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Abstract. Acoustic transparency is studied in two-dimensional sonic crystals
consisting of hexagonal distributions of cylinders with continuously varying
properties. The transparency condition is achieved by selectively closing the
acoustic bandgaps, which are governed by the structure factor of the cylindrical
scatterers. It is shown here that cylindrical scatterers with the proposed
continuously varying properties are physically realizable by using metafluids
based on sonic crystals. The feasibility of this proposal is analyzed by a
numerical experiment based on multiple scattering theory.
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1. Introduction

The prospect of designing artificial electromagnetic (EM) materials with physical properties
unavailable in natural materials, such as negative refraction index, has opened a new field of
research named EM metamaterials. An EM metamaterial consists of a set of subwavelength
EM units and their extraordinary properties are determined by the geometric arrangement and
intrinsic properties of the building EM units. Recently, EM metamaterials having a negative
refraction index, making a given object transparent to the impinging radiation have been
reported [1, 2], and certain proposed designs have also been experimentally realized [3].

In acoustics, the analogous topics such as negative refraction index [4] and acoustic
transparency [5] have also been investigated because of fundamental importance as well as
their potential applications. Acoustic transparency has been predicted under very restrictive
conditions for a single-layered sphere [5]; full transparency was only predicted for a single
frequency at a specifically designed combination of materials and geometrical arrangement.

In this work, we show that full acoustic transparency can be achieved in a preselected
range of frequencies by using a two-dimensional (2D) sonic crystal (SC) with a periodic
distribution of acoustic scatterers in which each scatterer is a layered fluidlike cylinder.
A mechanism of switching off the SC bandgaps at the pre-selected frequency range is
utilized to achieve the acoustic transparency. Here, bandgap closing is achieved by tuning the
refractive index of the host in which the layered fluidlike scatterers are embedded. We also
propose a scheme for the actual realization of the systems under study by engineered acoustic
metamaterials or metafluids that exhibit the desired properties.

2. Theory

Let us start with the propagation of longitudinal waves in a periodic 2D fluid–fluid system.
For plane waves of frequency ω, the scalar acoustic pressure field p(r) characterizing those
waves satisfies the wave equation

∇ ·

(
∇ p(r)
ρ(r)

)
+

ω2

λ(r)
p(r) = 0, (1)

where ρ(r) and λ(r) are functions representing the density and the local bulk elasticity modulus,
respectively, at the spatial location r. Both functions have the periodicity of the corresponding
Bravais lattice. They define the sound speed in the system, c(r) =

√
λ(r)/ρ(r). Moreover, inside

each unit cell in the lattice, we assume that each scatterer is a layered cylinder whose acoustic
parameters exhibit a certain radial dependencies ρs(r ′) and λs(r ′), where r ′ is measured from
the cylinder center, and it is embedded in a uniform background with parameters ρ0 and λ0.

For simplicity, we assume here that scatterers and background have the same density
ρs(r) = ρ0. Results for the general case in which the background density and bulk modulus
are different from those of the scatterers could be obtained but they are out of the scope of
the present work. The chosen simplifying assumption has the advantage of being physically
realizable by using recently proposed acoustic metamaterials [6]. Therefore, for the system
studied here, equation (1) can be cast into the Helmholtz equation [7][

∇
2 + F(r)

]
p(r) = 0, (2)
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where

F(r) = n2(r)
ω2

c2
b

(3)

is a periodic function of r with periodicity R = m1a + m2b, where a and b are the primitive
vectors of the corresponding Bravais lattice and mi are integers. This function expresses the
periodic changes of the refractive index n(r) = cb/c(r) in terms of periodic fluctuation of the
eigenvalues of the Helmholtz equation. Let us stress that, inside each unit cell, n(r) has a radial
dependence ns(r ′) associated with the layered scatterers and it is unity in the background. It is
interesting to point out that, for the limiting case where the scatterers behave like δ functions,
the explicit form of F(r) will be

F(r) =
ω2

c2
b

[1 + g�0

∑
R

δ(r − R)], (4)

where g is a measure of the strength of the scatterer located at R, and �0 is the volume of the
unit cell.

Equation (2) is equivalent to the stationary Schrodinger equation with potential U and
energy E such that

U − E = −
n2(r)

2
. (5)

Therefore, we expect that acoustic scattering of sound waves is equivalent to scattering of
electronic waves in solids having the potential (5).

2.1. Transparency conditions for SCs

Our system of periodic distribution of fluid scatterers embedded in a fluid background defines
a SC in which the sound waves, like the electronic waves propagating in solids, will experience
a Bragg diffraction by all parallel planes in the crystalline structure. Let us recall that every
reciprocal lattice vector Ghk is normal to a lattice plane of the crystal structure. Thus, the
reciprocal lattice vector Ghk = hA + kB, where A and B are the primitive vectors of the
reciprocal lattice, is normal to the plane in the crystal structure defined by the Miller indices
(h, k) [8], where h and k are integers.

According to scattering theory derived in solid-state physics [8], the amplitude of all the
reflections (hk) possible for a given crystal lattice is determined by the so-called structure
factor. For the case of scattering of sound waves, we introduce the equivalent quantity S(Ghk)

as follows:

S(Ghk) ≡
1

�0

∫
�0

dr n2(r)e−iGhk ·r. (6)

The transparency regime (i.e. non-diffraction condition for any propagating wave) is
achieved by applying the vanishing condition over the lattice structure, i.e. S(Ghk) = 0 for every
reciprocal vector Ghk . This condition gives a requirement of the elasticity modulus, which is the
only variable for the acoustic system under consideration:∫

�0

(
1

λs(r)
−

1

λb

)
2(rs − r)exp (−iGhk · r) dr = 0, (|Ghk| 6= 0), (7)
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where rs is the cylinder radius and 2(x) is defined such that 2(x) = 1 for x > 0 and 2(x) = 0
for x < 0,

Note that when condition (7) is selectively applied over a given reciprocal lattice Ghk ,
the disappearance of the stop band associated to the (hk) Bragg plane is achieved and total
transparency at the corresponding range of frequencies will be obtained (see the discussion in
the next subsection). However, for stop bands originating from overlapping different Ghk planes,
the transparency condition should be carefully obtained.

By integrating with respect to the angular variable in the polar coordinate system, we can
obtain the requirement on the background elasticity modulus that satisfies the transparency
condition:

1

λ0
b

=

∫ rs

0 (r/λs(r))J0(Ghkr) dr∫ rs

0 r J0(Ghkr) dr
, (8)

where Ghk ≡ |Ghk|. Therefore, for a given profile λs(r), the transparency conditions (8) will be
different for different crystalline structures. For a binary system, when λs(r) = λs = constant,
the condition above reduces to the trivial solution λ0

b = λs. In the discussion that follows, we
consider 1/λ0

b as a continuous function of its argument Ghk .
To observe the general features of transparency in a SC made of layered fluidlike scatterers,

one should study the transparency (non-diffraction) conditions for various lattice arrangements
and refractive index profiles ns(r) in a large range of G. As an example, we analyze cylinders of
continuously varying properties of radius rc = 0.3a, where a is the parameter of an hexagonal
lattice where primitive vectors are a = a(1,

√
3)/2 and b = a(−1,

√
3)/2. The primitive vectors

of the reciprocal lattice are, respectively, A = 2π(1, 1/
√

3)/a and B = 2π(−1, 1/
√

3)/a. In
order to derive an analytical expression from (8), we consider the following two simple
profiles:

ns(r) =
[
n2

0 + (n2
f − n2

0)(r/rs)
2
]1/2

(9)

ns(r) =
[
n2

0 + (n2
f − n2

0)(r/rs)
]1/2

(10)

where n0 and n f represent the refractive indices at the cylinder center [n0 = ns(0)] and its edge
[n f = ns(rs)], respectively. Since ns(r) = [λb/λs(r)]1/2, the profiles λ−1

s (r) to be introduced
in (8) are of low powers of (r/rs):

λ−1
s (r) =

1

λb

[
n2

0 + (n2
f − n2

0)(r/rs)
2
]
, (11)

λ−1
s (r) =

1

λb

[
n2

0 + (n2
f − n2

0)(r/rs)
]

(12)

that can be easily integrated.
Equation (8) is solved for two profiles of type (9) and two of type (10), all of which are

depicted in figure 1. Figure 2 shows the solutions for these profiles and they are depicted with
the same colors as those used in figure 1. For example, the solid black curve represents the
profile of type (9) with n0 = 1 and n f = 2.23. The solution to (8) for this particular profile is
represented by the solid black curve in figure 2.
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Figure 1. The profiles of acoustic refractive index ns(r) studied in this work.
They have a radial dependence following equations (9) and (10). The solid black
curve and the dashed blue curve represent the profiles given by (9) and (10) in
which the refractive index at the scatterer center is equal to that of the background
[i.e. ns(r = 0) ≡ n0 = 1] and ns(r = rs) ≡ n f = 2.23 at its edge. The other two
curves are such that n0 = 2.23 and n f = 1; the dotted red curve was obtained
from (9) while the dashed-dotted green curve was obtained from (10).

The vertical lines in figure 2 represent the moduli of the reciprocal vectors of the hexagonal
lattice,

Ghk = (4π/
√

3)a−1
√

h2 + k2 − hk. (13)

Therefore, the intersection of the vertical lines with the curves in figure 2 define the values of
(λ0

b)
−1 at which the transparency condition is achieved. The open circles in this figure indicate

the intersection points for the case of the profile defined by the black line.
In comparison with simple binary systems, results in figure 2 show that any inhomogeneity

within the scatterers produces a variation of λ0
b depending on G, i.e. in a variation of the bandgap

closing condition for different (hk) Bragg bandgap. Also note in figure 2 that (λ0
b)

−1(G) shows a
quasi-periodic behavior with relevant resonance features at G = Gres, where Gres are determined
by requiring the denominator of (8) to vanish. When a Bragg plane (hk), like G21, is located near
a resonance of (λ0

b)
−1(G), the associated Bragg diffraction cannot be suppressed. Let us stress

that, at Gres, the transparency condition is not satisfied at any profile ns(r) here analyzed and the
background modulus. Moreover, for any reciprocal vector away from the resonance (G 6= Gres)
and any physically feasible profile of ns(r ′) one can find an embedded medium with modulus
(λ0

b)
−1(G) allowing the suppression of the (hk) Bragg bandgap so that the resultant SC becomes

acoustically transparent at the corresponding wavelength.
It can also be concluded from figure 2 that for all the profiles studied here, the suppression

of the Bragg bandgaps depends only on the modulus of the associated reciprocal vectors. For
example, the closing of bandgap associated with G10 and G11 is predicted at the same value, i.e.
at (λ0

b)
−1(10) = 2.42/λb, which is defined by an open circle. This result is further analyzed in

the next subsection.
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Figure 2. The transparency conditions for a two-dimensional SC consisting of
a hexagonal lattice of cylindrical scatterers with the radially varying refractive
index profile ns(r) depicted in figure 1. The different curves represent the
condition over the elasticity modulus of the background λ0

b(G) that verify
the transparency (non-diffraction) condition in (7). They are plotted as a
function of a continuously varying reciprocal wave vector, G, times the
lattice parameter a. The vertical lines define the values of the reciprocal
vectors (see (13)) that are written over the lines. The hollow circles over the
black line define the non-diffraction condition corresponding to a piecewise-
parabolic profile λ−1

s (r) (see (11)) with a denser near-surface region gives values
(hollow circles) (λ0

b)
−1(10) = 2.42/λb, (λ0

b)
−1(20) = 7.69/λb, (λ0

b)
−1(31) =

4.10/λb, (λ0
b)

−1(30) = 2.86λb, and (λ0
b)

−1(42) = 6.63/λb.

2.2. Transparency versus bandgap closing

The transparency conditions in (7) have been obtained by imposing the condition so that the
sound waves traveling through the SC are not diffracted by the scatterer array. In what follows,
we correlate the non-diffraction condition with the simultaneous closing of the bandgaps in the
acoustic band structure. Particularly, we analyze the case of the first bandgaps appearing along
the two high symmetry directions in the hexagonal lattice 0 J and 0X .

We follow here a procedure similar to the one that was previously used to analyze an
equivalent problem in 2D photonic crystals [9, 10]. Group theory can be applied to obtain
analytical formulas that give the acoustic bandedges in terms of Fourier expansion coefficients
3 of the bulk modulus

λ(r) =

∑
Ghk

3(Ghk)eiGhk ·r, (14)

where

3(Ghk) =
1

�0

∫
�0

λ(r)e−iGhk ·r. (15)
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Figure 3. Multiple scattering calculation of the transmittance through a slab
made of eight layers of cylinders orientated along the two high-symmetry
directions of the hexagonal lattice, 0X (left panel) and 0 J (right panel),
respectively. The cylinders in the slab have equal radii rc = 0.3a, where a is
the lattice parameter. Each cylinder is a layered fluidlike composite defined by
an index of refraction ns(r) given by (9) and their mass density is equal to that
of the background. Results are shown for several values of the ratio λb/λ

0
b.

These Fourier transformations can be easily calculated by recalling that

λ(r) = λb +
∑

R

λ(r − R), (16)

and inside each unit cell λ(r′) = [λs(r ′) − λb]2(rs − r ′). Because of the radial dependence of
λ(r) the Fourier coefficients depend only on the modulus of the reciprocal vectors Ghk .

The procedure starts by examining the free acoustic modes for the 2D hexagonal lattice
following the procedure developed in the study of the electronic band structures. Afterwards, we
study the bandgaps near the lowest free acoustic modes at the main points of the first Brillouin
zone (BZ). For example, the threefold degeneracy existing in homogeneous fluid would be split
into two states P1 and P3 with different frequencies. We use symmetrized linear combinations
of plane waves that transform like the rows of the irreducible representations to get the basis in
which the differential equation is automatically diagonal. In comparison with the case of the 2D
photonic band structure an exact duality exists between the photonic modes with E polarization
and the acoustic modes under the variable exchange [p, v, ρ, λ−1] ↔ [−Ez, H, µ, ε]. This
duality is corroborated by our findings below. Thus for the first bandgap at the J point of the
hexagonal BZ (see inset in figure 3)

ω2
1(J ) = (30 + 231) ν0|kJ |

2, (17a)

ω2
3(J ) = (30 − 31) ν0|kJ |

2, (17b)
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where kJ = (2π/a)(2/3, 0) is the wavevector of J and 30 and ν0 are the average bulk
modulus and the inverse of the mass density, respectively. 31 = 3(G1), where G1 = 4π/a

√
3

is from (13) the modulus of both vectors G01 and G11.
By following a similar procedure, at the X point,

ω2
1(X) = (30 + 31) ν0|kX |

2, (18a)

ω2
2(X) = (30 − 31) ν0|kX |

2, (18b)

where kX = (2π/a)( 1
2

√
3, 1

2).
Now, the difference between the squared frequencies at J and X points,

ω2
3(J ) − ω2

1(J ) = −331ν0k2
J , (19a)

ω2
2(X) − ω2

1(X) = −31ν0k2
X . (19b)

At this point, it is important to remark that all these analytical expressions are valid only up
to the first order in the theory of perturbations. In other words, we have explicitly assumed that
we are working with dilute systems or a low mismatch of refractive indices between scatterers
and the background. Under these conditions, it can be demonstrated that the transparency
conditions obtained from the general equation (6) are the same as the bandgap closing conditions
obtained from (15), i.e. 3(Ghk) = 0 for every reciprocal vector Ghk .

To conclude, note that the splitting at both high-symmetry points only depends on 31 and,
therefore, the bandgaps associated with Bragg planes G01 and G11 will be closed simultaneously
as was predicted by the non-diffraction condition (see figure 2).

3. Numerical simulations

3.1. Calculation of the transmittance spectra

To verify the theoretical predictions discussed above, we study first the transmittance through a
SC slab consisting of eight layers of cylinders with radially varying acoustic properties. As an
example, we present results for cylinders defined by profile (9) with n0 =1 and n f = 2.23 (black
curve in figure 1). The transmission spectra have been calculated by developing an algorithm
similar to that employed by Yasumoto et al [11] in the propagation of EM waves through layers
of dielectric scatterers. It is explicitly assumed that the layers are infinitely long in the transversal
direction.

The transmittance has been calculated for two different configurations of the slab. In the
first configuration, we assume that the layers grow along the 0X -direction of the BZ. In the
second configuration, the growing direction is the 0 J -direction. Both spectra were calculated by
using the vanishing condition (λ0

b)
−1

= 2.42/λb determined from (8) and depicted as black lines
in separated panels in figure 3. The spectra for two more values, (λ0

b)
−1

= 1.44/λb (blue dashed
line) and (λ0

b)
−1

= 2.89/λb (red dashed-dotted line), are also shown in figure 3. The comparison
between spectra indicates that dips in transmission spectra appearing in the low-frequency range
completely disappear in the transmittance spectra corresponding to the vanishing condition
(black line). Those transmission dips are associated with the first bandgaps existing along the
high-symmetry directions in the BZ (i.e. 0 J and 0X , respectively) as will be discussed in the
next subsection.
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Figure 4. Acoustic bands obtained by multiple scattering simulations. They
correspond to SCs based on layered cylinders put in a hexagonal lattice with
parameter a. The cylinders of radii rs = 0.3a are characterized by a radial
refractive index ns(r) =

√
1 + 3.97(r/rs)2 (black curve in figure 1) embedded in a

background with elastic modulus (a)λ0
b = λb, (b) 1/λ0

b = 1.44/λ0
b, and (c)1/λ0

b =

2.42/λb.

3.2. Band structure calculation

The acoustic band structures for the corresponding infinite systems have also been calculated
in the framework of multiple scattering theory. In brief, the acoustic band structure has been
obtained by solving the secular equation that results from applying the Bloch theorem to
the multipole coefficients defining the expansion of the scattered pressure. Details of the
mathematical procedure can be found in [12].

Figure 4 represents the acoustic bands calculated for the same kind of layered cylinder
studied in figure 3 and for three different values of the background modulus λ0

b.
Figure 4 shows how the bandedges corresponding to the first bandgap at J and X

monotonously approach each other when the values of (λ0
b)

−1 approach the vanishing condition
value. The bandgap corresponding to (λ0

b)
−1

= 2.42/λb, which accomplishes the non-diffraction
condition S(G1) = 0 (see section 2.1), completely disappears since the associated bandedges
are degenerated. This behavior corroborates with that obtained for the transmittance in figure 3.
Moreover, this result also supports our prediction of simultaneous closing of both bandgaps
in (19a) and (19b).

4. A feasible approach: metafluids

The practical realization of the SCs analyzed above clearly requires some type of engineered
material because fluidlike cylinders with continuously varying acoustical properties do not exist
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in nature. However, in the past few years, significant progress has been made in designing
acoustic metamaterials or metafluids that have extraordinary acoustical properties. For example,
it has been demonstrated [13]–[15] that arrays of solid cylinders in air behave at the long-
wavelength limit like fluids whose acoustic properties can be tailored. Also, it has recently been
shown that metafluids with a gradient index of refraction can be achieved by embedding solid
inclusions in a fluid or gas host [6].

Therefore, by using the homogenized properties of specially designed SC, a cylinder with
a radial dependence of its index of refraction ns(r) can be engineered by a metafluid consisting
of a circular cluster (of dimension equal to the cylinder’s diameter) made of solid cylinders
embedded in the same background as the SC. Thus, a cylinder with a radially dependent ns(r)

as considered by general expression (9) can be engineered by following the method described
in [6]. Particularly, we consider water as the background and use a circular cluster made of lead
(Pb) and air cylinders in a square arrangement. Also, it is important to remark that the radii
of cylinders change from the center to the border of the cluster by applying the appropriate
recipe [6].

In order to verify that the designed metafluid and the exact fluidlike cylinder have the
same scattering properties, we study the scattering properties of both systems by an impinging
sound wave of wavelength 25a, where a is the lattice parameter of the array in the cluster and
Rc(= 7a) is the radius of both the fluidlike cylinder and the cluster. While the calculation of the
scattering by a cluster of rigid cylinders is a well-known problem in multiple scattering theory,
the scattering by an inhomogeneous fluidlike cylinder requires a special numerical algorithm
that has been developed by Cai and co-workers [16, 17].

Figures 5(a) and (b) show, respectively, the maps of the amplitude for the total acoustic
pressure around a metafluid cylinder and its corresponding inhomogeneous cylinder with
a refractive index profile given by ns(r) =

√
1 + 3.97(r/Rc)2 (black line in figure 2). The

comparison of both maps shows that the metafluid represents fairly well the scattering properties
of the fluidlike cylinder having continuously varying properties. Note that the agreement
between pressure maps not only exists in the far-field regime but also in the near-field regime
and inside the fluidlike cylinder’s bulk.

The numerical experiment reported above supports the feasibility of the scatterers proposed
to build the SC analyzed here. Now, in order to manipulate the bulk modulus of the background
one can use the procedure described in [6] to design the background metafluid with the required
bulk modulus and keep the same mass density. This manipulation of the background modulus
could even be made dynamic by inserting (or removing) the arrays of cylinders defining the
metafluid background and, therefore, the dynamical switching off/on of the selected bandgaps
should be possible.

5. Discussion and summary

In conventional SC consisting of binary systems (ns 6= nb) the transparency (non-diffraction)
condition is achieved when all the bandgaps are closed (ns = nb) and therefore, the SC becomes
totally homogeneous and transparent to every wavelength passing through. Here we have shown
that, in SC made of radially varying acoustic parameters ns(r), the transparency condition
associated with the different bandgaps can be selectively switch on and off by tuning the acoustic
parameters of either the scatterers or the background. Another possibility is by the modulation
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Figure 5. (a) Pressure map (amplitude) of the scattering of a sound plane wave
impinging from the left to a cluster made of lead and air cylinders embedded in
water (see text). The wavelength of the impinging sound is 25a, where a is the
lattice separation between cylinders in the cluster. (b) The corresponding map
for the case of an inhomogeneous cylinder embedded in water and characterized
by an index of the refraction profile given by ns(r) =

√
1 + 3.97(r/Rc)2, where

Rc = 7a is the cluster radius in (a). Both plots use the same color scale.

of the reciprocal lattice vectors; for example, by using a mechanical device, it would be possible
to produce a uniform compression or expansion of the SC lattice. Particularly, we have analyzed
in detail the case of SC in which the cylindrical scatterers and the background have the same
density. For these particular systems we have given the conditions over the background modulus
to obtain the transparency on the range of wavelength selectively chosen.

We have also demonstrated by numerical experiments that the scatterers with radially
varying properties can be feasible to engineer by using metafluids consisting of arrays of two
components cylinders. One can envisage interesting applications of having on–off selectivity
switching in a SC. We hope that this proposal motivates experimental work confirming the
result and producing novel acoustic devices.
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