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Abstract This paper focuses on the measurement 

of transient torques produced by the field 

harmonics in three phase squirrel cage motors 

and on the assessment of the operating 

conditions under which these torques might 

become significant. The paper presents first a 

model of the induction machine with any stator 

and rotor phase number and configuration, fed by 

arbitrary voltage waveforms and taking into 

account the space harmonics. Then, very much 

attention is paid to a reliable model validation 

against actual transient torques measurements. In 

this sense, the actual and great difficulties of 

measuring pulsating electromagnetic torques of 

hundreds of hertz are brought into light, the 

possible measurement techniques are critically 

reviewed and the solution chosen is discussed. 

Once the model accuracy has been 

experimentally confirmed, it is used to carry out 

a systematic plan of more than 250 simulations 

under clearly distinct operating conditions on 

five different motors. The analysis of these 

simulations yields a  main practical conclusion: 

field harmonics  may have (depending on the 

motor structure) a significant impact on 

electromagnetic torque, but only during 

transients characterized by high instantaneous 

frequencies of the rotor currents. For low slip 

transients their impact is negligible. This 

conclusion is also theoretically justified in the 

paper.    

Keywords Field harmonic torques, Induction 

machines, Space phasors, Torque measurement. 

1 INTRODUCTION 

Studies on transient behavior of induction motors 

with space harmonics were already carried out in 

the past century using  different ways  and 

almost always trying to resort to some kind of 

transformations (mainly the symmetrical 

component transformation) [1]-[5]. 

  

 Initially the main reason to include field 

harmonics in the motor analysis was the fact that, 

for specific stator and rotor slots combinations, it 

was realized that harmonic torques could 

seriously impair, or even prevent, the motor start 

up [6]. Later on, apart from other drawbacks 

(like noise coming from radial force waves, 

increase of the additional losses, etc. see [7,8]) 

engineers became aware that harmonic fields 

effects during transients result in fast oscillations 
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of the electromagnetic torque that are superposed 

to the fundamental dynamic torque. This last 

aspect of the harmonic fields (their impact on 

transient torques) is the main topic addressed in 

this paper.  

 The pulsating torques are a source of 

noise and vibrations and can be particularly 

dangerous if their frequency is close to the 

mechanical natural frequency. Due to this and to 

all of the other reasons just mentioned, no 

wonder that harmonic torques have been 

considered, almost universally, to be detrimental 

and harmful, which is true for three phase 

induction motors. However, it is known today 

that in induction motors with a number of stator 

phases greater than three, it is possible to make 

use of certain field harmonics (the greater the 

phase number, the higher the number of 

harmonics) in order to increase the total useful 

motor torque [9]. It is important to keep in mind 

this potentially beneficial effect of some space 

harmonics in converter – fed multiphase 

machines. 

 Due to this last fact, the model in this 

paper has been developed to analyze machines 

with any stator and rotor phase number, since, 

from an operational and conceptual viewpoint, 

the structure of the equations is the same 

regardless of the stator having three or more 

phases (Notice that actually the squirrel cage 

winding already constitutes a polyphase 

winding). The deduction process of the equations 

by means of space phasors is briefly presented in 

chapter II. 

 An experimental validation of a machine 

model whose main aim is the simulation of 

transient torques due to space harmonics is a 

very serious challenge. That is why very much 

attention is thereafter paid to an accurate and 

reliable experimental model validation. Such a 

validation requires a direct comparison between 

harmonic torque simulations and measurements. 

In this sense, the actual and great difficulties of 

measuring pulsating electromagnetic torques of 

hundreds of hertz are brought into light, the 

possible measurements techniques are critically 

reviewed and the option chosen is deeply 

discussed and justified. This is done in chapter 

III. It must be emphasized that this topic has 

been almost completely ignored in the technical 

literature.  

 On the other hand, most of the papers on 

transient analysis of three phase induction 

machines with space harmonics share a rather 

similar structure. First they introduce a more or 

less simplified system of differential equations, 

usually by means of some kind of 

transformation. Thereafter they compute that  

model in a few specific situations (often with a 

considerable limitation in the number of 

harmonics considered). It seems clear that hardly 

any general conclusion on the impact of field 

harmonics on the motor torque during transients 

can be obtained this way. By contrast, the work  

in this paper has been built on the analysis of 
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more than 250 simulations under clearly distinct 

operating conditions of five different motors. 

This analysis is carried out in chapter IV. It 

yields a first and general validity conclusion with 

practical relevance which reads: for motor 

operation modes with low rotor current 

instantaneous frequencies (usually associated to 

low slip operation modes), the field harmonics 

effect on the transient electromagnetic torque of 

three phase squirrel cage motors is always 

negligible. In other words, as a general rule, 

space harmonics can become important as to the 

transient electric torque only at high slips (like 

during direct on-line start-up, unplugging, 

injection braking, rather long dropouts, etc). This 

conclusion, which was initially observed, 

without exception, in the simulations, is 

thereafter also theoretically justified in a 

qualitative manner in chapter V. To this end, the 

space phasor concept turns out to be a very 

useful tool. 

  

2 Model Development 

The simplified hypotheses are as follows: 

 Ideal magnetic circuit. 

 Constant air-gap of negligible width. 

 Symmetrical polyphase windings in stator 

and rotor with constant parameters. 

 The leakage flux linkage of a phase is 

proportional to the phase current. 

 Any phase of an electrical machine 

produces a current sheet space wave that can be 

split into space harmonics. Known the structure 

of phase A and its current, iA(t), the magnitude 

and position of the space harmonic of relative 

order h (absolute order ν = h∙p) of its current 

sheet is fully characterized by the space phasor 

(see equation A.3 in appendix): 

* , ,

2
( )A

h p A A h p A

Z
a i t

D


 


 (1) 

 The complex constant ξhp,,A is the 

complex winding factor of the phase. Its module 

includes both the distribution and the pitch 

factors as well as the slot factor (effect of 

considering a linear change of MMF along the 

slot opening instead of an abrupt change at the 

middle of the slot). Complex variable ah∙p,A is 

known as the harmonic current sheet space 

phasor of phase A. Z is the phase conductor 

number and D the air gap diameter. 

 The current sheet space phasor of a 

polyphase winding is simply the sum of the 

space phasors of all of its phases. Let it be a 

machine with p pair of poles with a symmetric 

polyphase winding in stator or rotor, with mwndg 

symmetrical phases. Let’s choose as abscise axis 

the symmetry axis of first phase, and let’s define 

as ξh,wndg the winding factor of relative order h of 

this first phase. Due to winding symmetry, the 

phase in the generic position “k” reproduces the 

configuration of phase 1 but with a 2∙(k-

1)/(p∙mwndg) angular displacement in the 

machine, and therefore its winding factor in the 

complex phasorial domain is : 
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 Thus, the space harmonic of relative 

order h of the total current sheet produced by an 

m-phase symmetric winding fed by arbitrary 

currents i1(t), i2(t), …..im(t), will be characterized 

by its space phasor, the expression of which, 

deduced immediately from (1) and (2), is: 
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 (3) 

 For practical reasons, instead of the 

current sheet space phasor in (3) it is often better 

in the machine electrical equations to make use 

of the so called current space phasor, defined as:  
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,

,
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




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 (4) 

 

 Notice that both phasors only differ by a 

constant and therefore they represent (at different 

scales) the same space quantity. In the particular 

and very practical case of the fundamental 

current sheet wave (h = 1) of a three phase 

winding, it follows from (4): 

2 4

3 3
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( ) ( ) ( )
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j j

wndg R S Ri i t i t e i t e
 
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 

  

 (5) 

 Expression (5) was first introduced by 

Park [10] and its physical interpretation was 

given later on by Kron who indicated that (5) 

represented the linear current density wave of the 

three phase winding (page 354 in [10]). The 

Fourier expansion of the current sheet is a key 

step in the analysis of polyphase machines with 

field harmonics, as emphasized and carried out in 

chapter 11 of [1]. Formula (4) is a generalization 

of (5) and constitutes an alternative and easy way 

to characterize the current sheet harmonics of 

windings with arbitrary number of phases. 

 The stator and rotor current sheets of the 

same order, h, combine to give the machine 

current sheet of order h, whose expression, in 

stator coordinates, is:  
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 (6) 

where λ(t) is the mechanical angle between stator 

and rotor. It is again underlined that the phase 

currents may be arbitrary.  

 Any sinusoidal machine current sheet 

wave (6) produces an air gap sinusoidal machine 

induction wave with the same number of poles, 

hp. The air gap flux linkage of any stator phase, 

“y”, due exclusively to this induction wave is 

(see appendix):  

  

,
, , ,

,

2
( 1)

( )
, ,

( ) Real
2

2
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hp str str
y h h str h str

hp str

j y
mj h p trot

h mut h rot

m
t L i

m
L i e e








 

 
  

 

 
  

 




 (7) 

 For each rotor phase, “x”, we get  an 

analogous equation, after translating the current 

phasors to the rotor system.  
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 In (7) and (8) the magnetizing 

inductances of a stator (Lh,str) or rotor (Lh,rot) 

phase and the maximum mutual inductance 

stator–rotor (Lh,mut) for the induction space wave 

of order h are given by the well – known 

expressions (see appendix): 

22
, ,0 0

, ,;
2 2

str h str rot h rot
h str h rot

Z ZlD lD
L L

p h p h

  
   

  
    

   
 (9) 

, , , ,h mut h h str h rotL L L   (10) 

 Notice that (7) and (8) are valid also for 

machines with skewed conductors in which skew 

effects are accounted for by multiplying the 

mutual inductance without skew by the classical 

skewing factor, ξh,γ, as shown in(10). 

 From (7) and (8), the total flux linkages 

of a stator (“y”) or rotor (“x”) phase are given by: 

max
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 
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 (11) 

 The leakage inductances of stator and 

rotor in (11) only include end winding and slot 

leakage inductance  

, ,slot end windingL L L     (12) 

 The electric equation of any phase A is: 

( )
( ) ( ) A

A A

d t
u t R i t

dt
  

  (13) 

 If the phase voltages are known, 

particularizing (13) to every stator and rotor 

phase after having replaced in it the 

corresponding values given by(11), (8), (7) and 

(4) , we get a system of (mest + mrot) independent 

equations in which the unknowns are the (mest + 

mrot) phase currents plus the mechanical angle, 

λ(t). The additional relation required is provided 

by the mechanical equation (which must include, 

of course, the instantaneous torque produced by 

the fundamental and all the harmonic space 

waves considered): 

 

   
max

2

2

( )
, . , ,

1

( )

4

elec load

h
j h p test rot

elec h m h rot h est
h

d t
T t T J

dt

m m
T t h p L i e i





 

 
   (14) 

 A computer program has been developed 

to solve directly (14) as well as (13) applied to 

all of the machine phases. The maximum 

harmonic order, hmax, of the space waves 

participating in the torque production can be 

freely set in the program. Naturally as hmax, 

decreases the leakage inductance in (12) is 

increased in due manner. In particular, for hmax= 

1, it turns out to be the case developed in basic 

books on classic theory, and equation (12) then 

becomes: 

, , ,slot end winding harmonicsL L L L       (15) 

3 Model Experimental Validation 

An experimental validation of a machine model 

whose main aim is the simulation of transient 

torques due to field harmonics constitutes a 

serious challenge. Since, as indicated  in chapter 

I, from an operational and mathematical point of 

view there are no differences between three or 
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multiphase machines as to the model structure 

and development (which applies to any number 

of stator or rotor phases), its validation has been 

carried out, for practical reasons, on a classical 

three-phase squirrel cage motor.  

 It is not at all unusual in papers which 

develop induction machine models including 

transient harmonic torques to resort almost 

exclusively to stator currents measurements in 

order to validate, via this indirect quantity, the 

simulated dynamic torques. However one can 

raise serious objections as to the reliability of a 

validation carried out this way. Indeed, in three 

phase induction motors, in clear contrast to what 

happens to the electromagnetic torque, the 

dynamic stator currents, in general, are scarcely 

modified by the field harmonics and, 

consequently, they are not a suitable quantity to 

validate the model as to its torque simulations.  

 As for direct torque measurements, strain 

gauges have been known for a long time. 

Alternative and modern procedures resort to 

measure the shaft twist via optical or inductive 

methods. Magnetostrictive and magnetoelastic 

torque sensors are also two modern options 

based on the fact that the acting mechanical 

stress slightly modifies the magnetic behaviour 

of the shaft surface material. These sensors can 

be either integrated in the industrial application 

with a tailor made design (e. g. [11]) or coupled 

between load and motor shaft (e.g. [12]). We 

have explored this last way, but the results were 

unsatisfactory. The main reason for this, which 

applies to all of the above mentioned methods, 

lies in the fact that a well designed motor-to-load 

elastic coupling results in an important reduction 

of the first natural frequency of the whole system 

so that most of the quick oscillations present in 

the electromagnetic torque do not appear in the 

mechanical torque acting on the load shaft, 

which is the one actually measured by the torque 

sensor.  

 From Newton’s law, the electromagnetic 

and shaft torques in the mechanical system of 

Fig. 1 always hold:  
2 2

;mach load
elec shaft mach shaft load load

d d
T T J T T J

dt dt

 
     (16) 

 

Fig.1 Elastically coupled motor rotor and load 

 

 Likewise, in the classical simplified 

approach, the shaft torque is related to the 

angular displacements at both ends of the elastic 

coupling (K and  being the elastic and friction 

parameters) by the equation:  

  mach mach
shaft mach load

d d
T K

dt dt

 
        

 
 (17) 

 One could think of using (17) combined 

with the general equation (16) to determine the 

electrical torque, but this is not feasible either. 

Indeed, in order to precisely determine the very 

quick air gap torque oscillations starting from the 
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measured shaft torque (where they are scarcely 

present), a very high accuracy both in the 

coupling equations system and in the shaft torque 

measure is needed. However, first, for such 

purpose the actual behaviour of the elastic 

coupling can not at all be modelled as simply as 

in (17) (To this adds the important fact that it 

would be quite difficult to accurately estimate all 

the required mechanical parameters for the new 

and more precise equations set). And second, one 

has to keep in mind that industrial torque 

transducers usually lack the bandwidth required 

for the accurate measurement of torque 

oscillations of hundreds of Hz. This is so, simply 

because they do not need such a bandwidth for 

the typical industrial applications (elastic 

couplings are used just to prevent the high 

frequency components in air gap torque 

oscillations from appearing on the load shaft).  

 

Fig.2 ACC3 Ferraris sensor (A) installed on 

uncoupled ABB motor (B) 

 

In order to get rid of the main difficulties for 

measuring the air gap torque which are 

associated essentially to the motor-load coupling, 

very precise acceleration measurements in 

different no load direct-on-line start ups of the 

uncoupled motor (see Fig. 2) was the method 

chosen to validate the model. In these conditions, 

assuming the rotor as an ideal rigid body, electric 

torque has just to overcome the rotor inertia: 
2
mach

elec mach

d
T J

dt


  (18) 

that is, torque equals acceleration to a given 

scale. 

 

Fig. 3 ACC3 Ferraris sensor (A) installed on 

ABB motor (B) which is elastically coupled (C) 

to torque meter TH-HR-RD75 (D) and Auxiliary 

motor (E) in the workbench at Universidad 

Politécnica de Valencia 

 

 Being rigorous, in (18) a small loss torque 

(mechanical losses) should be taken into account. 

As  these losses come primarily from the cooling 

fan, we removed it from the drive axis. Notice, 

on the other hand, that the no–load  motor start – 

up  is really fast: at rated voltage a little more 

than 40 ms suffice to reach 1500 t.p.m. This 

demands a highly accurate estimation of the 

electric and mechanical model parameters 

because an almost perfect agreement between 

measured and calculated instantaneous rotor 

position is a must. Otherwise, even slight 

position errors result in important errors  in the 
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calculated torque for the higher harmonics 

which, in turn, increases the position errors.  

 Acceleration was measured with the high 

precision Hübner acceleration sensor ACC93 

[13] (Fig. 2), based on the Ferraris principle [14]. 

The sensor was installed on the motor and 

calibrated in Hübner headquarters in Berlin [15] 

and then the set was sent back to the Universidad 

Politécnica de Valencia (UPV) in Spain. 

 The adequacy of the acceleration sensor 

was first analyzed by us by an independent test: a 

direct-on-line start up of an auxiliary motor 

elastically coupled (Fig. 3) to the main motor 

(open-circuited). The main motor rotor 

acceleration (Ferraris acceleration sensor) and 

the shaft torque (Magnetoelastic torque sensor) 

were simultaneously measured during the start 

up. In this test, under null main motor electric 

torque, the shaft torque measurement must 

reproduce, according to (16), the acceleration 

measurement to a given scale: 

elecT
2 2
mach mach

shaft mach shaft mach

d d
T J T J

dt dt

 
      (19) 

 This is just what can be observed in Fig. 

4, which also highlights the limited bandwidth of 

the industrial torque transducer. 
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Fig. 4 Acceleration and shaft torque during a 

direct start-up of the auxiliary motor (main motor 

disconnected) 
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Fig. 5 Acceleration and shaft torque during a 

direct start-up of the main motor (auxiliary motor 

disconnected) 

 

 Fig. 5 shows the same measurements but 

during a direct-on-line start-up of the main motor 

(auxiliary motor disconnected now from the 

mains). Of course, in this case, and as predicted 

by theory (see again equation (16)), shaft torque 

and main rotor acceleration greatly differ from 

one another. This figure confirms how difficult it 

is to rebuild the airgap torque from the 

measurements of a shaft torque transducer, as 

already explained. Certainly, it would be possible 

to obtain the electric torque, whichever the 

particular conditions of the motor-load coupling 

and, moreover, during any steady or transient 

state, from simultaneous rotor acceleration and 

shaft torque measurements, provided both 

sensors have enough bandwidth, since as 

deduced from (16): 
2
mach

elec shaft mach

d
T T J

dt


   (20) 

 However, to validate the model, the 

actual electric torque obtained this way has to be 

compared with the computed one. But to 

simulate the system formed by the motor coupled 

to a load it still would be necessary to know the 

equations of the elastic coupling. This is not so 
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with the model validation method chosen in this 

paper. 
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Fig. 6 Torque curves obtained by simulation and 

measured (40% of rated voltage) considering up 

to 55th harmonic 
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Fig. 7 Current curves obtained by simulation and 

measured (40% of rated voltage) considering up 

to 55th harmonic 

 

 The main data of the motor used for 

model validation can be found in Table 1. It is an 

ABB squirrel cage drive manufactured in ABB’s 

Barcelona factory, which kindly provided all the 

documentation about constructive characteristics 

and the standard values of more than thirty 

electrical parameters. The values of those 

parameters needed for simulations were 

previously confirmed (with small discrepancies) 

in the electrical machines laboratory of the UPV.  

 In Fig. 6 to 9 (always star connection), 

results from simulations are compared with the 

ones obtained by direct measures from no load 

start ups under different stator voltages.  
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Fig. 8 Same as Fig. 6 but at 60% of rated voltage 
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Fig. 9 Same as Fig. 7 but at 60% of rated voltage 

 

 Fig. 6 to 9 show a good agreement 

between measured and calculated torques for 

input voltages of up to 60% of the rated voltage 

(small or no saturation effect, as required by the 

model). The still remaining discrepancies are 

mainly due to the following  reasons: 

 Leakage induction values (very important in 

transient processes) cannot be measured in a 

highly accurate way.  

 In addition to previous point, slot leakage 

inductances in the tested motor are reduced by 

some 45% with high currents at full voltage 

start up (This is an intentional design - in 
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order to increase start up torque, as in small 

motors one can not make use of skin effect).  

 The split of total flux linkages into common 

and leakage flux linkages is just a simplifying 

assumption as first approach to reality. 

 Slotting effects have been taken into account 

only through the Carter´s factor.  

 Resistance values are not constant (conductors 

heating). 

 Interbar currents have not been considered. 

(In some cases, especially in motors with 

skewed rotor bars, they have a relevant effect 

on the high order harmonic torques [16]). 

 Rotor body, rotor axis and acceleration sensor 

are not an ideal rigid body.  

 Perfect symmetry does not exist (e. g. some 

eccentricity level is unavoidable in any 

motor). 

 

Table 1 

Motor ABB M2AA 112 M-4 Main Parameters 

General Un=400/230 V, In=8.6/ 15A, f=50 Hz, n=1435 tpm, 

=84.5 %, 4 kW 

Construc. D=115 mm, l =98 mm,  = 0.4 mm, p=2, J =0.015 Kg m2. 

Stator 36 slots, Z=32,, full pitch coils, L,str =6.07 mH (3.57 

mH without harmonics effect), R=1.25 /phase,  

Rotor 28 bars, R=0.07 m/Bar, L,bar=0.52 H (0.28 H 

without harmonics effect),  mech. skewing 2,47º, Alu 

cage with closed slots 

4 Main Impact of Field 

Harmonics on Transient 

Electromagnetic Torques . 

After getting a reasonable confidence in the 

model accuracy, a systematic plan of “computer 

tests” was carried out [17] to asses the influence 

of the field harmonics on the industrial motors 

electric transient torque. Despite the model being 

valid for an arbitrary number of rotor and stator 

phases, in a first stage of the study focus was set 

on three phase squirrel cage motors due to their 

relevance in industry applications. For that 

purpose 5 motors, identical to ABB motor but 

with different rotor bar numbers (24, 26, 28, 30 

and 32) were first analyzed.  

The “tests” analyzed more exhaustively 

were direct-on-line start up tests (with different 

load torque, system inertia, initial rotor position 

as well as different amplitude, frequency and 

initial phase of the supply voltage). Each of these 

tests began with the same basic configuration of 

stator winding and then, besides the 

modifications above mentioned, changes in the 

winding pitch, slot skewing, slot opening, 

leakage inductances, number of harmonic 

considered and air gap width  were also 

introduced. Other tests performed were: sudden 

change of motor load, unplugging, drop-outs and 

constant speed operation mode. In total more 

than 250 simulations have been carried out [17]. 

The following figures (always star connection 

and no rotor skewing to increase harmonic 
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torques) show several examples of typical 

performance features that could always be 

observed, although to different extent depending 

on the particular motor design. 

Fig. 10 shows that space harmonics, in general, 

scarcely influence stator currents of three phase 

squirrel cage motors, as clearly opposed to their 

influence on the torque (Fig. 11). Therefore, one 

should be very cautious with those motor models 

whose validation relies exclusively on current 

measures. 
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 Fig. 10 Phase current calculated during direct 

start up taking into account only the fundamental 

space waves and up to harmonics 13th and 55th. 

180 V, 24 rotor bars, Tload 10 Nm, Jload 0,09 

kg·m2  

 

On the other hand, from previous Figs. 6 and 8 

also follow that space harmonics hardly 

influence at all the torque during the final stage 

of start-up transients . This is a particular 

example of a  fact observed in all of the 

simulations: harmonic fields show a negligible 

effect on the torque at reduced instantaneous 

frequencies of the rotor currents (usually such 

operation states are associated to low slip 

operation modes). The following figures 12 to 15 

confirm this general conclusion.  
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Fig. 11 Torque calculated during direct start up 

taking into account only the fundamental space 

waves and up to harmonics 13th and 55th. 180 

V, 24 rotor bars, Tload 10 Nm, Jload 0,09 kg·m2
 

 

Fig.  12 shows a sudden load change calculated 

with the fundamental space waves only and 

taking into account up to the 33rd harmonic. One 

can realize that transient motor torque is not 

influenced by field harmonic as the whole 

transient evolves with small rotor current 

frequencies.  

Figures  13 and  14 show a direct on-line 

start-up at a reduced and constant line frequency 

of 4 Hz. The influence of field harmonics on the 

torque is negligible during the whole process1, in 

                                                 
1 Although in this example most of the start-up process at 

the constant frequency of 4 Hz takes place at large slips, 

the instantaneous frecuency of the main  rotor currents  are 
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clear contrast to what happens at the usual line 

frequency of 50 Hz (Fig. 6, 8 and 11).  
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Fig.  12 Calculated torque during a sudden motor 

load change from 2 to 8 Nm. 170 V, 28 rotor 

bars, Jload 0,0 kg·m2 
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Fig. 13 Direct-on-line start-up at 20 V and 4 Hz. 

Constant load torque of 8 Nm, 28 rotor bars 
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Fig.  14 As  Fig.  13, but with null load torque 

Finally, Fig.  15 shows the transient after 

a line dropout. In contrast to the two previous 

examples, there is now a heavy presence of 

                                                                                 

very small all along the start-up, and this is the key point as 

to the influence of harmonic torques. 

harmonic torques. This is due to the fact that the 

instantaneous frequency of the rotor currents 

reaches almost half the rated stator frequency in 

this example. Of course, changing the conditions 

in a suitable manner (short dropout duration, big 

system inertia) would result in very small 

frequencies of the rotor currents after the 

dropout, and the simulations show again that, in 

such cases, the influence of the field harmonics 

on the torque is negligible. 
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Fig.  15 Torque after a line dropout. Dropout 

duration 50 ms, 180 V, 30 rotor bars, Tload 10 

Nm, Jload 0,02 kg·m2 

In all the operational conditions shown in 

Figs. 11 to 14, as well as during the final stage of 

start-up transients in Figs. 6 and 8, the field 

harmonics effect on electromagnetic torque is 

negligible. So, it can be stated that 

electromechanical energy conversion in all these 

situations is almost exclusively due to the 

induction fundamental waves. It is worth 

mentioning that this fact does not mean, as often 

erroneously stated, that there are no field 

harmonics. The stator and rotor field harmonics 

are still present, but they can be assumed to be 

linked exclusively to their own winding and to 

produce leakage flux only. In other words, in 
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such conditions the magnetic coupling stator – 

rotor (and therefore, the electromechanical 

energy conversion) takes place only through the 

fundamental space waves.  

5 Analysis and physical 

explanation of the results in 

the previous chapter 

As just shown, as to the electric torque, 

field harmonics in three phase induction motors 

can play an important role only at high 

instantaneous frequencies of the rotor currents. 

For a fast physical explanation of this 

fact, let us start from the simplified assumption 

that the flux level in the machine is nearly 

constant all along these different examples 

(Actually, in industrial applications of induction 

motors, the main flux level suffers significant 

changes only in rare situations, e. g., motor 

working in the field weakening region). At 

constant flux level, a high rotor frequency results 

in a large rotor e.m.f. and, consequently, large 

rotor currents and current sheet. As the machine 

flux stays close to constant, this  implies a large 

stator current sheet and an increase in the angle 

between stator and rotor space current sheets (see 

Fig 16.)  

Let us apply these conclusions more in 

detail for instance to any of the Figs. 6, 8. 

Assume, only for the sake of simplicity, a very 

slow starting process, and then let us study a time 

span so short we can accept speed is close to 

constant. According to (14), the torque produced 

by the interaction of harmonic stator and rotor 

field waves of the same order is always 

proportional to the vectorial product of their 

current space phasors. Therefore, since these 

stator and rotor field harmonics turn at different 

speeds, they produce a pulsating torque the 

amplitude of which is proportional to the product 

of the stator and rotor currents amplitudes. From 

zero up to pull–out torque speeds (high rotor 

frequencies), those currents are large and still 

larger is their product, but at standard steady 

state speeds (currents decrease by a factor around 

5 in a standard 4 pole motor), this product may 

become up to 16 or 25  times smaller and so does 

as well their corresponding harmonic torque. 

That is, in the final stage of transients in Figs. 6 

and 8, torques due to field harmonics are 

negligible. On the contrary, stator and rotor 

current space phasors of the fundamental space 

waves turn at the same speed, and thus the 

constant angle between both phasors at each 

speed of the transient plays a fundamental role. 

At high rotor frequencies the sine of this angle 

has a very small value (Fig. 16), and the vectorial 

product of the phasors becomes small, even with 

large currents (as attests the small useful starting 

torque of single cage induction motors). 

However, at small rotor frequencies, the angle 

sine greatly increases and the machine provides a 

comparatively large fundamental torque even 

though the currents have substantially 

diminished. 



 14

This explanation also applies, of course, 

to transients in Figs. 13 and 14. These last two 

transients are characterized by small rotor 

frequencies all along the start-up. Therefore, 

pulsating harmonic torques do not play here any 

significant role: the calculated torque is almost 

the same no matter how many harmonics are 

taken into account. This is just the opposite to 

what happens during full mains frequency start-

ups (Fig. 6, 8 and 11) when high rotor 

frequencies result in a strong influence of the 

pulsating harmonic torques.  

amach.

a rot

astr

yoke
 

Fig. 16 Stator, rotor and machine current sheet 

space phasors at constant main flux level but 

with different frequencies of rotor currents 

 

To sum up, the work in this paper has 

conceptually (physical explanation), 

experimentally (direct electromagnetic torque 

measurements) and through numerous 

simulations shown that, no matter the windings 

constitution, space harmonics influence on the 

torque in three phase motors is negligible at 

small rotor frequencies (low slip transients). This 

should be considered one of the main paper 

contributions. Therefore, when  assessing the  

impact of space harmonics on the 

electromagnetic torque of three phase induction 

motors one has to clearly distinguish between 

converter–fed and mains fed motors. In the first 

case (always low slip transients), all of the space 

harmonics can be neglected. The relevance of 

this conclusion is further enhanced when taking 

into account that, as  it is well known, the space 

harmonics in multiphase machines can be 

grouped into various independent families (for 

three phase star windings all of the harmonics 

belong to the same family). Therefore, the above 

mentioned conclusion can be easily extended to 

each independent family, which means that, in 

converter–fed multiphase induction motors only 

the space harmonics which are head members of 

their groups need to be considered in the control 

equations, since they alone are able to provide a 

useful torque contribution.  

In the second case, that is, in the case of 

three phase motors connected to the mains, space 

harmonics may have an important impact on the 

transient air gap torque. Here, the simulations 

show that the particular motor design (stator and 

rotor slots number, winding pitch, slot skewing, 

slot opening, etc) plays a crucial role. Of course, 

also to these cases applies the rule that space 

harmonic effects can only be significant during 

high slip transients. Unfortunately there is one of 

such transients which is unavoidable and very 

important: motor starting up. It is well known 

that due to harmful synchronous and 

asynchronous harmonic torques certain motors 

may experience cogging or crawling. The 

analysis of these problems is not the subject of 

this paper. They have been extensively dealt with 
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e. g., in [18] where practical information on 

saturation and motor-load coupling effects has  

been included too. It should be added for the 

sake of completeness that in some motors the 

mentioned problems are significantly increased 

when using delta connection and /or parallel 

winding branches [19]. 
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Fig. 17 Same as Fig. 6 but at 80% of rated 

voltage 
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Fig. 18 Same as Fig. 7 but at 80% of rated 

voltage 

 The limitations of the model were stated 

at the beginning of section II. The main one is 

related to the saturation effects. However, 

saturation does certainly affect the actual torque 

values but does not invalidate the main 

conclusions of this work, as one can observe 

from Figs.17 and 18, taken at 80% of rated motor 

voltage. At this saturation level the differences 

between calculated and measured torque due to 

the model limitations become evident: while the 

torque and currents are calculated using constant 

main and leakage flux inductances, the leakage 

and main magnetic circuit saturation level in the 

motor actually changes all along the start-up and, 

therefore, the corresponding inductances change 

continuously as well. Consequently, it is 

impossible for a model with constant parameters, 

to adjust its simulation results to the 

experimental ones all along the start-up transient. 

However, as in the simulations  and measures 

with no saturation, here too the main impact of 

the space harmonics on the torque appears in the 

high slip stage of the transient. Their impact  on 

the currents are scarcely relevant. Notice too that 

even under saturation the model accuracy as to 

the currents is very acceptable.  

6 Conclusions 

A dynamic model for induction motors with 

arbitrary number of phases, taking into account 

the space harmonics and valid for arbitrary 

voltage waveforms has been developed using 

space phasors. The problem of a reliable 

experimental model validation as to the torque 

simulations has been thoroughly discussed. The 

solution chosen has been to carry out very 

accurate acceleration measures during no load 

direct-on-line starting ups at different supply 

voltages. Electromagnetic torque and current 

measures and simulations show  a good 

agreement in low or no saturation regions 
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 After model validation, more than 250 

simulations were carried out in order to assess 

space harmonics effects on transient  torque of 

three phase squirrel cage motors. The 

simulations were performed on five different 

motors under clearly distinct operating 

conditions. Moreover, for each motor, various 

design changes (slot skewing, winding pitch, air 

gap width  , etc…) were systematically 

introduced for the simulations. 

 The main result of this study is that in 

three phase squirrel cage motors, space 

harmonics may certainly have an important 

impact (which crucially depends on the motor 

design) on the transient electromagnetic torque. 

However, this impact can  be significant only in 

high slip transients, that is, in motors with direct 

connection to the mains and during processes 

like start up, unplugging, drop out , injection 

braking, etc. Therefore, and by contrast, in 

converter fed three phase induction motors, the 

field harmonics effect on electromagnetic torque 

is negligible, no matter the winding structure. 

This statement  has also been explained and 

justified from a physical  perspective. 

Appendix 

A.1 Space phasor concept 

The steady state values of the main quantities 

(currents, voltages etc…) of many electrical 

circuits often vary sinusoidally in time. These 

values can be determined by means of the  

projection of a rotating oriented segment in the 

complex plane (time phasor).This symbolical 

representation method is in worldwide use. 

 Unlike circuits, in the study of electrical 

machines it is necessary to operate with certain 

quantities which are spatially distributed (current 

sheet, induction, etc). Space phasors are very 

suitable to this task. By definition a space phasor 

is an oriented segment in the complex plane that 

characterizes at every moment the spatial 

sinusoidal distribution of an internal machine 

quantity. The phasor always points to the 

positive maximum of the wave (in the case of 

bipolar waves) and its modulus is equal to the 

wave's amplitude. Both the wave amplitude and 

speed may vary in an arbitrary manner. 

 Usually the internal quantity is not 

bipolar or not sinusoidal. In the last case we 

proceed to its Fourier expansion and assign to 

each space harmonic its corresponding harmonic 

space phasor. To this end we define a domain  

transformation in such a manner that any angle, 

α, in the machine domain becomes an angle να (ν 

= absolute harmonic order) in the phasorial 

domain (Fig. 19). Notice that in this way every 

multipolar wave is characterized by just one 

phasor (the same coordinate in the phasorial 

domain corresponds to all its positive crests in 

the machine). Notice too that this transformation 

has been actually used by electrical engineers for 

more than a century, since it boils down  to 

transform the mechanical angles into electrical 

ones. 



 17


1 2 3



 
Fig. 19 Space wave of five pole pairs. Representation in the machine 

(left) and in the phasorial domain (right) 

A.2 Space phasor formulae of general 

validity 

Choosing the conductor as the basic winding unit 

to determine the airgap field was first proposed 

in [20]. The advantages of such idea (e.g.,  

arbitrarily complex windings layouts can be very 

easily modelled) were later underlined in [21,22]. 

The procedure has also been used by other 

authors (e, g. [23])  

 The Fourier expansion of the current 

sheet (linear current density), Aa(α,t), produced 

by one conductor “a” of width  (Fig. 20) 

carrying an arbitrary current, ia(t) is given by 

[21,22]  
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Fig. 20 Current sheet space wave produced by an axial conductor 

From (A.1) it follows that the space phasor of the 

current sheet harmonic of absolute order ν 

produced by the conductor “a”, aν,a is given by: 

   
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 (A.2) 

where ξ ν, slot is the classic slot factor. 

 
Fig. 21 Phase A with with ZaA conductors at αa, ZbA conductors at αb ,etc, 

 For a whole phase A, with an arbitrary 

distribution of its conductors (Fig. 21), the space 

phasor of its current sheet harmonic of absolute 

order ν (relative order h= ν/p) is obtained by 

simply adding the space phasors of all of its 

conductors. Applying (A.2), we get: 
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The complex number ξν,A in (A.3), also often 

written ξhp,A 
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is called the complex winding factor of absolute 

order ν of phase A [23]. The sign  in (A.4) 

depends on the current direction in the 

conductors. For low order space harmonics 

(which are, by far, the most important ones), the 

slot factor ξν,slot is always very close to 1, so that 

usually (A.4) simplifies to  

, ,
, ,
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a A b A

A hp A
A

Z e Z e
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   (A.5)  

 Of course, if wanted, one can always 

make use of the exact relationship (A.4) instead 
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of (A.5) (Actually, this has been the option 

chosen in this paper). Notice that the distribution 

of the phase A conductors may be arbitrarily 

complicated. However, once the phase structure 

is known, its complex winding factors (modulus 

and argument) are obtained in a fast and easy 

manner. In symmetrical windings one can easily 

check that the modulus of ξhp equals that of the 

classic winding factor for the harmonic of 

relative order h. 

 The ν current-sheet space phasor 

produced by a polyphase winding of arbitrary 

structure equals the sum of the space phasors of 

al its individual phases A, B, C… 

, , , , ...wind A B Ca a a a      
   

 (A.6)  

 For the particular case of a m-phase 

symmetrical winding with arbitrary currents, 

(A.6) becomes equation (3) in this paper.  

 It must be underlined that equations (A.3) 

to (A.6) always hold no matter the phase 

structure, the number of space harmonics 

considered, the rotor shape or whether the 

magnetic circuit be saturated or not.  

 Fig. 22 depicts the yoke flux produced by 

a bipolar magnetic induction wave sinusoidally 

distributed along the inner stator surface. The 

rotor shape may be arbitrary (a salient pole 

structure has been drawn in Fig. 22). A simple 

calculation leads to the following equation 

describing the relationship between the space 

phasors of the yoke flux and induction waves  

1 ( ) / 2
1, 1 1( )

2 2
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 (A.7) 

where B1(t) is the amplitude of the stator 

induction wave at instant t. Angle α1(t) defines 

the instantaneous position of the yoke flux wave 

maximum. Amplitude and positions of the waves 

may vary in an arbitrary manner. Notice that the 

stator yoke flux at any α (at any yoke section 

specified by α) in Fig. 22 is simply the projection 

of the yoke flux space phasor over the radius 

defined by α, that is 
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Fig. 22 Stator yoke flux and magnetic induction (in the stator inner 

surface) space waves. Both waves (and their corresponding space 

phasors) are in space quadrature 

 Notice that a sinusoidal stator induction 

wave always results in a sinusoidal yoke flux 

wave with the same pole number, no matter the 

rotor shape. For multipolar waves, (A.7) and 

(A.8) become: 
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 The air gap flux linkage of an arbitrary 

stator coil with negligible width, , can be 

calculated by replacing the coil by two 

equivalent annular coils of negligible , and 
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summing up the yoke fluxes that crosses them 

(Fig. 23). 





a

b

ab





a

b

yoke,a

yoke,b

 
Fig. 23 Flux linkage of an arbitrary stator coil (above) can be calculated 

by replacing it by two equivalent annular coils (below) and summing up 

the yoke fluxes that crosses them 

 This process can be easily extended to all 

of the phase coils. Therefore, the flux linkages of 

a phase, A, with an arbitrary conductor 

distribution (Fig. 22) due exclusively to the yoke 

flux wave of order ν (ν = hp) is obtained by 

simply summing up the values of the yoke flux at 

the yoke sections corresponding to each one of 

its conductors.  
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 (A.11) 

 

Taking into account (A.5) we get: 

  *
, , ,ReA A yoke At Z al      


 (A.12) 

where ξ* stands for conjugate complex of the 

complex winding factor ξ. (If the width  is to be 

taken into account, (A.12) remains valid by 

simply using (A.4) for ξ, instead of (A.5), as 

commented above).  

The total air gap flux linkages of phase A (all air 

gap waves considered) become 

  *
,ReA A At Z al  



    


 (A.13) 

Notice that, again, and like equations (A.3) to 

(A.6), equations (A.7) to (A.13) always hold too, 

no matter the rotor shape or whether the 

magnetic circuit be saturated or not. 

A.3 Space phasors formulae restricted to 

induction machines. Self and mutual 

inductances  

Contrary to the general equations (A.3) to 

(A.13), the relationship between current sheet 

and yoke flux waves changes for every different 

machine type and, for some machines, it may 

turn out to be very complex. However, for 

induction machines, and assuming the two 

classic hypotheses of ideal magnetic circuit and 

constant  air gap of negligible  width, δ, the 

solution is quite simple. In such a case, any 

sinusoidal stator or rotor current sheet wave 

results in a yoke flux wave with the same pole 

number. The relationship between these waves or 

between their corresponding space phasors 

results, using basic magnetic laws, in:  
2

0
, 24 ( )hp yoke hp

l D
a

hp




 
 

 (A.14) 

 The current sheet phasor of absolute order 

ν = hp of the whole machine equals the sum of 

the stator and rotor current sheet phasors in a 
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common phasorial reference frame. Using, for 

instance, the stator reference frame, one gets: 

  ( )
, , ,

j h p t
hp mach hp str hp rota a a e  
  

 (A.15) 

where  is the instantaneous mechanical angle 

between stator and rotor. Notice that the phases 

may have an arbitrary distribution of conductors. 

For the particular case of symmetrical windings, 

(A.15) becomes equation (6) in the paper. 

 From (A.14) and (A.3), the instantaneous 

yoke flux wave of order ν produced by a phase A 

of arbitrary constitution is given by  
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l D
i t
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

 
 


 (A.16) 

 From (A.16) and (A.12), the airgap flux 

linkages of phase A due to the airgap induction 

wave of order ν produced exclusively by phase 

current iA(t) become   

 
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 (A.17) 

 Therefore, the airgap or the magnetizing 

self-inductance of phase A for the induction air 

gap wave of order hp becomes: 
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 (A.18) 

 From (A.16) and (A.12) it also follows 

immediately that the airgap mutual inductance 

between two arbitrary phases A and B for the 

induction wave of order hp is : 

 

,

, ,0
, ,2

cos arg arg
2 ( )

AB h

A hp A B hp B

hp A hp B

L

Z Zl D

hp
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 

 



 

 (A.19) 

where “arg” stands for argument. Equation 

(A.19) shows that the mutual inductance between 

two phases depends on the angle between the 

magnetic axes of both phases. Should this angle 

change along time ( one phase placed on the 

stator and the other one on the rotor) the mutual 

inductance changes accordingly. Notice that 

(A.18) and (A.19) apply to phases with arbitrary 

conductors distributions (in other words, they are 

also highly suitable, for instance, to the analysis 

of machines with stator or rotor faults, such as 

inter-turn short circuits or broken bars). .  

 Making use successively of equations 

(A.3), (A.6), (A.15) and (A.14) particularized to 

the case of symmetrical polyphase windings in 

stator and rotor with arbitrary phase currents, and 

taking into account (A.18) and (A.19), equation 

(A.12) becomes equation (7) in this paper (for a 

stator phase) or equation (8) for a rotor phase. 
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