
Departament d’Informàtica de Sistemes i Computadors

Universitat Politècnica de València

Adaptive prefetch for multicores

MASTER’S THESIS

Máster en Ingenierı́a de Computadores

Author

Vicent Selfa Oliver

Advisors

Prof. Julio Sahuquillo Borrás
Prof. Marı́a Engracia Gómez Requena

Prof. Crispı́n Gómez Requena

September 5, 2014

Abstract

Current multicore systems implement various hardware prefetchers since pre-
fetching can significantly hide the huge main memory latencies. However, mem-
ory bandwidth is a scarce resource which becomes critical with the increasing core
count. Therefore, prefetchers must smartly regulate their aggressiveness to make
an efficient use of this shared resource.

Recent research has proposed to throttle up/down the prefetcher aggressive-
ness level, considering local and global system information gathered at the mem-
ory controller. However, in memory-hungry mixes, keeping active the prefetchers
even with the lowest aggressiveness can, in some cases, damage the system per-
formance and increase the energy consumption.

This Master’s Thesis proposes the ADP prefetcher, which, unlike previous
proposals, turns off the prefetcher in specific cores when no local benefits are ex-
pected or it is adversely interfering with other cores. The key component of ADP
is the activation policy which must foresee when prefetching will be beneficial
without the prefetcher being active. The proposed policies are orthogonal to the
prefetcher mechanism implemented in the microprocessor.

The proposed prefetcher improves both performance and energy with respect
to a state-of-the-art adaptive prefetcher in both memory-bandwidth hungry work-
loads and in workloads combining memory hungry with CPU intensive appli-
cations. Compared to a state-of-the-art prefetcher, the proposal almost halves
the increase in main memory requests caused by prefetching while improving the
performance by 4.46% on average, and with significantly less DRAM energy con-
sumption.

Keywords: Cache, Prefetch, Adaptive, Memory Hierarchy, Performance Indexes, Multi-
core, Deactivation Policies, Global Feedback

Contents

1 Introduction 8
1.1 Prefetching . 8
1.2 Evaluation Methodologies for Multicores 9
1.3 Contributions of this Master’s Thesis 9
1.4 Master’s Thesis Outline . 10

2 Background 12
2.1 Multi2Sim . 12
2.2 DRAMSim2 . 13
2.3 Main Memory Organization . 13
2.4 Prefetch Techniques . 14

2.4.1 One Block Lookahead 14
2.4.2 Tagged Prefetch . 15
2.4.3 Global History Buffer Based Prefetchers 15
2.4.4 Stream Buffers . 17

2.5 Coherence Protocols . 17
2.5.1 MOESI Protocol . 17

2.6 Benchmarks . 18
2.6.1 Integer Point Arithmetics 19
2.6.2 Floating Point Arithmetics 20

3 Baseline System 22
3.1 L2 Prefetching System . 22
3.2 Network-on-Chip . 23
3.3 Memory controller and memory organization 25

4 Related Work 26

5 Evaluation Methodologies 28
5.1 Single-Threaded Processor Evaluation 29
5.2 Methodologies for Multicores 30

2

5.2.1 Typical Simulation Methodologies 30
5.2.2 Discussion . 31

5.3 Evaluation Indexes for Multiprogram Workloads 32
5.3.1 Performance Indexes . 32
5.3.2 Understanding Performance Metrics: A Practical Approach 35
5.3.3 Discussion . 38

5.4 Performance and Power Simulators 39
5.5 Experimental Evaluation . 41

5.5.1 Effect of the Simulation Methodology on Performance
and Energy . 41

5.5.2 Effect of Modeling Details on Performance 43
5.6 Summary . 45

6 Characterization Study And Prefetcher Proposal 46
6.1 Characterization Study . 46
6.2 Proposed Prefetching Scheme 49
6.3 Evaluation Methodology . 52
6.4 Experimental Evaluation . 53

6.4.1 Performance Analysis 54
6.4.2 Prefetches Reduction Analysis 56
6.4.3 Energy Analysis . 58

6.5 Summary . 60

7 Conclusions 62
7.1 Contributions . 63
7.2 Future Work . 64

3

List of Figures

2.1 MOESI state transitions . 19

3.1 Baseline multicore with prefetching components and memory con-
troller. 23

5.1 Cumulative IPC for three of the studied methods. 42
5.2 Harmonic mean of weighted speedups for the studied methods. . . 43
5.3 Effect of applied methodology on main memory energy consump-

tion. 44
5.4 Memory latencies for the studied memory controllers. 44

6.1 Characterization study. Categories 1 and 2. 47
6.2 Characterization study. Categories 3 and 4. 48
6.3 ADP state transitions. Transitions on the edges correspond to the

transitions in Algorithm 1 and Algorithm 2. 51
6.4 Performance of prefetchers running benchmarks in isolation. . . . 54
6.5 Cumulative IPC per Workload. 55
6.6 Harmonic Mean of IPC per Workload. 56
6.7 Requests increase of the studied prefetchers over no prefetching. . 57
6.8 Fraction of time spent in each state for HPAC and ADP. 58
6.9 Energy consumption of the prefetching mechanisms. 59

4

5

List of Tables

2.1 Stream of deltas . 16

3.1 System configuration. 24
3.2 Main Memory Address Mapping 25

5.1 IPCs and Speedups of the benchmarks in the 4-core compared
machines. 36

5.2 Summarizing performance and fairness metrics in the compared
machines. 37

5.3 Four-core mixes composition. 41

6.1 Mix composition. 53
6.2 Thresholds used in ADP. 53

6

7

Chapter 1

Introduction

This chapter presents the motivation for the work developed in this Master’s The-
sis. First, prefetching is introduced, discussing its pros and cons and showing
the potential of adaptive approaches to overcome some of the shortcomings of
prefetching. After that, the need of adequate metrics for multicore evaluation is
introduced. Finally, an overview about the contents of this Master’s Thesis is
given.

1.1 Prefetching

Addressing memory latencies is a major design concern in modern chip multi-
processors (CMPs). Prefetching is a well-known technique that hides memory
latencies by fetching data blocks before the core demands them. Because of pre-
fetching benefits, modern microprocessors [1–4] typically implement several pre-
fetchers along their cache hierarchy. In current CMPs, memory requests from
different cores compete among them for off-chip DRAM bandwidth. As the core
count increases, the memory becomes a major contention point, and the system
performance highly depends on how the limited memory bandwidth is managed.

In these environments the prefetching schemes must be revisited. A direct so-
lution to increase bandwidth availability would be to turn off the core prefetchers,
so avoiding speculative prefetches. However, this way could result in important
performance losses for those applications where prefetchers achieve a noticeable
coverage so hiding memory latency. Therefore, solutions should be focused on
reducing the number of useless prefetches, saving bandwidth and energy.

Recent approaches [5] propose the use of throttling up/down mechanisms to
control the prefetcher aggressiveness. The aggressiveness level is throttled down
when scarce or no performance benefits are expected from prefetching. As oppo-
site, aggressiveness is throttled up when performance improvements are foreseen.

8

These approaches try to keep the benefits of prefetching while reducing the mem-
ory bandwidth consumption with respect to aggressive prefetching. Nevertheless,
since memory bandwidth requirements from different applications widely differ
among them, this situation may lead the performance of some cores to improve
but at the cost of hurting the performance of some others. To deal with fairness,
the Hierarchical Prefetcher Aggressiveness Control (HPAC) scheme [6] takes into
account global system performance information (e.g. memory-bandwidth interfer-
ences among the different applications at the memory controller).

In this Master’s Thesis we claim that bandwidth-aware prefetchers are re-
quired in current multicores to make an efficient use of the limited memory band-
width. This kind of prefetcher is needed to keep or enhance the performance gains
of adaptive prefetchers, especially when running memory-hungry workloads.

1.2 Evaluation Methodologies for Multicores
Researchers modeling and evaluating performance and energy in multicores face
three main issues, which are still evolving. First, there are multiple methodolo-
gies being used to evaluate these systems, mainly inherited from single-threaded
processor research. Second, due to the nature of multiprogram workloads, new
performance metrics different from those used in single-thread processors are re-
quired. Many metrics have been defined and distinct metrics are used across the
published work. Finally, multicore processors are really complex systems which
require from sophisticated and complementary (e.g. energy and performance) sim-
ulators.

1.3 Contributions of this Master’s Thesis
The main focus of this Master’s Thesis is on the design of new prefetchers to
efficiently work in multicore processors both from the performance and energy
points of view. These systems suffer from interferences of memory requests of
the multiple cores, which can strangle the scarce main memory bandwidth. In
such a case, a twofold effect rises in the system: i) the overall system performance
suffers, and ii) the memory energy consumption rises. These problems exacerbate
with aggressive prefetching. However, prefetching cannot be deactivated for all
the cores, since it is well known that many applications benefit from prefetching.

This work presents an adaptive bandwidth-aware prefetcher designed to make
an efficient use of the limited memory bandwidth, which the main contribution of
this work. The devised approach tries to keep or enhance the performance gains of
aggressive prefetchers while consuming a fraction of the energy and main mem-

9

ory traffic. Our Activation/Deactivation Prefetcher (ADP) incorporates two main
mechanisms: On the one hand, as an adaptive prefetcher, it implements throttling
up and down policies to regulate the aggressiveness. On the other hand, activation
and deactivation policies are also implemented taking into account global system
information, which is the main novelty of the proposed prefetcher. This improves
the performance while reducing main memory energy consumption.

To design an efficient prefetcher we firstly characterized the dynamic behav-
ior of each SPEC-CPU2006 benchmark across its execution time, analyzing how
prefetching and main memory activity impact on performance, which is the sec-
ond major contribution of this work. We found that although prefetching brings
important performance improvements in some phases of the program execution,
in other phases it scarcely or negatively affects the performance. Current adaptive
prefetchers do not match this finding, since most of them dynamically regulate the
aggressiveness but never turn off the prefetchers completely or do not consider the
system main memory requirements.

Nowadays the microprocessor market is dominated by multicores, and most
research work has sharply moved to this kind of processors. This quick shift of the
research has left researchers with outdated research methods taken from the evalu-
ation of their single-threaded counterparts. This new situation has lead researchers
to face three important research issues targeting multicores: simulation method-
ologies, performance and energy metrics, and simulation frameworks. The first
contribution of this Master’s Thesis is a survey of the mentioned methodological
issues across a sample of 28 papers published in 2013 in the top-computer archi-
tecture conferences (ISCA, HPCA, PACT, and MICRO), focusing on multicores
with multiprogram workloads. For the sake of completeness, this work presents
an overview of the simulation methods, discusses the performance indexes used
to evaluate the proposals, and analyzes how the simulation details (used in the
different system components) can affect both performance and energy results.

1.4 Master’s Thesis Outline
Chapter 2 introduces a broad set of concepts tightly connected with this work.
Chapter 3 presents the simulated system in which the experimental results have
been obtained. Chapter 4 discuses prior work related to this Master’s Thesis.
Chapter 5 presents an in-depth analysis of performance metrics used in multicore
research in order to determine the most suited for this work. Chapter 6 presents
the characterization analysis and our proposed prefetching mechanism, and fi-
nally, Chapter 7 summarizes this thesis, discusses future work, and enumerates
the related publications.

10

11

Chapter 2

Background

2.1 Multi2Sim

Multi2Sim [7] is a cycle accurate event driven simulation framework for CPU-
GPU heterogeneous computing written in C. It includes models for superscalar,
multithreaded, and multicore CPUs, as well as GPU architectures.

The CPU simulation framework consists of two major interacting software
components: the functional simulator and the architectural simulator. The func-
tional simulator (i.e. emulator) mimics the execution of a guest program on a
native x86 processor, by interpreting the program binary and dynamically repro-
ducing its behavior at the ISA level. The architectural simulator (i.e. detailed or
timing simulator) obtains a trace of x86 instructions from the functional simula-
tor, and tracks execution of the processor hardware structures on a cycle-by-cycle
basis.

The experimental results of this Master’s Thesis have been obtained using
version 4.2 of Multi2Sim, which supports the execution of a number of different
benchmark suites without requiring any porting, including SPEC2006, as well as
custom self-compiled user code. The architectural simulator models many-core
superscalar pipelines with out-of-order execution, a complete memory hierarchy
with cache coherence, interconnection networks, and can be easily extended to
model additional components.

A drawback of Multi2Sim is that it does not accurately model the main mem-
ory nor a memory controller. Consequently, main memory requests have no con-
tention at all and latencies are fixed. This is not realistic and a serious limitation
if evaluating a prefetcher and measuring main memory energy consumption.

To overcome this, we have integrated DRAMSim2 [8], a dedicated main mem-
ory simulator.

12

2.2 DRAMSim2
DRAMSim2 is a cycle accurate simulator that provides a DDR2/3 memory system
model that includes ranks, banks, command queue, the memory controller, etc.
and the buses by which they communicate. It provides a C++ API that can be used
to integrate it in a full system simulator easily. As Multi2Sim is written in pure C,
the project has been forked and extended with a C API and other requirements of
this Master’s Thesis.

2.3 Main Memory Organization
DRAM memories usually are presented as DIMMs, a circuit board with a handful
of chips or DRAM devices and associated circuitry attached to it. Each DIMM
module has several DRAM devices, which are grouped in ranks. A rank is a
collection of DRAM devices that operate in lockstep (all chips in a rank respond
to a single command) and read or write 64 bits to the bus, which is 64 bits wide,
as defined in the JEDEC [9] standard. The number of devices that compose a rank
depend of the specific device width, thats is, the number of data pins of the device.
For example, a DIMM module using ×4 DRAM devices, which can output four
bits per transaction, will have 64/4 devices per rank.

Internally, each of these DRAM devices implements multiple independent
banks, which are the smallest memory structures that can be accessed in parallel
with respect to each other (bank-level parallelism). Each bank operates indepen-
dently, but banks in the same rank must comply with some timing restrictions to
reduce resource utilization and thus peak power consumption. As devices in a
rank operate in lockstep, when a bank is accessed it is accessed in all the devices
that compose the rank, transmitting a total of 64 bits from or to the bus.

In addition, each bank is composed of multiple memory arrays, where the
number of arrays is equal to the data width of the DRAM part. DRAM banks are
therefore composed of two-dimensional arrays of capacitor-based DRAM cells.
Each bank has a row-buffer which stores the values of the last accessed row and
consists of an array of sense-amplifiers that act as latches. Therefore, subsequent
accesses to the same row are faster if the row is in the row buffer. Actually, at the
end of an access, the memory controller can either keep the row open in the row
buffer (open-row policy) or close it if no more accesses to this row are expected
(closed-row policy).

The DRAM memory controller manages the flow of data into and out of
DRAM devices connected to that DRAM controller in the memory system. Specif-
ically, it defines the Row-Buffer-Management Policy, the Address Mapping Sc-
heme, and the Memory Transaction and DRAM Command Ordering Scheme.

13

A memory system can have a single channel, or multiple channels. A chan-
nel is the physical link between the processor and a set of DIMM modules that
communicate through it. Multiple ranks are connected to the same channel so all
receive the same commands, but only one replies. If there are multiple channels,
they can be independent, with a dedicated memory controller, or configured in
lockstep mode to have a wider interface (e.g. dual-channel).

Three different commands are needed to access a DRAM bank: i) a precharge
command to precharge the row bitlines, ii) an activate command to open the row
corresponding to the row address into the row buffer, and finally iii) a read/write
command to access the row buffer at the position indicated by the column address.
Depending on the row policy used by the controller and the address of the requests,
very different latencies to memory can be perceived by the processor. If the row
accessed is in the row buffer, the latency is low, as only a read/write command has
to be issued. If the row is not in the row buffer, then the memory controller needs
to issue the three commands: precharge, activate and read/write. If the controller
uses a close-row policy, this means that there is no valid data in the row buffer
and therefore every access has to issue an activation command and a read/write
command. In all cases perceived latency is the sum of the latencies of the issued
commands, as they must be executed sequentially and in order.

The performance and latency of a DRAM system using an specific row-buffer
policy depends on the workloads being executed, so there is not a clear winner.
It is the same for other memory controller parameters like Address Mapping Sc-
heme, and the Memory Transaction and DRAM Command Ordering Scheme.

2.4 Prefetch Techniques
The aim of prefetching is to bring the data from the memory hierarchy closer to the
processor before the processor requests it. This way the long latency associated to
memory accesses can be significantly reduced. There are two key design aspects.
On the one hand, the future processor accesses must be predicted so they can be
fetched in advance. On the other hand, it must be decided where this data will be
stored.

2.4.1 One Block Lookahead
OBL is a very basic prefetch technique which assumes a sequential access pattern.
When a cache miss occurs, a prefetch request for the next block is enqueued. Vari-
ations of this technique can launch more than one prefetch, although the accuracy
of this kind of prefetching is not, in general, very high. The main advantages are
its simplicity, that it requires simple hardware, and the low area overhead.

14

2.4.2 Tagged Prefetch
TP is an improvement over OBL which adds a bit to every block that marks if
it was or not prefetched. Additional prefetches are triggered if there is a hit
in a prefetched block. It provides a good trade-off between performance and
power/area costs [10].

2.4.3 Global History Buffer Based Prefetchers
Current prefetch techniques are based on the detection of regular memory access
patterns to predict future requests. To detect these patterns, hardware tables that
keep a limited number of recent memory accesses are used. As these tables are
expensive both in area and power consumption, they must be implemented effi-
ciently. Therefore, several state of the art prefetchers use a Global History Buffer
table as proposed in [11].

GHB decouples table key matching from storage of prefetch related informa-
tion. The resulting prefetching structure has two levels. The former is the Index
Table, which is accessed with a key, like conventional prefetch tables. The key
may be a load instruction PC, a cache miss address, a tag, etc. The latter is the
Global History Buffer, a n-entry FIFO table, implemented as a circular buffer that
holds the n most recent cache miss addresses. Each entry in the GHB table holds
an address and a pointer. The pointers are used to chain the GHB entries into ad-
dress lists. Each address list is a time-ordered sequence of related addresses that
share an Index Table key.

Consequently, a GHB powered prefetcher can be classified according to two
parameters: the method used to derive an index from an address and the pattern
detection mechanism. Building on this, authors of [11] propose a regular taxon-
omy for this kind of prefetchers, where a prefetcher is denoted by a pair X/Y. Here,
X refers to the method used to index the cache misses and Y the pattern detection
mechanism.

Depending on the method used, X can be Global (G), Program Counter (PC)
or CZone (CZ).

Global: When there is a cache miss, the offending address is stored in the GHB,
and if not already added, in the IT. Subsequent misses are stored in the GHB and
linked to the previous misses to the same address.

Program Counter: In this case, the IT does not store the memory address that
caused the cache miss, but the PC of the instruction that triggered the cache access.
The information stored in the GHB depends on the mechanism used, but usually
contains the accessed address.

15

CZone: This technique [12] indexes accesses using a subset of the upper bits
of the address. The number of bits used is implementation dependent. This way,
the memory space is divided into segments or Concentration Zones (CZones).
The pattern detection is done within each CZone. This approach is particularly
appropriate in L2 caches and below, as it does not require extra information, such
as the PC of the instruction that generates the memory access.

On the other hand, Y can be Constant Stride (CS), Delta Correlation (DC) or
Address Correlation (AC).

Constant Stride: This technique detects sequences of accesses separated by a
constant offset and launches prefetch requests following this access pattern. The
number of prefetch requests depends on the aggressiveness of the mechanism,
which can be tunned because the optimum aggressiveness could vary significantly
between applications and also between different phases of the same application.

Delta Correlation: A delta is an offset between two addresses. This method of
pattern detection [13] looks for recurring patterns in the stream of deltas obtained
from the program cache accesses. When a recurring pattern is found, prefetches
are enqueued following it.

Addresses 47 49 54 56 58 63 65
Deltas 2 5 2 2 5 2

Table 2.1: Stream of deltas

Both the number of prefetches enqueued and the target size of sequences
searched are implementation dependent. In the example in Table 2.1, the two
most recent deltas are 5 and 2, corresponding to accesses to addresses 58, 63 and
65. If the stream of deltas is scanned for the same sequence, a match correspond-
ing to accesses 49, 54 and 56 is found. Since the next delta is 2, (address 58) a
prefetch for address 67 (65 + 2) can be enqueued.

Address Correlation: This approach (AC) uses Markovian chains to predict
what will be the most likely next access after a miss. When a miss occurs, a table
that contains previous misses is scanned, looking for misses to the same address
and the accesses that followed that miss. Using that information a Probabilistic
Automaton (PA) is constructed to determine which addresses to prefetch.

16

2.4.4 Stream Buffers
A key prefetch design issue is where to store the prefetched blocks. They can be
stored in the cache or in auxiliary dedicated buffers. One of the major drawbacks
of prefetching techniques is that if the prefetches are inaccurate and are stored
in the cache, they can replace useful cache blocks (cache blocks that would have
been accessed in the future) without providing any benefit. This is called cache
pollution. A high cache pollution can hurt performance so minimizing it is a must.

One solution is to store prefetched blocks in auxiliary buffers [14]. These
buffers act as an additional memory adjacent to the cache that only contains
prefetched blocks that have not been requested yet by the processor (that is, its
state is still speculative and may never be accessed). When a request for a mem-
ory block arrives, the buffers and the cache are searched in parallel. If the data
is found in the buffers, the block is no longer speculative so it is brought to the
cache, thus avoiding the harmful effects of pollution.

This approach is specially useful for pattern-detecting prefetching mecha-
nisms, as when a pattern is detected, it can be assigned to an exclusive buffer
(called stream) where all successive prefetches that follow that pattern will be
stored. Each stream is organized like a FIFO buffer that can contain several
prefetched blocks, depending on the aggressiveness of the prefetcher and the max-
imum prefetch distance.

2.5 Coherence Protocols
When clients in a system maintain caches of a common memory resource, prob-
lems may arise with inconsistent data. A coherency protocol is a protocol which
maintains the consistency between all the caches in a system of distributed shared
memory. The protocol maintains memory coherence according to a specific con-
sistency model. Older multiprocessors support the sequential consistency model,
while modern shared memory systems typically support the release consistency
or weak consistency models.

2.5.1 MOESI Protocol
Several approaches exist when tackling cache coherency protocols. This Master’s
Thesis focuses in MOESI (modified, owned, exclusive, shared, invalid), as is the
one supported by the AMD64 architecture and is implemented in Multi2Sim. The
states of the MOESI protocol are:

• I (Invalid): A cache line in the invalid state does not hold a valid copy of
the data. Valid copies of the data can be either in main memory or another

17

processor cache.

• E (Exclusive): A cache line in the exclusive state holds the most recent,correct
copy of the data. The copy in main memory is also the most recent, correct
copy of the data. No other processor holds a copy of the data.

• S (Shared): A cache line in the shared state holds the most recent, correct
copy of the data. Other processors in the system may hold copies of the data
in the shared state, as well. If no other processor holds it in the owned state,
then the copy in main memory is also the most recent.

• M (Modified): A cache line in the modified state holds the most recent,
correct copy of the data. The copy in main memory is stale (incorrect), and
no other processor holds a copy.

• O (Owned): A cache line in the owned state holds the most recent, correct
copy of the data. The owned state is similar to the shared state in that
other processors can hold a copy of the most recent,correct data. Unlike the
shared state, however, the copy in main memory can be stale (incorrect).
Only one processor can hold the data in the owned state; all other processors
must hold the data in the shared state.

State transitions for the MOESI protocol are illustrated in Figure 2.1 and ex-
plained below.

• Rd/-: Local read.

• Wd/-: Local write.

• GetX: Invalidation request received (other core wants exclusive access).

• GetS: Block request coming from another core.

• Wr/GetX: Invalidation request to all the other copies of the block and local
write.

• Rd/GetS: Read request to other cache in the same level or to main memory.
The former leaves the block in a shared state while the latter leaves the block
exclusive.

2.6 Benchmarks
To evaluate the proposals, a wide set of benchmarks from SPEC 2006 [15] suite
has been used. A brief description of the benchmarks used is presented below.

18

Figure 2.1: MOESI state transitions

2.6.1 Integer Point Arithmetics
perlbench: C, Programming Language. Derived from Perl V5.8.7. The work-
load includes SpamAssassin, MHonArc (an email indexer), and specdiff (SPEC’s
tool that checks benchmark outputs).

bzip2: C, Compression. Julian Seward’s bzip2 version 1.0.3, modified to do
most work in memory, rather than doing I/O.

gcc: C, C Compiler. Based on gcc Version 3.2, generates code for Opteron.

mcf: C, Combinatorial Optimization. Vehicle scheduling. Uses a network sim-
plex algorithm (which is also used in commercial products) to schedule public
transport.

gobmk: C, Artificial Intelligence. Plays the game of Go, a simply described but
deeply complex game.

hmmer: C, Search Gene Sequence. Protein sequence analysis using profile hid-
den Markov models (profile HMMs).

sjeng: C, Artificial Intelligence: chess. A highly-ranked chess program that also
plays several chess variants.

libquantum: C, Physics / Quantum Computing. Simulates a quantum com-
puter, running Shor’s polynomial-time factorization algorithm.

19

h264ref: C, Video Compression. A reference implementation of H.264/AVC,
encodes a videostream using 2 parameter sets. The H.264/AVC standard is ex-
pected to replace MPEG2.

omnetpp: C++, Discrete Event Simulation. Uses the OMNet++ discrete event
simulator to model a large Ethernet campus network.

astar: C++, Path-finding Algorithms. Pathfinding library for 2D maps, includ-
ing the well known A* algorithm.

xalancbmk: C++, XML Processing. A modified version of Xalan-C++, which
transforms XML documents to other document types.

2.6.2 Floating Point Arithmetics

bwaves: Fortran, Fluid Dynamics. Computes 3D transonic transient laminar
viscous flow.

gamess: Fortran, Quantum Chemistry. Gamess implements a wide range of
quantum chemical computations. For the SPEC workload, self-consistent field
calculations are performed using the Restricted Hartree Fock method, Restricted
open-shell Hartree-Fock, and Multi-Configuration Self-Consistent Field.

milc: C, Physics / Quantum Chromodynamics. A gauge field generating pro-
gram for lattice gauge theory programs with dynamical quarks.

zeusmp: Fortran, Physics / CFD. ZEUS-MP is a computational fluid dynam-
ics code developed at the Laboratory for Computational Astrophysics (NCSA,
University of Illinois at Urbana-Champaign) for the simulation of astrophysical
phenomena.

gromacs: C and Fortran, Biochemistry / Molecular Dynamics. Molecular dy-
namics, i.e. simulate Newtonian equations of motion for hundreds to millions of
particles. The test case simulates protein Lysozyme in a solution.

cactusADM: C and Fortran, Physics / General Relativity. Solves the Einstein
evolution equations using a staggered-leapfrog numerical method.

20

leslie3d: Fortran, Fluid Dynamics. Computational Fluid Dynamics (CFD) using
Large-Eddy Simulations with Linear-Eddy Model in 3D. Uses the MacCormack
Predictor-Corrector time integration scheme.

namd: C++, Biology / Molecular Dynamics. Simulates large biomolecular sys-
tems. The test case has 92,224 atoms of apolipoprotein A-I.

dealII: C++, Finite Element Analysis. C++ program library targeted at adap-
tive finite elements and error estimation. The testcase solves a Helmholtz-type
equation with non-constant coefficients.

soplex: C++, Linear Programming / Optimization. Solves a linear program us-
ing a simplex algorithm and sparse linear algebra. Test cases include railroad
planning and military airlift models.

povray: C++, Image Ray-tracing / Image rendering. The testcase is a 1280×1024
anti-aliased image of a landscape with some abstract objects with textures using a
Perlin noise function.

calculix: C and Fortran, Structural Mechanics. Finite element code for linear
and nonlinear 3D structural applications. Uses the SPOOLES solver library.

GemsFDTD: Fortran, Computational Electromagnetics. Solves the Maxwell
equations in 3D using the finite-difference time-domain (FDTD) method.

tonto: Fortran, Quantum Chemistry. An open source quantum chemistry pack-
age, using an object-oriented design in Fortran 95. The test case places a con-
straint on a molecular Hartree-Fock wavefunction calculation to better match ex-
perimental X-ray diffraction data.

lbm: C, Fluid Dynamics. Implements the “Lattice-Boltzmann Method” to sim-
ulate incompressible fluids in 3D.

wrf: C and Fortran, Weather. Weather modeling from scales of meters to thou-
sands of kilometers. The test case is from a 30km area over 2 days.

sphinx3: C, Speech recognition. A widely-known speech recognition system
from Carnegie Mellon University.

21

Chapter 3

Baseline System

This chapter presents the multicore processor used as baseline in this work. Fig-
ure 3.1 depicts a block diagram of the system, wich consists of four cores, Net-
work On Chip (NoC), and a memory controller. Each core contains a processing
unit, private caches and a prefetching engine. The prefetcher brings blocks from
the main memory to the second level cache (L2). The NoC and the memory con-
troller are two key system resources that are shared among cores. Both of them
have been modeled in detail for the sake of accuracy in the obtained results, since
they have a strong influence on the memory latency perceived by the processor on
a memory access. Table 3.1 shows the configuration parameters of the core, the
interconnection network and the main memory. Main memory parameters have
been set according to a recent commercial MICRON DDR3 memory device [16].

3.1 L2 Prefetching System

The prefetcher modeled is the stride-based prefetcher described in [12]. The basic
idea is to dynamically partition the physical address space in different zones, re-
ferred as CZones, and detect strided references within each of those zones [12,13].
Two memory references are within the same partition if their addresses have the
same tag (higher order) bits. The processor sets the size of the tag by storing a
mask in memory-mapped references.

A Global History Buffer [11] is used to store the tag of the currently active par-
titions. Additionally a stride field is added to maintain the prefetch stride. Strided
references within each partition are dynamically detected by using a finite state
machine (FSM). This FSM verifies whether the last three accesses are offsetted
by a fixed stride. If so, the FSM assumes that a pattern has been detected and
starts prefetching.

The speculative data is fetched and stored in an auxiliary buffer, called stream

22

CORE 0

CORE 1

CORE n

DRAM module

Row buffer

Memory

controller

Channel

PPP RRR

C
o

re
 1

C
o

re
 1

C
o

re
 2

C
o

re
 n

C
o

re
 0

C
o

re
 3

P: prefetch

R: regular

Streams

buffers

streams

detection

hardware

Interconnection

network

Bank

Figure 3.1: Baseline multicore with prefetching components and memory con-
troller.

buffer. Each stream buffer tracks a different stream and consists of a tag, an avail-
able bit, and some data lines of that stream depending on the prefetcher aggres-
siveness. When there is an L1 cache miss, the block is searched both in L2 cache
and in the stream buffers.

Depending on the application, an aggressive prefetch can significantly im-
prove the performance or cause memory contention and degrade performance.
This is why we consider the application behavior to activate or deactivate pre-
fetching depending on the application.

More information about this prefetching mechanism can be found in Sec-
tion 2.4.

3.2 Network-on-Chip
As the core count increases, the NoC is becoming one of the critical components
which determines the overall performance, energy consumption, and reliability
of emerging multicore systems [17–19]. The NoC connects all the on-chip com-
ponents and while it improves CMP scalability, its latency also adds to the total
memory access time, specially with the increasing CMP sizes. On an access that
misses L1 and L2 caches, the main memory is accessed by traversing the NoC
to reach the memory controller. After reading the data from the DRAM, the data

23

take another trip over the NoC to reach back the L2 cache. Clearly, the NoC

Processing core

Cores 4
ISA x86
Frequency 3GHz
Issuing policy Out of order
Branch Predictor bimodal/gshare hybrid: gshare with 14-bit global his-

tory + 16K 2-bit counters, bimodal with 4K 2-bit
counters, and selection with 4K 2-bit counters

Issue/Commit width 4 instructions/cycle
ROB size 256 entries
Load/Store queue 64/48 entries

Cache hierarchy

L1 Icache (private) 32KB, 8ways, 64B-line, 2cc
L1 Dcache (private) 32KB, 8ways, 64B-line, 2cc
L2 (private) 256KB, 16ways, 64B-line, 11cc, 16 MSHR

Prefetching logic

Stream prefetcher 32 16-entry streams in L2
Aggressiveness 4 blocks

Interconnection network

Topology 2D Mesh
Routing X-Y
Input/ouput buffer size 128B
Link bandwidth 64B/cycle

Main memory & memory controller

DRAM bus cycle 1066MHz
DRAM device DDR3 (2133 Mtransfers/cycle)
Latency tRP , tRCD, tCL 13.09ns each
DRAM banks 8
Page size 8KB
Burst length (BL) 8
Scheduling policy FCFS
Row Buffer Policy Close Page

Table 3.1: System configuration.

24

latency plays a significant role in overall memory access latency. This proposal
models a mesh topology tipically implemented in current processors, where each
node consists of a core and a router, being the router connected to neighboring
nodes through links in the two dimensions. Routers are 5 × 5, with four network
ports and one internal port that connects the switch with the core. Contrary to
other well-known simulators, congestion and contention are realistically modeled
as key contributors of the network latency.

3.3 Memory controller and memory organization
After traversing the NoC, memory requests reach the memory controller to access
the main memory. Demand requests and prefetches issued by the processor arrive
to the memory controller and wait in a queue to access the memory.

In our baseline system we assume that the memory controller has a unique
queue for both demand requests and prefetches. To isolate the effect of the re-
duction in issued prefetches the memory controller uses a closed-page row buffer
policy. In addition, requests to main memory are scheduled on a first come first
served basis. The number of bits and their relative order in the memory address
for the address mapping used in DRAM memory accesses is shown in Table 3.2.
Note that the simulated processor’s maximum address space is 4GB, so addresses
are 32 bits wide. In addition, the number of bits for row and column are fixed (de-
vice dependent) and the number of banks in DDR3 is 8. Since the bus used is 64
bits wide the number of bits for the byte offset is also fixed. That limits the num-
ber of ranks and banks that can be addressed. In order to simplify the design and
the result analysis, the system has two ranks and one memory controller/channel.

Row Column Rank Bank Channel Offset
15 10 1 3 0 3

Table 3.2: Main Memory Address Mapping

Both main memory organization and memory controller are key contributors
to the memory latency perceived by the processor [20]. So, again, they need to be
modeled in detail to obtain representative results. To this end, we have linked the
DRAMsim2 [8] simulator to Multi2Sim, to have a detailed multicore simulator
with an accurate DRAM and DRAM controller model. This way allows us to
obtain accurate results of both performance and energy consumption.

25

Chapter 4

Related Work

This chapter describes relevant previous work controlling the aggressiveness of
the prefetcher, the reduction on prefetch requests and other proposals focusing on
multicore systems.

In [13] the AC/DC adaptive method for prefetching data from main memory
to the L2 cache is proposed. Like the mechanism devised in this work, AC/DC
uses concentration zones (also called CZones) [12] that divide memory into fixed
size zones. The mechanism is enhanced to make use of delta correlations to find
access patterns. They propose an adaptive algorithm that dynamically adjusts
the prefetch degree with a range from 2 up to 16. The mechanism provides the
opportunity to turn off the prefetcher but only in those cases where prefetching
hurts performance, but no policy is devised to turn on the prefetcher again.

An adaptive prefetcher is also proposed in [5], which dynamically selects be-
tween five different levels of aggressiveness, ranging from very conservative to
very aggressive. The baseline prefetcher is a stream prefetcher like the used in
this work. Similarly to our work, the prefetcher selects at the end of each sam-
pling interval the aggressiveness for the next interval. For this purpose, accuracy,
lateness, and pollution metrics are used, throttling the aggressiveness level up or
down. This mechanism was extended for multicore purposes in [6], where the
cores use FDP for throttling up/down the prefetcher, but the local decision at each
core can be overridden by the memory controller, which collects global informa-
tion about the memory requirements of each application. Unlike our work, these
proposals always keep the prefetcher enabled, and the metrics used to evaluate the
prefetcher are different.

In FST [21], authors propose a throttling mechanism that limits the number
of memory requests that each application is allowed to launch to the main mem-
ory. Unlike the previous schemes, both regular and prefetch memory requests
are throttled. This mechanism works on global information, such as the interfer-
ence that an application causes to its corunners, or the memory bandwidth each

26

application consumes.
A prefetcher that classifies prefetches according to their impact on perfor-

mance is proposed in [22]. This impact is estimated with a history table that
collects the stall cycles caused by each load. The mechanism prioritizes the pre-
fetches from loads that have caused more stalls. That is, prefetcher is mainly
guided by core performance instead of prefetcher performance.

In [23] a mechanism to determine at runtime the appropriate prefetcher is pro-
posed. It evaluates the accuracy of aggressive offset prefetchers rather than actu-
ally fetching the data into the cache. To do this, each prefetch address is added to
a bloom filter. Each time there is an access, the bloom filter is checked to see if
its address can be found there. In this way the prefetcher accuracy is estimated.
The candidate prefetchers are evaluated one at a time, in a multiplexed fashion,
with the sandbox being reset in between each evaluation. The main drawback of
this mechanism is that the prefetch decisions are taken local to the cores without
considering global system conditions.

Prefetching performance can be also improved by enhancing the policies man-
aging memory requests at the shared resources, that is, the arbiter at the NoC or
the scheduling policy at the memory controller side. Regarding the NoC, some in-
teresting approaches [24, 25] implement virtual channels and dynamically adjust
the priority between regular and prefetch requests coming from multiple cores.
These works are orthogonal to our proposal and can be applied together to further
achieve performance improvements. Regarding the memory controller policies,
recent proposals [26–28] have also focused on multicores. These policies take
into account the prefetcher performance to dynamically select the priority of both
regular and prefetch requests.

27

Chapter 5

Evaluation Methodologies

Multicore processors are dominating the microprocessor market and most re-
search work has moved to this kind of processors. Multicore research methods
are still immature and evolving from the single-threaded processor counterparts.
Three main research issues must be faced when evaluating performance and en-
ergy in multicores.

First, multiple simulation methodologies are being applied to evaluate these
systems, without being an agreement about which to use. Also, simulating these
processors requires methods others than those used in monolithic processors, es-
pecially when running multiprogram workloads. These workloads consist of mixes
composed of multiple benchmarks, each one running simultaneously on a dif-
ferent core. Unlike single-threaded or parallel workloads, the execution time of
the benchmarks composing a multiprogram mix can widely differ among them.
Therefore, things like determining an adequate measurement interval in order to
obtain representative results are not trivial.

Second, due to the nature of multiprogram workloads, new performance met-
rics are required, different from those used in single-thread processors. Since
multiple benchmarks are running concurrently, summarizing performance and en-
ergy is not usally easy, as they often present disparate behaviors. In fact, there is
not a clear agreement but continuous contradictions rise [29, 30] about the proper
metrics to be evaluated. Moreover, in some studies [31, 32] the same index name
(i.e. fairness) is used to refer to distinct metrics.

Finally, multicore processors are really complex systems which require from
sophisticated and complementary (e.g. energy and performance) simulators.

This chapter pursues to help researchers face the three mentioned research
issues.

28

5.1 Single-Threaded Processor Evaluation
A simple and straightforward methodology has been typically used to compare
the performance of single-threaded processors. For a single benchmark, the less
the execution time, the better the performance. Thus, when evaluating a new pro-
posal, it is common to quantify the speedup of the proposed scheme over the same
machine without such modification. Studies typically use a set of applications
taken from benchmark suites, composed of applications and kernels with different
characteristics (memory intensive applications, prefetch friendly, computation in-
tensive, etc.). Different benchmark suites are available and are selected depending
on the target goal of the study. For a set of benchmarks, the performance metrics
usually considered are the geometric mean of the speedups, the IPC throughput
or the hamonic mean of IPCs of all the studied benchmarks, although in some
cases authors interleave or present results for several statistics in the same paper
for the same index. This metrics are valid because the different benchmarks are
run in isolation and therefore they do not interfere with each other. The harmonic
mean should be considered when the evaluated metric represents a rate (e.g. IPC
or instructions per cycle) and the Arithmetic Mean when the analyzed metric is
not a rate (e.g. memory latency).

As computational power of microprocessors evolved with technological ad-
vances and architectural innovations in the last decade, the benchmark suites have
been updated from time to time to be representative; e.g. SPEC92, SPEC95,
SPEC2000, SPEC 2006 [15]. This fact jointly with the detailed modeling of the
major microprocessor components in current simulators makes the long simula-
tion times of recent benchmarks a major concern. Even in the fastest detailed sim-
ulators, the simulation time is many orders of magnitude slower than the hardware
they simulate. Simulation time can grow up to several months when executing a
complete benchmark, thus, several approaches have been proposed to reduce this
time.

The method commonly followed in single-thread research is simply to run
each benchmark for a given number of X instructions (or cycles) after skipping
the first Y millions of instructions. The values ofX and Y widely differ across ex-
isting research work. This method has been typically used in spite of being known
that does not bring representative results of the whole benchmark execution.

To tackle the mentioned shortcomings, some research [33] has focused on
methods to identify the representative sections (simulation points) of a workload.
The goal is to provide highly accurate performance estimates of the complete
program execution using short simulations that start from precalculated simulation
points. When multiple simpoints are used to estimate the performance of a given
benchmark, it must be determined the starting point for those simpoints and the
required simulation length for each one. In addition to setting the granularity,

29

one can also set the ceiling on the maximum number of samples to be simulated.
When using simulation points, the issue of warming up the microarchitectural
structures needs to be dealt with. A typical approach is the use of checkpoints
although other approaches (i.e. stale state and no warm up at all) are also possible.
If checkpoints are supported, then a checkpoint can be made at the start of each
simulation point. This avoids fast-forwarding to each simulation point for each
run of the program. In addition, all of the simulation points can be run in parallel
accelerating the simulation time.

In summary, a common wrong methodology habit in most existing single-
threaded processor studies is the bounded execution time that concentrates in a
small fraction of time at the beginning of the benchmark execution. In addition,
the use of a non-adequate mathematical mean (i.e. harmonic, arithmetic, or ge-
ometric) to evaluate a given performance index can also be observed in some
research.

5.2 Methodologies for Multicores
Simulating in detail multicore processors running multiprogram workloads leads
to what is known as the “simulation wall”, that is, the impossibility of evaluating
in detail the performance of a future many-core system running complex multipro-
gram applications. Usually, the simulator tool runs as a single-threaded process
but simulates a multi-core architecture, say n cores. This means that the simula-
tion takes at least n× longer than in a multi-threaded processor. Also, interactions
in shared resources (e.g. the NoC, last-level caches, memory controllers, etc.)
among the applications running on different cores also account in the simulation
time, increasing it even more.

The advent of multicores has made researchers more concerned with method-
ological problems due to benchmarks presenting different behavior and execution
times. This section summarizes the simulation methodologies commonly adopted
in multicore research and then discusses how they have been used in 2013 top
computer conferences.

5.2.1 Typical Simulation Methodologies
As mentioned above, simulating the entire execution of each benchmark com-
posing the multiprogram workload can take several months to complete. Below
we discuss a representative set of methodologies commonly used to tackle this
problem, most of them generalized from their single-core processor counterparts.

Complete execution. This approach has been applied only in small bench-
marks that can be fully executed. Due to the long time required to perform de-

30

tailed simulation of current benchmarks, only few papers (less than 6.9%) simu-
late benchmarks to completion. These papers use small benchmarks for evaluating
specific parts of the system (e.g. STT-MRAM write energy [34]).

Fast forward plus execution. This method consists in fast forwarding the
initial X instructions of each benchmark and then concurrently executing a set
of Y instructions for each of them. A variant of this approach fast forwards and
executes on the basis of cycles instead of instructions.

Notice that when executing different benchmarks for a target number of in-
structions, due to benchmarks progress at different speeds, some of them finish
earlier than others. Therefore, only a subset of benchmarks is running on the
system in a part of the measurement interval, what can impact the overall per-
formance. Some researchers realized from this situation and the typical adopted
solution is to relaunch or to keep executing these benchmarks. This way keeps
constant the number of running threads until the slowest benchmark finishes its
execution. However, statistics for a given benchmark must be gathered when it
executes the target number of instructions and ignored after this point.

Fast forward plus warm up plus execution. This method consists in warm-
ing up the major microprocessor components (e.g., caches or branch predictors)
after skipping the initial instructions, with the goal of achieving the same system
state as that achieved with normal activity. The performance of these components
usually improves after an initial phase, known as training phase. In this method,
the time used in the warm up is not considered in the statistics.

Representative phases or simpoints. Some research [33] has focused on
methods to identify the representative sections (simulation points) of a workload.
The goal is to provide highly accurate performance estimates of the complete
program execution using short simulations that start from precalculated simula-
tion points. When multiple simpoints are used to estimate the performance of a
given benchmark, it must be determined the starting point and simulation length
required for each simpoint. In addition to setting the granularity, one can also set
the ceiling on the maximum number of samples to be simulated. Although this
approach has been successfully applied to single-threaded simulations, more work
is required to expand their scope to multiprogram workloads. In these workloads,
each benchmark has its own set of representative phases with distinct characteris-
tics (start at different points of time and present different lengths), which should
be taken into account.

5.2.2 Discussion
This section discusses a representative set of the simulation methodologies com-
monly used in current research work on multicore processors with multiprogram
workloads (sample from the HPCA, ISCA, Micro and PACT in 2013).

31

As mentioned above, less than 6.9% of the papers simulate benchmarks to
completion. The remaining studies (i.e. 93%) only evaluate the intervals consid-
ered to be representative of the whole benchmark. A bit less of three quarters of
them (by 70.4%) only simulate a single interval of the benchmark, and the other
30% simulate at least two different slices of the benchmark to reflect distinct rep-
resentative phases of the benchmark execution.

Among those papers simulating a single slice, a very low percentage (around
10%) performs detailed simulation of the initial part of the benchmark (e.g. 4 bil-
lion instructions [35]). The remaining studies fast forward the initial instructions
to skip the initialization part of the benchmark trying to reach a representative
slice of the benchmark execution. Two different approaches can be distinguished
across the revised papers, those that skip the same amount of instructions for all
the benchmarks and those skipping a different number of instructions for each
benchmark to reach a representative simulation point of each benchmark. In addi-
tion, about one third of them (by 31.6%) warms up the major microarchitectural
components after fast forwarding.

An interesting observation is that most of the studies (by 88.26%) implement
some kind of fast forwarding of instructions regardless a single or multiple slices
are simulated.

5.3 Evaluation Indexes for Multiprogram Workloads

5.3.1 Performance Indexes

Commonly some benchmarks run faster on one machine while other benchmarks
run faster on other machine. In such a situation, depending on how we summa-
rize the performance of the benchmark set, we might drawn distinct conclusions.
Different metrics have been proposed for quantifying throughput without a full
agreement on which are the best indicators of throughput in these systems. Some
papers even use several of such metrics. This section gives an overview of the per-
formance metrics that have been used in multicore research. In those cases where
the same index name has been used in different papers but with distinct meanings,
the multiple meanings are discussed.

Instructions per cycle (i.e. IPC) and speedup have been the performance met-
rics commonly used during the last decade to measure the performance of super-
scalar monolithic processors. Due to their basic nature, both of them have been
widely used in its original way in multicore research, the IPC (e.g. [32, 35–38])
to quantify the overall system performance, and the speedup (e.g. [39–43]) to
evaluate the performance increase that a given proposal achieves over a baseline
machine. Equation 5.1 shows the speedup for benchmark i in a set of n bench-

32

marks.

Si =
IPCi,new

IPCi,base

∀i ∈ {1, n} (5.1)

Several indexes have been derived from this metric to be applied in multipro-
gram workloads with the aim of summarizing the performance of the program
mixtures.

Cumulative IPC or IPC throughput [44], as it is named by some authors, is
obtained as the sum of the IPC of all the programs executing concurrently (see
Equation 5.2). This metric is frequently used to evaluate multicore performance,
but it lacks any notion of fairness, so it is possible to “maximize performance” by
favoring high-IPC programs, so it should be used jointly with a fairness metric.

IPCsum =
n∑

i=1

IPCi (5.2)

Harmonic Mean of IPC, shown in Equation 5.3 is used in some papers [30]
to analyze throughput. The reason to use HM instead of other mean is because
IPC is a rate, and HM is the more appropriate mean for rates. Other reason is that
as the harmonic mean tends strongly toward the least elements averaged, it can
introduce the notion of fairness that IPC throughput lacks.

IPChm =
n∑n

i=1
1

IPCi

(5.3)

Arithmetic Mean of Speedups is obtained averaging the speedups (Equa-
tion 5.4) of all the individual benchmarks in a multiprogram workload. As ex-
plained below, this metric is not usually the most adequate.

Sam =

∑n
i=1 Si

n
(5.4)

Geometric Mean of Speedups. This statistic mean, shown in Equation 5.5,
is preferred over Arithmetic Mean when comparing ratios. Since relative per-
formance is always a distribution and not just a number, one should use a mean
adequate to the distribution of the analyzed data. Arithmetic Mean should be used
when the data fit a standard distribution. Geometric Mean is appropriate when
data fit a lognormal distribution. In general is not adequate to use an Arithmetic
Mean on a distribution of ratios, unless the standard deviation is low, since in
general the fitting is better with a lognormal distribution [45].

Sgm = (
n∏

i=1

Si)

1
n

(5.5)

33

Individual Speedup. A large set of research papers consider the Individ-
ual Speedup instead of the raw Speedup. Because of some resources (e.g. last
level caches) being shared among different cores, the performance of a program
executed in a multicore can be strongly influenced by the co-runners (programs
running concurrently with it). This metric estimates how much the performance
for each individual benchmark is affected by its co-runners, by considering both
the IPC of each application in the multiprogram environment and its IPC in stand
alone execution. The Individual Speedup is obtained as the division of the indi-
vidual IPC (of each application in the multiprogram mixture) to the IPC of that
application in isolated execution [29,43,46]. Notice that the IPC of a given bench-
mark in the multiprogram workload is smaller than in isolated execution, thus
some authors (e.g. [32]) refer to this index as Slowdown. Several metrics for the
multiprogram workloads are derived from this index.

ISi =
IPCi,multi

IPCi,alone

∀i ∈ {1, n} (5.6)

Weighted Speedup is the sum of the Individual Speedups of all the workloads
executing concurrently [29, 47]. This index has a similar drawback as the raw
speedup. If there are some applications with high or very high weighted speedup
in a mix, these values can hide the poor performance of others applications in
the same mix. That is, one could obtain a high Weighted Speedup by favoring
selected applications at the expense of others.

WS =
n∑

i=1

ISi (5.7)

Harmonic Mean of Individual Speedups has been used to deal with the
drawbacks of Weighted Speedup (e.g. [44, 48]) because as said, the HM tends
to mitigate the impact of large outliers and aggravate the impact of small ones.

WShm =
n∑n

i=1
1

ISi

(5.8)

Fairness. This metric pursues to estimate to what extent the performance
enhancements are achieved favoring some benchmarks at the cost of others. A
given proposal is fair if it provides similar performance improvements (or losses)
across the multiple applications running concurrently.

With this aim, several indexes have been used in the literature referred to as
either fairness or their complementary, unfairness. For instance, in [31], authors
propose to use Equation 5.9 to estimate unfairness.

Unfairness =
max(ISi)

min(ISj)
∀(i, j) ∈ {1, n} (5.9)

34

Although this metric has been used to effectively design fairness oriented
memory controllers, in [32] it is claimed that this metric has a major shortcoming,
since it only considers the behavior of the outliers, and does not take into account
the average behavior. To deal with this shortcoming, other authors estimate fair-
ness as shown in Equation 5.10, where σS and µS are the standard deviation and
average of the weighted speedups across all individual benchmarks. This formula
uses the so-called coefficient of variation (σ/µ) that measures the variability of
the IS compared to the average IS.

Fairness = 1− σIS
µIS

(5.10)

5.3.2 Understanding Performance Metrics: A Practical Ap-
proach

This section pursues a twofold objective. First, to illustrate how the conclusion
drawn from the performance analysis can differ depending on the metrics used for
comparison purposes. Second, to provide insights about what kind of metrics is
required for the study of multiprogram workloads.

To carry out the analysis we have devised an hypothetical four-core scenario
discussed below. The scenario is presented in two tables and consists of four
four-core machines: a baseline system and three (A, B, and C) machines to be
compared. Each four-core machine runs four applications.

Table 5.1 summarizes the workload characteristics and speedups of machines
A, B, and C. The Benchmark column identifies the evaluated benchmark; when all
benchmarks run concurrently, this column also indicates the core it is assigned to.
Column Baseline IPC shows the IPC of each benchmark both running alone (la-
beled as Alone) and running concurrently (labeled as together) with the remaining
benchmarks. Both results are obtained with the baseline machine. IPC running
alone should always be greater or equal than IPC running together. The Evaluated
Machines IPC column depicts the IPC of the studied benchmarks running concur-
rently in the three evaluated machines. Column Speedup compares the IPC of the
benchmarks running concurrently in machines A, B and C with the IPC obtained
also concurrently but in the baseline machine. Finally, column Weighted Speedup
shows the performance effect of running concurrently the benchmarks in the pro-
posed machines with respect to the alone execution in the baseline machine.

As observed, this scenario assumes that machine A runs applications in core0
and core1 at 70% of their speed in isolated execution in the baseline machine, and
applications in core2 and core3 at 30% (see column Weighted Speedup). System
B and system C run all the concurrent applications at 50% and 30% of the speed
of a single-core machine, respectively. On average, machine A and machine B run

35

Benchmark
Baseline IPC Evaluated Machine IPC

Alone Together A B C

#0 3,00 1,00 2,10 1,50 0,90
#1 2,00 1,00 1,40 1,00 0,60
#2 1,50 1,00 0,45 0,75 0,45
#3 1,00 1,00 0,30 0,50 0,30

Benchmark
Speedup Individual Speedup

SA SB SC ISA ISB ISC

#0 2,10 1,50 0,90 0,70 0,50 0,30
#1 1,40 1,00 0,60 0,70 0,50 0,30
#2 0,45 0,75 0,45 0,30 0,50 0,30
#3 0,30 0,50 0,30 0,30 0,50 0,30

Table 5.1: IPCs and Speedups of the benchmarks in the 4-core compared ma-
chines.

each benchmark at around half its speed (46% and 50%, respectively) with respect
to isolated execution in the baseline machine; however, machine A accelerates
those having higher IPC. Note that since we are averaging IS, a ratio, we should
use the Geometric Mean instead of the arithmetic one.

Table 5.2 summarizes the performance of the compared machines. This ex-
ample shows that best performing machine differs depending on the considered
metric, as discussed below:

• If performance is analyzed considering the Average Speedup (Sam), then
machine A is the best performing one, since it accelerates the execution of
the pair of applications with highest IPC, those running in core0 and core1,
with respect to the other two machines (see Table 5.1 column Speedup).
These values are by 13% and 89% higher than those of machines B and C,
respectively.

• If performance is compared using the Geometric Mean of Speedups (Sgm),
then machine B achieves the best performance, closely followed by machine
A, and both of them clearly outperform machine C.

• If the performance is evaluated using IPCsum, the best performing is A,
followed by B and C, and the differences are significant.

• If IPChm is used, the best performing is clearly B, followed by A and C.

36

Machine Sam Sgm IPCsum IPChm

A 1,06 0,79 4,25 0,59
B 0,94 0,87 3,75 0,80
C 0,56 0,52 2,25 0,48

Machine WS WShm Unfairnessi Fairnessii

A 2,00 0,42 2,33 0,54
B 2,00 0,50 1,00 1,00
C 1,20 0,30 1,00 1,00

i Eq. 5.9 ii Eq. 5.10

Table 5.2: Summarizing performance and fairness metrics in the compared ma-
chines.

• If performance is evaluated with Weighted Speedup (WS), then machines
A and B perform on par.

• If performance is studied using the Harmonic Mean of Weighted Speedup
(WShm), machine B is the best one with WShm = 0.5 and machine C the
worst one with WShm = 0.3. As mentioned above, this metric evaluates
both fairness and performance. In spite of that, machine C, with very good
fairness, scores very low. That is because although WShm can be used to
have a rough estimation of fairness, performance performance presents a
higher weight in the final result.

• Finally, if a pure fairness-oriented approach is used to evaluate the results,
then machine B and C would be selected since both of them perform equally
fairly, regardless the fairness metric used. Notice that both fairness metrics
are consistent since machine A is about twice as unfair (Eq. 5.10) than the
others, and around half as fair (Eq. 5.9) than the other compared machines.

Let us now compare the three machines for a better understanding considering
the different metrics together.

Compared to B, machine A has better performance by 13% in Sam and by
13% in IPCsum. On the other hand, machine B outperforms machine A by 10%
in Sgm, by 36% in IPChm, and by 19% in WShm. Both machines provide the
same WS WS.

When deciding which machine performs better one can choose B, arguing that
both Sam and IPCsum metrics have flaws, because the first one is only valid if the
input data fit a standard distribution and the second one can hide serious fairness

37

problems. Other approach in order to decide is to take fairness into account, and
machine B has clearly more Fairness and less Unfairness. Therefore, one can
safely conclude that machine B is better.

Machine C is clearly the worst performing one since it runs all the benchmarks
at the lowest studied speed. However, if it is compared to machine A with fairness
metrics, then machine C should be selected over machine A, which demonstrates
that using only fairness oriented metrics is not enough and would yield to wrong
conclusions.

According to this example, performance analysis could use i) onlyWShm as it
measures performance and it is affected by fairness or ii) it could combine Fairness
with another metric, like WS, Sgm or even IPCsum.

In summary, there is not a silver bullet. Multiple metrics can be used to mea-
sure performance, some of them combined, but to obtain reliable results, a re-
searcher must know the pros and cons of the used metrics, the measured variable,
and then choose wisely.

5.3.3 Discussion
This section discusses the metrics commonly used to evaluate multicores.

Regarding performance, the indexes presented in Section 5.3.1 quantify the
overall system performance, but depending on the part of the system on which
the proposal focuses, more concrete indexes can be used. For this purpose, we
grouped the commonly used performance metrics in three main categories de-
pending on the part of the system they evaluate: i) overall system performance, ii)
memory performance, and iii) cache performance.

The total execution time of a part of the program is considered in some pa-
pers [49–51] to evaluate the performance of the entire system. However, these
benchmarks are really small and only used to evaluate specific parts of the sys-
tems. For instance, in those papers tackling main memory topics.

In general, overall system performance is commonly measured using IPC-
related metrics, also referred to as throughput metrics, like those presented in
Section 5.3.1. The cumulative IPC is the commonly accepted metric and has been
used in 14 from the 28 revised papers. To compare IPCs or execution times of
different proposals, the speedup and its variants (means) are the common metric
of choice. Speedup-oriented metrics are used in 18 papers and 9 of them also use
the weighted speedup.

In most of the proposals the final aim is to increase or at least maintain the
overall system performance. As discussed above, when evaluating the system
performance also fairness must be considered to demonstrate that the proposal is
not enhancing the overall performance by favoring those benchmarks with highest
IPC. Although this claim is widely accepted by the scientific community, only a

38

few set of research papers evaluate fairness. The main reason is that most fairness
definitions [31, 32] have been recently proposed.

Most of the analyzed publications use throughput-oriented metrics, focusing
on raw speedup (used by 64% of the papers) over weighted speedup, which is
only used in half of these works as a complementary metric to raw speedup. Both
fairness definitions have been equally used across the studied papers.

An important fraction of the research work on multicores has focused on main
memory, since this component becomes a major performance bottleneck in current
multicores due to the limited available bandwidth. Across this work, the memory
bandwidth has been used in 3 ([43,52,53]) of 5 papers focusing on memory topics,
while other specific metrics like the row-buffer hit rate or normalized memory
latency have been used in the other 2 papers [46, 54].

Cache performance, especially the last level cache, has become an important
research topic in the multicore era since a miss in this level incurs long memory
access latencies, which can severely damage the overall system performance. Re-
search work focusing on this topic similarly uses both the MPKI (misses per kilo
instructions) [41, 55] and the LLC miss rate [39, 49, 54, 56, 57].

On the other hand, the power budget is an important design constraint in cur-
rent multicores since it affects energy, package, and cooling costs. Therefore, the
multicore era yields designers to enhance the performance with a reasonable en-
ergy consumption. As researchers are concerned by this critical design issue, most
of the papers (19 from 28) evaluate energy consumption in their proposals, either
dynamic, static, or both [37, 38, 43, 49–51, 56, 58]. Unfortunately, due to the high
complexity of this task and lack of adequate tools, energy consumption is usually
measured taking only into account specific parts of the system, but not the full
system.

5.4 Performance and Power Simulators

Researchers must select an adequate simulation platform to carry out their re-
search, which can vary depending on the goal of study.

In an ideal simulation framework, researchers should use a single tool able to
model the entire system in an accurate manner. In such a case, the obtained results
are representative and less effort is required in comparison to utilizing distinct
simulators, each one modeling a different subsystem.

Considering that the focus of this work is on multicores, the selected simulator
should be at least able to model the core microarchitecture, the caches, the NoC,
the coherence protocol, and the main memory, since these are the fundamental
pillars of the system.

39

Several simulation frameworks have appeared during the last few years. A rep-
resentative set of these tools that can be found in research papers is: Multi2Sim [7],
Sniper [59], MARSSx86 [60], and gem5 [61].

Researchers often find that their simulator does not model a given subsystem
accurately enough, which can provide results that may be far from the real be-
havior of actual systems. Looking at the sample of papers from the 2013 main
conferences, all of them with the only exception of a single paper [62] accurately
model the processor microarchitecture, but other system components receive less
attention. By 40% of the papers use a non-detailed main memory system, even us-
ing a constant main memory access time and only 22% of them model the memory
controller and the NoC in detail. As a rule of thumb, all the subsystems should be
modeled in detail if overall performance metrics are evaluated. Otherwise, i.e if
only the part of the system being analyzed or a subset of the full system are mod-
eled in detail, overall performance results would not be representative. In other
words, if a proposal is being evaluated, the impact of the proposal on the overall
performance cannot be known in a precise and accurate way.

As the transistor features shrink with each technology generation, power con-
sumption has become increasingly important. This has led researchers to estimate
energy in addition to performance. Similarly to the rise of detailed microproces-
sor simulators, a wide set of power simulators has spread over the last few years.
These simulators implement power models of the electronic components that esti-
mate the consumed energy (leakage and dynamic energy) in specific subsystems.
Below we list the main features of a representative subset of these simulators.

CACTI [63] estimates the energy, access time, and cycle time of RAM-based
components (e.g. caches or register files). Orion [64] is a power-performance
interconnection network simulator. It can be used to measure the consumption
in electrical and nanophotonic networks. McPAT [65] models area, power and
timing for the components of a complete chip multiprocessor, including in-order
and out-of-order processor cores, networks-on-chip, shared caches, and integrated
memory controllers for some specific processors. It is tightly coupled with CACTI
to model memory structures. DRAMSim [8] implements detailed models for a va-
riety of existing DRAM devices (e.g. DDR3). It has been designed to simulate
a sophisticated memory system where transactions can be freely re-ordered, the
address mapping scheme can be independently configured, the row buffer man-
agement policy can be independently adjusted, and DRAM refresh policies can
be flexibly implemented or turned off entirely. The DRAM device and system
configurations, timing parameters and power consumption parameters can all be
set independently and adjusted in configuration files.

Multicore simulation infrastructures are usually feed with upon-agreed bench-
marks to measure the performance, energy, and area of the system. As the focus
of this work is on multiprogram workloads where multiple single-threaded pro-

40

Mix Benchmarks

m0 cactusADM hmmer libquantum wrf
m1 tonto h264ref hmmer omnetpp
m2 bwaves gamess GemsFDTD sjeng
m3 astar bzip2 gcc GemsFDTD
m4 gamess GemsFDTD leslie3d wrf
m5 gcc libquantum povray xalancbmk
m6 milc sjeng tonto xalancbmk
m7 bzip2 dealII lbm sjeng

Table 5.3: Four-core mixes composition.

grams run concurrently in the system, researchers must design mixes composed of
several benchmarks. These benchmarks are usually chosen from the SPEC CPU
suite [15].

5.5 Experimental Evaluation
The goal of this section is to experimentally illustrate how the discussed method-
ologies provide different performance and energy results, which do not always
vary in the same way but depend on the workload characteristics.

For illustrative purposes, we considered a typical multicore system consisting
of a tiled 3GHz 4-core chip multiprocessor accordingly to the machine parameters
presented in Table 3.1. A set of eight mixes consisting of four SPEC2006 CPU
benchmarks (see Table 5.3) has been designed to carry out the simulation study.

5.5.1 Effect of the Simulation Methodology on Performance
and Energy

This section explores how performance and energy differ depending on the used
simulation methodology.

Figure 5.1 depicts the cumulative IPC results that different methods provide
across the studied mixes. no FF no WU executes 600M instructions without nei-
ther fast forwarding (FF) nor warming up (WU). FF WU executes 600M instruc-
tions after fast forwarding 500M instructions and then warming up 200M instruc-
tions. FF no WU executes 600M instructions after fast forwarding 500M instruc-
tions, but the warming phase is skipped.

An interesting observation is that no method provides always the highest IPC

41

wrf omnetpp sjeng GemsFDTD wrf xalancbmk xalancbmk sjeng
libquantum hmmer GemsFDTD gcc leslie3d povray tonto lbm

hmmer h264ref gamess bzip2 GemsFDTD libquantum sjeng dealII
cactusADM tonto bwaves astar gamess gcc milc bzip2

0

1

2

3

4

5

6

7

8

9
No FF No WU FF No WU FFWU

C
um

ul
at

iv
e

IP
C

Figure 5.1: Cumulative IPC for three of the studied methods.

but it depends on the workload. For instance, the FF WU method presents the
highest IPC for two mixes, the FF no WU method shows the highest IPC for five
mixes, and even the No FF No WU shows the highest IPC in one mix. Moreover,
IPC deviations between methodologies can be as much as ±30% depending on
the workload.

A similar rationale can be applied to the remaining performance metrics. As
example, Figure 5.2 presents the harmonic mean of weighted speedup comparing
methods across the studied mixes.

On the other hand, since the execution time varies depending on the used
methodology, the consumed energy will also differ. As example, Figure 5.3 shows
the consumed energy (in mJ) in the main memory across the studied mixes. Again,
important differences appear depending on the workload.

These results illustrate the importance of the methodology to obtain repre-
sentative performance and energy results that lead the researcher to draw precise
conclusions. Notice that unlike single-thread research, warming up the major
microprocessor components (FF WU) does not necessarily show higher IPC com-
pared to the no warming up FF No WU method. The main reason is that the
warming up phase is not deterministic since cores advance a different number of
instructions and a different fragment of code is executed.

42

wrf omnetpp sjeng GemsFDTD wrf xalancbmk xalancbmk sjeng
libquantum hmmer GemsFDTD gcc leslie3d povray tonto lbm

hmmer h264ref gamess bzip2 GemsFDTD libquantum sjeng dealII
cactusADM tonto bwaves astar gamess gcc milc bzip2

0

0,2

0,4

0,6

0,8

1

1,2

No FF No WU FF No WU FFWU

H
ar

m
on

ic
M

ea
n

of
 W

ei
gh

te
d

S
pe

ed
up

Figure 5.2: Harmonic mean of weighted speedups for the studied methods.

5.5.2 Effect of Modeling Details on Performance

The aim of this subsection is to illustrate how modeling details affect the per-
formance results. For illustrative purposes, this section focuses on the memory
controller (MC) while keeping the remaining machine as the baseline described
above.

Three different memory controllers have been modeled: constant latency, a
typical in-house MC, and a deeply detailed MC. The first assumes a constant
memory latency and no contention. Two different variants have been tested, one
with 40-cycle (row buffer hit time) and the other with 120-cycle (row buffer miss
time) latencies. The in-house simulator represents a memory controller typically
implemented by researchers. This model includes details such as bank and chan-
nel contention and different access times depending on whether the access hits or
misses in the row buffer. Finally, the realistic MC simulator accurately models
the hardware behavior with DRAM commands for DDR modules, refresh, pow-
erdown, standby, etc. For this purpose we used DRAMsim [8].

Figure 5.4 shows the memory latency for the different MC models with the FF
WU methodology. Two main conclusions can be drawn. First, a constant latency
model is not realistic at all since memory latencies can widely vary. The reason is
that memory contention and row buffer hit ratio strongly depend on the workload
characteristics. Second, although an in-house simulator provides closer results to
the deeply detailed model, significant differences (in excess or in defect) in time

43

N
o
F
F
N
o
W
U

F
F
N
o
W
U

F
F
W
U

N
o
F
F
N
o
W
U

F
F
N
o
W
U

F
F
W
U

N
o
F
F
N
o
W
U

F
F
N
o
W
U

F
F
W
U

N
o
F
F
N
o
W
U

F
F
N
o
W
U

F
F
W
U

N
o
F
F
N
o
W
U

F
F
N
o
W
U

F
F
W
U

N
o
F
F
N
o
W
U

F
F
N
o
W
U

F
F
W
U

N
o
F
F
N
o
W
U

F
F
N
o
W
U

F
F
W
U

N
o
F
F
N
o
W
U

F
F
N
o
W
U

F
F
W
U

wl0 wl1 wl2 wl3 wl4 wl5 wl6 wl7

0

200

400

600

800

1000

1200

1400

1600

1800
Refresh Burst Background ACT PRE

E
n
e
rg
y
(m
J)

Figure 5.3: Effect of applied methodology on main memory energy consumption.

wrf omnetpp sjeng GemsFDTD wrf xalancbmk xalancbmk sjeng
libquantum hmmer GemsFDTD gcc leslie3d povray tonto lbm

hmmer h264ref gamess bzip2 GemsFDTD libquantum sjeng dealII
cactusADM tonto bwaves astar gamess gcc milc bzip2

0

50

100

150

200

250
FIXED 40 Fixed 120 Inhouse Dramsim

A
ve

ra
ge

 M
ai

n
M

em
or

y
 L

at
en

cy

Figure 5.4: Memory latencies for the studied memory controllers.

still rise. Moreover, since the execution time differs, the use of different models
will affect the performance and consumed energy as discussed above.

44

5.6 Summary
This chapter has studied a sample of 28 papers published in 2013 in top computer
architecture conferences and has shown that there exists wide disparity among
evaluation research methodologies, performance and energy metrics, and simula-
tor environment characteristics used in multicore research. The aim of the work
presented is to provide some guidelines to help researchers to carry out their re-
search on multicores.

Regarding methodologies, we have proven that results can differ in a signif-
icant percentage depending on the metric used. Taking into account that a sig-
nificant amount of proposals achieve benefits falling in between 3% and 5%, re-
searchers should use the most representative methodology in order to obtain ac-
curate results.

On the other hand, we have demonstrated that depending on the metrics used,
the results of research study and therefore the conclusions, can widely differ.

Finally, regarding simulation frameworks, this paper has shown the impor-
tance of selecting not only a detailed performance simulator for the processor but
also the selection of complementary tools for energy and/or performance of spe-
cific subsystems (e.g. main memory).

45

Chapter 6

Characterization Study And
Prefetcher Proposal

This chapter presents a characterization study of some benchmarks from SPEC2006
benchmark suite. Building on the obtained results, an adaptive prefetching mech-
anism that throttles up/down its aggressiveness and also disables when no perfor-
mance benefits are expected is introduced. A system with the proposed prefetcher
is compared to i) the same system without prefetching enabled ii) with an aggres-
sive prefetching scheme and iii) with other state-of-the-art adaptive approach.

6.1 Characterization Study

This section characterizes how prefetching affects the dynamic memory behavior
of the applications and analyzes how this behavior impacts on performance (i.e.
IPC). To analyze this relationship, all the benchmarks have been run in stand-alone
execution in a system with and without prefetching1.

Benchmarks have been classified in four main categories by combining the
behavior of two main performance metrics, i) how prefetching affects the IPC, and
ii) the memory activity of the application. For illustrative purposes, Figure 6.1 and
Figure 6.2 show examples of benchmarks belonging to the different categories.
Each graph shows the IPC evolution (left Y axis) across the execution time in
500K-instruction intervals with prefetching and without prefetching. To analyze
the relationship with the memory behavior, the cumulative amount of memory
accesses (right Y axis) is also shown in the same plot using a logarithmic scale.

Below, the main characteristics of each category are discussed:

1The results have been obtained with the system described in Chapter 3, with the prefetcher
enabled or disabled.

46

102

103

104

105

106

107

C
u
m

u
la

ti
v
e
 M

e
m

o
ry

 A
cc

e
ss

e
s

0 1 2 3 4 5
Instructions 1e8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

IP
C

IPC No Pref
IPC Pref

Accesses Pref
Accesses No Pref
Accesses Pref
Accesses No Pref

(a) Category 1: zeusmp

102

103

104

105

106

107

C
u
m

u
la

ti
v
e
 M

e
m

o
ry

 A
cc

e
ss

e
s

0 1 2 3 4 5
Instructions 1e8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

IP
C

IPC No Pref
IPC Pref

Accesses Pref
Accesses No Pref
Accesses Pref
Accesses No Pref

(b) Category 2: cactusADM

Figure 6.1: Characterization study. Categories 1 and 2.

• Category 1. This category includes memory intensive applications (e.g.
number of memory accesses in the interval greater than 105 in a notice-
able amount of execution intervals) which also present a significant amount
of execution phases where prefetching does not improve the performance.
Examples of these applications are xalancbmk and zeusmp (see Fig-
ure 6.1a). As it can be seen, zeusmp is very memory intensive at the end
of the execution, and that causes a sharp IPC drop (below 0.5).

• Category 2. This group includes memory intensive applications where pre-
fetching brings performance increases during almost all the execution time.
Examples of benchmarks in this category are hmmer and cactusADM (see
Figure 6.1b). As can be seen, the IPC of cactusADM drops below 0.5 be-
yond the 2× 108 interval, due to the increase in the memory activity.

47

102

103

104

105

106

107

C
u
m

u
la

ti
v
e
 M

e
m

o
ry

 A
cc

e
ss

e
s

0 1 2 3 4 5
Instructions 1e8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

IP
C

IPC No Pref
IPC Pref

Accesses Pref
Accesses No Pref
Accesses Pref
Accesses No Pref

(a) Category 3: povray

102

103

104

105

106

107

C
u
m

u
la

ti
v
e
 M

e
m

o
ry

 A
cc

e
ss

e
s

0 1 2 3 4 5
Instructions 1e8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

IP
C

IPC No Pref
IPC Pref

Accesses Pref
Accesses No Pref
Accesses Pref
Accesses No Pref

(b) Category 4: namd

Figure 6.2: Characterization study. Categories 3 and 4.

• Category 3. Applications falling in this category neither are benefited by
prefetching nor are memory intensive (there are not important IPC drops due
to the memory activity). Some benchmarks in this category are gamess
and povray. The latter shown in Figure 6.2a.

• Category 4. This category includes non memory intensive applications in
which prefetching is capable of boosting the performance. Some examples
are tonto and namd (see Figure 6.2b).

Applications from the first group could turn off the prefetcher with minimal or
scarce performance loss, since there are execution phases where prefetching only
slightly affects the performance but consumes memory bandwidth. Notice that at
the end of the execution a noticeable amount (log scale) of prefetch requests bring

48

minor performance benefits. The second category includes those applications that
are extremely benefited by prefetching, thus prefetching should not be deactivated
along their execution. The third group is composed of applications in which pre-
fetching can be disabled in almost all the execution time, but as they do not trigger
a significant amount of prefetches, the expected outcome on performance of dis-
abling the prefetcher will be low. Finally, the fourth group includes those memory
intensive applications where prefetching boosts the performance. These applica-
tions do not have a high number of useless prefetches since the total amount of
prefetches is relatively low, thus deactivating the prefetcher is not a good choice,
since performance would drop without a noticeable traffic reduction.

6.2 Proposed Prefetching Scheme
The characterization study has shown that prefetching can be deactivated across
different execution phases of the applications; at the same time, aggressive pre-
fetching must be allowed in some intervals of the execution to boost the perfor-
mance. Thus, existing adaptive prefetching approaches should be carefully en-
hanced to allow the prefetcher deactivation, taking into account the global main
memory needs. This may bring important traffic savings (and consequently energy
savings) while not affecting the performance or even improving it.

In other words, when prefetching is not properly working, the best solution to
address performance and energy is to deactivate it. The key challenge that arises
in the design of the deactivation policy is to decide when to activate the prefetcher
again if the prefetcher is turned off, because when prefetching is disabled, there is
no information related to the prefetcher accuracy. To deal with this shortcoming,
this approach relies on core related metrics (e.g. ROB stalls).

The proposed activation and deactivation policies are applied to each individ-
ual core, considering both local and global information. The latter, is mainly sup-
plied by the memory controller, which has a complete view of the system, since it
is aware of the overall memory requirements of each core. With this information,
the devised deactivation policy estimates which cores need more bandwidth and
which ones are consuming bandwidth in excess, leading to a more effective and
fairer prefetching scheme.

Basically, the prefetcher is deactivated when it is estimated that prefetches
from that core are not improving the performance (i.e. low or very low accuracy),
and activated when the mechanism estimates that prefetching is going to enhance
the performance. The global information is used, when bandwidth is a scarce
resource, to force the local prefetcher to throttle down or to turn it off with the aim
of increasing the available bandwidth for other cores. The inputs needed by the
devised policies are gathered during fixed-length intervals (e.g. 100K processor

49

Algorithm 1: Deactivation/throttling algorithm.
if corunners need more bandwidth
then

reduce prefetch aggressiveness; // trans. 1
if (low or very low accuracy) and low coverage
then

disable prefetch; // trans. 2
end

end
else
end
if low coverage
then

increase prefetch aggressiveness; // trans. 3
end

cycles); at the end of the interval a decision for each core is taken and applied
for the next interval. Next we detail the two proposed policies, one applied when
prefetcher is active for deactivating it or adjusting its aggressiveness and the other
applied when prefetcher is off to decide when activating it.

Deactivation/throttling policy. Algorithm 1 is applied when prefetching is ac-
tive. It deactivates or throttles up/down the prefetcher. When prefetching is en-
abled, this policy is applied at the end of each interval to decide the proper ag-
gressiveness level for the next interval. Next, we describe the metrics used by the
algorithm to choose the optimal prefetcher aggressiveness:

• Amount of L2 cache misses due to demand requests2 saved by prefetches
during the current interval for this core, usually referred to as prefetch cov-
erage.

• Prefetcher accuracy, that is, the percentage of prefetched blocks that are
used by the core.

• Traffic in the main memory controller for each core and each bank, esti-
mated by BWNO3 [6].

2Since our system does not include L1 prefetchers, all L2 misses are caused by on demand
requests.

3Bandwidth Needed by Others, where others refers the application corunners. Estimated as the
average number of banks other cores are waiting in.

50

Algorithm 2: Activation algorithm.
if sudden rise in # of misses or // act. cond. 1
high ROB stall (in %) or // act. cond. 2
sudden IPC drop // act. cond. 3

then
if corunners do not need more bandwidth

then
activate prefetcher; // trans. 4

end
end

As observed, when the running applications need more bandwidth, the core
aggressiveness is reduced (labeled as transition 1 in Figure 6.3) and disabled in
case of low coverage and accuracy (transition 2). The main aim is to perform
a fair distribution of the memory bandwidth, and reduce the number of prefetch
requests in those cores whose performance is not being benefited by prefetches.
If corunners do not need more bandwidth (i.e. if there is spare bandwidth avail-
able) and the prefetcher is showing low coverage, then the prefetcher throttles up
(transition 3) to improve the coverage.

Activation policy. This policy is applied at the end of each interval if the pre-
fetcher is disabled in order to decide whether or not it should be reactivated. Al-
gorithm 2 presents the devised activation rules. This policy must be smarter than
the previous one since, as the prefetcher is not enabled, no information can be
gathered to check its behavior.

Without information from the prefetcher, the proposal makes use of core per-
formance metrics to guess if prefetching would be effective in the next execution
interval. The prefetcher is activated in case of i) there is a scarce bandwidth avail-
ability and ii) prefetching benefits are predicted. The prediction relies on three
independent conditions, and at least one of them must be fulfilled in order to reac-

Figure 6.3: ADP state transitions. Transitions on the edges correspond to the
transitions in Algorithm 1 and Algorithm 2.

51

tivate the prefetcher (labeled as transition 4 in Figure 6.3). Below, these conditions
are discussed.

• First condition. The performance of a given processor is strongly related
to the number of LLC4 misses due to the huge latencies of accessing the
main memory. Taking this fact into account, this condition checks if the
number of L2 cache misses during the current interval has exceeded a given
threshold with respect to the last interval the prefetcher was active.

• Second condition. The percentage of cycles that the core is stalled is an-
other major performance indicator. Core stall cycles refer to cycles where
the ROB is blocked, so the core cannot follow decoding instructions. To
implement the devised activation policy, we focus on the percentage of stall
cycles caused by memory instructions. If this percentage surpasses certain
threshold, it means that core performance is suffering and the main reason is
likely to be the long time that memory instructions take to complete. There-
fore, reactivating the prefetch mechanism could help, as it may reduce that
time.

• Third condition. The aim of this condition is to correct possible inaccu-
rate decisions taken by the deactivation policy. To this end, it checks if
performance (i.e. IPC) has suddenly dropped below a given threshold after
deactivating the prefetcher. On such a case, it is reactivated again.

Notice that the proposal requires to add very little extra hardware in order to
measure the performance of the core and much of it is based on existing hard-
ware [66] already located at the multicore tiles.

Figure 6.3 represents the finite state machine corresponding to all the states
of the ADP prefetcher. Each node represents a prefetcher aggressiveness level
and arcs represent transitions among these levels levels. These transitions refer
to three discussed transitions discussed in the deactivation and activation policies,
shown in algorithms 1 and 2. Medium and maximum aggressiveness level have
been assumed as two and four blocks for the experiments.

6.3 Evaluation Methodology
Experiments have been performed with multiprogrammed workloads composed
of applications from the SPEC2006 benchmark suite. Each application was ran
until it executed 300M instructions after a fast forward phase of 500M instruc-
tions.

4The L2 in our system.

52

Based on the characterization study presented in Section 6.1, a set of mixes
has been designed to study the effects of prefetching on performance and energy
in two main scenarios: under normal conditions and in extreme conditions stress-
ing the main memory. To evaluate the first scenario mixes were designed with
benchmarks randomly chosen from the characterized categories. To evaluate the
second scenario, the designed mixes only include memory intensive applications
from category 1 and category 2. We refer to the first type of mixes as combined
and to the second type as memory intensive. Table 6.1 shows the mixes composi-
tion. Combined mixes include mixes from m0 to m3 and memory-intensive mixes
from m4 to m7.

Mix type Mix Benchmarks (categories)

Combined

m0 tonto (4) h264ref (3) hmmer (2) omnetpp (1)
m1 bwaves (2) gamess (3) Gems (3) sjeng (3)
m2 astar (1) bzip2 (1) gcc (2) Gems (3)
m3 gamess (3) Gems (3) leslie3d (2) wrf (2)

Memory
Intensive

m4 xalancbmk (1) gcc (2) gobmk (2) dealII (1)
m5 leslie3d (2) dealII (1) soplex (2) gromacs (2)
m6 mcf (2) soplex (2) perlbench (2) xalancbmk (1)
m7 dealII (1) soplex (2) xalancbmk (1) gobmk (2)

Table 6.1: Mix composition.

Thresholds

Very low
Accuracy

Low
Accuracy

Medium
Accuracy

High
Accuracy

IPC drop

< 20% < 40% < 80% ≥ 80% > 10%

Low Coverage Rise in misses High % ROB
stall

High BWNO

< 30% > 15% > 60% > 2.75 banks

Table 6.2: Thresholds used in ADP.

6.4 Experimental Evaluation
To evaluate the proposed prefetcher, ADP is compared against no prefetching and
two other prefetching schemes: HPAC, where throttling up and down policies are

53

used to control the prefetcher aggressiveness, and an aggressive prefetcher that
is never deactivated nor throttled. The adaptive prefetching schemes (HPAC and
ADP) use 2-block and 4-block as medium and high aggressiveness levels, respec-
tively. The lowest aggressiveness level is assumed to be 1-block for HPAC, while
ADP completely deactivates the prefetcher. The threshold values used in the ex-
periments for Algorithm 1 and Algorithm 2 are shown in Table 6.2. Parameters
were empirically determined using a limited number of simulation runs and opti-
mized to reduce the number of memory accesses.

6.4.1 Performance Analysis
This section analyzes the benefits of the studied prefetching schemes on perfor-
mance. Before studying the behavior of the prefetching approaches on the multi-
core processor, we explore how these approaches behave on applications in stand-
alone execution. That is, with no interference among the memory requests of the
multiple co-running applications. Figure 6.4 shows the results.

Figure 6.4: Performance of prefetchers running benchmarks in isolation.

As observed, aggressive prefetching can bring important performance ben-
efits in most of the applications, which are on average by 16% and can be as
high as 34% in some applications in the machine configuration studied in this
Master’s Thesis. Notice that in memory intensive applications (e.g. bwaves and
leslie3d), the benefits of the aggressive prefetcher on performance are surpassed
by the adaptive approaches. This means that aggressive prefetching suffers with

54

low memory bandwidth, whose availability is scarce in current multicores, hence
adaptive prefetchers are required. Therefore, from now on, the analysis will focus
on the multicore processor described above.

Figure 6.5 shows the Cumulative IPC achieved by the studied approaches
across the designed mixes and Figure 6.6 shows the Harmonic Mean of IPC for
each mix. In both figures No pref and Pref refer to the non-prefetching and
always prefetching (i.e. aggressive prefetcher) with 4-block hardwired aggressive-
ness, respectively, while HPAC and ADP refer to the adaptive approaches. The
plots also present the average values for combined mixes (HM0–3), memory in-
tensive mixes (HM3–7) and for all the mixes (HM).

0

1

2

3

4

5

6

7

8

9
No pref Pref HPAC ADP

C
u
m

u
la

ti
ve

IP
C

 m0 m1 m2 m3 m4 m5 m6 m7 HM0-3 HM4-7 HM

Figure 6.5: Cumulative IPC per Workload.

If performance is analyzed with Cumulative IPC then, in general, having the
prefetcher always active brings performance improvements for combined mixes,
but has no effect (m4 and m5) or even decreases performance (m6 and m7) for
memory intensive mixes. This behavior is expected, as the huge memory con-
tention in m4–m6 makes harder for the prefetcher to bring blocks in time, and the
extra memory accesses delay demand requests.

Consequently, the adaptive approaches, which stress less the memory hierar-
chy, perform significantly better both for combined and memory intensive mixes.

Compared to HPAC, the proposed approach achieves better performance re-
gardless the type of mix. ADP increases Cumulative IPC by 4.46% on average
with respect to the non-prefetching scheme while HPAC by 1.25%. In combined
mixes, ADP obtains the highest performance across all the mixes but for m1,

55

where performance is slightly lower. In memory intensive mixes, APD is always
better than HPCA. Moreover, it is the only approach whose performance is equal
or greater with respect to no prefetching in mixes m6 and m7.

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80
No pref Pref HPAC ADP

H
a
rm

o
n
ic

M
e
a
n

o
f

IP
C

m0 m1 m2 m3 m4 m5 m6 m7 HM0-3 HM4-7 HM

Figure 6.6: Harmonic Mean of IPC per Workload.

If performance is analyzed by Harmonic Mean of IPC (see Figure 6.6) the re-
sults are very similar. One significant difference between both figures is that the
aggressive prefetcher obtains slightly better relative overall results if performance
is measured using Harmonic Mean of IPC. Notice that this is caused by the low
results obtained by the non prefetching approach for combined mixes. The dif-
ference in the relative results of figures 6.5 and 6.6, are because Cumulative IPC
hides a lack of fairness that the Harmonic Mean of IPC, that tends to the least
value averaged, exposes (see Section 5.3.1).

However, the conclusion is the same, ADP consistently obtains the highest
performance, overcoming the problems of aggressively prefetching.

6.4.2 Prefetches Reduction Analysis
This section quantifies the reduction on the number of prefetches accomplished
by the adaptive approaches with respect to the Pref approach.

Figure 6.7 shows the memory requests increase of the prefetching schemes
compared to the non-prefetching approach. Keeping the aggressiveness high im-
proves timeliness but consumes more bandwidth, and that can strangle the perfor-
mance in memory intensive mixes. As observed, the adaptive approaches consis-

56

Mix0 Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 Avg0-3Avg4-7Avg0-7
0%

10%

20%

30%

40%

50%

60%

70%

80%
Pref HPAC ADP

In
cr
e
a
se

in
re
q
u
e
st
s

Figure 6.7: Requests increase of the studied prefetchers over no prefetching.

tently reduce the number of accesses across all the mixes with respect to always
prefetching. Aggressive prefetching increases the amount of memory requests on
average over no prefetching by 50%. In contrast, ADP and HPAC reduce that
increase by one third and two thirds, respectively, with respect to aggressive pre-
fetching.

To provide insights in this significant reduction, the percentage of time that
each adaptive prefetching scheme spends in each state (i.e. aggressiveness level)
has been analyzed. For illustrative purposes, Figure 6.8a presents the results for
a combined mix (m2) and Figure 6.8b for a memory intensive mix (m7). Each
bar presents the percentage of time the prefetcher of a core spends in each aggres-
siveness level (minimum, medium and maximum). Remember that the minimum
aggressiveness is 1-block for HPAC and 0-block (i.e. deactivated) for ADP. In
mix 2, a memory intensive application (category 2) runs in core 0 while applica-
tions running in the remaining cores belong to category 3 (scarcely benefited by
prefetching). As observed, ADP disables the prefetcher by 82% of time in the
memory intensive application (the one running in core 0). Notice that this time is
even higher than the time HPAC keeps the prefetcher with 1-block aggressiveness
(by 73%). Both approaches work well for this application since the highest ag-
gressiveness is not triggered. Overall, memory bandwidth is a performance limiter
in this mix, as it can be deduced by the relatively low achieved IPC. Therefore,
it could be said that the lower percentage of time of ADP in maximum aggres-
siveness level in the remaining applications (core 1 to core 3) helps improve the

57

HPAC ADP HPAC ADP HPAC ADP HPAC ADP
Core0 Core1 Core2 Core3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
MAX MED MIN

P
e
rc
e
n
ta
g
e
in

e
a
ch

st
a
te

(a) Mix m2

HPAC ADP HPAC ADP HPAC ADP HPAC ADP
Core0 Core1 Core2 Core3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
MAX MED MIN

P
e
rc
e
n
ta
g
e
in

e
a
ch

st
a
te

(b) Mix m7

Figure 6.8: Fraction of time spent in each state for HPAC and ADP.

performance. Regarding the memory intensive mix m7, it can be observed that
cores with ADP prefetcher scarcely trigger the highest 4-block aggressiveness.
However, HPAC enables the highest aggressiveness always above 12% of the ex-
ecution time in core 0 to core 2, and above 50% in core 3, in spite of the scarce
bandwidth. Consequently, performance of HPAC is on pair with the non prefetch-
ing approach, and what is worse, the extra memory accesses will have a negative
impact on the consumed DRAM energy as discussed below.

6.4.3 Energy Analysis

This section analyzes the main memory energy consumption of the studied sche-
mes, which as mentioned above, represents almost half of the energy consumed

58

by the entire system. Figure 6.9 presents the energy results5 broken down in four
components depending on the memory activity that consumes the energy: i) acti-
vation and precharge, ii) background energy, iii) data bursts, and iv) refresh. The
first component accounts for the energy consumed activating rows for reads and
writes, plus the energy consumed due to precharging the bitlines. The second
component refers to the energy consumed in background to keep memory devices
powered on. Burst energy is consumed when data are being transferred by the
memory bus in write and read operations. Finally, refresh energy is required to
avoid capacitors loose the stored value as time passes.

N
o
Pr
e
f

Pr
e
f

H
PA
C

A
D
P

N
o
Pr
e
f

Pr
e
f

H
PA
C

A
D
P

N
o
Pr
e
f

Pr
e
f

H
PA
C

A
D
P

N
o
Pr
e
f

Pr
e
f

H
PA
C

A
D
P

N
o
Pr
e
f

Pr
e
f

H
PA
C

A
D
P

N
o
Pr
e
f

Pr
e
f

H
PA
C

A
D
P

N
o
Pr
e
f

Pr
e
f

H
PA
C

A
D
P

N
o
Pr
e
f

Pr
e
f

H
PA
C

A
D
P

N
o
Pr
e
f

Pr
e
f

H
PA
C

A
D
P

N
o
Pr
e
f

Pr
e
f

H
PA
C

A
D
P

N
o
Pr
e
f

Pr
e
f

H
PA
C

A
D
P

Mix0 Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 Avg0-3 Avg4-7 Avg0-7

0

100

200

300

400

500

600

Refresh Burst Background

Act + Pre

E
ne

rg
y

co
ns

um
pt

io
n

(m
J)

Figure 6.9: Energy consumption of the prefetching mechanisms.

On average, the aggressive prefetcher increases energy consumption by 20%
over the non prefetching scheme. This expense in energy may be unacceptable,
especially taking into account that aggressive prefetching can damage the per-
formance in memory intensive mixes. An interesting observation is that ADP
achieves the aforementioned performance gains with a minimal impact (by 3%)
on energy, which is much lower (by 12%) than the adaptive HPAC prefetcher.

5Unlike IPC and memory requests which are gathered when the benchmark commits 300-
million instructions (see Section 6.3), energy consumption is gathered at the end of the mix exe-
cution for simplification purposes. Therefore, this energy also considers those memory requests
performed from individual statistics (IPC and memory requests) were gathered until the workload
execution finishes.

59

6.5 Summary
This work has characterized the dynamic memory and prefetching behavior of
the SPEC 2006 benchmarks across their execution time and analyzed their ef-
fect on performance. Results show that prefetching brings important performance
improvements in some phases of their execution while in others it scarcely or
negatively affects the performance.

This chapter has presented the adaptive ADP prefetching that implements de-
activation and activation policies. The proposed prefetching mechanism has two
main aims: to work in extreme conditions with scarce memory bandwidth, and
to deal with main memory energy consumption. The main goal is to keep the
prefetcher active when it benefits the global performance, and either throttling
it down or deactivating it on the opposite case, so avoiding harmful prefetcher
activity.

The key challenge of the proposal is the lack of information to turn on the
prefetcher when it is deactivated. To this end, unlike previous approaches, ex-
ternal information to the prefetcher is also used, e.g. the percentage of ROB stall
cycles. In addition, global information from the memory controller to check the
interference among the running applications is also considered.

We have compared ADP both against an aggressive prefetcher and HPAC, a
state-of-the-art throttling approach. Results show that ADP efficiently reduces
memory traffic, which allows it to efficiently work in scarce memory bandwidth
scenarios. ADP reduces the amount of memory requests by 68% with respect to
an aggressive prefetcher while the reduction achieved by HPAC is only around
32%. Regarding performance, ADP speeds up memory intensive mixes by 5.9%
while HPAC only improves the performance by 1.6% with respect to the non-
prefetching scheme. Moreover, the proposal achieves important main memory
energy savings by reducing the amount of main memory requests, and also due to
performance improvements and therefore reducing the workload execution time.
On average, main memory energy consumption increases only by 3% with respect
to no prefetching while this percentage rises up to 12% and 20% in HPAC and
aggressive approaches, respectively.

60

61

Chapter 7

Conclusions

The main focus of this Master’s Thesis has been on hardware prefetchers for mul-
ticore processors. For this purpose, we have first characterized the dynamic mem-
ory and prefetching behavior of the SPEC 2006 benchmark suite across their exe-
cution time and analyzed their effect on performance. The study showed that not
all the applications benefit from aggressive prefetching but it can hurt the system
performance as well as rise energy consumption. These two issues become critical
in multicores when prefetch requests from multiple applications compete among
them for shared resources, especially main memory bandwidth.

Based on this study this Master’s Thesis has proposed ADP adaptive pre-
fetcher, which implements deactivation and activation policies for specific cores
of the system. The proposed prefetching mechanisms allow the system i) to work
in extreme conditions with scarce main memory bandwidth, and ii) to deal with
main memory energy consumption while providing performance results on par
with state-of-art adaptive prefetchers.

On the other hand, performance evaluation methodologies in multicore proces-
sors are still evolving are there is not a common trend among published papers in
top conferences. To determine an adequate method for evaluation purposes, this
work has presented an study of a sample of 28 papers published in 2013 in top
computer architecture conferences and has shown that there exists wide disparity
among evaluation research methodologies, performance and energy metrics, and
simulator environment characteristics used in multicore research, providing some
guidelines to help researchers to approach multicore research.

The proposed prefetching engines have been implemented and evaluated on
top of extensively used simulation tools. In addition, important system com-
ponents (e.g. coherence protocol, memory controller, etc.) have been properly
adapted or added (e.g. prefetch buffers) to support the designed prefetchers. The
devised memory controllers and prefetchers have been also used to carry out the
study of performance methodologies.

62

7.1 Contributions
This Master Thesis has three main contributions regarding prefetching and multi-
core research.

The major contribution has been the ADP adaptive prefetcher for multicores.
The proposal has been compared both against an aggressive prefetcher and HPAC,
a state-of-the-art throttling approach. Results show that ADP efficiently reduces
memory traffic, which allows it to efficiently work in scarce memory bandwidth
scenarios. ADP reduces the amount of memory requests by 68% with respect to
an aggressive prefetcher while the reduction achieved by HPAC is only around
32%. Regarding performance, ADP speeds up memory intensive mixes by 5.9%
while HPAC only improves the performance by 1.6% with respect to the non-
prefetching scheme. Moreover, the proposal achieves important main memory
energy savings by reducing the amount of main memory requests, and also due to
performance improvements and therefore reducing the workload execution time.
On average, main memory energy consumption increases only by 3% with respect
to no prefetching while this percentage rises up to 12% and 20% in HPAC and
aggressive approaches, respectively.

The second contribution of this work has been the characterization of the
SEC2006 benchmark suite with respect to prefetch sensitivity and memory usage.
Results have shown that prefetching brings important performance improvements
in some phases of their execution while in others it scarcely or negatively affects
the performance. This allows benchmarks to be classified in four main categories
attending to how prefetching affects the IPC and how memory intensive is the
application.

Finally, the third contribution has focused on multicore evaluation method-
ologies. We have proved that results can differ in a significant percentage de-
pending on the metric used. Taking into account that most proposals achieve
benefits falling in between 3 and 5%, researchers should use the most representa-
tive methodology in order to obtain accurate results. On the other hand, we have
demonstrated that when deciding what is the best performing machine, depending
on the metrics used the results can vary. So an adequate metric is necessary. Re-
garding the simulation environment for obtaining experimental results, this work
has demonstrated the importance of selecting not only a detailed performance sim-
ulator for the processor but also the selection of complementary tools for energy
and/or performance of specific subsystems (e.g. main memory).

The research work presented in this Thesis has been published and submitted
to the following conferences:

• V. Selfa, P. Navarro, C. Gómez, M. Gómez, J. Sahuquillo, “Diseño de
mecanismos de prebúsqueda adaptativa bajo gestión eficiente de memoria

63

para procesadores multinúcleo”, In XXIV Jornadas de Paralelismo (JP2013),
pages 43–48, Madrid, Spain, 2013.

• V. Selfa, P. Navarro, C. Gómez, M. Gómez, J. Sahuquillo, “Methodolo-
gies and performance metrics to evaluate multiprogram workloads”, 23rd
Annual Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP), Turku, Finland, March 4–7, 2015, Sub-
mitted.

• P. Navarro, V. Selfa, C. Gómez, M. Gómez, J. Sahuquillo, “Row Tables: De-
sign Choices to Exploit Bank Locality in Multiprogram Workloads”, 23rd
Annual Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP), Turku, Finland, March 4–7, 2015, Sub-
mitted.

• V. Selfa, P. Navarro, C. Gómez, M. Gómez, J. Sahuquillo, “Improving the
use of memory bandwidth with adaptive prefetching”, 21st IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
Bay Area, CA, USA, February 2015. To be submitted.

7.2 Future Work
As for future work we plan to extend the prefetching engine presented in this
work in several directions to reach the PhD Thesis. Below we summarize the
main directions.

• Multithreaded workloads. Prefetching in multithreaded workloads present
different behavior to multiprogrammed workloads mainly due to synchro-
nization points like barriers and locks. We plan to characterize the prefetch
and memory behavior of multithreaded applications such as SPLASH and
PARSEC benchmarks suites and to apply the results for adapt our proposed
prefetcher to this kind of applications.

• Prefetching in L2 caches instead of independent buffers. Bringing prefetch
blocks into the cache implies some grade of cache pollution and there-
fore more chances that our adaptive algorithm could improve performance.
Along the same line, using a shared L2 cache in place of a private one could
also add pollution between cores, so it will be interesting to adapt our design
to such architectures.

• Prefetching in SMT (simultaneous multithread) cores. Multithreaded cores
share the L1 cache among the running cores. This cache becomes a scarce

64

resource that must be properly managed among the running threads; how-
ever, prefetching cannot be deactivated for all the threads due to its impor-
tant benefits in performance for some of them. As for future work we plan
to devise smart prefetchers for this kind of systems.

• Adaptive policies in other prefetcher engines. Adapt the proposed activa-
tion/deactivation policies to use other pattern-detection and prefetch algo-
rithms, like PC/CS or PC/DC.

The prefetcher engine is driven by multiple threshold that must be properly
tuned to reach the best performance even to minor changes in the system. In other
words, most future work requires from significant tests to find the best threshold
values. We plan to find the optimal values with a simple machine learning algo-
rithm, that could be more flexible and be able to seamlessly adapt to unexpected
workloads without needing manual tunning.

Finally, with respect to the methodological evaluation, we are currently ex-
tending the evaluation study of simulation methods by adding more case studies
and the performance and energy results of the multiple Simpoints method in order
to present a wider and deeper study.

65

Bibliography

[1] J. Doweck, “Inside intel core microarchitecture and smart memory access:
An in-depth look at Intel innovations for accelerating execution of Memory-
Related instructions, from Intel - white papers,” Intel Corporation, Tech.
Rep., 2006.

[2] J. Casazza, “First the tick, now the tock,” Intel Corporation, Tech. Rep.,
2009.

[3] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen, B. J.
Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden, “Ibm POWER6
microarchitecture,” IBM J. Res. Dev., vol. 51, no. 6, pp. 639–662, Nov. 2007.

[4] J. Owen and M. Steinman, “Northbridge architecture of amd’s griffin micro-
processor family,” IEEE Micro, vol. 28, no. 2, pp. 10–18, 2008.

[5] S. Srinath, O. Mutlu, H. Kim, and Y. Patt, “Feedback directed prefetching:
Improving the performance and bandwidth-efficiency of hardware prefet-
chers,” in International Symposium on High Performance Computer Archi-
tecture., 2007, pp. 63–74.

[6] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, “Coordinated control of
multiple prefetchers in multi-core systems,” in International Symposium on
Microarchitecture, 2009, pp. 316–326.

[7] R. Ubal, J. Sahuquillo, S. Petit, and P. Lopez, “Multi2sim: A simulation
framework to evaluate multicore-multithreaded processors,” in International
Symposium on Computer Architecture and High Performance Computing.,
2007, pp. 62–68.

[8] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle accurate
memory system simulator,” IEEE Comput. Archit. Lett., vol. 10, no. 1, pp.
16–19, Jan. 2011.

[9] JEDEC website. [Online]. Available: http://www.jedec.org/

66

http://www.jedec.org/

[10] D. G. Prez, G. Mouchard, and O. Temam, “Microlib: A case for the quan-
titative comparison of micro-architecture mechanisms.” in MICRO. IEEE
Computer Society, 2004, pp. 43–54.

[11] K. J. Nesbit and J. E. Smith, “Data cache prefetching using a global history
buffer,” in Proceedings of the 10th International Symposium on High Per-
formance Computer Architecture, ser. HPCA ’04. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 96–.

[12] S. Palacharla and R. E. Kessler, “Evaluating stream buffers as a secondary
cache replacement,” in International Symposium on Computer Architecture,
1994, pp. 24–33.

[13] K. Nesbit, A. Dhodapkar, and J. Smith, “Ac/dc: an adaptive data cache pre-
fetcher,” in Proceedings of the 13th International Conference on Parallel
Architecture and Compilation Techniques, 2004. PACT 2004, 2004, pp. 135–
145.

[14] N. Jouppi, “Improving direct-mapped cache performance by the addition of
a small fully-associative cache and prefetch buffers,” in Proceedings of the
17th Annual International Symposium on Computer Architecture, 1990, pp.
364–373.

[15] SPEC website. [Online]. Available: http://www.spec.org/

[16] “4Gb DDR3 SDRAM MT41J512M8-64Meg x 8 x 8 banks,” Micron Tech-
nology, Tech. Rep., 2011.

[17] A. Sharifi, E. Kultursay, M. T. Kandemir, and C. R. Das, “Addressing end-
to-end memory access latency in NoC-based multicores,” in IEEE MICRO,
2012, pp. 294–304.

[18] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C. R. Das, “Explor-
ing fault-tolerant network-on-chip architectures,” in International Confer-
ence on Dependable Systems and Networks, 2006, pp. 93–104.

[19] Y. Hoskote, S. R. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-ghz
mesh interconnect for a teraflops processor,” IEEE Micro, vol. 27, no. 5, pp.
51–61, 2007.

[20] B. Jacob and D. Wang, Principles and practices of interconnection networks.
Morgan Kaufmann, 2007.

67

http://www.spec.org/

[21] E. Ebrahimi, C. Joo, L. Onur, M. Yale, and N. Patt, “Fairness via source
throttling: A configurable and high-performance fairness substrate for multi-
core memory systems,” in Architectural Support for Programming Lan-
guages and Operating Systems, 2010, pp. 335–346.

[22] R. Manikantan and R. Govindarajan, “Performance oriented prefetching en-
hancements using commit stalls,” J. Instruction-Level Parallelism, vol. 13,
2011.

[23] S. Pugsley, Z. Chishti, C. Wilkerson, T. Chuang, R. Scott, A. Jaleel, S.-L.
Lu, K. Chow, and R. Balasubramonian, “Sandbox prefetching: Safe, run-
time evaluation of aggressive prefetchers,” in International Symposium on
High Performance Computer Architecture, 2014.

[24] N. Chidambaram Nachiappan, A. K. Mishra, M. Kademir, A. Sivasubrama-
niam, O. Mutlu, and C. R. Das, “Application-aware prefetch prioritization
in on-chip networks,” in International Conference on Parallel architectures
and compilation techniques. ACM, 2012, pp. 441–442.

[25] J. Lee, M. Shin, H. Kim, J. Kim, and J. Huh, “Exploiting mutual awareness
between prefetchers and on-chip networks in multi-cores,” in International
Conference on Parallel Architectures and Compilation Techniques, 2011, pp.
177–178.

[26] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Prefetch-aware shared
resource management for multi-core systems,” in International Symposium
on Computer Architecture, 2011, pp. 141–152.

[27] F. Liu and Y. Solihin, “Studying the impact of hardware prefetching and
bandwidth partitioning in chip-multiprocessors,” in ACM SIGMETRICS
joint international conference on Measurement and modeling of computer
systems, 2011, pp. 37–48.

[28] F. Liu, X. Jiang, and Y. Solihin, “Understanding how off-chip memory
bandwidth partitioning in chip multiprocessors affects system performance,”
in International Symposium on High Performance Computer Architecture,
2010, pp. 1–12.

[29] S. Eyerman and L. Eeckhout, “Restating the case for weighted-ipc metrics
to evaluate multiprogram workload performance,” IEEE Computer Architec-
ture Letters, vol. 99, no. 3, p. 1, Jul. 2013.

[30] P. Michaud, “Demystifying multicore throughput metrics,” IEEE Computer
Architecture Letters, vol. 12, no. 2, pp. 63–66, 2013.

68

[31] R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi,
“Application-to-core mapping policies to reduce memory interference in
multi-core systems,” in PACT. ACM, 2012, pp. 455–456.

[32] K. V. Craeynest, S. Akram, W. Heirman, A. Jaleel, and L. Eeckhout,
“Fairness-aware scheduling on single-isa heterogeneous multi-cores,” in
PACT, 2013, pp. 177–187.

[33] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and B. Calder,
“Using simpoint for accurate and efficient simulation,” in ACM SIGMET-
RICS Performance Evaluation Review, vol. 31. ACM, 2003, pp. 318–319.

[34] Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G. Friedman, “Ac-dimm: Asso-
ciative computing with stt-mram,” SIGARCH Comput. Archit. News, vol. 41,
no. 3, pp. 189–200, Jun. 2013.

[35] S. Navada, N. K. Choudhary, S. V. Wadhavkar, and E. Rotenberg, “A unified
view of non-monotonic core selection and application steering in heteroge-
neous chip multiprocessors,” in PACT, 2013, pp. 133–144.

[36] M. Shevgoor, J.-S. Kim, N. Chatterjee, R. Balasubramonian, A. Davis, and
A. N. Udipi, “Quantifying the relationship between the power delivery net-
work and architectural policies in a 3d-stacked memory device,” in MICRO,
2013, pp. 198–209.

[37] A. Kolli, A. G. Saidi, and T. F. Wenisch, “Rdip: return-address-stack directed
instruction prefetching,” in MICRO, 2013, pp. 260–271.

[38] S. Padmanabha, A. Lukefahr, R. Das, and S. A. Mahlke, “Trace based phase
prediction for tightly-coupled heterogeneous cores,” in MICRO, 2013, pp.
445–456.

[39] V. Mekkat, A. Holey, P.-C. Yew, and A. Zhai, “Managing shared last-level
cache in a heterogeneous multicore processor,” in PACT, 2013, pp. 225–234.

[40] A. Jain and C. Lin, “Linearizing irregular memory accesses for improved
correlated prefetching,” in MICRO, 2013, pp. 247–259.

[41] D. A. Jiménez, “Insertion and promotion for tree-based pseudolru last-level
caches,” in MICRO, 2013, pp. 284–296.

[42] J. Albericio, P. Ibáñez, V. Viñals, and J. M. Llaberı́a, “The reuse cache:
downsizing the shared last-level cache,” in MICRO, 2013, pp. 310–321.

69

[43] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko,
Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry, “Row-
clone: fast and energy-efficient in-dram bulk data copy and initialization,” in
MICRO, 2013, pp. 185–197.

[44] S. Eyerman and L. Eeckhout, “System-level performance metrics for multi-
program workloads,” IEEE Micro, vol. 28, no. 3, pp. 42–53, May 2008.

[45] J. R. Mashey, “War of the benchmark means: Time for a truce,” SIGARCH
Comput. Archit. News, vol. 32, no. 4, pp. 1–14, Sep. 2004.

[46] M. Zhou, Y. Du, B. R. Childers, R. G. Melhem, and D. Mossé, “Writeback-
aware bandwidth partitioning for multi-core systems with pcm,” in PACT,
2013, pp. 113–122.

[47] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, “Coordinated control of
multiple prefetchers in multi-core systems,” in Proceedings of the 42Nd An-
nual IEEE/ACM International Symposium on Microarchitecture, ser. MI-
CRO 42. New York, NY, USA: ACM, 2009, pp. 316–326.

[48] M. F. K. Luo, J. Gummaraju, “Balancing throughput and fairness in smt pro-
cessors,” in Proceedings of the IEEE International Symposium on Perfor-
mance Analysis of Systems and Software, ser. MICRO 42. IEEE Computer
Society Press, 200, pp. 164–171.

[49] S. Sardashti and D. A. Wood, “Decoupled compressed cache: exploiting
spatial locality for energy-optimized compressed caching,” in MICRO, 2013,
pp. 62–73.

[50] L. G. Menezo, V. Puente, and J.-Á. Gregorio, “The case for a scalable coher-
ence protocol for complex on-chip cache hierarchies in many-core systems,”
in PACT, 2013, pp. 279–288.

[51] M. N. Bojnordi and E. Ipek, “Programmable ddrx controllers,” IEEE Micro,
vol. 33, no. 3, pp. 106–115, 2013.

[52] T. J. Ham, B. K. Chelepalli, N. Xue, and B. C. Lee, “Disintegrated control for
energy-efficient and heterogeneous memory systems,” in HPCA, Feb 2013,
pp. 424–435.

[53] S. M. Khan, A. R. Alameldeen, C. Wilkerson, J. Kulkarni, and D. A.
Jimenez, “Improving multi-core performance using mixed-cell cache archi-
tecture,” in HPCA, Feb 2013, pp. 119–130.

70

[54] P. Yedlapalli, J. Kotra, E. Kultursay, M. T. Kandemir, C. R. Das, and
A. Sivasubramaniam, “Meeting midway: Improving cmp performance with
memory-side prefetching,” in PACT, 2013, pp. 289–298.

[55] R. Das, S. Narayanasamy, S. K. Satpathy, and R. G. Dreslinski, “Catnap:
Energy proportional multiple network-on-chip,” in ISCA. ACM, 2013, pp.
320–331.

[56] A. Sembrant, E. Hagersten, and D. Black-Schaffer, “Tlc: a tag-less cache for
reducing dynamic first level cache energy,” in MICRO, 2013, pp. 49–61.

[57] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked dram caches for servers:
Hit ratio, latency, or bandwidth? have it all with footprint cache,” in ISCA.
ACM, 2013, pp. 404–415.

[58] P. Petrica, A. M. Izraelevitz, D. H. Albonesi, and C. A. Shoemaker, “Flicker:
A dynamically adaptive architecture for power limited multicore systems,”
SIGARCH Comput. Archit. News, vol. 41, no. 3, pp. 13–23, Jun. 2013.

[59] W. Heirman, T. E. Carlson, I. Hur, and L. Eeckhout. The sniper multi-core
simulator. [Online]. Available: http://snipersim.org

[60] A. Patel, F. Afram, S. Chen, and K. Ghose. Marssx86 micro-architectural
and system simulator for x86-based systems. [Online]. Available:
http://marss86.org

[61] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[62] H. M. G. Wassel, Y. Gao, J. K. Oberg, T. Huffmire, R. Kastner, F. T. Chong,
and T. Sherwood, “Surfnoc: A low latency and provably non-interfering
approach to secure networks-on-chip,” in ISCA. ACM, 2013, pp. 583–594.

[63] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0: A tool
to model large caches,” in HP Laboratories, 2009.

[64] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, “Orion 2.0: A fast and accu-
rate noc power and area model for early-stage design space exploration,” in
DATE. European Design and Automation Association, 2009, pp. 423–428.

[65] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “The mcpat framework for multicore and manycore architectures:

71

http://snipersim.org
http://marss86.org

Simultaneously modeling power, area, and timing,” ACM Trans. Archit.
Code Optim., vol. 10, no. 1, pp. 5:1–5:29, Apr. 2013.

[66] P. Irelan and S. Kuo, “Performance monitoring unit sharing guide,” Intel
Corporation, Tech. Rep., 2009.

72

	Introduction
	Prefetching
	Evaluation Methodologies for Multicores
	Contributions of this Master's Thesis
	Master's Thesis Outline

	Background
	Multi2Sim
	DRAMSim2
	Main Memory Organization
	Prefetch Techniques
	One Block Lookahead
	Tagged Prefetch
	Global History Buffer Based Prefetchers
	Stream Buffers

	Coherence Protocols
	MOESI Protocol

	Benchmarks
	Integer Point Arithmetics
	Floating Point Arithmetics

	Baseline System
	L2 Prefetching System
	Network-on-Chip
	Memory controller and memory organization

	Related Work
	Evaluation Methodologies
	Single-Threaded Processor Evaluation
	Methodologies for Multicores
	Typical Simulation Methodologies
	Discussion

	Evaluation Indexes for Multiprogram Workloads
	Performance Indexes
	Understanding Performance Metrics: A Practical Approach
	Discussion

	Performance and Power Simulators
	Experimental Evaluation
	Effect of the Simulation Methodology on Performance and Energy
	Effect of Modeling Details on Performance

	Summary

	Characterization Study And Prefetcher Proposal
	Characterization Study
	Proposed Prefetching Scheme
	Evaluation Methodology
	Experimental Evaluation
	Performance Analysis
	Prefetches Reduction Analysis
	Energy Analysis

	Summary

	Conclusions
	Contributions
	Future Work

