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1. Introduction

Quantitative research tries to identify investment opportunities that maxi-
mize returns while assessing any risks involved by measuring the volatility of
returns, an aspect to which investors give great importance. Modelling has
thus become a primary research field (Bollerslev [1], Bollerslev and Mikkelsen
[2];, Deo et al [3], among others), using the capacity of econometric models
to estimate the returns on investments, stock market volatility, and the re-
lationship between these two variables (Ghahramani and Thavaneswaran [5],
Lundbergh and Teräsvirta [6], Schepper and Goovaerts [8]).

This paper describes a comparison of one of the econometric models most
widely used in risk simulation, the ARMA-GARCH-M, with a model based
on artificial intelligence, the Backpropagation neural network.
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The rest of the paper is laid out as follows: the following section deals
with a brief description of the methods used to estimate returns on invest-
ments and conditional volatility by econometric models and neural networks.
In Section 3 the performance of ARMA-GARCH-M and the neural network
Backpropagation are assessed by processing a historical series of the Spanish
Ibex-35 closing prices and the results are compared by means of different error
statistics. The main conclusions drawn from the work are presented in the
final section.

2. The GARCH econometric model vs. the Backpropagation neu-
ral network model

One of the variants of the GARCH econometric models proposed by Boller-
slev [1] and the ARCH-M proposed by Engle et al. [4] is the GARCH-M
or GARCH-in-Mean. This model proposes incorporating conditional variance
into the returns equation; in other words, the expected returns will also depend
on their conditional variance. The analytical expression of the GARCH-M
model is given in the equations below, in which (1) expresses the conditional
variance equation and (2) expresses the returns equation.
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The influence of conditional volatility on performance can be expressed in
different ways: as variance ht, as the logarithm of variance log ht or standard

deviation h
1/2
t . The last option is the one most widely used in empirical studies

and appears in expression (2).

Our proposal is to compare this model with the Backpropagation neu-
ral network (Rumelhart et al. [7]), which uses delta rule-based supervised
learning, or error backpropagation. In the case of this network, the learning
algorithm is generalized so that it can be used with networks of more than two
layers. Operations are carried out in two phases. The information initially en-
ters the first-layer neurons and generates an association of input-output data
pairs. In the second phase, the information is propagated to the rest of the
neurons in the rest of the layers and the different neuron outputs are compared
to the desired output, after which the learning error is calculated.

The errors from each neuron are then transmitted backwards from the
output neurons in order to determine the contribution of each neuron to the
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total error. With this new information the weights of the neurons are varied
until a certain error threshold is reached.

Applying the Backpropagation algorithm requires the neurons to have a
continuous and differentiable activation function, usually sigmoidal in type.

3. An application to the estimation of stock returns and conditional
volatility of the Ibex-35 Index.

The series of Ibex-35 daily closing prices chosen for the comparative study
ranged from 3 January 2000 until 14 July 2010 and contained a total of 2,658
observations. The series included periods of both rising and falling price trends
and high and low volatility.

When designing the GARCH model, we must also find the ARMA model
that better fit the sample. The best election was the ARMA(1,1).

The GARCHmodel estimation was performed considering different delays,
as an explanatory variable in the model in three different ways: (1) incorpo-
rating volume in the variance equation, (2) incorporating lagged volume, (3)
including the lagged logarithmic form.

The model was chosen using the Schwarz and Hannan-Quinn criteria. For
the chosen sample, both criteria select the same model: ARMA(1,1)-GARCH-
M(2,1). The values of both criteria are shown in Table 3, modelling the condi-
tional variance equation in its three possible forms: variance (GARCH), log-
arithm of variance (LN GARCH) and standard deviation (DESV GARCH).
Also considered was the possibility of including the logarithmic form of the
lagged volume.

According to the results given in Table 1, the model with the best scores
for both criteria is the one that expresses the conditional variance equation in
the form of standard deviation and includes delayed volume in its logarithmic
form (Table 1, last column).

Table 1: Selection of the ARMA(1,1)-GARCH-M(2,1) model

Returns Equation GARCH LN GARCH DESV GARCH
Variance Equation Vol(-1) Ln Vol(-1) Vol(-1) Ln Vol(-1) Vol(-1) Ln Vol(-1)
Schwarz Criterion -5.9188 -5.9185 -5.9211 -5.9205 -5.9204 -5.9175
Hannan-Quin Cri-
terion

-5.9303 -5.9299 -5.9326 -5.9320 -5.9319 -5.9290

After designing the definitive model, its coefficients were estimated from
the 2,658 observations in the sample. Table 2 gives different error statistics
for the returns and conditional variance equations: MAPE (Mean Absolute
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Percentage Error), MAE (Mean Absolute Error), MSE (Mean Squared Error),
AMPE (Absolute Mean Percentage Error) and RMSE (Root Mean Squared
Error).

Table 2: Error statistics for the returns and conditional volatility equations
in the ARMA-GARCH-M model

Returns Equation Conditional Volatility Equation
MAPE 1.0983 2.0463
MAE 0.0108 0.0002
MSE 0.0002 0.0000
AMPE 0.9715 1.8903
RMSE 0.0154 0.0003

From the different neural network configurations we chose the Backprop-
agation for its capacity to adapt neuron weights from the errors made during
the learning process.

The inputs established for the network learning process were: index re-
turns with one time lag (t− 1), conditional variance with one (t− 1) and two
time lags (t − 2), and volume with one time lag (t − 1). The outputs were
financial returns and conditional variance at time t.

The same variables were chosen for both systems in order to make it pos-
sible to compare the performance of the neural network with the econometric
model. On one hand, network training indicates possible relationships be-
tween returns and their time lag (ARMA (1,1)). Conditional variance with
one and two time lags establishes the relationship between returns and condi-
tional variance (GARCH-M). Finally, the relationship between delayed volume
and conditional volatility is also included.

Table 3 gives the error statistics of the three networks considered that
minimize: the average absolute error, the mean squared error, and the root
mean squared error. It can be seen that there is little difference between
the results of the three networks when estimating the returns equation, while
the differences are in general somewhat higher when it comes to estimating
conditional volatility.

If these results are compared with those from the econometric model, we
again find little difference as to the returns equation, but more significant
ones in estimating conditional volatility: in this case, the results of the Back-
propagation neural network are a considerable improvement on those of the
ARMA-GARCH-M econometric model.
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Table 3: Error statistics for the returns equation and conditional volatility
in the Backpropagation Neural Network Model

Returns equation Volatility equation
Average
absolute
error

Mean
squared
error

Root
Mean
squared
error

Average
absolute
error

Mean
squared
error

Root
Mean
squared
error

MAPE 1.1420 1.0711 1.1489 0.1888 0.1483 0.1754
MAE 0.0108 0.0108 0.0108 0.0000 0.0000 0.0000
MSE 0.0002 0.0002 0.0002 0.0000 0.0000 0.0000
AMPE 0.9915 0.9980 1.0247 0.1046 0.0060 0.0898
RMSE 0.0154 0.0154 0.0154 0.0001 0.0001 0.0001

4. Conclusions

This paper presents a comparison of the performance of the GARCH family
of econometric models and neural networks in estimating the returns and
conditional variance of the Ibex-35 Spanish Stock Exchange Index. As a fairly
long period (11) of daily closing prices was analysed, the sample contained
a significant number of observations (2,658) with stages of both rising and
falling stock prices, as well as high and low volatility.

From a comparison of the results of both models it can be concluded
that there are no significant differences in their explanations of the returns
equation, so that one model cannot be said to be better than the other in this
respect.

However, significant differences were found in favour of the neural net-
work for its explanation of conditional variance in each of the three networks
estimated with different optimized error criteria. It can therefore be con-
cluded that the Backpropagation neural network is better able to explain index
volatility than the ARMA-GARCH-M econometric model.
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