Document downloaded from:

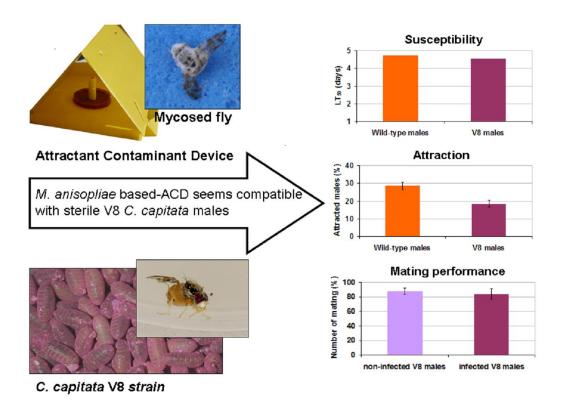
http://hdl.handle.net/10251/59687

This paper must be cited as:

San Andrés Aura, V.; Ayala Mingol, I.; Abad Payá, MDC.; Primo Millo, J.; Casteñera, P.; Moya Sanz, MDP. (2014). Laboratory evaluation of the compatibility of a new attractant contaminant device ciontaining Metarhizium anisopliae with Ceratitis capitata sterile males. Biological Control. 72:54-61. doi:10.1016/j.biocontrol.2014.02.007.

The final publication is available at http://dx.doi.org/10.1016/j.biocontrol.2014.02.007

Copyright Elsevier


Additional Information

1	Laboratory evaluation of the compatibility of a new attractant contaminant device
2	containing Metarhizium anisopliae with Ceratitis capitata sterile males
3	
4	
5	V. San Andrés ^a , I. Ayala ^b , M.C. Abad ^b , J. Primo ^b , P. Castañera ^a , P. Moya ^b *
6	
7	^a Unidad Asociada de Entomología IVIA (Instituto Valenciano Investigaciones Agrarias) - CIB
8	(Centro Investigaciones Biológicas), CSIC. Laboratory of Insect - plant interactions, CIB, CSIC,
9	Ramiro de Maéztu, 9, 28040, Madrid, Spain.
10	^b Centro de Ecología Química Agrícola-Instituto Agroforestal del Mediterráneo. Universidad
11	Politécnica de Valencia. Avenida de los Naranjos s/n. Edificio 6C. 4ª y 5ª planta. 46022, Valencia,
12	Spain.
13	
14	
15	
16	* Corresponding author. Address: Centro de Ecología Química Agrícola-Instituto Agroforestal del
17	Mediterráneo. Universidad Politécnica de Valencia. Avenida de los Naranjos s/n. Edificio 6C. 4ª y 5ª
18	planta. 46022, Valencia, Spain. Phone: +34 963879057. Fax: +34 963879059
19	E-mail address: mmoyasa@ceqa.upv.es (P. Moya)
20	

21 HIGHLIGHTS

- 22
- 23
- Sterile and wild-type *C. capitata* males showed similar susceptibility to *M. anisopliae*
- Sterile males were less attracted to infective dishes than wild-type males
- Under laboratory conditions, *M. anisopliae* did not impair mating performance of
 sterile males
- Infective device seems to be compatible with *C. capitata* Sterile Insect Technique
 under laboratory conditions
- 30

31 GRAPHICAL ABSTRACT

34 ABSTRACT

35	Laboratory experiments were conducted to evaluate the compatibility of using the
36	entomopathogenic fungus Metarhizium anisopliae, to be dispensed in a new attractant
37	contaminant device (ACD), jointly with sterilized Ceratitis capitata males, as an integrated
38	approach to control this major pest. The exposure of sterile Vienna 8 (V8) strain and wild
39	type (WT) males to the contaminating part (infective dish) of the ACD showed similar
40	susceptibility levels to the fungal strain (LT_{50} value of 4.52 and 4.72 days, respectively).
41	Sterile V8 males were significantly less attracted to the infective dish (18.4%) than WT males
42	(28.5%).
43	As the success of Sterile Insect Technique (SIT) heavily relies on the mating success of
44	sterile males in the field, mating performance of infected males was assessed. Around 85% of
45	the females were mated, independently of the male strain and treatment (fungus-treated or
46	untreated males) indicating that mating performance was unaffected by the fungus under
47	laboratory conditions. Females showed a greater tendency to remate if previously mated to
48	fungus-treated males, either V8 or WT.
49	Our data suggest that this <i>M. anisopliae</i> based-ACD does not impair the performance of <i>C</i> .
50	capitata sterile males and, therefore, it could be used combined with area wide SIT-based
51	programs, providing that these results are validated in field conditions. The implications of
52	this combined strategy to control C. capitata are discussed.

Keywords: integrated control; entomopathogenic fungus; mating behavior; Medfly;

54 Tephritidae.

1. Introduction

56	The Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann) (Diptera:
57	Tephritidae), is one of the most widespread and damaging fruit pests worldwide, being
58	recorded in more than 400 host plant species (Liquido et al., 1991; Aluja and Mangan, 2008).
59	In Spain, it is considered a major pest of citrus due to direct yield losses and to quarantine
60	restrictions. Control strategies have been mainly based on field monitoring and aerial and
61	terrestrial treatments with organophosphate insecticides, especially malathion, mixed with
62	protein baits (San Andrés et al., 2007a). However, their continued use resulted in side effects,
63	such as the field-evolved resistance of medfly to malathion in Spanish citrus areas (Magaña et
64	al., 2007; 2008). Recently, emphasis has been placed on implementing safer environmental
65	measures to control adult medfly (Urbaneja et al., 2009).
65 66	measures to control adult medfly (Urbaneja et al., 2009). Area-wide SIT programs have been proved successful in the suppression,
66	Area-wide SIT programs have been proved successful in the suppression,
66 67	Area-wide SIT programs have been proved successful in the suppression, containment, prevention or eradication of fruit flies (Dyck et al., 2005; Vreysen et al., 2007),
66 67 68	Area-wide SIT programs have been proved successful in the suppression, containment, prevention or eradication of fruit flies (Dyck et al., 2005; Vreysen et al., 2007), having been implemented in more than 150,000 ha in the Valencian region (Spain). Other

72	control with entomopathogenic fungi have demonstrated to hold a great potential for adult
73	flies due to their way of infecting the host (Ekesi et al., 2007; Charnley and Collins, 2007),
74	and it has proved to be efficient for the control of <i>C. capitata</i> and for a wide range of fruit fly
75	pests (De la Rosa et al., 2002; Ekesi et al., 2002; Dimbi et al., 2003; Konstantopoulou and
76	Mazomenos, 2005; Quesada-Moraga et al., 2006; 2008).
77	Different strategies regarding the dissemination of the fungi and the contamination of
78	fruit flies have been considered, including cover sprays (Ortu et al., 2009; Daniel and Wyss,
79	2010) or fungus contamination devices (Primo-Yúfera et al., 2002; Ekesi et al., 2007).
80	Fungus contamination devices rely on the attraction of the insects to baited stations where
81	they are contaminated with the pathogen (Dimbi et al., 2003; Maniania et al., 2006). This
82	entails a reduction of the amount of inoculum released to the field and a high specificity by
83	decreasing the possibility of infecting non-target species. The effectiveness of this type of
84	systems for controlling several tephritids were preliminary assayed under field conditions and
85	promising results were reported (Moya, 2003; Ekesi et al., 2007). A subsequent 3-year field
86	trial revealed that an attractant contaminant device (ACD) containing Metarhizium
87	anisopliae (Metchnikoff) Sorokin (Hypocreales: Clavicipitaceae) was able to reduce the
88	population levels of C. capitata more efficiently than conventional chemical treatments
89	(Navarro-Llopis et al., <i>submitted</i>). The integration of fungal pathogen into SIT, using sterile
90	males as vectors of entomopathogens (Toledo et al., 2007; Ekesi et al., 2007; Flores et al.,

91	2013) has also been considered. Accordingly, the combination of long lasting M. anisopliae
92	based-attractant contaminant devices with an area wide-SIT program to control C. capitata
93	could be a particularly valuable environment-friendly method for medfly management.
94	However, to our knowledge, there is no data on the effects of <i>M. anisopliae</i> against <i>C</i> .
95	capitata sterile strains, including the Vienna 8 (V8) strain. Laboratory and field studies are
96	needed to assess the potential effects of this combined strategy on the performance of C .
97	capitata sterile males, since a higher susceptibility of sterile males over wild ones to this
98	entomopathogenic fungus could risk the compatibility of both methods.
99	The goal of this work was to assess, under laboratory conditions, the feasibility of
100	using M. anisopliae with C. capitata V8 sterile males, which are currently used in the
101	ongoing SIT program in Spain and elsewhere. A first step of our work was to test the level of
102	fungal virulence against medfly sterile males, as well as the level of attraction of sterile males
103	to infective dishes of the attractant contaminant device. A second step consisted in assessing
104	mating performance of infected sterile males and the remating frequency of females
105	previously mated with infected sterile males.
106	
107	2. Material and methods
108	
100	

109 2.1. Insect material

110	Ceratitis capitata adults were obtained from a laboratory colony maintained at the
111	Centro de Ecología Química Agrícola (Valencia, Spain) since 1995. This colony, hereafter
112	named WT strain (wild type strain), is annually out crossed with wild population coming
113	from Valencia orchard infested fruits, to prevent the loss of sexual performance (Joachim-
114	Bravo et al., 2009)
115	Sterile males of the V8 strain were obtained from the mass rearing facility in
116	"Caudete de las Fuentes" (Valencia, Spain). V8 strain contains the tsl (temperature sensitive
117	lethal) mutation that allows the elimination of females at the egg stage. Males used in the
118	current study were dyed and irradiated as pupae two days before emergence under hypoxia at
119	95 Grays (gamma irradiation), as the proteolytic activity of medfly adults is not affected at
120	this dose (San Andrés et al., 2007a).
121	In all the experiments, the WT flies were separated by sex within 24 h after emerging
122	to ensure the use of unmated insects. Males and females were then placed separately in
123	ventilated cages (20 x 20 x 20 cm) with an access hole (12 cm-diameter) in a lateral side
124	covered with a fine muslin sleeve and four ventilation holes (5 cm-diameter) in the top side
125	also covered with muslin fabric. Adult flies were maintained on a 4:1 volumetric mixture of
126	sugar: yeast hydrolysate (Sigma, Madrid, Spain) and water until they were sexually mature
127	(4-5 day-old) to simulate field conditions, where different sources of protein are available.
128	Similarly, V8 males were maintained in the same conditions up to 4-5 day-old, but provided

129 only a sugar diet and water, to simulate the standard prerelease diet mostly used in SIT

130 programs worldwide (FAO/IAEA, 2007).

131 Environmental conditions were 25 ± 1 °C, $65 \pm 5\%$ RH and a photoperiod of 16:8 h

- 132 (L:D) in an environmental chamber.
- 133

134 2.2. Fungal strain

- 135 *Metarhizium anisopliae* CECT 20768 is a fungal strain deposited in the "Colección
- 136 Española de Cultivos Tipo" (CECT). Currently, it is the active ingredient in the infective dish
- 137 (contaminating part) of the ACD designed for controlling *C. capitata* (Primo-Yúfera et al.,
- 138 2002; Navarro-Llopis et al., *submmited*).
- 139 The fungus was cultured in potato dextrose agar (PDA) Petri dishes. The conidia from
- 140 7-8 day-old PDA cultures were harvested by adding mineral oil (10 ml). Conidial
- 141 concentration was estimated using a haemocytometer (Improved Neubauer chamber) and
- 142 adjusted to obtain the appropriated conidia dose to be used in the infective dish. When
- 143 aqueous suspensions of the fungus were used, conidia were harvested with a solution of
- 144 Tween 80 (0.05%) in distilled water.
- 145 Conidial viability of the fungus was determined 24 h before each bioassay according
- to Castillo et al. (2000). In all cases, the percentage of germination was higher than 97.0%.
- 147

148 2.3. Infective dish

149	Infective dishes were prepared according to Primo-Yúfera et al. (2002) and Moya
150	(2003) with some modifications to be adapted to laboratory conditions. Briefly, each infective
151	dish consisted of the bottom of a 5-cm-diameter Petri dish. A carboximethylcellulose-based
152	semi-solid gel was used as adherent material to support the adsorbent material and to
153	maintain a suitable microenvironment for conidial persistence. The adsorbent material, which
154	is based on a sepiolite granular formulation of trimedlure (TML) (Corma et al., 2000),
155	contained the <i>M. anisopliae</i> conidia suspended in mineral oil. This material was uniformly
156	spread over the adherent material to achieve a dose of about $3.1 \ge 10^8$ conidia per dish.
157	
158	2.4. Susceptibility of C. capitata V8 sterile and WT males to M. anisopliae by contact
159	application on the infective dish
160	Approximately six hundred V8 pupae were placed in ventilated methacrylate cages
161	(20 x 20 x 20 cm) and adults were allowed to emerge. The pathogenicity of <i>M. anisopliae</i>
162	was tested against 4-5 day-old V8 males by exposing them to the infective dishes (10 dishes/
163	bioassay).
164	Ten slightly cold anesthetized V8 males were ventrally deposited on the infective dish
165	and maintained for 30 s. Then, they were transferred to a ventilated plastic cylinder (16 cm
166	high, 13 cm diameter) and provided water ad libitum and a sugar: yeast hydrolysate 4:1

167	(wt:wt) diet because in post-release conditions, males might be able to find carbohydrates and
168	proteins natural sources (Hendrichs and Hendrichs, 1990). Control V8 males were equally
169	exposed to fungus-free plates.
170	For comparative purposes, susceptibility of 4-5 day-old WT males to the infective
171	dishes was also evaluated. Flies (10 per plate) were subjected to both fungal and control
172	treatments using the same infective or control dishes as indicated above.
173	For each bioassay, ten replicates per treatment (fungal and control treatments) and fly
174	strain (V8 and WT strains) were performed and a total number of two bioassays were carried
175	out. The experimental arena was checked for 10 days and dead males daily recorded and
176	removed. After surface sterilization using 3% sodium hypochlorite solution, cadavers were
177	incubated on PDA at 28 °C for 10 days to confirm mycosis which was assumed when the
178	sporulated mycelia of the fungus was superficially observed (Selman et al., 1997).
179	Virulence levels were established through the lethal time 50 (LT_{50}) values which is
180	the time required (expressed as days) to kill 50% of the flies.
181	The amount of inoculum gathered by each fly was estimated according to Dimbi et al.
182	(2003) with some modifications. Two additional V8 and 2 WT males were exposed to each
183	one of the 10 infective plates. Just after the exposure period (30 s.), they were individually
184	transferred to sterile 1.5 ml Eppendorf tubes and frozen (-50 $^{\circ}$ C) until assayed. Later, an
185	aliquot (1.0 ml) of a 0.5% Tween 80 solution in sterile distilled water was added to each

186	Eppendorf tube and vortexed during 1 minute. The suspension, containing dislodged conidia,
187	was transferred to a sterile graduate polypropylene vial (10 ml). For each fly, this process was
188	repeated twice and successive suspensions were added to the same polypropylene vial. Then,
189	the vial was centrifuged (300 rpm during 3 min.) in a Rotina 46 Centrifuge (Hettich,
190	Germany) and 1.0 ml exceeding supernatant was removed. Finally, the pellet was
191	resuspended with a gently shake and conidial concentration was estimated using a Neubauer
192	camera.
193	
194	2.5. Effect of the infective dish on the attraction of C. capitata V8 sterile males
195	The infective dish superficially contained a small quantity (20 mg/g emitter) of TML,
196	which is an appropriate amount for assessing C. capitata attractiveness to the infective dish
197	under laboratory conditions. An attraction bioassay to evaluate the behavior of WT and V8
198	males was performed. The V8 sterile male were exposed to Ginger Root Oil (GRO)
199	aromatherapy to improve sterile males mating competitiveness (Shelly et al. 2007), as
200	presently used in most of the ongoing SIT programs worldwide, whereas WT males were not
201	subjected to any previous treatment before the experiment to simulate field conditions. Thus,
202	24 h before the assay, five hundred 4 day-old V8 sterile males were exposed to volatiles
203	emitted by a piece of cotton containing 100 µl of GRO (Lluch Essence S.L., Spain), during 3
204	h, in a ventilated methacrylate cage (30 x 40 x 30 cm). The next day, and 1 h before starting

205	the assay, groups of fifty aromatherapy-treated V8 males were introduced in 30 x 30 x 30 cm
206	cages, the lateral and top sides of which were made of wire mesh to avoid saturation effects
207	Insects were allowed to settle during 1 h. Then, a 5 cm infective dish (3.1 x 10^8 conidia) was
208	placed in the bottom of the cage and only water was provided. Attraction was recorded every
209	10 min during 3 h. The percentage of attraction was obtained considering the average number
210	of males alighting the dish along the fixed attractant period respect to the total number of flies
211	in the cage. Controls were simultaneously performed in the same conditions exposing them to
212	fungus-free dishes. Two bioassays with 5 replicates per treatment and fly strain were
213	performed.
214	
215	2.6. Effect of M. anisopliae on the sexual performance of C. capitata V8 sterile males
216	2.6.1. Sperm transfer detection
217	Previous assays allowed us to obtain a $LT_{50} = 6.29$ days when 4-day-old sterile V8
218	males were treated by topical application with $1\mu l$ of a Tween 80 (0.05%) suspension
219	containing 1 x 10^7 conidia/ml (1 x 10^5 conidia/fly) (data not shown). Based on this finding, a
220	slightly lesser dose (5 x 10^4 conidia/fly) was assayed to obtain an adequate period of
221	observation according to our experimental design.
222	Newly emerged (<24 h) WT flies were first separated by sex to ensure that only
223	unmated females would be used. Females were maintained separately in ventilated

224	methacrylate cages (20 x 20 x 20 cm) and provided with sugar: yeast hydrolysate 4:1 (wt:wt)
225	diet and water until they reached sexual maturity. Sterile males were obtained and kept in a
226	sugar diet plus water, as described previously.

227	Five day-old sterile males were inoculated with one microliter of a conidial aqueous
228	suspension of 5 x 10^7 conidia/ml (5 x 10^4 conidia/fly) on the ventral surface of the abdomen
229	of the adults previously anesthetized with ice. Fungus untreated insects were inoculated with
230	the same volume of a sterile aqueous solution of 0.05% Tween 80. Twenty-four hours before
231	the fungal treatment, V8 males were exposed for 3 h to 100 μ l of GRO in a ventilated
232	methacrylate cage (30 x 40 x 30 cm). Three replicates were performed for each treatment. For
233	each replicate 14 V8 males (fungus treated or untreated) were used. As the goal of the
234	experiment was to evaluate the effect of the ongoing process of infection on the capability of
235	the sterile males to mate and transfer sperm, and taking into account that generally
236	germination of <i>M. anisopliae</i> conidia takes place within the first 20 h after contact
237	(Zimmermann, 2007), a latent period of 48 h was established. Thus, from the second day of
238	treatment, 7 virgin WT females (male: female ratio, 2:1) were introduced in the mating
239	scenario (ventilated methacrylate cage of 20 x 20 x 20 cm) and allowed to mate for 24 h.
240	Then, females were removed and stored in 70% ethanol at 4 °C. The process was daily
241	repeated along 6 days. The number of new virgin females introduced each day changed
242	according the number of surviving males in order to maintain the male: female (2:1) ratio

243	described above. Sperm presence on female spermathecae was analyzed with the molecular
244	marker CcYsp according to San Andrés et al. (2007b). PCR was performed in a thermocycler
245	Mastercycler Eppendorf Gradient S using the following conditions: 300 nM dNTPs, 1 X Taq
246	buffer, 2mM MgCl2, 0.75 U of Taq polymerase (Biotools), 10 pmol of each primer, and 10
247	ng of total DNA. Amplification conditions were: one denaturation cycle at 94 °C for 5 min,
248	30 cycles at 94 °C for 40 s, 55 °C for 40 s, 72 °C for 1 min, followed by a final extension
249	cycle at 72 °C for 4 min. PCR products were run in a 2% agarose D-1 low electroendosmosis
250	(EEO) gel (Pronadisa, Sumilab S.L., Madrid, Spain).
251	
252	2.6.2. Effect of M. anisopliae on the mating of C. capitata V8 sterile males.
253	To examine the potential effect of the fungal infection (2 days post fungus
254	inoculation) on the V8 male sexual performance and on their corresponding mated females,
255	virgin WT females were allowed to copulate with sterile or WT, treated or untreated with M .
256	anisopliae, males.
257	First mating procedure. WT females and males and V8 males, all of them virgin and
258	sexually mature (5 day-old) were obtained as previously described.
259	Fifty V8 males and 50 WT males were subjected to fungal treatment by contact on the
260	infective dishes (10 flies/dish) as described above. The corresponding controls were made
261	using fungus-free dishes. Each group of fifty flies was placed in a ventilated methacrylate

262	cage (30 x 40 x 30 cm). Three replicates by treatment and medfly strain were performed.
263	Forty-eight h later, and always starting the experiment at 10 am, 2h later of "light on" in daily
264	photophase, each group was transferred to a new ventilated methacrylate mating cage of 30 x
265	40 x 30 cm (Gavriel et al., 2009) and allowed to settle for 30 min. Then, 50 WT virgin
266	females were introduced into the mating arena. In each scenario, mating pairs were checked
267	continuously during 3 h. Copulating pairs were collected into glass vials (15 ml volume) 5
268	min after the mating initiation and copula duration was recorded. To ensure that mated
269	females had been inseminated, only females with copula duration longer than 100 min were
270	selected for the remating tests (Taylor and Yuval, 1999). After copula completion, mated
271	females were transferred to a new methacrylate cage (30 x 40 x 30 cm) and provided with the
272	standard sugar and yeast hydrolysate (4:1; wt:wt) diet and water. Non-mated females and
273	males were discarded.
274	Remating procedure. Remating tests were performed following the same procedure
275	described, and as a continuation of the first mating procedure. Thus, mated females from each
276	group were allowed to remate with healthy virgin WT males. The remating test was
277	performed two days after their first copula when a maximum level of C. capitata female
278	remating has been reported (Gavriel et al., 2009; Kraaijeveld et al., 2005). This process was
279	carried out over three consecutive days using the remaining non-remated females from each
280	previous day. The number of healthy virgin WT males (5 day-old) introduced each day in the

281	remating arena (mating methacrylate cage of 30 x 40 x 30 cm) was the corresponding number
282	to reach the male: female (1:1) proportion. Copulating pairs were collected continuously for 3
283	h and re-copula duration recorded as described above. As for the first mate, females staying
284	in copula for over 100 min were considered remated.
285	To evaluate horizontal transmission of the fungus during the first-mating process,
286	mortality of WT females used in the mating/remating bioassays was recorded throughout the
287	experiment and cadavers were handled, as previously described, to confirm mycosis.
288	
289	2.7. Statistical analysis
290	Mortality data in pathogenicity experiments was corrected using Abbott's formula.
291	The median lethal time (LT_{50}) values were estimated by probit analysis. Parallelism test of
292	probit regression lines was conducted using chi-square goodness-of-fit tests. Relative median
293	potency and its 95% confidence interval were calculated because the slopes were not
294	significantly different. The number of matings, rematings and their duration and female
295	mortality were subjected to analysis of variance (ANOVA) followed by means separation
296	using the Tukey's test ($P \le 0.05$).
297	Attraction data from the attractant bioassay in laboratory cages were analyzed by one-
298	way ANOVA followed by Tukey's test ($P \le 0.05$).

299	To establish differences in the number of mating along the time through the sperm
300	transfer detection bioassay, a generalized lineal model univariate (GLM-U) procedure
301	followed by a Tukey's test ($P \le 0.05$).
302	When necessary, data were transformed (logarithmic or angular transformation) in
303	order to comply with analyses assumptions. In all cases the lack of significant differences
304	among variances was verified with the Levene's statistic (P > 0.05). All analyses were
305	performed using the SPSS v.16.0.1 for Windows (SPSS Inc., 2008).
306	
307	3. Results
308	
309	3.1. Susceptibility of C. capitata V8 sterile and WT males to M. anisopliae by contact
310	application on the infective plate
311	No significant differences were found between the amount of inoculum gathered by
312	the WT and V8 males ($F_{1,38} = 1.13$, $P = 0.294$) (Table 1), which allowed us to compare
313	susceptibility results between medflies strains. Based on the estimated LT_{50} values, V8 and
314	WT males showed a similar level of susceptibility (4.52 and 4.72 days, respectively). No
315	difference in susceptibility between both C. capitata strains was observed according to the
316	results of the parallelism between probit mortality lines and relative potency of WT respect to
317	V8 (Table 1).

3.2. Effect of the infective dish on the attraction of C. capitata V8 sterile males

320	Results from the attraction bioassay in laboratory cages are shown in Table 2. The
321	percentage of attraction was significantly different among infective and non-infective dishes
322	as well as between fly strains ($F_{3, 28} = 29.159$, $P < 0.001$). Both V8 and WT males showed a
323	significantly higher attraction to the infective dishes than to the control ones. In addition, WT
324	males were significantly more attracted than V8 males to either infective or non-infective
325	dishes.
326	
327	3.3. Effect of M. anisopliae on the sexual performance of C. capitata V8 sterile males
328	3.3.1. Sperm transference detection
329	The application of CcYsp marker (Fig. 1) indicated that treated V8 males developing
330	the fungal infection during two days before being exposed to virgin females were able to
331	qualitatively transfer sperm similarly to untreated V8 males. Percentages of mating higher
332	than 90% were observed in most cases, including those of the sixth day, when the treated V8
333	males were already showing mortality values of about 50% (Table 3). GLM-U disclosed no
334	significant differences respect to the capability of mate and transfer sperm between the two
335	treatments ($F_{1,35} = 0.185$, $P = 0.671$) and time ($F_{5,35} = 0.480$, $P = 0.788$) and no interaction
336	was observed ($F_{3,35} = 1.043, P = 0.415$).

3.3.2. Effect of M. anisopliae on the mating of C. capitata V8 sterile males

339	Results from the mating experiments are shown in Table 4. The percentage of matings
340	(about 85.0%) was not significantly affected either by the treatments or the fly strain ($F_{3,8}$ =
341	0.208, $P = 0.888$). However, the mating duration was affected, though only statistically
342	significant differences were found between treated- and untreated WT males ($F_{3,8} = 5.633$, P
343	= 0.023), the former showing the longest period of copulation (193.3 min). No significant
344	effect of the fungus was observed on the mating duration between virgin WT females and
345	virgin V8 males, either treated or untreated with M. anisopliae. Untreated WT males showed
346	the shorter mating duration (160.6 min) with no significant differences from those showed by
347	the V8 males, independently if treated or not.
348	Two days after its first copulation, each female was allowed to copulate again with
349	sexually mature healthy WT males. Table 5 shows the percentages of remated females during
350	the following three days of the experiment. Females that mated first to treated males (either
351	WT or V8) tended to remate more than females mated first to untreated males although this
352	effect was more evident between females mated first to treated and untreated WT males.
353	In all cases, the number of rematings was higher the first day of exposition. No
354	significant differences were observed among females mated first to treated and untreated V8
355	males or treated WT males, with remating percentages ranging from 13.2 to 18.9%. Only the

females first mated to untreated WT males showed a significantly lower remating rate ($F_{3,8}$ = 356 357 12.88, P = 0.002). On the second day, the remating percentages ranged from 0.9 to 4.3%, but no significant differences were found among treatments ($F_{3,8} = 1.79$, P = 0.225). The third 358 359 and last day of evaluation, more variable remating rates were obtained. Again females mated 360 first to treated V8 males showed a significantly higher remating percentage ($F_{3,8} = 10.15$, P =0.004), although no significant difference was found with the females mated first to treated 361 WT males. 362 363 Similarly to the first-mating part of the experiment, remating duration was also 364 recorded. The average values of remating duration over the 3-days experiment for the females 365 first mated to WT males (treated or not) and V8 males (treated or not) when remated to healthy WT males are shown in Table 5. Unlike first-mating experiments, no significant 366 differences on this remating parameter were found ($F_{3,8} = 1.361$; P = 0.378). 367 368 Finally, female mortality was recorded during the entire bioassay in order to assess 369 fungus horizontal transmission during the first mate. At the end of the experiment, average 370 percentage of female mortality coupled with treated or untreated WT and treated or untreated V8 males were 14.39 ± 2.14 , 9.86 ± 1.47 , 8.26 ± 0.48 and 9.89 ± 2.14 , respectively. No 371 significant differences were found among the treatments ($F_{3,8} = 1.270$; P = 0.148). None of 372 373 the dead females showed signs of mycosis.

375 **4. Discussion**

376 There is an increasing need to develop new safer environmental measures to control 377 C. capitata. In this context, we have investigated the compatibility of a new M. anisopliae-378 based attractant-contaminant device with the sterile males used in SIT programs. This approach involves a new notion of a combined strategy leading to a reduction of the wild 379 380 population density by using *M. anisopliae*-based ACDs, as it has been reported for *C*. 381 capitata in citrus orchards (Navarro-Llopis et al., submitted), and to a significant 382 improvement in the efficiency of SIT programs (Klassen, 2005). This combined strategy 383 would be particularly important in those regions with high population density, as usually 384 occurs in the Spanish citrus growing area. However, to be compatible with SIT, it will be 385 necessary that sterile males will not be affected in their performance. We found that the exposition of C. capitata V8 sterile males to the infective dish 386 entailed a higher susceptibility to M. anisopliae than when aqueous conidial suspensions 387 388 were used to provoke the infection (sperm transference assay). This effect can be related to 389 the oil-fungus formulation contained in the infective dish, since it has been reported that oil 390 formulations enhance pathogens efficacy (Prior et al., 1988; Barson et al., 1994) accelerating 391 the mycosis process on the host in comparison to aqueous formulations. According to Prior et 392 al. (1988) oil prevents conidia from drying, increases their adhesion ability to the insect 393 cuticle and interferes with the defensive nature of the cuticle.

394	The exposure of C. capitata V8 sterile males to the infective dish showed a LT_{50}
395	value (4.5 days) similar to the one found for WT male (4.7 days), which suggests a lack of a
396	higher fungal virulence against V8 males. Moreover, our results suggest that even if V8
397	males are attracted to the ACD and become infected immediately after released, their
398	expected life-span would be in the range of the mean life-span of the V8 males under field
399	conditions, which vary from 3-5 days after their release (Paranhos et al. 2010). These
400	findings, although need to be tested in the field, seem to support the idea of a combined
401	strategy with SIT, since the use of this approach would be compatible with V8 males released
402	in the SIT program.
403	We found that males of the V8 and WT C. capitata strains showed a higher attraction
404	to infective dishes with conidia than to the controls without conidia. This increased
405	attractiveness could be attributed to the effect of male-attractant-semiochemicals emitted by
406	the fungus as recently stated by Roy et al. (2007). However, although there is evidence of
407	insect attraction to volatiles released from fungi, these are non-entomopathogenic fungi,
408	predominantly (Baverstock et al., 2010). Therefore, further studies are needed to clarify this
409	issue.
410	In addition, we also found that sterile V8 males were significantly less attracted to the
411	infective dishes than WT males, though the potential effect of the food supply and the GRO
412	exposure cannot be ruled out. This lower tendency shown by V8 males to approach and alight

413	on the infective dishes might suppose a sterile male advantage by reducing their
414	contamination rate in the field and would contribute to favor the SIT-ACD combined
415	strategy. Although, it must be considered that, in the field, other stimuli as the whole ACD
416	containing the long-lasting and large-distance attractants participate in the attraction and they
417	might alter the laboratory results, a recent work of Shelly and Edu (2009) reports that mass-
418	reared males of C. capitata from a tsl genetic sexing strain are less likely to be captured in the
419	field in trimedlure-baited traps than males from a recently established (wild-type) strain. This
420	report is in accordance with our laboratory results and supports our data in the field.
421	However, field studies with the ACD are required to ensure this specific aspect of the
422	attraction.
423	Entomopathogenic fungi are known to alter their host behavior to favor their own
423 424	Entomopathogenic fungi are known to alter their host behavior to favor their own development (Roy et al., 2007) and to reduce mating performance (Schaechter, 2000).
424	development (Roy et al., 2007) and to reduce mating performance (Schaechter, 2000).
424 425	development (Roy et al., 2007) and to reduce mating performance (Schaechter, 2000). Therefore, for the integration of the <i>M. anisopliae</i> -based ACD and the SIT strategy, a key
424 425 426	development (Roy et al., 2007) and to reduce mating performance (Schaechter, 2000). Therefore, for the integration of the <i>M. anisopliae</i> -based ACD and the SIT strategy, a key point is to avoid impairing the sexual performance of V8 males after the fungus infection.
424 425 426 427	development (Roy et al., 2007) and to reduce mating performance (Schaechter, 2000).Therefore, for the integration of the <i>M. anisopliae</i>-based ACD and the SIT strategy, a key point is to avoid impairing the sexual performance of V8 males after the fungus infection.Our results revealed that the <i>M. anisopliae</i> strain used did not affect the capability of V8
424 425 426 427 428	 development (Roy et al., 2007) and to reduce mating performance (Schaechter, 2000). Therefore, for the integration of the <i>M. anisopliae</i>-based ACD and the SIT strategy, a key point is to avoid impairing the sexual performance of V8 males after the fungus infection. Our results revealed that the <i>M. anisopliae</i> strain used did not affect the capability of V8 males to qualitatively transfer sperm, even up to the time corresponding to about the LT₅₀ for

432	experimental conditions that exposure to fungal inoculation does not adversely affect the
433	mating performance of <i>C. capitata</i> up to the day when mortality due to inoculation begins.
434	Similarly, Novelo-Rincon et al. (2009) reported, in field-cages experiments, no significant
435	differences in sexual performance of Anastrepha ludens sterile males when used as vector or
436	not of Beauveria bassiana conidia. Yet, open field experiments are needed to validate these
437	data.
438	Remating frequency in C. capitata is a complex issue and remating rates in wild

439 females are variable depending on the environmental conditions and strains (Mossinson and 440 Yuval, 2003, Vera et al., 2003; Kraaijeveld et al., 2005; Gavriel et al., 2009). We have found 441 that females showed higher tendency to remate if previously mated to M. anisopliae-treated 442 males, either V8 or WT, though the percentages of remating remained similar in all treatments and within the range of values reported by different authors (Mossinson and 443 444 Yuval, 2003; Gavriel et al., 2009). In addition, the remating rate under laboratory conditions 445 might not reflect the situation in the field, since it could be related to the density of flies 446 released in laboratory cages and the cage conditions could also stimulate either indoors or outdoors remating (Vera et al, 2003). Moreover, the significant minor attraction of V8 sterile 447 448 male to the infective dish might suggest that a smaller proportion of them in relation to WT would become contaminated by M. anisopliae. This situation would contribute to counteract 449

450 the negative aspect of females increasing their remating frequency when mated to a *M*.

anisopliae infected V8 male.

452	Finally, female mortality has not been shown during the mating/remating bioassay
453	which suggests that fungus horizontal transmission was not achieved. Previous works using
454	the ACD in laboratory and field conditions (Navarro-Llopis et al., submitted) had already
455	demonstrated this lack of transmission which was attributed to the oil strongly adhering
456	conidia to the lipophilic fly cuticle hence avoiding its transfer by contact.
457	In summary, our data reveal that sterile V8 males presented a similar susceptibility to
458	<i>M. anisopliae</i> as WT males and that no adverse effects induced by fungal contamination were
459	detected at the level of sexual performance. Thus, based on these findings, the use of the M .
460	anisopliae based-attractant-contaminant device could be compatible with an area-wide SIT
461	program, but field experiments would be required before it can be applied in action programs.
462	The major advantages of using ACDs are those derived from its high effectiveness reducing
463	C. capitata in the field because, though no horizontal transmission is achieved, both C.
464	capitata males and females become contaminated due to the attractant properties of the
465	device (Navarro-Llopis et al., <i>submitted</i>). In addition, the device is highly selective delivering
466	the fungus, which increases notably its environmental safety. Moreover, highly persistent
467	field effectiveness (about three months) has been proved, which could contribute to its
468	economic feasibility in IPM programs. These findings may have practical implications for the

469	integration of these two friendly strategies, the SIT and the fungus attractant-contaminant
470	device against the Mediterranean fruit fly, C. capitata. Nevertheless, it will be necessary to
471	ascertain whether similar results are obtained under field conditions.
472	Acknowledgments
473	This work was partially supported by the "Comisión Interministerial de Ciencia y
474	Tecnología" (CICYT, Spain) (Grant: AGL2006-13346-C02-02).
475	References
476	Aluja, M., Mangan, R.L., 2008. Fruit fly (Diptera: Tephritidae) host status determination:
477	critical, conceptual, methodological and regulatory considerations. Annual Review of
478	Entomology 53, 473-502.
479	Barson, G., Renn, N., Bywater, A. F., 1994. Laboratory evaluation of six species of
480	entomopathogenic fungi for the control of the house fly (Musca domestica L.), a pest of
481	intensive animal units. Journal Invertebrate Pathology 64, 107–113
482	Baverstock, J., Roy, H.E., Pell, J.K., 2010. Entomopathogenic fungi and insect behaviour:
483	from unsuspecting host to targeted vectors. BioControl 55, 89-102.
484	Castillo, M.A., Moya, P., Hernández, E., Primo-Yúfera, E., 2000. Susceptibility of Ceratitis
485	capitata Wiedemann (Diptera: Tephritidae) to entomopathogenic fungi and their extracts.
486	Biological Control 19, 274-282.

487	Charnley, A.K., Collins, S.A., 2007. Entomopathogenic fungi and their role in pest control,
488	In: Kubicek, C.P., Druzhinina, I.S. (Eds.), Environmental and Microbial relationships, 2 nd
489	Edition. The Mycota IV. Springer-Verlag, Berlin Heidelberg, pp. 159-187.
490	Corma, A., Muñóz-Pallarés, J., Primo-Yúfera, E., 2000. Emitter of semiochemical substances
491	supported on a sepiolite. Preparation process and applications. Patent Number WO
492	00/02448
493	Daniel, C., Wyss, E., 2010. Field application of <i>Beauveria bassiana</i> to control the European
494	Cherry fruit fly Rhagoletis cerasi. Journal of Applied Entomology 134, 675-681.
495	De la Rosa, W., López, F.L., Liedo, P., 2002. Beauveria bassiana as a pathogen of the
496	Mexican Fruit Fly (Diptera: Tephritidae) under laboratory conditions. Journal of Economic
497	Entomology 95, 36-43.

- 498 Dimbi, S., Maniania, N.K., Ekesi, S., 2009. Effect of *Metarhizium anisopliae* inoculation on
- the mating behavior of three species of African Tephritid fruit flies, *Ceratitis capitata*, *C*.
- 500 *cosyra* and *C. fasciventris*. Biological Control 50, 111-116.
- 501 Dimbi, S., Maniania, N.K., Lux, A.S., Ekesi, S., Mueke, K.J., 2003. Pathogenicity of
- 502 Metarhizium anisopliae (Metsch.) Sorokin and Beauveria bassiana (Blasamo) Vuillemin,
- 503 to three adult fruit fly species: Ceratitis capitata (Wiedemann), C. rosa var. fasciventris
- 504 Karsch and *C. cosyra* (Walker) (Diptera: Tephritidae). Mycopaphologia 156, 375-382.

505	Dyck, V.A., Hendrichs, J., Robinson, A.S. (Eds.), 2005. Sterile Insect Technique. Principles
506	and use in area-wide integrated pest management. Springer, Dordrecht, The Netherlands.
507	Ekesi, S., Dimbi, S., Maniania, N.K., 2007. The role of entomopathogenic fungi in the
508	integrated management of fruit flies (Diptera: Tephritidae) with emphasis on species
509	occurring in Africa. In: Ekesi, S., Maniania, N.K. (Eds.), Use of entomopathogenic fungi
510	in Biological Pest management. Research SingPost, Kerala, India, pp. 239-274.
511	Ekesi, S., Maniania, N.K., Lux, S.A., 2002. Mortality in three African tephritid fruit fly
512	puparia and adults caused by the entomopathogenic fungi Metarhizium anisopliae and
513	Beauveria bassiana. Biocontrol Science and Technology 12, 7-17.
514	FAO/IAEA, 2007. Guidance for packing, shipping, holding and release of sterile flies in area-
515	wide fruit fly control programmes. In: Enkerlin W., (Ed.), FAO Plant Production and
516	Protection Paper 190, Rome, Italy.
517	Flores, S., Campos, S., Villaseñor, A., Valle, A., Enkerlin, W., Toledo, J., Liedo, P and
518	Montoya, P., 2013. Sterile males of Ceratitis capitata (Diptera: Tephritidae) as
519	disseminators of Beauveria bassiana conidia for IPM strategies. Biocontrol Science and
520	Technology 23, 1186-1198.
521	Gavriel, S., Gazit, Y., Yuval, B., 2009. Remating by female Mediterranean fruit flies
522	(Ceratitis capitata, Diptera: Tephritidae): temporal patterns and modulation by male
523	condition. Journal of Insect Physiology 55, 637-642.

524	Hendrichs, J., Hendrichs, M.A., 1990. Mediterranean fruit fly (Diptera: Tephritidae) in
525	Nature: location and diel pattern of feeding and other activities on fruiting and non fruiting
526	hosts and non hosts. Annals of the Entomological Society of America 83(3), 632-641.
527	Joachim-Bravo, I.S., da Silva Neto, A.M., Dias, V.S., 2009. Biological and behavioral
528	aspects of two laboratory strains of Ceratitis capitata (Díptera: Tephritidae): the influence
529	of periodic introduction of wild flies in the colony. Acta Zoológica Mexicana 25, 359-374.
530	Klassen, W., 2005. Area-Wide integrated pest management and the sterile insect technique.
531	In: Dyck, V.A., Hendrichs, J., Robinson, A.S. (Eds.), Sterile Insect Technique. Principles
532	and use in area-wide integrated pest management. Springer, Dordrecht, The Netherlands,
533	pp. 39-68.
534	Konstantopoulos, M.A., Mazomenos, B.E., 2005. Evaluation of <i>Beauveria bassiana</i> and <i>B</i> .
535	brongniartii strains and four wild-type fungal species against adults of Bactrocera oleae
536	and Ceratitis capitata. BioControl 50, 293-305.
537	Kraaijeveld, K., Katsoyannos, B.I., Stavrinides, M., Kouloussis N.A., Chapman, T. 2005.
538	Remating in wild females of the Mediterranean fruit fly, Ceratitis capitata. Animal
539	Behaviour 69, 771-776.
540	Liquido, N., Shinoda, L. A., Cunningham, R. T., 1991. Host plants of the Mediterranean fruit
541	fly (Diptera: Tephritidae): an annotated world review. Miscellaneous Publications of the
542	Entomological Society of America 77, 52.

543	Magaña, C., Hernández-Crespo, P., Ortego, F., Castañera, P., 2007. Resistance to malathion
544	in field populations of Ceratitis capitata. Journal of Economic Entomology 100, 1836-
545	1843.
546	Magaña, C., Hernandez-Crespo, P., Brun-Barale, A., Couso-Ferrer, F., Bride, J.M.,

- 547 Castañera, P., Feyereisen, R., Ortego, F., 2008. Mechanisms of resistance to malathion in
- 548 the medfly *Ceratitis capitata*. Insect Biochemistry and Molecular Biology, 38(8), 756-762.
- 549 Mangan, R.L. and Moreno, D. S., 2007. Development of Bait Stations for Fruit Fly
- 550 Population Suppression. Journal of Economic Entomology 100, 440-450.
- 551 Maniania, N.K., Ekesi, S., Odulaja, A., Okech, M.A., Nadel, D.J., 2006. Prospects of a
- 552 fungus-contamination device for the control of tsetse fly Glossina fuscipes fuscipes.
- 553 Biocontrol Science and Technology 16(2), 129-139.
- 554 Mossinson, S., Yuval, B., 2003. Regulation of sexual receptivity of female Mediterranean
- fruit flies: old hypothesis revised and a new synthesis proposed. Journal of Insect
- 556 Physiology 49, 561-567.
- Moya, P., 2003. Hongos patógenos en la lucha contra *Ceratitis capitata*. Horticultura 167,
 24-30.
- 559 Navarro-Llopis, V., Ayala, I., Sanchis, J., Primo, J., Moya, P., Submmited. Field efficacy of a
- 560 *Metarhizium anisopliae* based-attractant contaminant device to control *Ceratitis capitata*
- 561 (Wiedemann) (Diptera: Tephritidae). BioControl.

562	Navarro-Llopis, V., Sanchis-Cabanes, J., Ayala, I., Casaña-Giner, V., Primo-Yúfera, E.,
563	2004. Efficacy of lufenuron as chemosterilant against Ceratitis capitata in field trials. Pest
564	Management Science 60, 914–920.
565	Navarro-Llopis, V., J. Sanchis, J. Primo-Millo, Primo-Yufera, E. 2007. Chemosterilants as
566	control agents of Ceratitis capitata (Diptera: Tephritidae) in field trials. Bulletin of
567	Entomological Research 97, 359-368.
568	Navarro-Llopis, V., Domínguez-Ruiz, J., Karzo, M., Alfaro, C., Primo, J., 2010.
569	Mediterranean fruit fly suppresion using chemosterilants for area-wide integrated pest
570	management. Pest Management Science 66, 111-119.

571 Navarro-Llopis, V., Primo, J., Vacas, S., 2013. Efficacy of attract-and-kill devices for the

572 control of *Ceratitis capitata*. Pest Management Science 69, 478-482.

- 573 Novelo-Rincón, L. F., Montoya, P., Hernández-Ortíz., Liedo, P., Toledo, J., 2009. Mating
- 574 performance of sterile Mexican fruit fly *Anastrapha ludens* (Dipt., Tephritidae) males used
- as vectors of *Beauveria bassiana* (Bals.) Vuill. Journal of Applied Entomolology 133,
- 576 702-710.
- 577 Ortu, S., Cocco, A., Dau, R., 2009. Evaluation of the entomopathogenic fungus Beauveria
- 578 *bassiana* strain ATCC 74040 for the management of *Ceratitis capitata*. Bulletin of
- 579 Insectology 62(2), 245-252.

580	Paranhos, B. J., Papadopoulos, N. T., McInnis, D., Gava, C., Lopes, F. S. C., Morelli, R.,
581	Malavasi, A., 2010. Field dispersal and survival of sterile medfly males aromatically
582	treated with ginger root oil. Environmental Entomology 39(2), 570-575.
583	Primo-Yúfera, E., Moya, P., Ibrahim, M., Muñoz, J., 2002. Entomopathogenic
584	microorganism spores carrier and method for controlling harmful insect. Patent Number
585	WO200206026.
586	Prior, C., Jollands, P., Patourel, G., 1988. Infectivity of oil and water formulations of
587	Beauveria bassiana (Deuteromycotina: Hyphomycetes) to the cocoa weevil pest
588	Pantorytes plutus (Coleoptera: Curculionidae). Journal Invertebrate Pathology 52, 66-72.
589	Quesada-Moraga, E., Martín-Carballo, I., Garrido-Jurado, I., Santiago-Alvarez, S., 2008.
590	Horizontal transmission of Metarhizium anisopliae among laboratory populations of
591	Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Biological Control 47, 115-124.
592	Quesada-Moraga, E., Ruiz-García, A., Santiago-Alvarez, S., 2006. Laboratory evaluation of
593	entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae against puparia
594	and adults of Ceratitis capitata (Díptera: Tephritidae). Journal of Economic Entomology
595	99 (6), 1955-1966.
596	Roy, H.E., Baverstock, J., Pell, J.K., 2007. Manipulating behaviour: a strategy for pest
597	control? In: Ekesi, S., Maniania, N.K. (Eds.), Use of entomopathogenic fungi in Biological
598	Pest Management. Research SingPost, Kerala, India, pp. 179-195.

599	San Andrés, V., Ortego, F., Castañera, P., 2007a. Effects of gamma-irradiation on midgut
600	proteolytic activity of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae).
601	Archives of Insect Biochemistry and Physiology 65(1), 11-19.
602	San Andrés, V., Urbaneja, A., Sabater-Muñoz, B., Castañera, P., 2007b. A Novel Molecular
603	Approach to Assess Mating Success of Sterile Ceratitis capitata (Diptera: Tephritidae)
604	Males in Sterile Insect Technique Programs. Journal of Economic Entomology 100(4),
605	1444-1449
606	Schaechter, E., 2000. Weird and wonderful fungi. Microbiology Today 27, 116-117.
607	Shelly, T.E., Edu, J., 2009. Capture of mass-reared vs. wild-like males of Ceratitis capitata
608	(Dipt., Tephritidae) in trimedlure-baited traps. Journal of Applied Entomology 133, 640-
609	646.
610	Shelly, T.E., McInnis, D.O., Rodd, C., Edu, J., Pahio, E., 2007. Sterile insect technique and
611	Mediterranean fruit fly (Diptera: Tephritidae): Assessing the utility of aromatherapy in a
612	Hawaiian coffee field. Journal of Economic Entomology 100(2), 273-282.
613	Selman, B. J., Saaid Dayer, M., and Hasan, M., 1997. Pathogenicity of Beauveria bassiana
614	(Baals.) Vuill. to the larvae of diamondback moth, Plutella xylostella L. (Lep.,
615	Yponomeutidae). Journal of Applied Entomology 121, 47–49.
616	SPSS Inc., 2008. SPSS 16.0.1 for Windows. SPSS Inc. Headquarters, 233 S. Walker Drive,

^{617 11}th floor. Chicago, Illinois 60606.

618	Taylor, P.W., Yuval, B., 1999. Postcopulatory sexual selection in Mediterranean fruit flies:
619	advantages for large and protein-fed males. Animal Behavior 58, 247-254
620	Toledo, J., Campos, S.E., Flores, S., Liedo, P., Barrera, J.F., Villaseñor, A., Montoya, P.,
621	2007. Horizontal transmission of Beauveria bassiana in Anastrepha ludens (Diptera:
622	Tephritidae) under laboratory and field cage conditions. Journal of Economic Entomology
623	100(2), 291-297.
624	Urbaneja, A., Chueca, P., Montón, H., Pascual-Ruiz, S., Dembilio, O., Vanaclocha, P., Abad-
625	Moyano, R., Pina, T., Castañera, P., 2009. Chemical alternatives to Malathion for
626	controlling Ceratitis capitata (Diptera: Tephritidae), and their side effects on natural
627	enemies in Spanish citrus orchards. Journal of Economic Entomology 102(1), 144-151.
628	Vera, M.T., Cladera, J.L., Calcagno, G., Vilardi, J.C., McInnis, D.O., Stolar, E., Field
629	Working Group, 2003. Remating of wild Ceratitis capitata (Diptera: Tephritidae) females
630	in field cages. Annals of the Entomological Society of America 96, 563–570.
631	Vreysen, M.J.B., Gerardo-Abaya, J., Cayol, J.P., 2007. Lessons from area-wide integrated
632	pest management (AW-IPM) programmes with an SIT component: an FAO/IAEA
633	perspective. In: Vreysen, M.J.B., Robinson, A.S., Hendrichs, J., (Eds.), Area-wide control
634	of insect pests. Springer, Dordrecht, The Netherlands, pp. 723-744.
635	Zimmermann, G., 2007. Review on safety of the entomopathogenic fungus Metarhizium
636	anisopliae. Biocontrol Science and Technology 17, 879-920.

637 TABLES CAPTIONS

- Table 1. Time-mortality response of *C. capitata* males (V8 and WT) against *M. anisopliae*by contact application on the infective dish.
- 640
- ^a Values (conidia/fly) represent the mean \pm SE of conidia recovered and estimated using an
- hemocytometer. ^b Values in days. ^c Parallelism Test: $\chi^2 = 3.152$; df = 1; P = 0.076; common
- 643 slope (\pm SE): 9.921 \pm 0.213: Relative Potency of the response of WT males respect to V8
- 644 males (± 95% Fiducial Limits): 1.03 (0.01, 1.06)

645

646 **Table 2**. Percentage of attraction of *C. capitata* males (V8 and WT) exposed to infective *M.*647 *anisopliae* dishes under laboratory conditions.

648

^a Values are mean ± SE over a 3 h period. ^b To simulate field conditions, only V8 males were
 subjected to a GRO-aromatherapy treatment 24 h before the experiment. Values followed by

651 different letters are significantly different (P < 0.05).

652

Table 3. Sperm detection over time of *C. capitata* WT virgin females mated to *M*.

654 *anisopliae*-treated or untreated *C. capitata* V8 males.

655

656 *Ceratitis capitata* V8 males were *M. anisopliae*-treated by topical application (1µl) using an aqueous 657 suspension of $5.0 \ge 10^7$ conidia/ml ($5.0 \ge 10^4$ conidia/fly), two days before exposition to the mating 658 process. For each day, mating values are mean \pm SE of percentage of females containing sperm in 659 their spermathecae with respect to the number of females assayed that day, which was corrected as a 660 function of the V8 males mortality to maintain the initial male: female (2:1) rate.

661	Table 4. Percentage of matings and their duration between C. capitata virgin WT females and
662	virgin males (V8 or WT), either treated or untreated with M. anisopliae.

664 *Ceratitis capitata* WT and V8 males were fungus-treated by contact application on infective dishes 665 two days before the mating process. Values (mean \pm SE) followed by different letters within columns 666 are significantly different (*P* < 0.05).

667

Table 5. Percentage of rematings and their duration between WT females first-mated to *M*. *anisopliae* treated or untreated *C. capitata* V8 or WT males and *C. capitata* WT males.

670

Females first-mated to *M. anisopliae* treated or untreated, *C. capitata* V8 or WT males, were allowed

to remate to healthy WT males two days after their first mate. For each day, values are percentages

 $(\text{mean} \pm \text{SE})$ of remated females respect to the total number of first-mated females in the mating cage.

674 Remating in Day 2 and Day 3 were performed with the remaining non-remated females from the

675 previous day. Percentage values followed by different letters within columns are significantly

676 different (P < 0.05).

Remating duration was obtained as the average value from all the rematings times recorded along the3-days experiment.

679

		Dose $(x \ 10^4)^a$	Slope ± SE	LT ₅₀ (95% CL) ^b	χ^2	df	Sig
	WT males	2.4 ± 0.2	9.626 ± 0.331	$4.7 (4.7 - 4.8)^{c}$	51.6	34	0.027
	V8 males	2.1 ± 0.2	8.606 ± 0.327	$4.5(4.5-4.6)^{c}$	23.9	34	0.901
682							
683							
684	Table 2.						
	Male strain +	- assayed dish	Attractio	on (%) ^a			
	V8 ^b + non-in	fective dish	6.9±2	l.1 a			
	V8 ^b + infecti	ve dish	18.7 ±	2.0 b			
	WT + non-in	fective dish	19.6 ±	1.0 b			
	WT + infecti	ve dish	28.5 ±	2.2 c			
685							
686							
687							
688							
689							
690							
691							

692 Table 3.

	$\stackrel{\bigcirc}{_{+}}$ with sperm from V8 $\stackrel{\bigcirc}{_{-}}$ (%)		V8 🖒 mortality (%)	
Day	\bigcirc x untreated V8 \checkmark	$\stackrel{\circ}{\downarrow}$ x treated V8 $\stackrel{\circ}{\triangleleft}$	Untreated V8♂	Treated V8
1	100.0 ± 0.0	95.2 ± 4.8	0	0
2	95.2 ± 4.8	100.0 ± 0.0	0	0
3	95.2 ± 4.8	94.4 ± 5.6	0	11.11± 2.8
4	81.0 ± 19.0	100.0 ± 0.0	5.6 ± 2.8	19.4 ± 2.8
5	100.0 ± 0.0	100.0 ± 0.0	5.6 ± 2.8	33.3 ± 4.8
6	100.0 ± 0.0	91.7 ± 8.3	13.89 ± 2.8	44.5 ± 2.8

693

694 Table 4.

Crosses	Number of matings (%)	Mating duration (min)
WT \bigcirc x untreated V8 $\stackrel{?}{\circ}$	$88.0\pm4.2~a$	178.1 ± 1.8 ab
WT $\stackrel{\bigcirc}{_{_{_{_{_{}}}}}}$ x treated V8 $\stackrel{\triangleleft}{_{_{_{}}}}$	$84.0 \pm 7.2 \text{ a}$	$172.7 \pm 6.6 \text{ ab}$
WT $\stackrel{\bigcirc}{\downarrow}$ x untreated WT $\stackrel{\triangleleft}{\mathrel{\circ}}$	$82.0 \pm 6.1 a$	160.6 ± 6.8 a
WT \bigcirc x treated WT \bigcirc	83.3 ± 4.7 a	$193.3\pm6.0\ b$

696 Table 5.

Remating crosses	Number of re	Remating		
$\mathbb{Q}($ first-copulating $\mathbb{Z})$ x WT \mathbb{Z}	Day 1	Day 2	Day 3	duration (min)
Q (untreated V8 ∂) x WT ∂	13.2 ± 0.7 a	1.9 ± 1.9 a	2.2 ± 1.1 a	192.7 ± 8.0 a
\mathbb{Q} (treated V8 \mathcal{E}) x WT \mathcal{E}	18.9 ± 1.5 a	$3.4\pm0.4\ a$	$9.3\pm0.4\ b$	179.7 ± 3.3 a
$\mathbb{Q}($ untreated WT $\mathcal{J})$ x WT \mathcal{J}	$5.5\pm2.2~b$	0.9 ± 0.9 a	3.3 ± 1.7 a	171.3 ± 10.5 a
♀(treated WT ♂) x WT ♂	17.0 ± 1.6 a	$4.3 \pm 0.7 \text{ a}$	$6.6 \pm 0.2 \text{ ab}$	195.3 ± 14.5 a

697

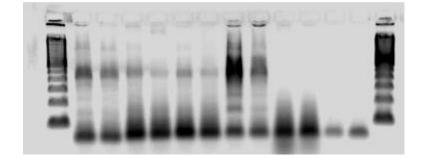
698

699 FIGURE CAPTIONS

Fig. 1. Sperm transference detection in *C. capitata* females mated to *M. anisopliae*-treated or

701 untreatred *C. capitata* V8 sterile males by PCR analysis. Lanes 1 and 14 correspond to the

702 molecular weight marker 100-bp ladder (Invitrogen). Lanes 2 to 9 correspond to CcYsp


703 marker, which indicate sperm DNA of fungus-contaminated males (lanes 2, 4 and 6) or non-

contaminated males (lanes 3, 5 and 7) on female spermathecae the days 2, 4 and 6 after

- treatment. Lanes 8 and 9 correspond to V8 DNA, lanes 10 and 11 to an unmated female and
- 106 lanes 12 and 13 to negative control (no DNA template).

707 Figure 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

