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1.Introduction 

As is well known, optical vortices have good performances for 
optical trapping, because they are capable not only to trap but 
also to set the microparticles into rotation [1-2] due to its inherent 
orbital angular momentum [3-4]. 

One common method to generate optical vortices is by the use 
of spiral phase plates [5]. It has been demonstrated that spiral 
phase plates can be combined with Fractal zone plates (FraZPs) 
[6] to produce a sequence of focused optical vortices along the 
propagation direction [7]. Among FraZPs, Devil’s Vortex Lenses 
(DVLs) deserve a particular interest. Their experimental 
generation and characterization has been recently reported [8-
10]. It has been shown that these elements have high diffraction 
efficiency and that it is possible to take advantage of their 
particular volumetric focal structure to design versatile and 
efficient optical tweezers. 

The interest on the generation of parallel vortex distribution 
has recently increased and several new methods have been 
proposed to generate 2D and 3D spatial distributions of vortices. 
This type of light distributions can be obtained by means of 
interferometric techniques such as the use of modified Michelson 
or Mach-Zehnder interferometers [11]. Dammann gratings 
structures have also been employed to produce sets of parallel 
vortex patterns [12-13]. In Ref. [14] the authors describe a setup 
based on a Dammann vortex grating to generate a three-
dimensional array of focused vortices with tunable topological 
charge. The phase modulation of an annular aperture array has 
also been proposed [15] to create distributions of high order 

vortex cones. Arrays of optical vortices have a very wide range of 
applications in many different fields including the study of the 
optical angular momentum of light beams [16], micro-
optomechanical pumps [17] or quantum information processing 
[18]. 

Some recent approaches for generating 3D optical structures 
have been based on addressing either FraZPs arrays [19] or 
computer generated holograms (CGHs) [20] to a Spatial Light 
Modulator (SLM). In these applications, the use of CGHs [21], 
instead of displaying a direct pattern of lens arrays, avoids 
certain restrictions (for instance, the constraints related to the 
resolution of any diffractive element on the display). Thus, a 
vortex structure can be implemented through multiplexed 
holograms in the Fourier domain, with optical carriers of 
different periods. However, this approach presents other 
technical limitations concerning the hologram codification, like 
the limited phase range available. Moreover, an iterative 
algorithm for generating the CGH is needed to improve the 
reconstruction quality [20]. 

In this paper we propose a simple method to obtain elaborate 
spatial distributions of vortices using an array of Devil's vortex 
lenses generated in a reconfigurable SLM. The use of an SLM 
allows us the possibility to change in a simple way the 
characteristics of individual lenses, such as their focal length or 
their topological charge in order to obtain different and versatile 
configurations. Different sets of simulations and experimental 
results demonstrating the implementation of compound 3D 
optical vortex structures by means of an array of DVLs are 
presented. We include an experimental verification of how the 



compound phase distribution rotates as it propagates. In 
addition, an evaluation of the restrictions for the practical 
implementation of these arrays of vortices is reported. 

The remaining of the paper is as follows. In section 2, the basic 
theory for generating a DVL is revised. The experimental 
implementation of different arrays of DVLs generating a 
compound 3D configuration of optical vortices is described in 
section 3, whereas in section 4 experimental results are 
presented, in fine agreement with the simulations performed. In 
addition, section 4 includes the visualization of the angular 
velocity exhibited by the phase distribution as it propagates and 
the study of the experimental limits and restrictions of the 
approach. Finally, section 5 summarizes the main conclusions of 
this work. 

 
2. Basic theory 

A Devil’s lens (DL) is a rotationally symmetric diffractive lens 
whose phase profile is designed from a Devil’s staircase function 
[22]. The triadic Cantor set [23] is often chosen as the Devil’s 
staircase function to carry out the generation of the Devil’s 
lenses. This set is constructed as follows: first of all a straight-line 
segment of unit length is defined (stage s = 0); then this segment 
is divided in 3 equal parts (first fractal order s = 1) and the 
central part is removed (it becomes a disjoint gap); for next stages 
(fractal orders s = 2, 3, 4, …) each segment generated in the 
previous stage is divided in 3 equal parts, the central one being 
removed. At stage s, there are Ns segments of length [ps,l qs,l] with 
l = 1,...,Ns-1. Mathematically the Cantor function, or Devil’s 
staircase, is defined in the domain [0, 1] as 
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being Fs(0) = 0 and Fs(1) = 1. In Fig. 1 the triadic Cantor set 
developed up to s = 2 and the corresponding Cantor function F2(x) 
are depicted. In this example, the Cantor set has 2s = 4 segments 
of length 3-s = 1/9 and 2s−1 = 3 gaps located at the intervals [1/9, 2/9], 
[3/9, 6/9], [7/9, 8/9], where F2(x) takes the constant values 1/4, 
2/4 and 3/4, respectively, and increases linearly between these 
intervals. 

 

 

Fig. 1. Triadic Cantor set for s = 1 and s = 2. The Cantor function of Devil’s 
staircase for s = 2 is plotted under the Cantor set. 

From a particular Cantor function Fs(x) a DL is a pure-phase 
diffractive optical element (DOE) whose transmittance is defined 
by 

)](2exp[)( 1  s
s FiQ    (2) 

where ζ = r2/a2 is the normalized quadratic radial variable and a is the 
lens radius. As Devil’s lenses are generated as circular objects, the 
straight-line of unit length mentioned in the Cantor set corresponds to 
the normalized radius. We should consider an r2/a2 space because 
the lengths in the Cantor set are normalized and diffractive 
Fresnel zone plates are conceived as objects with quadratic radial 
phase dependence. Using these tools, a Devil’s lens with fractal 
order s presents 2s segments of length 3-s and 2s – 1 disjoint gaps 
of variable length as the corresponding Cantor function. 

A Devil’s vortex-lens [8-9,24] can be constructed from a Devil’s 
lens by simply adding the phase variation mθ, where m, the 
topological charge, is an integer and θ is the azimuthal angle. 
This azimuthal phase variation is introduced both in the 
segments and in the disjoint gaps and becomes faster as m 
grows. Thus the transmittance of a DVL can be expressed as 

]exp[)](2exp[),( 1  imFiQ s
s    (3) 

 

 

Fig. 2. Phase profiles for a DVL with s = 2 and topological charge: (a) m = 
1; (b) m = 2; and (c) m = 3. 

In this equation the first factor, associated with a DL, has only 
a radial dependence with a fractal structure along the squared 
radial coordinate, and the second one, corresponding to a vortex 
lens, has a linear phase dependence on the azimuthal angle. In 
Fig. 2, we have represented three DVLs with the same fractal 
order, s = 2 , and different values of the topological charge m = 1, 
2, 3. The gray levels in this figure show the continuous phase 
variation. 

The axial behaviour of these elements has been studied (see 
Refs. [8-9,24]) and the diffracted field at a given point (z, r, θ) is 
characterized by the irradiance and the phase functions which are 
defined respectively by 
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From these equations it is well established that a DVL has a 
single major focus at fs = a2/(2λ3s) and a number of subsidiary 
focal points surrounding it, a focal volume with a characteristic 
fractal profile. Each focus is an optical vortex and a chain of 
doughnut shaped foci are generated whose diameter increases 
with the topological charge. Additionally the phase evolves 
rotating along the axial coordinate and obviously the sense of 
rotation depends on the sign of the topological charge. 
 
3. Experiment 



 

Fig. 3. Experimental set-up. 

The experimental setup, shown in Fig. 3, employs a collimated 
input beam from a polarized He-Ne laser (λ = 632.8 nm). A 
reconfigurable SLM displays the phase pattern representing the DVL 
matrices. The SLM used is a Holoeye PLUTO, with 1080 × 1920 
square pixels of side 8 μm, and a gray-level codification range of 8-bit. 
A telescopic system after the SLM, with lenses L1 and L2, of focal 
lengths f1 = 200 mm and f2 = 100 mm respectively, provides a 
magnification M = 0.5. As reported in one of our previous papers [9], 
by implementing a linear carrier phase in the SLM, the first 
diffraction-order term can be isolated in the Fourier plane of the 
first relay lens. For that purpose, a blazed grating with a period 
of 4 pixels is added to the area covered by each lens function. Any 
noise due to undiffracted light, in particular to the zeroth-order 

diffraction, is avoided by using a pinhole to select the light 
corresponding to the first diffraction-order and to filter the others. 
Finally, a CCD camera (1038 × 1388 pixels, pixel pitch of 6.45 
μm, 16-bit gray-levels), with the help of a motorized stage, records the 
irradiance patterns around the main focal point of the DVLs imaged 
through the telescope. The reference mirror appearing as a dimmed 
object in Fig. 3 is employed just in the part of the experiment 
corresponding to the visualization of the orbital angular 
momentum, as explained below. 

 
4. Results and discussion 

4.1. Simulations and experimental results 
Our results demonstrate the experimental implementation of 
DVL matrices with programmable SLMs. Numerical 
simulations, according to Refs. [8,24], have been developed to 
compare theory and experiments. As a proof of concept, we 
present here the simulations and the experimental results 
corresponding to two matrices, though other examples have been 
tested. 

 

Fig. 4. Phase images of (a) the 1 × 3 matrix and (b) the 2 × 2 matrix codified in the SLM, with a DVL diameter of 499 pixels. 

On the one hand, a 1 × 3 matrix has been implemented, 
containing two lenses with fractal order s = 2, and topological 

charge m = 2 in both sides, and a lens with s = 2, m = -2, in the 
centre. This phase pattern is shown in Fig. 4.a. 

 
 

 

Fig. 5. Results for the 1 × 3 DVL matrix: Simulated (a) and experimental (b) axial profiles, and magnification for the central lens, simulation (c) and 
experiment (d). 



 

Fig. 6. Results for the 2 × 2 DVL matrix: Simulated (a) and experimental (b) axial profiles for the upper lenses, and magnification for the upper right lens, 
simulation (c) and experiment (d). 

For each matrix, a set of images has been recorded and the 
axial profile around the main focus has been evaluated. As the 
DVLs focal length, fs = a2/(2λ3s), depends on the lens radius, the 
fractal order and the wavelength used, the main focus position is the 
same for all the lenses in the matrices. In Fig. 5, simulated (a) 
and experimental (b) axial profiles of the 1 × 3 matrix described 
above are compared. It is worth remembering that the 
magnification M should be taken into account when contrasting 
measured and theoretical focus positions. The representations of 
the axial profiles are magnified for the central lens (s = 2, m = -2) 
in Fig. 5c-d, where the fractal nature of DVLs is clearly observed. 
Indeed, along the focal volume generated by the DVLs, the main 
focus and other subsidiary ones can be observed. A good 
agreement between simulated and experimental results is 
observed for both views. The optical aberrations, the non-ideal 
behaviour of the SLM and the filtering process in the optical set-
up could be blamed for a slight discrepancy between the 
simulated and experimental intensity values. 

 



 

Fig. 7. Single-frame excerpts from videos showing the transversal images 
around the main focus. (a) 1 × 3 matrix: Experiment (above) and 
simulation (below). (b) 2 ×2 matrix: Experiment (right) and simulation 
(left). (c) Phase variation for the 1 × 3 matrix: Experiment (above) and 
simulation (below). 

On the other hand, a 2 × 2 matrix, with s = 2, m = -2 in the 
main diagonal and s = 2, m = 2 elsewhere, has been studied (see 
Fig. 4.b). The simulated and experimental results are shown in 
Fig. 6. As for the 1 × 3 matrix, there is a satisfactory agreement 
between simulation and experiment. Please, note that the origin 
for the transverse coordinate axis for Figs. 6.a and 6.b is different 
from that of 6.c and 6.d, as in the latter origin has been centered 
in the lens axis. 

A series of images of the transversal planes around the main 
focus for the 1 × 3 matrix can be visualized in animated Fig. 7.a. 
Both simulated and experimental images are shown. In the 
video, the vortex effect of the DVLs can be appreciated. Three 
consecutive doughnuts are visualized, the second one 

corresponding to the main focus. The same kind of images for the 
2 × 2 matrix can be visualized in Fig. 7.b. In Fig. 7, the 
transversal distance between the centers of axial profiles is about 
2 mm. The video cover an axial distance of 2.5 cm around the 
main focal point (1.25 cm before and 1.25 cm after the main 
focus). 
As a method for visualizing the angular velocity exhibited by the 
phase distribution as it propagates, we have recorded the 
interference pattern between our beam and a reference one. For 
this part of the experiment, we take advantage of the beam 
splitter in front of the SLM, and build a sort of Michelson 
interferometer using a new mirror. As a result, two co-linear 
beams reach the CCD sensor, the one coming from the SLM and 
a reference beam. The reference being a plane wave, the 
interference pattern will provide a method for visualizing an 
image of the phase, in which the phase rotation is clearly 
observed. In animated Fig. 7.c, the simulated and experimental 
interference images for matrix 1 × 3 are shown. The 
counterclockwise rotation corresponds to the two side lenses, 
with positive topological charge m, and the clockwise rotation to 
the central lens, with a negative value for m. The video 
illustrates the capability of DVLs matrices to show a coordinated 
and complex angular velocity behaviour, which could be of 
interest for particle manipulation applications. 
 

4.2. Experimental limits and restrictions 
To check the experimental restrictions of our scheme, we have 
theoretically and experimentally studied the minimum lens size 
and the adequate diaphragm aperture in the Fourier plane of the 
telescopic system. These restrictions have been evaluated for just 
one lens, as they may affect every single element in the lens aray. 
Firstly, with the aim of determining the valid range of Devil’s 
vortex-lenses parameters to work with a real experimental set 
up, we propose here a resolution criterion. Using this approach, 
the minimum value the lens radius, a, can reach as a function of 
the fractal order has been evaluated. 

Our phase resolution criterion assumes that the last segment 
of the codified DVL must be at least 2 pixels wide, according to 
Nyquist sampling theorem. In this way, the 2π phase variation 
can be properly codified. Notice now that the last segment begins 
in r2/a2 = 1 - 3-s. Therefore its length in the real space r is given 
by: 

L (s, a) = a [1 – (1 – 3-s)1/2] (6) 

In Fig. 8.a the last segment width as a function of lens fractal 
order is represented for the maximum lens radius allowed by the 
spatial light modulator (540 pixels). The minimum last segment 
width, Lmin, is also represented by the red points. The figure 
shows that for the maximum lens radius amax = 540, the 
maximum fractal order is smax = 4. 
 

 



Fig. 8. Limits of spatial resolution for DVL design: (a) Last segment width 
as a function of the fractal order s and minimum last segment width Lmin 
(in red); (b) Minimum lens radius for a given fractal order s. 

The minimum lens radius for a given fractal order s can be 
expressed as: 

a = Lmin / [1 – (1 – 3-s)1/2]  (7) 

Eq. 7 is represented in figure 8.b, showing how the lens 
minimum radius grows with fractal order when the proposed 
resolution criterion (Lmin = 2 pixels) is respected. Theoretically, for 
a Devil’s vortex-lens of fractal order s = 2, the minimum possible 
radius fulfilling the resolution criterion is 35 pixels.  

So far, only the last lens segment phase variation and low 
topological charge values have been considered. For very high 
topological charge values the azimuthal phase presented by the 
DVLs around its centre could vary so fast than it could not be 
correctly codified. Nevertheless, these cases have been 
disregarded as our study is restricted to low values of m. 

Another factor that affects the spatial resolution of the lenses 
registered by the camera is the aperture of the diaphragm used 
in the telescopic system. Consider an object at the object focal 
point of a lens, with focal length f. In the image focal plane, 
spatial frequencies νx and νy are related to the real transversal 
distances x and y by the wavelength λ and f according to [25]: 

 
νx = x / λ f          νy = y / λ f    (8) 
 
Now consider an iris diaphragm placed in the back focal plane 

of the lens. It will filter spatial frequencies in the Fourier plane 
depending on its aperture. We have experimentally determined 
the appropriate diaphragm aperture accomplishing the trade-off 
between a good resolution and a limited noise coming from other 
diffraction orders, corresponding to a radius of 2 mm. 

Assuming that diaphragm aperture, a wavelength of 632.8 nm 
and a focal length of 200 mm, the cut-off frequency, or maximum 
spatial frequency passing through the diaphragm, is about 1.6 × 
104 m-1 or 15.8 lp/mm. 

To illustrate the effects of filtering, and considering the actual 
diaphragm aperture used in the experiment, simulated images of 
the irradiance pattern at the main focus are shown in Fig. 9. The 
cases of DVLs with fractal order s = 2, topological charge m = 2, 
and with diameter ranging from 269 to 239 pixels are 
represented. It can be seen that for lenses with diameters shorter 
than 259 pixels, the irradiance pattern loses resolution and 
sharpness, and even the first rings of the lens seem to overlap. 

 

 

Fig. 9. Simulation of the irradiance at the main focus of a DVL with s = 2, 
m = 2 and diameter of (a) 269 pixels, (b) 259 pixels, (c) 249 pixels, and (d) 

and 239 pixels, when the diaphragm used in the experiment has been 
considered. 

5. Conclusions 

The results reported in this paper represent a first approach to 
the generation of a 3D structure of vortices through a matrix of 
DVLs implemented on a SLM. Different sets of DVLs have been 
tested and characterized. The measured intensities show a good 
agreement with the simulations we have developed to contrast 
theory and experiment. 

A theoretical estimation of the minimum dimension for a lens 
to be implemented with the sufficient resolution has been 
performed. The experimental minimum threshold for obtaining a 
correctly defined wave front, according to a given resolution 
criterion, has also been assessed. 

We have obtained good results with lenses of 499 pixels 
(corresponding to about 2 mm in the plane where the lenses are 
imaged, after the telescopic system). 

The angular velocity exhibited by the phase distribution 
produced by the array of DVLs has been visualized around the 
focal plane. Again, the agreement between theory and 
experiment is satisfactory. 

Our experiments have proved the possibility of a simple design 
procedure of coupled DVLs with the desired range of topological 
charge. With our method it is even possible to design arrays of 
spiral fractal zone plates with fractional topological charge [26] to 
break down the symmetry of the foci to produce anisotropic 
fractal vortex foci. As each individual DVL can be understood as 
a light gear capable to drive microstructures around its 
circumference [27], applications involving particle transfer and 
manipulation, where the pattern provided by the DVLs 
generates the adequate distribution of angular moment could be 
foreseen. 
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