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Abstract
We present a simple diffraction experiment with fractal gratings based on
the triadic Cantor set. Diffraction by fractals is proposed as a motivating
strategy for students of optics in the potential applications of optical processing.
Fraunhofer diffraction patterns are obtained using standard equipment present
in most undergraduate physics laboratories and compared with those obtained
with conventional periodic gratings. It is shown that fractal gratings produce
self-similar diffraction patterns which can be evaluated analytically. Good
agreement is obtained between experimental and numerical results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

When diffraction optics is introduced in first courses of physics, the structures considered are
typically single slits, double slits and periodic grating (PGs). These are classic examples of
objects used to teach diffraction phenomena but they are rarely used to show the potential
application of diffraction in signal processing, for instance, important and relevant aspects of
image processing (spatial filtering) [1]. In our opinion, non-conventional diffractive objects
such as fractals could be used for this purpose.

Fractal geometry is exceptionally fruitful and has also been identified in many other
scientific areas such as biology, medicine, electronics, geomorphology, and even stock markets.
Mathematically, the concept of fractal is associated with a geometrical object which (i) is self-
similar (i.e. the object is exactly or approximately similar to a part of itself) and (ii) has a
fractional (or noninteger) dimension [2]. Fractals are obtained by performing a basic operation,
called a generator, on a given geometrical object called an initiator. By sequentially repeating
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Figure 1. (a) Triadic Cantor set at different stages of growth S and (b) the equivalent periodic
structure obtained by filling the fractal set with some segments.

this process on each one of the parts resulting from the operation, a multiple-level object,
composed of sub-units of itself, is created that resembles the structure of the whole object [3].

In optics, fractal structures ranging from simple one-dimensional (1D) systems [4, 5] to
complex 2D objects [6, 7] have been extensively studied. Specifically, diffraction gratings
based on the fractal Cantor set sequences have been analysed [8, 9]. The fractal profile of
these structures leads to Fraunhofer diffraction patterns with self-similar properties, i.e. the
variation of the Fourier spectrum with spatial frequency at each higher stage is a modulated
version of that associated with the previous step with an appropriate scaling of the frequency
range. As a consequence of this fractal property, these structures exhibit a certain number of
subsidiary diffraction peaks around the main peaks. This self-similar property has also been
obtained with other diffractive optical elements, for example, with different kinds of fractal
diffractive lenses [10, 11].

In this paper we present a simple experiment to verify the self-similar properties of
Fraunhofer diffraction patterns produced by fractal gratings (FGs) with standard equipment
present in most undergraduate physics laboratories. For comparison, the Fraunhofer patterns
of regular PGs are also obtained. From a didactic point of view, the experiment developed is
very motivating because it is also a way to introduce students to basic research activities.

2. Fractal gratings based on the triadic Cantor set

One of the simplest fractals is the triadic Cantor set, shown in figure 1(a), which can be
obtained by means of an iterative construction. The first step (S = 0) is to define a segment of
unit length. The next (S = 1) is to divide the segment in three equal parts of length 1/3 and
remove the central one. The ternary set is created by repeating this process to infinity on the
remaining segments.

The triadic Cantor set contains all points in the interval [0, 1] that are not deleted at any
step in this infinite process. In general, at the stage S, there are 2S segments of length 3−S with
2S −1 gaps in between. In figure 1(a), only the four first stages are shown for clarity. Note
that the Sth stage Cantor set can be interpreted as a quasiperiodic distribution of segments
which can be obtained by removing some segments in a finite periodic distribution as shown
in figure 1(b). This distribution at stage S has (3S + 1)/2 segments of length 3−S, separated by
gaps of the same length, so the period of this finite structure is � = 2 × 3−S.

Based on the above scheme we propose FGs composed of slits distributed according to
the triadic Cantor set, as shown in figure 2. In order to show the self-similarity properties of
the diffracted field for different values of S we have scaled the whole structure leaving in each
stage the slits with the same width a. In this way the spacing between the diffraction orders
will be preserved. Therefore, in our objects the grating length is given by L = a 3S and the
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Figure 2. Fractal grating based on the triadic Cantor set (shown in figure 1) at the stage of growth
S = 3. The dashed lines define the complimentary slits of the equivalent periodic grating.

period of the equivalent PG is � = 2a (see figure 2). In mathematical terms, a Cantor grating
of order S can be represented by a binary function transmittance tF(x, y) given by

tF (x, y) =
S∏

i=0
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where rect(x) = 1 for |x| < 1/2 and 0 otherwise. In this equation mod(x, y) gives the
remainder on division of x by y. The transmittance of the equivalent PG (represented in
figure 2 by the dashed lines, slits plus the FG) is given by
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3. Theoretical Fraunhofer diffraction patterns

Let us consider a diffraction grating with transmittance t(x,y), illuminated by a monochromatic
plane wave (with wavelength λ). The Fraunhofer diffraction pattern is generated at the back
focal plane of a lens placed against the grating. Within the scalar approximation, the focal
irradiance distribution is given by the Fourier transform of the transmittance function [12]

I (x, y) =
(
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)2 ∣∣∣∣
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2

, (3)

where f is the focal length of the lens and A is the amplitude of the incident plane wave. To
compare the diffraction properties of an FG with its associated PG, we will obtain analytically
the Fraunhofer diffraction irradiance distributions by replacing in the above equation the
transmittance function t(x, y) by equations (1) and (2), respectively.

For the first case, by using the dimensionless transversal coordinates u = a
λf

x and

v = b
λf

y, and using the convolution theorem for the Fourier transform, equation (3) can be
rewritten as

IF(u, v) = 1

4S

S∏
i=1

sin2(4πu3S−i )

sin2(2πu3S−i )
sinc2(u) sinc2(v). (4)
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Figure 3. (a) Normalized Fraunhofer irradiance versus the transverse coordinate u for an FG (S =
2; dashed curve and S = 3; solid curve) and (b) for its associated PG. In both cases v = 0.

For the associated PG, equation (3) leads to the well-known result [12]

IP (u, v) = 1

M2

sin2(M2πu)

sin2(2πu)
sinc2(u) sinc2(v). (5)

In equation (5) M is the number of transparent slits and is given by
⌈

3S

2

⌉
, where �x�, called

the ceiling of x, denotes the smallest integer greater than or equal to x. Note that equations (4)
and (5) have been normalized to I(0,0) = 1.

Profiles of the Fraunhofer irradiance produced by FGs with different stages of growth S
are shown in figure 3(a). The irradiance of the associated PGs is shown in the same figure for
comparison. It can be seen that the main diffraction peaks in both cases coincide. However,
the irradiance for the FG exhibits a characteristic fractal profile. It can also be noted that the
irradiance for the FG at each higher stage is a modulated version of that associated with the
previous stage. That is, the Fraunhofer diffraction pattern reproduces the self-similarity of the
grating distribution.

4. Experimental results

The setup employed to experimentally obtain the Fraunhofer diffraction patterns is shown in
figure 4. A He–Ne laser (λ = 632.8 nm) connected to the optical fibre is used as a point-
source illuminator (A). A lens of focal distance f = 200 mm (B) collimates the beam. The
diffraction gratings (C) were printed and then photographically reduced onto 35 mm slides.
The sizes of the resulting slits are a = 0.18 mm and b = 5.39 mm. The Fraunhofer diffraction
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Figure 4. Experimental setup employed to obtain experimentally the Fraunhofer diffraction
patterns.

patterns are obtained at the focal plane of the lens (D) (f = 400 mm). A microscope
objective (4×) forms an image of these diffraction patterns onto a CCD detector (E). The
diffraction patterns can be visualized directly in the monitor (F) and by using image acquisition
software, the patterns can be saved in the computer (G) as JPEG files (256-level grey scale and
764 × 576 pixels).

Figure 5 shows the experimental diffraction patterns obtained with FGs of orders
S = 2 and S = 3 and the corresponding patterns obtained with the equivalent periodic
structures. Although the patterns are recorded as images of 764 × 576 pixels, only the
central regions of interest are shown in this figure. Note that the zero-order diffraction peaks
are saturated in order to detect the high-order diffraction peaks. From figure 5, the self-
similar behaviour of FGs is clear. In fact, any wide peak at stage S = 2 is transformed
into three narrower peaks at stage S = 3 and nine peaks at stage S = 4 (not shown in
figure 5). The image files are transformed with Mathematica in grey-level irradiance matrices,
Iexp(i, j), with i = 1, 2, . . . , 764, j = 1,2, . . . , 576, and 0 � Iexp � 255. Taking into
account the symmetry properties of the diffraction patterns and using Mathematica’s function
Mean[Position[Iexp, Max[Iexp]]] it is easy to locate the central pixel, (i0, j 0), of the zero-order
diffraction peak.

Focusing our attention only on the horizontal coordinate along the central axis j = j 0, the
experimental data Iexp(i, j0) are fitted to the theoretical function Ith(i, N, γ ) = N · IF

(
i−i0
γ

, 0
)
,

where N is a normalization factor and γ is the scaling factor that transforms the horizontal
coordinate i, defined in pixels, to frequencies u = i−i0

γ
. The parameters and their errors have

been obtained according to the standard procedure of minimization of the χ2 merit function,
defined as [13]

χ2(N, γ ) =
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σ 2
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, (6)
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Figure 5. Experimental Fraunhofer diffraction patterns obtained with FGs of orders
S = 2 and S = 3 and the corresponding periodic structures.

(a)

(b)

Figure 6. Experimental (dashed curve) and theoretical (solid curve) Fraunhofer diffraction patterns
versus the transverse coordinate in pixels for FGs at (a) S = 2 and (b) S = 3.
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Table 1. Experimental data fit.

Fractal S = 2 Fractal S = 3

Mean position (i0, j 0) (361, 281) pixels (362, 274) pixels
Normalization factor N 354.1 ± 0.6 299.1 ± 0.8
Scale factor γ (449.8 ± 0.1) pixels (448.4 ± 0.1) pixels
Regression coefficient 0.92 0.91

and by assigning an error of σ = 3 to the irradiance values corresponding to a mean noise
registered. The points i where the registered irradiance is saturated have not been considered
in the above sum.

The dashed curves in figure 6 represent the experimental data obtained for the FGs at
stages S = 2 and S = 3. The fitted functions are shown in the same figure with solid curves
for comparison. The values of the fitted parameters are given in table 1. Good agreement is
obtained between the theoretical and experimental data, the regression coefficient being higher
than 0.9 in both fractal cases. Similar regression coefficients are obtained with the equivalent
periodic structures (not shown in figure 6).

5. Conclusions

We have presented a simple optical method to analyse the Fraunhofer diffraction properties
of one-dimensional gratings based on the Cantor set. With this method we have shown that
optical processing can be performed using standard equipment available in most undergraduate
physics laboratories. In fact, the self-similarity of the diffraction patterns can be easily observed
and recorded with this setup and measurements of the mathematical properties of the Cantor
are also possible from experimental results. It is worth mentioning that with this method
other one-dimensional or two-dimensional fractals, such as polyadic Cantor sets, or other
quasiperiodic structures, such as the Fibonacci gratings, can be studied. In our opinion, this
result could motivate students to study further in the field of optical processing.
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References

[1] Hetcht E 2002 Optics (San Francisco: Addison-Wesley)
[2] Mandelbrot B B 1982 The Fractal Geometry of Nature (San Francisco: Freeman)
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