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Definition 1.2 (See [14, 17]). Let (X , d) be a complete metric space. Let p be
a positive integer, A1,A2, . . . ,Ap be nonempty subsets of X , Y =

∪p
i=1Ai and

T : Y → Y. Then Y is said to be a cyclic representation of Y with respect to T if

(i) Ai, i = 1, 2, . . . , p, are nonempty closed sets, and
(ii) T (A1) ⊆ A2, . . . , T (Ap−1) ⊆ Ap, T (Ap) ⊆ A1.

Following [14], a number of fixed point theorems on cyclic representation of Y
with respect to a self-mapping T have appeared (see e.g. [1, 6, 11,12,16–19]).

To continue the investigation specified in [14], a new variant of cyclic contractive
mappings satisfying generalized altering distance function, which is followed by the
existence and uniqueness of fixed points for such mappings is discussed here. The
obtained result generalizes and improves many existing theorems in the literature.
Some examples are given in the support of our results. Finally, an application to
the study of existence and uniqueness of solutions for a class of two-point boundary
value problem of second order differential equation is presented.

2. Main results

In the sequel, we designate the set of all real nonnegative numbers by R+ and
the set of all natural numbers by N.

To introduce a new variant of cyclic contraction we need the notion of an altering
distance function.

Definition 2.1 ( [13]). A function φ : R+ → R+ is called an altering distance
function if the following properties are satisfied:

(a) φ is continuous and non-decreasing, and
(b) φ(t) = 0 ⇔ t = 0.

Definition 2.2 ([20]). A function ψ : R+3 → R+ is said to be a generalized altering
distance function if

(i) ψ is continuous,
(ii) ψ is non-decreasing in each variable,
(iii) ψ(t1, t2, t3) = 0 ⇔ t1 = t2 = t3 = 0.

F3 will denote the set of all functions ψ satisfying conditions (i)–(iii).

The following are examples of generalized altering distance functions with three
variables.

Example 2.3. (a) ψ(t1, t2, t3) = kmax{t1, t2, t3}, k > 0;

(b) ψ(t1, t2, t3) =
max{t1,t2,t3}

1+max{t1,t2,t3} ;

(c) ψ(t1, t2, t3) = tp1 + tq2 + tr3, p, q, r ≥ 1.

Now we can state the notion of cyclic contraction under generalized altering
distance function as :
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Definition 2.4. Let (X , d) be a metric space. Let p be a positive integer, A1,A2, . . . ,
Ap be nonempty subsets of X and Y = ∪pi=1Ai. An operator T : Y → Y is called
cyclic contractive under generalized altering distance function, if

(I) Y = ∪pi=1Ai is a cyclic representation of Y with respect to T ;
(II) for any (x, y) ∈ Ai ×Ai+1, i = 1, 2, . . . , p (with Ap+1 = A1),

Ψ1(d(T x, T y)) ≤ ψ1(d(x, y), d(x, T x), d(y, T y))− ψ2(d(x, y), d(x, T x), d(y, T y)),
where ψ1 and ψ2 are generalized altering distance functions (in F3) and Ψ1(t) =
ψ1(t, t, t).

It is easy to acquire the following examples of cyclic contractive mapping from
Example 2.3(a):

Example 2.5. Let X = [0, 1] with the usual metric. Suppose A1 = [0, 14 ] and

A2 = [14 , 1] and X =
∪2
i=1Ai. Define T : X → X such that

T x =

{
1
4 , x ∈ [0, 1),

0, x = 1.
(2.1)

Clearly, A1 and A2 are closed subsets of X . Moreover T (Ai) ⊂ Ai+1 for i = 1, 2,

so that
∪2
i=1Ai is a cyclic representation of X with respect to T . Furthermore, if

ψ1, ψ2 : R+3 → R+ denote

ψ1(t1, t2, t3) = max{t1, t2, t3} and ψ2(t1, t2, t3) =
1

4
max{t1, t2, t3}.

Then ψ1, ψ2 ∈ F3.
Now we show that T satisfies cyclic contractive condition (II).
For x ∈ A1, y ∈ A2 ( or x ∈ A2, y ∈ A1 ).
• When x ∈ [0, 14 ] and y ∈ [14 , 1), we deduce d(T x, T y) = 0 and equation (II) is

trivially satisfied.
• When x ∈ [0, 14 ] and y = 1, we deduce d(T x, T y) = 1

2 and

t1 = |x− 1|, t2 = |x− 1

4
|, t3 = 1,

then equation (II) holds as it reduces to 1
4 <

3
8 .

Our main result is the following.

Theorem 2.6. Let (X , d) be a complete metric space, p ∈ N, A1,A2, . . . ,Ap

nonempty closed subsets of X and Y = ∪pi=1Ai. Suppose the mapping T : Y → Y is
cyclic contractive under generalized altering distance function, for some ψ1, ψ2 ∈ F3.
Then T has a unique fixed point. Moreover, the fixed point of T belongs to ∩pi=1Ai.

Proof. Let x0 ∈ A1 (such a point exists since A1 ̸= ∅). Define a sequence {xn} in
X by:

xn+1 = T xn, n = 0, 1, 2, . . . .

If there is k ∈ N ∪ {0} such that xk = xk+1, then xk = xn for all n ≥ k, so xk is a
fixed point of T and xk ∈ ∩pi=1Ai.

Then, we assume that

(2.2) xn ̸= xn+1, ∀n ∈ N ∪ {0}.
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We shall prove that the sequence {d(xn, xn+1)} is non-increasing with

(2.3) lim
n→∞

d(xn, xn+1) = 0.

Indeed, suppose that, for some n ∈ N,

d(xn+1, xn+2) > d(xn, xn+1).

Using this together with the properties of generalized altering distance functions
ψ1, ψ2, we get

Ψ1(d(xn+1, xn+2)) ≤ ψ1(d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2))

−ψ2(d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2))

≤ Ψ1(d(xn+1, xn+2))

−ψ2(d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2)
)
.

This implies that

ψ2(d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2)) = 0

which yields d(xn, xn+1) = d(xn+1, xn+2) = 0. Hence, we obtain a contradiction
with (2.2). We deduce that

(2.4) d(xn+1, xn+2) ≤ d(xn, xn+1), ∀n ∈ N.

Then, {d(xn+1, xn+2)} is a non-increasing sequence of positive real numbers. This
implies that there exists r ≥ 0 such that

(2.5) lim
n→∞

d(xn+1, xn+2) = r.

Since

Ψ1(d(xn+1, xn+2)) ≤ ψ1

(
d(xn, xn+1), d(xn, xn+1), d(xn, xn+1))

− ψ2(d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2))

= Ψ1(d(xn, xn+1))− ψ2(d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2)),(2.6)

we deduce, passing to the limit as n → ∞ in (2.6) and using continuity of Ψ1 and
ψ2, that

Ψ1(r) ≤ Ψ1(r)− ψ2(r, r, r),

which implies that ψ2(r, r, r) = 0, and thus r = 0. Hence, (2.3) is proved.
Now, we shall prove that {xn} is a Cauchy sequence in (X , d). Suppose to the

contrary, that {xn} is not a Cauchy sequence. Then there exists ε > 0 for which
we can find two sequences of positive integers {m(k)} and {n(k)} such that for all
positive integers k,

(2.7) n(k) > m(k) > k, d(xm(k), xn(k)) ≥ ε, d(xm(k), xn(k)−1) < ε.

Using (2.7) and the triangle inequality, we get

ε ≤ d(xn(k), xm(k))

≤ d(xm(k), xn(k)−1) + d(xn(k)−1, xn(k))

< ε+ d(xn(k), xn(k)−1).
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Passing to the limit as k → ∞ in the above inequality and using (2.3), we obtain

(2.8) lim
k→∞

d(xn(k), xm(k)) = ε.

On the other hand, for all k, there exists j(k) ∈ {1, .., p} such that n(k) −m(k) +
j(k) ≡ 1[p]. Then xm(k)−j(k) (for k large enough, m(k) > j(k)) and xn(k) lie in
different adjacently labelled sets Ai and Ai+1 for certain i ∈ {1, .., p}.

Using the triangle inequality, we get

|d(xm(k)−j(k), xn(k))− d(xn(k), xm(k))| ≤ d(xm(k)−j(k), xm(k))

≤
j(k)−1∑
l=0

d(xm(k)−j(k)+l, xm(k)−j(k)+l+1)

≤
p−1∑
l=0

d(xm(k)−j(k)+l, xm(k)−j(k)+l+1) −→ 0 as k −→ ∞ (from (2.3)),

which, by (2.8), implies that

(2.9) lim
k→∞

d(xm(k)−j(k), xn(k)) = ε.

Again, using the triangle inequality, we get

|d(xm(k)−j(k), xn(k)+1)− d(xm(k)−j(k), xn(k))| ≤ d(xn(k), xn(k)+1).

Passing to the limit as k → ∞ in the above inequality, and using (2.9), we get

(2.10) lim
k→∞

d(xm(k)−j(k), xn(k)+1) = ε.

Therefore, from the inequality

|d(xn(k)+1, xm(k)−j(k)+1)− d(xm(k)−j(k), xn(k)+1)| ≤ d(xm(k)−j(k), xm(k)−j(k)+1),

we deduce, passing to the limit as k → ∞, and using (2.3) and (2.10), that

(2.11) lim
k→∞

d(xm(k)−j(k)+1, xn(k)+1) = ε.

Hence, by the continuity of Ψ1 and (2.11), we get

(2.12) Ψ1(ε) = lim
k→∞

Ψ1(d(T xm(k)−j(k), T xn(k))).

Using (II), we obtain

Ψ1(d(xm(k)−j(k)+1, xn(k)+1))

≤ ψ1(d(xm(k)−j(k), xn(k)), d(xm(k)−j(k)+1, xm(k)−j(k)), d(xn(k)+1, xn(k)))

−ψ2(d(xm(k)−j(k), xn(k)), d(xm(k)−j(k)+1, xm(k)−j(k)), d(xn(k)+1, xn(k))),(2.13)

holds only when k is sufficiently large that m(k) − j(k) > 0. Now, it follows from
(2.9) that
(2.14)

lim
k→∞

Ψ1(d(T xm(k)−j(k), T xn(k))) ≤ ψ1(ε, 0, 0)− ψ2(ε, 0, 0) ≤ Ψ1(ε)− ψ2(ε, 0, 0).

Now, combining (2.12) with the above inequality, we get

(2.15) Ψ1(ε) ≤ Ψ1(ε)− ψ2(ε, 0, 0)
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which implies that ψ2(ε, 0, 0) = 0, a contradiction since ε > 0. Thus we proved that
{xn} is a Cauchy sequence in (X , d).

Since (X , d) is complete, there exists ξ ∈ X such that

(2.16) lim
n→∞

xn = ξ.

We shall prove that

(2.17) ξ ∈
p∩
i=1

Ai.

From condition (I), and since x0 ∈ A1, we have {xnp}n≥0 ⊆ A1. Since A1 is
closed, from (2.16), we get that ξ ∈ A1. Again, from the condition (I), we have
{xnp+1}n≥0 ⊆ A2. Since A2 is closed, from (2.16), we get that ξ ∈ A2. Continuing
this process, we obtain (2.17).

Now, we shall prove that ξ is a fixed point of T . Indeed, from (2.17), since for
all n, there exists i(n) ∈ {1, 2, . . . , p} such that xn ∈ Ai(n), applying (II) with x = ξ
and y = xn, we obtain

Ψ1(d(T ξ, xn+1)) = Ψ1(d(T ξ, T xn))
≤ ψ1(d(ξ, xn), d(ξ, T ξ), d(xn, xn+1))

−ψ2(d(ξ, xn), d(ξ, T ξ), d(xn, xn+1)),(2.18)

for all n. Passing to the limit as n→ ∞ in (2.18), and using (2.16), we get

Ψ1(d(ξ, T ξ)) ≤ ψ1(0, d(ξ, T ξ), 0)− ψ2(0, d(ξ, T ξ), 0)
≤ Ψ1(d(ξ, T ξ))− ψ2(0, d(ξ, T ξ), 0)

which holds unless ψ2(0, d(ξ, T ξ), 0) = 0, so

(2.19) ξ = T ξ
that is, ξ is a fixed point of T .

Finally, we prove that ξ is the unique fixed point of T . Assume that ζ is another

fixed point of T , that is, T ζ = ζ. By the condition (I), this implies that ζ ∈
p∩
i=1

Ai.

Then we can apply (II) for x = ξ and y = ζ. We obtain

Ψ1(d(ξ, ζ)) = Ψ1(d(T ξ, T ζ))
≤ ψ1(d(ξ, ζ), d(ξ, T ξ), d(ζ, T ζ))

−ψ2(d(ξ, ζ), d(ξ, T ξ), d(ζ, T ζ)).
Since ξ and ζ are fixed points of T , we can show easily that

Ψ1(d(ξ, ζ)) ≤ Ψ1(d(ξ, ζ))− ψ2(d(ξ, ζ), 0, 0)

which implies ψ2(d(ξ, ζ), 0, 0) = 0, and thus d(ξ, ζ) = 0, that is, ξ = ζ. Thus we
proved the uniqueness of the fixed point. �

In the following, we deduce some fixed point theorems from our main result given
by Theorem 2.6.

If we take p = 1 and A1 = X in Theorem 2.6, then we get immediately the
following fixed point theorem.
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Corollary 2.7. Let (X , d) be a complete metric space and let T : X → X satisfying
the following condition: there exist ψ1, ψ2 ∈ F3 with Ψ1(t) = ψ1(t, t, t) in Theorem
2.6 such that

Ψ1(d(T x, T y)) ≤ ψ1(d(x, y), d(x, T x), d(y, T y))− ψ2(d(x, y), d(x, T x), d(y, T y)),
for all x, y ∈ X . Then T has a unique fixed point.

Remark 2.8. Corollary 2.7 extends and generalizes many existing fixed point the-
orems in the literature [2], [3–5,7, 8, 10–13,21–23].

Now, it is easy to state a corollary of Theorem 2.6 involving a contraction of
integral type.

Corollary 2.9. Let T satisfy the conditions of Theorem 2.6, except that condition
(II) is replaced by the following: there exists a positive Lebesgue integrable function
u on R+ such that

∫ ε
0 u(t)dt > 0 for each ε > 0 and that∫ Ψ1(d(T x,T y))

0
u(t)dt ≤

∫ ψ1(d(x,y),d(x,T x),d(y,T y))

0
u(t) dt

−
∫ ψ2(d(x,y),d(x,T x),d(y,T y))

0
u(t) dt.(2.20)

Then T has a unique fixed point. Moreover, the fixed point of T belongs to ∩pi=1Ai.

Remark 2.10. If we take

ψ1(t1, t2, t3) = max{t1, t2, t3} and ψ2(t1, t2, t3) = (1− k)max{t1, t2, t3},
for k ∈ (0, 1) then Ψ1(t) = t for all t ≥ 0, and the contractive condition (II) becomes

d(T x, T y) ≤ kmax

{
d(x, y), d(x, T x), d(y, T y)

}
.

A number of fixed point results may be obtained by assuming different forms for
the functions ψ1 and ψ2. In particular, fixed point results under various contractive
conditions may be derived from the above theorems. For example, if we consider

ψ1(x, y, z) = k1x
q + k2y

q + k3z
q,

ψ2(x, y, z) = (1− k)[k1x
q + k2y

q + k3z
q],

where q > 0 and 0 < k = k1 + k2 + k3 < 1, we obtain the following results.

The next result is an immediate consequence of Theorem 2.6.

Corollary 2.11. Let (X , d) be a complete metric space, p ∈ N, A1,A2, . . . ,Ap

nonempty closed subsets of X , Y = ∪pi=1Ai and T : Y → Y such that

(I)’ Y = ∪pi=1Ai is a cyclic representation of Y with respect to T ;
(II)’ for any (x, y) ∈ Ai ×Ai+1, i = 1, 2, . . . , p (with Ap+1 = A1),

(d(T x, T y))q ≤ k1(d(x, y))
q + k2(d(x, T x))q + k3(d(y, T y))q,

where q > 0 and 0 < k1 + k2 + k3 < 1. Then T has a unique fixed point. Moreover,
the fixed point of T belongs to ∩pi=1Ai.
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Remark 2.12. Other fixed point results may also be obtained under specific choices
of ψ1 and ψ2.

Next we present some examples showing how our Theorem 2.6 can be used.

Example 2.13. Let X = R endowed with the usual metric. Assume A1 = A3 =
[−1, 0] and A2 = A4 = [0, 1] so that Y =

∪4
i=1Ai = [−1, 1]. Define T : Y → Y

by T x = − x
32 , for all x ∈ Y. It is clear that (X , d) is a complete metric space

and Y =
∪4
i=1Ai is a cyclic representation of Y with respect to T . Then, for any

x ∈ Ai, y ∈ Ai+1, i = 1, 2, 3, 4 we have

|x− y|
32

≤ 1

16

31

32
(|x|+ |y|)

≤ 1

8

(
1

2

(
|x− y|+

∣∣∣x− x

32

∣∣∣+ ∣∣∣y − y

32

∣∣∣))
≤ 1

8
max {d(x, y), d(x, T x), d(y, T y)} .

Take ψ1(t1, t2, t3) = max{t1, t2, t3} and ψ2(t1, t2, t3) =
7
8 max{t1, t2, t3}. Then T is

a cyclic contractive map. Therefore, all the hypotheses of Theorem 2.6 are satisfied
and 0 is a unique fixed point of T .

Example 2.14. Let X = [−π2 ,
π
2 ] endowed with the standard metric d(x, y) = |x−y|

for all x, y ∈ X . Consider the closed subsets A1 and A2 defined by A1 = [−π2 , 0]
and A2 = [0, π2 ]. Define the mapping T : X → X by

T x =

{
−1

5x| cos(1/x)| if x ∈ [−π2 , 0) ∪ (0, π2 ],
0 if x = 0.

Clearly, we have T (A1) ⊂ A2 and T (A2) ⊂ A1.
Now, let (x, y) ∈ (A1 ×A2) with x ̸= 0 and y ̸= 0, we have

d(T x, T y) = |T x− T y|

=

∣∣∣∣15x| cos(1/x)|+ 1

5
y| cos(1/y)|

∣∣∣∣
=

1

5

∣∣∣∣|x|| cos(1/x)|+ |y|| cos(1/y)|
∣∣∣∣

≤ 1

5
(|x|+ |y|).

On the other hand, we have

|x| = −x ≤ −x+1

5
|x cos(1/x)| = −x−1

5
x| cos(1/x)| ≤

∣∣∣∣x+
1

5
x| cos(1/x)|

∣∣∣∣ = d(x, T x)

and

|y| = y ≤ y +
1

5
|y cos(1/y)| =

∣∣∣∣y + 1

5
y| cos(1/y)|

∣∣∣∣ = d(y, T y).

Then we have

d(T x, T y) ≤ 2

5
max{d(x, T x), d(y, T y)}
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≤ 2

5
max{d(x, y), d(x, T x), d(y, T y)}.

Take ψ1(t1, t2, t3) = max{t1, t2, t3} and ψ2(t1, t2, t3) =
3
5 max{t1, t2, t3}. Then T is

a cyclic contractive map. Moreover, we can show that condition (II) holds if x = 0
or y = 0.

Now, all conditions of Theorem 2.6 are satisfied (with p = 2), we deduce that T
has a unique fixed point x∗ ∈ A1 ∩ A2 = {0}.

We conclude this section by applying Corollary 2.11 to the study of solutions for
the functional equation x(t) = f(t, x(t)), under the conditions (A), (B) and (C)
described below.

Given a metric space (X, d) we denote, as usual, by C(X,R) the set of all real-
valued continuous functions on (X, d).

Example 2.15. Consider the functional equation x(t) = f(t, x(t)), where f ∈
C([0, 1]× R,R) satisfies the following three conditions:

(A) f is non-increasing in the second variable, i.e., for each t ∈ [0, 1],

x, y ∈ R, x ≤ y =⇒ f(t, x) ≥ f(t, y).

(B) There exist two functions α, β ∈ C([0, 1],R) and two numbers α0, β0 ∈ R
such that

α0 ≤ α(t) ≤ β(t) ≤ β0,

and
α(t) ≤ f(t, β(t)) and f(t, α(t)) ≤ β(t),

for all t ∈ [0, 1].

(C) There exist q > 0 and ki > 0, i = 1, 2, 3, such that k1 + k2 + k3 < 1 and

|f(t, x)− f(t, y)|q ≤ k1 |x− y|q + k2 |x− f(t, x)|q + k3 |y − f(t, y)|q ,
for all t ∈ [0, 1], x ≤ β0 and y ≥ α0.

If we define

A1 = {u ∈ C([0, 1],R) : u(t) ≤ f(t, α(t)), for all t ∈ [0, 1]},
and

A2 = {u ∈ C([0, 1],R) : f(t, β(t)) ≤ u(t), for all t ∈ [0, 1]},
then, we shall prove that there is a unique u∗ ∈ A1 ∪ A2 such that

(2.21) u∗(t) = f(t, u∗(t)),

for all t ∈ [0, 1]. Furthermore u∗ ∈ A1 ∩ A2, i.e., f(t, β(t)) ≤ u∗(t) ≤ f(t, α(t)) for
all t ∈ [0, 1].

Indeed, let d∞ be the metric on (C([0, 1],R) given by

d∞(x, y) = max
t∈[0,l]

|x(t)− y(t)|,

for all x, y ∈ C([0, 1],R). It is well known that (C([0, 1],R), d∞) is a complete metric
space.
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Now define the self-map T : (C[0, 1],R) → (C[0, 1],R) by

T x(t) = f(t, x(t)), for x ∈ (C[0, 1],R).

We shall show the existence of a unique fixed point of T in A1 ∪ A2, which is the

unique solution of (2.21) in A1 ∪ A2.

To this end, first note that A1 and A2 are non-empty closed subsets of C([0, 1],R),
so X = A1 ∪ A2 is closed in C([0, 1],R), and thus the metric space (X , d∞) is
complete.

Moreover X = A1 ∪ A2 is a cyclic representation of the restriction of T to X ,
which will be also denoted by T . In fact, for each u ∈ A1 we have, by conditions
(A) and (B),

f(t, β(t)) ≤ f(t, u(t)), for t ∈ [0, 1],

and consequently T (A1) ⊆ A2.
Similarly, for any u ∈ A2 we have

f(t, u(t)) ≤ f(t, α(t)), for t ∈ [0, 1],

and consequently T (A2) ⊆ A1.

Finally, let u ∈ A1, v ∈ A2 and t ∈ [0, 1]. Since u(t) ≤ β0 and v(t) ≥ α0, we
deduce by condition (C) that

|T u(t)− T v(t)|q = |f(t, u(t))− f(t, v(t))|q

≤ k1 |u(t)− v(t)|q + k2 |u(t)− f(t, u(t))|q

+k3 |v(t)− f(t, v(t))|q .

Therefore

(d∞(T u, T v))q =

(
max
t∈[0,1]

|T u(t)− T v(t)|
)q

= max
t∈[0,1]

|T u(t)− T v(t)|q

≤ k1(d∞(u, v))q + k2(d∞(u, T u))q + k3(d∞(v, T v))q.

It follows form Corollary 2.11 that T has a unique fixed point u∗ in A1 ∪ A2. In
fact u∗ ∈ A1 ∩ A2, i.e., f(t, β(t)) ≤ u∗(t) ≤ f(t, α(t)) for all t ∈ [0, 1].

As a particular case of the preceding example let

x(t) = f(t, x(t)),

where f : [0, 1]× R → R is defined by

f(t, x) = g(t) if x < 0,

f(t, x) =
g(t)

1 + sinx
if 0 ≤ x ≤ π/2,

and

f(t, x) =
1

2
g(t) if x > π/2,

with g : [0, 1] → R continuous and satisfying 0 ≤ g(t) < 1/2 for all t ∈ [0, 1].

It is clear that f satisfies condition (A) above.
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Let α, β : [0, 1] → R defined by α(t) = g(t)/2 and β(t) = g(t) for all t ∈ [0, 1],
and let α0 = 0, β0 = 1. Obviously

α0 ≤ α(t) ≤ β(t) ≤ β0,

for all t ∈ [0, 1]. Moreover,

α(t) ≤ f(t, β(t)) and f(t, α(t)) ≤ β(t),

for all t ∈ [0, l], because

f(t, β(t)) =
g(t)

1 + sin(β(t))
≥ g(t)

2
= α(t) and

f(t, α(t)) =
g(t)

1 + sin(α(t))
≤ g(t) = β(t).

So condition (B) is also satisfied.

Finally, since g is continuous on [0, 1] and 0 ≤ g(t) < 1/2 for all t ∈ [0, 1], there is
k ∈ (0, 1/2) such that g(t) ≤ k for all t ∈ [0, 1]. We shall show that for every x ≤ 1,
y ≥ 0 and t ∈ [0, 1], condition (C) follows with q = 1, k1 = k3 = k and k2 = 0.

• Case 1. x < 0, 0 ≤ y ≤ π/2. Then we have

|f(t, x)− f(t, y)| =

∣∣∣∣g(t)− g(t)

1 + sin y

∣∣∣∣
≤ k

sin y

1 + sin y
≤ k sin y ≤ ky < k |y − x| .

• Case 2. 0 ≤ x ≤ 1, 0 ≤ y ≤ π/2. Then we have

|f(t, x)− f(t, y)| = g(t)

∣∣∣∣ sinx− sin y

(1 + sinx)(1 + sin y)

∣∣∣∣
≤ k |sinx− sin y| ≤ k |x− y| ,

where, as is well-known, the last inequality can be immediately deduced
from The Mean Value Theorem applied to the function x→ sinx.

• Case 3. x < 0, y > π/2. Then we have

|f(t, x)− f(t, y)| =
g(t)

2
< k(

π

2
− g(t)

2
)

< k(y − g(t)

2
) = k |y − f(t, y)| .

• Case 4. 0 ≤ x ≤ 1, y > π/2. Then we have

|f(t, x)− f(t, y)| =

∣∣∣∣ g(t)

1 + sinx
− g(t)

2

∣∣∣∣ ≤ k

2

1− sinx

1 + sinx

≤ k

2
< k |y − x| .

Thus condition (C) is also satisfied and hence there is a unique solution u∗ ∈
C([0, 1]) of (2.21) such that

g(t)

1 + sin(g(t))
≤ u∗(t) ≤ g(t)

1 + sin(g(t)/2)
,
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for all t ∈ [0, 1].

Remark 2.16. In case that f is non-decreasing in the second variable, a suitable
modification of conditions (A), (B) and (C) above also allows us to deduce the
existence and uniqueness of solution for the functional equation (2.21).

Indeed, let f ∈ C([0, 1]× R,R) satisfying the following conditions:

(A’) f is non-decreasing in the second variable.

(B’) There exist two functions α, β ∈ C([0, 1],R) and two numbers α0, β0 ∈ R
such that

α0 ≤ α(t) ≤ f(t, α(t)) ≤ f(t, β(t)) ≤ β(t) ≤ β0,

for all t ∈ [0, 1].

(C’) There exist q > 0 and ki > 0, i = 1, 2, 3, such that k1 + k2 + k3 < 1 and

|f(t, x)− f(t, y)|q ≤ k1 |x− y|q + k2 |x− f(t, x)|q + k3 |y − f(t, y)|q ,
for all t ∈ [0, 1], and x, y ∈ [α0, β0].

If we define

A1 = {u ∈ C([0, 1],R) : f(t, β0) ≤ u(t) ≤ β0, for all t ∈ [0, 1]},
and

A2 = {u ∈ C([0, 1],R) : α0 ≤ u(t) ≤ f(t, α0), for all t ∈ [0, 1]},
thenA1 andA2 are non-empty closed subsets of C([0, 1],R), so (X , d∞) is a complete
metric space where X = A1 ∪ A2.

Now define the self-map T : (C[0, 1],R) → (C[0, 1],R) as in Example 2.15. Then
T (A1) ⊆ T (A2) and T (A2) ⊆ T (A1) by conditions (A’) and (B’), so X = A1 ∪ A2

is a cyclic representation of the restriction of T to X , which is also denoted by T .
Finally, from condition (C’) we deduce, as above, that

(d∞(T u, T v))q =

(
max
t∈[0,1]

|T u(t)− T v(t)|
)q

= max
t∈[0,1]

|T u(t)− T v(t)|q

≤ k1(d∞(u, v))q + k2(d∞(u, T u))q + k3(d∞(v, T v))q.
for all u ∈ A1 and v ∈ A2.

By Corollary 2.11 we conclude that T has a unique fixed point u∗ in A1 ∪ A2.
Furthermore u∗ ∈ A1 ∩ A2, i.e., f(t, α(t))) ≤ u∗(t) ≤ f(t, β(t)) for all t ∈ [0, 1].

3. An application to second order differential equations

In this section we shall apply Corollary 2.11 to the study of existence and unique-
ness of solution for a type of second order differential equations. Our approach is
inspired by Section 3 of [9].

Consider the two-point boundary value problem for second order differential equa-
tion

(3.1)

 x′′(t) = −f(t, x(t)),

x(0) = x(1) = 0.
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where f ∈ C([0, 1]× R,R).
It is known, and easy to check, that problem (3.1) is equivalent to the integral

equation

(3.2) x(t) =

∫ 1

0
G(t, s)f(s, x(s)) ds, for t ∈ [0, 1],

where G is the Green function defined by

G(t, s) = (1− t)s if 0 ≤ s ≤ t ≤ 1,

and
G(t, s) = (1− s)t if 0 ≤ t ≤ s ≤ 1.

That is, if x ∈ C2([0, 1],R), then x is a solution of problem (3.1) if and only if it
is a solution of the integral equation (3.2).

Now assume that the following three conditions are satisfied:

(i) f is non-increasing in the second variable.

(ii) There exist two functions α, β ∈ C([0, 1],R) and two numbers α0, β0 ∈ R such
that

α0 ≤ α(t) ≤ β(t) ≤ β0,

and

α(t) ≤
∫ 1

0
G(t, s)f(s, β(s)) and

∫ 1

0
G(t, s)f(s, α(s)) ≤ β(t),

for all t ∈ [0, 1].

(iii) For

A1 = {u ∈ C([0, 1],R) : u(t) ≤ β(t), for all t ∈ [0, 1]},
and

A2 = {u ∈ C([0, 1],R) : α(t) ≤ u(t), for all t ∈ [0, 1]},
there exist q ≥ 1 and ai > 0, i = 1, 2, 3, such that a1 + a2 + a3 < 8 and

|f(t, u(t))− f(t, v(t))|q ≤ a1 |u(t)− v(t)|q + a2

∣∣∣∣u(t)− ∫ 1

0
G(t, s)f(s, u(s))ds

∣∣∣∣q
+a3

∣∣∣∣v(t)− ∫ 1

0
G(t, s)f(s, v(s))ds

∣∣∣∣q ,
for all u ∈ A1, v ∈ A2 and t ∈ [0, 1].

Then, we can prove the following.

Theorem 3.1. Under the conditions (i), (ii) and (iii) above, the problem (3.1) has
one and only one solution u∗ in A1 ∪ A2. In fact, u∗ ∈ A1 ∩ A2.

Proof. Define the self-map T : (C[0, 1],R) → (C[0, 1],R) by

T x(t) =
∫ 1

0
G(t, s)f(s, x(s)) ds, for x ∈ (C[0, 1],R).

We shall prove the existence of a unique fixed point of T in A1 ∪ A2.
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To this end, put X = A1 ∪ A2. Since A1 and A2 are non-empty closed subsets
of C([0, 1],R), it follows that X is closed in C([0, 1],R), and thus the metric space
(X , d∞) is complete.

Moreover X = A1 ∪ A2 is a cyclic representation of the restriction of T to X ,
which will be also denoted by T . In fact, for each u ∈ A1 we have by conditions (i)
and (ii),

α(t) ≤ T β(t) ≤ T u(t), for t ∈ [0, 1],

and consequently T (A1) ⊆ A2, and for any u ∈ A2 we have similarly,

T u(t) ≤ T α(t) ≤ β(t), for t ∈ [0, 1],

and consequently T (A2) ⊆ A1.

Next, we recall that for each t ∈ [0, 1] one has∫ 1

0
G(t, s)ds =

t(1− t)

2
,

and then

max
t∈[0,1]

∫ 1

0
G(t, s)ds =

1

8
.

Finally, for each u ∈ A1, v ∈ A2 and t ∈ [0, 1], we have u(s) ≤ β0 and v(s) ≥ α0

for all s ∈ [0, 1], so by the inequality of Cauchy-Schwarz, condition (iii) and the fact
that G(t, s) ≤ 1, we deduce

|T u(t)− T v(t)|q ≤
(∫ 1

0
(G(t, s))qds

)(∫ 1

0
|f(s, u(s))− f(s, v(s))|q ds

)
≤

(∫ 1

0
(G(t, s))ds

)
((a1(d∞(u, v))q + a2(d∞(u, T u))q + a3(d∞(v, T v))q)) .

Hence

(d∞(T u, T v))q ≤ 1

8
(a1(d∞(u, v))q + a2(d∞(u, T u))q + a3(d∞(v, T v))q).

By applying Corollary 2.11, with ki = ai/8, i = 1, 2, 3, we deduce that the
problem (3.1) has a unique solution u∗ such that α(t) ≤ u∗(t) ≤ β(t) for all t ∈
[0, 1]. �

In case that f is non-decreasing in the second variable, a suitable modification
of conditions (i), (ii) and (iii) above also allows us to deduce the existence and
uniqueness of solution of the problem (3.1).

Indeed, let f ∈ (C[0, 1]× R,R) satisfying the following three conditions:

(i’) f is non-decreasing in the second variable.

(ii’) There exist two functions α, β ∈ C([0, 1],R) and two numbers α0, β0 ∈ R
such that

α0 ≤ α(t) ≤
∫ 1

0
G(t, s)f(s, α(s)) ds ≤

∫ 1

0
G(t, s)f(s, β(s)) ds ≤ β(t) ≤ β0,

for all t ∈ [0, 1].
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(iii’) For

A1 = {u ∈ C([0, 1],R) :
∫ 1

0
G(t, s)f(s, α(s)) ds ≤ u(t) ≤ β(t), for all t ∈ [0, 1]},

and

A2 = {u ∈ C([0, 1],R) : α(t) ≤ u(t) ≤
∫ 1

0
G(t, s)f(s, β(s)) ds, for all t ∈ [0, 1]},

there exist q ≥ 1 and ai > 0, i = 1, 2, 3, such that a1 + a2 + a3 < 8 and

|f(t, u(t))− f(t, v(t))|q ≤ a1 |u(t)− v(t)|q + a2

∣∣∣∣u(t)− ∫ 1

0
G(t, s)f(s, u(s))ds

∣∣∣∣q
+a3

∣∣∣∣v(t)− ∫ 1

0
G(t, s)f(s, v(s))ds

∣∣∣∣q ,
for all u ∈ A1, v ∈ A2 and t ∈ [0, 1].

Theorem 3.2. Under the conditions (i’), (ii’) and (iii’) above, the problem (3.1)
has one and only one solution u∗ in A1 ∪ A2. In fact, u∗ ∈ A1 ∩ A2.

Proof. We omit some details because the proof follows similarly to the one given in
Theorem 3.1.

Define the self-map T : (C[0, 1],R) → (C[0, 1],R) by

T x(t) =
∫ 1

0
G(t, s)f(s, x(s)) ds, for x ∈ (C[0, 1],R).

We shall prove the existence of a unique fixed point of T in A1 ∪ A2.

To this end, put X = A1 ∪ A2. Since A1 and A2 are non-empty closed subsets
of C([0, 1],R), it follows that X is closed in C([0, 1],R), and thus the metric space
(X , d∞) is complete.

Moreover X = A1 ∪ A2 is a cyclic representation of the restriction of T to X ,
which will be also denoted by T . In fact, for each u ∈ A1 we have by conditions (i’)
and (ii’),

α(t) ≤ T α(t) ≤ T u(t) ≤ T β(t), for t ∈ [0, 1],

and consequently T (A1) ⊆ A2, and for any u ∈ A2 we have similarly,

T α(t) ≤ T u(t) ≤ T β(t) ≤ β(t), for t ∈ [0, 1],

and consequently T (A2) ⊆ A1.

Finally, for each u ∈ A1, v ∈ A2 and t ∈ [0, 1], we have u(s), v(s) ∈ [α0, β0] for
all s ∈ [0, 1], so, by using (iii’), we deduce, as in the proof of Theorem 3.1, that

(d∞(T u, T v))q ≤ 1

8
(a1(d∞(u, v))q + a2(d∞(u, T u))q + a3(d∞(v, T v))q).

By Corollary 2.11, T has a unique fixed point u∗ such that f(t, α(t)) ≤ u∗(t) ≤
f(t, β(t)) for all t ∈ [0, 1]. �
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