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Abstract 
 

The goal of this thesis is to analyse and propose improvements for the acoustic quality 

parameters of the Paco Salvador auditorium in Beniganim. 

Two methods are being used to analyse the current situation. The first method is the 

measurement of the parameter values in situ. In order to analyse these values they are run in a 

computer programme. The second method is the creation of a simulation in ODEON software. A 

3D model is created in AutoCAD and loaded into the software. The different acoustic parameters 

are computed in the simulation 

After having analysed the current situation two proposals for improvements are made.  The first 

proposal is to improve some of the acoustic parameters by adjusting the ceiling above the stage. 

The second proposal is to adapt the auditorium to the acoustic parameters require for a 

conference hall. 
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Introduction and Objectives 
 

The objective of the analysis of the acoustic conditioning of the auditorium in Beniganim is to 

obtain a reverberation time that is equal to the recommended reverberation time for a music 

hall, in other words to obtain a proper tonal curve for musical hearing. 

Furthermore, the acoustic conditioning – more specifically the absorption of the surface 

materials – must ensure a uniform distribution of the sound energy in the listening area. 

Before proceeding with the analysis of the acoustics of the auditorium in Beniganim, a short 

introduction describes most of the important acoustic parameters. 

After the introduction the current acoustic conditioning of the Paco Salvador auditorium is 

analysed. The auditorium’s acoustic quality parameters are studied by using two different 

methods. The first method includes measuring of the data in situ and processing them to obtain 

the values of the quality parameters. Secondly, a simulation of the current situation is made to 

obtain the same quality parameters. 

After studying the current situation, some proposals for improvements can be made. The goal of 

these improvements is to obtain optimal values for the acoustic parameters. In this case the 

proposal consists of two improvements on a different level. Starting with a proposal for an 

improvement of the geometry of the auditorium continuing with a second improvement that 

adapts the auditorium to the requirements for hosting conferences.  
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1 Sound Quality Parameters of an Auditorium 
 

Before moving on to the specific acoustical study, it is necessary to describe the most important 

quality parameters. These parameters describe the acoustic quality of spaces used for speaking 

or musical performances. 

Everything that follows has been adapted to the centre frequencies of the octave bands (T1.1) to 

simplify the audio spectrum. 

The audio spectrum from 20 Hz to 20 KHz can be divided up into 11 octave bands. The 7th octave 

band’s centre frequency is defined to be 𝑓7
𝑐𝑡𝑟 = 1000 𝐻𝑧. All the lower frequencies can be 

calculated by  𝑓𝑛−1
𝑐𝑡𝑟 =

𝑓𝑛
𝑠𝑡𝑟

2
 while the higher centre frequencies are defined by 𝑓𝑛+1

𝑐𝑡𝑟 = 2𝑓𝑛
𝑐𝑡𝑟. 

(Physics Illionois, n.d.) 

Table T1.1 – Octave band frequencies 

Band number Centre Frequency 

1 15,625 

2 31,250 

3 62,500 

4 125,000 

5 250,000 

6 500,000 

7 1000,000 

8 2000,000 

9 4000,000 

10 8000,000 

11 16000,000 

 
 

1.1  Ambient Noise Level 

 
The level of the ambient or background noise in a space is originating from the activities that 

take place in adjacent spaces and rooms. It is a kind of noise pollution or interference. If there is 

a significant level of background noise present it should be measured. The noise could be 

originating from outside or from inside the studied room and could be produced by air 

conditioning systems, lighting, people talking, etc. 

The level of the background noise increases the noise threshold and could be masking other 

sounds that are important for the activities taking place in this room. To evaluate the degree of 

interference with the normal activities, the spectrum of the room has to be compared with the 

spectrum of another room where the same activities take place but where the influence of the 

source responsible for the background noise is absent. Noise criterion (NC) curves are used to 

display the spectrum.  

NC curves were established in the US for rating indoor noise such as noise from air-conditioning 

equipment. (Cirrus Research plc, 2011) The method consists of a set of criteria curves extending 

from 63 to 8000 Hz. These criteria curves define the limits of octave band spectra that must not 

be exceeded by the background noise. 
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Figure 1.1 – Examples of recommended NC levels (Cirrus Research plc, 2011) 

 

Table T1.2 – Noise Criterions in relation to octave band numbers (Beranek & Vér, 2005) 

Criteria Octave Band Numbers 

63 125 250 500 1000 2000 4000 8000 

NC 20 51 41 33 26 22 19 17 16 

NC 25 54 45 38 31 27 24 22 21 

NC 30 57 48 41 35 31 29 28 27 

NC 35 60 53 46 40 36 34 33 32 

NC 40 64 57 51 45 41 39 38 37 

NC 45 67 60 54 49 46 44 43 42 

NC 50 71 64 59 54 51 49 48 47 

NC 55 74 67 62 58 56 54 53 52 

NC 60 77 71 67 63 61 59 58 57 

NC 65 80 75 71 68 66 64 63 62 

NC 70 83 79 75 72 71 70 69 68 
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When the values in the table above are translated into octave bands, the following curves are 

obtained. The background noise level must not exceed the curve that is predefined. The choice of 

the curve to be used depends on predefined rules and the intended purpose of the space. In most 

cases, the NC 25 curve is recommended. 

 
Figure 1.2 – Noise Criteria curves (Beranek, Acoustics, 1986) 
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1.2  Spaces Dedicated to Musical Performances 

 

The interpretation of the perception of music can never be separated from the acoustic 

parameters of the space. In other words, the perception of music is correlated to these acoustic 

parameters. Starting with the emission that comes out of the instrument, a lot of different things 

are happening with the sound before it reaches the ears of the audience. 

It can be said that the entire room functions as a large tool that modulates the sound. The sound 

energy confines in space, the room’s surfaces reflect the sound or absorb it, it gets absorbed by 

the air on its route, sounds are mixed together when they cross paths … These are only a few of 

the many things that happen with the sound that travels through a space. 

In the following paragraphs the most important sound quality parameters for a space, dedicated 

to musical performances are explained. (Llinares Millan, 2013) 

 

1.2.1 Acoustical Intimacy 

 
Acoustical intimacy is very different from the visual intimacy that can be obtained in small 

rooms, for example. “Acoustical intimacy” refers to the feeling that listeners perceive when being 

physically close to the performing group or artist. It feels as if the sound originates from nearby 

surfaces. The listeners get an impression of the size of the room, in reality it is not the measured 

size of the room but the perception of its size.  A room is said to have acoustical intimacy when 

the sound creates the subjective impression of a small room. 

The degree of acoustical intimacy in a space corresponds with the speed of the first significant 

sound reflection that reaches the listeners’ ears after having perceived the direct sound. 

Primarily, the listener hears the direct sound then followed by the reflected sound. If the time 

difference between the direct sound and the first reflection is short, the sound in the hall is 

intimate. This time difference is also called the initial time-delay gap (ITDG). A room is 

considered intimate when the ITDG is somewhere between 10 and 20 milliseconds. (Riethof) 

To achieve an ITDG, not exceeding the maximum value of 20 milliseconds, the reflection of the 

room can be increased with reflective panels hanging on the sidewalls. These panels guide the 

early reflections of the sound to the audience in the space. Naturally, a smaller hall has a smaller 

ITDG because the first sound reflections reach the audience faster than in a larger hall. 

 

1.2.2 Reverberation Time and Liveness 

 
If a room consists of surfaces with high absorption power, the reflections in that room can be 

minimal or below the threshold of perception. The amount of reflections reaching the listeners is 

not sufficient to obtain a good perception of the music. These rooms with very little sound 

reflection are often being called “dead rooms” or “dry rooms”. 

 

Liveness has a direct connection with the reverberation time of the space. A space that is 

reverberant and thus has a long reverberation time is called a “live” space. When the 

reverberation time is too short it is called a “dead” space. Spaces with a long reverberation time 

are often being called acoustically superior to spaces with a short reverberation time. 



12 
 

The liveness is mostly related to the reverberation time of the frequencies above 350 Hz (Long, 

2006), also called the medium and high frequencies. Liveness can best be obtained when the 

interior surfaces reflect the sound and when the space is large compared to the size of the 

audience. 

The loudness of the reverberant sound is related to the intensity of the sound that does not 

travel directly to the listener and the reverberation time of the hall. The reverberation time (RT) 

can be predicted trough calculation or it can be measured in situ. 

The expected reverberation time of a room can be calculated in numerous ways. Most of the 

equations are based upon the two classic formulas; the first one is developed by Sabine (1922) 

and the second one by Eyring (1930). These formulas are based upon the volume of the room 

and the absorption of the materials in the room. 

Imagine a sound emitted in a room at a constant rate. Until equilibrium between the emitted and 

the absorbed energy is reached, the sound energy density will build up. When the source is 

turned off, this energy density will diminish at a rate depending on the absorption of the 

materials in the room. 

The first equation is Sabine’s. This is probably the most known and most widely used 

reverberation time equation: 

𝑅𝑇 =
0,16𝑉

𝐴
               (1.1) 

With V the volume of the room (m3) and A is the total absorption of the interior surfaces (m2). 

The second of the classical equations is Eyring’s (1930), given by following formula: 

𝑅𝑇 =
0,16𝑉

𝐴𝑎𝑖𝑟 − 𝑆𝑇𝑙𝑜𝑔𝑎(1 − 𝛼𝑎𝑣𝑔)
            (1.2) 

With Aair the air absorption (m2), ST the total area of the surfaces (m2) and αavg signifies the 

average absorption coefficient of all interior surfaces. 

These two formulas allow the calculation of the expected reverberation time. But if the 

reverberation time in a space has to be measured a different approach needs to be taken. To 

describe the measured reverberation time a quality parameter has to be defined. 

The reverberation time is perceived as the period of time that it takes for the sound to fade away 

after the sound source ceases. The period of time for the sound to fade away depends of course 

on the intensity of the sound. To characterise an auditorium, a parameter has to be defined, 

independent of the intensity of the test sound. Therefore it is necessary to define a standard 

reverberation time based on the drop of intensity starting from the original intensity. In other 

words, the parameter has to be defined in terms of relative intensity. 

Most frequently, 60 dB is chosen to represent the relative intensity. Intensity is defined as the 

sound power per unit area. It is not related to the duration of the reverberation time that would 

be infinite. Furthermore it does not relate to the duration of audible reverberation which 

depends on the transmission power of the source and the level of the background noise.  
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This reverberation time T60 is defined as the time required for the reverberant sound to decay 

60 dB below the maximum. It is measured over a range of levels between 5 dB and 35 dB and 

afterwards multiplied by two. If it were measured over the full 60 dB range, the reverberant tail 

would run into the measurement and disturb the measurement. This T60 parameter is 

commonly used in architectural acoustics which include the design of concert halls. 

Because the reverberation curve is not the same for high and low frequencies the tonal curve is 

used. The tonal curve is the graphical representation of the reverberation time depending on the 

frequency. To obtain the tonal curve of a space/room, the reverberation time is measured in the 

frequencies of the octave band spectrum (63, 125, 250, 500, 1000, 2000 and 4000 Hz). The 

reverberation time can also be expressed as a single number that refers to the average 

reverberation time. It is computed by the average of the reverberation times that correspond 

with the 500 Hz to 1000 Hz frequencies. 

The reverberation time was the first physical parameter that quantified the acoustic quality of a 

room. Therefore when the reverberation time is studied, acceptable acoustical conditions can be 

ensured for a specific use of the space. 

Depending on the use and the volume, all spaces dedicated to speech or musical performances 

must have an adequate reverberation time regardless of other acoustic parameters. The most 

common reverberation times depending on the different purposes of the hall are displayed in 

following graph; 

 
Figure 1.4 – Common reverberation times in various spaces in seconds 

The optimal reverberation times can also be defined depending on the type of music played in a 

space. These values are illustrated in the table below.  

Table T1.3 – Optimal reverberation times for different types of music 

Band Music 1.1 ≤ trmid ≤ 1.4 
Baroque Music trmid ≤ 1.5 
Classical Music 1.5 ≤ trmid ≤ 1.7 
Romantic Music 1.9 ≤ trmid ≤ 2.2 
Non Wagnerian Opera trmid ≤ 1.5 
Wagnerian Opera 1.6 ≤ trmid ≤ 2.0 
 

To give adequate warmth to the music, it is recommended to increase the reverberation time of 

low frequencies with 20% to 50%. Furthermore the reverberation of the room is related to its 
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volume according to Sabine’s formula (1.1) which indicates that the reverberation time of a 

space is proportional to its volume. Therefore, the choice of the volume of a space is critical 

because of its possible reverberation conditions. 

The absorption of the interior surfaces is another important factor because it is closely related to 

the reverberation and the type of the room. Rooms where music is performed must have a large 

volume to ensure that the values of the reverberation time tend to be rather high. It is easier to 

adapt a space with a too high reverberation time than to adapt a space with too little 

reverberation time. The reverberation time can easily be increased by adding more absorbing 

surfaces. 

The absorption in a space originating from the audience has a fixed value. Problems can occur 

when there is no balance between the volume of the space and the absorption caused by the 

audience. This relates directly to problems with the reverberation time. Therefore values axist 

for the recommended volumes per viewer (T1.4) 

Table T1.4 – Recommended volumes per viewer for given reverberation times 

6-7 m3/viewer tr < 1.5 

7-9 m3/viewer 1.5 < tr < 2 

9-11 m3/viewer tr > 2 

 

1.2.3 Early Decay Time 

 
If a musician or ensemble plays rapidly, only the early part of the sound decay process remains 

audible between successive notes. Early decay time (EDT) designates that initial phase of sound 

decay. More specifically, it is the exact amount of time that it takes for a sound from a musical 

note to decay 10 dB after the sound source is turned off.  

This value is multiplied by a factor of 6 because 10 decibels of decay occurs in a time period 

roughly equivalent to one-sixth of the time required for 60 decibels of decay. This decay of 60 dB 

is defined as the reverberation time so it allows making a direct comparison between the EDT 

and RT. 

 Some results conclude that EDT better indicates acoustical quality than RT (Beranek, 1979). The 

EDT corresponds more closely to subjective evaluation of the reverberation time than RT 

because, psycho-acoustically, the first arrivals are more important than the later reverberation 

range. 

 

1.2.4 Warmth 

 
The warmth in music is defined as the presence of bass or is the bass-frequency sound that has 

the upper hand on the sounds of the mid-frequency. Warmth is indicated by the reverberation of 

the low frequencies between 75 Hz and 350 Hz. A reverberation time that rises with decreasing 

frequency below 500 Hz yields a beneficial sense of musical warmth. (Long, 2006) It is directly 

related to clear audibility of the bass sounds when the full orchestra is playing.  
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A full, rich bass gives a warm sound. If the reverberation time is shorter for low frequencies than 

for the mid-frequency, it is said that the sound is “brittle”. On the other hand, when the bass is 

too strong, the hall is described as “dark”. 

Sometimes in a small room or studio the interval between the acoustic resonances in the low 

frequencies is so big that different tones are unevenly perceived. If some low-frequency sounds 

are raised, this uneven perception gives the impression that the room “rumbles”. Unless the 

ceilings and walls are covered with absorbent materials who affect the high frequencies, this 

“rumble” effect occurs rarely in large concert and opera halls. 

The value of the warmth-parameter is expressed in terms of the bass-ratio (BR) (Beranek, 1979) 

and is recommended to be higher than 1 and less than 1.5. 

 

1.2.5 Direct Sound, Early Sound and Reverberant Sound 

 
Direct sound is the first sound that a listener perceives coming from an instrument on the stage. 

It is the sound that travels directly from the instrument to the listener. 

The sound is very complex. Our impression about the loudness of a room is created by the 

sounds of the direct sound, the early sound and the reverberation. The sounds are examined 

separately. The loudness of direct sound waves to a listener is determined by the loudness of the 

direct source and the distance from the source to the perceiver or listener. 

In a small hall the direct sound of for example an orchestra will reach the backseats with 

adequate loudness. The loudness of the direct sound decreases with the square of the distance 

from the source so that the loudness decreases very rapidly the further away from the source. If 

the hall is large and the scenery does not have a sufficient slope, the effect of this inverse square 

law is felt; the loudness of the direct sound is too low for the time it takes to reach the listeners 

who are furthest away from the source. 

To optimize a hall, it has to have a limited volume and the walls and ceilings should be covered 

with materials that evenly project the sound to the seats. For example the direct sound of an 

orchestra in a hall with sloping seats has the best level of comfort approximately 18 meters from 

the stage director. 

The term early sound encompasses the direct sound and all the reflections that reach the 

listener in the first 80 milliseconds after the arrival of the direct sound, while the reverberant 

sound includes all the reflections that arrive after these 80 milliseconds. 

 

1.2.6 Definition, Intelligibility and Clarity 

 
Definition and clarity are the degrees to which rapidly occurring individual sounds are 

distinguishable (Long, 2006). 

A hall is considered defined if the sound perceived is clear and crisp. If the sound is blurry it is 

said that the hall is not defined. The degree of the definition of a space depends on the quantity 

of reflective surfaces on the inside of the space. For that reason, definition is related to intimacy. 

Because the definition depends on the reverberation time it is also related to the liveness. 
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Furthermore the distance between the perceiver and the source plays a roll so it is related to the 

loudness of the direct sound. Finally, it is related to the loudness of the reverberant sound 

because the definition also depends on the volume of the room. 

From the physical acoustics point of view, the parameter is defined as the ratio between the 

energy reaching the perceiver during the first 50 milliseconds after the arrival of the direct 

sound (this includes both the direct sound and the early reflections) and the total energy 

perceived. This means that the higher the definition (D), the better the speech intelligibility and 

the sound in a specific point of the hall or space. 

The definition parameter is represented with D50 or D80 values. The most commonly used 

parameter is D50. It is recommended that the D50 values are above 0.5 and the closer the values 

are to 1, the higher the definition of speech. For the average frequencies of 500 Hz and 1000 Hz, 

the standard indicates typical values for D50 between 0.3 and 0.7 for auditoria1. The definition 

parameter D50 is computed as 

𝐷50 =
𝑒𝑛𝑒𝑟𝑔𝑦 𝑡𝑜 50 𝑚𝑖𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝑡𝑜𝑡𝑎𝑙 𝑖𝑚𝑝𝑢𝑙𝑠𝑒 𝑒𝑛𝑒𝑟𝑔𝑦
(𝑑𝐵) 

Similarly clarity which is expressed by C80 or C50 is defined as the comparison between the 

ratio in the early sound and the reverberant sound. The early sound is what is heard in the first 

80 milliseconds (C80) or in the first 50 milliseconds (C50). The C80 parameter is used the most 

and is computed as follows: 

𝐶80 =
10 ∗ 𝐿𝑜𝑔(𝑒𝑛𝑒𝑟𝑔𝑦 𝑡𝑜 80 𝑚𝑖𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑚𝑝𝑢𝑙𝑠𝑒 𝑒𝑛𝑒𝑟𝑔𝑦
(𝑑𝐵) 

The speech intelligibility is a measure for speech transmission quality. This parameter is 

represented by the speech transmission index (STI) an objective method for prediction and 

measurement of speech intelligibility. The STI method measures some physical characteristics of 

a transmission medium such as a hall, a telephone line, etc. and expresses the ability of this 

channel to carry across the characteristics of a speech signal. The STI values vary from 0(bad) to 

1(excellent). 

A reference scale was developed, known as the Common Intelligibility Scale (CIS) (Barnett & 

Knight, 1995), where; 

𝐶𝐼𝑆 = 1 + 𝐿𝑜𝑔(𝑆𝑇𝐼) 

 
Figure 1.5 – Common Intelligibility Scale 

Before the STI was introduced, the rapid speech transmission index (RASTI) was used. This was 

a simplified and approximate measurement method for rating speech transmission in auditoria. 

The method was only applicable on pure room acoustics and could not be used with electro 

acoustics. Because nowadays most of the spaces work with electronic sound systems, this 

method is outdated and not used anymore. (Houtgast & Steeneken, 1971) 

                                                             
1 ISO 3382-1:2009 
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Methods for the calculation of the speech intelligibility index can be found in ANSI 3.5-19972. 

 

1.2.7 Brilliance 

 
Brilliance is defined as a bright, clear, ringing sound, rich in harmonics, with slowly decaying 

high-frequency components. (Long, 2006). It refers to the reverberation time at low frequencies 

relative to that at higher frequencies.  An increase of the reverberation time in the low 

frequencies (under 500 Hz) creates a warm sound. 

The brilliance is determined by the ratio of the reverberation times of high and mid-frequencies, 

the distance between the source and the perceivers and the presence of reflected sound in the 

space. 

When a hall or room has liveness at high frequencies, clarity and intimacy, a bright, brilliant 

sound is obtained. Thus brilliance is related to each one of these previously mentioned 

parameters. 

Represented by Br, this parameter is obtained by following formula; 

𝐵𝑟 =  
𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑣𝑒𝑟𝑏𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒𝑠 𝑎𝑡 2000𝐻𝑧 𝑎𝑛𝑑 4000𝐻𝑧

𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑣𝑒𝑟𝑏𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒𝑠 𝑎𝑡 50𝐻𝑧 𝑎𝑛𝑑 1000𝐻𝑧
 

It is recommended that the obtained value of Br is higher than 0.85. 

 

1.2.8 Lateral Fraction 

 
According to the definition of Marshall (Marshall, 1967), lateral energy fraction (LF) is the ratio 

between the energy laterally reaching the perceiver within the first 80 milliseconds after the 

arrival of the direct sound (early sound) and the energy received in every direction within this 

same time interval. According to this definition it can be stated that the higher the value of LF, 

the higher the degree of spatial sound. Consequently, this parameter is only relevant in case the 

space or hall is dedicated to music listening. 

To indicate the value, the average value of the different LF values is calculated corresponding to 

the octave frequency bands of 125 Hz, 250 Hz, 500 Hz and 1000 Hz. 

This parameter is called LF4 and it is recommended that its value is higher than 0.15. 

 

1.2.9 Diffusion 

 
Diffusion is represented in terms of a surface diffusivity index (SDI) (Beranek, Concert Halls and 

Opera Houses: Music, Acoustics and Architecture, 1979). The diffusion is related to the spatial 

orientation of the reverberated sound. When the reverberated sound reaches the ears of the 

public from all directions and in approximately equal amounts, the diffusion is good. It is defined 

                                                             
2 ANSI 3.5-1997. American National Standard – Methods for Calculation of the Speech Intelligibility Index, 
(1997) 
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as the efficacy by which the sound energy is spread evenly in a given environment, the scattering 

of sound energy. 

For example the orchestral sound is diffused into the room trough combination of a high 

reverberation time and the abundance of irregular interior surfaces, e.g. arches in the ceiling, 

wall niches, statues, balconies, etc. When the walls and the ceiling are smooth and lead the sound 

directly to the listening area without cross reflections or dispersions in the area, the room or hall 

has no diffusion.  

A perfectly diffusive sound space is one that has certain key acoustic properties which are the 

same throughout the space. On the other hand a non-diffusive sound space would have 

considerable different reverberation times as the listener moves around the room. 

The diffusiveness of sound can be measured by taking reverberation time measurements at a 

large number of points in a room. Then the standard deviations of these decay times are taken 

and alternately the special distribution of sound can be examined. 

 

1.2.10 Balance 

 
Good “balance” entails both the balance between sections of the orchestra and balance between 

the orchestra and a vocal or instrumental soloist. Balance is the equal loudness among the 

various orchestral and vocal participants (Long, 2006). Some of the ingredients that contribute 

to the creation of a good balance are acoustical and others are musical. A performance can lose 

balance if the stage enclosure or some other surfaces near the instrument players 

overemphasizes certain sections of the orchestra or if it fails to support the soloists adequately. 

Beyond that, balance is in the hands of the musicians, their seating, and the conductor’s control 

over the musicians. A good design of the concert hall and especially of the stage can provide a 

good balance of the sound. 

 

1.2.11 Blend 

 
This property is defined as the mixture of the various instrumental timbres of the orchestra 
which creates a harmonious sound for the listener. More generally, it is a harmonious mixture of 
the orchestral sounds. Blend depends partly on the placement of the orchestra, which should be 
spread neither too wide nor too deep. Blend also depends heavily on the design of the sound-
reflecting surfaces close to the stage, such as the stage enclosure. 
 

1.2.12 Immediacy and Response 

 
Spatial responsiveness (SR) is identified as a desirable property of concert halls. (Marshall, 

1967) 

The sense that a hall responds quickly to a note is called immediacy. Hereby, the early reflections 

returned to the musicians are important. This can depend largely on the hall’s spatial 

responsiveness: the manner in which the first reflections from surfaces in the hall arrive back at 

the musician’s ears. If the reflections occur too long after the note is played, the sound will be 

heard as an echo. Conversely, if the musicians hear reflections only from the nearby surrounding 
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stage walls, they will have no sense of the hall’s acoustics. 

 

1.2.13 Dynamic Range 

 
“Dynamic range” is the range of sound levels over which music can be heard in a hall. It is 
dependent on the difference between the loudest level and the lowest background level in a 
space. This range extends from the low level of background noise produced by the audience and 
the air-handling system up to the loudest levels produced in the performance. All extraneous 

sources of noise – including traffic and aircraft noise – must be avoided in order to obtain a wide 
dynamic range. 
 

1.2.14 Uniformity of Sound 

 
The same music, tonal quality, etc., should reach every listener in the space. Uniformity of sound 

signifies the evenness of sound distribution (Long, 2006). 

The quality of a listener’s experience will suffer if he or she is seated under a deep overhanging 

balcony or at the sides of the front rows in a hall. In certain locations, reflections may 

overemphasize one section of the orchestra or produce echoes, muddiness, or lack of clarity. 

Musicians sometimes speak of “dead spots” when the music is not as clear or does not have the 

same liveness as in other parts of the hall. Acousticians reserve this term only for locations 

where the music is especially weak. 

 

1.2.15 Summary 

 
With all these described parameters above, a synthesis can be made, allowing to relate these 

definitions with estimated acoustic parameters. These acoustic parameters can be measured in 

order to verify the degree of compliance after finishing the study. 

Because intimacy and uniformity of sound correspond to physical quantities, they are easily 

measurable and the uniformity has a distribution of levels which is easy to verify in the 

subsequent verification. 

Liveness, warmth, brilliance, tonal quality and balance are all parameters related to the 

phenomenom called reverberation, which is described earlier. Its importance lies in the fact that 

acoustic messages, for some time after having been issued, are interspersed with other later 

produced sounds. 

The blending of sound is sometimes beneficial. It can strengthen and prolong, causing the 

fullness of musical sounds. But sometimes the blending can be harmfull because it could mask 

some other sounds, thereby losing the clarity of spoken sounds. Reverberation favors the spread 

or perception of sound with equal intensity in all directions. 
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Fig. 1.6 – Musical terms and the Related Acoustical Factors (Long, 2006) 

  



21 
 

1.3  Spaces Dedicated to Speech 

 

The perception of words is much more objective and therefore easier to measure and control 

than music. It is mainly ruled by physical and linguistic factors and less by psychological factors. 

Linguistic factors are not affected by the acoustics of the hall. The goal of any oral message is to 

be heard and understood; therefore the basic criterion of measuring the quality of verbal 

hearing in a hall is the intelligibility of speech reaching its various locations. 

Understanding the spoken words means that the sound reaches enough intensity to emerge 

from the background noise. Each phoneme has to be perceptible which means that a 

compromise must be made between the loss of clarity due to excessive reverberation and the 

loss of intensity due to excessive absorption. 

The absorption of the high frequencies caused by most materials in the hall and even by the air 

leads to a great loss of intelligibility because the distinctiveness of many consonants gets lost. 

Therefore it is essential that the spectra of the various sounds, especially in the high frequency 

region, are preserved. 

With everything stated above it can be concluded that in a hall dedicated to speech, the opposite 

happens from a hall dedicated to musical hearing: the volume must be at a minimum to reach 

good comfort conditions. When the volume increases excessively, an overload of absorbent 

material should be used in the hall avoid the undesirably rise of the reverberation time. 

The indicator of speech intelligibility is a parameter that measures the clarity of the spoken 

messages. It is defined by the percentage of sounds that are heard in relation to the total 

emission of sounds in an oral communication (see paragraph 1.2.6). The perception of words 

requires more clarity than the perception of music. This clarity is achieved by a strong 

component of the direct sound immediately followed by strong reflections (10-30 milliseconds). 

In this way little energy is left to cause reverberation. 

Therefore the reverberation must be lower than in spaces designed for musical performances. 

As the volume of the space increases, a balance must be achieved between the clarity and the 

reverberation. In large spaces the direct energy is not enough and needs to be supported by 

some reverberation or sometimes electro-acoustical reinforcement. 

The speech transmission index (STI) is used in an objective way to measure the intelligibility. 

This parameter is explained in paragraph 1.2.6. 

 

1.4  Echoes, Focalizations and Resonances 

 
Echoes, focalizations and resonances are acoustic problems of first order that need to be avoided 

in any auditorium. 

To eliminate the risk of echoes the surfaces that can give reflections with excessive delays in a 

particular zone of the auditorium are treated with absorbent material. When the sound has a 

sufficient level an echo can be produced if a delay of 50 milliseconds between the direct sound 

and the first reflection occurs or when this delay occurs between two consecutive reflections. 
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Focalizations are concentrations of acoustic energy in an area of the hall. They can be produced 

by reflections on concave surfaces. Thus the use of these surfaces can cause problems. 

Uniformity in the conservation of frequencies can be achieved when isolated resonance 

frequencies in the room are prevented. This is done by favouring multiple ways of resonance in 

the hall, thereby avoiding the use of parallel planes especially near the sound source.  
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2 Analysis of the Current Situation 
 

The following analysis is a description of the auditorium. More specifically, it is a description of 

the geometry of the auditorium and the surface materials. These factors have an important 

influence on the acoustic parameters of the space. 

To actually obtain and analyse the acoustic time and energy parameters of the auditorium, two 

methods were used. The first one is the in situ measuring of the acoustical parameters in the 

auditorium and the computer processing of the obtained values. The second method is the use of 

ODEON simulation software, where a model of the auditorium is created and the software 

calculates the different parameters.  

 

 

2.1  Description of the Auditorium 
 

The Paco Salvador auditorium is a rectangular space with a stage consisting of a fixed acoustic 

shell (Fig. 2.1.a-b). The area for the audience is distributed on one slope plane that descends 

stepwise from the stage. It has a capacity for 604 spectators. 

The stage has a total surface of 161.1 m2 of which 90 m2 falls within the projection of the 

acoustic shell mentioned above. However, the whole ceiling of the auditorium functions as an 

extension of this acoustic shell as if it is hereto integrated. 

The auditorium is designed for performances of band music and for hosting conferences. 

However it is mostly used for musical performances. This means that the maximum sound level 

that originates on stage will not exceed 105 dBA. 

The hall itself is designed as a perception area of the activities taking place on the stage. It is 

designed in such a way that the maximum sound level that reaches the audience is 100 dBA. The 

audience area is distanced from the stage due to the absorption of the materials and their 

coatings and the reduction caused by the air absorption. 

 
Figure 2.1(a) – Plan view of the auditorium  
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Figure 2.1(b) – Section view of the auditorium 

As mentioned earlier the main use of the auditorium is the performance of band music. 

Therefore the values of the parameters described in chapter 1 are in accordance with the 

recommended values for this specific use. The general objectives in terms of audio quality are 

given in table T2.1. 

Table T2.1 – General objectives for audio quality in the auditorium 

Use of the 
auditorium 

Volume 
[m3] 

Background 
noise level 

Intimacy 
tr [s] 

TRmid 
[s] 

Warmth Brilliance Intelligibility 
[STI] 

Band music 6000 NC-25 ≤20 ms 1,1/1,4 1,1/1,4 >0,85 >0,50 
 

Like in most public spaces, the use of the NC-25 curve is recommended. When this is translated 

into equivalent sound levels, this means that the noise caused by installations in the auditorium 

must not exceed the 35 dBA threshold. 

 

2.2  Acoustic Conditioning of the Auditorium 

 

2.2.1 Surface Materials 

 
As mentioned above, surface materials are very important in the acoustic conditioning of a 
space. Each material has its own specific absorption-coefficient. This absorption affects the 
reverberation time of the emitted sound. Therefore it is important to compose the materials in a 
space so that the absorbent and reflecting surfaces work together. In this way an optimal 
reverberation time is obtained in the whole public area. 
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A list of materials used in the Paco Salvador auditorium is presented below followed by the 
values of their specific absorption-coefficients in every part of the octave-band: 

Table T2.2 – Description of the materials used in the auditorium 

ELEMENT DESCRIPTION NUM. 
Sides and bottom of 
the stage 

Light pleated cotton curtains, within a 20 to 30cm distance 
from the wall 

1 

Stage Solid wood with 3 cm thickness on joists (10-15 cm) 2 
Back of the 
auditorium 

Vertical wooden lathing with 50% gaps and 4 cm Rockwool in 
its backfill 

3 

Reflective sides of the 
room (sockets) 

Plywood panelling 7-9mm thick 4 

Armchairs Medium upholstery. Legs and back of the back support in 
wood without upholstery 

5 

Floor Linoleum on concrete slab  6 
Windows of the 
control cabin 

Window glass in metalwork 7 

Absorbent sides of 
the auditorium 

Veiled Rockwool panels 4 cm thick 8 

Ceiling and acoustic 
shell 

Large plywood panels (12-15mm thick) with variable air 
chamber in its backfill (between 40 and 220 cm) 

9 

Covers of the climate 
control 

The climate control ducts are on the top side of the room. 
Underneath them they are covered with permeable felt and 
wool in its backfill  

10 

 
Table T2.3 – Absorption values for the different materials in the different frequencies 

 63 125 250 500 1000 2000 4000 8000 
1 0,17 0,17 0,25 0,45 0,65 0,60 0,60 0,60 
2 0,15 0,18 0,11 0,06 0,05 0,04 0,04 0,04 
3 0,35 0,35 0,55 0,85 0,90 0,75 0,75 0,75 
4 0,20 0,20 0,12 0,06 0,05 0,05 0,05 0,05 
5 0,11 0,18 0,40 0,59 0,62 0,68 0,70 0,70 
6 0,04 0,04 0,04 0,04 0,04 0,02 0,02 0,02 
7 0,14 0,14 0,08 0,05 0,05 0,05 0,04 0,04 
8 0,30 0,35 0,60 0,85 0,92 0,92 0,90 0,85 
9 0,13 0,09 0,06 0,06 0,04 0,03 0,03 0,03 
10 0,23 0,35 0,59 0,80 0,85 0,76 0,74 0,71 

2.2.2 Geometry of the Auditorium 

 
The acoustic performance of the hall is influenced by various aspects. The geometry of the 
auditorium is one of these aspects that can ensure the good acoustic performance of the space. 

Here, the geometry of the hall is based upon two different aspects that contribute to an optimal 
distribution of the sound. This automatically results in better acoustic performance. 

The first aspect is the ceiling of the hall. The false ceiling is constructed with plasterboard on 
metal profiles and covered with large plywood panels that are directly attached to the 
plasterboard. The plywood panels have a very low absorption coefficient so they reflect the 
sound waves. These panels are constructed between the roof trusses. 
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In the following figure, the distribution of sound rays from the stage is visualized in a cross 
section of the auditorium. These rays are emitted by a source in the centre of the stage at a 
height of 1.5m. 

Figure 2.2 – Sound wave distribution caused by the ceiling panels 

The energy distribution of the emitted sound is obviously improved by the geometry of the 
ceiling and thus creates a good uniformity of sound in the entire listening area. 

The second aspect is the geometry of the side walls of the hall. These surfaces are constructed 
with the same surface material as the ceiling and are very reflective. The geometry of the sides 
contributes to a better distribution of the sound energy as represented in the figure below. 

Figure 2.3 – Sound wave distribution caused by the side panels 
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2.2.3 Musical Intimacy 

 
As described in the quality parameters, the musical intimacy is represented by the difference of 
paths travelled by the direct sound and the first reflection. 

The path of the reflection of the sound is calculated and drawn as follows: 

 
Figure 2.4 – visualisation of the reflected sound path 

Starting from the real source a virtual source is constructed. This virtual source is constructed 
perpendicularly on the surface and at the same distance from the surface as the real source. This 
virtual source is connected with the receiver by drawing a line between the two. The reflection 
of the sound hits the surface where this line crosses the surface. 

By means of this figure the distance that the reflected sound travels can be measured by simply 
measuring the lines. When the distance between the length of the reflected sound path and the 
direct sound path is less than 7m, the speed of sound is within the 20millisecond range. 

Following are three figures that represent the reflections at the first rows of the audience (Fig. 
2.5), the centre of the auditorium (Fig. 2.6) and the back of the audience (Fig. 2.7). 

In the first case, the difference between the reflected and direct sound is 5,95m, which is less 
than the maximum value of 7m. The calculated value of this difference in the second figure is 
2,33m and the value of the last figure is 2.25m.

Figure 2.5 – Reflection of sound to the first rows 

Source 

Virtual source 

Receiver 

d 

d 
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Figure 2.6 – Reflection of sound to the centre of the auditorium 

Figure 2.7 – Reflection of sound in the back of the auditorium 

It can be concluded that the difference in distance between the direct and reflected sound 

increases when the sound goes further to the back of the auditorium. In other words the 

intimacy gets better at a further distance from the stage. 

 

2.3  In Situ Measuring 

 

The goal of the in situ measurement is to obtain the values of different acoustic quality 

parameters by measuring them within the room. The results of the quality parameters can be 

studied and compared with the recommended values for these parameters. In this way a 

conclusion of the acoustic performance in the auditorium can be made. 

 

2.3.1 Procedure of the In Situ Measurement 

 

The in situ measuring of the airborne noise transmission in the auditorium is done by simply 

using a source and a receiver. 

In this case the OmniPower Sound Source is used to process the emission of the sound in every 

direction. This source is positioned on the side of the stage. If the source would be positioned in 

the middle of the stage, the obtained results would be symettric and possible problems may not 

be revealed. 

To get over the background noise the source is set to work with a high pressure level. 
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Figure 2.8 – Brüel & Kjær OmniPower Sound Source type 4292L 

The different measuring points have to be spread evenly in the auditorium. Furthermore, they 

have to be situated in significant places in the area of the audience. 

In this case, the measuring points were chosen as represented in following figures: 

 
Figure 2.9 – Distribution of the source (green) and receivers (red), cross-section 

 
Figure 2.10 – Distribution of the source (green) and receivers (red), top view 
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A microphone functions as a receiver for the emitted sound waves. While the sound wave is 

emitted from the source, the microphone is hold steady in one of the points indicated in the 

figures above. 

 

The microphone is part of a sonometer who sends the measured data to the computer. In the 

computer, the data is processed with DIRAC software. This software translates the soundwave 

coming from the source into the different quality parameters. 

The acoustic quality parameters that can be obtained by the measurement are: 

 Clarity expressed by C50 and C80 

 Definition expressed by D50 and D80 

 The Early Decay Time (EDT) 

 Speech intelligibility for female and male (STI) 

 The reverberation time RT, T10, T15, T20 and T30 

For every point that is indicated in the figure above, this process has to be repeated. In that way 

values of definition, clarity, intelligibility and reverberation are obtained for each different 

receiving point in every frequency of the octave-band. 

 

2.3.2 Results of the Measurements 

 

The values that are obtained by the method described in the  previous paragraph can be 

processed in Excel. After loading the values into an Excel-file, graphs can be made for every 

measured quality parameter. 

The most important parameter in the study of the acoustic performance of the auditorium is the 

reverberation time. The average of the measured RT values is displayed in following graph: 

Figure 2.11 – Average RT values measured in situ 
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These values are compared with the recommended value for the reverberation time in the 

auditorium. It can be concluded that the average reverberation time measured in situ lies 

between the recommended minimum of 1.1 and 1.4. The values in the lowest frequency (63Hz) 

and in the highest frequency (8000Hz) are ignored. 

In the following graph the measured values of the speech intelligibility can be studied. 

 
Figure 2.12 – STI values in every measuring point 

The measured values of the speech intelligibility index do not fall below the recommended 

minimum value of 0.50. It can be concluded that the quality of speech transmission in this 

auditorium is sufficient. 

The two previous graphs and the graphs for all the other measured parameters are included in 

Annex I. 

 

2.4  Simulation of Acoustic Conditioning 

 

In this case, ODEON software is used to simulate the acoustic conditioning of the Paco Salvador 

auditorium. 

ODEON is software developed for simulating the interior acoustics of buildings. Given the 

geometry and surface conditions, the acoustics can be predicted, illustrated and interpreted. 

The simulation allows treating the first reflections of the sound energy coming from an 

omnidirectional point source. It calculates the impacts on the different points of the surfaces 

with their respective absorption coefficients. 

Starting from a number of points, the simulation uses a statistical method to compute the 

parameter values. 

Besides the tonal curve and T30 values, the software allows to obtain following quality 

parameters: 

 the homogeneity of the sound levels in the listening area represented by SPL and SPL(A) 
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 the clarity C80 

 definition D50 

 spatial impression measured by lateral efficiency LF4 

 the speech intelligibility index STI 

 

2.4.1 Procedure in ODEON 

 

A 3D model of the auditorium has to be designed in order to work with the software. Here, the 

model is designed in AutoCAD and converted into a 3ds file that is easily loaded into the ODEON 

software. 

After loading the 3D-model into the ODEON software, the source and the receivers can be 

positioned. The different points can be positioned inside the model by assigning x, y and z 

coordinates to every single point according to Figures 2.9 and 2.10 mentioned in previous 

section. When the source has to be entered, the overall gain must have the value of 120 dB to 

correspond with the source used for the in situ measurements. 

The second step is to assign the materials to every surface in the model. A lot of materials are 

already included in the software but in this case new materials are added with values for the 

absorption coefficients that can be found in table T2.3. 

When the source and the receivers are specified and every surface has been assigned a material, 

the model can be checked for holes. If there would be holes, some of the sound waves would slip 

outside the model not causing any reflections on the surfaces, resulting in false parameter 

values. The model should be adjusted until there are no holes left. 

If there are no significant holes left, the survey method can be used to obtain a first impression 

of the parameter results. This method takes less time than the precision method but is also less 

accurate or precise. It is important to set the impulse response length to a value that exceeds the 

reverberation time of the auditorium. This value can be adjusted in the room setup. Here the 

impulse response time is set to 2200 milliseconds. 

The survey method is used to compare the simulated values to the ones measured in situ. The 

comparison is limited to comparing the T30 values of the in situ measurement with the obtained 

values in ODEON. This is because the reverberation time indicated by the T30 values is the most 

important indicator in evaluating the acoustic quality and performance of the auditorium. 

The simulated values of T30 can be accepted if they differ less than 10% from the in situ 

measured values. If the difference exceeds this 10% margin, the absorption coefficients of the 

materials must be adjusted. More about this is explained in paragraph 2.4.3 that handles 

common problems of working with simulation software. 

When the original values where entered the T30 values of the high frequencies where too low to 

match with the results from in situ measurement. Also, the T30 values of the low frequencies 

exceeded the values measured in situ. It is known that by lowering the absorption the values of 

the reverberation time increase and vice versa. This means that the absorptions in the high 

frequencies must be lowered and the absorptions in the low frequencies must increase to 

correspond to the T30 values measured in situ. 
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The absorptions caused by the armchairs and the surface materials of the acoustic shell have the 

most important influence on the reverberation time and thus on the T30 value. Therefore the 

adjustment of absorption coefficients is limited to these three materials. The original values and 

the adjustments are illustrated in following tables: 

Table T2.4 – Adjustment of the reflective ceiling and wall panels 

Frequency[Hz] 63 125 250 500 1000 2000 4000 8000 
Original α 0.13 0.09 0.06 0.06 0.04 0.03 0.03 0.03 
Adjusted α 0.13 0.15 0.06 0.03 0.001 0.001 0.001 0.001 
 
Table T2.5 – Adjustment of the armchairs 

Frequency [Hz] 63 125 250 500 1000 2000 4000 8000 
Original α 0.11 0.18 0.40 0.59 0.62 0.68 0.70 0.70 
Adjusted α 0.11 0.24 0.45 0.54 0.53 0.58 0.60 0.60 
 
Table T2.6 – Adjustment of the absorbent wall panels 

Frequency [Hz] 63 125 250 500 1000 2000 4000 8000 
Original α 0.30 0.35 0.60 0.85 0.92 0.92 0.90 0.85 
Adjusted α 0.30 0.40 0.65 0.80 0.87 0.87 0.85 0.80 
 

When the simulated values are within the 10% range of the measured values a grid can be 

computed. The grid is defined by every surface that represents a space where the audience is 

usually situated. It is called the listening plane. The plane corresponds with the heads of the 

audience (Fig. 2.13) 

By decreasing the distance between receivers in the grid, the precision of the calculations will 

increase but the calculation time also increases. To obtain the values included in Annex II, the 

distance between the receivers is set to be 0.25 m. 

 
Figure 2.13 – The coloured area corresponds to the receiver surfaces 
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2.4.2 Results of the Simulation 

 

The parameter values are computed with the simulation. For some of them the distribution of 

the values covers the entire surface where the audience is seated. The values are given for every 

octave band. 

The results of the simulation show a sufficient degree of similarity with the values that are 

measured in situ. Some of the results are given in following figures. These and the rest of the 

results obtained by the simulation are included in Annex II. 

In following figures (Fig. 2.14 – 2.15), the T30 values in the 500 Hz and the 1000 Hz octave band 

are illustrated. The values seem to be the same everywhere. On the left side some red dots can 

be observed. This is because the plane is drawn too wide in the 3D-model and is not enclosed in 

the auditorium’s volume. This does not affect other values and thus can be ignored. 

 
Figure 2.14 – Simulated T30 values in the 500 Hz octave band 
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Figure 2.15 – Simulated T30 values in the 1000 Hz octave band 

The SPL (A) represents the sound pressure levels. These values are distributed over the entire 

audience plane (Fig. 2.16). By studying these values, the homogeneity of the sound levels can be 

derived. The entire audience plane has the same colour everywhere. Therefore it can be said that 

the distribution of sound levels is homogeneous in the Paco Salvador auditorium. 

 

 
Figure 2.16 – SPL (A) values spread over the listening plane 
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2.4.3 Common Problems 

 

As mentioned in previous paragraph, the absorption coefficients of the materials sometimes 

must be adjusted. This is to let the simulated parameter values match with the measured ones. 

The first reason for this difference in absorption coefficients is the method of determining the 

coefficients. 

The reverberation room method is the most commonly used method for determining the 

absorption coefficient of a material (ISO STANDARD 354:2006) 

The minimum and maximum size of the material samples to be tested is 10 m2-12 m2 

(ISO354:2006). The samples are hung at the back of the room following the method outlined in 

ISO354:2006 Annex B. In the same way as described in paragraph 2.3.1 the reverberation time is 

measured in the room containing the material sample and once without the sample. The 

difference in reverberation time between both measurements is used to calculate the absorption 

coefficient of the material.  

It can be concluded that the absorption coefficient measured in a perfect room in ideal 

circumstances can defer from the absorption coefficient measured in the auditorium. Therefore 

it is sometimes necessary to adjust the absorption coefficients of some materials. 

The second reason that can cause differences is the armchairs. The geometry, material and 

composition in the room can all be factors that influence the reverberation time. Thus adjusting 

the armchairs’ absorption coefficients can already make a great difference. 
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3 Proposal for Improvements 
 

3.1  Improvement of the Geometry 

 

The ceiling above the stage consists of a horizontal reflective panel. In this way the sound that is 
produced by the musicians is only reflected on the stage itself. 

The division of the ceiling above the stage into three reflective screens is being proposed. The 
screens are part of the acoustic shell and can be put in different positions changing their 
inclination. To avoid excessive focalisations of the energy on the stage, it is important that the 
inclinations are according to predefined requirements. 

Situated above the musicians, the intention of the shell is to reflect the sound energy to the 
musicians themselves and project it to the public area.  

Following figures represent different sound ray paths with changing inclinations of the reflective 
screens. 

 

Figure 3.1 – First reflections of percussion and bass 

In Figure 3.1 the sound source is placed where the percussion and bass instruments are 
normally situated. The reflective panel above the sound source reflects the sound on the entire 
area of the stage. The two front panels reflect the sound energy towards the first section of the 
audience. 

 

Figure 3.2 – Sound reflections with the source placed in the middle of the stage 

When the sound source is placed more to the middle of the stage (Figure 3.2), it corresponds 
approximately with the medium frequency zone. In this case, the panel reflects the sound on the 
entire stage and to the first rows of the audience. 
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.

Figure 3.3 – Sound source in the front of the stage 

When the source is positioned in the front of the stage (Figure 3.3), the results of the sound 

reflections are similar to the ones in the other cases. This confirms the proper functioning of the 

acoustic shell. 

Too much reflection must be prevented because it can cause excessive sound levels on the stage. 

To prevent too much reflection gaps of 20 to 30 cm are left between two adjacent panels. These 

gaps are filled with an absorbent material. 

By introducing these panels, more first and early reflections that reach the audience and the 

musicians are created. In combination with the already existing geometry of the side walls of the 

auditorium as described in paragraph 2.2.2 this adjustment will contribute to better results for 

musical intimacy and immediacy. 

 

3.2  Adaptation to a Conference Hall 

 

3.2.1 Goal of the Adaptation 

 

Intentionally, the auditorium was designed to serve as a concert hall and a conference hall. The 

auditorium is now only used as a concert hall. Therefore the acoustic quality parameters are 

only adapted to this use. 

The goal of adapting the auditorium is to adjust the parameters so that the auditorium can serve 

as both a space to perform music and as a space for conferences. In other words a balance 

between the recommended quality parameters for speech and the quality parameters for 

musical performance must be achieved. 
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The reverberation time of the hall must be adjusted to obtain this balance. The tonal curve or 

reverberation curve for music must be high in the lower (bass) frequencies and low in the higher 

frequencies. For the spoken word the high frequencies must have a higher reverberation time 

than the lower frequencies. These optimal reverberation curves for musical performance and for 

the spoken word are illustrated in the graphs below. 

 
Figure 3.4 – Optimal reverberation time in function of the rooms’ volume (Beranek, 1979) 
for voice broadcasting studios (a), conference rooms (b), music broadcasting studios (c), concert halls (d) and churches 

(e) 

 
Figure 3.5 – Optimal reverberation curves for speaking and music 

 

When the auditorium’s reverberation curve is studied (Figures 3.6 - 3.7), it can be concluded that 

this space is perfect to serve for musical performances; the curve is very similar to the optimal 

reverberation curve for concert halls. The high values are situated in the low frequencies and the 

low values in the high frequencies However, the reverberation times in the different frequencies 

of the octave-band are too high to serve as a conference hall. Especially in the low frequencies 

the reverberation time has to be lower to ensure a good environment for speaking purposes. 

63 125 250 500 1000 2000 4000 8000

RT 

Optimal tonal curves 

Speaking

Music performance
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Figure 3.6 – Average reverberation time values T30 (s) for octave band frequencies (in situ measurement) 

 
Figure 3.7 – Average T30 values for octave band frequencies (simulation) 

When more absorption is added to the lower frequencies and the absorption of the high 

frequencies is increased, the curve will correspond more to the optimal curve for speaking in the 

lower frequencies. In this way the auditorium will be perfectly adapted to serve as a conference 

hall. 

Nevertheless, the auditorium must be adapted so that it can serve for both speaking and musical 

performance purposes. The best way to make the auditorium fitting for speech and music is to 

adjust the materials so that the T30 curve is mostly lowered in the lower bass frequencies. In 

that way the lower frequencies are more fitting for speech. 
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3.2.2 Adaptation in ODEON 

 

The best way to quickly get results when adapting the auditorium is to use the simulation 

software. With ODEON it is easy to adjust the surface materials and quickly get a result of what 

the change in surface materials does with the T30 curve. 

First, the material of the reflective panels on the side of the walls is adapted into a more 

absorbent material so that the T30 curve is lowered. The material that is used is TECTOPANEL 

(Knauf Danoline) an acoustic wall panel. The values of the absorption coefficients are 

represented in the table below (T3.1). The data sheet of this material is included in Annex IX. 

Table T3.1 – Absorption coefficients for gypsum plate with acoustic felt 

Frequencies [Hz] 63 125 250 500 1000 2000 4000 8000 
Absorption coefficient α 0,30 0,30 0,15 0,05 0,05 0,05 0,05 0,05 
 

In Figure 3.8 (a) can be seen that the graph is lowered in the lower bass frequencies. Changing 

the materials of the panels on the side walls in the auditorium is thus successful to adapt the 

function of the auditorium.  

 
Figure 3.8 – Effects of adjusting surface materials on the average T30 values 

To create more uniformity in the auditorium, the reflective sloping panels that are situated at 

the sides of the ceiling are also replaced by the same acoustic wall panel. The influence of 

replacing the surface materials of the side walls and the ceiling can be viewed in Figure 3.8 (b). 

The T30 values are a bit lower than in Figure 3.8 (a). 
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Conclusion 
 

The acoustic quality of the auditorium can be obtained by using various methods. When these 

methods have to be compared with each other, it suffices to compare the T30 values of the 

different methods. This is because the reverberation time is one of the most important 

parameters to evaluate the acoustic quality of a space. 

When the current situation is analysed, it can be concluded that the auditorium in Beniganim 

meets the predefined optimal values for the acoustic quality parameters. 

After replacing the horizontal ceiling above the stage with inclining planes, more first and early 

reflections reaching the audience and the musicians, are obtained. This improvement results in a 

better intimacy and a better immediacy towards the musicians. 

By changing some of the surface materials to more absorbent materials, a lower reverberation 

T30 curve is obtained. Especially in the lower bass frequencies, the values are increased. The 

higher absorption in the lower frequencies creates a better value for the warmth parameter. The 

increase of the lower frequencies is necessary for speech and therefore ensures that the 

auditorium in Beniganim can function as a conference hall. 

 
Figure 1 – T30 curve, simulation of current situation 

 

 
Figure 2 – T30 curve, simulation after improvement 
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Annex I. Results of the in situ measurements (current situation) 
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 STI female STI male 

P1 0,55 0,54 

P2 0,52 0,52 

P3 0,55 0,54 

P4 0,55 0,54 
P5 0,54 0,53 

P6 0,54 0,53 

P7 0,57 0,56 
P8 0,63 0,62 

P9 0,59 0,58 
P10 0,59 0,59 

P11 0,60 0,60 

P12 0,57 0,56 
P13 0,58 0,58 

P14 0,56 0,55 

P15 0,53 0,53 
P16 0,57 0,56 

P17 0,55 0,55 
P18 0,58 0,58 
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Annex II. Results of the simulation in ODEON (current situation) 
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Annex III. Results of the simulation in ODEON (after 

improvement) 
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Annex IX. Data Sheet TECTOPANEL 
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