
Proteome-Wide Analysis of Functional Divergence in
Bacteria: Exploring a Host of Ecological Adaptations
Brian E. Caffrey1., Tom A. Williams1., Xiaowei Jiang1, Christina Toft2, Karsten Hokamp1,

Mario A. Fares1,3*

1 Department of Genetics, University of Dublin, Trinity College, Dublin, Ireland, 2 Department of Molecular Evolution, Evolutionary Biology Centre, Uppsala University,

Uppsala, Sweden, 3 Integrative Systems Biology Group, Instituto de Biologı́a Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia (UPV), Valencia, Spain

Abstract

Functional divergence is the process by which new genes and functions originate through the modification of existing ones.
Both genetic and environmental factors influence the evolution of new functions, including gene duplication or changes in
the ecological requirements of an organism. Novel functions emerge at the expense of ancestral ones and are generally
accompanied by changes in the selective forces at constrained protein regions. We present software capable of analyzing
whole proteomes, identifying putative amino acid replacements leading to functional change in each protein and
performing statistical tests on all tabulated data. We apply this method to 750 complete bacterial proteomes to identify
high-level patterns of functional divergence and link these patterns to ecological adaptations. Proteome-wide analyses of
functional divergence in bacteria with different ecologies reveal a separation between proteins involved in information
processing (Ribosome biogenesis etc.) and those which are dependent on the environment (energy metabolism, defense
etc.). We show that the evolution of pathogenic and symbiotic bacteria is constrained by their association with the host, and
also identify unusual events of functional divergence even in well-studied bacteria such as Escherichia coli. We present a
description of the roles of phylogeny and ecology in functional divergence at the level of entire proteomes in bacteria.
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Introduction

Most new genes, functions, and activities originate through the
modification of existing ones. The evolutionary process that gives
rise to functional differences between related genes is called
functional divergence [1,2]. At the species level, functional
diversification is primarily associated with adaptive radiations,
when a single ancestor differentiates into multiple descendant
species, each adapting by natural selection to one of a new set of
ecological niches (Schluter 2000) [3]. Following this theory,
environmental variation triggers divergent natural selection,
leading to the emergence of niche specialists. In many cases,
species under the same ecological conditions differ in their ability
to adapt to new niches, even when they stem from the same
ancestor [4,5]. Therefore, other factors such as genetic constraints
also play an important role in the process of functional divergence.

The process of functional divergence, or departure of a gene
from its ancestral function, is constrained by the requirement to
maintain the original function: mutations that confer a new
function are likely to interfere with the ancestral function and
therefore are eliminated by negative selection. This constraint can
be relaxed when selection for the ancestral function is weakened,
either through gene duplication (and therefore redundancy), or
through changes to the environment inhabited by the organism or

a combination of both these factors. After gene duplication, one
copy of the gene can be free to evolve in a new direction if the
other continues to perform the ancestral function (neofunctiona-
lization). Alternatively, ancestral functions can be partitioned
between the two gene copies, potentially leading to later
specialization or subfunctionalization [1,2,6,7,8]. Major changes
in the environment or ecological niche can also lead to a relaxation
of selective constraints on ancestral functions, although this process
is less well characterized. For example, endosymbiotic bacteria
have lost many of the genes their free-living relatives need to
obtain nutrients from the environment [9], but have also
experienced functional divergence in certain genes [10,11].

Prokaryotes are extraordinarily rich in biological diversity,
whether measured in terms of number of species [12,13], habitat
range [14], or the breadth of energy sources and biochemical
pathways they can exploit in order to survive [15]. Even
photosynthesis and oxidative phosphorylation – the mainstays of
eukaryotic energy metabolism – are bacterial inventions acquired
by endosymbiosis during early eukaryote evolution [16]. How did
this prokaryotic diversity evolve, particularly when the fixation of
gene duplications appears to be somewhat more frequent in
eukaryotes [17]?

Adaptive evolution in prokaryotes is promoted by at least three
main factors: first, a high strength of selection relative to
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eukaryotes, on account of their generally large population sizes
[18]; second, their ability to obtain genes by horizontal gene
transfer (HGT), which enables the sharing of niche-relevant
functions between distantly-related microbes living in the same
environment [19]; and third, their use of stress-induced hypermu-
tation [20], which may increase the production of adaptive
variants as a ‘‘last gasp’’ response to a challenging environment.

Although we know that these processes can drive ecological
adaptation in prokaryotes, identifying the fraction of genetic
variation that is associated with these functional changes remains a
challenging problem. In the case of bacteria, whole-genome
analyses must take into account widespread HGT, which means
that different genes often disagree on the overall species tree [21].
This is a considerable problem for analyses of functional
divergence, which require a tree in order to determine the branch
upon which a particular trait arose.

The rationale for previous methods to identify functional
divergence, and indeed the new approach described here, derives
from the neutral theory of Kimura [22] (1983), which predicts that
residues important for the function of a protein will be under
strong functional constraint and therefore evolve slowly. These
considerations have motivated the development of a number of
methods for identifying changes in selective constraints on protein-
coding genes and on single amino acid sites and lineages in a
phylogenetic tree [23,24,25,26,27,28,29,30,31,32,33]. At the
protein level, Gu [34,35,36] developed a Bayesian approach to
identify functional divergence, which has become the most widely
used. Comparisons of amino acid site-specific evolutionary rate or
residue conservation between two homologous clades can
therefore be used to identify amino acid sites at which selective
constraints have changed, potentially indicating functional diver-
gence.

Recently, we have developed a new distance-based method
which explores a bifurcating phylogenetic tree, testing for
functional divergence at each node by comparing the two
downstream clades to an outgroup in order to identify sites at
which substitution rates per amino acid sites have shifted [11,37].
Similar to other methods, our approach was limited to tests of one
gene at a time, unless the phylogeny of all genes could be fixed in
advance.

Because general patterns of functional divergence and their link
to ecological changes cannot be understood by the analysis of
single genes, in the present study, we have optimised our method
to (i) handle analyses of functional divergence that include
hundreds of complete proteomes, (ii) address the fact that the
phylogenies of individual proteins do not necessarily agree with the
true phylogeny, as is often the case with organisms that acquire
genes through HGT, (iii) provide an intuitive probability
assignment for each test which takes the underlying phylogeny
of the sequences into account and (iv) explore all levels of each
gene tree, testing for functional divergence at each node.

Using this novel method to detect functional divergence, we
infer patterns of radical change for each protein individually, and
then cluster species according to the functional categories (derived
from COG [38]) in which they exhibit significant evidence of
functional divergence. We provide a fast, open source implemen-
tation of our method in the C++ program CAFS (Clustering
analysis of functional shifts). We perform an analysis of functional
divergence on 750 bacterial proteomes. This set includes bacteria
from various different ecological niches and therefore provides a
good dataset for identifying ecology-related functional divergence.
Our approach (i) reveals striking patterns of convergent evolution
in phylogenetically distinct but ecologically related groups of
bacteria, including pathogens, endosymbionts, and thermophiles,

(ii) provides additional support for the view that bacteria have a
conserved set of core functions, with a more variable metabolic
layer and (iii) provides a detailed picture of how individual species
of unusual bacteria have diverged from their closest relatives.

Results and Discussion

A conserved functional core and variable crust in the
evolution of bacterial proteomes

An obvious sign of functional divergence (also understood here
as changes in substitution rates per amino acid site in proteins)
would be a set of homologs that spans multiple COG categories. In
this study we focus only on those alignments where all sequences
have the same COG annotation. This represents the majority of
homologs and is a reflection of the relatively broad character of the
COG categories.

The kinds of functional shifts that we detect on the basis of
conserved, radical amino acid substitutions are therefore subtler
and not noticeable from simply comparing the COG classifications
across homologous sequences. We used chi-squared tests to
evaluate the differences in functional divergence between COG
gene categories in our dataset (see Figure 1). We compared the
proportion of positive tests for functional divergence within each of
the 19 COG categories to the background expectation, which was
calculated by combining all categories. If genes in different
functional categories have similar propensities to undergo
functional divergence, we would expect the proportion of positive
tests in each category to be similar to the mean, resulting in few
significant cases of enrichment. However, eighteen of the nineteen
categories were either enriched or impoverished for functional
divergence, while only one category failed to deviate significantly
from the background expectation.

To test whether this polarization of our dataset was simply due
to an artifact – for instance, the use of a non-conservative
enrichment test – we performed simulations in which the genes in
our original dataset were randomly assigned to one of the 19 COG
categories before testing for enrichment. In these simulations,
events of functional divergence were much more evenly distributed

Figure 1. Different categories of genes experience different
levels of functional divergence. Proportion (FD) is the proportion of
tested branches with at least one functionally divergent site across all
gene trees in a particular functional category. Categories are labeled
according to the COG ontology system [38,73]. Eighteen of the
nineteen categories fall into two groups: significantly enriched or
impoverished. Most information processing genes (K, J, L, A) fall into the
latter group, while metabolic functions (E,F,G,H,P,Q) and genes involved
in defense (V) or found on the cell surface (M) are enriched for radical
change. Description of COG tags can be found in Table S5.
doi:10.1371/journal.pone.0035659.g001
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among the categories, so that 93% of categories were neither
enriched nor impoverished for functional divergence relative to the
background level. This result indicates that the probability of
functional change is not evenly distributed among the real
categories: there is a stark division between enriched and
impoverished categories. This supports the idea that bacterial
proteomes comprise a relatively unchanging core (that is, genes in
impoverished categories) coupled with a set of more variable
functions (enriched categories), as previously noticed [39,40,41].

The impoverished categories are almost exclusively those
involved with information storage and processing, including
DNA replication, recombination, and repair (L); transcription
(K), ribosome biogenesis (J); and cell division (D). Metabolic genes
were among those enriched for functional divergence, including
genes involved in the metabolism of coenzymes (H), secondary
metabolites (Q), carbohydrates (G), amino acids (E) and nucleo-
tides (F). Along with these metabolic categories, cell wall and
envelope genes (M) and cellular defense mechanisms (V) were
among the most enriched categories in our analysis, highlighting
the critical role of the environment in directing lineage-specific
episodes of functional change. Taken together, our results agree
with a number of previous reports indicating that proteins involved
in information processing are more conserved across large
evolutionary distances than those involved in metabolism
[39,40,41,42].

An additional point bears emphasizing here: since our method
controls for the level of conservation at each node on the tree, the
significance of a particular substitution pattern depends on the
background evolutionary rate so that in slow-evolving proteins,
relatively conservative substitutions are detected as significant
events of functional divergence, whereas only very unusual
substitution patterns will attain significance in fast-evolving
proteins. Therefore, our results indicate that information process-
ing genes are not only more conserved than others purely in terms
of evolutionary rate, but that they also experience less functional
change even taking this low rate of sequence evolution into
account.

Why are informational genes under greater functional con-
straint than the rest of the proteome? One possibility, which
follows Crick’s concept of the ‘‘frozen accident’’ [43], is that too
many other genes depend on the basic functions of translation,
transcription, and repair: functional changes in these genes would

disrupt many other systems in the cell. This hypothesis is
supported by the observation that the COG category containing
protein trafficking and chaperones (O) is also impoverished: the
core activities of generalist chaperones such as GroEL and DnaK
are required for the proper folding of many different proteins in
bacterial cells [44].

Host interactions constrain functional change in
pathogenic and symbiotic bacteria

Does the ecological niche of an organism influence the pattern
of functional change it experiences? To answer this question, we
evaluated the enrichment of functional divergence in each species
relative to the others in our dataset. To calculate the enrichment
status of each species, we used the same statistical strategy as
employed for enrichment by functional category: we calculated a
background proportion of successful tests for functional divergence
over all species, and then compared this to the proportion for each
species individually using chi-squared tests (a full table of these
results can be found in Table S1). We also used chi-squared tests to
identify associations between these three enrichment patterns
(enrichment, impoverishment, or neither) and organism lifestyle,
as is summarized in Table 1. While there was no statistically
significant difference between psychrophiles and mesophiles in
terms of functional divergence (chi-squared = 0.9762, P = 0.6138),
nor indeed was there significance when comparing thermophiles
to free living bacteria.

Thermophiles did however present a contrasting pattern of
functional divergence in comparison to the general pattern, with
two COG categories being enriched for functional divergence in
thermophiles while being impoverished in general. These
categories are directly related with the survival of cells under heat
stress: category K, which comprises mostly transcription factors,
and category L, which is involved in DNA replication,
recombination and repair. Above certain temperature threshold,
molecular pathways undergo dramatic temperature induced
alterations that drive to cytotoxicity, radiosensitization and
thermotolerance [45,46]. Among all the responses that take place
in the cell under high temperatures, inhibition of DNA, RNA and
protein synthesis is the response that involves a complex and fine-
tuning of regulation mechanisms, mainly orchestrated by tran-
scription factors [46]. One such important regulated mechanism is
the induction of heat-shock proteins, particularly involved in

Table 1. Effect of organism lifestyle on functional divergence.

Lifestyle Comparison Enriched Neither Impoverished Significance

Psychrophile Mesophile 2/61 6/433 1/66 N.S.

Thermophile Mesophile 7/61 22/433 1/66 N.S.

Pathogen Non-pathogen 22/77 272/294 47/38 *** (2)

Intracellular pathogen Other pathogen 0/22 26/246 4/43 N.S.

Symbiont Non-symbiont 4/95 36/530 13/72 *

*Intracellular endosymbiont All others 4/224 14/360 15/133 *** (2)

All interactors Free-living 44/55 410/156 70/15 *** (2)

Associations between lifestyle and enrichment for functional divergence: the numbers of genomes in each category are given in the form Lifestyle/Comparison.
Significance was assessed with Yates-corrected chi-squared tests, or Fisher tests when the expected count was lower than 5 for any one cell in the contingency table.
Significance codes: N.S. = P.0.05;
* = P,0.05,
** = P,0.01,
*** = P,0.001.
If an association was significant, ‘‘+’’ or ‘‘2’’ denote the direction of the shift associated with the lifestyle being tested. For instance, interactors are significantly
impoverished (2) compared to free-living bacteria.
doi:10.1371/journal.pone.0035659.t001
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mitigating the cytotoxic effects due to the non-specific aggregation
of unfolded and denatured proteins [47,48].

Interestingly, we found that all bacteria that interact with a host
as an integral part of their lifestyle (including pathogens, parasites,
symbionts and commensals) were significantly impoverished for
functional divergence in comparison to their free-living relatives
(see Table 1). This result is somewhat surprising because
pathogens and symbionts generally experience higher rates of
evolution than free-living bacteria, although much of the increase
can be attributed to heightened genetic drift [9]. Our results
suggest that once the overall conservation level of proteins is
accounted for, these bacteria have undergone less functional
change than their free-living relatives. This result can be explained
by greater ecological constraints on host-associated bacteria, which
must adapt to the highly specific environment of their host. In
particular, pathogenic and symbiotic bacteria preferentially lose
metabolic genes as they no longer require the capacity to exploit as
wide a range of nutrient sources as free-living bacteria [9].

Since these are precisely the kind of genes that are most
amenable to functional change (Figure 1), their loss from host-
associated bacteria explains the relative impoverishment of
functional divergence in these proteomes. The remaining genes
are also under strong constraints imposed by the specialized
environment they are in, limiting therefore any opportunity for
functional divergence (Toft and Fares 2008, 2009). However,
variability in genome size is a complicating factor in this analysis
because host-associated bacteria tend to have smaller genomes
than their free-living relatives. For instance, endosymbiotic
bacteria of insects underwent substantial reduction in the gene
content, with genomes sizes ranging between 144 kb and 792 kb
depending on the host (in comparison, E. coli K12 has a genome
size of 4.639 Mb) (See for example [49,50,51,52,53,54,55]. Since
functional divergence often follows gene duplication [1], it might
be expected that larger genomes would be enriched for new
functions in comparison to smaller ones.

Does genome size alone account for the observed differences
between host-associated and free-living bacteria? To test this
possibility, we modeled genome enrichment and impoverishment
for functional divergence as a function of lifestyle (host-associated
vs. free-living) and genome size (in nucleotides) using a generalized
linear model, a saturated model was fit using the glm function in R
(R Development Core Team, 2010), with enrichment or
impoverishment for functional divergence as the response variable
(binomial errors), and genome size (continuous, bp) and lifestyle
(categorical, free-living or host-associated) as the explanatory
variables. This was simplified to a minimal adequate model using
the step function. The interaction between genome size and
lifestyle was non-significant and was removed during model
simplification (see Table S2). Both lifestyle and genome size were
significant, with host-associated bacteria significantly more likely
to be impoverished (P = 1.28610213) and, perhaps surprisingly, a
modest tendency towards impoverishment in larger genomes
(P = 0.03). Therefore, variation in genome size does not account
for the observed differences in functional divergence between host-
associated and free-living bacteria.

To better define the effect of lifestyle on functional divergence,
we identified the functional categories with the greatest consistent
differences in enrichment status between host-associated and free-
living bacteria. Interestingly, genes involved in vesicular transport
and secretion systems (U) were enriched for functional divergence
in host-associated bacteria but neither enriched nor impoverished
in free-living bacteria, while signal transduction genes (T) were
impoverished in host-associated bacteria but enriched in their free-
living relatives (Table S3). This pattern can be readily understood

in terms of the lifestyles of host-associated bacteria, as pathogens
use elaborate secretion systems for delivering toxins and other
virulence factors to their host [56], while symbionts provision their
hosts with nutrients as part of their mutually beneficial relationship
[57,58]. In addition, the impoverishment in host-associated signal
transduction genes reflects their adaptation to a relatively constant
host environment, which is considerably more stable than the
fluctuating conditions experienced by their free-living relatives.

What is the relative importance of genome size variation
compared to functional divergence in bacterial adaptation? This
question is difficult to answer because both of these evolutionary
phenomena are at work in the process of ecological bacterial
adaptations. Therefore, micro-evolutionary processes, such as
functional divergence, necessarily accompany macro-evolutionary
processes, such as genome shrinkage or HGT, during bacteria
adaptation to different ecological conditions. The timing and
relative importance for each of these phenomena is, nevertheless,
varied over the different stages of adapting to a new environment.
Taking the example of symbiotic bacteria of insects, these bacteria
are characterized by a dramatic genome streamlining, high
mutation rates and the functional divergence of genes involved
in an endosymbiotic lifestyle. When did these processes occur? We
predict that HGT was important for the free-living ancestor of
these bacteria to acquire pathogenic genes and invade the
eukaryotic cells of the host. Dramatic gene loss in these invading
bacteria may have become the next important evolutionary leap,
making bacteria dependent upon the host. Finally, functional
divergence may have contributed importantly to the refinement of
the adaptation of these bacteria to the novel ecological conditions.

From proteome-wide to residue-level functional
divergence

In order to visualize the results of our functional divergence
analysis, we performed two-dimensional hierarchical clustering on
the enrichment status (enriched, impoverished, or neither)
associated with each species and functional category – that is,
we clustered species according to similarities in their enrichment
status across the 19 functional categories, resulting in the heatmap
and dendrogram in Figure 2a (complete dendogram and heatmap
is available in Figure S1). This is a powerful and intuitive way to
represent our results because it reveals the overall patterns in the
data – such as the extreme conservation among informational
genes, particularly those involved in ribosome biogenesis (J) - while
also highlighting individual, lineage-specific exceptions to the
general trends. In this section, we demonstrate the utility of this
approach by using the heatmap to identify species that have
undergone major functional shifts.

Although top-level bacterial groups (such as the divisions of the
proteobacteria, the Firmicutes, Actinobacteria, and so on) are not
resolved in our dendrogram of functional divergence (Figure 2),
family and genus-level relationships often are, presumably because
of close phylogenetic relatedness, shared gene content, and
similarity of ecological niche. This allows us to identify individual
species with atypical patterns of functional divergence. A
particularly striking case is that of the Bartonella genus (Figure
2b), which are a group of intracellular parasites that infect and
replicate in erythrocytes [59]. Of the four Bartonella species in our
dataset, only one – Bartonella bacilliformus – is enriched for
functional divergence in cell motility genes (N), with the others
being impoverished (2 species) or neither enriched nor impover-
ished (1 species).

Remarkably, this is the only member of the genus that possesses
flagella [60]. Since erythrocytes lack an active cytoskeleton, they
cannot be induced to take up external bacteria by invagination
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PLoS ONE | www.plosone.org 4 April 2012 | Volume 7 | Issue 4 | e35659



[61]. Instead, erythrocyte invasion by Bartonella species is an active
process [62]. The mechanism employed by Bartonella bacilliformus
involves the use of its flagella [63] and is more efficient than that of
other Bartonella species, with up to 80% of erythrocytes infected

[62,64]. This appears to be a clear case where our approach has
identified an interesting, lineage-specific case of adaptation to a
specialized ecological niche.

Figure 2. Visualizing high-level patterns of functional divergence. We used hierarchical clustering to reveal the main patterns of functional
divergence in our dataset of 750 bacterial proteomes. (a) The complete heatmap, with a dendrogram corresponding to category clustering, and
species clustering along the left hand side. Visualizing the data in this way reveals the extreme impoverishment of proteins involved in ribosome
biogenesis (J), as well as the enrichment of categories involved in interaction with the environment (E, M, G, H, C, P) across all species. (b) Lineage-
specific events of functional divergence picked out from the heatmap (dendrogram colors denote the regions expanded upon – a larger version of
the complete heatmap is available as Figure S1). Unlike other Bartonella species, B. bacilliformus is impoverished for divergence in cell motility genes
(N), and is unique among Bartonella species in using a flagellum to infect erythrocytes. (c) Two strains of E. coli – SMS 3–5 and UMN026 – have
phylogenetically atypical patterns of functional divergence: the constraints on cell motility (N) are among those that have relaxed relative to the other
strains in SMS 3–5, while UMN026 is uniquely enriched for secretion system (U) genes.
doi:10.1371/journal.pone.0035659.g002
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Our heatmap turns up surprises even among relatively well-
characterized species (Figure 2c). As expected, closely related E.
coli and Shigella strains cluster together at the bottom of the
dendrogram (Figure 2a). E. coli SMS 3–5, a multidrug-resistant,
heavy-metal tolerant strain isolated from a polluted industrial
environment [65] is distinguished from other E. coli strains on the
basis of a relaxed functional constraint in the category of cell
motility (N); most others are impoverished for functional
divergence, while SMS 3–5 is enriched. This profile correlates
well with what is known about the biology of this strain, which is
unique among sequenced E. coli genomes in possessing a second,
intact lateral flagellar system called Flag-2, in addition to the
normal peritrichious flagella found in other E. coli strains [65,66].
This system was originally characterized in a different strain, 042,
where it has been rendered nonfunctional by a frameshift
mutation in one of the component genes [66], although it appears
to be complete in SMS 3–5 [65].

Another E. coli proteome with an unusual pattern of functional
divergence is O17:K52:H18 (strain UMN026), a multidrug-
resistant strain that causes urinary tract infections [67]. Unique
among E. coli and Shigella species, this strain is enriched for
functional divergence among genes involved in secretion (U).
Investigation of the genes underlying this enrichment revealed
functional divergence in the VirB8 and VirB9 genes, which
encode core proteins in a Type IV secretion system found only in
two E. coli strains – UMN026 and 018 (ED1a), although the latter
species is not enriched in this category. In other bacteria, Type IV
systems are involved in the exchange of DNA with the
environment, as well as the delivery of effector proteins to host
cells [68]. Since these two proteins are important components of
the Type IV secretion systems of other bacteria, functional
divergence in these genes may be involved in adapting the system
to an UMN026-specific role (see Figure 3).

To gain further insight into the possible implications of the
UMN026-specific changes in these proteins, we mapped the
specific residues under functional divergence in VirB8 (also output
by CAFS) onto the Agrobacterium tumefaciens crystal structure [69]. Of
the 14 sites under functional divergence (see Table S4), 5 could be
mapped onto the crystallized region of the protein. Of these 5, 4
are at or close to positions previously shown to be of functional
importance. Thr-196(residues numbered according to the A.
tumefaciens sequence), which CAFS detected as being under
functional divergence in UMN026, is directly involved in the
stabilization of the VirB8 homodimer [69], as is Leu-211, another
functionally divergent site. Additionally two sites identified by our
approach are at positions that suggest they may have an indirect
role in dimerization. Val-218 is located between two other residues
(Leu-217 and Val-219) that are involved in dimer formation, while
Phe-127 is adjacent to Ser-128, a conserved residue that stabilizes
the interaction surface on VirB8. The function of the other site
detected under functional divergence, Val-183, is currently
unknown. Taken together, these results indicate that functional
divergence in E. coli UMN026 VirB8 has occurred at residues
important in forming the homodimer, which may have important
implications for the overall structure and function of the complex.
With no crystal structure available for VirB9, it is more difficult to
evaluate the functional significance of the sites detected there.
Further, we detected functional divergence on 19 branches of the
VirB9 tree, suggesting that this protein experiences a more general
pattern of radical change.

Methods

Design and implementation
Our analysis of functional divergence, the individual steps of

which are detailed below, is summarized in Figure 4.

Figure 3. Amino acid residues under functional divergence in E. coli UMN026 VirB8. Right: the structure of a Type IV secretion system
found only in two strains of E. coli. CM = cytoplasmic membrane, OM = outer membrane. The complex structure is based on that of Baron (2006) [84].
In UMN026, the central complex proteins VirB8 and VirB9 are under functional divergence. Left: Of the five sites detected by CAFS that could be
mapped to the VirB8 crystal structure [69], there is evidence that four are involved in forming the VirB8 homodimer, suggesting that functional
divergence at these positions is involved in altering the quaternary structure of the complex.
doi:10.1371/journal.pone.0035659.g003
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Sequences, orthology, and alignment
The first step in a whole-proteome analysis of functional

divergence is the grouping of orthologs within the species of
interest. We leave orthology assignment for which a number of
tools are already in use [70], to the users’ choice according to their
own needs. For the present analysis, we retrieved pairwise
orthology assignments for 750 completely-sequenced bacterial
genomes from the OMA database [71,72], representing all
bacterial data in the October 2009 revision of the database.

We chose the OMA project for its very broad phylogenetic
coverage, as well as the favourable performance of its algorithm
against other current orthology assignment methods [70]. In
addition to providing pairwise orthology calls, the OMA algorithm
assembles strict orthologous groups in which every member is
directly orthologous to every other. The rationale for this strict
approach to grouping is the exclusion of paralogs, which is
important for a number of potential applications of the OMA

database, such as phylogenetic analysis. Unfortunately, these
groups are unsuitable for functional divergence analysis across
large phylogenetic distances because lineage-specific gene dupli-
cations tend to break up genuine orthologs into multiple,
overlapping groups (that is, clustering problems arise because
pairwise orthologies are not necessarily transitive). Using these
groups in our analysis would result in multiple testing of the same
clade, each time with overlapping but incomplete sampling of
downstream sequences. The inclusion of both orthologs and
lineage-specific paralogs in the same group is, however, of no
concern in our per-species comparison of divergence between
different functional categories of genes, because our method relies
on individual gene trees and not a single ‘‘species tree’’ to detect
functional divergence (see below).

Therefore, we decided to build our own groups from the
pairwise homology assignments in OMA, with the less stringent
requirement that any sequence in a group be connected to at least
one other sequence by pairwise homology. This strategy produces

Figure 4. CAFS program workflow. After alignments have been built for each gene in the analysis, the alignments are sorted by functional
category. In this case, the COG system was used [38], but any other ontology can be used as well. Trees are built for each gene using BIONJ [76] and
the JTT substitution model [77], and sites are scored for functional divergence on each branch. Significance is assessed by simulating a distribution of
test scores under a model of neutral evolution, taking the real phylogeny into account and using the False Discovery Rate approach to correct for
multiple testing. For each species and functional category, we use chi-squared tests to evaluate whether the species is enriched or impoverished for
functional divergence in that category, and then cluster species according to similarities in their profile across all 19 categories. This approach enables
us to account for HGT while identifying interesting and atypical patterns of functional change in the data, as discussed in the main text.
doi:10.1371/journal.pone.0035659.g004
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groups containing all orthologs and paralogs for a given gene, as
appropriate for analysis of functional divergence. However, the
approach is vulnerable to erroneous homology calls in the original
database, because a single false call will cause two unrelated
groups of sequences to be merged.

To assess the possible effect of false OMA homology
assignments on our dataset, we used the relevant genomic data
at NCBI to assign COG ontology tags to each sequence [38,73].
We then calculated the frequency of the modal COG tag in each
group (see Figure 5). The largest group (4,788 alignments)
contained only one COG tag each, validating our approach to
grouping homologs (since COG categories are relatively broad,
related sequences are expected to be annotated with the same tag).
To avoid ambiguity in the clustering of functional categories, we
only analyzed these single-tag alignments. We then filtered out
poorly-characterized groups (annotated with the ambiguous R or
S COG categories) and any group containing less than 9 sequences
(one outgroup and 4 sequences downstream of the inner nodes),
which we chose as the minimum number required for analysis
(both as a requirement for stringency and also comparison to
similar software Gu 1999). The final dataset comprised 3,813
groups, which were then analyzed with our novel approach
(CAFS: Clustering Analysis of Functional Shifts). Other functional
classifications such as Gene Ontology (GO) can also be used.
However, caution is required because GO contains overlapping
categories and alignments with multiple tags can lead to
ambiguous results.

Sequence alignments were built for each group with MUSCLE
[74], using the default parameters. Data on the ecological niches
occupied by the species included in the analysis was retrieved from
HAMAP [75] and from the Genome database at NCBI.

A typical alignment of 78 sequences takes 2 minutes and
40 seconds to analyze for functional divergence using CAFS on a
standard desktop computer, including NJ tree-building. At the
other extreme, the large-scale analysis reported below (44,416 tests
of functional divergence/3,813 alignments) took 92 hours on a 40-
node cluster.

Building gene trees
When analyzing entire proteomes for functional divergence, the

use of a species tree to infer events on each branch is problematic:
extensive horizontal gene transfer (HGT), particularly among
prokaryotes, means that genomes may not be related in a tree-like
way [21]. We therefore calculated a tree for each gene (set of
homologous sequences) in the dataset using BIONJ [76] (see Text
S1 and Table S6 for a justification of the use of BIONJ and
comparison with the use of maximum-likelihood trees), under the
JTT model of protein sequence evolution [77] along with a
gamma distribution(n = 4, alpha = 1.0) to correct for among sites
variation of evolutionary rates(a fixed alpha value was used
because of the time constraints involved in assessing alpha and
other parameters for all alignments). Calculations for that gene
were then made exclusively using the resulting tree.

Scoring functional divergence
We here define functional divergence as the potential departure

of the derived protein function from its ancestral one as a result of
amino acid changes at important functional sites. Therefore
functional divergence is detected on the basis of shifts in
substitutution rates per amino acid site in proteins. This analysis
of functional divergence can be used to provide a list of candidate
genes for further experimental testing. Our method identifies
amino acid sites within a protein, which have radical substitutions
between clades and are statistically significant. This is carried out
in each of the lineages of a tree, with each lineage being a cluster of
4 or more sequences.

The method steps through the phylogenetic tree and calculates
functional divergence scores at each of the inner nodes. For each
site of the protein, our approach compares the amino acid
composition between two clades to that of an outgroup. This
comparison is performed using BLOSUM62 amino acid substi-
tution matrix [78], indeed any substitution matrix can be used.
BLOSUM62 and related matrices provide an empirical measure
of the likelihood of the transition of one amino acid to any of the
other 20 (including its conservation). Scores of functional
divergence (FDscore) for each column are given by:

FDscore~
!XX 1{ !XX 2

SX1{X2

ð1Þ

where !XX1,2 are the mean substitution scores for the transition from
clades on either side of the bifurcation in the phylogenetic tree
relative to the outgroup and SX1{X2

, the standard error for

unequal sample sizes with unequal variances, is given by:

SX1{X2
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1

n1
z

s2
2

n2

s

ð2Þ

Figure 5. Number of COG assignments (tags) for each group of
homologous sequences. We included both orthologs and paralogs
in our sequence groups, because we are interested in functional
divergence. The majority of groups consisted of sequences that had all
been assigned to the same COG category, suggesting our grouping
strategy did not lump together unrelated sequences due to spurious
orthology calls. Since COG categories are relatively broad, we do not
generally expect functional divergence to cause a sequence to shift
from one category to another, an hypothesis that is also borne out by
the clustering of related sequences within the same category. In our
study, to avoid ambiguity we only use alignments in the group with a
single COG tag.
doi:10.1371/journal.pone.0035659.g005
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Significance testing
To test the significance of functional divergence events, we

simulated multiple sequence alignments of the same size as the real
alignment but in which proteins were evolved under a neutral
evolution model. Because functional divergence was tested in
protein alignments, the seed ancestral sequence was protein based
and this evolved under the JTT model.

For our simulations, we used the gene-specific tree topology and
branch lengths calculated above. We built at least 1000 such
simulated alignments (more simulations are created if mean and
standard deviation have not converged within a difference of
1*1026 after 1000), in each of which we searched for functional
divergence and calculated a score according to equation (1). To
allow for the gaps in the sequences we simulated alignments with
the number of columns equal to the length of the input alignment
minus the average number of gaps in each species. This search
resulted in a null distribution of the test score against which P-
values for the real data were calculated. These values were then
corrected for multiple testing by the False Discovery Rate method
[79] using an alpha value of 5% as the threshold of significance.
Following this procedure, branches on the tree that still possess at
least one significant amino acid site were considered to be under
functional divergence for the purposes of enrichment and
clustering.

Enrichment analysis
Once all alignments were analyzed, we performed three

different enrichment tests to ask three different biological
questions. These are based on a chi-squared test:

x2~
Xn

i~1

Oi{Eið Þ2

Ei
ð3Þ

Where Oi is the observed frequency of genes/alignments under
functional divergence, Ei is the expected frequency and n is the
number of possible outcomes of each event. We used the
enrichment tests to identify (i) species and (ii) categories of genes
that experienced significantly more (enriched: Oi – Ei.0) or
significantly less (impoverished: Oi – Ei,0) functional divergence
when compared to the background level (that is, P,0.05 in a chi-
squared test). We then calculated (iii) the enrichment status of each
category within each species, in order to identify lineage-specific
shifts in the pattern of functional divergence. It should be noted
that the chi-squared test used scales for the size of each of the
groupings considered in our results.

Hierarchical clustering
We created a heatmap from the enrichment status of functional

categories within species to help visualize the structure in our large
dataset. To do this we used the heatmap.2 function from the gplots
library in R (R Development Core Team, 2010). This function
performs two-dimensional hierarchical clustering according to
Euclidean distance and outputs a heatmap together with a
corresponding dendrogram. Visualizing the results of the analysis
in this way allows identifying unusual patterns of functional
divergence in particular functional categories or convergent
functional divergence among phylogenetically unrelated sequenc-
es.

Implementation
CAFS was implemented in C++ and is available under the

GNU General Public License v.3 for Linux, Mac and Windows.
The code was written using the GNU Scientific Library and the

Bio++ libraries [80]. The program is accompanied by full
documentation and enables the user to perform several different
kinds of analyses, including the identification of lineage-specific
functional divergence in a gene-of-interest (such as that reported
by Williams et al. (2010) [37]) and the kind of multi-proteome
investigation reported here. The latest version of the code and
documentation is available at http://bioinf.gen.tcd.ie/,faresm/
software/software.html.

Comparison to other applications and assessment of
Error

As mentioned previously many programs have been developed
to predict putative sites of functional divergence in a multiple
sequence alignment. Of those, the most commonly used method is
DIVERGE [81], therefore we used this as a benchmark. We found
that our method could analyze large alignments, automate
proteome scale analyses and performs analyses on tagging systems
which DIVERGE does not (Also see Table S7, Text S2, Table S8
and Text S3 for a detailed comparison of our method with
Diverge). Our method also performs simulations, which scales the
cutoff value for each alignment, this scaling allows us to analyze all
homologs and hence is not limited to orthologs. Our program
automates the building of trees with a more detailed model of
evolution and better tree building algorithm. Given that the tree
building algorithm is distance based we performed a comparison
to trees built using RaxML [82], 92% of the sites identified using
the distance based trees were identical to those using the
maximum likelihood method. Given the differences between our
software and that of DIVERGE it is very difficult to make
comparisons in terms of the sites reported by each program.
DIVERGE compares two clades after a duplication event and our
software compares two clades and an outgroup. We do so in order
to assess events of functional divergence at any testable node on a
tree and also because we feel it provides stronger evidence of
functional divergence. Another widely used software to identify the
strength of selection in protein-coding genes is PAML. This
package employs the programs yn00 and codeml for testing the
Dn/Ds ratio. This means PAML works on nucleotide level while
CAFS uses protein sequences, which gives it the ability to assess
divergences of greater magnitude. An additional feature of our
program is the ability to easily automate and carry out large
analyses, as shown in this study. Another philosophical difference
between both approaches is that, to detect positive selection, using
programs like PAML a strong signal is required, which would
make it difficult to detect episodic positive selection. CAFS only
requires an amino acid substitution fixed by positive selection in a
functionally important region of the protein followed by strong
purifying selection.

Given the difficulty of finding definitive positive controls for an
analysis of this nature we felt it important to demonstrate that
there would not be a large false positive rate. We simulated 20
alignments under a codon model with neutral evolution (non-
synonymous, Ka, to synonymous, Ks, rates ratio v= Ka/Ks = 1)
using the evolver package in PAML [83]. These alignments were
converted to amino acids and analysed with CAFS under the
default alpha value of 0.05, with this value the expectation would
be 5% of sites being reported as functionally divergent. Our
software reported an average of 2.3% of sites as functionally
divergent. Given this percentage we are confident that our
methodology of significance testing and implementation of false
discover rate is not susceptible to a large number of false positives.
Further details of this section can be found in Text S1 and S2 and
Tables S6 and S7.
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In conclusion, The identification of functional divergence and
ecological adaptation from sequence data is an interesting and
important goal in evolutionary biology, with the potential to
deepen our understanding of the evolution of individual traits and
species, as well as the processes of evolution as a whole. Bacteria
display an astonishing capacity for adaptation to different lifestyles
and ecological niches, but investigating the evolution of these traits
is problematic because their phylogenetic context is often unclear.

Here, we have circumvented this problem by evaluating
functional divergence on gene trees and then clustering species
by gene functional category. Our approach revealed the overall
patterns that have characterized functional change during the
evolution of bacteria, including strong constraint on information
storage and processing genes and also constraints induced by the
host on pathogenic and symbiotic bacteria. It also identified
lineage-specific events of atypical functional divergence, such as
the use of flagella by Bartonella bacilliformus to invade host
erythrocytes and residue-level changes in the VirB8 protein of E.
coli UMN026. This is, to our knowledge, the first method that can
be used to identify functional divergence at the level of entire
proteomes. Although used here to perform a large-scale analysis
on bacteria with the use of COG categories, our CAFS software is
extremely flexible and can be applied to individual genes, lineages,
or groups of proteomes using any ontology system in order to
investigate functional divergence at every level of biological
organization.

Supporting Information

Figure S1 Visualizing high-level patterns of functional
divergence. We used hierarchical clustering to reveal the main
patterns of functional divergence in our dataset of 750 bacterial
proteomes. The complete heatmap, with a dendrogram corre-
sponding to category clustering, and species clustering along the
left hand side. Visualizing the data in this way reveals the extreme
impoverishment of proteins involved in ribosome biogenesis (J), as
well as the enrichment of categories involved in interaction with
the environment (E, M, G, H, C, P) across all species.
(TIFF)

Table S1 Enrichment of COG gene categories for
functional divergence. The annotation for each COG category
was retrieved from http://www.ncbi.nlm.nih.gov/COG/. Enrich-
ment was evaluated with Chi-squared tests. ‘‘Not enriched’’
indicates there was no significant association between the number
of lineages under functional divergence and the COG category.
Impoverishment and Enrichment denotes the direction of a
significant association.
(DOCX)

Table S2 Enrichment status of 750 bacterial species.
Enrichment status was calculated with a Chi-squared test based on
the number of testable branches on our gene trees where a
particular species was under functional divergence.
(DOCX)

Table S3 Effect of bacterial lifestyle and genome size on
functional divergence. We used a generalized linear model
with binomial errors to assess the impact of lifestyle and genome
size on the enrichment and impoverishment of genomes for
functional divergence. The saturated model was fit with the glm
function in R, and simplified to a minimal adequate model with
the step function, which determined that the interaction was not
significant. Both lifestyle and genome size have a significant impact
on enrichment status, with host-associated bacteria and bacteria

with larger genomes more likely to be impoverished for functional
divergence.
(DOCX)

Table S4 Enrichment status of gene categories in host-
associated and free-living bacteria. Categories U and T
show different levels of enrichment for functional divergence when
the analysis is run on these groups of bacteria independently.
(DOCX)

Table S5 Sites under functional divergence in VirB8.
The left column shows the sites found in E.coli UMN026, the sites
on the right show the homologous sites in Agrobacterium tumefaciens.
Sites without a value for Agrobacterium tumefaciens represent sites,
which have not been crystalised.
(DOCX)

Table S6 Detecting functional divergence using BioNJ
trees. The number of FD sites predicted at the 0.05 p-value level
using BioNJ trees is consistently smaller. This indicates a stricter
scoring scheme, which potentially reduces false positives. It can be
seen from the last column, that the percentage of the FD sites
detected through BioNJ trees that are also detected through ML
trees increases with larger number of sequences in the alignment
and approaches 100%. Only the smaller alignments show
noticeable discrepancies but some of these can already be
explained by the effect of different tree topologies. Overall, the
above results confirm the suitability of BioNJ for tree construction,
particularly for alignments with a large number of sequences.
(DOCX)

Table S7 Comparison of runtime for two methods of
functional divergence. The most widely used program for
detection of functional divergence is DIVERGE [81]. Even
though it is well-suited for individual analyses, it can not be used
for a large-scale study such as the one presented here. This is
because the size of alignments dealt with exceeds the limits of the
data that DIVERGE can handle. It is also not designed to be run
automatically.
(DOCX)

Table S8 Functionalities of CAFS in comparison with
DIVERGE.
(DOCX)

Text S1 Justification for use of BioNJ and Comparison
of results performed with Maximum Likelihood trees vs
BIONJ trees.
(DOCX)

Text S2 A Note about testable alignments and compu-
tation time for functional divergence detection. It should
be noted that since DIVERGE could not run the 4 largest
alignments in this subset of our dataset, we predict that at least half
of the alignments in our full dataset can not be analysed by the
DIVERGE software. Indeed we were unable to run analysis on
any alignment over 86 sequences long, however DIVERGE would
read alignments up to 100 sequences long. Another further
problem about the calculations performed with DIVERGE2.0 is
the impossibility to perform analyses collected in Gu2001 which
pertains to the method in [81]. This analysis did not work for any
of the alignments above. All alignments failed with the error
‘‘Please recheck input sequence data and tree information’’, for
which we could not find documentation. In addition to the times
stated above we would like to add that DIVERGE works on an
alignment by alignment basis and as such the user must manually
chose files to be analysed and also the trees to be input and the
nodes to be tested. This makes proteome level analyses prohibitive.
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The runtimes given in the table above do not include the time it
takes for the user to choose nodes for functional divergence testing
with DIVERGE.
(DOCX)

Text S3 Conclusion of Comparisons of the methods to
identify functional divergence. We conclude that whilst we
understand and acknowledge the value of building maximum
likelihood trees we feel that one of the biggest assetts of our
program is speed and automation. With this in mind, we wish to
demonstrate to the user that whilst BioNJ trees are calculated
within the program the results recieved are ,92% comparable to
those returned after the maximum likelihood analysis. Given the
high level of similarity between the maximum likelihood built trees
and those built with BioNJ we feel that the conclusions drawn in
the manuscript would hold in either circumstance. We also feel
that analyses on the scale of those detailed in the main text are not
possible for many who have limited computational resources. In
reference to the DIVERGE comparisons we feel justified in our

calculations that DIVERGE is not ideal for large scale analyses
and can be troublesome to the user for even relatively small
alignments. In addition to the tests run above we would like to say
that on large scale analyses all of the information about the sites
tested are collected and automatically analysed according to any
tagging system applied to the dataset.
(DOCX)
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