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Abstract 

We present a simple diffraction experiment with fractal gratings based on the 

Triadic Cantor Set. Diffraction by fractals is proposed as a motivating strategy for the 

students of optics about the potential applications of optical processing. The Fraunhofer 

diffraction patterns were obtained with the standard equipment present in most under-

graduate physics labs and compared with that obtained with conventional periodic grat-

ings. It is shown that fractal gratings produce self-similar diffraction patterns which can 

be evaluated analytically. A very good accuracy is obtained between experimental and 

numerical results.  
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1. Introduction. 

When diffraction optics is introduced in the first courses of physics typically the 

considered structures are as single or double slits and periodic gratings. These are clas-

sical examples of objects used to teach the diffraction phenomena but it is rarely used to 

show the potential application of diffraction in signal processing. In our opinion non-

conventional diffractive objects as fractals could be used to this purpose. 

Fractal geometry is exceptionally fruitful and has been also identified in many 

other scientific areas such as biology, medicine, electronics, geomorphology, and even 

stocks markets. Mathematically, the concept of fractal is associated with a geometrical 

object which i) is self-similar (i.e., the object is exactly or approximately similar to a 

part of itself) and, ii) has a fractional (or noninteger) dimension [1]. Fractals are ob-

tained by performing a basic dividing operation, called generator, on a given geometri-

cal object called initiator. By repeating sequentially this process on each one of the 

parts resulting from the division, a multiple levels object, composed of sub-units of it-

self is created that resembles the structure of the whole object [2].  

In optics, fractal structures, ranging from simple one-dimensional (1D) systems 

[3,4] to complex 2D objects [5,6] have been extensively studied. Specifically, diffrac-

tion gratings based on the Fractal Cantor Set sequences have been analyzed [7,8]. The 

fractal profile of these structures leads to a Fraunhofer diffraction patterns with self-

similar properties, i.e., the variation of the Fourier spectrum with the spatial frequency 

at each higher stage is a modulated version of that associated with the previous step 

with an appropriate scaling of the frequency range. As a consequence of this fractal 

property, these structures exhibit a certain number of subsidiary diffraction peaks 

around the main peaks. This self-similar property has been also obtained with other dif-
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fractive optical elements, as for example, with different kind of fractal diffractive lenses 

[9,10].  

In this paper we present a simple experiment to verify the self-similar properties 

of Fraunhofer diffraction patterns produced by fractal gratings (FGs) with the standard 

equipment present in most undergraduate physics laboratories. For comparison, the 

Fraunhofer patterns of regular periodic gratings (PGs) are also obtained. From a didactic 

point of view, the developed experiment is very stimulating because it also becomes a 

way for introducing students into basic research activities.  

 

2. Fractal gratings based on the Triadic Cantor set. 

One of the simplest fractals is the Triadic Cantor set, shown in Fig. 1(a), which 

can be obtained by means of an iterative construction. The first step (S = 0) is to define 

a segment of unit length. The next one (S = 1) is to divide the segment in three equal 

parts of length 1/3 and removing the central one. The ternary set created by repeating 

this process ad infinitum on the remaining segments.  

 

 

Figure 1. (a) Triadic Cantor Set and (b) the equivalent periodic structure at different stages of growth S. 
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The triadic Cantor set contains all points in the interval [0, 1] that are not deleted 

at any step in this infinite process. In general, at the stage S, there are 2S segments of 

length 3-S with 2S -1 gaps in between. In Fig. 1(a), only the four first stages are shown 

for clarity. Note that the S-th stage Cantor set can be interpreted as a quasiperiodic dis-

tribution of segments which can be obtained by removing some segments in a finite 

periodic distribution as shown in Fig. 1(b). This distribution at stage S has (3S+1)/2 

segments of length 3-S, separated by gaps of the same length, so the period of this finite 

structure is Λ = 2·3-S.  

Based on the above scheme we propose FGs composed of slits distributed ac-

cording to the Triadic Cantor Set, as it is shown in Fig. 2. In order to show the self-

similarity properties of the diffracted field for different values of S we have scaled the 

whole structure leaving in each stage the slits with the same width a. In this way the 

spacing between the diffraction orders will be preserved. Therefore, in our objects the 

grating length is given by 3SL a  and the period of the equivalent periodic grating is Λ 

= 2a (see Fig. 2). In mathematical terms, a Cantor grating of order S can be represented 

by a binary function transmittance tF(x,y) given by 

 

 

Figure 2. Fractal grating based on the Triadic Cantor Set shown in Fig. 1 at stage of growth S=3. The 

dashed lines define de complimentary slits of the equivalent periodic grating. 
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where rect(x)=1 for 2/1x  and 0 otherwise. In this equation Mod(x,y) gives the re-

mainder on division of x by y. The transmittance of the equivalent PG (represented in 

Fig.2 by the dashed lines slits plus the FG) is given by 
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3. Theoretical Fraunhofer diffraction patterns. 

Let us consider a diffraction grating with transmittance t(x,y), illuminated by a 

monochromatic plane wave (with wavelength ). The Fraunhofer diffraction pattern is 

generated at the back focal plane of a lens placed against the grating. Within the scalar 

approximation, the focal irradiance distribution is given by the Fourier transform of the 

transmittance function [12], 

     
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where f is the focal length of the lens and A is the amplitude of the incident plane wave.  

To compare the diffraction properties of a FG with its associated PG, we will obtain 

analytically the Fraunhofer diffraction irradiance distributions by replacing in the above 

equation the transmittance function t(x,y) by Eqs. (1) and (2), respectively. 
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For the first case, by using the dimensionless transversal coordinates 
a
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b
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 , and using of the convolution theorem for the Fourier transform, Eq. (3) 
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For the associated PG, Eq. (3) leads to the well-known result [12]: 
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In Eq. (5) M is the number of transparent slits and is given by
3

2

S 
 
 

, where x   , called 

the ceiling of x, denotes the smallest integer greater than or equal to x. Note that Eqs. (4) 

and (5) have been normalized to I(0,0)=1. 

 Profiles of the Fraunhofer irradiance produced by FGs with different stages of 

growth S, are shown in Fig. 3(a). The irradiance of the associated PGs is shown in the 

same figure for comparison. It can be seen that the main diffraction peaks in both cases 

coincide. However, the irradiance for the FG exhibits a characteristic fractal profile. 

Note also that the irradiance for the FG at each higher stage is a modulated version of 

that associated with the previous stage. That is, the Fraunhofer diffraction pattern repro-

duces the self-similarity of the grating distribution. 
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Figure 3. (a) Normalized Fraunhofer irradiance vs. the transverse coordinate u for a FGs (S=2; dashed 

curve and S=3; solid curve) and (b) for its associated PG. In both cases v=0. 

 

4. Experimental results. 

The setup employed to obtain experimentally the Fraunhofer diffraction patterns 

is shown in Fig. 4. A He-Ne laser (λ=632.8nm) connected to optical fiber is used as a 

point-source illuminator (A). A lens of focal distance f=200mm (B) collimates the 

beam. The diffraction gratings (C) were printed and then photographically reduced onto 

35mm slides. The sizes of the resulting slits are a=0.18mm and b=5.39mm. The Fraun-

hofer diffraction patterns are obtained at the focal plane of the lens (D) (f=400mm). A 

microscope objective (4x) forms an image of these diffraction patterns onto a CCD de-

tector (E). The diffraction patterns can be visualized directly in the monitor (F) and us-

ing an image acquisition software the patterns are saved in the computer (G) as JPEG 

files (256-level gray scale and 764x576 pixels). 
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Figure 4. Experimental setup employed to obtain experimentally the Fraunhofer diffraction patterns. 

 

 Figure 5 shows the experimental diffraction patterns obtained with FGs of orders 

S=2 and S=3 and the corresponding patterns obtained with the equivalent periodic struc-

tures. Although the patterns are recorded as images of 764x576 pixels, only the central 

regions of interest are shown in this figure. Note that the zero-order diffraction peaks 

are saturated in order to detect the high order diffraction peaks. From Fig. 5 it is clear 

the self-similar behavior of FGs. In fact, any wide peak at stage S=2 is transformed into 

three narrower peaks at stage S=3 and nine peaks at stage S=4 (not shown in Fig. 5). 

The image files are transformed with Mathematica in gray-level irradiance matrices, 

 exp ,I i j , with i=1,2,…764, j=1,2…576, and 0≤Iexp≤255. Taking into account the sym-

metry properties of the diffraction patterns and using the Mathematica’s function 

Mean[Position[Iexp, Max[Iexp]]] it is easy to locate the central pixel, (i0, j0), of the zero-

order diffraction peak. 
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Figure 5. Experimental Fraunhofer diffraction patterns obtained with FGs of orders S=2 and S=3 and the 

corresponding periodic structures. 

 

Focusing our attention only in the horizontal coordinate along the central axe 

j=j0, the experimental data  exp 0,I i j  are fit to the theoretical function 
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The parameters and their errors have been obtained according to the standard procedure 

of minimization of the 2 merit function, defined as [13]: 
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and by assigning an error of  = 3 to the irradiance values corresponding to a mean 

noise registered. The points i where the registered irradiance is saturated have not been 

considered in the above summatory. 
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The dashed curves in Fig. 6 represent the experimental data obtained for the FGs 

at stages S=2 and S=3. The fitted functions are shown in the same figure with solid 

curves for comparison. The values of the fitted parameters are given in Table I. A good 

agreement is obtained between the theoretical and experimental data, being the regres-

sion coefficient higher than 0.9 in both fractal cases. Similar regression coefficients are 

obtained with the equivalent periodic structures (not shown in Fig. 6).  

 

 

Figure 6. Experimental (dashed curve) and theoretical (solid curve) Fraunhofer diffraction patterns vs. 

the transverse coordinate in pixels for FGs at (a) S=2 and (b) S=3.  

 

 

Table I. Experimental data fit. 

 FRACTAL S=2 FRACTAL S=3 
Mean position (i0, j0) (361, 281) pixels (362, 274) pixels 

Normalization Factor N 354.10.6 299.10.8 
Scale Factor  (449.80.1) pixels   (448.40.1) pixels 

Regression coefficient 0.92 0.91 
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5. Conclusions 

We have presented a simple optical method to analyze the Fraunhofer diffraction 

properties of one-dimensional gratings based on the Cantor set. With this method we 

have shown that optical processing can be performed using the standard equipment 

available in most undergraduate physics laboratories. In fact, the self-similarity of the 

diffraction patterns can be easily observed and recorded with this setup and measure-

ments of the mathematical properties of the Cantor are also possible from experimental 

results. It is worth to be mentioned that with this method other one-dimensional or two- 

dimensional fractals, such as polyadic Cantor sets, or other quasiperiodic structures, 

such as the Fibonacci gratings, can be studied. In our opinion this result could be a 

strong motivation for the students to go into the field of optical processing in depth.  
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