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Abstract. We show that specially designed two-dimensional arrangements
of full elastic cylinders embedded in a nonviscous fluid or gas define (in
the homogenization limit) a new class of acoustic metamaterials characterized
by a dynamical effective mass density that is anisotropic. Here, analytic
expressions for the dynamical mass density and the effective sound velocity
tensors are derived in the long wavelength limit. Both show an explicit
dependence on the lattice filling fraction, the elastic properties of cylinders
relative to the background, their positions in the unit cell, and their multiple
scattering interactions. Several examples of these metamaterials are reported and
discussed.
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1. Introduction

Recently, there has been great interest in studying the properties of sonic crystals (SC), a name
that specifically defines periodic distribution of sound scatterers embedded in a fluid or a gas [1].
Their properties in the low-frequency limit (homogenization) have been studied by several
groups in the last few years [2]–[15] for their potential applications as refractive devices. The
refractive properties of these systems are controlled by their effective acoustic parameters; i.e.
the speed of sound,ceff, and the dynamical mass densityρeff. The problem of calculating the
effective parameters of a heterogeneous medium have been studied in the past [16, 17], but
always from a statistical point of view. The underlying periodicity of SC makes it possible to
calculateceff from the acoustic band structure in the low frequency limit by using a plane wave
expansion (PWE) [3], but this method does not provide the value ofρeff. More recently, Mei
et al [10] working in the framework of multiple scattering theory (MST) were also able to
obtain from the acoustic band structures the expressions for bothceff andρeff, and claim their
validity for any filling fraction. However, we demonstrate here that their expressions are only
valid at low volume fractions and coincide with those already obtained by these authors dealing
with finite systems [11, 12].

In practical situations, SC are made by clusters with a finite number of cylinders, and
therefore their properties in the long wavelength limit have been studied by means of MST
without doing any averaging [11, 12, 14]. In other words, each scatterer was considered
individually and their positions and mutual interactions into ideal hexagonal and square lattices
(isotropic lattices) were fully taken into account. Analytical expressions were obtained for the
isotropic mass density and sound velocity as a function of the SC parameters.

In the present work, we go a step further and develop an MST-based procedure to
characterize the homogenization of two-dimensional (2D) SC as a function of the positions
and elastic properties of a scatterer in the unit cell. We have derived rigorous expressions for the
dynamicρeff as well forceff that have been used to design anisotropic acoustic metamaterials
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whose properties can be tailored by changing the positions of the scatterers in the unit cell
and/or their material constituents.

It is interesting to point out that quite recently Cummer and Schurig [18] have predicted that
acoustic cloaking similar to that previously proposed for electromagnetic waves [19, 20] should
be possible by means of acoustic materials having anisotropic mass density and sound speed.
In this regard, this work demonstrates that acoustic materials with anisotropic parameters are
physically realizable. So, in a future work we will look for the recipe to build acoustic materials
with the properties shown in [18].

The paper is organized as follows. Section2 gives a brief introduction to the basic equations
of acoustic wave propagation in anisotropic media. In section3, we summarize the main
ingredients of MST that will be used in the following sections. Particularly, we deduce the
secular equation from which the homogenization parameters are explicitly obtained.

Afterward, in section4, the effective parameters are rigorously derived by studying the
low frequency limit of the acoustic band structure given by the secular equation. Firstly, the
sound speed is analytically derived and an expression is obtained that depends on the so called
anisotropy factor of the lattice. Secondly, the well-known expression for effective bulk modulus,
Beff, is demonstrated to be hold for the systems. Finally, the anisotropic mass density is also
derived from the previously knownceff andBeff. Results for parametersceff andρeff are explicitly
calculated for several lattices of rigid cylinders in air. Section5 reports results for the case in
which the elastic properties of cylinders are fully taken into account. The work is summarized
in section6.

2. Anisotropic wave equation

An anisotropic acoustic medium can be characterized by its anisotropic mass density tensor,ρi j ,
and the scalar bulk modulus,B [21]. The state equations for the particle velocity vectorv and
for the acoustic pressure fieldP are

∂ P

∂xi
+

∑
j

ρi j
∂v j

∂t
= 0, (1a)

∑
j

∂v j

∂x j
+

1

B

∂ P

∂t
= 0. (1b)

As will be seen later, it is worth working with the reciprocal density tensor, so that equations (1)
can be cast as:∑

i

ρ−1
ki

∂ P

∂xi
+

∂vk

∂t
= 0, (2)

which has been obtained by using the unitary property
∑

i ρ
−1
ki ρi j = δk j .

Now, taking the derivative with respect toxk and adding in the subindexk∑
i,k

ρ−1
ki

∂2P

∂xk∂xi
+

∂

∂t

∑
k

∂vk

∂xk
= 0. (3)

From equation (1b) the wave equation for the acoustic pressure is finally obtained:∑
i,k

ρ−1
ki

∂2P

∂xk∂xi
−

1

B

∂2P

∂t2
= 0. (4)
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If we assume plane wave solutions with angular frequencyω:

P(Er , t) = P(ω)e−ik·reiωt , (5)

wherek = k cosθ x̂ + k sinθ ŷ is the wavenumber. Then, its insertion in equation (4) gives:[
ρ−1

xx cos2 θ +ρ−1
yy sin2 θ + (ρ−1

xy +ρ−1
yx ) sinθ cosθ

]
k2

−
ω2

B
= 0. (6)

And the speed of sound,c = ω/k, is

c2(θ) = B[ρ−1
xx cos2 θ +ρ−1

yy sin2 θ + (ρ−1
xy +ρ−1

yx ) sinθ cosθ ], (7)

which defines a tensor,ci j , such that

c2
i j = Bρ−1

i j , (8)

this is the well-known Wood’s law [22] generalized to the case of an anisotropic medium.

3. MST

A comprehensive account of MST can be found in textbooks [23] and articles [24, 25].
Therefore, this section briefly reports the basic ingredients to understand the rest of the paper.

Consider a cluster ofN parallel cylinders with arbitrary transversal section located atERα

(with α = 1, 2, . . . , N) and embedded in an acoustic medium characterized by its sound speed
cb. Let us also assume that an external field,Pext, with frequencyω and wavenumberk impinges
the cluster:

Pext(r, ϕ; k) =

∑
q

Aext
q Jq(kr)eiqϕ, (9)

wherek = ω/cb and(r, ϕ) are the polar coordinates of an arbitrary point in the 2D space. The
total pressure field will be given byP = Psc+ Pext, wherePsc is the total scattered field by all
the individualα cylinders:

Psc(r, ϕ) =

∑
α

∞∑
q=−∞

(Aα)q Hq(krα)e
iqϕα , (10)

whereHq is theqth order Hankel function of first kind, and(rα, ϕα) are the coordinates with
the origin translated to the center of theα-cylinder, i.e.Er α = Er − ERα, as shown in figure1. (Aα)q

are the coefficients to be determined.
The total field impinging on theα-cylinder can be expressed by

Pα(rα, ϕα; k) =

∑
s

(Bα)sJs(krα)e
iqϕα , (11)

where the coefficients(Bα)q are related to the(Aα)q through theT matrix [26]:

(Aα)q =

∑
s

(Tα)qs(Bα)s, (12)

being(Tα)qs the elements of theT matrix associated with theα-cylinder. Expressions for the
T matrix for a fluid-like cylinder and for an elastic cylinder are known and can be found
elsewhere [25, 27].
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Figure 1. Definition of variables in the multiple scattering algorithm reported in
section3.

After a few manipulations, the solution of the problem is:

(Aα)q =

∑
β

∑
r

∑
s

(M−1
αβ )qr(Sβ)rs Aext

s , (13)

where

(Sα)rs =

∑
q

(Tα)rq Js−q(k Rα)e
i(s−q)ϑα , (14a)

(Mαβ)rs = δrsδαβ − (Gαβ)sr, (14b)

and

(Gαβ)rs =

∑
q

(1− δαβ)(Tα)rq Hq−s(k Rαβ)e
i(s−q)ϑαβ . (15)

3.1. Band structure calculation

If the cylinders are ordered in a 2D lattice, theirα-positions are defined by the Bravais lattice
Rα = n1a1 + n2a2, wheren1 andn2 are integers anda1 anda2 are the primitive vectors:

a1 = a1x̂ ≡ ax̂, (16a)

a2 = a2 cosφx̂ + a2 sinφŷ. (16b)

Bloch theorem relates theA-coefficients at any arbitraryα-site with those corresponding
to the cylinder at the origin of coordinates:

(Aα)q = eiK ·Rα(A0)q, (17)

whereK is a Bloch wavenumber. This relationship applied to (13) allows to obtain:

(A0)r −

∑
s

(A0)sG̃rs = (S0)rs Aext
s , (18)
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φ

Figure 2. General lattice in the 2D space.a1 anda2 represent the primitive lattice
vectors andφ is the angle between them.

where

G̃rs =

∑
q

Trq

∑
β 6=0

eiK ·Rβ Hq−s(k R0β)e
i(s−q)ϑ0β (19)

has been obtained by considering that all cylinders are equal (i.e.Tα = T ; ∀α). Also, it can be
cast in terms of sums in the reciprocal lattice by using the method developed in [28]:∑

β 6=0

eiK ·Rβ Hq−s(k R0β)e
i(s−q)ϑ0β = (−1)s−qSH

s−q(k, K), (20)

where

SH
l (k, K) = SJ

l (k, K) + iSY
l (k, K), (21a)

SJ
l (k, K) = −δl0, (21b)

SY
l (k, K)Jl+1(k Rmin) = −

[
Yl (k Rmin) +

2

πk Rmin

]
δl0 − 4il

k

Vd

∑
h

Jl+1(Gh Rmin)

Gh(G2
h − k2)

eilθh. (21c)

In these expressions,Gh = K + h1b1 + h2b2 is a vector (in the reciprocal space) obtained by the
translation of primitive reciprocal lattice vectorsb1 andb2 and adding the Bloch wavevectorK .
Vd is the area of the 2D unit cell (Vd = |a1 × a2| in figure 2) and Rmin is the smaller distance
between corners of the unit cell.

With no external field (Aext
= 0), the equation (18) becomes

Ar −

∑
rs

Trq(k)SH
s−q(k, K)As = 0, (22)

where the subindex 0 has been omitted for simplification. This is a set of coupled linear
equations that in matrix form isM ·A= 0, the elements of theM matrix are:

Mrs = δrs −

∑
q

Trq(k)SH
s−q. (23)

The solution of the secular equation detM= 0 determines the acoustic bandsK(ω).
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4. Effective parameters for lattices of rigid cylinders

In what follows, we present a rigorous derivation of the effective parameters for the general
case of lattice cylinders embedded in a nonviscous liquid or a gas. The theory developed here
is valid for all kind of material cylinders: rigid, fluidlike and full elastic cylinders. Firstly, the
effective speed of sound is obtained by studying the low frequency limit of acoustic bands.
Then, the effective bulk modulus is obtained fromT00, the first diagonal element of the T matrix
corresponding to a cluster that is anisotropic. Finally, the anisotropic effective mass density is
obtained from the relationc2

eff = Beff/ρeff.
In practical applications the condition of rigid cylinders (i.e.ρ ≈ ∞) is the common

situation encountered when working with solid cylinders (made of, for example, metals like
lead, iron or aluminium) embedded in air. So, in this section, we present a comprehensive
analysis of results for this particular case and results for elastic cylinders will be studied in
section5.

4.1. Effective speed of sound

In the long wavelength limit,k → 0 (i.e. ω → 0), the dispersion relation,K(ω), for sound
waves propagating in a periodic medium becomes linear and an effective speed of sound can be
obtained fromceff = limω→0(ω/|K(ω)|), which can also be cast as:

ceff = lim
k→0

k

|K(k)|
, (24)

whereceff = ceff/cb is the effective speed of sound relative to that of the background. Hereafter,
an overlined variable will be used to denote the corresponding quantity normalized to that of
the background. Moreover,k is the wavevector in the embedded background; i.e.k = |k| = ω/cb

andK(k) = K cosθ x̂ + K sinθ ŷ (θ being the polar angle defined byK ).
To study this limit, it is convenient to define frequency-normalized coefficientsÂq such

that

Aq(k) ≡ Âq(k)k−|q|−δ0q . (25)

Here, we are dealing with lattices of circular-shaped cylinders, which have diagonalT matrices.
Then, the equation for coefficientŝAq is

Âq − Tq

∑
s

SH
s−qk|s|+δs0−|q|−δq0 Âs = 0 (26)

and we obtain for theM matrix:

Mqs = δqs − TqSH
s−q k|s|+δs0−|q|−δq0. (27)

It was shown in [15] that theT matrix elements for both the elastic and the fluid-like cylinders
have the same asymptotic form at large wavelengths. In fact, the elements can be given (in the
low frequency limit) as a function of quantitieŝTq that are independent ofk:

Tq(k) ≡ T̂q k2|q|+2δq0. (28)

In this limit TqSH
s−qk|s|+δs0−|q|−δq0 ≈ iT̂qSY

l k|s|+|q|+δs0+δq0 and, therefore, the dispersion relation is
determined from:

detM̂= 0, (29)
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where the matrix elements of̂M are

M̂qs = δqs − iT̂q lim
k→0

SY
s−qk|s|+|q|+δs0+δq0. (30)

The secular equation (29) can be solved only numerically. The dimension ofM̂ is determined
by the truncation on the angular momenta needed to get convergence. For|q|6 Qmax and
|s|6 Qmax, the dimension ofM̂ is (2Qmax+ 1) × (2Qmax+ 1). Therefore, the calculation of
the dispersion relation is not an easy task and to obtain an analytical expression forceff(k) is
impossible if one follows this solving procedure. However, appendixB shows that there exists a
block matrix of dimension 3× 3 containing only the dependence onceff. Also, it is demonstrated
that solving det(A− B D−1C) = 0 is equivalent to solving det̂M= 0. A− B D−1C is the
following 3× 3 matrix:

A− B D−1C =



1 − η
c2

eff

1− c2
eff

f iη
ceff

1− c2
eff

f η
1

1− c2
eff

f +0e2iθ

−iζ
ceff

1− c2
eff

f 1− ζ
c2

eff

1− c2
eff

f iζ
ceff

1− c2
eff

f

η
1

1− c2
eff

f +0∗e−2iθ
−iη

ceff

1− c2
eff

f 1∗
− η

c2
eff

1− c2
eff

f


. (31)

The secular equation associated with this matrix can be analytically solved forc2
eff:

c2
eff =

|1|
2
− |0|

2
− f 2η2

− 2 f η|0| cos80 cos 2θ + 2 f η|0| sin80 sin 2θ

(1 + f ζ )
[
(1 + f η)(1∗ + f η) − |0|2

] . (32)

It is important to remember that1 and0 contains lattice sums on the reciprocal space.
These quantities as well as the rest of the variables in the expressions above are fully described
in appendixB.

Note that the expression forc2
eff takes the form of an angle-dependent speed of sound in an

anisotropic medium,

c2
eff(θ) = c2

s+ + c2
s− cos 2θ + ca+ sin 2θ, (33)

where the components of the velocity tensor are

c2
s+ =

|1|
2
− |0|

2
− f 2η2

(1 + f ζ )
[
(1 + f η)(1∗ + f η) − |0|2

] , (34a)

c2
s− = −

2 f η|0| cos80

(1 + f ζ )
[
(1 + f η)(1∗ + f η) − |0|2

] , (34b)

c2
a+ =

2 f η|0| sin80

(1 + f ζ )
[
(1 + f η)(1∗ + f η) − |0|2

] . (34c)

An alternative expression is

c2
eff(θ) = c2

xx cos2 θ + c2
yy sin2 θ + (c2

xy + c2
yx) sinθ cosθ, (35)

where

c2
xx = c2

s+ + c2
s−, (36a)
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Figure 3. Anisotropy factor,A0, which is defined in (37), for several values of
the ratio,a2/a1, as a function of the angle,φ, between lattice vectors. Anisotropy
disappears for the 2D isotropic lattices (square and hexagonal) corresponding to
the parameters described in table1.

Table 1. Effective properties of several 2D topologies studied here.a denotes the
length of the smaller primitive translation vectors of the corresponding lattice
(see figure2).

Primitive basis Topology Symmetric

a2 = a1 = a; φ = 60◦ Hexagonal Yes
a2 = a1 = a; φ =90◦ Square Yes
a2 =

√
2a1 =

√
2a; φ = 45◦ Square Yes

a2 =
√

3a1 =
√

3a; φ = 30◦ Hexagonal Yes

c2
yy = c2

s+ − c2
s−, (36b)

c2
yx = c2

xy = c2
a+. (36c)

We see that anisotropy in (32) and (33) comes from factor0. In factor 0, which is given
in (B.39), the main contribution to the anisotropy comes from0(0) (see (B.20)). The value of0(0)

given in (B.20) allows to introduce the so called parameter of anisotropic strengthA0, which is
defined as:

A0 ≡

∣∣∣∣∣∣
∑
h6=0

J3(Gh Rmin)

G3
h R3

min

e−2iθh

∣∣∣∣∣∣ . (37)

Figure3 plots A0 for several values of the ratioa2/a1 as a function of the angle between lattice
vectors. The calculations ofA0 predicts that large anisotropy in sound speed and mass density
should be expected for the lattices where this factor takes large values. The predictions are
corroborated by the results obtained forceff andρeff as is shown below.
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Figure 4. Diagonal components of the speed of sound tensor,
√

(ci i /cb)2 as a
function of the cylinder radius,Ra for the three anisotropic lattices: (a)a2 = a1,
φ = 45◦; (b) a2 = a1, φ = 75◦ and (c)a2 = 2a1, φ = 75◦. Results for the isotropic
lattices (hexagonal and square) are also depicted in (a) for comparison. The
filling fraction f for the square (sq) and hexagonal (hex) lattices are also shown
to emphasize thatf is determined byRa and the symmetry of the lattice.

The strength of anisotropic effects predicted byA0 is analyzed in figure4, where the

diagonal elements of the sound speed tensor,
√

c2
xx and

√
c2

yy, are plotted for the case of rigid
cylinders in three different anisotropic lattices and compared with the corresponding results
for the hexagonal lattice, which is isotropic. Note that the maximum possible value forRa,
which is determined by the touching condition between neighboring cylinders, depends on the
lattice geometry. It is seen in figure4 that the more anisotropic behavior corresponds to the case
a2 = 2a1 andφ = 75◦, which has the larger value ofA0 (see figure3).

4.1.1. Isotropic lattices.The case of isotropic lattices deserves special attention because
results has been published by two different research teams [3, 10]. The solution for this case
is easily obtained from matrix (31) by introducing the isotropy condition, that is0 = 0. After
straightforward manipulations, the secular equation can be cast as:

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 − η
c2

eff

1− c2
eff

f iη
ceff

1− c2
eff

f η
1

1− c2
eff

f

−iζ
ceff

1− c2
eff

f 1− ζ
c2

eff

1− c2
eff

f iζ
ceff

1− c2
eff

f

η
1

1− c2
eff

f −iη
ceff

1− c2
eff

f 1 − η
c2

eff

1− c2
eff

f

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (38)
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Figure 5. Index ellipsoidneff(θ) for the anisotropic lattice defined bya2 = a1

andφ = 45◦ (see figure2) for several values of cylinder radius in reduced units,
Ra/a. Note that the ellipsoid longer axis follows the direction that bisects the
angleφ = 22.5◦.

The analytical solution of this equation is:

c2
eff =

1 − f η

1 + f η
·

1

1 + f ζ
. (39)

This solution contains relevant terms of multiple scattering interaction that has been forgotten
in the solution given by Meiet al [10], who were also working in the framework of MST.
Particularly, our results reduced to those in [10] when we impose in (39) the condition1 = 1.
In other words, when it is assumed that multiple scattering interactions are neglected. In fact,
it has been shown by us [11, 12] that this condition is only valid at low filling fractions. The
parameter1 is responsible for the abrupt decrease of speed of sound when the filling fraction
approaches the condition of close-packing as shown in figure4. This behavior is not shown in
figure 1 of [10]. Our results fully agree with those found in Krokhinet al, which used a PWE
(see figure 1 in [3]).

4.1.2. Wave propagation.The sound propagation through anisotropic lattices has its own
interest and will be discussed in a separate paper, which will be published elsewhere. However,
it is possible to advance the behavior expected by simply looking at the so called refractive index
ellipsoid, which we have introduced here in acoustics in a manner similar to that in optics:

neff(θ) =
1√

c2
eff(θ)

. (40)

Two index ellipsoids have been plotted in polar coordinates in figures5 and 6 for two
different anisotropic lattices and for several values of cylinder radiusRa. In figure5 it should be
noted that the principal axes are rotated 22.5◦ with respect to thex-axis of the lattice. However,
it is remarkable how the principal axes are slightly rotated with respect to thexy-axis for the
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Figure 6. Index ellipsoidneff(θ) for the anisotropic lattice defined bya2 = 2a1

and φ =30◦ and for several cylinder radiusRa. Note how the rotation of the
principal axis depends onRa (i.e. it is a function of the lattice filling fraction).

lattice studied in figure5, and more important is the tilted angle which depends on the filling
fraction of the lattice. The wave propagation will respond to the index ellipsoid, in such a way
that slow propagation is expected along the direction defined by the longer side of the ellipsoid
and faster propagation will take place along the direction defined by the smaller side of the
ellipsoid.

4.2. Effective bulk modulus

The effective parameters of a cluster of cylinders in which the underlying lattice is isotropic
(hexagonal or square) were obtained in [12] from the scattered field by the given cluster. In
brief, the method associates to the cluster an effective T matrix,Teff, and assumes that (in the
long wavelength limit) this matrix must be equal to that of a homogeneous isotropic cylinder.
So, it was demonstrated that for a cluster ofN cylinders the coefficient of the lower order term
in the series expansion of element(Teff)00 is

(T̂eff)00 ≡ lim
k→0

(Teff)00

k2
=

∑
α

(T̂α)00, (41)

where(T̂α)00 is the corresponding coefficient of theα-cylinder in the cluster. For the case of
equal cylinders, the matrix elements(T̂α)00 are all identical and

(T̂eff)00 = iN
π R2

a

4

[
Bb

Ba
− 1

]
, (42)

whereRa andBa are the radius and bulk modulus of cylinders, respectively.
Here, we are dealing with a cluster based on anisotropic lattices and, therefore, it is

expected that such cluster behaves (in the regime of large wavelengths) as an effective
anisotropic fluid-like cylinder with some effective radiusReff that also has to be determined.
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Figure 7. Reciprocal of the effective density tensor as a function of the radius
of cylinders in reduced units (Ra/a) for three different anisotropic lattices:
(a) a2 = a1, φ = 45◦; (b) a2 = a1, φ = 75◦; and (c)a2 = 2a1, φ = 75◦. Results
for the 2D isotropic lattices (hexagonal and square) are also shown in (a)
comparison.

AppendixA shows that the coefficient̂T00 of an anisotropic fluid-like cylinder is equal to that
of an isotropic fluid-like cylinder. Therefore, following the method developed in [12]

i
π R2

eff

4

[
Bb

Beff
− 1

]
= iN

π R2
a

4

[
Bb

Ba
− 1

]
, (43)

where the left side in this expression is the coefficient(T̂eff)00 of the homogenized cluster with
effective bulk modulusBeff andReff being its effective radius.Reff can be obtained by a simple
approach: it is assumed that the fraction of volume occupied by the cylinders is equal to the
filling fraction of the underlying lattice,f , that is

N(π R2
a)

π R2
eff

= f (44)

Now, with the value ofReff it is possible to obtainBeff from (43):

1

Beff
=

f

Ba
+

1− f

Bb
. (45)

This is the standard averaging of bulk moduli that has been previously shown to be valid for
isotropic 2D lattices of composites made of elastic cylinders [14, 15].

With Beff and the velocity tensor, we are ready to determine the reciprocal density tensor
and, then, to fully characterize the anisotropic medium.
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4.3. Effective mass density

With the expressions derived above, the reciprocal density tensor are derived fromρ−1
eff (θ) =

c2
eff(θ)/Beff:

ρ−1
s+ =

|1|
2
− |0|

2
− f 2η2

(1 + f η)(1∗ + f η) − |0|2
, (46a)

ρ−1
s− = −

2 f η|0| cos80

(1 + f η)(1∗ + f η) − |0|2
, (46b)

ρ−1
a+ =

2 f η|0| sin80

(1 + f η)(1∗ + f η) − |0|2
. (46c)

It is important to note that the reciprocal density tensor (and the effective density) does not
depend on the bulk modulus of background and cylinder. In other words, the effective density
only depends on the lattice structure, its filling fraction and the density of cylinders relative to
the background. The elastic nature of cylinders will be only present in the effective density for
high filling fractions, where the higher orders of theT matrix will be present in both the1 and
0 factors.

Figure7 plots the behavior of the reciprocal density tensor as a function of the cylinder
radius (in units ofa) for three different anisotropic lattices. For the sake of comparison, the
results for the isotropic lattices, hexagonal and square, are depicted in figure7(a). Note that
the stronger anisotropy is achieved for the case (c), which corresponds to the lattice having the
larger value of anisotropy strengthA0 (see figure3).

4.3.1. Isotropic lattices. For the case of isotropic lattices(0 = 0) the effective velocity (39)
can be also cast as:

c2
eff =

1

ρeff
·

Ba

f Bb + (1− f )Ba
, (47)

in which:

ρeff =
ρa(1 + f ) +ρb(1 − f )

ρa(1 − f ) +ρb(1 + f )
ρb. (48)

The second factor in the right hand side of (47) is the effective bulk modulusBeff given in (45).
It can be demonstrated that for low enoughf (i.e. 1 =1) the expression (48) reduces to
that obtained by Berryman [17] for the dimensionality parameterd = 2 (see also equation (2)
in [10]).

5. Effective parameters for lattices of elastic cylinders

When the ratio between acoustic impedances of cylinders and backgroundZa/Zb is not large
enough the condition of rigid cylinders (i.e.ρ = ∞) is not valid and the sound propagation
inside the cylinders has to be taken into account. This is the usual case when working with
solid cylinders embedded in water. Therefore, the full elastic properties of cylinders must
be considered in the correspondingT matrix. As a consequence, the effective parameters
of metamaterials based on solid cylinders embedded in a fluid, like water, present a rich
variety of behavior depending of the ratioZa/Zb, the lattice topology and the fraction of
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Figure 8. Effective parameters for 2D arrays of lead (Pb) cylinders embedded
in water for the two isotropic lattices (hexagonal and square) and two different
anisotropic lattices.

Figure 9. Effective parameters for 2D arrays of iron (Fe) cylinders embedded
in water for the two isotropic lattices (hexagonal and square) and two different
anisotropic lattices.

volume (f ) occupied by the cylinders in the corresponding lattice. As an example of typical
behaviors encountered, figures8–10 represent the cases of cylinders made of lead (Pb), iron
(Fe) and aluminium (Al), respectively, embedded in water. The data parameters employed in
the numerical simulations are reported in table2. Results are shown for the two 2D isotropic
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Figure 10. Effective parameters for 2D arrays of aluminium (Al) cylinders
embedded in water for the two isotropic lattices (hexagonal and square) and two
different anisotropic lattices.

Table 2. Elastic parameters of materials studied in this work. The density,ρa,

and the fluidlike velocity,ca ≡

√
c2
` − c2

t (wherec` andct are the longitudinal
and transversal velocities, respectively) are normalized to those of water (ρb =

1 g cm−3 andcb = 1.45 cm sec−1).

ρa c` ct ca Za

Pb 11.40 1.37 0.47 1.28 13.44
Fe 7.86 3.95 2.15 3.31 26.5
Al 2.70 4.24 2.09 3.69 13.91

lattices (square and hexagonal) and two anisotropic lattices. As anisotropic lattice we have
studied one (a1 = a2 andφ = 75◦) characterized by a very small anisotropic strength parameter
(A0 = 0.001) and another (a1 = 3a2 andφ = 75◦) in which this parameter is more than one
order of magnitude larger (A0 = 0.042).

Results for the slightly anisotropic lattice (A0 = 0.001) in the left panels of figures8–10
show that the values of their effective parameters are in between of those calculated for
the hexagonal (φ = 60◦) and square (φ = 90◦) lattices and the difference between diagonal
elements is very small. Results for the stronger anisotropic lattice are depicted in the right
panels of the same figures. They show that diagonal elements show appreciable differences
that increase with cylinder radius and should be observable in acoustic experiments. Also note
that the difference between diagonal elements decreases with decreasing density. Therefore,
we can conclude that in order to observe strong anisotropic effects in lattices of solid cylinders
embedded in a fluid, we have to select a lattice with a large value ofA0 made of cylinders with
a density as large as possible in comparison with that of the fluid background.
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6. Summary

To summarize, this work has introduced a method to create acoustic metamaterials having
anisotropic dynamical mass density and sound speed. The method is based on the properties
of SC in the homogenization limit. It was shown that 2D arrays of cylinders ordered in lattices
with symmetries other than the square and hexagonal symmetry behave in the range of large
wavelengths as effective acoustic metamaterials having acoustic parameters (mass density and
velocity) that are anisotropic. Analytical results for both parameters have been rigorously
derived and numerical calculations have been presented for relevant examples like the case
of rigid cylinders in air and some elastic cylinders embedded in water. This work should be
considered as a demonstration that anisotropic fluidlike acoustic materials can be physically
realizable. The possible applications of these structures strongly depend on the properties of
wave propagation through them and will be the topic of our next work. However, we can foresee
that these structures could be the basis of designing the class of anisotropic materials needed to
demonstrate the acoustic cloaking recently predicted by Cummer and Schurig [18].
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Appendix A. T̂ 00 for a homogeneous anisotropic cylinder

The starting point to obtain̂T00, which represents the coefficient of the lower order term in the
series expansion of elementT00 of an anisotropic cylinder, is theT matrix of the given cylinder.
We have obtained the analytical expression for theT matrix of a homogeneous anisotropic
cylinder that, here, will be introduced without details. The derivation of theT matrix is out of
the scope of the present work and will be reported in a more specialized journal. However, the
readers are directed to the article by Monzon and Damaskos [29], where a procedure analogous
to that employed by us is applied to the case of a homogeneous anisotropic dielectric rod.

Let us consider an anisotropic cylinder of radiusR0 embedded in a nonviscous liquid or
gas. The speed of sound inside the cylinder is given by the tensorci j , and its bulk modulus
B0 (a scalar) related with the anisotropic density by the Wood’s law (8) as ci j = B0(ρ i j )

−1.
All the magnitudes associated to the cylinder are normalized to the corresponding ones of the
embedding medium. TheT matrix for this cylinder,T , can be easily obtained by studying the
scattering of a plane wave of wavenumberk impinging the cylinder. After applying boundary
conditions on the cylinder’s surface, it is found that

T H= −J (A.1)

or equivalently

T = −JH−1, (A.2)

whereJ andH are matrices whose matrix elements are:

Jsq =
iπ R0

2

[
k J′

q(k R0)4
(1)
sq − Jq(k R0)4

(2)
sq

]
, (A.3)
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Hsq =
iπ R0

2

[
kH′

q(k R0)4
(1)
sq − Hq(k R0)4

(2)
sq

]
, (A.4)

whereJ ′

q(·) andH ′

q(·) are the derivatives of Bessel and Hankel function of orderq with respect
to its argument and

4(1)
sq =

i−s

4π2

∫ 2π

0

∫ 2π

0
ei k R0

c(α)
cos(α−θ)eisαe−iqθ dα dθ, (A.5)

4(2)
sq =

i−s

4π2

∫ 2π

0

∫ 2π

0
ρ−1 : ∇

∣∣
r =R0

ei kr
c(α)

cos(α−θ)eisαe−iqθ dα dθ. (A.6)

The expressionρ−1 : ∇ defines the following operator (in polar coordinates):

ρ−1 : ∇ ≡ ρ−1
rr

∂

∂r
+

ρ−1
r θ

r

∂

∂θ
. (A.7)

The first diagonal elementT00 can be obtained from (A.1), which in terms of matrix
elements is ∑

r

Tsr Hrq = −Jsq. (A.8)

When bothq ands are equal to zero, this expression reduces to

T00H00 = −J00 −

∑
r 6=0

T0r Hr 0. (A.9)

It can be demonstrated that the second term in the right-hand side is of higher order ink
thanJ00.

Now, in the limit ofk → 0, thek’s dependent exponential in4(1)
sq and4(2)

sq can be expanded
in powers ofk as follows:

ei k R0
c(α)

cos(α−θ)
≈ 1 + i

k R0

c(α)
cos(α − θ) −

k2R2
0

2c2(α)
cos2 (α − θ). (A.10)

By including this expansion in4(1)

00 and4
(2)

00 and after integrating inθ it is found that

4
(1)

00 ≈ 1 +O(k), (A.11)

4
(2)

00 ≈ −
R0

2B0

k2 +O(k3). (A.12)

Therefore

J00 ≈ i
π R2

0

4

[
1

B0

− 1

]
k2 +O(k4), (A.13)

H00 ≈ −1 +O(k ln k), (A.14)

which can be used to obtainT00 asT00 = −J00/H00.
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Finally, the coefficient of lower order ink is easily determined

T̂00 = lim
k→0

T00

k2
=

iπ R2
0

4

[
1

B0

− 1

]
. (A.15)

Note that this expression is the same as that obtained for the case of a homogeneous isotropic
cylinder [12].

Appendix B. Asymptotic expression of the M matrix in the low frequency limit

This appendix is devoted to obtain the asymptotic form of the secular equation associated to the
M matrix whose elements are given in (23). The determinant of the(2Qmax+ 1) × (2Qmax+ 1)
final matrix will be reduced computed from the determinant of a 3× 3 matrix. Let’s do it by
computing first the diagonal elements.

B.1. Diagonal terms: q= s

To determine the asymptotic form of terms

M̂qq = 1− iT̂q lim
k→0

SY
0 k2|q|+2δq0 (B.1)

the asymptotic form ofS0 must be computed. We know that

SY
0 k2|q|+2δq0 = −

4

Vd

 k

J1(k Rmin)

J1(K Rmin)

K (K 2 − k2)
+

k

J1(k Rmin)

∑
h6=0

J1(Gh Rmin)

G3
h

 k2|q|+2δq0, (B.2)

whereK is a Bloch wavenumber (K = K cosθ x̂ + K sinθ ŷ).
In this expression only the first term will contribute to the matrix, so that

SY
0 k2|q|+2δq0 = −

4

Vd

k2|q|+2δq0

K 2 − k2
. (B.3)

Since the speed of sound is defined byc = limk→0(k/K ) (to simplify the notation in this
appendix) only theq = 0, ±1 terms will contribute to the matrix, then

M̂00 = 1− f

[
1

Ba

− 1

]
c2

1− c2 , (B.4)

M̂11 = 1− f

[
ρa − 1

ρa + 1

]
c2

1− c2 = M̂−1−1, (B.5)

M̂qq = 1; ∀|q|> 2, (B.6)

whereBa = Ba/Bb, ρa = ρa/ρb andc = ca/cb.
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B.2. Matrix elements with s> q

To calculate these nondiagonal elements we split the lattice sum into two separate terms:

SY
s−qk|q|+|s|+δq0+δs0 = Sc

s−q + SG
s−q, (B.7)

where

Sc
s−q = −

4

Vd
is−q k

Js−q+1(k Rmin)

Js−q+1(K Rmin)

K (K 2 − k2)
ei(s−q)θ0k|q|+|s|+δq0+δs0, (B.8)

SG
s−q = −

4

Vd
is−q k

Js−q+1(k Rmin)

∑
h6=0

Js−q+1(Gh Rmin)

G3
h

ei(s−q)θhk|q|+|s|+δq0+δs0. (B.9)

For k → 0 we use the asymptotic expressions of Bessel functions to get

Sc
s−q = −

4

Vd
is−q k|q|+|s|+δq0+δs0

cs−q

1

K 2 − k2
ei(s−q)θ0, (B.10)

SG
s−q = −

4

Vd
is−q2s−q+1(s− q + 1)!

k|q|+|s|+δq0+δs0

ks−q Rs−q+1
min

∑
h6=0

Js−q+1(Gh Rmin)

G3
h

ei(s−q)θh. (B.11)

Only those terms independent ofk will survive to the limit. So, the condition to have the
factorSv

s−q 6= f (k) is

|q| + |s| + δq0 + δs0 = 2 → (q, s) = (0, 1), (−1, 0), (−1, 1). (B.12)

In the same manner, the factorSG
s−q 6= f (k) if

|q| + |s| + δq0 + δs0 − s+ q = 0 → s > 0, q < 0. (B.13)

Therefore, the contributions to the matrix are

Sc
s−q = −

4

Vd
i|s|+|q|

c2

c|s|+|q|

1

1− c2
ei(|s|+|q|)θ , for |qs|6 1, s > q, (B.14)

SG
s−q = −

4

VdR|s|+|q|+1
min

i|s|+|q|2|s|+|q|+1(|s| + |q| + 1)!
∑
h6=0

J|s|+|q|+1(Gh Rmin)

G3
h

ei(|s|+|q|)θh,

s > 0, q < 0 (B.15)

and

M̂qs = δqs − iT̂qSY
s−q. (B.16)

B.3. Matrix elements with q> s

In this case, we know thatSY
s−q = SY

−(q−s) = SY∗

(q−s), and, by remembering that iT̂q is a real
number, we have

M̂qs = δqs − iT̂qSY
s−q = δqs − iT̂q(S

Y
q−s)

∗
= δqs − (iT̂qSY

q−s)
∗. (B.17)
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B.4. Final expression of̂M

By definingQ ≡ 2(Qmax− 1), we can reorder thêM matrix as

M̂ =

(
A3×3 B3×Q

CQ×3 DQ×Q

)
, (B.18)

being

A =


1− η

c2

1− c2
f iη

c

1− c2 f e−iθ η
1

1− c2 f e−2iθ +0(0)

−iζ
c

1− c2 f eiθ 1− ζ
c2

1− c2 f iζ
c

1− c2 f e−iθ

η
1

1− c2 f e2iθ +0(0)∗
−iη

c

1− c2 f eiθ 1− η
c2

1− c2 f

 , (B.19)

whereη = (ρa − ρb)/(ρa +ρb) andζ = Bb/Ba − 1, Ba (ρa) andBb (ρb) being the elastic moduli
(densities) of cylinders and background, respectively. Finally,θ is the angle of Bloch wavevector
with x-axis and0(0) is the anisotropy factor defined as

0(0)
= 48η f

∑
h6=0

J3(Gh Rmin)

G3
h R3

min

e−2iθh. (B.20)

The matrixD has the form

D =

(
I Dq>s

Dq<s I

)
, (B.21)

Dq<s|qs ≡ D−qs = −8is+q2s−q (s+ q + 1)!

q!(q − 1)!

R2(q−1)
a

Rs+q+1
min

f ηe
∑
h6=0

Js+q+1(Gh Rmin)

G3
h

ei(s+q)θh, (B.22)

Dq>s|qs ≡ Dq−s = (D−qs)
∗, (B.23)

whereηe
= (ρa − ρb)/(ρa +ρb) for fluid like cylinders andηe

= 1 for full elastic cylinders.
For theB andC matrices we have

B =

 O B1−s

O O
B−1s O

 , (B.24)

B−1s = 4is+12s(s+ 2)!
f η

Rs+2
min

∑
h6=0

Js+2(Gh Rmin)

G3
h

ei(s+1)θh, (B.25)

B1−s = (B−1s)
∗, (B.26)

C =

(
O O Cq−1

C−q1 O O

)
, (B.27)

C−q1 = −16iq+12−q (q + 2)!

q!(q − 1)!

R2(q−1)
a

Rq+2
min

f ηe
∑
h6=0

Jq+2(Gh Rmin)

G3
h

ei(1+|q|)θh, (B.28)

Cq−1 = (C−q1)
∗. (B.29)
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B.5. The3× 3 secular equation

The secular equation (29) is impossible to solve analytically since it depends on the number of
angular momenta employed to ensure convergence. Instead, we should look for a more suitable
secular equation so that its analytical solution will not depend on such convergence condition.
To achieve this goal let us define the matrixX:

X ≡

(
I3×3 O3×Q

−D−1C|Q×3 D−1
Q×Q

)
. (B.30)

Note that detX = detD−1. Now, by means of the productM X,

M X =

(
A− B D−1C|3×3 B D−1

|3×Q

OQ×3 IQ×Q

)
, (B.31)

we arrive at the following relationships:

det(M X) = detM detX = detM detD−1,

det(M X) = det(A− B D−1C).

Let us assume that detD 6= 0, the condition over theM matrix of dimension 2(Qmax+1) ×

2(Qmax+1), becomes a condition over the matrixA− B D−1C of dimension 3× 3. In other
words, the secular equation detM̂ = 0 is reduced to det(A− B D−1C) = 0, which can be solved
analytically.

The matrix elements ofB D−1C are

B D−1C
∣∣
k`

=

∑
s

∑
q

BksD
−1
sq Cq`. (B.32)

By using the definitions of matricesB andC it is straightforward to verify that

B D−1C
∣∣
0`

= B D−1C
∣∣
k0

= 0, ∀k, `. (B.33)

The expression for the diagonal terms are:

B D−1C
∣∣
11

=

∑
s

∑
q

B1sD−1
sq Cq1 =

∑
s>1

∑
q>1

B1−sD−1
−s−qC−q1,

B D−1C
∣∣
−1−1

=

∑
s

∑
q

B−1sD−1
sq Cq−1 =

∑
s>1

∑
q>1

B−1sD−1
sq Cq−1,

=

∑
s>1

∑
q>1

B∗

1−sD−1
sq C∗

−q1.

From the definition of matrixD−1 we have that

∑
s

D`sD−1
sq =

∑
s>0

D−`sD−1
sq = δ`q

∑
s

D`sD−1
−s−q =

∑
s>0

D`−sD−1
−s−q = δ`−q =

∑
s>0

D∗

−`sD−1
−s−q = δ−`−q = δ`q.
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So thatD−1
sq = D−1∗

−s−q and we conclude that

B D−1C
∣∣
−1−1

= B D−1C
∣∣∗
11

. (B.34)

Following the same procedure we obtain:

B D−1C
∣∣
−11

=

∑
s

∑
q

B−1sD−1
sq Cq1 =

∑
s>1

∑
q>1

B−1sD−1
s−qC−q1,

B D−1C
∣∣
1−1

=

∑
s

∑
q

B1sD−1
sq Cq−1 =

∑
s>1

∑
q>1

B1−sD−1
−sqCq−1

=

∑
s>1

∑
q>1

B∗

−1sD−1
−sqC

∗

−q1

and

∑
s

D−`sD−1
s−q =

∑
s>0

D−`sD−1
s−q = δ−`−q = δ`q,

∑
s

Dls D−1
−sq =

∑
s>0

Dl−sD−1
−sq = δlq =

∑
s>0

D∗

−ls D−1
−sq = δ−`−q = δ`q.

In a similar mannerD−1
−sq = D−1∗

s−q and

B D−1C
∣∣
−11

= B D−1C
∣∣∗
1−1

. (B.35)

In conclusion, the matrixB D−1C takes the form

B D−1C =

1′ 0 0′

0 0 0
0′∗ 0 1′∗

 (B.36)

and therefore

A− B D−1C =



1− 1′
− f η

c2

1− c2 iη
c

1− c2
f e−iθ η

1

1− c2
f e−2iθ +0(0)

− 0′

−iζ
c

1− c2 f eiθ 1− ζ
c2

1− c2 f iζ
c

1− c2 f e−iθ

η
1

1− c2 f e−2iθ +0(0)∗
− 0′∗

−iη
c

1− c2 f eiθ 1− 1′∗
− η

c2

1− c2 f


.

(B.37)

In function of the new variables defined as:

1 ≡ 1− 1′, (B.38)

0 ≡ 0(0)
− 0′

= |0| ei80 (B.39)
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the 3× 3 secular equation takes the following final expression after straightforward
manipulations:

det
∣∣A− B D−1C

∣∣ =
1

(1− c2)3
det

∣∣∣∣∣∣∣∣∣∣
(1− c2)1 − ηc2 f iηc f η f + (1− c2)0e2iθ

−iζc f (1− c2) − ζc2 f iζc f

η f + (1− c2)0∗e−i2θ
−iη f c (1− c2)1∗

− ηc2 f

∣∣∣∣∣∣∣∣∣∣
.

(B.40)
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