listening area of 2.3 m of di-
ameter and later outside the controlled area, but within the 32 loudspeaker
distribution. The aim is twofold: to evaluate if the location of the virtual
primary source for the compensate system improves with regard to the
WFEFS system without room compensation. And to study the effect of the
equalization outside the listening area, where the rendering is uncontrolled.

For this evaluation, the parameter studied is the locatedness, which
quantifies the ability of the listener to perceive the spatial position of a
source signal, [119]. The questions of the surveys were two: In which direc-
tion is the source signal located?” How clear do you perceive this location?
The answers arranged from: 1-Very bad 2-Bad 3-Regular 4-Well 5-Very
well.

Fig. B.8 shows the means and a 95% confidence intervals of the listener
surveys for the four cases: inside the listener area with compensation, inside
without compensation, outside the listener area with compensation and
outside without compensation.

The results show that the perceived location of the source signal is good
in all cases. Although it is slightly better for the first case, inside the listener
area and with compensation, these results show that the improvement is
not so significant. This can be due to the fact that the experiment was
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Figure B.8. Subjective analysis: means and a 95% confidence
intervals.

carried out inside a room acoustically conditioned and the echoes of the
room do not impair greatly the WFS rendering system.
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