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Abstract: The focusing properties of diffractive lenses designed using the Fibonacci sequence are
studied. It is demonstrated that these lenses present two equal intensity foci and that the ratio of the two
focal distances approaches the golden mean. This distinctive optical characteristic is experimentally
confirmed. It is suggested that the versatility and potential scalability of these lenses may allow for
new applications ranging from X-ray Microscopy to THz Imaging.

Index Terms: Fibonacci, Diffraction, Zone plates.

1. Introduction

The observation of nature has allowed scientists to perceive different kinds of morphological
orders, including the Fibonacci sequence, one of the most recurrent mathematical fitting models.
The ratio of two consecutive elements of the Fibonacci sequence approaches asymptotically an
irrational number known as the golden mean. This number has been historically associated with
the concepts of equilibrium, harmony, and even beauty. Fibonacci series and the golden mean
have been ubiquitously observed in nature, from the helical arrangement of seeds and leaves
(Phyllotaxis) of plants [1] to all dynamical systems exhibiting the period-doubling route to chaos
[2]. Artificial Fibonacci patterns also appear on core/shell structures constructed through stress-
driven self assembly induced by cooling [3], and the golden mean has recently been found in
the fine structure of spin dynamics around critical points in quantum phase transitions [4], just to
name a few. Due to the rapid development of its associated technology, photonics is a potential
field of applications for novel devices designed and constructed using the Fibonacci sequence.
Two recent examples of significant impact are the fabrication of quantum cascade lasers based on
a Fibonacci distributed feedback sequence, and Fibonacci arrays of nanoparticles that produce
quasi-periodic distribution of plasmon modes. Both applications have unique properties [5], [6].
In photonics technology, diffractive optical elements (DOEs) have found a large number of new
applications which satisfy the increasing demand for more compact, light-weight, and cost-effective
optical systems and components. In addition, a single DOE can combine various functions,
providing a greater flexibility in system configuration and mounting. A wide range of applications
arises mainly in areas where conventional refractive optics do not provide good solutions. DOEs
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are essentially bi-dimensional and thus not voluminous like the refractive ones. They are therefore
ideal for example in X-ray Microscopy [7], THz Optics [8], and in some branches of Ophthalmology
[9]- Nowadays, most diffractive lenses in use are however still conventional Fresnel zone plates,
which have inherent limitations. Fractal zone plates [10], [11], are a new type of multifocal diffractive
lenses that have been proposed to overcome some of these limitations. In fact it was shown that
these lenses, generated with the fractal Cantor set have an improved behavior, especially under
wide band illumination [12]. Another interesting mathematical generator of aperiodic zone plates
is the Fibonacci sequence [13]. This sequence has been employed in the development of different
photonic devices [14], as for example, multilayers and linear gratings [15], circular gratings [16],
and spiral zone plates [17]. In this work we show that Fibonacci Lenses (FLs) are intrinsically
bifocals with the ratio of the two focal distances approaching the golden mean. This property
is experimentally verified and the results are compared with those obtained with a conventional
Fresnel zone plate.

2. Fibonacci Lenses

Starting with two elements (seeds) F;, = 0 and F; = 1, the Fibonacci numbers, F; = {0, 1, 1, 2, 3,
5, 8, 13, 21, ...}, are obtained by the sequential application the following rule: F;, = F; + F;_1,
(j = 0,1,2,...). The golden mean, or golden ratio, is defined as the limit of the ratio of two
consecutive Fibonacci numbers

o= lim F;/Fj_; = (1 n \/5) /2 ()
j—o0

Based on the Fibonacci numbers, a binary aperiodic Fibonacci sequence can also be generated
with two seed elements shown in Fig. 1(a) , as for example, S; = A and Sy = B. Then, each
element of the sequence is obtained simply as the concatenation of the two previous element
Sj+1 = {SJ ijl} forj > 1. Therefore, S, = AB, S3 = ABA, Sy = ABAAB, S; = ABAABABA,
etc. In the sequence, two successive “B” are separated by either one or two “A”. The total
number of elements of a given sequence is F; 1, which results from the sum of F; elements “A”,
plus F;_; elements “B”. When designing a FL, each of these sequences can be used to define
the binary generating function ®;({) with compact support on the interval [0, 1] —see Fig. 1(b)—.
This interval is partitioned in F;;, sub-intervals of length d = 1/F}1, and the value that takes at
the k-th sub-interval is associated to the value of the element Sj;, being 0 or = when Sj;, is “A”

MAPPING {=(r/a)*
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Fig. 1. (a) Generation of Fibonacci structures based on the Fibonacci sequence according to the rule
Sj+1 = {S; Sj—1}. (b) A binary (0, w) phase function, ®;(¢) is constructed from a given Fibonacci
structure (Sg in this case). (c) A non-uniform mapping of this function gives the radial profile of the
FL.
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or “B”, respectively. Mathematically, this condition is expressed in a general form as ®;({) = 0
if (Ip] —1)d << (lg])d, forl={1,2,..., F;}, and ®,(¢) = = otherwise, where |¢|, denote the
largest integer less than, or equal to .

From a particular generating function ®;(¢), the transmittance of the corresponding binary
phase-only diffractive FL is obtained as ¢(¢) = exp[i®;(¢)], after performing the following coordi-
nate transformation: ¢ = (r/a)? , where r is the radial coordinate of the lens, and a is its maximum
value —see Fig. 1(c)—. A typical diffractive FL shown in Fig. 2(a). For comparison, a conventional
Fresnel zone plate with the same resolution is represented in Fig. 2(b). Note that the Fresnel
zone plate can be obtained using the same approach, but by replacing the aperiodic Fibonacci
structure with a periodic one (i.e.; a sequence of F;;, alternating white and black boxes in Fig.
1). Therefore, a FL can be understood as a conventional Fresnel zone plate with period p = 2d,
where the positions of some zones with different phase have been interchanged. Moreover, as
stated in Ref [14] a Fibonacci sequence is aperiodic with two incommensurable periods. According
to our nomenclature, in a FL these periods are given by p;/p = 0.5 Fj+1/F;_1 = 0.5(¢ + 1); and
p2/p=0.5F;11/F; =0.5¢. Thus, a FL can be understood as two Fresnel zone plates interlaced.
The axial irradiance distribution produced by a FL and its associated Fresnel zone plate was
numerically calculated using the Fresnel-Kirchhoff diffraction theory as:

2

1
I(u) = 4m%u? /0 q(¢) exp(—i2mug)d¢| 2

where, u = a?/2)\z is the reduced axial coordinate, \ is the wavelength of the light, and z the
axial distance from the pupil plane.

The axial irradiances, corresponding to the first-order diffraction foci, computed for a FL of
order Ss and its associated Fresnel zone plate are shown in Fig. 2(c). It can be seen that in this
case (j = 8), the first focus of the FL is located at u; = 13 = F; = F;_; and the other one at

(a) (b)

FIBONACCI
FRESNEL —ooo--.]

Normalized axial irradiance: 7

0 5 10 15 20 25 30
Normalized axial coordinate: u

Fig. 2. (a) Fibonacci lens generated from the 1D function ®5(¢). Black and white rings correspond to
a phase 0 and , respectively. (b) Fresnel zone plate of the same resolution. (c) Numerically computed
axial irradiance produced by both lenses against the normalized axial distance .
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up = 21 = Fy = F}. Thus, the ratio of the focal distances satisfies us/u; ~ ¢. The axial irradiance
distribution, represented against the normalized variable u, shows that the reordering of the phase
zones of a Fresnel lens according to the Fibonacci sequence produces a symmetrical splitting of
the first order focus. Higher diffraction orders also appear due to the binary nature of the structure,
therefore these two foci are periodically replicated along the coordinate « with period F;,, (not
shown in Fig 2). However, only the focal distances associated to first order foci of the FL are
related through the golden mean.

3. Experimental setup and its characterization

For the experimental verification of the singular properties of diffractive lenses with Fibonacci-
based structure, we implemented the experimental setup shown in Fig. 3. The proposed lenses
were recorded on a Liquid Crystal in a Silicon Spatial Light Modulator (LCoS-SLM), calibrated for
a 2w phase shift at A = 633 nm (phase-only modulation). In addition to the diffractive lens, a linear
phase carrier was modulated on the SLM to avoid noise originating from the specular reflection
(zero order of diffraction), and also caused by high diffraction orders due to its pixelated structure.
In this way, the addressed signal was guided by the first diffraction order into the focal plane of
lens L2 where a pin-hole acted as a spatial filter. To compensate the wavefront distortions caused
by the lack of flatness of the LCoS-SLM and the other optical components, we first employed
a Hartmann-Shack wavefront sensor to measure such wavefront distortions (up to 66 Zernike
coefficients) for zero modulation. Then, to compensate the aberrations in the experiment, the
complex conjugated of the retrieved phase was added to the other phase components of the
lens. The result was addressed to the LCoS-SLM [18].

The focusing properties of FLs were assessed by recording the diffracted field produced when
illuminated by a monochromatic plane wave. To correctly sample the diffracted field, we used a
motorized stage in which we mounted a microscope objective attached to a CCD camera (EO-
1312M 1/2” CCD Monochrome USB Camera, 8-bit gray-level, pixel pitch of 4.65 um and 1280 x 1024
pixels). The experimental result obtained for a Sg lens with ¢ = 1.1 mm is shown in Fig. 4(a). A
profile of the measured axial irradiance is depicted in Fig. 4(b), where the theoretical prediction
computed numerically using (1) is also represented. As can be seen, both results are in excellent
agreement, and the two first order foci are clearly visible. Although the maximum axial intensity
of these foci are equal, the diffraction efficiency of the first focus, 7, is higher than second one,

He-Ne LASER

Microscope

LCoS-SLM Image plane ~ Axial
(z=0) Scanning

Fig. 3. Experimental setup for the assessment of the focusing properties of FLs. Light source: He-
Ne laser A = 633 nm. A plane wave-front impinged on the LCoS-SLM (Holoeye PLUTO, with 8-bit
gray-level, 8 um pixel pitch and 1920 x 1080 pixels) where the lenses are recorded. A microscope
objective (10X Zeiss© Plan-Apo) is attached to a CCD camera (EO-1312M 1/2” CCD Monochrome
USB Camera, 8-bit gray-level, pixel pitch of 4.65 um and 1280 x 1024 pixels). It then performs an axial
scanning and records the diffracted field.
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Fig. 4. (a) Evolution of the transverse intensity distribution produced by a zone plate constructed
using a Fibonacci structure. Experimental results using a Sg zone plate (b) Profile of Fig. 4(a) (dotted
line) showing the longitudinal irradiance distribution on the optical axis and the relative magnitude
of the two foci. The theoretical values of the irradiance are shown in solid line for comparison. In
both cases, the values are normalized to the peak intensity. The foci approaches the axial positions
f1 =a?/2)\F; = 7.35cm and fo = a?/2\Fs = 4.55¢cm.

1o, satisfying 1 /n2 = (uz/u1)? ~ 2. Moreover the second lobe is ¢?-times broader than the first
one and the transverse width of the second lobe is also ¢-times greater, so its resolution is
lower. As predicted by the theoretical analysis, the axial localization of the focal spots depends on
the Fibonacci numbers F; and F;_;, and such focal distances satisfy the following relationship:
filfa =Fj/Fj-1 =~ .
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4. Conclusions

We have shown that a FL is a lens that naturally produces two foci along the axial coordinate.
These foci are located at certain axial positions given by the Fibonacci numbers, being the golden
mean the ratio of the two FL focal distances. The foci of a given FL are situated symmetrically,
one at each side of the focus of a equivalent Fresnel zone plate of the same number of zones.
Moreover, we found that the golden mean is also the responsible of the energetic balance of
both foci and also of it axial and transverse resolution. We believe that new type of diffractive
lenses could be of benefit across a broad range of applications where conventional Fresnel zone
plates are currently applied, such as X-ray microscopy, THz imaging, and Ophthalmology (in
the form of bifocal intraocular or contact lenses for the correction of presbyopia). Moreover,
as FL can be produced using the same techniques as those used for making Fresnel zone
plates, all improvements already reported, such as the resolution increase by double patterning
nanofabrication technique [19] or the use of composite zones [20], are still valid for the fabrication
of FLs.
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