
PhD Thesis

An agile model-driven method for
involving end-users in DSL

development
Maria José Villanueva del Pozo

PhD Advisors: Óscar Pastor López
Francisco Valverde Giromé

December 2015, Valencia

An agile model-driven method for involving end-users in DSL
development

Un método ágil dirigido por modelos para involucrar a los usuarios
finales en el desarrollo de DSLs

Un mètode àgil dirigit por models per a involucrar als usuaris finals en
el desenvolupament de DSLs

PhD advisors:

Dr. Oscar Pastor Lopez, Universitat Politècnica de València

Dr. Francisco Valverde Giromé, Universitat Politècnica de València

PhD tribunal:

Dr. Vicente Pelechano, Universitat Politècnica de València

Dr. Juan Carlos Trujillo, Universidad de Alicante

Dr. Jan Mendling, Vienna University of Economics and Business

This PhD thesis was defended by MªJosé Villanueva on 8th January 2016 to
obtain a Doctor of Philosophy in Computer Science from Universitat Politècnica
de València.

Agradecimientos
En este pequeño trocito de tesis me gustaría dar gracias a todas aquellas

personas que han contribuido de algún modo en la realización de esta tesis.

En primer lugar, quiero dar la gracias a mis directores de tesis. A Oscar, por
creer en mi desde el primer día (aunque al principio solo fuera por mi casa de la
nieve en Rubielos), por darme libertad para llevar a cabo esta tesis y sobre todo
por apoyarme hasta el final. A Paco, por guiarme durante todo el proceso, por su
apoyo y ánimo constante, por sus acertadas críticas, por leer esta tesis varias veces
y sobre todo por su ayuda incondicional durante estos 5 años.

También quiero dar las gracias a mi familia y amigos por cuidarme y apoyarme,
ya sea viniendo a comer conmigo a la Universidad, insistiéndome cada cinco
minutos en que acabara la tesis, preguntándome como estaba, haciéndome
croquetas, arreglándome los desastres de mi casa, despidiendo positivismo en todo
momento o estando ahí aunque solo nos hayamos podido ver una vez al mes o al
año.

Por otro lado, quiero dar las gracias a todos los compañeros del Pros que
también me han ayudado. A Marce, por ser mi compañera de viaje, por salir
conmigo a todo tipo de ferias, y por escuchar todos mis rollos durante nuestras
salidas cenicientiles acompañadas de vino de la casa. A mis compañeros del
genoma, por su forma de ver la vida, que me ha ayudado a reflexionar y a salir de
mi zona de confort, y en especial a Ana Levin, por su ayuda durante los primeros
años. A Sergio y a Ignacio, por sus sabios consejos que me han ayudado a mejorar
muchos aspectos de esta tesis. A Cristian y a Carlos, por aportar su granito de
arena en la implementación de esta tesis. A Ana Cidad por ayudarme con la
burrocracia a la que me he tenido que enfrentar. Y en general, a todas aquellas
personas que han aguantado mis cambios de humor y aun así han tenido siempre
buenas palabras hacia mí.

Tampoco puedo dejar de agradecer a todas aquellas personas de Imegen,
GEM Biosoft, e INCLIVA por su colaboración en toda la parte genómica de esta
tesis. En especial, me gustaría agradecer a Pablo por sus consejos y por su ayuda
durante los meses en los que estuvimos colaborando sin los que la validación de
esta tesis no hubiera sido posible.

Y por último, a ti, al más especial, porque el ánimo que me has dado cada día
con tu forma de ser y con tu gran éxito “la tesis no se escribe sola” no tiene precio.
Gracias, porque sin ti, ni mi vida ni esta tesis serían lo mismo.

Overview
Domain-specific languages (DSLs) are considered to be a powerful tool for

enhancing the efficiency of software developers and bring software development
closer to end-users from complex domains. However, the successful development
of a DSL for a complex domain is a challenge from the technical point of view
and because end-user acceptance is key.

Despite this fact, the relevant role of end-users during DSL development has
traditionally been neglected. Normally, end-users participate at the beginning to
communicate their preferences but they do not participate again until the DSL is
completely implemented. As a consequence, if the language to develop reaches a
complex domain, the chances that errors appear in the DSL are higher and
solving them could involve large modifications that could have been avoided.

As a solution, in this PhD thesis, we propose an agile, model-driven method
to involve end-users in DSL development. This thesis researches if the
combination of best practices from the model-driven development (MDD)
discipline and best practices from agile methods is a suitable approach to involve
end-users in the DSL development process.

In order to validate the proposal, we have selected a highly complex domain
such as the genetic analysis domain and we have collaborated with geneticists
from three organizations. The proposed method has been used to involve these
geneticists in the development of a DSL for the creation of genetic analysis
pipelines. Simultaneously, we have carried out an empirical experiment to validate
whether end-users and developers were satisfied with the proposal.

Resum
Els llenguatges específics de domini (DSLs) son una ferramenta molt potent

per a millorar l’eficiència dels desenvolupadors de programari, així com per a
apropar el desenvolupament de programari a usuaris sense coneixements
informàtics. El problema es que desenvolupar un DSL es complex, no sols des del
punt de vista tècnic, sinó especialment perquè l’acceptació de dit llenguatge per
part dels usuaris finals es clau.

Malgrat aquest fet, els mètodes tradicionals de desenvolupament de DSLs no
emfatitzen l’important rol dels usuaris finals durant el desenvolupament.
Normalment, els usuaris participen a l’inici per a comunicar les seues preferències,
però no tornen a participar fins que el DSL està completament desenvolupat. Si
el llenguatge a desenvolupar aborda un domini complex, la possibilitat de que hi
hagen errors en el DSL es major i solucionar-los podria implicar modificacions
de gran calibre que podrien haver-se evitat.

Com a solució, en aquesta tesis proposem un mètode de desenvolupament de
DSLs, àgil i dirigit per models que involucra als usuaris finals. Aquesta tesis
investiga si la combinació de bones pràctiques del desenvolupament dirigit per
models (MDD) i de bones pràctiques de mètodes àgils es adequada per a
involucrar els usuaris finals en el desenvolupament de DSLs.

Per a validar la idoneïtat de la proposta, s’ha seleccionat un domini complex
com el dels anàlisis genètics i s’ha col·laborat amb un conjunt de genetistes
procedents de tres organitzacions. El mètode s’ha utilitzat per a involucrar a dits
genetistes en el desenvolupament d’un DSL per a la creació de pipelines per al
anàlisis genètic. Al mateix temps, s’ha dut a terme un experiment empíric per a
validar si tant els usuaris finals com els desenvolupadors estan satisfets amb la
proposta de la present tesis.

En resum, les contribucions principals d’aquesta tesis doctoral son el disseny
i implementació d’un mètode innovador, àgil i dirigit per models per a involucrar
als usuaris finals en el desenvolupament de DSLs, així com la validació de la
proposta en un entorn industrial amb un desenvolupament real d’un DSL.

Resumen
Los lenguajes específicos de dominio (DSLs) son una herramienta muy

potente para mejorar la eficiencia de los desarrolladores de software, así como para
acercar el desarrollo software a usuarios sin conocimientos informáticos. Sin
embargo, su principal problema es que desarrollar un DSL es complejo; no sólo
desde el punto de vista técnico, sino especialmente porque la aceptación de dicho
lenguaje por parte de los usuarios finales es clave.

A pesar de este hecho, los métodos tradicionales de desarrollo de DSLs no
enfatizan el importante rol de los usuarios finales durante el desarrollo.
Normalmente, los usuarios participan al inicio para comunicar sus preferencias,
pero no vuelven a participar hasta que el DSL está completamente desarrollado.
Si el lenguaje a desarrollar aborda un dominio complejo, la posibilidad de que
existan errores en el DSL es mayor, y su solución podría conllevar a
modificaciones de gran calibre que podrían haberse evitado.

Como solución, en esta tesis proponemos un método de desarrollo de DSLs,
ágil, y dirigido por modelos que involucra a los usuarios finales. Esta tesis
investiga si la combinación de buenas prácticas del desarrollo dirigido por
modelos (MDD) y de buenas prácticas de métodos ágiles es adecuada para
involucrar a los usuarios finales en el desarrollo de DSLs.

Para validar la idoneidad de la propuesta, se ha seleccionado un dominio
complejo como el de los análisis genéticos y se ha colaborado con un conjunto de
genetistas procedentes de tres organizaciones. El método propuesto se ha
utilizado para involucrar a dichos genetistas en el desarrollo de un DSL para la
creación de pipelines para el análisis genético. Conjuntamente, se ha llevado a
cabo un experimento empírico para validar si los usuarios finales y los
desarrolladores están satisfechos con la propuesta de la presente tesis.

En resumen, las contribuciones principales de esta tesis doctoral son el diseño
e implementación de un método innovador, ágil y dirigido por modelos para
involucrar a los usuarios finales en el desarrollo de DSLs, así como la validación
de dicha propuesta en un entorno industrial en un desarrollo real de un DSL.

Contents

1. Introduction .. 1
1.1 Motivation ... 4
1.2 Research questions and objectives .. 7
1.3 Methodology .. 8

1.3.1 Methodological framework .. 8
1.3.2 Methodology applied to this thesis .. 10

1.4 Thesis outline ... 12
2. Problem Investigation .. 15

2.1 Introduction to the genetic analysis domain .. 16
2.2 Illustrative scenario: A DSL for the genetic analysis domain 18

2.2.1 The Imegen scenario .. 18
2.2.2 The INCLIVA scenario ... 21
2.2.3 Current issues and challenges ... 22
2.2.4 A DSL as a solution ... 27

2.3 Lessons learned .. 30
2.4 Conclusion ... 31

3. State of the Art ... 33
3.1 State of the art of DSL development ... 34
3.2 Analysis criterion ... 35

3.2.1 Process completeness .. 36
3.2.2 Application of existing End-User Development (EUD) practices 37
3.2.3 End-user involvement .. 38
3.2.4 Analysis table .. 38

3.3 Analysis execution .. 39
3.3.1 Towards the involvement of end-users within model-driven development 40
3.3.2 Misfits in abstractions: Towards user-centred design in DSLs for end-user

programming .. 42
3.3.3 How to reach a usable DSL? Moving toward a systematic evaluation 44
3.3.4 Semi-automatic generation of metamodels from model sketches 45
3.3.5 Creating visual DSMLs from end-user demonstration 47

3.3.6 Rapid prototyping for DSLs: From stakeholder analyses to modelling tools
 ... 49

3.3.7 Bottom-up meta-modelling: An interactive approach 51
3.3.8 Collaboro: Enabling the collaborative definition of DSMLs 53
3.3.9 Engaging end-users in the collaborative development of DSMLs 55

3.4 Discussion ... 57
3.5 Conclusion .. 60

4. Method Overview and Illustrative Example ... 61
4.1 Building a method for DSL development .. 62
4.2 Combining model-driven and agile practices for DSL development 64
4.3 Overview of the method ... 66
4.4 Illustrative example ... 74

4.4.1 The default workflow ... 76
4.4.2 The tool implementation ... 78
4.4.3 The DSL specification ... 80

4.5 Conclusion .. 81
5. Understanding the domain: The Decision and Analysis stages 83

5.1 The Decision stage ... 84
5.1.1 The decision of developing a DSL for supporting genetic analysis 85

5.2 The Analysis stage .. 88
5.2.1 Iteration planning .. 88
5.2.2 Requirements specification .. 89
5.2.3 Domain modeling .. 93
5.2.4 The analysis of the genetic analysis domain ... 96

5.3 Conclusion .. 105
6. Realizing the Solution: The Design and Implementation Stages 107

6.1 The design stage ... 108
6.1.1 Syntax preferences .. 109
6.1.2 Abstract and concrete syntax design .. 111
6.1.3 Semantic restrictions design ... 116
6.1.4 Semantic behavior design ... 118
6.1.5 The design of the genetic analysis DSL ... 119

6.2 The implementation stage .. 128
6.2.1 Test specification ... 129

6.2.2 Implementation of the DSL infrastructure .. 136
6.2.3 The implementation of the genetic analysis DSL 140

6.3 Conclusion ... 150
7. Releasing the Solution: The Testing, Deployment and Maintenance
stages ... 153

7.1 The Testing stage .. 154
7.1.1 Demonstration ... 154
7.1.2 DSL infrastructure testing ... 155
7.1.3 The testing of the genetic analysis DSL release 158

7.2 The Deployment stage ... 161
7.3 The maintenance stage .. 163
7.4 Conclusion ... 164

8. Validation .. 165
8.1 Experiment methodology .. 166
8.2 Goal ... 166
8.3 Experimental subjects .. 167
8.4 Research questions and hypothesis formulation .. 168
8.5 Factors and treatments ... 169
8.6 Response variables and metrics .. 169
8.7 Experiment design ... 172
8.8 Experimental objects .. 173
8.9 Instruments .. 174
8.10 Experiment procedure .. 175
8.11 Evaluation of validity ... 180
8.12 Data analysis .. 183
8.13 Results .. 186
8.14 Threats to validity .. 191
8.15 Discussion .. 193
8.16 Conclusions .. 195

9. Conclusions ... 197
9.1 Contributions ... 197
9.2 Research publications ... 199
9.3 Discussion .. 202
9.4 Future work .. 206

9.5 Final thoughts ... 210
10. References ... 213
Annex A .. 221

A.1 Mechanism M1: Review DSL requirements (user stories, acceptance tests, and
usage scenarios) .. 221

A.1.1. Guidelines for developers ... 221
A.1.2. Guidelines for end-users .. 222

A.2 Mechanism M2: Syntax questionnaire ... 224
A.2.1. Guidelines for developers ... 224
A.2.2. Guidelines for end-users .. 224

A.3 Mechanism M3: Behavioral semantic templates .. 225
A.3.1. Guidelines for developers ... 225
A.3.2. Guidelines for end-users .. 226

A.4 Mechanism M4: Demonstration .. 227
A.4.1. Guidelines for developers ... 227

A.5 Mechanism M5: DSL testing... 227
A.5.1. Guidelines for developers ... 227
A.5.2. Guidelines for end-users .. 228

Annex B .. 229
B.1 Usage scenarios, user stories and acceptance tests .. 229

B.1.1. Iteration 1 .. 229
B.1.2. Iteration 2 .. 230
B.1.3. Iteration 3 .. 231

B.2 Analysis models: ... 233
B.2.1. Feature model .. 233
B.2.2. Concepts model ... 233
B.2.3. Glossary of terms ... 234
B.2.4. Relationships between the concepts model and the feature model 234

B.3 Design models: ... 235
B.3.1. Concrete syntax grammar .. 235
B.3.2. Abstract syntax metamodel .. 237
B.3.3. Implementation example ... 238

Annex C .. 241
C.1 Questionnaires for measuring end-user satisfaction about mechanisms: 241

C.1.1. Demographic assessment ... 241
C.1.2. Assessment of the review step (T2) .. 242
C.1.3. Assessment of the syntax questionnaire (T3) ... 242
C.1.4. Assessment of the semantic templates (T3b) ... 243
C.1.5. Assessment of the demonstration (T4) .. 243
C.1.6. Assessment of the testing guidelines (T5) .. 244

C.2 Data gathered from questionnaires (end-user satisfaction) 244
C.2.1. Raw data from Google Forms .. 244
C.2.2. Standardization of responses .. 245
C.2.3. Separation of responses per variable ... 246
C.2.4. Calculation of means and ranges .. 248
C.2.5. Summary .. 250

C.3 Data gathered by the developer (developers’ satisfaction) 251
C.3.1. Mechanism M1 .. 251
C.3.2. Mechanism M2 .. 251
C.3.3. Mechanism M3 .. 252
C.3.4. Mechanism M4 .. 253
C.3.5. Mechanism M5 .. 254

List of Figures

Figure 1.1 Design science as a regulative cycle .. 9
Figure 1.2 Regulative cycles of this PhD ... 12
Figure 2.1 Sequencing costs from the National Human Genome Research
Institute .. 17
Figure 2.2 Overview of the genetic diagnosis process 18
Figure 2.3 The Imegen business process .. 19
Figure 2.4 The Imegen genetic diagnosis process in detail 20
Figure 2.5 The INCLIVA business process .. 21
Figure 2.6 The INCLIVA sequence analysis process in detail 22
Figure 3.1 Works of the literature about DSLs (from Nascimiento et al.)...... 34
Figure 3.2 The FlexiSketch environment (extracted from Wuest et al.) 46
Figure 3.3 The PDE language visualization model (extracted from Kuhrman et
al.) ... 50
Figure 3.4 Overview of the bottom-up meta-modelling approach (extracted
from Sanchez-Cuadrado et al.) .. 52
Figure 3.5 Overview of the Collaboro approach (extracted from Canovas et al.)
 .. 54
Figure 3.6 Overview of the combined approach (extracted from Canovas et al.)
 .. 56
Figure 4.1 Approach to build the method and the DSL 63
Figure 4.2 Overview of DSL development process and patterns by Mernik et
al. (adapted from Ceh et al.) .. 67
Figure 4.3 Stages and steps of the proposed method 71
Figure 4.4 Artefacts of the proposed method and mechanisms for involving
end-users .. 71
Figure 4.5 Steps to analyze Diabetes Mellitus Type 2 77
Figure 4.6 Software tools to analyze Diabetes Mellitus Type 2 79
Figure 4.7 Scripting language to analyze Diabetes Mellitus Type 2 80
Figure 4.8 The DSL to analyze Diabetes Mellitus Type 2 80
Figure 5.1 Predefined structure of user stories ... 90
Figure 5.2 Predefined structure of acceptance tests ... 90
Figure 5.3 Specific artefacts proposed to describe the domain model 93
Figure 5.4 Relationships between the feature model and the concepts model 94

Figure 5.5 Example that illustrates how to create the feature model 95
Figure 5.6 Example that illustrates how to create the conceptual model 95
Figure 5.7 Example that illustrates how to relate the feature model and the
concepts model ... 96
Figure 5.8 Feature model of iteration 3 .. 100
Figure 5.9 Example that illustrates the creation of the feature model 101
Figure 5.10 Concepts model of the third iteration .. 102
Figure 5.11 Example that illustrates the creation of the concepts model 103
Figure 5.12 Relationships between the models of the genetic analysis example
 .. 104
Figure 5.13 Example that illustrates how to relate the feature model and the
concepts model ... 105
Figure 6.1 Substeps to design the abstract syntax and concrete syntax 112
Figure 6.2 Example that illustrates the creation of the abstract syntax
metamodel .. 113
Figure 6.3 Example that illustrates the creation of the abstract syntax
metamodel .. 113
Figure 6.4 Example that illustrates the creation of the concrete syntax grammar
 .. 115
Figure 6.5 Question about the suitability of a specific concrete syntax using a
Likert Scale ... 116
Figure 6.6 Question to suggest syntax changes using free text 116
Figure 6.7 Example that illustrates the creation of the semantic restrictions 117
Figure 6.8 Abstract syntax metamodel of the genetic analysis example 121
Figure 6.9 Example of application of the guidelines of the abstract syntax
metamodel .. 122
Figure 6.10 Illustrative example written with the descriptive syntax 123
Figure 6.11 Illustrative example written with the natural language syntax 123
Figure 6.12 Illustrative example written with the object-oriented syntax 124
Figure 6.13 Illustrative example written with the XML-like syntax 125
Figure 6.14 Fragment of the concrete syntax grammar of the illustrative
example ... 126
Figure 6.15 Example of application of the guidelines of the semantic
restrictions .. 127
Figure 6.16 Interface of Galaxy .. 128
Figure 6.17 DSL infrastructure and tests ... 130

Figure 6.18 Representation of a test .. 130
Figure 6.19 Example of a syntax test ... 131
Figure 6.20 Example of a syntax test with errors ... 131
Figure 6.21 Example of a validator test .. 132
Figure 6.22 Example that illustrates the creation of a validator test 133
Figure 6.23 Example of a code generator test .. 133
Figure 6.24 Example that illustrates the creation of a code generator tests ... 134
Figure 6.25 Example of a target platform test ... 135
Figure 6.26 Example that illustrates the creation of the code generator tests 136
Figure 6.27 Approach to implement the validator ... 137
Figure 6.28 Approach to implement the target platform fragments and the
code generator .. 138
Figure 6.29 Example of a semantic test that tests the validator 141
Figure 6.30 Example of a target platform test using Galaxy 143
Figure 6.31 Example of Validator method that checks a semantic restriction144
Figure 6.32 Galaxy workflow to pass the test TestFilterByPolyphen 145
Figure 6.33 Simplified fragment of a Galaxy workflow 147
Figure 6.34 Xtend classes that represent the Generator skeleton 147
Figure 6.35 Example of a JUnit test that checks the correctness of the generator
 .. 148
Figure 6.36 Example of transformation rule of the generator 149
Figure 6.37 Interface for using the DSL infrastructure 150
Figure 7.1 Example of a DSL syntax shortcut ... 159
Figure 7.2 Example of several DSL error messages 159
Figure 7.3 Generation and deployment of a Galaxy workflow. 160
Figure 8.1 Experiment overview .. 175
Figure 8.2 Overview of the steps of the experiment....................................... 177

List of Tables
Table 3.1 Analysis table ... 38
Table 3.2 Assessment of Perez et al.’s work ... 42
Table 3.3 Assessment of Nishino's work ... 43
Table 3.4 Assessment of Barisic et al.'s work ... 45
Table 3.5 Assessment of Wuest et al.'s work ... 47
Table 3.6 Assessment of Cho et al.'s work... 49
Table 3.7 Assessment of Kuhrman et al.'s work .. 51
Table 3.8 Assessment of Sanchez-Cuadrado et al.'s work 53
Table 3.9 Assessment of Canovas et al.'s work .. 55
Table 3.10 Assessment of Canovas et al.'s work .. 57
Table 3.11 Comparison of state of the art works ... 58
Table 4.1 Set of requirements supported by the third version of the DSL 76
Table 4.2 Example to illustrate Variation Genotypes 77
Table 4.3 Example to illustrate annotations .. 78
Table 4.4 Example to illustrate filters .. 78
Table 5.1 Overview of the Analysis stage .. 88
Table 5.2 The user story template to describe an end-user requirement 91
Table 5.3 The user story template to describe a language requirement 92
Table 5.4 Usage scenario template to describe an end-user requirement 93
Table 5.5 Usage scenario template to describe a DSL requirement 93
Table 5.6 Partial DSL backlog of Iteration 3 .. 97
Table 5.7 End-user requirement for “Filter Variations by POLYPHEN predicted
effect” ... 98
Table 5.8 DSL requirement for Filter Variations by POLYPHEN predicted
effect ... 99
Table 5.9 Usage scenario template to describe one analysis of Diabetes Mellitus
Type 2 .. 100
Table 6.1 Overview of the Design stage .. 109
Table 6.2 Examples of internal/external decision .. 110
Table 6.3 Template to describe semantics behavior 119
Table 6.4 Geneticists' responses about the different syntax options 125
Table 6.5 Semantic template to describe the behavior of the user story Filter by
Polyphen effect .. 128
Table 6.6 Overview of the Implementation stage .. 129

Table 7.1 Overview of the testing stage ... 154
Table 7.2 Questions to test different DSL aspects .. 157
Table 7.3 Example of the geneticists' responses to the testing questionnaire 161
Table 7.4 Overview of the Deployment stage .. 161
Table 7.5 Overview of the Maintenance stage ... 163
Table 7.6 Complementary questions to test different DSL aspects after
deployment ... 163
Table 8.1 Subjects’ profiles ... 168
Table 8.2 Summary of RQs, hypotheses, and response variables 170
Table 8.3 Preliminary schedule .. 176
Table 8.4 Responses about the assessment of the syntax questionnaire 184
Table 8.5 Responses about the assessment of the syntax questionnaire after
standardization ... 184
Table 8.6 Ease of Use responses about the assessment of the syntax
questionnaire .. 184
Table 8.7 Usefulness responses about the assessment of the syntax
questionnaire .. 184
Table 8.8 Geneticist G1’s opinion about the PEOU of Mechanism M2 185
Table 8.9 Geneticist G1’s opinion about the PEOU of the treatment 185
Table 8.10 General opinion about the PEOU of the treatment 186
Table 8.11 The opinion of each geneticist about each mechanism 187
Table 8.12 The geneticists’ opinion about the treatment 187
Table 8.13 Population’s opinion about the treatment 187
Table 8.14 Comprehension questions that were asked by the geneticists 188
Table 8.15 Percentages of agreement from the geneticists’ feedback. 189
Table 8.16 Undetected errors that were observed by geneticists in the testing
stage .. 190
Table 8.17 Time spent by each geneticist .. 191
Table 9.1 Summary of publications .. 202

1. Introduction 1

1. Introduction
In the last two decades, computer science has become a transversal field that

serves multiples domains and multiples purposes. Besides the software products
that have been created for domains such as banking, stock management, or
gaming, a broad amount of software products are being developed nowadays for
other domains such as genetics, aviation, seismology, or archaeology, among
others.

Software tools were initially designed to support miscellaneous tasks, mostly
related with work matters. When these tools improved, traditional manual
procedures left the room for computer-aid procedures. Software tools became
part of our daily life and, since they are better every day, eventually, people have
started to use software tools for their routine and entertainment.

As the usage of software tools by different kind of end-users increased, their
needs and preferences became an important factor to take into account by
developers [1]. In fact, developers believed that the participation of end-users in
the creation of software products would increase their suitability and success. This
belief was the origin of the “end-user software engineering” [2]. From that
moment, end-user needs were important during software development, so the
possibility of involving them in the development process seemed an approach
worth to explore.

1. Introduction 2

The challenge was involving non-technical end-users within the software
development process. Understanding different development activities required
having a high technical knowledge related to software engineering. As a solution,
the software engineering community proposes using domain-specific languages
(DSLs) [3, 4] to overcome this knowledge gap and to bring software development
closer to end-users who do not have such development knowledge.

Domain-specific languages are languages that abstract programming
concepts and technological implementations by using concepts of a specific
domain. Because of the encapsulation of implementation concerns, DSLs
enhance the efficiency of software developers. Because of their abstraction and
conceptualization, DSLs also facilitate the comprehension of software
specifications for end-users.

Initially, DSLs were proposed to improve the efficiency of developers.
Developers used DSLs to encapsulate well-established and repetitive procedures
so they could be easily reused afterwards (by them or by other developers).
Therefore, the most well-known DSLs (such as SQL or HTML) only addressed
technical domains related with computer science. These languages achieved a
higher abstraction level, but at the end of the day, their target users were still users
with advanced technical knowledge.

However, since DSLs are a powerful tool to hide technological details such
as programming concepts or implementation technologies, the possibility of
using DSLs to involve end-users in the software development process arose
interest in complex application domains such as genetics, aviation, or seismology
[5]. However, in practice, developing a DSL for this kind of domains was not
that easy.

In technical domains, DSL developers are experts of the domain or have
enough technical knowledge related with it (besides being the target users of the
DSL), which makes the development of the DSL difficult but attainable. In
contrast, in complex application domains, DSL developers are not experts (nor
future users of the DSL), which means that they must deal with very specialized
knowledge that is usually beyond their technical knowledge and reasonable
understanding. In addition, the technical gap between developers and end-users
hinders the ability of developers to identify the right needs and preferences of
these end-users.

1. Introduction 3

An example of this technical gap can be found in the genetic analysis domain.
This domain is the knowledge area that gathers the set of tools and procedures
that are used by geneticists to analyze genetic samples (such as DNA or RNA) of
living beings to obtain information about their external features (such as skin
color or a disease condition).

After working with geneticists for several years [6, 7, 8], we have observed a
huge gap between software geneticists and developers. For geneticists, software
development concepts are beyond basic computer skills. For software developers,
genetic concepts are beyond basic biological understanding. This gap, together
with the dynamism of genetic concepts and analysis procedures, has made
unfeasible for developers to understand all the specific details, to keep track of
their constant changes, and to develop accurate software products accordingly.
The consequence is that the software tools that have been developed over the last
decade to perform genetic analysis have been unsuccessful to fulfill geneticists’
needs [9].

In this scenario, geneticists saw no other option than participating in the
software development and becoming the developers of their own tools. A
common approach followed by geneticists was acquiring basic knowledge of
programming and development technologies to create databases, scripts, and web
applications. However, their lack of knowledge of software quality standards and
best practices for software development (such as usability, interoperability,
portability, reusability, maintainability, documentation, etc.) led to a huge
proliferation of non-interoperable tools and heterogeneous databases.

Eventually, these software tools are very difficult to use for other geneticists,
who also need high programming skills to configure them or to achieve
interoperation among them. As a solution, a DSL could improve this situation
and help geneticists to reuse and customize available software tools without
worrying about technological and low-level details.

However, as we have already mentioned, developing a DSL for a complex
application domain such as the genetic analysis domain is a challenge for software
developers. From the technical point of view, developing a DSL is already
complex and time consuming; in this scenario, the complexity of the genetic
analysis domain adds a further barrier to the task. Developing this DSL requires
understanding genetic concepts and implementing it requires knowing existing
genetic analysis tools.

1. Introduction 4

In conclusion, the set of problems that we have observed in the genetic
analysis domain illustrate the important role that geneticists must play during the
development of a DSL. Nonetheless, we have realized that these problems are
not specific of this domain and are also applicable to other complex application
domains in which developers have not enough expertise (for instance aviation or
seismology). This means that, in order to ensure that a DSL for a complex
application domain represents all the domain concepts precisely and fulfills the
end-users’ needs, the participation of end-users during the development process
itself is essential.

1.1 Motivation

Because of the aforementioned reasons (technical complexity and domain
specificity), developing a DSL for a complex application domain requires a
development approach that: 1) provides guidance in the different development
activities (Requirement 1); 2) ensures that the development time is feasible
(Requirement 2); and 3) facilitates the gathering of domain experts’ knowledge
and preferences (Requirement 3).

With the aim to guide developers (Requirement 1), the state of the art is full
of different methodological guidelines. We highlight the work of Mernik et al.
[10, 11] (originally published in 2005 and extended in 2011), which presents the
different stages of DSL development and illustrates a set of patterns that facilitate
different development decisions. Another example is the systematic development
approach of Strembeck and Zdun [12], which defines the set of activities to
accomplish for DSL development and decision charts that illustrate different
development decisions. Also, the best practices and lessons learned to develop
DSLs proposed by Van Deursen et al. [3], Spinellis [13], and Czarnecki et al.
[14].

Complementing these works, with the aim to improve the development
efficiency (Requirement 2), some works propose applying Model-Driven
Development principles (MDD) [15, 16], which encourage investing all the
development’s effort on representing the system abstractly by means of conceptual
models and generating the system code (automatically or systematically) through
model-to-code transformations. Several authors claim that MDD improves the
efficiency when developing a software system [17, 18]. According to [19, 20, 21]

1. Introduction 5

the conceptual models that describe the system are eventually easier to specify,
understand, and maintain that the underlying programming code; the complexity
is addressed and solved in the problem domain without technological issues; and
solutions are not tied to specific implementation technologies. In the context of
DSL development, language requirements are formally described using models
and DSL artifacts are generated from them [22].

The issue of these aforementioned approaches is that the essential role of the
end-user (Requirement 3) is neglected. End-users only participate in the initial
requirements gathering step and the DSL is implemented without their further
participation. As a consequence, the probability to miss domain
misunderstandings and discover them after a first version of the DSL is delivered
is higher. The development time of the DSL will substantially increase if the
language editor or the execution environment must be re-implemented to support
changes.

For these reasons, this PhD aims to provide a solution that fulfills the three
requirements; a solution that guides developers through the different
development activities (Requirement 1), ensures the efficiency of the DSL
development process (Requirement 2), and involves end-users as much as needed
in the DSL development process (Requirement 3).

In order to provide the suitable guidance, we adopt different guidelines from
the state of the art (such as the Mernik et al. stages or the decision charts from
Strembeck et al.) to propose a method that details the different stages of DSL
development, the different steps that must be accomplish in each stage, and the
artefacts to be created in each step. In order to ensure the efficiency of the
development process, we adopt Model-Driven Development (MDD) to benefit
from their advantages in the context of DSL development. We combine the
definition of DSLs with the MDD paradigm [22]: using conceptual models to
formally describe concepts of the language domain and applying model-based
transformations to generate the DSL artefacts from them. Finally, in order to
involve end-users in the development process, we propose a set of mechanisms
that facilitate end-user participation in the definition of those models. We name
“mechanism” to the set of activities and artefacts that are proposed to gather end-
users’ feedback about a certain aspect of a DSL. Thanks to these mechanisms and
the MDD approach, the knowledge that is gathered from end-users is
represented and propagated throughout the complete set of DSL artefacts.

1. Introduction 6

As we already mentioned, involving end-users in a DSL development process
is not trivial; but involving them in the creation of conceptual models when
following a model-driven approach is even a further problem because end-users
don’t usually have the expertise necessary to participate in modeling tasks [2].
MDD approaches provide formalisms to design the conceptual models and to
generate the software products from them, but they lack clear guidelines to teach
end-users how to contribute to model these formalisms.

In contrast, agile methods [23] advocate the close collaboration of end-users
and developers, focusing on requirements, testing, and project management.
However, they lack guidelines to carry out different conceptual modeling
activities such as domain modeling, business modeling, or behavior modeling [24].
For this reason, we believe that MDD approaches and agile methodologies can
complement each other in favor of end-user involvement in the context of DSL
development. Therefore, the mechanisms proposed to involve end-users are
based on best practices from agile methods that focus on increasing end-user
participation.

In summary, this PhD thesis proposes an agile model-driven method to
involve end-users in DSL development. We explain the complete method stages
and steps, the different conceptual artefacts to be created in each step, and the set
of involving mechanisms that facilitate the participation of end-users in the
creation of those artefacts.

In order to validate the proposal, we focus on evaluating the most innovative
contribution of this method, which are the set of mechanisms for involving end-
users. The validation of the method artefacts and the benefits of MDD (such as
efficiency) in the context of DSL development is outside the scope of this work.

In order to validate the mechanisms for involving end-users, we carried out a
controlled experiment with geneticists from the Research Institute INCLIVA1
to develop a DSL to support genetic analyses. This experiment was an expert
opinion research [25] in which geneticists used the mechanisms of the method
and provided their opinion about them.

1 INCLIVA. Instituto de Investigación Médica del Clínico de Valencia

1. Introduction 7

1.2 Research questions and objectives

The main goal of this PhD thesis is to provide a methodological approach to
involve end-users in DSL development. In order to accomplish this goal, we must
answer to the following research questions:

RQ1. Is it essential to involve end-users in the development of a DSL for a
complex application domain?

RQ2. Which are the available approaches to involve end-users in DSL
development?

RQ3. How can we provide a methodological approach to involve end-users in
DSL development?

RQ4. How can we validate that the solution proposed is a suitable solution to
involve end-users in DSL development?

In the search of the RQ1, we choose the genetics domain as the research
context. In order to answer this main research question, we must answer the
following research questions:

RQ1a. Does the genetic analysis domain require the development of a DSL?

RQ1b. Is it essential to involve geneticists in the development of a DSL for
supporting genetic analysis?

In order to answer these questions, the main objectives of this PhD thesis are:

Objective 1 (RQ1): In order to answer RQ1, we need to illustrate whether
involving end-users in the development of a DSL for a complex application
domain is necessary. We will choose the genetic analysis domain to illustrate this
need. First, in order to answer RQ1a, we will analyze the current state of the
domain and we will justify the need to provide a DSL. Then, in order to answer
RQ1b, we will discuss why the development of a DSL for supporting genetic
analysis requires the participation of geneticists during the development process.

Objective 2 (RQ2): In order to answer RQ2, we will search for current
approaches for DSL development. We will analyze the approaches that provide
guidance for developers and improve the efficiency of the DSL development
process. We will specially focus on the approaches that involve end-users. In order
to analyze them, we will propose several analysis criteria and we will apply them
to characterize each approach. Finally, we will discuss the contributions of these

1. Introduction 8

works and their open problems in relation with the problem addressed by this
PhD.

Objective 3 (RQ3): In order to answer RQ3, we will propose an agile model-
driven method to involve end-users in DSL development. First, we will study
methodological guidelines for DSL development from the state of the art
(specifically, model-driven oriented) in order to configure the different steps and
the model-driven artefacts to be created in each stage of the DSL development.
Then, in order to involve end-users in the creation of some of these artefacts, we
will propose a set of mechanisms based on agile practices.

Objective 4 (RQ4). In order to answer RQ4, we will conduct a controlled
experiment with geneticists from an industrial environment to validate the
suitability of the mechanisms for capturing domain knowledge and end-users’
needs. Another goal of this collaboration is to obtain a preliminary version of a
DSL for supporting genetic analysis.

1.3 Methodology

1.3.1 Methodological framework

Design science [26, 27, 28] is a methodology that fosters the creation of
artefacts that solve problems of the environment (whose motivation is driven by
a business problem) and contribute to the current knowledge base. Specifically,
the research methodology selected to guide this thesis is the proposal of Wieringa
[25] of Design Science methodology as set of nested regulative cycles.

Wieringa proposes to solve engineering and research problems that are found
by researchers by decomposing them into engineering and research sub-problems:
a main problem that is seen as a set of nested problems. An engineering problem
is the “difference between the way the world is experienced by stakeholders and
the way they would like it to be” and a research problem is the “difference between
the current knowledge of stakeholders about the world and what they would like
to know”.

The approach to solve both types of problems is to follow a regulative cycle
made of five tasks: problem investigation, design, validation, implementation and
evaluation. However, as it is shown in Figure 1.1, depending on the type of
problem, each problem is addressed with a slightly different regulative cycle. An

1. Introduction 9

engineering cycle (EC) has the tasks: problem investigation, solution
specification, specification validation, specification implementation, and
implementation evaluation. While a research cycle (RC) has the tasks: research
problem investigation, research design, design validation, research execution, and
analysis of results.

Figure 1.1 Design science as a regulative cycle

When solving a problem, the methodology starts characterizing the general
problem as a research or as an engineering problem so that the corresponding
cycle can be applied. On the one hand, if the problem found is an engineering
problem, the engineering cycle is applied (EC). If this is the case, the first step is
to analyze the business problem in detail (Problem Investigation): 1) the
stakeholders that have the problem; 2) the specific goals they want to accomplish;
3) the problem they are facing and their causes; 4) the impact of the problem in
their context; and finally, 5) the criteria for stakeholders to consider the problem
as solved.

EC.
ENGINEERING

CYCLE

T4. SPECIFICATION
IMPLEMENTATION

T1. PROBLEM
INVESTIGATION
•Stakeholders
•Their goals
•Problematic phenomena
•Causes
•Impacts
•Solution criteria

T2. SOLUTION
SPECIFICATION
•Available solutions
•Design new ones

T3. SPECIFICATION
VALIDATION
•Solution properties
•Satisfaction of criteria
•Goals achieved/inhibited
•Trade-offs
•Sensitivity

T5. IMPLEMENTATION
EVALUATION

T4. RESEARCH
EXECUTION

T1. RESEARCH PROBLEM
INVESTIGATION
•Research goal
•Problem owner
•Unit of study
•Research questions
•Conceptual model
•Current knowledge

T2. RESEARCH DESIGN
•Unit of data collection
•Environment of data
collection
•Measurement instruments
•Data analysis methods

T3. DESIGN
VALIDATION
•Conclusion validity
•Internal validity
•Construct validity
•External validity

T5. ANALYSIS OF RESULTS
•Analysis
•Explanation
•Conclusions

RC.
RESEARCH

CYCLE

1. Introduction 10

After the problem has been characterized, it is necessary to research the
domain in order to justify that none existing solution solves the problem. When
no satisfactory solution has been found, there is room to propose a new one. As
a consequence, a new solution is designed with the aim to solve the problem
(Solution Specification).

Once this design is completed, it is necessary to validate the solution
(Specification Validation) before their realization. For that matter, the solution
properties are assessed according to the criteria defined in the problem
investigation, characterizing the context of application and the coverage of the
solution. If the solution has the desired effect for stakeholders in their context,
the solution can be finally implemented (Specification Implementation). In the next
iteration of the cycle, the implementation of the solution is evaluated.

On the other hand, if the problem found is a research problem, the research
cycle is applied (RC). If this is the case, the first step is to analyze the knowledge
problem in detail (Problem Investigation): 1) the specific research goal that is being
pursued; 2) the problem owner; 3) the unit of study; 4) the set of research
questions that want to be answered; 5) the conceptual model; and 6) the current
knowledge.

After the problem has been characterized, it is necessary to design how the
research is going to be conducted by establishing the data collection unit and
environment, the instruments, and the data analysis methods. Next, it is necessary
to assess the threats to validity. The design must ensure conclusion, internal,
construct, and external validity. After ensuring the validity of the research design,
the research can be conducted. Finally, the results obtained from the research are
analyzed and conclusions are extracted.

During the execution of a regulative cycle (both EC and RC), it is likely that
new (sub) problems arise. In order to solve them, the methodology proposes to
open new regulative cycles and to address all the tasks before continuing with the
previous cycle. Eventually, all the cycles will be completed and the original main
problem will be solved.

1.3.2 Methodology applied to this thesis

The motivation of this PhD is to solve the problem: “Provide a methodological
approach to involve end-users in domain-specific languages development (for complex
application domains)”. According to the methodology, we characterize this

1. Introduction 11

problem as an engineering problem and we address the tasks of the regulative
engineering cycle (EC).

Following this methodology (Figure 1.2), we start investigating this problem
(T1.1) by defining the motivation to involve end-users in DSL development. To
do this, we analyze the genetic analysis domain and the suitability of designing a
DSL for this domain (T1.1.1). Then, we discuss why it is necessary to involve
geneticists in the development of that DSL (T1.1.2). After justifying the need to
involve end-users in DSL development, we analyze if any proposal of the state of
the art fulfills this need (T2.1). The goal of this analysis is to understand the
current open problems and to know whether it is necessary to propose a new
solution. Since this is the case, we propose a DSL development method to involve
end-users (T2.2). Then, this method is validated in a real environment with end-
users (T3.1). To do this, we apply the method together with geneticists to develop
a DSL for genetic analysis (T3.1.1) and we validate with an empirical experiment
whether the proposed mechanisms of the method are a good solution for
involving end-users in DSL development (T3.1.2). The search of this knowledge
leads us to open a new research regulative cycle (RC1).

The goal of the RC1 is to “Validate the mechanisms of the DSL development
method”. In order to conduct this validation, we first define the research goals and
the research questions of the experiment (T4.1). In order to address them, we
design a controlled experiment to validate the method in a real environment with
geneticists. Specifically, we design an experiment of the type expert opinion
research (T5.1) and we analyze the validity of this design (T6.1) to be aware of
the threats to validity. After this analysis, we execute the controlled experiment
with geneticists (T7.1) and extract conclusions from the gathered data and lessons
learned from this experience (T7.2).

The final step (T8.1) is to transfer the method to industry, which is outside
the scope of this PhD thesis.

1. Introduction 12

Figure 1.2 Regulative cycles of this PhD

1.4 Thesis outline

In order to address the objectives of this thesis, we follow the task order
presented in the regulative cycles of the methodology (from task T1 to task T7).
Accordingly, the structure of the thesis is as follows:

• In chapter 2, Problem Investigation, we address the task T1.1 to illustrate
the motivation of involving end-users in DSL development by using the
genetic analysis domain. We start the chapter describing the business
goals of the geneticists from two industrial environments and we
characterize the problems that remain unsolved that justify the need of a
DSL. Then, we discuss why it is necessary to involve geneticists in the
development of this DSL for supporting genetic analysis. In this chapter,
we address the objective 1.

• In chapter 3, State of the Art, we address the task T2.1 to understand the
current state of DSL development for complex application domains. We
start analyzing works that provide guidelines for DSL development and

T4. PROBLEM INVESTIGATION
T4.1 Define the research goal and the
research questions to validate the proposed
mechanisms

T1. PROBLEM INVESTIGATION
T1.1 Define motivation for involving end-
users in DSL development
 T1.1.1 Analyse the genetics domain

and the suitability of developing
a DSL

 T1.1.2 Discuss motivation for involving
geneticists in the development
of a DSL for genetic analysis

T2. SOLUTION SPECIFICATION
T2.1 State of the art in DSL
development approaches that
involve end-users
T2.2 Propose a new DSL
development method to involve
end-users

T7. RESEARCH
EXECUTION
T7.1 Execute the
controlled experiment
with geneticists
T7.2 Extract conclusions
from the obtained results T3. SPECIFICATION VALIDATION

T3.1 Validate the method in a real
environment to develop a DSL with end-
users
 T3.1.1 Apply the method with geneticiststo
develop a DSL for genetic analysis
 T3.1.2 Validate the involving mechanisms
with an empirical experiment (which leads to
RC1)T5. SOLUTION DESIGN

T5.1 Design a controlled experiment (expert
opinion research) to validate the involving
mechanisms of the method

T8. SPECIFICATION
IMPLEMENTATION
T8.1 Transference of the method
to industry (outside thesis scope)

EC1.
ENGINEERING CYCLE

Provide a methodological
approach to involve
 end-users in DSL

development

RC1.
RESEARCH CYCLE

Validate the
mechanisms of the
DSL development

method T6. DESIGN VALIDATION
T6.1 Analyse validity of the
controlled experiment design

1. Introduction 13

address how to improve the development efficiency and then, we focus
on DSL development proposals for involving end-users. In order to
analyze the suitability of these works, we propose several criteria and we
analyze each work accordingly. Finally, we compare all the proposals
together in order to justify that the main problem described by this PhD
thesis has not been completely solved yet. In this chapter, we address the
objective 2.

• In chapter 4, Overview of the Method and Illustrative Example; chapter 5,
Knowing the domain of the DSL; chapter 6, Realizing the DSL; and chapter
7, Releasing the DSL to end-users; we address the task T2.2 to propose a
solution to develop DSLs for complex application domains. We start
explaining the methodological foundations and the existing approaches
of the state of the art in which the method proposed is based and inspired.
We provide an overview of the method and then, we go on explaining in
detail the stages, the steps of each stage, and the mechanisms for
involving end-users. Additionally, at the end of each chapter, we
illustrate the DSL that we created by applying the method together with
geneticists (task T3.1.1). In these chapters, we address the objectives 3
and 4.

• In chapter 8, Validation, we describe the complete experiment that was
carried out to validate the proposal (task T3.1). We start establishing the
research goals and questions (T4.1), we design the experiment (T5.1), we
validate the experiment design (T6.1), we describe the experiment
execution (T7.1), and we extract conclusions from the data gathered in
the experiment (T7.2). In this chapter, we address the objective 4.

• Finally, in chapter 9, Conclusions, we overview the results of the thesis
and the industrial collaborations, we list the research publications
performed, and we discuss about the fulfilment of the objectives, the
lessons learned and the future work.

1. Introduction 14

2. Problem Investigation 15

2. Problem Investigation
Developing DSLs for complex domains is a challenge for software developers,

since it requires dealing with domain complexity and overcoming the gap between
developers and end-users. During DSL development, developers need to
represent domain concepts and end-users’ preferences into the language.
Otherwise, the end-users will not see the value of the DSL and will not be willing
to use it.

The challenge lies in the necessity to acquire all this domain knowledge so it
can be precisely represented into the future DSL. An example of this challenge
can be found in the genetic analysis domain; a complex domain that is
characterized by its specialization and constant evolution. In this domain,
developing a DSL will require developers and end-users to understand each other
to achieve that the DSL precisely represents domain concepts such as DNA,
Gene, or Genome as well as the geneticists’ needs.

In order to illustrate the reality of this challenge, we collaborated with two
organizations: Imegen2, a Small and Medium Enterprise (SME) whose expertise
is the diagnosis of genetic diseases, and INCLIVA, a Research Institute whose
expertise is the research of genetic diseases.

2 Imegen. Instituto de Medicina Genómica. www.imegen.es

http://www.imegen.es/

2. Problem Investigation 16

The collaboration with geneticists from both environments revealed some
problems in the domain that could be solved with the development of a domain-
specific language (DSL). However, this analysis has also shown the difficulties of
developing this DSL and the need of involving geneticists in the development
process as a way to overcome them.

In this chapter, we start with a brief overview about the genetic analysis
domain by explaining the basic concepts that are needed for next sections and
chapters. Next, we analyze the situation of this domain by exploring Imegen and
INCLIVA business processes and their problems with software tools for genetic
analysis. After this analysis, we justify the suitability of developing a DSL for the
genetic analysis domain as a solution that could tackle with some of those
problems. Then, we provide the lessons learned about this DSL. Finally, we
discuss about the complexity of developing DSLs for complex application
domains, including the genetic analysis domain, and the need of involving end-
users in the development process.

2.1 Introduction to the genetic analysis domain
The analysis of DNA has improved the existing knowledge of human traits

and has leveraged the eager of human beings to understand the reasons for our
differences and similarities. DNA is a molecule that encodes the information to
create a living being. By means of four chemical bases (adenine A, guanine G,
cytosine C, and thiamine T), DNA joins these bases in a sequence and uses these
bases as instructions (similarly to the binary code) to create the proteins that are
responsible of different life processes. For this reason, as if it was a software
program, if any of these bases change in an individual, a “bug” could appear and
cause an anomalous function.

When the Human Genome Project was funded in 1990 [29], a genomic
revolution was yet to come. The goal of this project was to obtain the genome of
an individual (the complete DNA sequence of their cells), which will serve as a
model for future genomic analyses.

Since then, both sequencing techniques and technologies have been evolving
constantly, being especially revolutionary in 2005 with the appearance of Next
Generation Sequencing (NGS) technologies. In 2000, the cost per raw genome
was almost 10 millions of dollars but nowadays, the cost has decreased to less than

2. Problem Investigation 17

1.000 dollars (Figure 2.1) and predictions of improving these figures are still
optimistic.

Figure 2.1 Sequencing costs from the National Human Genome Research Institute3

This scenario opened the door to the personalized medicine, where
individuals could be analyzed genetically and treated according to their genetic
features. Additionally, analyses of this kind were the starting point of a new
methodology to predict and prevent certain genetic diseases.

Nowadays, geneticists are able to sequence a DNA sample (such as blood)
and obtain the complete genome of an individual. From this genome, the goal is
to establish the corresponding relationships of DNA bases (or sets of those bases)
with human traits, but mostly, with damaging traits associated with diseases.
Their approach (Figure 2.2) is comparing the sample DNA sequence with a
DNA reference sequence to locate the differences, also known as variations (step
1). Once the individual’s variations have been obtained, geneticists analyze the
biological features of these variations in order to try to understand their damage.
Then, they search for additional information over different databases, where
other geneticists had previously shared their knowledge about the same variations
(step 2). Finally, geneticists generate a report with all the information gathered
and their conclusions (step 3).

3 Figure obtained from the National Human Genome Research Institute.
http://www.genome.gov/

2. Problem Investigation 18

Figure 2.2 Overview of the genetic diagnosis process

Initially, the high price and long time for sequencing the complete genome
hindered the work of geneticists, who had to limit their work to analyze one or
several genes at a time. A gene is a subset of the sequence of the genome that is
responsible to codify for a specific function of the human body. A human gene is
usually made by 10 or 15 Kbases in comparison with the 3 or 4 Gbases of the
human genome.

When geneticists could only sequence one gene at a time (due to the high
sequencing costs and time), they were able to perform their work applying some
manual procedures. However, with the appearance of NGS technologies, a higher
set of genes could be sequenced at a time and several diseases could be
simultaneously analyzed. As a consequence, manual procedures have become
obsolete, forcing geneticists to embrace new procedures that are only feasible if
they are supported by software tools.

2.2 Illustrative scenario: A DSL for the genetic analysis domain
In this section, we describe the Imegen and INCLIVA business processes

using the Business Process Management Notation (BPMN4) and we analyze the
existing problems with the software tools they use. As a solution to these
problems, we discuss the potential benefits of developing a DSL for this domain.

2.2.1 The Imegen scenario

Imegen is a SME (Small and Medium Enterprise) whose expertise is
supporting the genetic diagnosis of patients using sequencing technologies. In
short, Imegen geneticists apply their genetic knowledge to provide evidences that
confirm or discard the genetic nature of a disease in a patient.

4 Busines Process Management Notation. Object Management Group. http://www.bpmn.org/

Search Variations Analyse Variations Generate Report
Disease-free

Disease-cause

1 2 3

Disease
DB

http://www.bpmn.org/

2. Problem Investigation 19

The diagnosis process of Imegen (Figure 2.3) starts when a patient (after
detecting a set of symptoms) goes to the physician’s practice (T1) and explains
their symptoms (T2). From the set of symptoms of the patient, the physician
performs a preliminary diagnosis (T3) and decides the set of tests that will be
necessary to confirm or discard the disease (T4). Currently, physicians always run
non-genetic tests (T5) but if the disease may have a genetic nature, a genetic
analysis is required. When this is the case, the physician extracts a DNA sample
from the patient (T6) and requests diagnosis support to the genetic laboratory
(Imegen) (T7). When the genetic laboratory receives the request together with
the DNA sample, they carry out a genetic diagnosis (T8) and send a report of the
genetic diagnosis back to the physician. From this report and the results of the
other non-genetic tests, the physician is able to confirm or discard the diagnosis
(T9). Then, the physician gives the patient the definitive genetic diagnosis report.

Figure 2.3 The Imegen business process

Figure 2.4 describes the business process of the genetic laboratory Imegen
when a request to carry out a diagnosis and the DNA sample to be analyzed are
received. First, the geneticists read the diagnosis report (T1) in order to
understand the goal of the analysis and the way to proceed. Depending on the
disease they want to diagnose, the geneticists must decide between sequencing a

Pa
tie

nt
Ph

ys
ic

ia
n

Ge
ne

tic
 L

ab

T1. Go to the
phisician’s practice

T3. Perform
preliminary

diagnosis

T4. Decide
tests to

run

T5. Run non-
genetic testsalways

 T6. Extract
DNA sample
from patient

Genetic
analysis
required

T7.Request
diagnosis
support

T9.
Confirm

diagnosis

T8. Carry out
genetic diagnosis

T2. Explain
symptoms

Symptoms detected

Set of symptoms
communicated

Diagnosis Request
received

Results
obtained

Genetic diagnosis
report received

Definitive diagnosis
report received

2. Problem Investigation 20

subset of genes5 or sequencing the complete set of genes of the genome that are
relevant for diagnosis (a.k.a. the clinical genome).

Figure 2.4 The Imegen genetic diagnosis process in detail

If the geneticists decide to focus only on a subset of genes (path a), they
sequence only those genes (T2a), get the genetic reference sequences (T3a), and
compare those sequences to obtain all the variations (T4a). On the contrary, if
the geneticists decide to look into the whole genome (path b), they sequence the
clinical genome (T2b), get the genomic reference sequences (T3b), and compare
those sequences to obtain all the genome variations (T4b).

Once all the patient’s variations of the DNA locations of interest are obtained,
the geneticists annotate each variation with additional genetic data, which is
retrieved from different genetic databases (T5). In the genetic jargon, annotate
means to retrieve and attach metadata about an entity, in this case, a variation.
Examples of annotations are the gene of the variation, its position in the sequence,
or their damage effect. Once all the variations are annotated, the geneticists filter
and prioritize them according to different criteria (T6). This way, they are able
to see first the variations they are interested in and observe the annotated

5 In practice, in order to reduce the sequencing price, geneticists do not
sequence complete genes but only the parts of the genome that codify for proteins
(a.k.a. exons). For simplicity, we have not included this detail in the explanation
or the diagram.

Ge
ne

tic
 L

ab

T1. Read
Diagnosis

Request Report

T5. Retrieve variation
annotations from

different databases

T7. Generate
diagnosis

report

T3b. Get genome
reference
sequences

T2b.
Sequence

clincial
genome

T6. Filter and prioritize
variations according to

the disease

All
genes

Subset
of genes

T2a. Sequence
selected genes

T3a. Get genes
reference
sequences

T4a.Obtain
genes

variations

T4b.Obtain
genome

variations

Diagnosis
report

requested

2. Problem Investigation 21

information regarding the disease. With all this information, they generate the
final diagnosis report (T7).

2.2.2 The INCLIVA scenario

Besides the collaboration with Imegen, we also started a collaboration with
the researcher geneticists from the Genetic Diagnosis Unit (UGDG) of the
INCLIVA Research Institute. The mission of these geneticists is researching
different genetic and genomic diseases. During our collaboration, they were
conducting a research project focused on the research of the Diabetes Mellitus
Type 2 disease.

Specifically, the process for researching Diabetes Mellitus Type 2 starts
(Figure 2.5) when the geneticists from the Analysis and Interpretation Unit
choose the case (T1a) and control (T1b) individuals to be used in the research
project. After these individuals’ DNA samples are collected, they are treated as
two different subsets: all cases together and all controls together. For each subset,
this unit requests their sequencing (T2) to the Sequencing Unit. When this
request is received, this unit sequences the genome (T3) and sends the sequencing
files back to the Analysis and Interpretation Unit. When the sequencing files are
received, this unit analyzes them (T4). After the analyses of both samples subset
have finished, the results are compared to extract conclusions (T5).

Figure 2.5 The INCLIVA business process

In order to carry out the analysis of each subset of samples, the researcher
geneticists (Figure 2.6) get the genome reference sequences (T1). After

An
al

ys
is

an
d

In
te

rp
re

ta
tio

n
 U

ni
t

Se
qu

en
ci

ng
 U

ni
t

T5.
Compare

results

T1a. Choose
control
samples T2. Request

sequencing
of samples

T1b. Choose
case

samples

T4. Analyze
sequences

T3. Sequence
genome

Research
project
wanted

samples
sequenced

Sequencing
asked

Samples
sequenced

2. Problem Investigation 22

performing the comparison of the samples against those references, the list of all
genomic variations from all the samples (T2) is obtained. Then, these variations
are annotated with additional and relevant metadata (T3). Once all the variations
from all samples are annotated, the researchers filter the variations according to
the criteria they want to research (T5). In order to know these criteria, it may
occur that a previous research is needed to find the suitable filtering criteria (T4).
After filtering, the researchers prioritize the resulting variations to obtain a list of
the variations ordered by relevance (T7). As it happened with the filtering criteria,
it may occur that a previous research is needed to identify the suitable criteria
(T6). Once both operations are applied to the variations, the researchers generate
the final report (T8).

Figure 2.6 The INCLIVA sequence analysis process in detail

In general, there are few differences among the genomic process from Imegen
and INCLIVA. Both processes have the same goal: “finding and characterizing
variations”, although the ultimate goal of each organization is slightly different.
Imegen aims for diagnosis support and their procedure is based on a previous
knowledge and is fixed. INCLIVA aims for genetic and genomic disease research
and their procedure has some dynamic and not predefined activities that need to
be configured. All in all, both procedures are part of the same kind (or family) of
analyses.

2.2.3 Current issues and challenges

Imegen and INCLIVA are two examples of industrial environments whose
original manual procedures to support their business processes (Figure 2.3 and
Figure 2.5) were no longer feasible to analyze large amounts of data. Those

An
al

ys
is

an
d

In
te

rp
re

ta
tio

n
 U

ni
t

T2. Get
genomic

variations

T3.Retrieve
and

Annotate
Variations

T8. Generate
final report

T1. Get Genome
Reference
Sequences

T5.Filter
Variations

T4. Find suitable
filtering criteria

T7. Prioritize
Variations

T6. Find suitable
priorization criteria

Sequencing
files

2. Problem Investigation 23

manual procedures had to leave the room for new ones supported by software
tools.

The geneticists from those organizations now use several software tools to
accomplish their genetic analyses: 1) gene-related tools, such as Sequencher [30],
SeqScape [31], Codon Code Aligner [32], Mutation Surveyor [33], Polyphred
[34], or inSNP [35]; and 2) genome-related tools, such as VCF Tools [36],
BIOMART [37], Annovar [38], SNPEff [39], VEP [40], GATK [41], or SAM
Tools [42].

The complete analysis of these tools is available in [43]. In this technical
report, we gathered information about each tool such as authors, current version,
or installation information, etc., and we analyzed the functionality provided by
each of them in regards to the business process of Imegen and INCLIVA. As a
conclusion of this analysis, we found several unsolved issues despite the full
amount of software tools available. This analysis complements the contributions
from other authors like [44, 9, 41, 45, 46].

The most common problems found in the aforementioned tools are the
following:

1. Several tools to support the complete analysis: Geneticists do not easily
find a tool that gathers all (or the majority of) the functionality that is
required to execute a complete genetic analysis. There are many useful
software tools for their analyses, but each of them focuses on
accomplishing one or few tasks. For instance, addressing the alignment
of sequences, annotating variations, or visualizing genomes.

2. Difficulties for customization: Geneticists need to customize the existing
software tools to fulfill their specific needs. However, customization
usually requires a deep knowledge of the technological implementation
of the tool. For instance, when a new annotation must be included in the
analysis or when geneticists need to change the default parameters of an
alignment algorithm to fit the specific features of their samples, they need
to modify some components of the software tools. Depending on the
dimension of the customization, geneticists must acquire technical
knowledge that can go from understanding the insights of the tool to
change the source code written with a general programing language such
as Python or Java.

2. Problem Investigation 24

3. Difficult integration among tools: Since a tool-that-fits-all is not a
feasible approach, geneticists need to integrate different tools to
accomplish their specific analyses. With this aim, geneticists need to
create data processing pipelines composed by several tools. However,
geneticists hit a wall when each tool uses different technologies and
formats to represent data. As a solution, new standards for file formats
have appeared so that tools can communicate to each other. Different
genetic tools have adopted them but sometimes, geneticists use their
extension mechanisms, creating files with formats outside the standard.
Eventually, other tools cannot interpret such extended formats, having
the same initial integration problems.

4. Usability issues. Current software tools have several usability issues such
as: 1) some functionality does still not work properly; 2) there are not
source code comments; or 3) there is not friendly documentation for end-
users. In order to use them, geneticists must read technical
documentation, which increases the learning curve of the tools. Another
issue is that the majority of tools run under the Linux operative system.
This operative system has been traditionally used at IT environments,
and although their popularity is increasing among geneticists, its optimal
usage requires skills on the Unix command line and scripting.

Besides the detected issues, another conclusion of this analysis is that these
problems are a consequence of the huge existing gap between developers and
geneticists. On the one hand, developers could not create the suitable tools for
geneticists because they did not achieve a full comprehension of their needs. On
the other hand, geneticists got tired of software tools that did not fulfill their
needs and saw no other option than becoming the developers of their own
software to accomplish their analyses; they acquired basic programming skills and
programmed these tools.

Geneticists with programming skills, also named bioinformaticians, have
been developing databases, analytics software, and repositories for sharing
genomic data. Their common development approach has been acquiring some
technical knowledge, for instance a programming language, and implementing a
set of structured scripts to run their analyses over flat text files. However, their
lack of knowledge of software quality standards and best practices for software
development (such as usability, interoperability, portability, reusability,

2. Problem Investigation 25

maintainability, documentation, etc.) led to a huge proliferation of tools and
heterogeneous databases; too frequently lacking the required technical quality.

2.2.3.1 A preliminary solution: Pipeline development environments

As a consequence of the aforementioned problems, geneticists who want to
reuse existing solutions to perform their genetic analysis must face a technical
challenge. Whether they like it or not, they must learn technological details and
programming skills to use the existing tools, to achieve interoperation among
them, or to customize them to fit their needs.

As a solution of this problem, pipeline development environments have been
proposed with the aim to facilitate the reuse and customization of genetic
software tools [47]. These environments support the creation of bioinformatics
pipelines by integrating under a common interface existing components, such as
libraries or software tools, and by providing friendly means to aid in the
composition of the pipeline, such as predefined programming structures or a
graphical notation.

The problem is that although geneticists know these environments, their use
is still modest. Examples of these environments are BioPython [48], BioPerl [49],
BioJava [50], Taverna [51], Galaxy [52], and eBioFlow [53].

The complete analysis of these environments is available in [43]. In this
technical report, we gathered information about each environment such as
authors, current version, or installation information, etc. We also analyzed the
advantages and drawbacks while creating the bioinformatics pipelines that
supported the processes of Imegen and INCLIVA (Figure 2.3 and Figure 2.5).
As a conclusion of this analysis, we found that the usage of these environments is
friendlier than programming with a general-purpose language, but they still have
unresolved issues. This analysis complements the analyses from other authors like
[46, 54, 55, 56].

As advantages, these environments achieve to solve two main issues:

1. Several tools to support the complete analysis: These environments
praise for the creation of pipelines that integrate existing software tools
under the same context. After composing the pipeline, geneticists can
use it as a unique piece of software that receives an input, executes the
desired analysis, and provides the corresponding results.

2. Problem Investigation 26

2. Usability: These environments integrate different analytics tools under a
friendlier environment than a command line terminal. Thanks to this
functionality, geneticists can easily choose the software tools they want
to use and they do not have to worry about their installation. This
functionality avoids geneticists the need to learn about Unix
management and the usage of the command line.

As drawbacks, geneticists must still deal with the following unsolved issues:

1. Difficulties for customization: These solutions have eased the usage of
the integrated tools by providing a higher abstraction level, for example,
by using friendly interfaces. Thanks to this abstraction, geneticists can
configure the parameters of the tools and execute it without the need of
knowing the underlying command. In some cases, the provision of input
data is made with a form with droplists, radiobuttons, checkbuttons, etc.,
which improves the usability for geneticists. However, in other cases, the
abstraction level is not enough and the interfaces provide generic input
fields whose format is unknown and maps directly to the parameters of
an underlying command line tool. Therefore, when geneticists need to
customize the tools to fit their needs, they still must know the technical
details of the tool. In some cases, in order to achieve this customization,
geneticists also need further technical knowledge about the pipeline
development environment.

2. Difficult integration among tools: As an aid to create pipelines, these
environments provide parsers for unifying the most common data
formats. Since not all parsers for the formats that are used by geneticists
are supported, these environments also provide text utilities to filter and
rearrange data. As a consequence, geneticists must learn how to use the
provided text utilities, which may be tedious when they require working
at a lower level using columns, rows, and fields, and complex when they
require the description of regular expressions and programming
structures.

3. High technological coupling: These environments provide a tool set of
bioinformatics software tools from which geneticists can chose to
compose their analysis. As a consequence, they must identify the
mapping between the genetic task they want to accomplish and the
technological artefact most suitable for the task. This means that the
pipeline created is coupled with the set of selected software tools.

2. Problem Investigation 27

A further conclusion from this analysis is that besides these drawbacks, the
level of abstraction and expressivity provided by these environments is not fully
satisfactory for geneticists. For geneticists with experience in genetic analysis
technologies, these environments are not expressive enough. They need to
describe all the details of the pipeline with the specific tools and parameters they
want to apply, but these environments usually hide all the configuration
possibilities in favor of usability.

Similarly, geneticists with less technological experience do not want such
expressivity, but they need higher abstractions. They need a friendly environment
to analyze what they want and to stop worrying about tools, parameters, and
technological errors. However, current environments still provide an abstraction
level where geneticists need to deal with all these problems: tool selection,
configuration, and integration.

2.2.4 A DSL as a solution

As some authors mentioned [57, 58], bioinformatic pipeline development
environments need to focus on their real users and to provide the suitable
conceptualizations of their domain that describe “what” geneticists want to do
instead of “how” they are going to accomplish their analysis. A friendly
environment for geneticists must allow them to describe pipelines through
genetic analysis concepts, instead of choosing specific software tools, configuring
each of them with their specific parameters, and managing the interoperation
among them.

In this direction, some advances have been made to improve the abstraction
level of existing software products. One example is the Biocatalogue [59]
repository, which gathers analytic services for the bioinformatics domain that
have been annotated with ontology terms and keywords. This work goes a step
further towards the development of a conceptualization environment, but it is still
missing a friendly environment that takes advantage of these domain annotations
and provides a conceptual environment in which geneticists perform their
analyses using those conceptual abstractions.

Another example is the workflow development environment eBioflow [53],
which proposes the identification of roles and actors and their association with
tasks and technological artefacts, respectively. The roles and actors are described
at design time and the workflow is enacted at execution time. Although the

2. Problem Investigation 28

environment achieves a better abstraction of the genetic analysis by providing the
role and actor abstractions, it still lacks a robust proposal to define roles related
with the genetic domain. Moreover, its current implementation integrates
existing datatypes from several third-party repositories without taking into
account their curation.

The idea of an environment that provides common conceptualizations to
create genetic analysis pipelines seems fitting into place when we observe the
effort of the community to create and share pipelines. Since geneticists reuse
existing pipelines, it is undeniable that geneticists with different goals share tasks
to some extent, which means that there is an underlying commonality among
their goals. Furthermore, although geneticists use pipelines created by others,
they also need to customize them to fit their needs, which means that behind
those commonalities, the domain also manifests some variabilities that need to be
managed.

Due to all these reasons, we strongly believe that a domain-specific language
can provide a friendly and effective environment for geneticists with the right
abstractions to create pipelines using genetic analysis concepts. Using this DSL,
geneticists will be able to choose the domain tasks they want to accomplish, to
configure them according to the features of the genetic analysis, and to avoid the
underlying technological issues.

This DSL aims to solve the current issues of existing software tools for genetic
analysis:

• Several tools to support the complete analysis: Thanks to the DSL,
geneticists will be able to specify the genetic analysis they want to
accomplish and the DSL infrastructure will instantiate the corresponding
technological artefacts of the implementation environment. Afterwards,
geneticists will be able to use this instantiation as a single software tool
that completely fulfills their needs.

• Difficulties for customization: Thanks to the DSL, geneticists will not
have to worry about acquiring technical knowledge about existing
software tools while creating pipelines. The customization will be done
while designing a pipeline by using the constructs of the DSL. The
underlying customization of existing software tools will be solved during
the development of the DSL.

2. Problem Investigation 29

• Difficult integration among tools: Thanks to the DSL, geneticists will
not have to worry about the incompatibility of tool formats. They will
not be responsible for interconnecting existing tools, only for choosing
the set of DSL constructs they want to use. The integration complexity
will be solved during the development of the DSL.

• Usability: The DSL will be specially designed for geneticists. This means
that in order to specify a genetic analysis, geneticists will only have to use
language constructs that use domain concepts and fulfill their preferences.
The ultimate goal is that geneticists find the DSL easy to use and useful.

• High technological coupling: Thanks to the DSL, geneticists will not
have to worry about selecting the software tools to use because the DSL
will automatically selected them. Tool selection will be performed
according to the DSL constructs used by geneticists while specifying
their genetic analyses. In order to ensure the correct instantiation, the
domain experts will supervise the mappings between constructs and tools
during the design of the DSL.

The proposal of domain-specific languages in the bioinformatics domain is
not novel as we can see in the works: MOLGENIS [60], a DSL for the rapid
prototyping of user interfaces for genetic repositories, Greg [61], a DSL to
describe genetic regulatory mechanisms, and the work from [62], a DSL to design
organisms’ expression vectors. However, these DSLs were designed to improve
the usability and reduce mistakes when modelling genetic structures. Geneticists
create models using these DSLs and use these models as a base to formulate
hypothesis and to conduct experiments outside the bounds of the DSL. In short,
these DSLs are used to describe genetic concepts but not to describe how to
conduct bioinformatic analytic tasks over genetic data.

Nevertheless, there is a DSL, named BIOBIKE [63], for the combination of
tools, data, and knowledge to conduct biological analysis. This DSL provides a
higher conceptualization level than current existing development environments.
However, it is based on the Lisp language [64] and still contains some
programming elements that are not related with the biological domain such as
the definition of variables and functions and the use of arithmetic or string
operations. Nowadays, this DSL is outdated because it was created in 2009 and
it only supports the biological operations that were used before the evolution of
the genetic analysis domain and bioinformatics tools of the last years.

2. Problem Investigation 30

This means that there is still a need to provide a DSL with a higher
conceptualization level and updated to support the knowledge related to the
appearance of NGS technologies, the additional analytics options offered by the
new bioinformatics tools, and the access to genetic and genomic data repositories
that have been created in the last five years.

2.3 Lessons learned
Thanks to the collaboration with the geneticists, we have understood the

situation of the genetic analysis domain and analyzed the potential benefits of a
DSL for this domain. In addition, we have realized that developing a DSL for
this domain requires taking into account several important concerns.

First, the DSL should represent concepts of the genetic analysis domain and
hide concepts that are outside their domain (like programming concepts). Since
geneticists are the experts of this domain and developers are experts in identifying
the right abstractions to create a DSL, both developers and geneticists need to
collaborate to identify which of these concepts are relevant and should be
represented in the language.

Second, the DSL language structure that is offered to geneticists must be
specially designed for them. Geneticists are the target users of the DSL, so the
language structure must be designed according to their preferences. Since
developers are the experts in designing the language structure, they should offer
geneticists with ideas for that structure. With these ideas and the developers’ aid,
geneticists should draft this design; otherwise, it could contain elements only
suitable from the developers’ perspective.

Finally, the DSL provides a friendly interface for geneticists to specify a
pipeline using genetic concepts, whose specification will be instantiated as a
pipeline that integrates different genetic analysis software tools. Currently, the
genetic analyses to be provided are highly coupled to existing genetic analysis
software tools. For this reason, the mapping between the concepts of the domain
and the existing software tools must be made in collaboration with geneticists
since they are the ones who know the tools that must be used and how they are
configured to provide the suitable functionality.

2. Problem Investigation 31

2.4 Conclusion
The genetic analysis domain has invested many efforts to both create and

share existing software tools and pipelines for genetic analysis. Geneticists have
acquired software development knowledge and invested their efforts developing
their own software tools. However, regardless all these efforts, geneticists
complain that the genetic analysis domain still lacks a fully satisfactory solution.

In order to understand the domain situation, in this chapter we have reviewed
the context of Imegen and INCLIVA geneticists and the genetic software tools
(and bioinformatics pipeline development environments) that they used or know
to support their genetic analyses. From this collaboration, we have detected
unresolved issues related with customization, integration, and usability.

As a solution to their problems, we have proposed the creation of a DSL for
supporting genetic analyses. Instead of learning programming languages,
database and web technologies, and operative systems management, they will be
provided with a domain-specific language that will avoid them the need to acquire
this technical knowledge, and will provide them with the possibility to focus only
on domain-related issues.

In the analysis presented in this chapter, we have realized that developing a
DSL for the genetic analysis domain is a difficult task that requires overcoming
the huge existing gap between developers and geneticists (a gap that is not that
huge in other technical domains such as the domain of web applications). In order
to overcome this gap, we also realized that we must enhance the participation of
geneticists during the development of the DSL. Specifically, we need their
participation to ensure that genetic concepts, such as DNA or gene, are well
represented, that the DSL structure is suitable according to their preferences, and
that the DSL underlies the right software tools for genetic analysis.

As a conclusion, we have detected that in complex domains with high
specificity, the feedback from end-users during the DSL development process is
essential to ensure that the DSL created represents the domain correctly and fits
end-users’ needs. For this reason, the motivation of this PhD thesis is to provide
an approach that supports the creation of domain-specific languages for complex
application domains (not only for the genetic analysis domain) by enhancing the
participation of end-users within the DSL development process.

2. Problem Investigation 32

Hence, the goal of this PhD thesis is to propose a method that we can use
afterwards to involve geneticists in the development of a DSL for genetic analysis,
but may also be used by further developers to create a DSL for another complex
application domain.

3. State of the Art 33

3. State of the Art
As we have seen in Chapter 2, developing a DSL for a complex domain is a

difficult task that requires the collaboration of end-users during the DSL
development process. However, traditional and well-established approaches for
DSL development are mostly focused on improving the efficiency of developers;
neglecting the importance of the end-users during the DSL development process
itself.

The aim of this chapter is to find whether there is in the state of the art a
DSL development approach that guides and simplifies the development process
for developers, ensures that the DSL is developed within the suitable time, and
facilitates the gathering of end-users’ feedback. Since our main goal is to find an
approach that helps overcoming the complexity of the domain and the gap with
end-users, we pay special attention on the approaches that involve end-users in
the development process.

In the first section, we briefly overview the state of the art of DSL
development. In the second section, we propose several analysis criteria to assess
whether a DSL development approach is suitable for developing a DSL for a
complex application domain. In the third section, we overview the identified
related works and assess each of them in regards to the analysis criteria proposed.
Finally, in the last section, we discuss the result of the assessment and the issues
that remain unsolved.

3. State of the Art 34

3.1 State of the art of DSL development

Thanks to the popularity of DSLs like HTML, SQL, or VHDL (and the
general believe that DSL development is complex and requires a big effort), the
interest of researchers in DSL development has gained a lot of attention,
especially in the last decade. As Nascimiento et al. [5] shows in their systematic
mapping, the applied analysis criteria found 7 primary studies in 1996 in contrast
to the 225 that were found in 2010 (See Figure 3.1 obtained from Nascimiento
et al.).

Figure 3.1 Works of the literature about DSLs (from Nascimiento et al.)

Research interests of these works range from defining DSL concepts,
providing guidelines for development, describing examples of developments,
proposing new techniques, improving certain aspects of the development process,
to discussing lessons learned from industrial practice.

 Among them, we highlight a set of knowledge base works. In 2000,
VanDeursen [3] provided a snapshot of the current state of DSL development,
and a brief description of the most relevant works at that time. In addition,
Czarnecki [14] presented in his PhD thesis the state of the integration between
domain engineering and application engineering methods, providing details
about different analysis and design techniques and implementation technologies.
Then, Spinellis [13] introduced one of the first methodological works in DSL
development, which describes and analyzes a set of design patterns so that other
DSL developers could benefit from their use. Finally, Mernik et al. [10]
organized the DSL development process in different stages and provided
methodological guidelines to guide developers in each of them.

3. State of the Art 35

In the last decade (mostly from 2008-2013), we highlight another set of
reference works. Kelly and Tolvanen [65] provided a guidebook both to beginners
and to advanced developers for the development of DSLs, including discussions
about domain abstractions, industrial experience, and code generation from
models. Strembeck and Zdun [12] proposed a systematic approach to guide
developers in the different decisions to take into account when developing a DSL,
by identifying each of these decisions and using decision charts that illustrate each
of them. Fowler [4] provided further details and examples about DSL concerns,
such as the implementation of external and internal DSLs, options for code
generation, and available workbenches. Finally, Voelter [22] overviewed the state
of DSL development, starting from explaining the conceptual foundations of
DSL design, the design approaches options, the useful IDEs for implementation,
and ending explaining the role that DSLs play in software engineering.

During more than a decade, the aforementioned works (among others) have
contributed to DSL development by improving conceptual and methodological
foundations but also by addressing different aspects of development such as
performance and tool support. However, a common absence can be found in all
of them: the small attention to the end-user role during DSL development.
Traditionally, this role has been neglected because the developers used to play
both roles: developer and end-user. Initially, these works were applied to develop
DSLs for technical domains with the aim to enhance the productivity of software
developers. In this case, the developers usually had enough technical knowledge
to develop the DSL. However, nowadays, DSLs are also developed for complex
application domains with the aim to involve end-users of non-technical domains.
Therefore, in this case, it is unlikely that the developers have such specialized
knowledge. Since these DSLs must be especially designed to be used by the end-
users of those domains, their consideration during the development process
cannot be avoided.

3.2 Analysis criterion

The goal of reviewing the related works of the literature is to find a complete
guidance to successfully develop a DSL in close collaboration with end-users. For
this reason, in order to identify the contributions of each related work to this goal,
we propose to analyze them according to the following analysis criteria: a) process

3. State of the Art 36

completeness; b) application of current research about end-user development; and
c) end-user involvement.

3.2.1 Process completeness

This criterion analyzes if the approach covers all the stages of DSL
development. As a base to define the process completeness, we use the stages
proposed by Mernik et al. [10] and the continuation of this work in [11]. We
have selected Mernik’s work for being one of the most relevant works in the
literature regarding methodological guidelines for DSL development and one of
the most cited works of the literature by authors that put in practice the
development of a DSL. The stages proposed by these works are:

1. Decision Stage: In this stage, the decision whether or not to develop the
DSL is made. If the benefits are worth the efforts and the DSL
contributions to end-users are clear, the DSL is developed.

2. Analysis Stage: In this stage, a domain analysis is conducted. The domain
knowledge is gathered from sources of explicit and implicit knowledge
such as technical documentation, GPL code, and from interviews or
discussions with end-users. As an explicit representation of all the
knowledge gathered, it is created a domain model with the following
elements: a) a domain definition defining the scope of the domain; b)
domain terminology; c) description of domain concepts; and d)
commonalities and variabilities of domain concepts and their
interdependencies.

3. Design Stage: In this stage, the language structure (syntax) and the
language meaning (semantics) are described. Syntax comprises the
abstract and the concrete syntax. Semantics comprise semantic
restrictions and behavioral semantics. According to this decomposition,
this stage is organized into four activities:

a. Abstract Syntax Specification: Descriptions of the concepts and
relationships of the DSL’s constructs.

b. Concrete Syntax Specification: Descriptions of the specific
notation of the DSL constructs.

c. Semantic Restrictions Specification: Descriptions of additional
constraints and relationships that affect the concepts of the DSL
constructs.

3. State of the Art 37

d. Behavioral Semantics Specification: Descriptions of the meaning
of each DSL construct in the domain that is targeted by the DSL.

4. Implementation Stage: In this stage, the complete DSL infrastructure is
implemented. As a result, it is created an environment that understands
specifications written using the DSL syntax, ensures that specifications
written with a different syntax are reported as erroneous, and executes
the corresponding set of actions that represent the semantics of that DSL
specification.

5. Testing Stage: In this stage, it is checked both that the DSL language
can be used by end-users to specify what they wanted and that the
corresponding artefacts (models, executable applications, etc.) that are
created from DSL specifications fulfil end-users’ needs correctly and
accurately. Also, the DSL editor is stressed with negative DSL
specifications to check that the corresponding errors are informed to end-
users with the suitable messages for them to understand the ongoing
mistake(s).

6. Deployment Stage: In this stage, developers release a complete DSL to
be used by the end-users by themselves.

7. Maintenance Stage: In this stage, new requirements or detected
misbehaviors are described in order to be included in the next version of
the DSL.

In order to assess process completeness, we check the support of each stage
and the support of each of the activities that compose the stage. We characterize
each stage or activity as “Supported (S)” if the stage or activity is completely
addressed; “Partially-Supported (PS)” if the stage or the activity is supported but
some issues remain unsolved; and “Not supported (NS)” if the stage or activity is
not addressed or none details have been provided about it.

3.2.2 Application of existing End-User Development (EUD) practices

 This criterion assesses if the proposal applies any kind of knowledge from
current and previous research regarding end-user development [2]. For instance,
best practices for end-user development, behavior heuristics, or end-user oriented
artefacts such as sketches. Concretely, for each related work and for each DSL
development activity, we provide a brief description of the type of end-user
development practice that has been applied.

3. State of the Art 38

3.2.3 End-user involvement

This criterion assesses if end-users participate in the different DSL
development activities. For those activities in which end-users are involved, we
analyze the mechanisms that are proposed to achieve their participation.

Concretely, for each related work and for each DSL development activity, if
end-users participate, we provide a brief description of the approach used to
involve end-users.

3.2.4 Analysis table

In order to analyze each related work in regards with the three described
criteria, we propose the analysis table that is shown in Table 3.1. For each of the
stages Analysis, Design, Testing, Deployment, and Maintenance (and the
activities that compose each stage), we assess their support by categorizing them
with the abbreviation “S, PS, or NS”, a brief description of the end-user
development practice applied, and a brief description of the approach for
involving end-users.

As we can see in the table, we have left the Decision stage outside the
comparison because this stage is barely mentioned in the works analyzed.
Although its participation is likely, we have not been able to assess whether and
how end-users are involved. Likewise, we assessed neither Implementation nor
Deployment because both stages usually require a highly technical knowledge for
end-users to participate.

Table 3.1 Analysis table

Stage Activity Support
(S,PS,NS)

EUD
practices

End-user
Involvement

Analysis Domain Analysis
Domain Model Specification

Design Abstract Syntax Specification
Concrete Syntax Specification
Semantic Restrictions Specification
Behavioral Semantics Specification

Testing DSL infrastructure testing
Maintenance New requirements addition

3. State of the Art 39

3.3 Analysis execution

An approach to ensure that a DSL has been developed according to the end-
users needs is to include them as much as possible in the process. However, since
end-users availability can be limited and the technical level of DSL development
activities can be difficult for end-users, it is necessary to establish a balance
between quality and feasibility of end-user participation. In the search of this
balance, we found three different types of approaches to develop DSLs taking
into account end-users needs.

First, we found works that although do not involve end-users in the DSL
development process, they take into account end-users needs by applying ideas
proposed in previous research works about end-user development, such as best
practices, patterns, heuristics, etc. Examples of this approach are Perez et al. [66],
which applies best practices of end-user development, and Nishino [67, 68],
which uses cognitive dimensions and language heuristics.

Second, we found works that propose to involve end-users more than
traditional approaches by adopting an agile development process: dividing the
DSL development into iterations and involving end-users at the beginning and
the end of each of them. Examples of this approach are Sadilek [69], which
introduces the notion of agile language engineering, and Barisic et al. [70], which
involves end-users at different iterations to ask about the DSL usability.

Third, we found works that propose to involve end-users in the creation of
different artefacts of a DSL. In order to engage end-users in this task, these works
propose mechanisms that simplify the technical level so they can understand
easily the procedure to be accomplished. Examples of this approach are Wuest et
al. [71], Cho et al. [72], Kuhrman et al. [73], and Sanchez-Cuadrado et al. [74],
which propose a friendly environment for describing domain examples, and
Canovas et al. [75], which proposes a collaborative infrastructure for end-users
and developers to collaborate in the design of the DSL syntax.

Next, we describe each of these works with detail, discuss their contributions
towards end-user involvement in DSL development, and fulfil the analysis table
to compare these works. Among them, we did not analyze in detail the work of
Sadilek et al. “Towards an Agile Language Engineering”. This work provides an
introduction to agile language engineering by analyzing: 1) how to organize the
development process in iterations; 2) the different roles involved in the process;

3. State of the Art 40

3) the different available formalisms to describe a language; 4) the possible
implementation approaches, etc.; and 5) an illustrative example about the
seismology domain. Despite being a relevant related work that describes
important background to take into account for DSL development, we have
discarded it because it only describes the general course of action instead of
describing a development method in detail.

3.3.1 Towards the involvement of end-users within model-driven
development

The motivation of Perez et al. [66] is to involve end-users in a model-driven
development (MDD) process. Since end-users do not usually know about
domain-specific modelling languages and modelling tools as professionals do,
their goal is to develop a modelling language with a good usability so that end-
users are engaged to participate in a future model-driven development process.

As an approach to develop a more suitable DSL for end-users, this work
applies the following best practices from end-user development. For example:

• End-users should be provided with a Domain-Specific Visual Language
(DSVL)

• End-users should focus on user-dependent properties, whereas software
engineers should focus on quality or maintenance properties.

• End-users should use a library of components as a starting point in order
to customize their system.

• End-users should be supported by specific tools that are made especially
for them.

With these practices in mind, they propose a method of six steps that takes,
as input, an existing DSL and a MDD approach and obtains, as output, a visual
DSL supported by a tool with a graphical interface. The steps of the method are:

1. Identify the properties of the system that require end-user participation
(analysis). As a result, the variabilities and commonalities of the domain
are described using a feature model.

2. Select a visual DSL: According to the best practice “end-users should be
provided with a DSVL”, the visual syntax of this DSL will become the
concrete syntax to be used by end-users.

3. State of the Art 41

3. Design the base system of the new DSL from the original DSL (abstract
syntax design).

4. Design the components that help end-users to complete the base system:
According to the best practice “end-users have to use a library of
components as a starting point in order to customize their system”, the
variabilities in the DSL will be configured by means of components
(behavioral semantics).

5. Define mappings between the input DSL and the visual DSL that has
been selected in step 2 (behavioral semantics).

6. Create the tool support of the visual DSL (implementation).

3.3.1.1 Discussion
This approach takes into account end-users needs during DSL development

by applying best practices of end-user development during the development of
different DSL artefacts. However, the specific requirements and needs of the
target end-users are not directly asked to them during the DSL development
process.

As we can see in Table 3.2, the Analysis stage is partially supported (PS).
Domain Analysis is supported (S) but Domain Model Specification is partially
supported (PS) because although the commonalities and variabilities of the
domain are made explicit, the other elements of the domain model are not
described.

The Design stage is also partially supported (PS). Abstract Syntax
Specification, Concrete Syntax Specification, and Behavioral Semantics
Specification are supported (S). However, none reference is made of how
semantic restrictions could be described (NS). Regarding end-users needs, this
approach applies the use of visual syntaxes to design the concrete syntax of the
DSL and the use of existing components as a starting point to define the
behavioral semantics. End-users are not involved in any design activities.

Since stages Testing and Maintenance are not mentioned, we characterize
them as not-supported (NS).

In this work, end-users are not directly involved during the development
process. For instance, during the design of the concrete syntax, end-users are
taken into account because a visual DSL is selected; however, the specific end-
users have no say about which visual syntax they prefer, neither about the

3. State of the Art 42

possibility to customize the visual syntax selected. In fact, the proposal always
creates visual DSLs to improve usability, which may not be the best approach for
some end-users.

Likewise, during the design of behavioral semantics, end-users are provided
with a library of components that have been preselected by developers, without
intervention of end-users. Although it is true that not every end-user will be aware
of the existing components of their domain, it is also true that in the end, they
are the experts of the domain. In fact, they are more likely to know current
software that implements different domain-related behaviors, even if they do not
know or understand their underlying implementation details.

Table 3.2 Assessment of Perez et al.’s work

Stage Activity Support
(S,PS,NS)

EUD practices End-user
Involvement

Analysis Domain Analysis S - -
Domain Model
Specification

PS - -

Design Abstract Syntax
Specification

S - -

Concrete Syntax
Specification

S Visual DSLs -

Semantic Restrictions
Specification

NS - -

Behavioral semantics
Specification

S Components
Library

-

Testing DSL infrastructure
testing

NS - -

Maintenance New requirements
addition

NS - -

3.3.2 Misfits in abstractions: Towards user-centred design in DSLs for
end-user programming

The motivation of Nishino [67] is to solve the usability problems of DSLs
caused by a bad design. According to authors, if developers do not have the
suitable domain knowledge during DSL development, inappropriate abstractions
occur as a consequence of conceptual misfits.

For this reason, this work proposes to identify usability problems by analyzing
a set of cognitive dimensions proposed by Blackwell et al. [76] and a set of feature
heuristics proposed by Sadowski et al. [77]. Concretely, they assess the language
according to a set of cognitive dimensions, such as quick to learn, quick to apply,

3. State of the Art 43

applicable at any stage of design, etc.; and a set of feature heuristics such as
abstraction gradient, consistency, error proneness, hidden dependencies or error
recovery, among others.

After identifying the list of usability problems, developers propose a redesign
that tackles with all these problems but also to assess this new design before it is
implemented. As an illustrative example, they apply this approach to design a
DSL in the music domain.

3.3.2.1 Discussion
In the context of DSL development, this work can be placed as an approach

that addresses the testing of a DSL: the approach analyses the usability problems
of an existing DSL and proposes to redesign some parts of the DSL to solve them.
However, no additional details are provided about how to evolve the different
elements of the DSL, that is, it is not explained how to proceed to apply changes
in a potential existing analysis model, how to evolve the design models, or the
implementation infrastructure.

As we can see in Table 3.3, all stages are not supported (NS) but testing,
which is partially supported (PS). This approach is partially supported because it
addresses the testing of usability problems, but it does not test for example, the
fulfilment of functional requirements. In this stage, previous research about end-
user development is applied to detect usability problems but end-users are not
involved in it.

Table 3.3 Assessment of Nishino's work

Stage Activity Support
(S,PS,NS)

EUD practices End-user
Involvement

Analysis Domain Analysis NS - -
Domain Model
Specification

NS - -

Design Abstract Syntax
Specification

NS - -

Concrete Syntax
Specification

NS - -

Semantic Restrictions
Specification

NS - -

Behavioral Semantics
Specification

NS - -

Testing DSL infrastructure
testing

PS Cognitive dimensions
and feature heuristics

-

Maintenance New requirements
addition

NS - -

3. State of the Art 44

3.3.3 How to reach a usable DSL? Moving toward a systematic
evaluation

The two works of Barisic et al. [78, 70] state the importance of addressing
usability concerns early in the DSL development process. Specifically, their idea
is assessing the quality in use of the DSL before it is completely implemented.

With this aim, this work proposes a DSL development and evaluation process
that divides the DSL development into iterations. At the end of each iteration,
end-users are asked about the quality in use of the DSL. To assess this quality,
authors studied the usability dimensions of the quality standard ISO IEC CD
25010.3 and built a quality model [78] with the following quality dimensions:
understandability, readability, efficiency, effectiveness, learnability, flexibility,
expressiveness, freedom of risk, and satisfaction. To assess the DSL, they use a
goal-question-metric approach that is based on that model. This approach
describes a set of goal-question-metric trio for each quality dimension [70]:

• Goal: the usability dimension to be evaluated. For example: “Effectiveness”
• Question: The end-users’ perception about the usability dimension. For

example: “Is the user able to specify all parts of the example?”
• Metric: Set of attributes that assess the degree of achievement of the

usability dimension. For example: “Number of errors while describing the
example”.

In order to illustrate the proposal, it has been applied in the usability
assessment of a DSL for specifying humanitarian campaign processes (named
FlowSL). Two cycles of the DSL development process have been conducted, in
which four evaluations with two end-users were performed.

3.3.3.1 Discussion
This work tackles with a very important aspect of the DSL success that is

usability and highlights the importance of involving end-users early in the DSL
development to evaluate such usability.

In their first proposal, they mentioned different ideas for quality assessment
to be included in the stages Analysis, Design, Implementation, and Testing.
However, in their most recent work, authors presented their quality assessment
approach only for the Testing stage, without further details about how to address
the different stages Analysis, Design, and Implementation and how these stages

3. State of the Art 45

contributed to the quality assessment. Accordingly, in Table 3.4, we characterize
the different activities of the stages Analysis and Design as not supported (NS).

The proposal describes how end-users are involved in the Testing stage at the
end of each iteration of DSL development. It describes the roles of different end-
users and the usability questions that were used for one specific use case. However,
it does not provide much detail about the approach such as the specific tasks that
must be followed to perform the DSL evaluation, how the metrics obtained
should be interpreted to assess each usability dimension, or how to deal with the
feedback provided by end-users. Because of these missed details and the lack of
support for testing functional requirements, in Table 3.4, we characterize the
Testing stage as partially supported (PS). In this stage, none EUD practices is
applied but end-users are involved in the usability assessment by means of the
goal-question-metric approach.

Finally, the approach does not mention any maintenance activity, so we
characterized it as not supported (NS).

Table 3.4 Assessment of Barisic et al.'s work

Stage Activity Support
(S,PS,NS)

EUD
practices

End-user Involvement

Analysis Domain Analysis NS - -
Domain Model
Specification

NS - -

Design Abstract Syntax
Specification

NS - -

Concrete Syntax
Specification

NS - -

Semantic Restrictions
Specification

NS - -

Behavioral Semantics
Specification

NS - -

Testing DSL infrastructure
testing

PS - Usability (quality in use):
Goal-Question-Metric
Approach

Maintenance New requirements
addition

NS - -

3.3.4 Semi-automatic generation of metamodels from model sketches

The motivation of Wuest et al. [71] is to facilitate the metamodeling activity
to non-experts and to provide modelers with additional freedom when using
metamodeling tools. For example, by supporting the free sketching during a
brainstorming session. In the context of DSL development, their goal is to create

3. State of the Art 46

domain models together with end-users by means of sketches and to seamlessly
obtain the corresponding abstract syntax metamodel of the DSL.

With this aim, the authors have created FlexiSketch, an environment for
modelers and end-users to design together the examples of the domain using
sketches. For the generation of the metamodel, the environment identifies the
different parts of the sketches as nodes and edges (see Figure 3.2).

From nodes and edges, and with additional metamodeling information (such
as types and cardinalities), an inference algorithm (proposed by the authors) is
able to infer the entities, the attributes, the relationships, and the cardinalities of
the metamodel. The environment uses wizards to guide developers in the
addition of this extra information that cannot be found in sketches. Besides the
inference of the metamodel, the sketches themselves can be proposed afterwards
as candidate elements for the concrete syntax.

Figure 3.2 The FlexiSketch environment (extracted from Wuest et al.)

3.3.4.1 Discussion
This approach provides a friendly solution for end-users and developers to

analyze the domain by means of domain examples. These examples are used for
the creation of the DSL syntax, both the abstract syntax and the concrete syntax.
However, these examples do not completely represent the complete domain
model explicitly (scope, terminology, concepts, and commonalities and
variabilities).

Accordingly, in Table 3.5, Domain Analysis, Abstract Syntax Specification,
and Concrete Syntax Specification are characterized as supported (S). However,
Domain Model Specification is characterized as not supported (NS). In these
supported activities, end-users are involved by using of sketches (through the
environment FlexiSketch), a well-known technique in the end-user development
field.

3. State of the Art 47

During the metamodel inference, developers may add cardinality constraints
between entities but they are not able to define further constraints. For this reason,
we characterize Semantic Restrictions Specification as partially-supported (PS).
In this activity, neither research about end-user development nor participation by
end-users is included.

This work is not a method for DSL development, so the other stages and
activities of DSL development are not supported. For example, neither behavioral
semantics are mentioned as a part of the proposal nor how to implement, test,
deploy or maintain the DSL. For this reason, the Testing and Maintenance stages
are characterized as not supported (NS).

Table 3.5 Assessment of Wuest et al.'s work

Stage Activity Support
(S,PS,NS)

EUD
practices

End-user Involvement

Analysis Domain Analysis S Sketches Sketches (FlexiSketch
environment)

Domain Model
Specification

NS - -

Design Abstract Syntax
Specification

S Sketches Sketches (FlexiSketch
environment)

Concrete Syntax
Specification

S Sketches Sketches (FlexiSketch
environment)

Semantic Restrictions
Specification

PS - -

Behavioral semantics
Specification

NS - -

Testing DSL infrastructure
testing

NS - -

Maintenance New requirements
addition

NS

3.3.5 Creating visual DSMLs from end-user demonstration

Like the previous work (Wuest et al.), the motivation of Cho et al. [72] is to
involve end-users in the metamodeling task of DSL development by means of
sketches. Similarly, this work infers from the sketches the DSL syntax and the
semantic restrictions.

The proposal starts when end-users and developers draw together a set of
domain examples using sketches. From them, unique graphical shapes are
identified and end-users choose the ones that are suitable to become elements of
the concrete syntax.

3. State of the Art 48

Then, the abstract syntax and the semantic restrictions are inferred using
graph theory. First, the domain examples sketches are transformed into graph
representations and then, an inference engine (implemented by the authors)
obtains the metamodel from those graphs. This engine requires training data,
both positive and negative examples, but also, as a part of this training, the engine
uses a set of design patterns that have been proposed by the authors in a previous
work [79]. According to the authors, these patterns represent common features
of DSLs and can be used to refine, and thus improve, the metamodel obtained
by the engine.

Regarding semantic restrictions, end-users review the domain sketches in
order to establish association links between their elements. During the
metamodel inference, the engine asks for feedback about those constraints by
providing a set of options that they must choose.

3.3.5.1 Discussion
This approach provides a friendly solution for end-users to describe domain

examples, the creation of the DSL syntax, and the semantic restrictions.
Nevertheless, the approach still does not make explicit the domain model details,
nor addresses other activities of DSL development such as behavioral semantics
design, testing, deployment, or maintenance.

Accordingly, the analysis table (Table 3.6) shows that Domain Analysis,
Abstract Syntax Specification, Concrete Syntax Specification, and Semantic
Restrictions Specification are supported (S). The rest of activities are not
supported (NS). End-users create domain examples for the domain analysis,
select the most suitable shapes of those sketches for the concrete syntax
specification; create links between elements of the sketches for the semantic
restrictions specification, and answer inference questions about constraints in the
sketches for the semantic restrictions specification as well.

3. State of the Art 49

Table 3.6 Assessment of Cho et al.'s work

Stage Activity Support
(S,PS,NS)

EUD
practices

End-user Involvement

Analysis Domain Analysis S Sketches Design example sketches
Domain Model
Specification

NS - -

Design Abstract Syntax
Specification

S - -

Concrete Syntax
Specification

S Sketches Shape selection and sketches
metadata

Semantic restrictions
Specification

S Sketches Sketches links and engine
inference questions

Behavioral semantics
Specification

NS - -

Testing DSL infrastructure
testing

NS - -

Maintenance New requirements
addition

NS - -

3.3.6 Rapid prototyping for DSLs: From stakeholder analyses to
modelling tools

The motivation of Kuhrman et al. [73] is to bring together DSL developers
and domain experts when developing DSLs in complex application domains. The
author’s proposal aims to assist developers to capture the suitable knowledge from
end-users and represent it into the DSL.

This work proposes a DSL named “PDE language”, whose aim is to facilitate
the creation of DSLs, both to developers and end-users. First, the PDE language
editor provides a digital panel in which end-users draw examples of their domain.
To do that, they can choose graphical shapes from images that are saved in the
file system or predefined shapes from the palette and create links among images
and shapes. Eventually, these shapes, images, and links will become into elements
of the concrete syntax. From these domain examples, the PDE language editor
creates an instance of the PDE language. This instance, besides being a PDE
language instantiation, it is also the abstract syntax metamodel of the DSL to be
created.

Once a preliminary version of the abstract and the concrete syntax have been
obtained, the editor generates a visualization model that shows different aspects
of the DSL (Figure 3.3). This way, developers and end-users can easily refine the
different DSL details. This editor has a view to validate the abstract syntax
metamodel, another view to customize the graphical concrete syntax, and a view

3. State of the Art 50

to program validation functions that ensure the fulfilment of semantic constraints.
Once the DSL design is finished, the tool implements the corresponding DSL.

Figure 3.3 The PDE language visualization model (extracted from Kuhrman et al.)

3.3.6.1 Discussion
This work provides a DSL as a friendly environment to facilitate the creation

of DSLs to both end-users and developers. However, authors acknowledge that
usability is still an issue to improve and only end-users with some DSL
development experience are able to accurately understand the whole environment.

First, the approach supports the Analysis and Design stages and end-users
are involved in both of them. Regarding the Analysis stage, Domain Analysis is
supported (S) because the PDE language editor provides an environment for the
creation of domain examples. In this activity, end-users are involved by means of
sketches, more specifically, through the graphical interface of the PDE language
editor. However, like the previous works, Domain Model Specification is not
supported (NS), since no scope, terminology, concepts, and commonalities and
variabilities are explicitly described.

Regarding the Design stage, Abstract Syntax Specification, Concrete Syntax
Specification, and Semantic Restrictions Specification are supported by the PDE
editor (S). Although the PDE editor provides a visualization model with different
views to facilitate the participation of end-users in those design tasks, actually
end-users can only participate in the concrete syntax design by selecting their

3. State of the Art 51

graphical elements. As authors admit, some views are still difficult for end-users,
such as the view for refining the abstract syntax metamodel or the view for
programming validation functions.

Finally, no further stages are presented after the implementation of the DSL
editor. For this reason, we characterize Testing and Maintenance as not
supported (NS).

Table 3.7 Assessment of Kuhrman et al.'s work

Stage Activity Support
(S,PS,NS)

EUD
practices

End-user Involvement

Analysis Domain Analysis S Sketches Graphical interface of the
“PDE Language” editor

Domain Model
Specification

NS - -

Design Abstract Syntax
Specification

S Views -

Concrete Syntax
Specification

S Views Graphical elements within
the “PDE Language” editor

Semantic restrictions
Specification

S Views -

Behavioral semantics
Specification

NS - -

Testing DSL infrastructure
testing

NS - -

Maintenance New requirements
addition

NS - -

3.3.7 Bottom-up meta-modelling: An interactive approach

Similarly to the works [71], [72], and [73], the motivation of Sanchez-
Cuadrado et al. [74] is to support the use of informal drawing tools as a friendly
interface that facilitates the metamodeling task. The goal of this work is
enhancing end-user participation within the DSL development process by using
these tools to sketch a set of domain examples. The difference of this work in
respect to the others is the approach used to generate the metamodel from the
domain examples sketches.

In this approach, during Domain Analysis, end-users are encouraged to draw
a set of sketches that represent examples of their domain and designers are
responsible to annotate these examples with additional domain information
(Figure 3.4). An example of domain annotation is the intention of a graphical
element of a domain example.

3. State of the Art 52

Figure 3.4 Overview of the bottom-up meta-modelling approach (extracted from
Sanchez-Cuadrado et al.)

From these examples and annotations, the corresponding metamodel that
complies with these domain examples is induced. This metamodel is obtained
iteratively, one example at a time, in which developers are able to assess the
evolution of the metamodel and the specific effects of each domain example over
the metamodel.

Finally, designers supervise and refine the metamodel according to their
metamodeling design expertise. If some changes have been applied, a procedure
checks for possible mismatches between the final metamodel and the domain
examples.

Another contribution of this work is that the metamodel generated is
platform independent. For this reason, in the last step of the proposal, a specific
platform is selected to implement the metamodel.

3.3.7.1 Discussion
This work proposes an approach to facilitate the participation of end-users in

DSL development: creating the domain examples and inducing the abstract
syntax metamodel from them. The proposal only focuses on the domain analysis
and the metamodeling task but other DSL development activities are not
addressed.

Accordingly, in Table 3.8, only the activities Domain Analysis and Abstract
Syntax Specification are supported (S) and end-users participate in the definition

3. State of the Art 53

of domain examples by means of sketches using an informal panel. Like the
previous approaches, domain model specification is not supported (NS) because,
although the domain is described by a set of examples, the domain model
elements are not explicitly specified.

The rest of the stages and activities are not detailed, so we characterize all of
them as not supported (NS).

Table 3.8 Assessment of Sanchez-Cuadrado et al.'s work

Stage Activity Support
(S,PS,NS)

EUD
practices

End-user Involvement

Analysis Domain Analysis S Sketches Informal environment to
design example sketches

Domain Model
Specification

NS - -

Design Abstract Syntax
Specification

S - -

Concrete Syntax
Specification

NS - -

Semantic restrictions
Specification

NS - -

Behavioral semantics
Specification

NS - -

Testing DSL infrastructure
testing

NS - -

Maintenance New requirements
addition

NS - -

3.3.8 Collaboro: Enabling the collaborative definition of DSMLs

The motivation of Canovas et al. [75] is to highlight the importance of the
end-users role in the definition of DSLs and provide means to enable the
collaboration between end-users and developers in the context of DSL
development. With this aim, they propose a community-driven DSL
development process to encourage end-user participation in the definition of
DSLs.

In order to involve end-users, they take the traditional DSL development
process as a basis and modify each stage to be iterative, i.e. the process only
proceeds with the next stage when end-users completely agree with the outcome
of the current stage. In each stage, end-users and developers collaborate to create
the different DSL artefacts.

3. State of the Art 54

The collaboration among end-users and developers is supported by a DSL
named Collaboro. Collaboro describes the elements of the collaborative activity
(comment, vote, solution, etc.) and the elements of the abstract and concrete
syntax of a DSL (entity, attribute, relationship, textual notation, etc.). These
elements are used to track the evolution of both the abstract and concrete syntax.

The collaborative development starts after requirements gathering, when
developers design a preliminary abstract and concrete syntax (Figure 3.5, Step 1).
As a way to ensure that end-users understand the syntax that has been designed
by developers, end-users are provided with domain examples that have been
rendered using the concrete syntax. Then, end-users are able to comment,
propose solutions, and vote other participants opinions and proposals (Figure 3.5,
Step 2). This interaction continues until the syntax, after all the changes proposed
and applied (Figure 3.5, Step 3), satisfies end-users completely.

Figure 3.5 Overview of the Collaboro approach (extracted from Canovas et al.)

3.3.8.1 Discussion
This work provides a collaborative infrastructure to design the abstract and

the concrete syntax of a DSL. However, at the moment, this work is still under
development, for that reason, not all the stages of the process have been addressed
yet. On the one hand, this work assumes a previous analysis of the domain has
been conducted, so Domain Analysis and Domain Model Specification are
characterized as not supported (NS).

This work focuses only on syntax design. Accordingly, in Table 3.9, we
characterize Abstract Syntax Specification and Concrete Syntax Specification as
supported (S) but Semantic Restrictions Specification, Behavioral Semantics

3. State of the Art 55

Specification, Testing, and Maintenance as not supported (NS). This work,
unlike the previous ones, is the first work that provides a friendly mechanism for
involving end-users both in the definition of the abstract syntax and the concrete
syntax. Instead of participating in the syntax specification, this approach renders
a set of examples to illustrate the syntax proposed. This way, end-users check the
different syntax elements in their domain context, and they are able to provide
more accurate feedback. This feedback is provided by means of the Collaboro
environment, an Eclipse-based tool. End-users comment about the syntax but
also about the changes that are proposed by developers.

As an additional contribution, this work provides a collaborative
infrastructure that tracks all the design decisions that are made during design in
order to have a better traceability of the collaboration process.

Table 3.9 Assessment of Canovas et al.'s work

Stage Activity Support
(S,PS,NS)

EUD
practices

End-user Involvement

Analysis Domain Analysis NS - -
Domain Model
Specification

NS - -

Design Abstract Syntax
Specification

S - Collaborative
infrastructure (Collaboro)

Concrete Syntax
Specification

S - Collaborative
infrastructure (Collaboro)

Stemantic restrictions
Specification

NS - -

Behavioral semantics
Specification

NS - -

Testing DSL infrastructure
testing

NS - -

Maintenance New requirements
addition

NS - -

3.3.9 Engaging end-users in the collaborative development of DSMLs

The motivation of the two previous works [74, 75] was to improve DSL
development by supporting the involvement of end-users. Since each of their
works addressed different activities of the process, their authors integrated their
approaches under the same approach context to increase the completeness of the
approach [80].

This new work proposes a DSL development process (Figure 3.6) with 5 steps.
First, end-users (aided with developers) use informal drawing tools to create
domain examples. Second, from those domain examples, the abstract syntax

3. State of the Art 56

metamodel is induced according to the approach of Sanchez-Cuadrado et al. [74].
Third, after obtaining the metamodel, the collaborative infrastructure Collaboro,
proposed by Canovas et al. [75], is used by end-users and developers to propose
potential changes to the abstract syntax metamodel. Additionally, a recommender
system also identifies potential changes according to metamodel-quality patterns.
Fourth, from all the proposed changes, some of them are accepted and
incorporated to the abstract syntax. The proposal iterates over the steps three and
four until no more changes are pending. Finally, in the fifth step, the final version
of the abstract syntax metamodel is implemented.

Figure 3.6 Overview of the combined approach (extracted from Canovas et al.)

3.3.9.1 Discussion
The combination of two involving approaches in the context of DSL

development brings together the contributions of both works, complementing
activities that were not addressed individually. As a result, the approach starts
from a metamodel obtained from end-users participation, instead of starting the
proposal from a metamodel proposed by developers, and then, a collaborative
environment allows discussion and tracking of syntax changes.

In summary, the main contribution of this work as a whole, in contrast of
previous works, is the use of friendly mechanisms, such as the use of an informal
panel and the use of examples, as a way to reason about the domain and the
abstract and concrete syntax.

Accordingly, in Table 3.10, Domain Analysis, Abstract Syntax Specification
and Concrete Syntax Specification are supported (S). End-users are involved in

3. State of the Art 57

all of them by means of domain sketches and by means of examples; first through
an informal environment and then, through the collaboro infrastructure.

As we already mentioned in the analysis of the work of Sanchez-Cuadrado,
the approach analyzes the domain using examples, but no domain model is
specified explicitly, so the activity is characterized as not supported (NS).
Likewise, Semantics Specification (restrictions and behavior), Testing, and
maintenance are not supported (NS).

Table 3.10 Assessment of Canovas et al.'s work

Stage Activity Support
(S,PS,NS)

EUD
practices

End-user
Involvement

Analysis Domain Analysis S Sketches Informal environment
to design example
sketches

Domain Model
Specification

NS - -

Design Abstract Syntax
Specification

S - Collaborative
infrastructure
(Collaboro)

Concrete Syntax
Specification

S - Collaborative
infrastructure
(Collaboro)

Semantic restrictions
Specification

NS - -

Behavioral semantics
Specification

NS - -

Testing DSL infrastructure testing NS - -
Maintenance New requirements addition NS - -

3.4 Discussion

As a result of the previous analysis, Table 3.11 compares the described related
works by observing the end-user involvement through the complete DSL
development cycle. For each activity of the DSL development, we analyze the
support of the activity and the end-users involvement. We indicate “S” for
supported, “PS” for partially supported (when some issues of the activity remain
unsolved), and "x" for not supported.

3. State of the Art 58

Table 3.11 Comparison of state of the art works

Stage Activity Criteria Perez Nishino Barisic Wuest Cho Kurhman SCuadrado Canovas

Analysis Domain
Analysis Support S x x S S S S x

EU Inv x x x S S S S x
Domain
Model
Specification

Support PS x x x x x x x
EU Inv x x x x x x x x

Design Abstract
Syntax
Specification

Support S x x S S S S S
EU Inv x x x S S x x S

Concrete
Syntax
Specification

Support S x x S S S x S
EU Inv x x x S S S x S

Semantic
Restrictions
Specification

Support x x x PS S S x x
EU Inv x x x x S x x x

Behavioral
Semantics
Specification

Support S x x x x x x x
EU Inv x x x x x x x x

Testing DSL
infrastructure
testing

Support x PS PS x x x x x
EU Inv x x PS x x x x x

Maintenance New
requirements
addition

Support x x x x x x x x
EU Inv x x x x x x x x

As we can see in the table, there isn’t any work that involves end-users in
DSL development and also supports the complete DSL development process. All
of them focus on involving end-users in the development of some aspect of the
DSL, but none of them integrates their proposal within a complete DSL
development process.

The majority of the works focus on the Analysis and Design stages and two
of them in the Testing stage, but none has provided a proposal for the
Maintenance stage. We can also observe that Domain Analysis and Concrete
Syntax Specification are the activities in which end-users are most involved.

Regarding the Analysis stage, the majority of the proposals have successfully
involved end-users in the domain analysis, although only in one of them, the
domain knowledge gathered in this analysis is made explicit. The other
approaches gather domain examples, but although these examples embed domain

3. State of the Art 59

knowledge, they do not explicitly describe the domain scope, all the domain
concepts and their inter relationships, the details of the domain terminology, or
the domain commonalities and variabilities.

The formalization of the domain knowledge into a domain model (according
to the definition of Mernik et al.), although it is not essential to develop a DSL
as an input required by other stages, it is very important to understand the domain,
especially for complex application domains, in which the gap between developers
and end-users is wide. In this kind of domains, the formalization of the domain
model becomes essential to ensure that the domain is well understood by
developers without ambiguities, to understand the rationale of development
decisions, to understand any possible evolution occurred in the domain, and the
possibility to use this model as an artefact for model-driven development.

All in all, in the analyzed works, although the domain knowledge is acquired
and represented informally and the domain model is not created, eventually, this
knowledge is formalized usually in the form of a metamodel that represents the
abstract syntax of the DSL.

Regarding the Decision stage, the majority of works propose involving end-
users in some aspects of the syntax specification. However, only one of them
successfully involves end-users in Abstract Syntax Specification, only three of
them in Concrete Syntax Specification, but any of them in Semantics Restrictions
Specification or Behavioral Semantics.

In conclusion, we have observed two main lacks in the state of the art. First,
as far as we are concerned there is not any approach that addresses how to involve
end-users in the specification of the behavioral semantics, the testing of the DSL
infrastructure, and the maintenance of the DSL, which are three aspects of the
DSL in which the collaboration of end-users is also important. Second, we have
observed that these proposals focus their work only on a subset of stages of the
complete DSL development process. Although all of them have importantly
contributed to improve the involvement of end-users in DSL development, none
of them continues their proposal through the complete DSL development life-
cycle. These works explain the analysis and design artefacts of their proposals.
However, they omit how to use those artefacts to implement the complete DSL
development infrastructure such as the different steps to follow, the artefacts
involved in each step, the common patterns to take into account during
development, or the potential problems that could arise during development.

3. State of the Art 60

3.5 Conclusion

In this chapter, we have analyzed the state of the art of DSL development,
focusing our attention on proposals that involve end-users in the different stages
of DSL development.

As a result of this analysis, we have found that traditional DSL development
approaches provide useful guidelines for developers, but do not properly consider
the role of end-users. In contrast, the approaches that consider the role of end-
users are still ongoing works and all of them only focus on one or two stages of
DSL development. As a consequence, although all these approaches involve end-
users in the specification of some aspect of the DSL, there is still not a method
to support the whole DSL development life-cycle.

In conclusion, this analysis provides evidences that the problem that addresses
this PhD has not been completely solved: “Provide a methodological approach to
involve end-users in domain-specific languages development (for complex application
domains)”. As far as we known, there is a need of a complete DSL development
method that: 1) provides guidance throughout the complete DSL development
life-cycle, so it can be adopted in real practice (Requirement 1); 2) ensures the
feasibility of the DSL development time (Requirement 2); and 3) facilitates the
gathering of domain experts’ knowledge in the stages in which they can
collaborate (such as Analysis, Design, Testing, and Maintenance) (Requirement
3).

4. Method Overview and Illustrative Example 61

4. Method Overview and
Illustrative Example

Developing DSLs for a complex domain is a challenge for developers, since
it implies understanding the domain complexity and overcoming the existing gap
between developers and end-users. In order to reduce this complexity, developers
need to be provided with a DSL development approach that involves end-users
throughout the process. However, as we have shown in the previous chapters,
traditional DSL development approaches usually neglect the importance of the
end-user role and the ones which involve end-users have still some unresolved
issues.

Involving end-users in DSL development requires the process to be clear,
efficient, and engaging for end-users. The goal is facilitating end-users the
comprehension of the different artefacts of the DSL, so they can contribute in
their creation, and achieve that those artefacts represent their knowledge, needs,
and preferences. With this aim, we believe that the combination of model-driven
development practices and agile practices will provide efficiency, end-user
engagement, and the formalisms necessary to create the different DSL artefacts.

As a solution, we propose an agile model-driven method to involve end-users
in DSL development. The method is organized in different stages according to

4. Method Overview and Illustrative Example 62

the DSL life-cycle. In each stage, we have selected a set of artefacts to describe
the different DSL aspects and proposed a set of mechanisms, based on agile
practices, to involve end-users in the creation of those artefacts.

In this chapter, we start explaining the approach followed to build the method.
Then, we explain the rationale of the combination of model-driven and agile
practices. Next, we describe how those practices were applied to build the method
and we provide a brief overview of this method. Finally, in order to facilitate the
comprehension of the method for the reader, we introduce the example that is
used in the next chapters to illustrate the method.

4.1 Building a method for DSL development

In order to propose a method to involve non-technical end-users in the DSL
development process, we needed the collaboration of end-users as well. We
wanted to propose a set of activities in the method to involve end-users. But in
order to be sure about their suitability, we needed end-users without knowledge
of software development to provide feedback about them.

With this aim, we established a collaboration with the geneticists from
Imegen and INCLIVA (as we explained in Chapter 2) and the geneticists from
the SME GEM Biosoft6. We collaborated with geneticists because they fit the
profile of users without software development knowledge. Actually, the aim of
this collaboration was two-fold: besides participating in the design of the method,
just right after the design, they participated in applying the method to develop
their own DSL, so we had again the opportunity to gather further feedback about
the method.

The approach to build our proposal (Figure 4.1) started by searching state-
of-the-art proposals to develop DSLs (explained in Chapter 3) and agile methods
(explained next in Section 4.3). From them, we adopted guidelines, best practices,
and lessons learned. Then, in collaboration with geneticists, we proposed the first
draft of the method (Figure 4.1, step 2), we applied it to create the first draft of
the DSL prototype (Figure 4.1, step 3), and we gathered feedback about this draft

6 Genome Knowledge Software, GEM Biosoft. http://www.gembiosoft.com/

4. Method Overview and Illustrative Example 63

of method (Figure 4.1, step 4). We iterated over the steps 2, 3, and 4 three times.
Below, we describe some details of these iterations:

Figure 4.1 Approach to build the method and the DSL

• Iteration 1: We designed a draft of the stages Decision, Analysis, and
Design. We applied these stages with the geneticists from Imegen and
GEM Biosoft. As a result of this iteration, we detected a set of problems
in the comprehension of some artefacts, the lack of guidelines for
developers, and new ideas to improve the interaction with end-users.
These results were presented in [81] and [82].

• Iteration 2: We applied several changes to solve the issues detected in the
previous iteration and we designed a draft of the stages Implementation
and Testing. Again, we applied these stages with the geneticists from
Imegen and GEM Biosoft. As a result of this iteration, we detected that
some artefacts were incomplete and some aspects of the proposal to
involve end-users were still complex and contained ambiguous activities.

• Iteration 3: We applied several changes to solve the detected issues and
we designed a draft of the stages Deployment and Maintenance. This
time, we validated the method with geneticists from INCLIVA with an
empirical experiment (explained in Chapter 8). As a result, we detected
some issues and we proposed potential solutions to improve them. The
experiment and the obtained results have been submitted for publication.

4. Method Overview and Illustrative Example 64

As a result of the third iteration, we obtained the first version of the method
and, from this point, we applied the method to build the first version of the DSL
for genetic analysis. The method and examples of this DSL are explained in
Chapters 5, 6, and 7. The complete set of artefacts of the DSL for the three
iterations are gathered in a technical report [83] and the artefacts of the last
version of the DSL are shown in Annex B.

4.2 Combining model-driven and agile practices for DSL
development

Involving end-users in any development process is a difficult task. The few
interest and time of end-users to participate requires the involvement activities to
be efficient, as less intrusive as possible, and engaging for end-users.

A novel trend for improving the efficiency of DSL development processes is
applying model-driven development principles [16]. These principles propose to
use models to formally describe concepts of the language domain and generating
the corresponding DSL artefacts from them [22]. But applying a model-driven
development approach and involving end-users simultaneously is a challenging
task because end-users do not usually have the expertise necessary to participate
in modelling tasks [2]. MDD approaches provide formalisms to design the
conceptual models and to generate the software products from them, but they
lack clear guidelines to teach end-users how to model these formalisms.

In contrast, agile methods [23] advocate the close collaboration of end-users
and developers, focusing on requirements gathering, continuous testing, and
project management. Although these methods lack guidelines to carry out
different modelling activities such as domain modelling, business modelling, or
behavior modelling, we believe that model-driven development approaches and
agile methodologies can complement each other in the context of DSL
development.

Our goal is to create a DSL development method that combines the ideas of
the conceptual-model programming manifesto [84], which states that “the model
is the code” and that conceptual-modelling languages must be executable, with
the ideas of Agile Modeling [24], which advocate finding the balance between
the completeness of the traditional modelling task and agile principles.

4. Method Overview and Illustrative Example 65

In the literature, we have found development approaches that combine MDD
and agile principles, but for a different context or goal. For example, Rivero et al.
[85] proposes an agile model-driven approach to develop web applications. This
work configures the development process as iterative and uses mock-ups to
involve end-users in the web interface design and also in the assessment of the
web application derived from them. However, this approach is proposed for the
development of a web application, which is different of developing a DSL.

Another example is the work of Visser [86], which proposes an approach to
design DSLs by introducing agile practices such as carrying the DSL
incrementally. This work adopts agile practices but it still does not address the
issue of how to involve end-users in the process. This method was designed to
develop a technical DSL to facilitate the creation of web applications (WebDSL),
so the participation of end-users was not needed for the development of this DSL.
Despite these differences, our work is inspired by these two proposals and some
of their contributions were adopted.

Hence, with the aim to configure an efficient and user-friendly DSL
development process, we propose an agile model-driven method to involve end-
users in DSL development. In the context of this work, we follow the “method”
definition presented in [87]:

“A method is an approach to perform a software/systems development project,
based on a specific way of thinking, consisting, inter alia, of guidelines, rules
and heuristics, structured systematically in terms of development activities,
with corresponding development work products and developer roles (played by
humans or automated tools)”

This method describes the different conceptual models that must be created
in each stage and describes the set of mechanisms that facilitate the participation
of end-users in order to develop such models. We use the term “mechanism” to
refer to the set of activities that are proposed to gather end-users’ feedback about
a certain aspect of a DSL. These mechanisms act as interface for end-users to
participate in the creation and assessment of several DSL artefacts. From the
feedback provided by means of a mechanism, the DSL developers specify the
underlying conceptual models. Therefore, we establish a concise connection
between agile practices and model-driven development.

4. Method Overview and Illustrative Example 66

In order to create the complete infrastructure of the DSL, the model-driven
approach consists on creating different models that represent the different aspects
of the DSL. In order to go through the different steps of the DSL life-cycle, we
propose a set of “model-based guidelines” that explain to the developers how to
transform the models of one step to the models of the next step. Thanks to this
approach, the feedback that is gathered from the end-users and represented in a
model is propagated through the different stages. This way, we ensure that the
feedback provided by the end-users is represented in all the DSL artefacts, even
in the ones that are too technical for end-users to participate (such as the
implementation artefacts).

4.3 Overview of the method

As we have discussed in Section 1.1, a suitable DSL development method to
address a complex domain must fulfil three requirements: 1) supporting the full
DSL development lifecycle, so it can be applied in real practice (Requirement 1);
2) improving the DSL development efficiency (Requirement 2); and 3)
enhancing end-user involvement in the stages in which they can collaborate (such
as Analysis, Design, Testing and Maintenance (Requirement 3)).

In this chapter, we propose a method that combines model-driven
development (MDD) and agile practices. This method: 1) clarifies and
differentiates the stages of DSL development as well as the steps of each stage (to
address Requirement 1); 2) concretizes the artefacts to be created in each step (to
address Requirement 1 and 2); 3) provides guidelines (for developers) with the
model-based transformations required to follow a MDD approach (to address
Requirement 2); and 4) proposes a set of mechanisms to facilitate the
participation of end-users in the creation of some of the DSL artefacts (to address
Requirement 3). Additionally, we have included a set of guidelines, both to end-
users and developers that explain how to apply each of the mechanisms in practice.
These guidelines are explained in Annex A.

In order to specify each method stage, the specific steps of each stage, and the
artefacts of the method that are required to follow a MDD approach
(Requirements 1 and 2), we adopted the method stages proposed by Mernik et
al. (explained in Chapter 3) (Figure 4.2): Decision, Analysis, Design,
Implementation, Testing, Deployment, and Maintenance. Then, in order to

4. Method Overview and Illustrative Example 67

define our MDD approach, we followed the guidelines and suggestions of the
works by Mernik et al., Strembeck et al., and Voelter et al., to propose how to
support Analysis and Design stages using conceptual models and how to
transform these models to a DSL implementation.

Figure 4.2 Overview of DSL development process and patterns by Mernik et al.
(adapted from Ceh et al.)

Similarly, in order to design the suitable mechanisms to involve end-users
(Requirement 3), we analyzed different agile methods (XP [88], Scrum [89], and
Agile Modeling [24] to find the most suitable practices that fit into the context
of DSL development and that also facilitate the comprehension for end-users.
The reason for searching agile practices in several methods is justified by the need
to find the most suitable practices specially designed to involve end-users.

Next, we analyze the agile practices that we found suitable for involving end-
users, and we discuss how each of them could fit into the DSL development
context:

4. Method Overview and Illustrative Example 68

• Iteration planning or sprint (XP, Scrum, and Agile Modeling): The
majority of agile methods manage the development in a set of iterations
in which only a small set of features is implemented. This practice
encourages the delivery of faster releases that can be evaluated by
stakeholders, or end-users in our context. DSL development can benefit
from this practice by checking if the concepts required by the end-users
are included in incremental subsets of the DSL. Also, errors can be
detected before developing the complete DSL infrastructure.

• Incremental design (XP, Scrum, and Agile Modeling): Together with a
development based on iterations, agile practices promote the incremental
design of the different DSL artefacts. Many DSL development
approaches design the entire language at once, and this design is only
evaluated when it is complete. We believe that if the DSL developers and
the end-users focus on a small set of language constructs, the DSL will
be easy to assess and it will be more accurately reviewed.

• User Stories (XP and Scrum): In order to manage requirements in agile
methods, they are divided into user stories, which are brief descriptions
related by the end-users about a demand that contributes to add value.
The set of user stories provides a simplified view of the functional features
to be developed. In the context of DSL development, the goal of the user
stories is to describe language requirements instead of specific
requirements of a software product. The structure of user stories does not
differ from its traditional usage; however, they will be used to discover
the language constructs and concepts to be introduced in the DSL.

• Acceptance tests (XP) or usage scenarios (Scrum): In order to check the
fulfilment of requirements in agile methods, end-users briefly describe
scenarios that must be accomplished by the software to be developed.
Like user stories, in the context of DSL development, the difference lies
in the fact that acceptance tests will check the fulfillment of language
requirements instead of the requirements of a specific software product.
The structure of acceptance tests does not change, although the input of
an acceptance test will be a set of constructs instead of a software state.

• Product backlog (Scrum): In order to manage the list of requirements
that should be addressed in each of the iterations, agile methods propose
to make this list explicit. The application of this practice in the DSL
context does not differ from its typical use. Since our goal is that end-

4. Method Overview and Illustrative Example 69

users participate thorough the entire DSL development process, the
product backlog will be a useful tool to record all the new requirements
that arise in any stage of process during the iteration. Also it is a guide to
check what it is expected to be released in each of the iterations.

• Architectural envisioning (Agile Modeling): This practice encourages
the early identification of a viable technical strategy. Many times, DSL
development is guided by domain concepts –especially when applying a
model-driven approach—and its executable environment is decided in
late stages. Because of that, as some authors have stated [86], delaying
this decision complicates the possibilities to translate concepts to a
working implementation. Hence, we believe that combining the model-
driven approach with the envisioning of an architectural strategy can
benefit the efficiency of the implementation of the DSL.

• Test-driven development (XP): This practice promotes the creation of
tests as the main artefact that guides the coding process. In the context
of DSL development, this agile practice is applied normally, although the
tests drive the creation of the artefacts necessary to implement the
complete DSL infrastructure, instead of its typical usage of guiding the
development of a specific software product. The DSL infrastructure is
the environment that allows the end-users to use the language to create
and execute DSL specifications.

• Definition of done (Scrum): This practice promotes the definition of a
classification criteria that classifies the features of the software design as
“done” or “not done”, establishing a common framework to understand
the development state. In the context of DSL development, this
classification criterion must take into account the completeness of the
implementation of the DSL infrastructure.

• Customer review or demonstration (Scrum): The main goal of this
practice is to show the end-users the software release and get them to
agree with it. In the context of DSL development, the demonstration
should focus on showing the implementation of the language. Although
it is important that the end-users are comfortable with the complete
environment to use the language, the truly goal of DSL testing must be
to achieve the assessment of the language constructs.

As a result of this analysis, we structured the process as an iterative short cycle,
following two common practices adopted by agile methods: sprints (or iteration

4. Method Overview and Illustrative Example 70

planning) and incremental development. Specifically, we organized the DSL
development process into iterations, addressing only one subset of all of the DSL
requirements at a time, and demonstrating the result to the end-users at the end
of each iteration. This practice allows the end-users to test a working subset of
the DSL as soon as it is available, and the developers to detect errors and
misunderstandings sooner, when they are easier to fix.

Besides these two agile practices, we adopted different agile practices (user
stories, acceptance tests, usage scenarios, product backlog, architectural
envisioning, test-driven development, definition of done, and customer demo) to
design a set of mechanisms to facilitate end-user involvement in the stages
Analysis, Design, Testing, and Maintenance. In total, we proposed five
mechanisms to involve end-users:

• Mechanism M1: Two requirements templates based on user stories,
acceptance tests, and usage scenarios for the Analysis stage.

• Mechanism M2: A syntax questionnaire based on usage scenarios for the
Design stage.

• Mechanism M3: A semantic template based on user stories for the
Design stage.

• Mechanism M4: A demonstration for the Testing stage.
• Mechanism M5: A testing questionnaire for the Testing stage.

Figure 4.3 and Figure 4.4 overview the method proposed: the iterative cycle,
the stages, the steps, the artefacts involved in each stage, and the five mechanisms
(M1-M5) for involving end-users. The iterative cycle only includes the following
stages: Analysis, Design, Implementation, and Testing. The Decision stage is not
included in this cycle because the decision to develop the DSL is only addressed
once (at the beginning of the development process) and this decision is usually
not revisited. The Deployment and Maintenance stages conform an alternative
path after the Testing stage because it is only effective to deploy the DSL release
to be used by end-users when there is a final stable version of the DSL.

4. Method Overview and Illustrative Example 71

Figure 4.3 Stages and steps of the proposed method

Figure 4.4 Artefacts of the proposed method and mechanisms for involving end-users

7. Maintenance stage
7.1. DSL release

testing

2. Analysis stage
2.1. Iteration Planning

2.2. DSL Requirements
specification

2.3. Domain Modeling

5. Testing stage
5.1.Demonstration

5.2. DSL
Infrastructure

Testing

6. Deployment stage
6.1. DSL release

Stable
enough

4.Implementation stage
4.1. Test specification

4.2. DSL infrastructure
implementation

1. Decision stage

3. Design stage
3.1. Syntax
Preferences

3.2. Abstract and
Concrete Syntax Design

3.3. Semantic
Restrictions Design

3.4. Behavioural
Semantics Design

4. Method Overview and Illustrative Example 72

The development of the DSL starts with the Decision stage (see Chapter 5).
In this stage, the end-users and the developers discuss with each other whether
or not to develop a DSL. In order to aid in this decision making, we adopt the
decision patterns proposed by Mernik et al. (Notation, AVOPT, Task
automation, Product Line, etc.).

Once the decision has been made, in the Analysis stage (see Chapter 5), the
developers must understand the domain and make the end-users’ knowledge
explicit. In this stage, the developers plan the iteration (step 2.1), gather the DSL
requirements from the end-users (step 2.2), and create a domain model that
precisely describes the DSL context (step 2.3).

The three output artefacts of this analysis stage are: 1) a DSL backlog (artefact
AA1), which organizes the requirements of the DSL into different iterations
(adopted from Scrum); 2) the formalized end-users’ requirements (artefact AA2);
and 3) the domain model (artefact AA3), which is made up of a vocabulary
(glossary of terms) for describing the domain terminology, a concepts model for
describing the domain concepts, and a feature model for describing the
commonalities and variabilities of the domain concepts (based on the Mernik et
al. domain model definition and the Voelter et al. guidelines). To create this
domain model (artefact AA3), the developers apply model-based transformations
from the formalized requirements (artefact AA2).

In this Analysis stage, in order to formalize the end-users’ requirements and
use a notation that is understandable to them, we propose mechanism M1, a
template based on user stories, acceptance tests, and scenarios from XP and
Scrum.

Once the requirements and the domain have been elicited and formalized, in
the Design stage (see Chapter 6), the developers create the artefacts that represent
the DSL syntax and semantics. In this stage, the developers elicit the end-users’
syntax preferences (step 3.1), design the abstract and concrete syntax according
to those preferences (step 3.2), specify the semantic restrictions (step 3.3), and
specify the behavioral semantics (step 3.4).

The two output artefacts of this Design stage are: 1) the syntax models
(artefact DA1), and 2) the semantics models (artefact DA2). The syntax models
are made up of an abstract syntax metamodel (which describes the internal
structure of the DSL) and the concrete syntax grammar (which describes the

4. Method Overview and Illustrative Example 73

notation that will be exposed to end-users to use the DSL). The semantic models
are made up of semantic restrictions (which describe the restrictions that must be
ensured when creating domain instances with the DSL), and behavioral
semantics (which describes the functional behavior that underlies each entity of
the abstract syntax metamodel). To create the syntax and semantic models
(artefacts DA1 and DA2), the developers apply model-based transformations
from the domain model (artefact AA3).

In this Design stage, in order to involve end-users in the design tasks, we
propose two mechanisms: mechanism M2, which is a questionnaire based on usage
scenarios from Scrum that gathers end-users’ preferences about the syntax; and
mechanism M3, which is a template based on user stories from XP that facilitates
their participation in the specification of the behavioral semantics.

Once the design artefacts have been created and refined by the end-users, in
the Implementation stage (see Chapter 6), the developers must create the
complete DSL infrastructure. This infrastructure aids end-users in the creation
of DSL specifications and generates the corresponding artefacts (such as
executable code) in the target implementation platform. In this stage, the
developers design a set of tests that check for the correctness of the syntax and
semantics implementation (step 4.1), and then the complete DSL infrastructure
is implemented (step 4.2) by applying both model-driven development (MDD)
practices and test-driven development (TDD) (from Scrum) using the design
models (DA1 and DA2) and the tests from the previous step.

The two output artefacts of this Implementation stage are: 1) a set of tests
(artefact IA1), which check for the correctness of syntax and semantics
implementation (based on Scrum for applying TDD); and 2) a complete DSL
infrastructure (artefact IA2), which is made up of a parser that understands the
syntax, a validator that checks the correctness of the syntax and semantic
restrictions, and a code generator that transforms DSL specifications into
software with the associated behavior.

In this Implementation stage, we do not propose any mechanism that involves
end-users because they require advanced skills in software engineering and MDD.

Once the DSL has been implemented, in the Testing stage (see Chapter 7),
the end-users assess the preliminary DSL infrastructure to check whether or not
it fulfills their needs and preferences. In this stage, the developers conform a

4. Method Overview and Illustrative Example 74

functional DSL infrastructure and demonstrate it to the end-users (step 5.1), and
then, the end-users try this DSL infrastructure and provide feedback about their
experience using it (step 5.2).

The two output artefacts of this Testing stage are: 1) a DSL demonstration
(artefact TA1), which can be a video or a live-demo (from Scrum); and 2) an
iteration feedback report (artefact TA2), which contains errors that have been
found in the DSL, improvements related to the current iteration requirements,
or proposals of new requirements to be addressed in next iterations.

In this Testing stage, in order to facilitate the assessment of the DSL for end-
users, we propose two mechanisms: mechanism M4, which is a demonstration
based on usage scenarios from Scrum that facilitates the comprehension of the
DSL infrastructure; and mechanism M5, which is a set of activities based on usage
scenarios from Scrum and a testing questionnaire that facilitate the testing of the
DSL infrastructure.

At this point in the method, if the DSL infrastructure is stable enough and it
is considered to be valuable for end-users, in the Deployment stage (see Chapter
7), the current DSL infrastructure is released to the end-users so they can use it
freely (step 6.1), and after the end-users have tried it for an extended period of
time, in the Maintenance stage (see Chapter 7), they provide feedback about their
experience like they did in the Testing stage, that is, by testing the DSL release
(step 7.1).

4.4 Illustrative example

In order to apply the proposed method in a real environment, we selected the
genetic analysis domain. Since we had access to geneticists from three industrial
companies (Imegen, GEM BioSoft, and INCLIVA), we collaborated with them
to develop a DSL for supporting genetic analysis.

The explanation of all the interactions and collaborations is out of the scope
of this PhD thesis. However, in order to show how we applied the method in
practice and the resulting DSL, we have selected a small example of a genetic
analysis and we will use it to illustrate each method stage, step, artefact, and
mechanism. This genetic analysis represents a simplified analysis that geneticists

4. Method Overview and Illustrative Example 75

carry out to research the Diabetes Mellitus Type 2 disease. The rest of the details
of the DSL are gathered in a technical report [83].

The complexity of the genetic analysis domain, its constant evolution, and
the interest of geneticists to try different experiments to find new discoveries, has
led to a situation in which software products for genetic analysis cannot evolve on
time to fully satisfy all the geneticists’ needs.

The consequence of this situation is geneticists dealing with programming
and technological issues in their daily work in order to perform their analysis,
whether they like it or not. The problem is that instead of focusing their efforts
in genetics research, geneticists spend a lot of time acquiring technical knowledge,
programming their own pipelines, and trying to solve programmatic issues.
Another problem is that without the suitable software engineering knowledge,
the quality of their programs is clearly affected because, among other issues, data
is manipulated using programming scripts, there are no well-defined data
abstractions, and pipelines are hard-coded.

As a solution, geneticists need to be provided with an infrastructure with a
higher level of abstraction to customize their pipelines and manage the underlying
technological issues. Developing a DSL seems to be an appropriate solution for
this domain. For this reason, we proposed to develop a DSL for the creation of
pipelines for processing DNA data.

But developing a DSL for this complex domain is a task that requires the
involvement of geneticists (who know all the details of these pipelines) because
the domain concepts are very difficult to understand for developers. Hence, in
order to develop this DSL, the participation of geneticists is essential.

As we explained in Section 4.1, the current version of the proposed method
was designed within three iterations. In each of these iterations, in order to
validate the method, we applied it together with geneticists to create and evolve
the genetic DSL. The three iterations of this DSL were:

• Iteration 1: We applied the first method draft to build a DSL that
supported a set of requirements related to the HGVS notation (a standard
notation used in the genetic analyses domain). Geneticists from Imegen
and GEM BioSoft collaborated in this iteration.

• Iteration 2: We applied the second method draft to evolve the DSL to
support a basic usage scenario related with the diagnosis of the Breast

4. Method Overview and Illustrative Example 76

Cancer Disease. Geneticists from Imegen and GEM BioSoft
collaborated in this iteration.

• Iteration 3: We applied the first stable version of the method to evolve
the DSL to support several usage scenarios related with the research of
Diabetes Mellitus Type 2. Geneticists from INCLIVA collaborated in
this iteration.

In each iteration, we evolved the existing DSL artefacts of the previous
iteration to support the new requirements. As a result, the current version
aggregates the artefacts of the three iterations. The final version of this DSL
(Iteration 3) addresses the requirements of genetic analysis domain that is shown
in Table 4.1.

Table 4.1 Set of requirements supported by the third version of the DSL

Related to DSL requirement
Input patient
data

Read variations from a VCF file
Read genotypes from a VCF file

Data Analysis Annotate Variations with: hgvs, gene, rsId, transcript names, predicted
effect (SIFT and POLYPHEN7), and sample minor allele frequency
Search Variations by: HGVS DNA, HGVS Coding and HGVS Protein
Filter Variations by: gene and predicted effect (SIFT and POLYPHEN)
Prioritize Variations by: predicted effect score (SIFT and POLYPHEN),
and sample minor allele frequency

Reporting Report variations general properties
Report variations annotations: gene, rsId, hgvs, transcript, predicted effect,
and sample minor allele frequency

In order to facilitate the comprehension of the illustrative example, next
subsections explain: 1) the workflow that describes the genetic analysis; 2) the
pipeline created by the INCLIVA geneticists to implement that genetic analysis;
and 3) the specification of that genetic analysis using the DSL.

4.4.1 The default workflow

The goal of the genetic analysis example that has been selected is to read a
list of genetic variations, retrieve information about them, select the ones that are
interesting for the study of the disease, and report the selected ones in a friendly
way. It is worth to mention that geneticists will refer as “annotate variation” to
the action of retrieving additional information about a variation and as “filter

7 SIFT and POLYPHEN are two well-known algorithms in the genetic analysis domain
community that predict the seriousness of a variation in an individual.

4. Method Overview and Illustrative Example 77

variations” to the action of selecting a subset of variations from a list according to
a specific criterion.

Figure 4.5 Steps to analyze Diabetes Mellitus Type 2

Figure 4.5 shows the workflow that describes the genetic analysis selected.
The workflow starts reading the genetic data of the samples, being a sample one
of the patients that have been sequenced for the study. The first goal of this step
is to read the list of genetic variations, their position and the value (“A”, “C”, “T”,
or “G”) of the reference sequence in that position. The second goal is to obtain
the value (“A”, “C”, “T”, or “G”) of each individual sample. This last value is what
geneticists named as the genotype of a sample. As an example, Table 4.2 shows
three variations, their corresponding position, and the reference sequence values,
but it also shows for each variation (variation 1, 2 and 3), the genotypes of each
sample (sample 1, 2, and 3).

Table 4.2 Example to illustrate Variation Genotypes

 Position Reference Sample 1 Sample 2 Sample 3
Variation 1 100 A A A T
Variation 2 1000 A A C C
Variation 3 1020 C G G G

After reading the variation genotypes, variations are annotated with different
information. Continuing with the example of Table 4.2, geneticists want to
annotate each variation with the gene where the variation is located, the transcript
that the variation is affecting, and the effect that is likely to happen due to this
variation. Table 4.3 shows the different variation annotations. For example, the
variation 1 is located in the gene BRCA1, is affecting to the transcript
NM_0001.1, and its predicted effect is benign.

ABCC8,
 CAPN10,
KCNJ11,
GCGR, SLC2A2,
INSR, PPARG,
TCFl2, ADIPOQ,
 INS, PAX4, HNF4A,
 AKT2, MAPK81p1,
 GPD2, MNTR1B

Read Variations
Genotypes

Annotate Gene,
Transcript and

Predicted effect

Filter
Variations by

genes

Filter Variations
by Damaging

Effect

Report position, reference,
genotype, gene, transcript, effect

predictions

4. Method Overview and Illustrative Example 78

Table 4.3 Example to illustrate annotations

 Position Reference Sample
1

Sample
2

Sample
3

Gene Transcript P. Effect

Variation
1

100 A A A T BRCA1 NM_0001.1 Benign

Variation
2

1000 A A C C ADIPOQ NM_0002.1 Unknown

Variation
3

1020 C G G G ADIPOQ NM_0023.2 Damaging

Once all the variations are annotated with the information required by
geneticists, they want to apply a set of filters so they can focus only on the
variations that may be related with the disease they are researching. Continuing
with the example of Table 4.3, geneticists want to focus only on the genes related
with Diabetes Mellitus Type 2 (ABCC8, CAPN10,KCNJ11, GCGR, SLC2A2,
HNF4A, INS, INSR, PPARG, TCFl2, ADIPOQ, AKT2, PAX4, MAPK81p1,
GPD2, and MNTR1B), focus only on the variations whose predicted effect is
damaging, and discard the rest of the variations. Table 4.4 shows the result of
applying the gene and the effect filters described. Only the variation 3, whose
gene is ADIPOQ and predicted effect is damaging passes both filters.

Table 4.4 Example to illustrate filters

 Position Reference Sample1 Sample2 Sample3 Gene Transcript P. Effect
Variation 3 100 C G G G ADIPOQ NM_0023.2 Damaging

In the last step of the workflow, geneticists want to create a report so they can
visualize only the information they are interested in. This report gathers the
variations filtered together with the information chosen by geneticists. Following
with the example of Table 4.4, the final report gathers the variation 3 and shows
the fields position, reference, genotypes, gene, transcript, and predicted effect.

Once geneticists know the analysis they want to perform, they must look for
the software tools that give support to each step. Since sequencing machines have
improved their sequence throughput, performing the pipeline using a manual
approach is no longer feasible.

4.4.2 The tool implementation

Geneticists from INCLIVA describe their genetic analyses by means of
pipelines that interconnect a set of technological tools transferring datasets
(usually flat text files) among them. In order to carry out their analysis, they
specify their pipeline (for instance using a scripting language), they provide a

4. Method Overview and Illustrative Example 79

dataset input to the first tool, and they expect an output (or several outputs) that
contains the analysis result.

Figure 4.6 shows the pipeline created by geneticists from INCLIVA to
implement the illustrative example. This pipeline integrates the tools Annovar
[38] to retrieve genetic information, VEP (Variant Effect Predictor) [40] also to
retrieve genetic information and to select the corresponding variations, and a
custom reporter to create a HTML-based report with the list of selected
variations.

Figure 4.6 Software tools to analyze Diabetes Mellitus Type 2

In order to implement this pipeline the geneticists from INCLIVA program
a Unix script (Figure 4.7). This script configures the parameters of the tools
Annovar, VEP and the HTML reporter, so they annotate the suitable
annotations, apply the suitable filters, and create the corresponding report. For
geneticists, the complexity of implementing this pipeline lies in selecting the
suitable tools for each goal, configuring the tools with the right parameters, and
managing the interoperation among them.

4. Method Overview and Illustrative Example 80

Figure 4.7 Scripting language to analyze Diabetes Mellitus Type 2

4.4.3 The DSL specification

As a solution to solve the complexity of this pipeline, Figure 4.8 shows how
the DSL is used to specify the same example. The first line describes the goal of
the analysis, and the next lines describe the input of the pipeline, the information
that must be retrieved, the criteria to select the variations, and the configuration
of the final variation report.

Figure 4.8 The DSL to analyze Diabetes Mellitus Type 2

This specification shows how the DSL provides geneticists with a higher level
of abstraction for creating and customizing their pipelines. The main difference
between this specification (Figure 4.8) and the script (Figure 4.7) is the use of
genetic analysis concepts instead of technological concepts. This example hides

Diagnose Diabetes Mellitus Type 2 (Analysis 1)
Read Variations genotypes from VCF file Patient1.vcf
Annotate Variations with gene, transcripts, polyphen
Filter Variations by genes {ABCC8, CAPN10, KCNJ11, … , GPD2,
MNTR1B}
Filter Variations by predicted effect polyphen damaging
Report Variations with gene, predicted_effect

/*Annotate gene and transcript with Annovar*/
perl convert2annovar.pl -format vcf4 file.vcf > file.avinput
annotate_variation.pl -buildver hg19 –geneanno file.avinput humandb/
perl convert2vcf.pl -format vcf4 file.avinput> annotatedGeneTranscript.vcf
/*Annotate gene and transcript with Annovar*/
perl variant_effect_predictor –-cache –i annotatedGenefile.vcf–-polyphen b –o
annotatedAll.vcf
/*Filter by gene*/
$filterFieldGene= “EFF[*].GENE='ABCC8 ' |EFF[*].GENE='CAPN10 '
|EFF[*].GENE='KCNJ11' |EFF[*].GENE='GCGR' |EFF[*].GENE=' SLC2A2'
|EFF[*].GENE='HNF4A' |EFF[*].GENE='INS ' |EFF[*].GENE='INSR'
|EFF[*].GENE='PPARG' |EFF[*].GENE='TCFl2' |EFF[*].GENE='ADIPOQ’
|EFF[*].GENE='AKT2' |EFF[*].GENE='PAX4' |EFF[*].GENE='MAPK81p1'
|EFF[*].GENE='GPD2' |EFF[*].GENE='MNTR1B' |”
perl filter_vep.pl -i $input -o $output --force_overwrite --filter "$filterFieldGene"
/*Filter by effect*/
$filterFieldEffect= “\“Polyphen is possibly_damaging\” or \“Polyphen is
probably_damaging\””
perl filter_vep.pl -i $input -o $output --force_overwrite --filter "$filterFieldGene"
/*Report variations and fields*/
java –jar reporter.jar annotatedAll.vcf --gene –transcritpt --polyphen

4. Method Overview and Illustrative Example 81

the specific software tools that implement the genetic analysis pipeline, such as
Annovar or VEP, avoids the need to learn the specific details about how each of
these tools are configured, such as the syntax of VEP to filter a gene
(“Eff[*].gene=BRCA1”), and avoids the need to manage the interoperation
among tools such as the use of convert2annovar to convert the data from the
format VCF to the avinput format and backwards.

4.5 Conclusion

In this chapter, we have explained how we collaborated with end-users
(geneticists from three organizations) to build the method proposed in this PhD.
In order to avoid reinventing the wheel, we have analyzed existing approaches for
DSL development and agile practices focused on involving end-users. As a result,
we have proposed an agile model-driven method to involve end-users in DSL
development.

In order to apply this method in a real environment, we have collaborated
with geneticists to develop a prototype of a DSL for genetic analysis. In this
chapter, we have introduced a small example of this domain. This example is used
in next chapters to illustrate the different stages, steps, artefacts, and mechanisms
of the method.

Chapters 5, 6, and 7 will explain the Decision, Analysis, Design,
Implementation, Testing, Deployment, and Maintenance stages in detail, and in
each of this chapters, after explaining the corresponding stage, we will use the
illustrative example to show how the stage can be applied in practice.

4. Method Overview and Illustrative Example 82

5. Understanding the domain: The Decision and Analysis stages 83

5. Understanding the domain:
The Decision and Analysis

stages
The first thing to do in order to develop a DSL for a complex domain is

approaching developers and domain experts (a.k.a end-users) so they could assess
together whether developing a DSL for this domain is worth. Otherwise, the
effort invested in the development could be a waste of resources. In our method,
this decision is addressed in the Decision stage.

Once it has been decided to go on with the development, the developers must
acquire the necessary domain knowledge that allows them to understand the
needs and preferences of the end-users. The goal is to ensure that the developers
are able to understand all the details that must be included into the DSL. In our
method, this knowledge acquisition is addressed in the Analysis stage.

In this chapter, we explain the Decision and Analysis stages and how we
applied each of them for developing of a DSL for the genetic analysis domain.
We created several versions of the method and the DSL; however, in order to
simplify the explanation of the method, we focus only on the method version that
corresponds to the last iteration. Similarly, in order to simplify the explanation of

84 5. Understanding the domain: The Decision and Analysis stages

the application of the method to build the DSL, we only provide fragments of
the DSL in regards to the illustrative example presented in Chapter 4.

In summary, we start describing the Decision stage and how we applied this
stage in the real use case. Then, we proceed equally to describe the Analysis stage.

5.1 The Decision stage

The goal of the Decision stage is to analyze the domain of the DSL, identify
the need of a DSL for the domain, and justify that the efforts that will be invested
in its creation are worth.

In order to make this decision, the end-users and the developers discuss the
end-users’ requirements and inspect existing implementations and
documentation about the domain. In order to facilitate this decision making,
Mernik et al. [10] identifies a set of patterns that can be used to justify this
decision. The patterns are the following:

• Notation: The context of this pattern is a domain in which there is an
existing notation or a software API that is being used by domain experts
but it does not completely satisfy them. This pattern is applied when
there is a need to transform a visual notation to a textual notation or to
improve an existing software API with friendlier abstractions.

• AVOPT: The context of this pattern is a domain in which domain
programs are written with a general-purpose language and domain
experts need to Analyze, Verify, Optimize, Parallelize, or Transform
those programs. This pattern is applied when domain experts found very
difficult to perform these operations over the existing domain programs
and would rather have friendlier abstractions to do it.

• Task automation: The context of this pattern is a domain in which
domain experts spend a lot of time programming to accomplish the same
tasks. This pattern is applied when domain experts would like to
encapsulate these tasks and use them easily any time they need them.

• Product line: The context of this pattern is a domain whose applications
share a common architecture and are built by selecting or unselecting a
common set of basic elements. This pattern represents the need to

5. Understanding the domain: The Decision and Analysis stages 85

support the specification of each member of this family by selecting and
configuring those elements easily.

• Data structure representation: The context of this pattern is a domain
in which domain experts rely on well-known predefined data structures
to build domain programs. This pattern represents the need to facilitate
the description and maintenance of these data structures.

• Data structure traversal: The context of this pattern is a domain in
which domain programs underlie complex structures hidden under
general programming code. This pattern represents the need to facilitate
the description of those programs taking into account this underlying
structure.

• System front-end: This context of this pattern is a domain in which
domain experts need to configure different aspects of their systems. This
pattern represents the need to provide a front-end for the end-users so
they can customize this configuration and avoid dealing with
configuration files directly.

• Interaction: The context of this pattern is a domain in which domain
experts interact with the software by means of menus or text introduction.
This pattern represents the need to make the interaction among the end-
users and the system programmable.

• GUI construction: This pattern represents the need of having a DSL to
ease the construction and configuration of a graphical interface for the
end-users.

5.1.1 The decision of developing a DSL for supporting genetic analysis

In this stage, we had to decide whether or not to develop the DSL for
supporting genetic analysis. Together with the geneticists we identified which of
the aforementioned decision patterns justified the decision to proceed with this
DSL:

• Notation: In the genetic analysis domain there is not an existing notation
that is being used by domain experts to describe genetic analysis. Some
geneticists use pipeline development environments but, as we described
in Chapter 2, the geneticist’s problems are not related with the notation.
However, there is an existing “software API” that does not satisfy them
completely. When geneticists want to perform a genetic analysis, instead

86 5. Understanding the domain: The Decision and Analysis stages

of choosing which genetic task they want to perform, they must discern
which specific software tool to use from a wide array of choices and
configure the technological details. For example, instead of choosing
“protein alignment” they must execute a command line tool named
“blastp” (blast algorithm for proteins). Also, this command tool requires
a database object, which is a structure that gathers a set of DNA reference
sequences and its identifiers. In this example, geneticists should decide if
this command line tool is the most suitable to execute the protein
alignment they want to perform and configure all the specific parameters
of this tool. A DSL could improve this “software API” and hide these
technological details that are outside their domain scope and abstract the
different decisions to make by means of genetic analysis domain concepts.

• AVOPT: Since geneticists perform analysis over data coming from real
patients, they need to verify that all the parameters of the genetic analysis
are correct. Also, due to the improvement of genetic sequencing machines,
bigger amounts of genetic data are available, which means that geneticists
also need to optimize and parallelize their pipelines. Therefore, a DSL
could have several constructs for performing those operations over genetic
analysis pipelines.

• Task automation: While performing genetic analyses, geneticists must
deal with some tasks that could be automated. One example is the
interoperability among genetic analysis tools. Geneticists transform the
data manually or use programming utilities to perform format
transformations. A DSL could hide the details of those tasks and allow
data exchange among different tools transparently for them.

• Product line: Although different genetic analyses are done for different
genetic diseases, they have a lot of commonalities. Each specific genetic
analysis can be seen as a set of analysis elements that are selected and
configured depending on the disease being analyzed. These
commonalities could be encapsulated by a set of DSL constructs and
geneticists will select and configure them in order to specify each analysis.

• Data structures: In the genetic analysis domain, geneticists do not
describe their genetic analysis by means of pre-defined data structures.
Therefore, this decision pattern does not apply to this domain.

5. Understanding the domain: The Decision and Analysis stages 87

• Data structure traversals: In the genetic analysis domain, genetic analysis
programs do not underlie complex structures. Therefore, this decision
pattern does not apply to this domain.

• System front-end: The genetic analysis domain is highly coupled to
specific software tools. Some geneticists perceive a genetic analysis as a
set of tools whose parameters must be configured. Therefore, the DSL
should also provide constructs to configure tool parameters for those
geneticists that want to describe their analysis using this approach.

• Interaction: In order to perform a genetic analysis, geneticists do not
need to introduce complicated input or program the introduction of this
data. They perform those analysis by introducing text files that contain
genetic data. Therefore, this decision pattern does not apply to this
domain.

• GUI construction: The genetic analysis field is an evolving field whose
domain applications easily become obsolete. For this reason, applications
do not focus on the user interface and geneticists are getting used to
prototypical interfaces. At the moment, geneticists are more focused on
the functionality of their genetic analysis and do not care about the
structure of their user interfaces. Therefore, this decision pattern does not
apply (yet) to this domain.

The analysis of these patterns confirm that geneticists have a set of problems
that could be solved by using a DSL. For this reason, we conclude that there are
evidences to think that developing a DSL will be worth the effort.

88 5. Understanding the domain: The Decision and Analysis stages

5.2 The Analysis stage

The goal of the Analysis stage is to analyze the domain of the DSL and the
requirements of the end-users. According to Mernik et al., the output of this
stage is a domain model that characterizes the domain.

This stage is divided in three steps: 2.1) Iteration planning; 2.2) requirements
specification; and 2.3) domain modeling. Table 5.1 shows the step number and
description, the artefacts created in each step, the model-based transformations
guidelines for developers, and the mechanisms proposed for gathering end-users’
input. All these elements were introduced in Section 4.2.

Table 5.1 Overview of the Analysis stage

Step Step
Description

Artefact Model-based
transformations
guidelines

Mechanism for gathering
end-user input

2.1 Iteration
planning

DSL backlog
(AA1)

- Interview to identify
priorities

2.2 Requirements
specification

Requirements
models (AA2)

- Mechanism M1:
Templates based on user
stories (US), acceptance
tests (AT) and usage
scenarios (USC)

2.3 Domain
modeling

Feature model,
concepts model,
and vocabulary
(AA3)

Transformation
guidelines from
requirements model

Interview to define
vocabulary terms

5.2.1 Iteration planning

In the step Iteration planning, the end-users provide an overview of their
requirements, add them to the product backlog (artefact AA1) and discuss their
priorities with the developers. The developers’ goal during this task is to ensure
that the requirements added to the product backlog are well distributed in
different iterations, and the highest priority ones are addressed in the current
iteration. This planning is done in collaboration between the end-users and the
developers, since the end-users are the ones who know their priorities, and the
developers are the ones that can evaluate whether the distribution of requirements
among the iterations is feasible.

5. Understanding the domain: The Decision and Analysis stages 89

5.2.2 Requirements specification

Next, in the step Requirements specification, the end-users and the
developers discuss about the requirements of the current iteration. The end-users
explain their requirements, the developers formalize them explicitly, and the end-
users review them again to check for their correctness.

It is worth to mention that in the context of DSL development, we have
identified two types of requirements: end-user requirements, which are the
requirements that the end-users expect from a specific software application, and
DSL requirements, which are the requirements that the end-users expect from a
language that will allow them to create and customize their own software
applications. Since the end-users do not usually have language development
expertise, they are only responsible for describing end-user requirements, while the
developers are responsible for obtaining the DSL requirements from the
corresponding end-user requirements.

In order to gather end-user input and to formalize both types of requirements
(artefact AA2), we propose mechanism M1. This is composed of two templates:
the user story template, which is based on user stories and acceptance tests from
XP, and the usage scenario template, which is based on scenarios from Scrum. Each
of these templates are proposed either to describe end-user requirements or DSL
requirements. They contain the same fields for both purposes, but depending on
the type of requirement being described, the content of each field can be slightly
different.

The user story template describes the details of each of the individual
requirement expected by the end-users. This template gathers the following
fields:

• User Story: For end-user requirements, this field describes how a user
with a specific role executes an action to achieve a goal. In order to
facilitate the understandability of user stories, they are described in
natural language using a predefined structure (Figure 5.1). For DSL
requirements, the role is the user of the language, the action is the
language construct used, and the goal, the behavior associated with that
language construct. Additionally, we complement this description with
the attribute mandatory to indicate whether the language construct is
mandatory for any DSL specification.

90 5. Understanding the domain: The Decision and Analysis stages

Figure 5.1 Predefined structure of user stories

• A set of acceptance tests: An acceptance test checks whether a user story
works with a real example. For end-user requirements, it describes how
a user with a role gives an input, executes an action, and expects a specific
response. A user story should have a set of acceptance tests that is
representative of the different situations that can occur in relation to the
user story. Like user stories, in order to facilitate the understandability of
acceptance tests for end-users, they are described in natural language
using a predefined structure (Figure 5.2). For DSL requirements, the role
is the language user, the input is a set of language constructs, the action is
a language construct, and the response is the expected behavior of this
language construct.

Figure 5.2 Predefined structure of acceptance tests

• A set of dependencies: For end-user requirements, a dependency is the
interrelationship that exist between two user stories. This concept is not
adopted from any agile methodology. For DSL requirements, a
dependency is used to describe preconditions among DSL constructs. If
the precondition is not satisfied, when the DSL users execute the action,
an error message should be provided.

As an example, Table 5.2 and Table 5.3 show the user story templates to
describe the requirement “extracting records that fulfill a specific criterion” related to
the SQL construct WHERE condition. Table 5.2 describes the end-user
requirement of a user who wants to see only a subset of records. It contains an
acceptance test (AT1) that describes the response that is expected when a specific
input data set is provided. Additionally, this template describes the dependency
(DP1) of having a set of records already selected.

“As a role, I want to action, so
that I can goal”

User Story A

 action, so
 ”

“As a role, given input, when I
execute action, I will see response”

 Acceptance Test

5. Understanding the domain: The Decision and Analysis stages 91

Table 5.2 The user story template to describe an end-user requirement

User Story “Select fields by name”
Description As a user, I want to extract records that fulfill a specific criterion so that

only those records are shown in the result
Role Mandatory Action Goal
User No Extract records that fulfill a specific

criterion
To show a subset of
records

Acceptance Test AT1
Description As a user, given the dataset (

(Id=0, Name=“Maria”, Department=“CAP”),
(Id=1, Name=“Joseph”, Department=“DSIC”)),
 when I extract records whose department name is DSIC, I will see
(1, Joseph, DSIC)

Role Input Action Response
User (Id=0, Name=”Maria”,

Department=”CAP”)
(Id=1, Name=”Joseph”,
Department=”DSIC”)

Extract records
whose department
name is DSIC

 (1, Joseph, DSIC)

Dependency DP1
Description If no records have been selected from a table, when I extract records that

fulfill a specific criterion, I will see the error “Data needs to be selected
before extracting records”

Precondition Action Error Message
Select records
from a table

Extract records that fulfill
a specific criterion

“Data needs to be selected before
extracting records”

On the contrary, Table 5.3 describes the DSL requirement expected by a user
who wants to include in their software application the extraction of records that
fulfill a specific criterion. It contains two acceptance tests. One (AT1) describes
the response that is expected when a specific set of language constructs are
provided and the other (AT2) describes the error that should arise when the DSL
construct is not correctly used. Additionally, it contains a dependency that
describes the prerequisite of the user story “select data from a table”, which
corresponds to the prerequisite of the SQL language construct SELECT data
FROM table.

92 5. Understanding the domain: The Decision and Analysis stages

Table 5.3 The user story template to describe a language requirement

User Story Extract records by criterion
Description As DSL user, I want to write extract and a specific criterion so that the

records that fulfill that criterion are extracted
Role Mandatory Action Goal
DSL user No Write Extract and a specific

criterion
Extract records that fulfill
that criterion

Acceptance Test AT1
Description As a DSL user, given the constructs select from the table Department,

when I write extract and department name DSIC, I will see the source
code that extracts the records whose department name is DSIC.

Role Input Action Response
DSL User Select from table

Department
Write Extract and
department name
DSIC

Source code that extracts
records whose department
name is DSIC

Acceptance Test AT2
Description As a DSL user, given the constructs select from the table Department,

when I write extract and no condition, I will see an error saying “You
should specify the criteria to extract”

Role Input Action Response
DSL User Select from table

Department
Write Extract “You should specify the

criteria to extract”
Dependency DP1
Description If select records has not been written, when I write extract records that

fulfill a specific criterion, I will see the error “You need selecting records
before extracting records”

Precondition Action Error Message
Write Select
records from a table

Write Extract and
criterion

“You need selecting records before
extracting records”

The usage scenario template describes a real example of the domain that
includes several user stories working at a time. As an example, Table 5.4 and
Table 5.5 show the usage scenario template to describe the requirement that
integrates the user stories “Select data from a table” and “Extract records by criterion”.
Table 5.4 describes the end-user requirement of a user who wants to obtain all
the departments whose name is DSIC from a specific database and Table 5.5
shows the DSL requirement of a user who wants to create a software application
that obtains all the departments whose name is DSIC.

5. Understanding the domain: The Decision and Analysis stages 93

Table 5.4 Usage scenario template to describe an end-user requirement

Usage Scenario “Obtain all the departments with name DSIC”
Description “From the database UPV, select all the fields from the table

Department whose name of the department is DSIC”
Table 5.5 Usage scenario template to describe a DSL requirement

Usage Scenario “Tool for DSIC Departments”
Description “Write Select, all the fields, and Department. Write extract and

Department Name as DSIC”
In summary, as a result of this stage, the following requirement models are

obtained: user story templates and usage scenario templates that describe end-
user’s requirements and DSL requirements.

5.2.3 Domain modeling

Next, in the step Domain modeling, developers create the domain model
(artefact AA3) that represents the requirements of the current iteration. As we
mentioned in Chapter 4, following the guidelines from Mernik et al. [10] and
Voelter et al. [22], we propose to specify this domain model by using (Figure 5.3):
1) a feature model to describe the commonalities and variabilities of the domain;
2) a concepts model (which can be a UML Class diagram) to describe the
concepts of the domain; and 3) a vocabulary of terms to describe the domain
terminology.

Figure 5.3 Specific artefacts proposed to describe the domain model

The domain model must describe as well the relationships that exist among
these three elements. Sometimes, a feature needs a set of concepts in order to
describe its behavior. Therefore, in order to represent this need we propose to
specify relationships between the feature model and the concepts model.
Specifically, we propose to specify relationships among features of the feature

Feature Model Concepts Model

F1
F2

F2A F2CF2B

Vocabulary

Term1: Defintion

Term2: Defintion
Term3: Defintion

...
C3

C1 C2

Domain Model

94 5. Understanding the domain: The Decision and Analysis stages

model and entities of the conceptual model (Figure 5.4). On the contrary, the
relationships between the concepts model and the vocabulary are not made
explicit because the vocabulary uses the same terms that are written in the concept
entities.

Figure 5.4 Relationships between the feature model and the concepts model

In order to create all these elements of the domain model, the developers
extract the knowledge from the user story templates that were described in the
previous step (the ones that describe DSL requirements). Since end-users do not
usually have modeling experience, they only contribute by answering the
questions from the developers and by defining the terms of the vocabulary. Next,
we describe the guidelines for developers to build these models.

For the feature model, the developers create the features and establish the
hierarchy and dependencies between them (Figure 5.5):

• First, a root feature represents all the possible instances of the domain.
Its name must be representative of the domain. In Figure 5.5, the root
feature is named Domain.

• As a general rule, one feature is created per each user story. The feature
name is a summary of the action of the user story. In Figure 5.5, this
relationship is illustrated by the arrows 1 and 4.

• When a feature is added to the feature model, it is initially added as a
child of the root feature. If the user story is mandatory or optional, the
feature is also mandatory or optional, respectively. In Figure 5.5, this fact
is illustrated by the arrows 2 and 3.

• Hierarchies between user stories must be identified, normally by
observing commonalities and variabilities in the actions. While building
the feature model, the same hierarchies are translated to the features of
the feature model. For instance, if two user stories describe two similar
actions it is likely that both are options of the same general action. This

5. Understanding the domain: The Decision and Analysis stages 95

situation is represented with a (parent) feature representing the common
action and two child features of this parent feature.

• Finally, each dependency described in a user story is translated as a
dependency between the corresponding features. In Figure 5.5, this fact
is illustrated by the arrow 5.

Figure 5.5 Example that illustrates how to create the feature model

For the concepts model, the developers create the entities of the domain, their
attributes, and the relationships between concepts (Figure 5.6):

• Entities and their attributes are created from each of the terms written in
the action and the goal of the user stories. In order to decide if a term
should be a new entity or a new attribute, the developers ask the end-
users to explain each term.

• The relationships between entities are also identified by the developers
when the end-users explain each term.

Figure 5.6 Example that illustrates how to create the conceptual model

For the vocabulary, the developers use natural language to define all the
entities of the concepts model. This vocabulary may be built simultaneously with
the conceptual model.

For the relationships between the feature model and the conceptual model, the
developers create the relationships between features of the feature model and
entities of the conceptual model (Figure 5.7):

“As a DSL user, I want
to action1, so that I

can goal1”

User Story1 (mandatory)
“As a DSL user, I want to

action2, so that I can goal2”

User Story2 (optional)

“If user story1 does not exist,
when I execute action2 I will
see (erroneous) response”

Dependency

Domain

action1 action2
requires

Multiple Choice

Optional
Mandatory
Single Choice

Requires

1
2 3 4

5

“As a DSL user, I want to
action1<concept1,concept2>,

so that I can
goal1<concept3>”

User Story1 Concepts Model

C3

C1 C2

96 5. Understanding the domain: The Decision and Analysis stages

• For each user story, a relationship is created when the action field
contains a domain concept.

• As a general rule, if the action of the user story includes several concepts
it is created a relationship per each concept. However, depending on the
hierarchies of the concepts, sometimes is enough to establish a
relationship with the parent concept that contains several concepts.

Figure 5.7 Example that illustrates how to relate the feature model and the concepts
model

5.2.4 The analysis of the genetic analysis domain

In this stage, we collaborated with geneticists to obtain the domain model
that represents the genetic analysis domain.

Regarding the iteration planning (Section 5.2.1), Table 5.6 shows a partial
DSL backlog that contains the requirements related to the illustrative example
(explained in Chapter 4): the requirements already addressed in the previous
iterations (Iteration 1 and 2) and the ones to be addressed in the current iteration
(Iteration 3).

Domain

action1 action2

Concepts Model

C3

C1 C2

“As a DSL User, I want to
action2<concept1,concept2>,

so that I can action2”

User Story2

Feature Model

5. Understanding the domain: The Decision and Analysis stages 97

Table 5.6 Partial DSL backlog of Iteration 3

Classification Requirements
Previous
Iterations
(Done)

Annotate Variations with Gene
Filter Variations by Gene
Report Variations’ Properties
Report Variations’ Gene

Current
Iteration (To
do)

Read Genotypes of several samples from a VCF File
Annotate Variations with Transcripts Names
Annotate Variations with POLYPHEN predicted effect
Filter Variations by POLYPHEN predicted effect
Report Variation’s POLYPHEN predicted effect

Regarding the requirements specification (Section 5.2.2), we formalize the
geneticists requirements (end-user requirements) and the requirements of the
genetic DSL (DSL requirements) by fulfilling the user story templates and the
usage scenario templates (mechanism M1).

Table 5.7 and Table 5.8 show the user story templates that describe the
requirement “Filter Variations by POLYPHEN predicted effect”. Table 5.7 describes
the corresponding end-user requirement, which details the user story, two
acceptance tests, and one dependency. In the first acceptance test, one variation
passes the filter but in the second acceptance test, none variation fulfils the
criterion and a message is shown. This user story requires the variations to be
previously annotated with the POLYPHEN predicted effect. Table 5.8 describes
the corresponding DSL requirement, which details the language construct, two
acceptance tests, and one dependency. The first acceptance test checks the normal
behavior of the construct, while the second acceptance test describes an erroneous
usage and the corresponding error message. This language construct has a
precondition with the construct annotate variations with POLYPHEN predicted
effect.

98 5. Understanding the domain: The Decision and Analysis stages

Table 5.7 End-user requirement for “Filter Variations by POLYPHEN predicted effect”

User Story Filter Variations by Polyphen predicted effect
Description As a geneticist, I want to filter the sample’s variations by the predicted

effect by POLYPHEN (probably_damaging, possibly_damaging,
benign), so that I can see only the variations that pass the filter”

Role Mandatory Action Goal
Geneticist No Filter sample’s variations by a set of

POLYPHEN predicted effects (benign,
possibly_damaging, probably_damaging)

Seeing only the
variations that
pass the filter

Acceptance Test AT1
Description As a geneticist, given the variations chr2:g.136438366A>G {},

chr11:g.111959693G>T {probably damaging}, chr17:g.41245471C>T
{benign}, when I filter the variations by the POLYPHEN predicted
effect possibly damaging I will see the variation chr11:g.111959693G>T

Role Input Action Response
Geneticist chr2:g.136438366A>G {}

chr11:g.111959693G>T
{probably damaging}
chr17:g.41245471C>T {benign}

Filter by
POLYPHEN
damaging

chr11:g.111959693G>T
{probably damaging}

Acceptance Test AT2
Description As a geneticist, given the variations chr2:g.136438366A>G {}, chr11:g.

76255523 G>T {probably damaging}, chr11:g.111959693G>T{},
chr17:g.41245471C>T {benign}, when I filter the variations by the
predicted effect probably damaging I will see a message saying that
“None variation has the desired predicted effect”

Role Input Action Response
Geneticist chr2:g.136438366A>G {}

chr11:g.111959693G>T{}
chr17:g.41245471C>T {benign}

Filter by
POLYPHEN
damaging

“None variation has been
annotated by
POLYPHEN with the
desired predicted effect”

Dependency DP1
Description If variations have not been annotated with POLYPHEN predicted

effect, when I filter variations by POLYPHEN predicted effects, I will
see the error “Variations must be annotated with POLYPHEN predicted
effect before filtering”

Precondition Action Error Message
Annotate variations
with POLYPHEN
predicted effect

Filter variations by a set
of POLYPHEN
predicted effects

“Variations must be annotated with
POLYPHEN predicted effect before
filtering”

5. Understanding the domain: The Decision and Analysis stages 99

Table 5.8 DSL requirement for Filter Variations by POLYPHEN predicted effect

User Story Filter by Polyphen predicted effect
Description As DSL user, I want to order a filter by a list of POLYPHEN predicted

effects, so that variations can be filtered by these predicted effects
Role Mandatory Action Goal
DSL user No Write Filter and a list of

POLYPHEN predicted effects
Variations can be filtered
by these predicted effects

Acceptance Test AT1
Description As a DSL user, given annotate variations with POLYPHEN predicted

effect, when I write filter and the POLYPHEN predicted effect probably
damaging, I will see the source code that filter the variations by this
predicted effect.

Role Input Action Response
DSL User Annotate variations

with POLYPHEN
effect

Write Filter and
predicted effect
probably damaging

Source code that filters
variations by the
POLYPHEN predicted
effects “probably_damaging”

Acceptance Test AT2
Description As a DSL user, when I write filter by the POLYPHEN predicted effect

harmful, I will see an error saying that the predicted effect harmful is not
a POLYPHEN predicted effect.

Role Input Action Response
DSL User Annotate

variations with
POLYPHEN
predicted effect

Write Filter
and predicted
effect harmful

Error: “The predicted effect harmful is
not a POLYPHEN predicted effect.
The predicted effects must be benign,
possibly damaging or probably
damaging”

Dependency DP1
Description If annotated with POLYPHEN predicted effect has not been written,

when I write filter and a list of POLYPHEN predicted effects, I will see
the error “Variations must be annotated with POLYPHEN predicted
effect before filtering”

Precondition Action Error Message
Write Annotate
variations with
POLYPHEN predicted
effect

Write Filter and a list
of POLYPHEN
predicted effects

“Variations must be annotated with
POLYPHEN predicted effect before
filtering”

Table 5.9 describes the usage scenario “Analyze Diabetes Mellitus Type 2
(Analysis 1)”. This scenario contains, among other requirements, the requirement
“Filter Variations by POLYPHEN predicted effect” described in Table 5.7 and Table
5.8.

100 5. Understanding the domain: The Decision and Analysis stages

Table 5.9 Usage scenario template to describe one analysis of Diabetes Mellitus Type 2

Usage Scenario Usage Scenario Diabetes Mellitus Type 2 (Analysis 1)
Description In order to research the diabetes mellitus type 2 disease:

I want to read the genotypes of several samples from a VCF file.
I want to annotate the variations with their genes, with all the names of
the transcripts that they hit, and the score and predicted effect of
POLYPHEN.
I want to filter the variations by the diabetes genes “ABCC8,
CAPN10,KCNJ11, GCGR, SLC2A2, HNF4A, INS, INSR, PPARG,
TCFl2, ADIPOQ, AKT2, PAX4, MAPK81p1, GPD2, MNTR1B”,
and by “possibly damaging” or “probably damaging” variations
according to POLYPHEN.
I want to create a report with the variations main properties, their
genes, their transcript names, and their POLYPHEN predictions.

The last step of the analysis stage is the domain modeling (Section 5.2.3), in
which developers obtain the feature model, the concepts model, the vocabulary,
and the relationships between the feature model and the concepts model.

Figure 5.8 shows a partial feature model that is related to the illustrative
example. This feature model gathers three main features: Processing Sample Data
(Sample Data), Analyze a set of Variations (Variation Analysis), and Report the
Analysis Results (Report).

Figure 5.8 Feature model of iteration 3

In order to create this feature model, we applied the model-based guidelines
previously described that obtain the necessary information from the user story
templates:

• The feature Genetic Analysis is the root feature that represents the domain
and gathers all the instances supported by the DSL.

Genetic Analysis

Sample Data Variation Analysis

Filter

Report

Variations

VCF

Variations Annotate

Structure Gene

Several
Patients

Gene Transcript

Calculations

Predicted
Effect

Gene TranscriptPredicted
Effect

Predicted
Effect

Optional
Mandatory
Single Choice
Multiple Choice
Requires

*

5. Understanding the domain: The Decision and Analysis stages 101

• For each user story template, we created a feature whose name is a
summary of the description field or is extracted from the action field. For
instance, the features Filter and Predicted Effect of Figure 5.9 are due to
the action field of the user story template “Filter Variations by a set of
POLYPHEN predicted effects” (shown in Table 5.8). At the moment, the
relationship between the feature Filter and Predicted Effect is single choice
because the user story is optional.

• For each dependency between the user stories, we have created a require
link between features. For example, Figure 5.9 shows the correspondence
between the require link from the feature Predicted Effect (child of Filter)
and the feature Predicted Effect (child of Annotate), and the dependency
If annotated with POLYPHEN predicted effect has not been written, when I
write filter and a list of POLYPHEN predicted effects, I will see the error
“Variations must be annotated with POLYPHEN predicted effect before
filtering” , described in Table 5.7.

• In general, we organized the feature hierarchy according to the
commonalities and variabilities presented in the different user stories. For
example, we created the parent feature Filter of Figure 5.9 by grouping
the two user stories that described the need of filtering by gene (feature
Gene) and the need of filtering by predicted effect (feature Predicted Effect).

Figure 5.9 Example that illustrates the creation of the feature model

As a DSL user, I want to
order the annotation of
the sample’s variations

with the
predicted effect by

POLYPHEN, so that the
sample variations will
be annotated with the
POLYPHEN score and

effect

User Story (optional) User Story (optional)

If annotated with
POLYPHEN predicted effect

has not been written,
when I write filter and a list

of POLYPHEN predicted
effects, I will see the error

“Variations must be
annotated with POLYPHEN

predicted effect before
filtering”

Dependency

Filter

Gene Predicted
effect

requires

Multiple Choice

Optional
Mandatory
Single Choice

Requires

As a DSL user, I want to
order a fi lter by a
 list of POLYPHEN

 predicted effects, so
that sample variations

can be filtered by these
effects

Annotate

Predicted
effect

102 5. Understanding the domain: The Decision and Analysis stages

Figure 5.10 shows a partial concepts model that is related to the illustrative
example. A genetic analysis is performed over a sample that gathers a list of genetic
variations, in which different genetic attributes are identified.

Figure 5.10 Concepts model of the third iteration

In order to create the UML class diagram, we applied the model-based
guidelines previously described that obtain the necessary information from the
user story templates:

• For each user story, we identify the keywords of the domain that are
written in the fields action and goal of the user stories. For example,
Figure 5.11 shows the correspondence between the entities Sample,
Variation, and Predicted Effect and the attributes Algorithm Name, Effect,
and Score from the user story “As a DSL user, I want to order the annotation
of the sample’s variations with the predicted effect by POLYPHEN, so that the
sample variations will be annotated with the POLYPHEN score and effect”.
The attribute associated with the keyword POLYPHEN is translated to
Algorithm name because the specific algorithm used it is a technological
decision not a domain concept.

-id
Sample

-chr
-chrPos
-refValue
-value

Variation

0..1

0..1 0..*

analysisVariations-Disease
GeneticAnalysis

-path
DataFile

1

1

-RefSeqidentifier
ReferenceSequence

1

reference

Report
0..1 1

1 targetVariations

-HGNCId
Gene

Transcript

-AlgorithmName
-Score
-Effect

PredictedEffect

1..1

Multiple

Single Patient

1
*

*

+Sift
+Polyphen

«enumeration»
PredictionAlgorithm

+Benign
+Damaging

«enumeration»
Effect

+Ascendant
+Descendant

«enumeration»
Order

-allele1
-allele2
-individualId

Genotype
-frequency
-allele

MAF

5. Understanding the domain: The Decision and Analysis stages 103

Figure 5.11 Example that illustrates the creation of the concepts model

In order to define the vocabulary, we asked the geneticists to define each of
them. The glossary of terms related to the illustrative example are:

• Genetic Analysis: Analysis that is performed to individuals by observing
their genetic data.

• Report: Relevant information gathered as a result of a genetic analysis.
• Sample: Object of study to perform a genetic analysis (one or several

individuals).
• Single (Sample): When the object of study is a single individual.
• Multiple (Sample): When the object of study are several individuals.
• Datafile: Genetic data of the sample saved in a textual file.
• Variation: Each of the nucleotides that the sample has different in

regards to a reference sequence.
• Reference Sequence: A representative sequence of nucleotides that

theoretically represents the sequence of a “disease free” human.
• Gene: Functional unit that delimits a subset of nucleotides from the

DNA sequence. A gene regulates a function of the body.
• Transcript: Functional structure of the gene that represents the parts that

play a role in the transcription of the nucleotides of the genes to proteins.
• Effect Prediction: Result of the execution of a prediction algorithm that

assesses the effect of the variation in an individual.
• Genotype: Two alleles of an individual in a position in the chromosome.

Finally, we defined the relationships between the feature model and the
conceptual model. Figure 5.12 shows two of the relationships between the models
of the illustrative example (Figure 5.8 and Figure 5.10). The feature Filter->Gene

Concepts Model
As a DSL user, I want to
order the annotation of
the sample’s variations

with the
predicted effect by

POLYPHEN, so that the
sample variations will be

annotated with the
POLYPHEN score and effect

User Story

Sample

Variation
-AlgorithmName
-Score
-Effect

Predicted Effect

104 5. Understanding the domain: The Decision and Analysis stages

and the entity Gene and the relationship between the feature Filter->Effect
Prediction and the entity PredictedEffect.

Figure 5.12 Relationships between the models of the genetic analysis example

In order to obtain these relationships, we applied the proposed model-based
guidelines:

• For each user story template, we search domain concepts in the field
action. Figure 5.13 shows the correspondence between the feature
Predicted effect and the entity Effect Prediction of the concepts model.
Additionally, this relationship has the cardinality one-to-many due to the
keyword list of the field action.

Genetic Analysis

Variation Analysis

FilterAnnotate

Structure

Gene Transcript

Calculations

Effect
Prediction

Gene Effect
Prediction

-chr
-chrPos
-refValue
-value

Variation
0..1

*

0..1

0..*

analysisVariations

-Disease
GeneticAnalysis Report

0..1 1

1

*

targetVariations

-HGNCId
Gene

*1

1*

+Sift
+Polyphen

«enumeration»
PredictionAlgorithm

+Benign
+Damaging

«enumeration»
Effect

Concepts ModelFeature Model

-AlgorithmName
-Score
-Effect

Predicted Effect

5. Understanding the domain: The Decision and Analysis stages 105

Figure 5.13 Example that illustrates how to relate the feature model and the concepts
model

5.3 Conclusion

In this chapter, we have explained the two first stages of the DSL
development process: Decision and Analysis. We have explained these stages
together because both of them aim to bring closer end-users and DSL developers.
In these stages, end-users tell developers what are the particular features of their
domain and what are their specific needs. The Decision stage is the first step into
this path and when the potential benefits of developing a DSL are clear, further
details of the domain are discussed in the Analysis stage.

Regarding the Decision stage, our approach does not provide anything new
to the state of the art since we adopted an already existing set of decision patters.
Our contribution to this stage is to assert the benefits of this existing proposal by
applying it in practice.

Regarding the Analysis stage, our approach contributes to the state of the art
by finding the balance between the agile practices that describe requirements and
the models that make explicit the domain of the DSL. First, we have established
the difference between end-user requirements and DSL requirements and how
to address each type. Second, as mechanism M1, we have adopted user stories,
acceptance tests, and usage scenarios to engage end-users in describing a few
requirements of the system in a structured way. Thanks to this structure (third),

Feature Model

User Story

Genetic Analysis

Variation Analysis

Filter

Effect
Prediction

-AlgorithmName
-Score
-Effect

Predicted Effect

Concepts Model

As a DSL user, I want to order
a fi lter by a list of POLYPHEN

predicted effects, so that
sample variations can be
filtered by these effects

*

106 5. Understanding the domain: The Decision and Analysis stages

we have proposed a set of guidelines to obtain the domain model of the DSL
explicitly in form of a feature model, a concepts model, and a vocabulary.
Although full automation of these guidelines is not supported at the moment,
these three models can be generated systematically by the developers.

As drawbacks, we have not dealt with non-functional requirements.
Although user stories and acceptance tests could be used in principle to define
non-functional requirements, we have not studied its application in practice. This
is a challenging problem left for our very next future work.

6. Realizing the Solution: The Design and Implementation Stages 107

6. Realizing the Solution: The
Design and Implementation

Stages
Once the developers have acquired and formalized the appropriate knowledge

from domain experts, the next step is realizing the DSL that will support the end-
users’ needs. With this aim, the developers design the language that is going to
be created (although the end-users also participate to ensure that their needs are
well represented). This design includes the syntax, which describes the structure
of the DSL, and the semantics, which describes the underlying behavior of the
DSL. In our method, these elements are created in the Design stage.

Once this design is complete, developers implement the technological
support of that design. End-users do not participate because implementing only
implies to deal with technological concepts nor domain concepts. In our method,
this technological solution is created in the Implementation stage.

In this chapter, we explain the Design and Implementation stages and how
we applied each of them for developing of a DSL for the genetic analysis domain.
We created several versions of the method and the DSL; however, in order to
simplify the explanation of the method, we focus only on the method version that

108 6. Realizing the Solution: The Design and Implementation Stages

corresponds to the last iteration. Similarly, in order to simplify the explanation of
the application of the method to build the DSL, we only provide fragments of
the DSL in regards to the illustrative example presented in Chapter 4.

In summary, we start describing the Design stage and how we applied this
stage in the real use case and then, we proceed equally to describe the
Implementation stage.

6.1 The design stage

The goal of the Design stage is to provide a design of the language to be
developed. The goal of this stage is to specify a syntax, which describes the
structure of the language by means of language constructs8, and the semantics,
which describes the functional meaning of each syntax construct. On the one
hand, the syntax of a language (artefact DA1, Figure 4.4) is defined by means of
two artefacts: 1) the abstract syntax, which describes the concepts of the language
and the existing relationships among them; and 2) the concrete syntax, which
describes the specific symbols, textual or visual, that are used to refer to the
concepts and relationships of the abstract syntax. On the other hand, the
semantics (artefact DA2, Figure 4.4) is also defined by means of two artefacts: 1)
semantics restrictions, which express facts or conditions that should be fulfilled
by syntax elements; and 2) behavioral semantics, which describe the meaning of
syntax elements in the specific target domain.

Table 6.1 shows the steps to design all these artefacts, the model-based
transformations guidelines for developers, and the mechanisms proposed for
gathering end-users’ input. All these elements were introduced in Section 4.2.
Steps 3.1 and 3.2 belong to the syntax design, and steps 3.3 and 3.4 to the
semantics design.

8 A language construct is a set of tokens (or a set of graphical elements) that are syntactically
correct according to the rules of a language.

6. Realizing the Solution: The Design and Implementation Stages 109

Table 6.1 Overview of the Design stage

6.1.1 Syntax preferences

The step syntax preferences inspects the decision whether designing an
internal DSL, which is using an existing language as a base for the new language,
or an external DSL, which is creating a new language with its own syntax [10].
This decision is only addressed in the first iteration and it is not revisited unless
the end-users demand major changes in the language.

In order to make this decision, the developers should assess: 1) if the end-
users are familiar with any existing language; and 2) the advantages and
disadvantages of each option for the specific end-users. According to [90] this
decision depends on their preferences regarding:

1. Availability of a programming context: The possibility of having
programming libraries of another general purposed language while
creating DSL specifications.

2. Syntax flexibility: The degree of restrictions to express the constructs of
the DSL.

3. Language cacophony: The necessity to learn a new language.

Hence, in order to involve end-users in this decision, we propose to ask them
the following questions:

Ste
p

Step
Descriptio
n

Artefact Model-based
transformations
guidelines

Mechanism for gathering
end-user input

3.1 Syntax
preferences

Internal/External
Decision

- Interview to identify
preferences

3.2 Abstract
and
concrete
syntax
design

Syntax Models
(DA1): Metamodel
and grammar

Transformation
guidelines (from
the domain
model)

Mechanism M2: A
questionnaire based on
usage scenarios

3.3 Semantic
restrictions
design

Metamodel
constraints and
grammar rules (DA2)

Transformation
guidelines (from
the domain
model)

-

3.4 Semantic
behavior
design

Service model (DA2) - Mechanism M3: Template
based on service
specification and user
stories

110 6. Realizing the Solution: The Design and Implementation Stages

1. Existing language: “Have you ever used a programming language to
perform an analytic task about your domain? If so, which language?”

2. Availability of a programming context: “When you perform an analytic
task about your domain, would you like to have the possibility to use
external programming libraries?”

3. Syntax Flexibility: “Would you like to use a set of predefined words and
symbols to perform your analytic tasks?

4. Language learning: “Do you mind to learn a new language?”
5. Priorities: “What are your priorities regarding the knowledge of an

existing language, availability of a programming context, syntax flexibility
and language learning

In order to make the final decision, the developers assess the end-users’
responses and decide between internal and external according the end-users’
needs and preferences. Table 6.2 shows two examples of this decision-making
approach. For end-users 1, the most suitable solution is an internal DSL that is
based on a language they already know. They know an existing language, they
would like to use existing programming libraries of this language, they don’t need
a special syntax, they don’t want to learn a new language, and the most important
for them is to use this language and not to learn a new one. On the contrary, for
end-users 2, the most suitable solution is an external DSL. They do not know
any programming language, they need syntax flexibility, they don’t need to have
any programming context available besides the DSL, they don’t mind to learn a
new language and the most important for them is to have syntax flexibility.

Table 6.2 Examples of internal/external decision

 Language
already
known

Programming
context

Syntax
Flexibility

New learning Piorities Decision

End-
users 1

Yes
(internal)

Yes (internal) No
(internal)

No (internal) Language
known and
new
learning

Internal

End-
users 2

No
(external)

No (external) Yes
(external)

Don’t mind
(internal/external)

Syntax
flexibility

External

For practical reasons, initially our method only addresses the development of
external DSLs and leaves internal DSLs for future work. The reason for this
decision was driven for the thesis context. One of our goals was to provide a
complete DSL development approach that could be applied in practice, so we

6. Realizing the Solution: The Design and Implementation Stages 111

decided to continue with the next stages of DSL development, instead of focusing
only on all of the details of the design stage.

The specific decision of supporting first an external approach was motivated
by the other goal of this PhD of building a DSL for the genetics analysis domain.
We assessed the preferences of the geneticists from GEM Biosoft and Imegen
and the most suitable approach for them was an external DSL since: 1) they knew
a language but it was not suitable enough to describe their analyses; 2) they did
not needed specific programming libraries; 3) they did not had restrictions in the
language syntax as long as it was easy; and 4) they were willing to learn a new
language if it was worth.

6.1.2 Abstract and concrete syntax design

Once the decision between internal or external DSL is made, the goal of the
step abstract and concrete syntax design is to design the syntax models (DA1)
that represent the language requirements gathered in the analysis stage and the
end-users’ preferences.

For the same reason that we chose to support first external DSLs, in this step,
we focused on textual syntaxes, and we left graphical syntaxes for future work.
Therefore, since the method focuses on textual syntaxes, following the guidelines
from Strembeck et al. [12] and Voelter et al. [22], we propose to describe the
abstract syntax using a metamodel and the concrete syntax using a grammar.

In order involve the end-users in the syntax design, this step is decomposed
into four sub-steps (Figure 6.1): 1) designing the abstract syntax metamodel draft;
2) designing several syntaxes with different structures and styles that are
compliant with the abstract syntax metamodel; 3) creating a questionnaire to ask
end-users about the abstract syntax and the different concrete syntax options; and
4) refining the analysis models and the syntax models according to the feedback
gathered by the questionnaire. Next, we detail these four sub-steps.

112 6. Realizing the Solution: The Design and Implementation Stages

Figure 6.1 Substeps to design the abstract syntax and concrete syntax

In the first sub-step, a draft of the abstract syntax metamodel is designed.
Since end-users don’t usually have experience designing metamodels, they cannot
collaborate in this modelling task, so the developers have to obtain the knowledge
from the information gathered in the analysis stage (analysis models). With this
aim, we propose a set of guidelines made up of a set of model-based
transformations to extract the knowledge from the analysis models (artefact AA3)
and represent it into the abstract syntax metamodel (artefact DA1). The
guidelines are the following (Figure 6.3):

• The complete feature model is projected as a metamodel. Features
become entities of the metamodel and the relationships among these
features become composition or specialization relationships. In Figure
6.2, the projection of entities is illustrated by the arrow 1.

• When a relationship among two features of the feature model is
mandatory or optional, this information is projected in the metamodel as
a composition relationship among the two corresponding entities of the
metamodel. In Figure 6.2, this projection is illustrated by the arrows 2
and 3. The mandatory or optional property of a feature of the feature
model is represented in the metamodel by establishing the cardinality of
the composition relationship. If the feature is mandatory, the cardinality
is 1. If it is optional, the cardinality is 0..1. In Figure 6.2, this projection
is illustrated by the arrow 3.

• When a relationship among one parent feature of the feature model and
several child features is single option or multiple option, these
relationships are projected in the metamodel as specializations, one per
child feature. If this relationship is single option, the projected
specializations are disjoint. On the contrary, if this relationship is

1. Abstract
Syntax
Draft

2. Set of
Concrete
Syntaxes

3. Syntax
Questionnaire

(mechanism M2)

4. Refinement
of Analysis
and Syntax

models

Concrete
Syntax

grammar
Abstract
Syntax

Metamodel
Feature
model

Syntax
options

Concepts
model

Usage
scenarios

6. Realizing the Solution: The Design and Implementation Stages 113

multiple option, the projected specializations are overlapping. Figure 6.2,
this projection is illustrated by the arrows 4 and 5.

Figure 6.2 Example that illustrates the creation of the abstract syntax metamodel

• Relationships among features of the feature model and concepts of the
concepts model (feature-to-concept relationships) are also projected in
the metamodel. The concepts involved in a feature-to-concept
relationship are projected as new entities of the metamodel and the
relationship is projected as an association. In Figure 6.3, this projection
is illustrated by the arrow 2.

• Additionally, after projecting a concept of the concepts model in the
metamodel, if the concept has a composition relationship, this
relationship is also projected in the metamodel as a composition. In
Figure 6.3, this projection is illustrated by the arrow 3.

Figure 6.3 Example that illustrates the creation of the abstract syntax metamodel

action1

Domain

action2

Feature Model

Domain

action1 action2

Abstract Syntax Metamodel

1

2

action3 action4

action5 action6

3

action3 action4

action5 action6

4

5

0..1

disjoint

overlapping

Concepts Model

C3

C1

C2

action1

Domain

action2
1 0..1

C 1

C 2

Feature Model

Domain

action1 action2

Abstract Syntax Metamodel

1
2

re
la

tio
ns

hi
p1

3

114 6. Realizing the Solution: The Design and Implementation Stages

In the second sub-step, several concrete syntax grammars with different
structures and styles are designed to offer the end-users several options to choose.
In order to design each of these syntax options, we propose a set of guidelines
with model-based transformations to create the grammar that complies with the
designed abstract syntax metamodel. These guidelines are the following (Figure
6.4):

• The complete abstract syntax metamodel is projected as a grammar:
Entities become non-terminals and relationships between entities
become production rules. In Figure 6.4, this projection is illustrated by
the arrows 1 and 2.

• Each composition relationship in the metamodel becomes a production
rule: the container entity becomes the non-terminal of the left side of the
rule and the contained entities the non-terminals of the right side of the
rule. If the cardinality of the composition relationship is 0..1, the non-
terminal is optional. If the cardinality is 1, the non-terminal is mandatory.
In Figure 6.4, this projection is illustrated by the arrows 3 and 4.

• When an entity of the metamodel is specialized into several sub-entities,
a production rule is created: the super-entity becomes the non-terminal
of the left side of the rule and each sub-entity becomes a non-terminal of
the right side of the rule. If the specialization is disjoint, each non-
terminal represents an option of the instantiation of the rule. If the
specialization is overlapping, each non-terminal is optional.

• The entities of the metamodel that do not have any composition or
generalization relationship become the terminals of the grammar. In
Figure 6.4, this projection is illustrated by the arrow 6.

• The label of the production rules and terminals are extracted from the
concrete syntax selected by the end-users or from the vocabulary of terms
from the analysis.

6. Realizing the Solution: The Design and Implementation Stages 115

Figure 6.4 Example that illustrates the creation of the concrete syntax grammar

In practice, it is not always necessary for developers to apply these guidelines
manually, since there are technological frameworks such as Xtext [91] that
implement them already. Specifically, Xtext provides a function that reads a
metamodel implemented using EMF [92] and generates a draft of a grammar
that complies with that metamodel. Then, developers must only change the
tokens of the grammar rules and the terminals in order to customize the concrete
syntax grammar. However, we have introduced the guidelines in case of using
another implementation approach.

In the third sub-step, in order to illustrate to the end-users both the abstract
syntax and the different concrete syntax options, as mechanism M2, we propose
to use a questionnaire based on usage scenarios (from Scrum). We used
questionnaires because it is a very well-known practice to gather information from
end-users and we used the agile practice “usage scenarios” to illustrate the
different concrete syntaxes with a domain example.

In order to create this questionnaire, the developers chose one of the usage
scenarios from the analysis (artefact AA2) and specify this scenario (using a
textual editor) with each concrete syntax proposed. Using all these created
example specifications, the developers design a set of questions that ask the end-
users: 1) to rate each concrete syntax option; 2) to choose the most suitable one;
3) to propose a new concrete syntax (if needed); and 4) to validate the correctness
of each syntax construct (abstract syntax).

Figure 6.5 shows an example of a question that asks the end-users to rate one
concrete syntax option. In order to rate the suitability of each syntax option we

action1

Domain

action2

1 0..1

C 1 C 2

Abstract Syntax Metamodel Concrete Syntax Grammar

Domain:= Action1 [Action2]

Action1:= C1

Action2:= “action2”

C1:= “action1” (“c1” | C2)

C2:=“c2”

1

2 3

4
5

6

116 6. Realizing the Solution: The Design and Implementation Stages

use a Likert scale [93] from 1 to 5. Also, Figure 6.6 shows a free text question in
which end-users may suggest changes in their favorite syntax.

Figure 6.5 Question about the suitability of a specific concrete syntax using a Likert
Scale

Figure 6.6 Question to suggest syntax changes using free text

Finally, in the fourth sub-step, after the end-users have answered the
questionnaire, the developers analyze their responses and create the definitive
abstract syntax metamodel and concrete syntax grammar (artefact DA1). First,
the developers identify which is the most preferred syntax among the end-users.
Then, they design the corresponding grammar rules of the concrete syntax
grammar according to this syntax. Finally, they analyze the corrections or changes
proposed in the scenario by the end-users and refine the entities, relationships
and restrictions of the abstract syntax metamodel accordingly.

6.1.3 Semantic restrictions design

In order to design the semantics, in the step semantic restrictions design, the
developers incorporate into the syntax models (artefacts DA1) all the domain
restrictions that must be ensured when creating domain instances: constraints
over the syntax constructs and in the relationships among them. Since we

6. Realizing the Solution: The Design and Implementation Stages 117

specified the syntax using a metamodel and a grammar, semantic restrictions are
described both as metamodel constraints and grammar rules.

Equally to the syntax design, it is usually very difficult for end-users to
contribute to metamodels and grammars. For this reason, we propose a set of
guidelines for developers to extract the restrictions represented in the analysis
models (the user story templates that describe DSL requirements, artefacts AA2;
and the feature model and the concepts model, artefacts AA3) into the abstract
syntax metamodel and the concrete syntax grammar. The guidelines to design the
semantics restrictions are (Figure 6.7):

• Each acceptance test that describes how to deal with an error in a DSL
construct expression is projected as a restriction in the concrete syntax
grammar and in the abstract syntax metamodel. This restriction is usually
represented using enumerations in the abstract syntax metamodel and
using data types in the concrete syntax grammar.

• Each dependency between two features is projected as a restriction in the
abstract syntax metamodel. This restriction is represented as an integrity
constraint in the metamodel and it is expressed using pseudo-code. In
Figure 6.7, this projection is represented by the arrows 1, 2 and 3.

• In order to customize the error messages of the integrity constraints, the
messages are extracted from the errors described by the end-users in the
acceptance tests of the user story templates. In Figure 6.7, this projection
is represented by the arrow 4.

Figure 6.7 Example that illustrates the creation of the semantic restrictions

action1

Domain

action2

1 0..1

Feature Model

Domain

action1 action2

Abstract Syntax Metamodel

dependency

when action2
 if action 1 exists “ok”
 else “custom_error_message”

If not action1 when I action2, I will see
an error saying “custom_error_message”

Acceptance test
Error message

1
2

3

4

118 6. Realizing the Solution: The Design and Implementation Stages

6.1.4 Semantic behavior design

In the step semantic behavior design step, the developers describe the
behavior of the different language constructs by means of actions that must be
accomplished. For instance, the language construct upload DNA file using ftp
implies to execute an upload service to a web server using an ftp client.

Following the agile practice architectural envisioning from Agile Modeling,
we propose to describe the semantics behavior by establishing a mapping between
each syntax construct (one or several entities of the abstract syntax metamodel)
and a technological artefact that implements its behavior; such as a command line
tool, a query to a database, a call to a web service, an execution of a data processing
utility, etc.

In this step, the participation of the end-users is essential because they are the
experts of the domain and they usually know about the software or tools that
could achieve the expected behavior. From their experience, they will identify
which technological artefact is the most suitable to provide each corresponding
behavior.

In order to specify this mapping between a syntax construct and a
technological artefact, as mechanism M3 we adopted the “Service Abstract
Interaction Unit” proposed by [94], which is a template that describes a mapping
between a class of a model and a service. First, we analyzed which fields were
necessary to describe a semantic mapping between a syntax construct and a service
for the DSL context. Then, we adopted the majority of the fields of this template
and we discarded the fields: alias, because it had no application in the DSL
context, and the field errors, since the errors of the DSL were already described
in the analysis stage by means of acceptance tests.

In order to facilitate the comprehension of this template to the end-users, we
added the field user story to avoid the inclusion of the notion of a syntax construct.
This abstraction is possible because one user story represents a single syntax
construct. This way, the end-users establish the mapping between a domain
requirement that is being represented by a single user story and a technological
artefact, instead of a syntax construct.

Table 6.3 shows the content of a this template: 1) User story provides the title
of the user story associated with the syntax construct whose semantics are being
specified; 2) Service identifier provides the name that identifies the technological

6. Realizing the Solution: The Design and Implementation Stages 119

artefact that implements the functionality or behavior of the user story; 3) Service
information provides additional details about the service, such as the service
provider, version, prerequisites, etc.; and 4) Input and Output sections describe
the arguments that the technological artefact consumes and produces. Each
argument has a Description in natural language and a Type (a generic data type
such a String or Boolean). Inputs contain a flag Constant, which indicates if the
argument is fixed (value True) and a field Value, which specifies the fixed content
when this is the case. Outputs contain the field Visibility, which indicates if
showing the output is relevant for the end-users.

Table 6.3 Template to describe semantics behavior

User story Action of the user story
Service identifier serviceId
Service information Type of service and service provided
Inputs Description Type Constant Value
Input1 description Type1 No -
Input2 description Type2 Yes Predefined_value
Outputs Description Type Visibility
Input3 description Type3 Yes

6.1.5 The design of the genetic analysis DSL

In this section, we show how we applied the proposal to design a DSL for
genetic analysis in collaboration with geneticists. Regarding the syntax
preferences (Section 6.1.1), we had to decide together with geneticists between
implementing the DSL using an internal or external approach. In order to address
this decision we met with them to ask about the following features:

• Existing language: The geneticists manifested that programming with a
scripting language is the most suitable approach to have full control over
their genetic analyses. They have learned how to write scripts, but they
manifested that acquiring all these programming knowledge was difficult
and teaching all these acquired knowledge to other geneticists is a time
consuming task. There are workflow environments like Taverna [51] or
Galaxy [52] that aim to avoid the geneticists to learn all this technical
knowledge, but the geneticists think that these are still too technical for
those who do not have programming expertise. Regarding this feature,
they again prefer an external DSL.

• Availability of a programing context: Although the geneticists write
scripts to customize their genetic analyses, they do not learn general

120 6. Realizing the Solution: The Design and Implementation Stages

programing languages to create new software tools or to customize the
existing ones. Also, they do not require any specific programming library
to perform a task of their analyses. Regarding this feature, they prefer an
external DSL.

• Syntax flexibility: The geneticists don’t mind the structure of the
language as long as it can be used to specify all the parameters related
with their genetic analysis. Regarding this feature, they don’t mind if the
DSL is external or internal.

• Language cacophony: The geneticists do not want to learn a new
language, but they are willing to make the effort as long as it is easy,
expressive enough, and if they are provided with a usable editor that
guides them. Regarding this feature they don’t mind if the DSL is
external or internal.

• Preferences: The most important for geneticists was to have a new
language that could be used to specify their genetic analysis.

In order to make the final decision, we took into account the work of
Cuadrado et al. [95], which compares the internal and external approaches to
develop a DSL and concludes that in regards with the target audience: 1) end-
users tend to perceive that an internal DSL is more complicated to learn because
it implies learning a new general purpose language; 2) an external approach is
recommended if the end-users may feel intimidated; and 3) the freedom that is
offered by an external DSL may allow to satisfy the end-users when they request
changes or new specific constructs.

Together with the feedback provided by the geneticists and the previous
remarks, we decided that the best was an external approach. The geneticists will
have to learn a new language that has been specially designed for their needs that
only contains concepts related with their domain.

Once the syntax approach and the structure were decided, the next step was
the abstract and concrete syntax design (Section 6.1.2), which gathers four sub-
steps. The first sub-step is designing the abstract syntax metamodel. Figure 6.8
shows the set of metamodel entities that support the description of the genetic
analysis example. This model describes some of the aspects of the genetic analysis
example such as: reading sample data; annotating variations with gene, MAF or
transcript; filtering variations by effect; or creating a report.

6. Realizing the Solution: The Design and Implementation Stages 121

Figure 6.8 Abstract syntax metamodel of the genetic analysis example

In order to create the abstract syntax metamodel, we applied the model-based
guidelines to obtain the information from the analysis models (the feature model,
the concepts model and the relationships among them) and to create the different
entities and relationships of the metamodel:

• Each feature of the feature model is projected as an entity of the
metamodel, as well as the hierarchical relationships among them and
their cardinalities. For instance, Figure 6.9 shows the correspondence
between the features Filter, Gene, and Predicted effect and the
metamodel entities Filter, Gene, and Predicted effect. This figure also
shows the correspondence between the fact that Gene and Predicted
effect are options of the parent feature Filter and the two generalization

122 6. Realizing the Solution: The Design and Implementation Stages

relationships in the metamodel of the entities Gene and Predicted effect
in relation with the parent entity Filter.

• Each relationship between a feature of the feature model and an entity of
the concepts model is projected as a new entity of the metamodel and a
composition relationship with the same cardinality than the original
relationship. The composite of this relationship is the metamodel entity
projected as a result of the feature. For example, Figure 6.9 shows the
correspondence between the relationship list_of_predictions (between
the feature Predicted effect and the entity Prediction) and the
composition relationship of the abstract syntax metamodel between the
entity Predicted Effect and the entity Prediction. The cardinality of the
original relationship is projected into the new relationship of the
metamodel.

Figure 6.9 Example of application of the guidelines of the abstract syntax
metamodel

Once we obtained this metamodel, in order to create the concrete syntax
grammar, we used the framework for DSL development Xtext to generate a
preliminary draft of the concrete syntax grammar.

The second sub-step is designing several syntaxes with different structures
and styles that are compliant with the abstract syntax metamodel. In total, we
designed four different syntaxes. Next, in order to show them to the geneticists,
we described each of them using the usage scenario of the illustrative example:

Feature Model

Conceptual Model

Filter

Gene Predicted
effect

Sample

Variation

Prediction

Algorithm name
Effect
Score

Filter

Predicted
effect

Prediction
Algorithm name
Effect

Gene

Abstract Syntax Metamodel

*

6. Realizing the Solution: The Design and Implementation Stages 123

1. Descriptive: The genetic analysis is defined by providing the name of an
entity of the genetic analysis and the values of their attributes. Figure 6.10
shows the genetic analysis example written with this syntax.

2. Based on natural language: The genetic analysis is defined by giving
different orders in natural language. Figure 6.11 shows the genetic
analysis example written with this syntax.

3. Object-oriented: The genetic analysis is defined by creating an object of
the GeneticAnalysis type and setting their properties by means of class
methods. Figure 6.12 shows the genetic analysis example written with
this syntax.

4. XML-like: The genetic analysis is defined by creating XML tags and
setting the details of the analysis between those tags. Figure 6.13 shows
the genetic analysis example written with this syntax.

Figure 6.10 Illustrative example written with the descriptive syntax

Figure 6.11 Illustrative example written with the natural language syntax

Analyze Diabetes Mellitus Type 2 (Analysis 2)
Read Variations genotypes from VCF file Patient1.vcf
Annotate Variations with gene, transcript, POLYPHEN
Filter Variations by genes {ABCC8, CAPN10,KCNJ11, GCGR, SLC2A2,
HNF4A, INS, INSR, PPARG, TCFl2, ADIPOQ, AKT2, PAX4, MAPK81p1,
GPD2, MNTR1B }
Prioritize Variations by effect prediction {POLYPHEN, damaging} AlphAsc
Report Variations with gene, transcript, POLYPHEN

Genetic analysis: Diabetes Mellitus Type 2 (Analysis 1)
Variations Genotypes VCF file: Patient1.vcf
Variations Annotations: gene, transcript POLYPHEN
Analysis Filters: by genes {ABCC8, CAPN10,KCNJ11, GCGR, SLC2A2,
HNF4A, INS, INSR, PPARG, TCFl2, ADIPOQ, AKT2, PAX4, MAPK81p1,
GPD2, MNTR1B}
Analysis Priorizations: by effect prediction {POLYPHEN, damaging}
AlphAsc
Variation report fields: gene, transcript, POLYPHEN

124 6. Realizing the Solution: The Design and Implementation Stages

Figure 6.12 Illustrative example written with the object-oriented syntax

Figure 6.13 Illustrative example written with the XML-like syntax

The third sub-step is creating a questionnaire to ask the geneticists about the
abstract syntax and the different concrete syntax options (syntax questionnaire,
mechanism M2). The geneticists were asked to rate each syntax option with a
Likert Scale of five levels, being 1 the lowest, when they don’t like the syntax
option, and 5 the highest, when they like the syntax.

Table 6.4 shows the geneticists’ responses about each option, and the syntax
that was chosen by each geneticist as their preferred one. Since each of the
geneticists chose a different syntax option as its preferred one, in order to identify
which was the most preferred syntax among all of them, we had to take into
account the geneticists’ ratings. Since the scale of rating was ordinal, in order to
obtain the representative value of the geneticists’ opinion about each syntax, we
calculated the median [96]. As a result, the best rated syntax option was the syntax
based on natural language, with a median value of 4.

GeneticAnalysis.Disease(“Diabetes Mellitus Type 2 (Analysis 2)”)
GeneticAnalysis.Sample.Variations.Genotypes ("Patient1.vcf", VCF)
GeneticAnalysis.Sample.Variations.Annotations (gene, transcript,
POLYPHEN)
GeneticAnalysis.Sample.Variations.Analysis.Filter.ByGene(ABCC8,
CAPN10,KCNJ11, GCGR, SLC2A2, HNF4A, INS, INSR, PPARG, TCFl2,
ADIPOQ, AKT2, PAX4, MAPK81p1, GPD2, MNTR1B)
GeneticAnalysis.Sample.Variations.Analysis.Prioritize.ByEffectPrediction.Eff
ect(POLYPHEN, damaging).Order(AlphAsc)
GeneticAnalysis.Sample.Variations.Report.Fields(gene, transcript,
POLYPHEN)

<GeneticAnalysis>
<Disease>Diabetes Type2</Disease>
<SampleData>

<Genotypes><VCF>Patient1.vcf</VCF></Genotypes>
</SampleData>
<Analyses>

<Annotate><gene/><transcript/><POLYPHEN/></Annotate>
<Filter><genes><gene>ABCC8</gene><gene>MNTR1B</gene></genes>

</Filter>
<Prioritize criteria="effect_prediction" order= “AlphAsc”>
<POLYPHEN><effect>damaging</effect></POLYPHEN></ Prioritize >

</Analyses>
<Report><Variations><gene/><transcript/><POLYPHEN/></Variations></R
eport>
</ GeneticAnalysis >

6. Realizing the Solution: The Design and Implementation Stages 125

Table 6.4 Geneticists' responses about the different syntax options

 Entity-Based Natural language Object-Oriented XML-like Preferred
Geneticist 1 5 4 3 2 Syntax 1
Geneticist 2 4 4 5 5 Syntax 3
Geneticist 3 2 3 1 1 Syntax 2
Median 3 4 3 2 -

And finally, the fourth sub-step is representing the gathered feedback into
the definitive syntax design. Figure 6.14 shows a fragment of the rules of the
concrete syntax grammar of the illustrative example that has been customized
with the syntax option chosen by the geneticists.

Figure 6.14 Fragment of the concrete syntax grammar of the illustrative example

Regarding the semantic restrictions (Section 6.1.3), we have specified
grammar rules and restrictions about the abstract syntax metamodel in natural
language. Figure 6.15 shows how we created the restriction It is mandatory to
annotate the POLYPHEN prediction before filtering by POLYPHEN. In order to
specify this semantic restriction, we applied the model-based guidelines
previously described that obtain the necessary information from the feature model
and the user story templates. We proceeded as follows:

• The dependency between the features Predicted Effect (child of Filter)
and Predicted Effect (child of Annotate) is projected as a restriction in
the abstract syntax metamodel using natural language: “When the entity
PredictedEffectF is created, the entity PredictedEffectA should be
present”. In the figure, this projection is represented by arrow 3.

• The features that are involved in the dependency are projected in the
restriction. The prerequisite feature is projected as the condition to check
and it is written after the if clause. The dependent feature is projected as
the context of the restriction and it is written after the when clause. In
the figure, this projection is illustrated by the arrows 1a, 1b, 2a, and 2b.

GeneticAnalysis returns GeneticAnalysis:
 'Analyze' disease=disease sampleData=sampleData analyses+=analysis+
report=report;
sampleData returns SampleData:
 'Read' variations=variations;
variations returns Variations:
 'variations' several=severalSamples format=vcf;
severalSamples returns SeveralSamples:
 'genotypes'{SeveralSamples};
vcf returns Vcf:
 'from' 'a VCF file' datafile=dataFile;

126 6. Realizing the Solution: The Design and Implementation Stages

• In order to customize the error messages of the semantic restriction, the
error message is extracted from the field error message of the user story
template (Table 5.8): “Variations must be annotated with POLYPHEN
predicted effect before filtering”. In the figure, this projection is
represented by the arrow 4.

Figure 6.15 Example of application of the guidelines of the semantic
restrictions

Regarding the semantic behavior design (Section 6.1.4), we defined the
semantic templates related to the user stories of the iteration (mechanism M3) in
collaboration with geneticists.

In this step, following the agile practice architectural envisioning, together
with geneticists we selected the bioinformatics environment Galaxy [52] as the
implementation platform. Galaxy is an environment that provides geneticists the
possibility to run different biological services and create workflows combining
those services (Figure 6.16). This environment can be executed locally, using a
web interface, or in the cloud. Galaxy allows geneticists to retrieve local or public
data sets (such as the datasets from the USCS database), combine data from
independent queries, perform calculations over the retrieved datasets (such as
filtering a data set, combining several data sets, and transforming data using a
biological service), and visualize the results. Although there are other
bioinformatics environments such as Taverna or eBioflow (explained in Chapter
2), or we could have also used Unix scripts, we chose Galaxy as the
implementation platform of the DSL for several reasons: its specificity towards

Predicted
EffectA

Analysis
1 0..1

Feature Model

Variation Analysis

Predicted
Effect

Abstract Syntax Metamodel

dependency 3
Dependency

Error messageIf annotated with POLYPHEN predicted effect has not been written, when I write
filter and a list of POLYPHEN predicted effects, I will see the error “Variations

must be annotated with POLYPHEN predicted effect before filtering”

Annotate Filter

Predicted
Effect

Predicted
EffectF

1a

2a

1b 2b

4

Semantic Restriction
when PredictedEffectF
 if PredictedEffectA exists

then “ok”
 else

“Variations must be
annotated with
POLYPHEN predicted
effect before filtering”

6. Realizing the Solution: The Design and Implementation Stages 127

the genetic analysis domain; the extended used of Galaxy among
bioinformaticians; and its constant updates regarding functionality and usability.

Figure 6.16 Interface of Galaxy

Table 6.5 shows the semantic template fulfilled in collaboration with the
geneticists to describe which service from Galaxy can be used to implement the
behavior of the user story Filter Variations by POLYPHEN effect.

Table 6.5 Semantic template to describe the behavior of the user story Filter by Polyphen
effect

User Story Filter Variations by predicted effect POLYPHEN
Service Identifier Ensembl Filter VEP
Source description Galaxy
Inputs Description Type Constan

t
Value

Input File that gathers the
variations

DataFile
(VCF)

False -

FilterCriter
ia

Evaluation expression that
indicates the polyphen
criteria to filter

String False Examples: “Polyphen
is benign” “Polyphen is
possibly_damaging”

Outputs Description Type Visibilit
y

annotated_vc
f

File that gathers the annotated
variations

DataFile (VCF) True

128 6. Realizing the Solution: The Design and Implementation Stages

6.2 The implementation stage

The goal of the Implementation stage is to create an executable DSL
infrastructure that realizes the design of the language. This DSL infrastructure
must support the creation of DSL specifications (which are specifications that are
expressed according to the language syntax) and provide the corresponding
behavior of those specifications. This DSL infrastructure is formed by a parser, a
validator, and a code generator. The parser reads a DSL specification and parses
the concrete syntax to obtain the underlying abstract syntax tree9. The validator
checks the correctness of this abstract syntax tree according to the restrictions of
the DSL. The code generator obtains the source code that provides the behavior
associated with this abstract syntax tree.

In order to implement this infrastructure, this stage is divided into two steps
(Table 6.6): 4.1) creating tests to check the correctness of the syntax and
semantics implementation; and 4.2) implementing the DSL infrastructure using
both a model-driven development approach (MDD) that takes as input the
design models, and a test-driven development approach (TDD) that takes as
input the tests specified in the previous step 4.1.

Since the implementation is a highly complex task, end-users do not
participate in this stage. Nevertheless, their needs are taken into account because
both the models and the tests that are used in the implementation were created
(in previous stages) with their collaboration.

Table 6.6 Overview of the Implementation stage

Step Step Description Artefact Model-based transformations
guidelines

4.1 Tests
specification

Syntax and semantics tests (IA1) Transformation guidelines
(from acceptance tests)

4.2 DSL
infrastructure
implementation

DSL Infrastructure (parser,
validator and code generator)
(IA2)

Model-driven development
and Test-driven development

9 An abstract syntax tree is a representation of the abstract syntax structure using a tree in which
each node represents one concept of the abstract syntax.

6. Realizing the Solution: The Design and Implementation Stages 129

6.2.1 Test specification

In the step test specification, the developers address the creation of tests that
check the correctness of the syntax and semantics implementation. Syntax tests
check the parser and semantics tests check the validator and the code generator.
Besides these tests, the developers also create common unitary tests that check
the correctness of end-user requirements. In order to differentiate these last tests
from the rest, we named them target platform tests, since they check the
correctness of the target platform artefacts that are generated by the DSL
infrastructure. Eventually, the three type of tests will be used to drive the
implementation of the complete DSL infrastructure applying the agile practice
test-driven development (TDD) (Figure 6.17).

Figure 6.17 DSL infrastructure and tests

In summary, we define three type of tests: syntax tests, semantic tests and
target platform tests. As we can see in Figure 6.18, in order to ease the
specification of tests, we define a test as an entity that 1) receives two parameters
(an input and an assert condition); 2) executes the artefact to be tested (parser,
validator, code generator or generated artefacts) with the parameter input; and 3)
compares the result of this execution with the parameter assert condition.

Figure 6.18 Representation of a test

130 6. Realizing the Solution: The Design and Implementation Stages

6.2.1.1 Syntax tests

Syntax tests check that the DSL infrastructure parses DSL specifications
correctly. There are two type of syntax tests:

• Tests that check that the parser understands the symbols of the language
(concrete syntax) and the relationships between them (abstract syntax).
The parameter input is a DSL specification and the parameter assert
condition is an abstract syntax tree. Figure 6.19 shows an example of a
syntax test in which the parameter input is a DSL specification written
according to the concrete syntax grammar, the parameter assert condition
is the equivalent abstract syntax tree. This syntax test checks that when
this input is provided the parser obtains the same abstract syntax tree.

Figure 6.19 Example of a syntax test

• Tests that check that the parser provides an error when an incorrect
symbol or an incorrect relationship among symbols is used. Figure 6.20
shows an example of a syntax test in which the parameter input is a DSL
specification that contains errors according to the grammar and the
parameter assert condition is an error message. This syntax test checks
that when this input is provided the parser throws the same error message.

Figure 6.20 Example of a syntax test with errors

“Symbol2 Symbol3”

c1
c2 c3

C1:= C2 C3
C2:=Symbol2
C3:=Symbol3

Concrete Syntax
Grammar

input

assert condition

“Symbol1 Symbol3”

“Symbol1 is
unknown”

input

C1:= C2 C3
C2:=Symbol2
C3:=Symbol3

Concrete Syntax
Grammar

assert condition

6. Realizing the Solution: The Design and Implementation Stages 131

In practice, we do not always need to specify this kind of tests because there
are technological frameworks (such as Xtext) that generate the parser
automatically from the design models. Therefore, when using this approach, it is
not necessary to create syntax tests either to check for their correctness or to guide
the implementation of the parser.

6.2.1.2 Semantic tests

Semantic tests check that the DSL infrastructure validates the DSL
specification and provides the corresponding behavior. There are two types of
semantic tests: validator tests, which check semantic restrictions; and code
generator tests, which check behavior.

Validator tests check that the validator arises an error when a semantic
restriction is violated. The parameter input is an abstract syntax tree and the
parameter assert condition is an error message. Figure 6.21 shows an example of
semantic test in which the parameter input is an abstract syntax tree that violates
the restriction, the parameter assert condition is an error message. This validator
test checks that when this input is provided, the validator rises the same error
message.

Figure 6.21 Example of a validator test

Validator tests check whether semantics restrictions are implemented
correctly. For this reason, in order to create them, we propose to use the semantics
restrictions (artefact DA2) and the acceptance tests (artefact AA2) that were used
to derive those restrictions (explained in Section 6.1.3). For each pair semantic
restriction and acceptance test:

• A new validator test is created to check for the semantic restriction.
• The parameter input of the validator test is obtained from the input of

the acceptance test. Since the input of the validator test should be an

Semantic Restriction
if C2a then C3a

“C3b should be
C3a”

input
c1

c2a c3b
C1:= C2 C3
C2:=C2a|C2b
C3:=C3a | C3b

Concrete Syntax Grammar

132 6. Realizing the Solution: The Design and Implementation Stages

abstract syntax tree but the input of the acceptance test is a DSL construct,
the developers should obtain the equivalent abstract syntax tree. In Figure
6.22, this projection is illustrated by the arrows 1, 2, and 3.

• The parameter assert condition of the validator test is obtained from the
response of the acceptance test. The assert condition is the error message
provided by the acceptance test. In Figure 6.22, this projection is
illustrated by the arrow 4.

Figure 6.22 Example that illustrates the creation of a validator test

Code generator tests check that the code generator provides the
corresponding target implementation artefacts. The parameter input is an abstract
syntax tree and the parameter assert condition is an artefact (usually source code)
of the target implementation platform. Figure 6.23 shows an example of a code
generator test in which the parameter input is an abstract syntax tree that follows
the grammar, the parameter assert condition is the target platform source code
(Java code). This code generator test checks that when this input is provided, the
code generator generates the same source code.

Figure 6.23 Example of a code generator test

Code generator tests check whether semantics behavior are implemented
correctly. For this reason, in order to create them, we propose to use the semantics
templates (artefact DA2) and the user stories and acceptance tests (artefacts AA2)
that were used to fulfill those templates (explained in Section 6.1.4). For each trio
semantic template, user story and acceptance test:

“C3b should
be C3a”

input

assert condition

c1
c2a c3b

If C2a, when C3b,
I will see an error saying

“C3b should be C3a”

Acceptance test

C1:= C2 C3
C2:=C2a|C2b
C3:=C3a | C3b

Grammar:

1
2

3

4

Semantic Restriction
if C2a then C3a

c1
c2 c3

input

class FileReader(file){
 public readFile (file){...}
 public ge tFileSize(file){...}}

assert condition
C1:= C2 C3 --> “new Class FileReader”
C2:=Symbol2 --> “new method readFile”
C3:=Symbol3 --> “new method getFileSize”

Semantic Behavior

6. Realizing the Solution: The Design and Implementation Stages 133

• A new code generator test is created for each acceptance test that checks
on an expected result.

• The parameter input of the code generator test is obtained from the input
of the acceptance test. Since the input of the code generator test should
be an abstract syntax tree but the input of the acceptance test is a DSL
construct, the developers should obtain the equivalent abstract syntax tree.
In Figure 6.24, this projection is illustrated by the arrows 1 and 2.

• The parameter assert condition of the semantic test is obtained from the
response of the acceptance test and the semantic template. Specifically,
the assert condition is the target platform code equivalent to the response
of the acceptance test. In Figure 6.24, this projection is illustrated by the
arrow 3.

Figure 6.24 Example that illustrates the creation of a code generator tests

As we can see in Figure 6.24, in order to implement code generator tests we
need to know the equivalent source code that is being provided as the parameter
assert condition. Since this equivalent code is not obtained until the next step (step
6.2.2, DSL infrastructure implementation), the specification of this kind of test
must be delayed also to the next step.

6.2.1.3 Target platform tests

Target platform tests check that the artefacts generated by the DSL
infrastructure work properly according to the end-users’ requirements. This kind
of tests are common unitary tests that check end-user requirements. The
parameter input is any data provided by the end-users and the parameter assert
condition is the expected result. Figure 6.25 shows an example of a target platform
test in which the input is a file provided by the end-users TestFile.txt, the assert

c1
c2 c3

input

class FileReader(file){
 public readFile (file){...}

 public ge tFileSize(file){...}}

assert condition

C1:= C2 C3
C2:=Symbol2
C3:=Symbol3

Grammar:
When C3,

I will see the file size

Acceptance test 1 2

3
User Story US3
Tool Name Get File Size
Source Java Libraries
Inputs Description Type Constant Value
file Input file String No -
Outputs Description Type Visibility
size Size of the file Integer Yes

Semantic Template

134 6. Realizing the Solution: The Design and Implementation Stages

condition is the expected result Size= 20kb. This target platform test checks that
the generated artefacts (an executable made by a set of Java classes) are able to
produce the expected result.

Figure 6.25 Example of a target platform test

Target platform tests check whether the final artefacts that will be used by
end-users work as expected. For this reason, in order to create them, we propose
to use the user stories and acceptance tests (artefacts AA2) that describe end-user
requirements (explained in Section 5.2.2). For each acceptance test:

• A new target platform test is created.
• The parameter input of the target platform test is obtained from the input

of the acceptance test. In Figure 6.26, this projection is illustrated by the
arrow 1.

• The parameter assert condition of the target platform test is obtained from
the response of the acceptance test. In Figure 6.26, this projection is
illustrated by the arrow 2.

• The generated artefact to be tested by the target platform test is the result
of parsing, validating, and applying the code generator to a DSL
specification that describes the user story. In Figure 6.26, this projection
is illustrated by the arrow 3 and 4.

6. Realizing the Solution: The Design and Implementation Stages 135

Figure 6.26 Example that illustrates the creation of the code generator tests

6.2.2 Implementation of the DSL infrastructure

After all the tests are created, in the step DSL infrastructure implementation,
the developers apply both model-driven and test-driven development to
implement the complete DSL infrastructure: the parser, the validator and the
code generator.

6.2.2.1 The parser

The parser is a program that reads DSL specifications expressed with the
concrete syntax and identifies the underlying abstract syntax. When the
specification is compliant with the syntax, the parser obtains an equivalent
representation such an abstract syntax tree.

In this method, the parser is implemented by applying a model-driven
approach using the models crated in the design stage. Specifically, the parser
source code is generated automatically by using the abstract syntax metamodel
and the concrete syntax grammar (artefacts DA1, Section 6.1.2).

In order to apply this approach, we can use the framework for DSL
development Xtext, which takes as input a metamodel specified in the Ecore
language [92] and a grammar specified using an EBNF-like syntax [97] and
generates automatically the DSL parser in the Java language. Therefore, it is
necessary to implement the abstract syntax metamodel using the Ecore language
and the concrete syntax grammar using the EBNF-like syntax.

input

assert condition

“TestFile.txt”

Size=20Kb

class FileReader(file){
 public readFile (file){...}
 public getFileSize(file){...}}

If “TestFile”, when C3,
I will see “20Kb”

Acceptance test

C1:= C2 C3
 -> “new Class FileReader”
C2:=Symbol2
 -> “new method readFile”
 C3:=Symbol3
 -> “new method getFileSize”

Behaviour

Semantic test

Code
Generator

1
2

3

4

136 6. Realizing the Solution: The Design and Implementation Stages

6.2.2.2 The validator

The validator is a program that reads the equivalent representation of a DSL
script created by the parser (such as an abstract syntax tree) and checks whether
it fulfils all the semantic restrictions of the DSL. The validator is made by a set
of validation rules that describe each of these restrictions and the error messages
that must be provided when some of these restrictions are violated.

In this method, the validator is implemented by applying test-driven
development using the validator tests (artefacts IA1, Section 6.2.1.2). In order to
apply TDD, the developers start running all tests. The first time, these tests are
expected to fail. Then, the developers choose one of the tests that has failed,
program the necessary source code to implement the validation rule, and run the
test again. If the test still fails the developers check again the source code. These
two last tasks go on until this test succeeds. When the test suceeds, the developers
go back to the start and check whether all the tests succeed already or it is still
necessary to modify the source code of the validator. Eventually, all tests will
succeed simultaneously and all the validator rules will be implemented (Figure
6.27).

Figure 6.27 Approach to implement the validator

6.2.2.3 The code generator

The code generator is a program that reads the equivalent representation of a
DSL script created by the parser and checked by the validator (such as an abstract
syntax tree) and obtains the equivalent target platform artefacts that provide the
expected behavior. The code generator is made by a set of transformation rules
that read the different fragments of the DSL representation (such as fragments

6. Realizing the Solution: The Design and Implementation Stages 137

of the abstract syntax tree) and obtain the corresponding source code in the target
implementation platform.

 In this method, the code generator is implemented by applying both model-
driven development using the abstract syntax metamodel and test-driven
development using the target platform tests and the semantic templates. The
proposed approach includes four sub-steps (Figure 6.28):

Figure 6.28 Approach to implement the target platform fragments and the code
generator

• Implement target platform fragments. The aim of this step is to obtain
fragments of source code of the target implementation platform that
represent a specific behavior. For example, a fragment of a Java class,
a fragment of a UML model, or a fragment of a XML file. These
fragments are created to be used afterwards to implement the code
generator; specifically, to infer the transformation rules. These
fragments are implemented by applying test-driven development
using the target platform tests (Section 6.2.1.3). The approach to
implement them is similar to the validator approach. The developers
run all the tests and expect them to fail the first time. Then, they

138 6. Realizing the Solution: The Design and Implementation Stages

choose one of the tests that has failed and program the source code
fragment that makes the test to succeed. When this test succeeds,
the developers go back to the start and check whether all the tests
succeed already. Eventually, all tests will succeed simultaneously and
all the target platform fragments will be implemented. The main
difference with the validator is that when programming source code
fragments, the developers use the semantic templates (artefact DA2,
section 6.1.4), which describe the details of the technological artefact
that is needed to provide the corresponding behavior. Developers
know which semantic template to use because they must use the
template whose use story matches the user story of the target
implementation test that is being addressed.

• Obtain the generator skeleton. The skeleton of the generator is the set
of classes where developers will embed all the transformation rules
to generate the target platform implementation source code. This
skeleton is implemented by applying model-driven development
using the abstract syntax metamodel that was created in the design
stage (artefact DA1, section 6.1.2).

• Specify code generator tests. Once all the fragments of source code of
the target platform are obtained, the developers are able now to
specify the code generator tests that validate that the code generator
works as expected. Hence, the developers must follow the guidelines
that were explained in Section 6.1.2.

• Program the transformation rules of the code generator. The
transformation rules of the code generator are implemented by
applying test-driven development using the code generator tests that
were created in the previous sub-step. The approach to implement
them is similar to the validator approach. The developers run all the
tests and expect them to fail the first time. Then, they choose one of
the tests that has failed and program the transformation rules
(embedded into the generator skeleton) that makes the test to
succeed. When this test succeeds, the developers go back to the start
and check whether all the tests succeed already. Eventually, all tests
will succeed simultaneously and the complete set of transformation
rules will be implemented.

6. Realizing the Solution: The Design and Implementation Stages 139

6.2.3 The implementation of the genetic analysis DSL

In this section, we applied the proposal to implement the DSL infrastructure
of the DSL for genetic analysis. The goal of this infrastructure is to provide
geneticists with an editor in which they can describe their genetic analysis using
the syntax of the DSL (Section 6.1.5). After describing one genetic analysis, the
DSL infrastructure must generate an executable workflow that supports the
equivalent functionality (the specific genetic analysis) and configures the
execution details of the underlying technological software artefacts.

According to the geneticists’ feedback, we chose the Galaxy platform as the
target execution environment, which is an environment that integrates biological
functionality and allows the specification of workflows (further details were
provided in Section 6.1.5). The DSL infrastructure generates workflows that are
compliant with the Galaxy platform (written using their proprietary workflow
syntax). Geneticists can upload the generated workflow into a Galaxy server and
execute it with their genetic data files. This way, geneticists will avoid the
technological details of designing a genetic analysis workflow such as deciding
which software tool to use, configuring each tool parameters, and dealing with
the interoperation among the different tools.

In order to implement the DSL infrastructure, we used the framework Xtext.
Specifically, Xtext generates three Java projects to deal with the different aspects
of the DSL infrastructure:

• diagnosis.it.mysdl: This is the main project. In this project we
specified the abstract syntax metamodel, the concrete syntax
grammar, the rules of the validator, and the transformation rules of
the code generator. This project contains an executable workflow
that compiles this and the rest of the projects. After executing this
workflow, the complete infrastructure is generated in Java source
code.

• diagnosis.it.tests: This project is used to specify the tests that check
for the correctness of the complete DSL infrastructure. Specifically,
we specified the validator tests and the code generator tests.

• diagnosis.it3.ui: This project is used to specify the aspects of the user
interface. Specifically, we specified content assistance, syntax
coloring, and quickfixs for the editor.

140 6. Realizing the Solution: The Design and Implementation Stages

The implementation approach starts with the step test specification (Section
6.2.1). First, we specified the validator tests using the project created by Xtext
and the framework for test specification JUnit 10 . For each pair of semantic
restriction (created in the design stage) and acceptance test (created in the analysis
stage), we specified a JUnit test that checks that when a semantic restriction is
violated, an error arises and the error arisen is the correct one.

Figure 6.29 shows the JUnit test that checks if the restriction It is mandatory
to annotate the POLYPHEN prediction before filtering by POLYPHEN (explained
in Figure 6.15) is well implemented in the validator. First, we used the clause
@Before to specify an example of DSL specification that violates this restriction.
Then, we used the clause @Test to create a test that checks whether the validator
is arising the error “You should annotate the prediction before filtering/priotizing
by prediction”.

Figure 6.29 Example of a semantic test that tests the validator

Second, we specified the target platform tests for testing the geneticists’
requirements. In this case we used the environment Galaxy to create these tests,
since this is the target implementation environment that was chosen by
geneticists to run their genetic analyses.

10 Framework for test specification JUnit http://junit.org/

@Before
def void testSetupOnce() {
DiagnosisPackage.eINSTANCE.eClass();

diagnosis = parser.parse ('''Diagnose DiabetesMellitus
Read variations genotypes from a VCF file from input
Annotate variations with gene
Filter variations by Sift effect tolerated
Filter variations by Polyphen effect benign
Report variations with gene Sift Polyphen ''')

}
@Test
def checkValidationAnnotatePolyphen(){

diagnosis.assertError(DiagnosisPackage.Literals.EFFECT_F,
"PredictionNotAnnotated",
"You should annotate the prediction before filtering/prioritizing by
prediction")
diagnosis.assertError(DiagnosisPackage.Literals.PREDICTION_R,
"PredictionNotAnnotated", "You should annotate the prediction before
reporting by prediction")

}

http://junit.org/

6. Realizing the Solution: The Design and Implementation Stages 141

The Galaxy environment does not support the specification of tests, however,
we used the workflow canvas to specify them. We created a workflow for each
target platform test. This way, in order to check the correctness of the target
platform artefacts we had to run a workflow. In order to specify each test, we
created a Galaxy workflow with two inputs files (parameters input and assert
condition of the test) and a tool that compares those files (comparator of the test).
If the two files are equal, the test will succeed, otherwise it will fail. This test
always fails upon their creation because the target platform code (the equivalent
Galaxy workflow) is not implemented.

Figure 6.30 shows a Galaxy test for testing the end-user requirement Filter
by Polyphen effect (described in the user story template Table 5.7). First, we saved
the content of the field input of the acceptance test in the text file
4VariantsAnnotatedPoly.vcf and the content of the field response in the file
1VariantFilterPoly.vcf. This is illustrated by the arrows 1 and 2. Then, we created
a workflow in Galaxy with two inputs. The first input is the parameter input of
the target platform test, the second input is the parameter assert condition, and the
tool Compare Two Datasets is the comparator of the test. The files
4VariantsAnnotatedPoly.vcf and 1VariantFilterPoly.vcf are uploaded to Galaxy and
introduced in the workflow as the first input and the second input respectively.
In summary, this workflow checks how the input 4VariantsAnnotatedPoly.vcf is
processed to obtain a response that is equal to the content of the file
1VariantFilterPoly.vcf. At the beginning, this workflow does not run any
biological service since these are included in the DSL infrastructure
implementation step.

142 6. Realizing the Solution: The Design and Implementation Stages

Figure 6.30 Example of a target platform test using Galaxy

Regarding the implementation of the DSL infrastructure (Section 6.2.2), we
used the Java projects created by Xtext to implement the parser, the validator and
the code generator.

In order to implement the parser, we implemented the abstract syntax
metamodel (Figure 6.8) in Ecore and the concrete syntax grammar using the
EBNF-Like syntax proposed by Xtext. Then, we generated the parser
automatically.

In order to implement the validator, we used an Xtend 11 class that was
automatically created by Xtext into the java package validator of the main project
diagnosis.it.mydsl. Xtend is a statically typed programming language sitting on
top of Java that, among other uses, can be used to specify different aspects of the
DSL easily and more readable than using Java code. In order to generate the
complete infrastructure Xtext provides the compilation workflow that generates
the equivalent Java code.

11 http://www.eclipse.org/xtend/

4VariantsAnnotatedPoly.vcf 1VariantFilteredPoly.vcf

AT1 Geneticist chr2:g.136438366A>G {}
chr11:g.76255523 G>T
{probably_damaging}
chr11:g.111959693G>T{}
chr17:g.41245471C>T {benign}

Filter by
Polyphen
damaging

chr11:g.111959693G>T

AT Role Input Action Response

1 2

3 4

6. Realizing the Solution: The Design and Implementation Stages 143

Figure 6.31 shows the Xtend code of the validation rule that checks for the
fulfillment of the restriction It is mandatory to annotate the POLYPHEN prediction
before filtering by POLYPHEN (explained in Figure 6.15). The clause @Check
indicates the existence of a validation rule that must be invoked by the validator.
The Xtend method checkAnnotatePredictionBeforeFilteringByPrediction contains
Xtend code that checks the semantic restriction and shows the corresponding
error. Specifically, when the DSL specification contains a filter by effect
prediction but not the annotation of the effect prediction, the validator shows the
error “You should annotate the prediction before filtering by prediction” (with the error
code PredictionNotAnnotated). After implementing this validation rule correctly,
the validator test explained in Figure 6.29 succeeded.

Figure 6.31 Example of Validator method that checks a semantic restriction

Finally, in order to implement the code generator, we followed the four sub-
steps explained in Section 6.2.2.3 (Figure 6.28).

The first sub-step is to Implement target platform fragments. The goal of this
sub-step is to obtain fragments of Galaxy workflows that implement the behavior
of each user story. In order to obtain each of these fragments we used the target
platform tests specified as Galaxy workflows and we applied TDD. For each of
these workflows, we run the workflow. Each of the workflows failed the first time

@Check
def checkAnnotatePredictionBeforeFilteringByPrediction(Diagnosis
diagnosis){

for(filter:diagnosis.analyses.filter(PredictionF)){//for each filter
var annotationFound=0 //Initialize variable->not found
for(annotation:diagnosis.analyses.filter(Annotation)){ //search
annotation

if(annotation.prediction!=null)
for(annotationPred:annotation.prediction){//check same prediction
algorithm

if(annotationPred.algorithm.equals(filter.algorithm)){
annotationFound=1//Annotation found

}
}

}
if(annotationFound==0){//Annotation not found->show error

error('You should annotate the prediction before filtering by
prediction', filter, null, PredictionNotAnnotated)//Error
message, construct and error code

}
}

}

144 6. Realizing the Solution: The Design and Implementation Stages

because the behavior was not implemented. Then, we completed the workflow
by adding biological services to the workflow until it succeeded. In order to know
which biological services we had to add to the workflow and how to configure
them, we used the semantic templates (artefact DA2, explained in Section 6.1.4).
When each workflow succeeded, we exported the created workflow to a text file.
This way, we obtained the fragment of the Galaxy workflow that implements the
specific behavior of the user story. Eventually, these fragments will be used to
infer the transformation rules of the code generator.

Figure 6.32 shows the Galaxy workflow that implements the user story Filter
Variations by predicted effect Polyphen. First, we selected the corresponding
acceptance test of the user story template (Table 5.7) and the corresponding
semantic template (Table 6.5). Specifically, we included the Galaxy tool Ensembl
Filter VEP and configured the parameters input as the input of the workflow and
the parameter filter_criteria as the string POLYPHEN is probably_damaging.

Figure 6.32 Galaxy workflow to pass the test TestFilterByPolyphen

User Story Filter Variations by predicted effect POLYPHEN
Service Identifier Ensembl Filter VEP

Source description Galaxy

Inputs Description Type Constant Value
Input File that gathers the variations DataFile (VCF) False -
FilterCriteria Evaluation expression that

indicates the polyphen criteria to
filter

String False Examples:
 “Polyphen is benign”
“Polyphen is possibly_damaging”

Outputs Description Type Visibility
annotated_vcf File that gathers the annotated variations DataFile (VCF) True

Geneticist
chr2:g.136438366A>G {}
chr11:g.76255523 G>T {probably_damaging}
chr11:g.111959693G>T{}
chr17:g.41245471C>T {benign}

Filter by
Polyphen
damaging

chr11:g.111959693G>T

Role Input Action Response

6. Realizing the Solution: The Design and Implementation Stages 145

When the Galaxy test succeeded (the two files under comparison were equal),
we exported the workflow and obtained the corresponding Galaxy workflow
fragment. Figure 6.33 shows a simplified fragment of the Galaxy workflow that
implements the user story Filter Variations by predicted effect POLYPHEN. From
this fragment, we are mostly interested in the attributes tool_id, which indicates
the identifier of the tool, and tool_stage, which configures the parameters of the
tool. Specifically, in this fragment the attribute tool_id is the Galaxy tool filter_vep
and the parameters of the field tool_stage are filterField and input. Eventually, this
fragment will be used to infer the transformation rule of the code generator that
implements the behavior of the user story Filter Variations by predicted effect
POLYPHEN.

Figure 6.33 Simplified fragment of a Galaxy workflow

The second sub-step is Obtain the generator skeleton. In order to create the
code generator, we also used Xtend classes. Xtext automatically generates an
Xtend class in the main project diagnosis.it.mydsl in which developers can
implement the code generator. However, instead of programming all the
generator rules in this Xtend class, we designed a different structure based on the
entities of the abstract syntax metamodel. We created four packages: patientdata,
analysis, report, and galaxy. The first three packages contain the classes generated
according to the structure of the abstract syntax metamodel. The fourth contains
two Xtend classes that deal with the specific details while creating Galaxy
workflows. Figure 6.34 shows the complete skeleton of the code generator.

"galaxy_workflow_step": {
…
"tool_id": "filter_vep",
"tool_state": "{

\"input\": \"input1\",
\"filterField\": \"\\\"POLYPHEN is probably_damaging \\\"\"

}",
…

}

146 6. Realizing the Solution: The Design and Implementation Stages

Figure 6.34 Xtend classes that represent the Generator skeleton

The third sub-step is Specify code generator tests. After obtaining all the
different fragments of Galaxy workflows in the first sub-step, it was then possible
to create the code generator tests. Equally to validator tests, we used Xtext and
JUnit to specify generator tests. For each trio of semantic template (and
corresponding Galaxy workflow fragment), user story and acceptance test, we
specified a JUnit test. The input of this test is the DSL construct described in the
acceptance test and the assert condition is the fragment of the Galaxy workflow
associated with the corresponding semantic template.

Figure 6.35 shows the JUnit test testFilterPolyphenEffect(), which tests the
behavior of the code generator in relation to the user story Filter Variations by
Polyphen effect. First, in the clause @Before, we wrote the usage scenario Diabetes
Mellitus Type 2 (Analysis 1) using the DSL syntax and we run the parser and the
generator. Then, we used the clause @Test to check whether the fragment
generated is equal to the fragment of the parameter assert condition. If they are
different, the test shows an error message. In order to compare both fragments,
we created a method that obtains a Galaxy workflow, a Galaxy workflow fragment
and a toolId and checks in the complete workflow if the fragment corresponding
to this toolId is equal to the fragment saved in the file.

6. Realizing the Solution: The Design and Implementation Stages 147

Figure 6.35 Example of a JUnit test that checks the correctness of the generator

The fourth sub-step is Program the transformation rules of the code generator.
The goal of this sub-step is to implement the rules that transform the abstract
syntax representation (such as an abstract syntax tree) that is created by the parser
into a Galaxy workflow. These transformation rules were placed inside the
methods of the Xtend classes that were created in the second sub-step (code
generator skeleton). For each generator test, we identified the corresponding
Xtend class and we programmed the transformation rule until the generator
generator was able to transform the abstract syntax tree from the parameter input
into the Galaxy workflow fragment from the parameter assert condition.

Figure 6.36 shows the transformation rule that generates code to fulfil the
user story Filter Variations by Polyphen effect. This transformation rules generates
a fragment of a Galaxy workflow that executes the tool “filter_vep” with the
parameters indicated by the entity PredictionF. This transformation rule is used
to generate the fragment of a Galaxy workflow shown in Figure 6.33 and makes
the test FilterPolyphenEffect of Figure 6.35 to succeed.

@Before
def void testSetupOnce() {

DiagnosisPackage.eINSTANCE.eClass();
diagnosis = parser.parse (

'''Diagnose Diabetes Mellitus Type 2 (Analysis 1)
Read Variations genotypes from VCF file Patient1.vcf
Annotate Variations with gene, transcripts, polyphen
Filter Variations by genes {ABCC8, CAPN10, KCNJ11, GCGR,
SLC2A2, HNF4A, INS, INSR, PPARG, TCFl2, ADIPOQ, AKT2, PAX4,
MAPK81p1, GPD2, MNTR1B}
Filter Variations by predicted effect polyphen damaging
Report Variations with gene, predicted_effect''')

fsa= new InMemoryFileSystemAccess()
generator.doGenerate(diagnosis.eResource, fsa)
filecontent=fsa.getTextFiles().values().iterator().next().toString();

}
@Test
def test FilterPolyphenEffect(){

 assert.assertTrue("The workflow fragment of filterByPolyphenEffect and
the generated one are different",
GalaxyGenerator.checkGeneratorGalaxy(filecontent,
"Galaxy_Fragment_PolyphenEffect.txt", "filter_vep"))

}

148 6. Realizing the Solution: The Design and Implementation Stages

Figure 6.36 Example of transformation rule of the generator

After finishing the implementation of the parser, the validator and the code
generator, we compiled all the Xtext projects and run the implemented DSL
infrastructure. Figure 6.37 shows an Eclipse-based interface in which the
geneticists can create their genetic analysis pipelines using the DSL. They write
the pipeline using a textual editor that understand the DSL syntax and when they
save this file, the DSL infrastructure parses the files, applies the validation rules,
and generates the corresponding workflow.

Figure 6.37 Interface for using the DSL infrastructure

The complete code is available in the following repository URL:
https://github.com/mvillanueva/GeneticAnalysisDSL

def dispatch filterVariations(PredictionF filter)'''«filterWithVEP(filter)»'''
def filterWithVEP(Filter filter)'''
 "«step»": {
…
"tool_id": "filter_vep",
"tool_state": "{

\"filterField\": \"\\\"«expressionVEP(filter)»\\\"\",
\"input\": \"input1\

 "}",
 …
 }'''
def dispatch expressionVEP(EffectF prediction)'''«
 FOR effect:prediction.effect SEPARATOR ' or ' »«
 » POLYPHEN is «effect.vepEffect»«
 »«ENDFOR»'''

https://github.com/mvillanueva/GeneticAnalysisDSL

6. Realizing the Solution: The Design and Implementation Stages 149

6.3 Conclusion

In this chapter, we have explained the stages Design and Implementation.
We have explained these two stages together because both of them aim making
the DSL a reality. In the Design stage, it is planned how the DSL is going to be
developed, and then, in the implementation stage, this plan is followed in order
to provide a technological support for the DSL.

Regarding the Design stage, our approach contributes to the state of the art
by adopting agile practices to involve end-users in the definition of the design
models. In the syntax design, as mechanism M2, we have proposed a
questionnaire that allows the end-users to choose the concrete syntax that is most
suitable and that shows them a set of domain examples so they can contribute in
the concrete syntax grammar and in the abstract syntax metamodel. In the
semantics design, as mechanism M3, we have adapted an existing template for
describing services to facilitate to the end-users the description of the behavioral
semantics of the DSL.

However, as drawbacks, the method does not support the definition of
internal or graphical DSLs yet. Also, the approach to define the behavioral
semantics requires the domain to have pre-existing executable services that
encapsulate different domain functionalities and the end-users to know these
executable services. This was the case of our illustrative example thanks to the
Galaxy environment, which provided a set of biological services that could be used
to specify the semantics of the DSL.

Regarding the Implementation stage, our approach contributes to the state of
the art by combining a model-driven development approach (MDD) with a test-
driven development approach (TDD) to implement the different artefacts of the
DSL infrastructure. First, we have defined the set of different tests that must be
created to apply TDD. Then, we have explained which artefacts can be generated
automatically using MDD (which is not a contribution of this PhD) and how to
generate the rest using the tests that have been defined. Although, at the moment,
it is still not possible to automate generation of the complete DSL infrastructure
(parser, validator, code generator) from the design models, TDD allows the
developers to systematize the implementation of the artefacts that cannot be
generated automatically applying model transformations.

150 6. Realizing the Solution: The Design and Implementation Stages

7. Releasing the Solution: The Testing, Deployment and Maintenance stages 151

7. Releasing the Solution:
The Testing, Deployment
and Maintenance stages

Once the developers have implemented the DSL infrastructure of the
iteration, the next step is releasing the solution to the end-users to check whether
it is appropriate to satisfy their needs. First, the end-users check whether the
different aspects of the current DSL are correct: abstract syntax, concrete syntax,
semantic restrictions, and behavioral semantics. During this experience,
developers gather all the feedback provided by the end-users with the aim to
improve the DSL in the next iterations. In the method proposed in this PhD,
this assessment is done in the Testing stage.

Second, when a version of the DSL infrastructure has been tested and the
end-users consider this version suitable enough for using it, the developers
prepare a production environment so that the end-users can use the current
version of the DSL infrastructure by themselves. In the method proposed in this
PhD, this release is prepared in the Deployment stage.

152 7. Releasing the Solution: The Testing, Deployment and Maintenance stages

Third, after the end-users have used the DSL infrastructure for a long enough
period, they provide their feedback about the DSL released. In the method
proposed in this PhD, this assessment is done in the Maintenance stage.

In this chapter, we explain the Testing, Deployment, and Maintenance stages
and how we applied each of them for developing of a DSL for the genetic analysis
domain. We created several versions of the method and the DSL; however, in
order to simplify the explanation of the method, we focus only on the method
version that corresponds to the last iteration. Similarly, in order to simplify the
explanation of the application of the method to build the DSL, we only provide
fragments of the DSL in regards to the illustrative example presented in Chapter
4.

7.1 The Testing stage

The goal of the Testing stage is to assess if the DSL infrastructure
implemented in the iteration fulfils end-users’ requirements and needs. In order
to accomplish this goal, this stage is divided into two steps (Table 7.1): 5.1)
Demonstrating the DSL infrastructure of the iteration to end-users; and 5.2)
testing that DSL infrastructure.

Table 7.1 Overview of the testing stage

7.1.1 Demonstration

In the demonstration step, the developers compose a functional DSL
infrastructure with the requirements addressed in the iteration and demonstrate
it to the end-users. In order to compose this release, as mechanism M4, we
adopted the agile practices the definition of done and the customer demo from Scrum.

Step Step Description Artefact Mechanism for gathering end-user
input

5.1 Demonstration of
the DSL
infrastructure of
the iteration

Demonstration (TA1) The definition of done and a
demonstration based on usage
scenarios (mechanism M4)

5.2 DSL
infrastructure
testing

Iteration Feedback
report (TA2)

A questionnaire and a set of activities
based on usage scenarios (mechanism
M5)

7. Releasing the Solution: The Testing, Deployment and Maintenance stages 153

According to the definition of done practice, the developers inspect each
requirement one by one assessing which are done, which are not, and which are
the problems found that explain the lack of completeness of the iteration. In order
to classify a user story as done, we propose the acceptance criteria to be: a user
story is considered done when all their acceptance tests can be written in the DSL
infrastructure and the generated executable code obtains the result described in the
acceptance test.

According to the customer demo practice, in order to show the end-users the
current state of development, we propose to perform a live demo of the DSL
release to specify one usage scenario from the analysis. This demonstration will
consist on:

1. Showing the description of the usage scenario to be demonstrated;
2. Using the DSL editor to create the corresponding DSL specification with

the DSL syntax.
3. Executing the code generator that translates the DSL specification into

the target platform.
4. Showing end-users the execution generated by the code generator.

Before the demonstration, the end-users are provided with a summary of the
demonstration and they are encouraged to write down their impressions to be
discussed after. When the demonstration is finished, the developers and the end-
users discuss the written impressions and then, new requirements, changes, and
comments are added to the DSL backlog.

7.1.2 DSL infrastructure testing

Once the DSL release has been demonstrated, in the DSL infrastructure
testing step, the end-users have the opportunity to use the DSL by themselves.
The goal of this activity is that the end-users assess whether the different aspects
of the DSL (abstract syntax, concrete syntax, semantic restrictions, and semantic
behavior) are well designed and well implemented.

In order to guide the end-users in the testing of the different aspects of the
DSL, as mechanism M5, we propose a questionnaire that asks about three
dimensions proposed by Visser [86] to assess a DSL: expressivity, coverage, and
completeness.

154 7. Releasing the Solution: The Testing, Deployment and Maintenance stages

• Expressivity: This dimension analyses if the language abstractions
support a concise expression of the domain. This dimension can be
applied to assess the syntax and the semantic restrictions of the DSL.

• Coverage: This dimension analyses if the abstractions of the language are
adequate for developing applications in the domain. This dimension can
be applied to assess the correctness of DSL requirements and syntax.

• Completeness: This dimension analyses if the language implementation
creates a complete target implementation or is it necessary to write
additional code. This dimension can be applied to assess the behavioral
semantics.

In order to facilitate the participation of end-users in the assessment of the
DSL regarding those dimensions, we created a questionnaire to be answered by
end-users. Table 7.2 shows the set of questions proposed to assess each aspect of
the DSL related with the analyzed dimensions.

7. Releasing the Solution: The Testing, Deployment and Maintenance stages 155

Table 7.2 Questions to test different DSL aspects

Questions for testing Requirements
Coverage

Did you find any erroneous step/instruction?
Did you find in the language any step that contains come erroneous
aspect?
Did you miss any essential step/instruction?

Questions for testing Syntax
Expressivity Would you add, change, remove or reorder any word of the language?

Is the language easy to understand?

Is the language intuitive to use?
Coverage Did you find a combination of words that were incorrect but they could

be written with the DSL?
Questions for testing Semantic restrictions
Expressivity Did you find any error message that you did not understand?
Coverage Did you find a combination of constructs that were incorrect but they

could by written with the DSL?
Did you find any step that was dependent of another one but it could be
written without satisfying that dependency?

Questions for testing Behavioral Semantics
Completeness Do you know any new software that suits better to implement a

step/instruction?
Did you find any error after executing the generated artefact?

While assessing the DSL, the end-users are free to use it. However, in order
to ensure that all the aspects of the DSL are assessed, we propose a set of activities
that will guide them to incrementally learn how to use the DSL editor and will
help in the assessment of all the DSL aspects: abstract syntax, concrete syntax,
semantic restrictions, and semantic behavior. The activities proposed are:

1. Write the same usage scenario of the demonstration: The end-users
already know the DSL syntax of the usage scenario, so they only have to
write it again using the DSL infrastructure. This activity is proposed to
facilitate the end-users the familiarization with the DSL syntax and the
DSL editor.

2. Write another usage scenario: End-users choose another usage scenario
and use the DSL editor to write the corresponding specification. They
are provided with all the usage scenarios written in natural language, so
the task is learning how to express them using the DSL syntax. To

156 7. Releasing the Solution: The Testing, Deployment and Maintenance stages

facilitate the task, they are provided with the DSL syntax specification
(the grammar). In addition, the DSL editor provides code completion
and on-live syntax checking in order to aid the end-users to wirite the
DSL specification.

3. Test the technological implementation generated by the code generator:
After the end-users finish the usage scenario specification using the DSL
infrastructure, the code generator generates the corresponding
technological implementation. After that, the end-users test whether the
generated artefacts fulfill their requirements. If the target artefacts are
executable, the end-users can run them and test their behavior.

After answering the questionnaire, the developers process them to create the
iteration feedback report (TA2), which is used to update the product backlog
with new requirements and changes for the next iterations. Then, end-users and
developers overview together the changes to be adopted in the next iteration.

7.1.3 The testing of the genetic analysis DSL release

In this stage, we collaborated with geneticists to test the current state of the
implementation of the DSL for supporting genetic analysis.

For the demonstration (Section 7.1.1), we created a video to show to the
geneticists the current state of the DSL (mechanism M4). This video presented
the following contents:

1. Demonstration of one usage scenario: The video showed step by step how
to write in the DSL editor the usage scenario “Diabetes Mellitus Type 2
(Analysis 1)” (Table 5.9).

2. Description of editor help and shortcuts: The video showed the syntax
highlight feature and a set of shortcuts. Figure 7.1 shows the keywords
“Read” or “Annotate” colored in red, which indicate the main keywords
of the DSL constructs. The figure also shows the shortcut “Filter- Add
complete instruction”, which writes a template that contains the different
elements of the “Filter” construct.

7. Releasing the Solution: The Testing, Deployment and Maintenance stages 157

Figure 7.1 Example of a DSL syntax shortcut

3. Explanation of error messages retrieved by the DSL infrastructure: The
video showed the errors that appear when the DSL syntax is not correctly
used according to the DSL syntax or a restriction is violated. Figure 7.2
shows the error messages that appear when the restriction “Annotate
POLYPHEN effect before filter by POLYPHEN effect” is violated.

4. Generation of the Galaxy workflow: The demonstration showed how to
generate a functional equivalent Galaxy workflow and how to deploy it.
Figure 7.3 shows how the pipeline “Diabetes Mellitus Type 2 (Analysis1)”
is automatically generated and saved into the source folder and how the
generated workflow can be deployed in Galaxy.

Figure 7.2 Example of several DSL error messages

158 7. Releasing the Solution: The Testing, Deployment and Maintenance stages

Figure 7.3 Generation and deployment of a Galaxy workflow.

After the demonstration, in the DSL infrastructure testing step (Section
7.1.2), the geneticists executed a set of activities with the DSL infrastructure and
answered the testing questionnaire (mechanism M5). The activities were the
following:

1. Writing the usage scenario of the demonstration: The developers
provided the example “Diabetes Mellitus Type 2 (Analysis 1)”, which was
already written with the DSL syntax (Figure 4.8), and asked the
geneticists to repeat on their own the same process that was shown in the
demonstration. Geneticists wrote the same scenario in the DSL editor,
generated the Galaxy workflow, and checked for the workflow
correctness.

7. Releasing the Solution: The Testing, Deployment and Maintenance stages 159

2. Write another usage scenario: The developers provided the description
of the complete syntax of the DSL and all the usage scenarios of the
iteration written in natural language (as they were specified in the
Analysis stage). The geneticists checked the syntax, used the shortcuts
that were shown in the demonstration, and resolved the syntax errors that
appeared during the specification of the genetic analysis. When the usage
scenario was finished and it had no errors, the geneticists generated the
corresponding Galaxy workflow, imported it into Galaxy and execute it
to check for its correctness.

After finishing these activities, the geneticists answered the testing
questionnaire. Table 7.3 shows a question that asked geneticists about the
coverage of the DSL.

Table 7.3 Example of the geneticists' responses to the testing questionnaire

Did you missed any essential step/instruction? How important is it for the usage scenario?
Geneticist 1 Geneticist 2 Geneticist 3
“I missed an instruction
about how to write the Sift
score”

“Filter instructions by gene should let import
a gene list from a file (e.g. what happens if I
want to filter by 200 genes?)

“Always”

7.2 The Deployment stage

The goal of the Deployment stage is to release a stable DSL to be freely used
by end-users, i.e, without any sort of developer’s supervision. In order to
accomplish this goal, this stage consist of one step (Table 7.4): 6.1) Installation
of the DSL release.

Table 7.4 Overview of the Deployment stage

In the DSL release installation step, the developers release the current state
of the DSL to be used by the end-users in their own environment. Examples of
deployments can be, for instance, a server and a web interface that offers a DSL
editor or a local installation of the DSL in the end-users’ workspace.

Step Step
Description

Artefact Model-based
transformations
guidelines

Mechanism for
gathering end-user
input

6.1 DSL release
installation

DSL release - -

160 7. Releasing the Solution: The Testing, Deployment and Maintenance stages

It is worth to notice that this step is not performed in each iteration of the
cycle. The reason for this decision is to avoid end-users to use DSL releases that
could contain unsolved errors. For this reason, when a DSL is stable enough and
it is considered ready to use, the DSL infrastructure is deployed to be used by
end-users freely. The goal of this release is to find errors in a working scenario
that cannot be detected in the testing stage.

End-users do not participate in this stage for two reasons: 1) because
installing the DSL does not require end-users’ feedback; and 2) because installing
the DSL infrastructure could require some technical knowledge.

In order to deploy the DSL for genetic analysis, since we implemented the
DSL using Xtext, we can use the feature of the Eclipse Environment “Export”->
“Deployable plugins and fragments”. As a result, we obtain a folder that contains
the set of plugins that support the DSL infrastructure. This way, the generated
plugins can be installed in a local Eclipse instance.

At the moment, we did not deliver this executable to the geneticists. The two
first iterations were more focused on assessing the method than developing the
genetic DSL. For this reason, the third iteration was the first iteration in which
a higher number of requirements were addressed and the resulting DSL
addressed more complex genetic analyses. Still, the DSL implemented in this
iteration was not mature enough. As a consequence, the geneticists were not
provided with the DSL for their use. This means that we did not carried out the
Deployment stage for this use case.

7. Releasing the Solution: The Testing, Deployment and Maintenance stages 161

7.3 The maintenance stage

The goal of the Maintenance stage is to gather information about the DSL
after being freely assessed by the end-users. In order to accomplish this goal, this
stage consist of the step 7.1) testing the DSL release.

Table 7.5 Overview of the Maintenance stage

Once the DSL has been made accessible to the end-users and they have used
it for a while, in the testing of the DSL release step, the end-users provide
feedback about the DSL release. The goal is both to assess the different aspects
of the DSL and gather information about their preferences or new requirements.
As a way to provide this feedback, the end-users answer a similar questionnaire
to the questionnaire of the testing stage but with additional questions about their
experience while using the DSL. Table 7.6 shows these questions classified by
the DSL aspect to assess and the assessment dimension.

Table 7.6 Complementary questions to test different DSL aspects after deployment

DSL aspect Dimension Question
Requirement Coverage

Were you able to express every application that you
needed in your domain?
Was there any step/instruction you never used for
expressing your applications?

Syntax Expressivity Did you notice any improvement of using the DSL
instead of your previous approach?

Semantic
restrictions

Expressivity Did you find any abnormal error message while using
the DSL?

Behavioral
Semantics

Completeness Were all the generated applications working properly?

At the moment, we did not release the DSL to the geneticists for their free
use. This means that we neither carried out the Maintenance in practice.

Step Step
Description

Artefact Model-based
transformations
guidelines

Mechanism for gathering end-
user input

7.1 DSL release
testing

Iteration
Feedback
report
(TA2)

- Mechanism M5:A
questionnaire and a set of
activities based on usage
scenarios

162 7. Releasing the Solution: The Testing, Deployment and Maintenance stages

7.4 Conclusion

In this chapter, we have explained the three last stages of DSL development:
Testing, Deployment, and Maintenance. We have explained these three stages
together because the three of them aim to release the DSL to the end-users. In
these stages, the end-users try the implemented DSL infrastructure and
developers make this assessment possible. The Testing stage comes first because
in this stage the DSL is tested by the end-users under a controlled environment.
In the Deployment stage, the developers transfer this DSL into the real context
of the end-users so they can try it under real conditions. In the Maintenance stage,
the end-users provide feedback about their continuous experience using the DSL.

Regarding the Testing stage, our approach contributes to the state of the art
by adopting agile practices to facilitate the testing of the DSL release by the end-
users. As mechanism M4, we have proposed that developers demonstrate one
usage scenario of the DSL to the end-users. As mechanism M5, we have
proposed a questionnaire to guide the end-users in the assessment of the different
aspects of the DSL.

As drawbacks, although preparing a demonstration of the DSL can be time
consuming for developers, the effort is worth because end-users have the
opportunity of learning how to use the DSL by example and ask questions during
the demonstration.

Regarding the Deployment and Maintenance stages, our approach
contributes by proposing a questionnaire to guide the end-users to provide
feedback about the DSL, as it was made during the Testing stage. As drawbacks,
we did not apply these stages in practice because we did only carried out three
iterations and the DSL release was not mature enough to be deployed and used
in real conditions. In conclusion, in the near future work, a further analysis should
be made for these two stages in order to become part of the stable design of the
method.

8. Validation 163

8. Validation
Empirical assessment of a software development product is essential to ensure

that a new product can be really used for what it was originally designed. In the
context of software engineering, the same applies to new methods and processes.
For this reason, we have conducted an experiment to validate whether the
mechanisms of the method proposed in this thesis can be used to involve end-
users in DSL development.

In order to carry this validation, we have carried out an experiment of the type
“Researching expert opinion” [25] and applied the method proposed to involve
geneticists in the design of a DSL for supporting genetic analysis. We have
selected the genetic analysis domain; first, due to our close collaboration with
research groups involved in genetic analysis; and second, because geneticists
usually lack a solid background in computer science and they are good candidates
for validation purposes.

This chapter starts explaining the methodology used to conduct the
experiment. Then, we explain the motivation of the experiment (scoping), the
experimental design (planning), and the execution of the experiment (operation).
After conducting the experiment, we analyze the results obtained from the
experiment (data analysis), and we provide a critical discussion about those results

164 8. Validation

(interpretation). Finally, we discuss the final conclusions obtained from this
empirical assessment activity.

8.1 Experiment methodology

In order to validate the mechanisms of the method for involving end-users
we have carried out a controlled qualitative experiment with geneticists in the
development of a DSL for supporting genetic analysis. According to the
classification of Wieringa [25], we carried out an experiment of the type
“Researching expert opinion”. This type of evaluation tests artefacts using experts
of the area but does not involve statistical analysis with the aim of estimating
significant data; rather, it is an attempt to get early information from real users.

Specifically, our experiment researches geneticists’ opinion about the
mechanisms of the method while applying the method to develop a DSL for
supporting genetic analysis. We chose the genetic analysis domain because the
complexity of this domain requires the participation of geneticists to ensure the
comprehension of DSL requirements by developers. Moreover, since geneticists
do not usually have software development knowledge, we can check how regular
users understand the proposed mechanisms. Both reasons justify this scenario as
being suitable for applying our method.

The participants of the experiment were three geneticists from the INCLIVA.
We had access to these geneticists thanks to previous research collaboration
between our institutions.

The experiment was designed according to the guidelines for empirical
research proposed by Wohlin [98] and Juristo et al. [99], which are two widely
accepted evaluation frameworks in the Software Engineering community that
describe the general structure to scope, plan, design, and conduct any kind of
experiment in Software Engineering.

8.2 Goal

The goal of this experiment is to assess whether the mechanisms (M1-M5)
proposed in the method are suitable to involve end-users in the DSL development

8. Validation 165

process. Our aim is to assess these mechanisms from both the end-users’ and the
developers’ perspective to eventually understand whether these mechanisms can
be used to collect the end-users’ domain knowledge and their preferences about
the DSL. Additionally, we are interested in knowing how long it takes to apply
these mechanisms.

The experiment includes a real implementation of a DSL from scratch. The
developers apply all the stages and steps of the method, create all the artefacts of
the method, and apply the different mechanisms to involve the end-users.
However, data measurement, data analysis, and the extraction of conclusions are
only focused on the mechanisms for involving end-users. The assessment of the
suitability and benefits of the stages, steps, and artefacts of the method (AA1,
AA2, AA3, DA1, DA2, IA1, IA2, TA1, and TA2 in Figure 4.4) is outside the
scope of this experiment.

8.3 Experimental subjects

Two types of subjects participated in this experiment: end-users and
developers.

For end-users, the population that we wanted to test is a set of domain experts
(who did not have any DSL development knowledge) of a complex domain that
needed a DSL. For the recruitment process, we used “convenience sampling” [100],
which chooses the subjects that are the easiest to recruit instead of applying a
random selection of subjects among the population. We recruited three
geneticists that we already knew from a previous collaboration.

The three geneticists had experience in DNA analysis from 1 to more than
10 years, but they did not have experience in DSL development (Table 8.1). It is
worth mentioning that despite the existing collaboration with our research center,
these geneticists did not have any knowledge about the proposed method since
the previous collaboration had been performed in a different context.

166 8. Validation

Table 8.1 Subjects’ profiles

 Genetic experience DSL experience Method knowledge
Geneticist G1 1 year 0 years None
Geneticist G2 3 years 0 years None
Geneticist G3 More than 10 years 0 years None

In our experiment, the subjects are indeed representative of the population
even though the sample size of this experiment is small. All of them are
geneticists: 1) with genetic analysis experience; 2) currently working in the genetic
field; 3) with knowledge about the most common technologies used by the
genetics community; 4) with software development problems that could be solved
with a DSL; and 5) without prior DSL development experience.

For developers, we recruited one developer who had knowledge in DSL
development, extensive knowledge about the method, and basic notions of
genetics. This subject played both the developer role and the experimenter role.

8.4 Research questions and hypothesis formulation

In order to determine whether the method facilitates end-user participation,
we analyzed the satisfaction of end-users and developers as well as the time spent
using the proposed mechanisms. We used the definition of satisfaction from
IEEE: the contentedness and positive attitudes towards product use [101]. For
end-users, we operationalized satisfaction as how at ease the end-users are while
using the mechanisms of the method to provide feedback. For the developers, we
operationalized satisfaction as how at ease the developers are while using the
mechanisms of the method to gather the end-users’ feedback and to represent it
within the DSL.

To study satisfaction and time, we proposed the following research questions:

RQ1. Are end-users satisfied with the feedback provided through the
involving mechanisms? The hypothesis to check in order to answer RQ1
is H1: End-users are satisfied with the involving mechanisms of the
method.

RQ2. Are developers satisfied with the feedback gathered through the
involving mechanism to build the DSL? The hypothesis to check in
order to answer RQ2 is H2: Developers are satisfied with the involving
mechanisms of the method.

8. Validation 167

RQ3. How long does the application of the mechanisms for involving end-
users take? There is no hypothesis for this research question since we only
aim to know the time needed to apply the five mechanisms.

8.5 Factors and treatments

To check the above hypotheses, we used the term factors to describe the data
that is predefined and controlled and the term treatments to describe all the
concrete values that the factor takes in the experiment.

In this experiment, we have one factor and one treatment. The factor was the
method to involve end-users in DSL development. The treatment was the set of
mechanisms that have been proposed to involve end-users in DSL development
(Chapters 5, 6, and 7): M1) User stories, acceptance tests, and usage scenarios;
M2) a syntax questionnaire based on usage scenarios; M3) semantic stories based
on user stories; M4) a demonstration; and M5) a testing questionnaire. The
reason for not having another treatment as a control case for comparison is that
the goal of this experiment is to validate the proposal at the conceptual level. Our
goal is to elicit the opinions of the experts about the mechanisms of the method
and use their feedback to check their usability, their limitations, and their
potential improvements.

8.6 Response variables and metrics

Response variables describe the feature to be measured in the experiment
from which conclusions are drawn. Table 8.2 summarizes the response variables,
metrics, and measurement procedures that were used in the experiment to gather
data about the research questions.

168 8. Validation

Table 8.2 Summary of RQs, hypotheses, and response variables

RQs Hypotheses Response
Variables

Metric Measurement procedure

RQ1 H1 End-users’
Satisfaction

PEOU and PU Satisfaction Questionnaire

RQ2 H2 Developers’
Satisfaction

Comprehension
questions, degree of
agreement, and
undetected errors.

Observation, recording, and
analysis of subjects’ feedback
and anecdotes.

RQ3 - Time Minutes Measurement of time spent
RQ1 requires a response variable to measure the satisfaction of end-users. To

measure this satisfaction, we followed the method evaluation model (MEM)
proposed by Moody [102], which proposes a framework to evaluate model quality
in terms of the following metrics:

• Perceived Ease of Use (PEOU): This is the degree to which a person
believes that using a particular method would be free of effort.

• Perceived Usefulness (PU): This is the degree to which a person believes
that the intended objectives will be achieved by using a particular method.

• Intention to use (ITU): This is the extent to which a person intends to
use a particular method.

In the context of our experiment, we adopted only the PEOU and PU metrics.
We discarded the ITU metric because end-users are not responsible for deciding
whether the method and the mechanisms are going to be used.

Following the MEM framework, the procedure to measure end-user
satisfaction was a questionnaire with a 5-point scale (with the levels strongly
disagree, disagree, neutral, agree, and strongly agree). The questionnaire had
three questions for assessing the PEOU metric and two questions for assessing
the PU metric. Following the advice of Moody, half of the questions were defined
in a negative way to stimulate the attention of subjects. Also, all the questions
were ordered randomly to avoid boredom.

In total, we created five satisfaction questionnaires, one for each mechanism.
All of them contained the same number of questions and asked about the same
aspects (3 questions for PEOU and 2 for PU). However, the questions of each of
questionnaire were customized for the mechanism that they were assessing:

• For the assessment of the perceived Ease of Use:
o I found difficult to apply <mechanism>(negative redaction)

8. Validation 169

o Applying <mechanism> took me an adequate amount of time
(positive redaction)

o Overall, I found all the process activities clear and easy to
understand (positive redaction)

• For the assessment of the perceived Usefulness:
o I found useless applying <mechanism> (negative redaction)
o Overall, I found that the process activities engaged my

participation (positive redaction)

As an example, the question to ask about the PEOU of mechanism M1 was
“Did you find it difficult to review the usage scenarios, user stories, and
acceptance tests?”

In order to create these questionnaires we used Google Drive Forms12. This
way, participants could answer the questionnaire online and their responses were
recorded automatically. As this software supports shuffling questions, we only
had to write the questions and the questions were offered to each participant
randomly ordered. All these questionnaires are gathered in Annex C.

RQ2 requires a response variable to measure the satisfaction of developers.
To measure this satisfaction, we also followed the method evaluation model
(MEM), although this time, we did not used subjective Likert scales because the
developer is the same who developed the approach. Specifically, we measured the
perceived usefulness of the developers through the following metrics:

• Comprehension questions: These are the doubts and complaints that
end-users ask the developers about each mechanism of the method. The
developers measured this metric after applying each mechanism by
counting the total number of questions that geneticists asked. Moreover,
the developers recorded the specific questions and comments in order to
be able to identify the cause of the doubt.

• Degree of agreement: This is the level of agreement achieved after
comparing and aggregating the feedback provided by all of the end-users
for each mechanism. The developers obtained the number of items in
which the majority of the geneticists agreed, the number of items in
which the majority of the geneticists disagreed, and the number of items
provided individually. Feedback was captured separately for each

12 https://www.google.es/intl/es/forms/about/

https://www.google.es/intl/es/forms/about/

170 8. Validation

geneticists while applying each mechanism; for this reason, (depending
on the agreement achieved), the developers decided whether or not to
incorporate the new feedback into the DSL.

• Undetected errors: These are the errors in the DSL artefacts (concrete
syntax grammar, abstract syntax metamodel, etc.) that are missed by the
end-users despite applying the mechanisms. The developers measured
this metric after geneticists tested the DSL by counting the number of
errors that geneticists detected in the Testing stage and by identifying
which mechanism should have helped the geneticists to detect those
errors earlier.

RQ3 requires a response variable to measure the time spent by end-users to
apply the mechanisms of the method. To measure the time spent, the developers
observed how many minutes each subject spent carrying out the activities
proposed for each of the mechanisms.

8.7 Experiment design

We chose the experimental design “one factor, one treatment”. Since we run
an experiment of the type “Researching expert opinion”, our aim was to obtain
information only about the mechanisms of our method. This design was
compatible with our restriction of having a small number of subjects (only three
geneticists), but this restriction hindered the possibility of selecting a subset,
creating several groups, or applying randomization. Hence, only one treatment
was applied to all of the subjects, therefore there were no block variables and
balancing was not needed.

In order to apply the treatment, we had to organize several sessions in which
we applied one mechanism of the method at a time. This restriction was imposed
by the configuration of the method itself. As we explained in the previous
chapters, in order to create the different DSL artefacts according to the end-users’
needs, the method mixes development activities to be carried out by the
developers (creation of DSL artefacts such as conceptual models) with
mechanisms for gathering the end-users’ feedback. After applying each
mechanism (and before continuing with the next one), the developers need to
process the feedback gathered from the end-users and to develop the

8. Validation 171

corresponding DSL artefact(s). For this reason, it was not possible to apply all
the mechanisms of the method in the same session.

This design avoided the following threats: 1) the reduction of the sample size
since we did not divide the geneticists into groups; and 2) the influence of the
problem addressed since all of the geneticists developed the same problem.
However, this design had other threats: 1) the generalization of our results to any
development since we only used one object due to the small sample size; and 2) a
learning effect in the last mechanisms since there were several sessions.

8.8 Experimental objects

Since the subjects of the experiment were geneticists from an industrial
environment, we had the opportunity to create experimental objects that
represent a real domain problem instead of a toy example. In order to acquire
some knowledge about their work, the developer met with the geneticists before
the experiment and the geneticists gave a brief overview of their work. As a result
of these meetings, the developer created the experimental objects.

The experimental objects were the set of requirements that were going to be
supported by a DSL. Hence, in order to configure an achievable experiment with
short sessions (1 or 2 hours), the developer had to choose a subset from all of the
requirements given by the geneticists. In the end, four requirements were selected
for the experiment:

EO1. “Read the polymorphisms13 of several patients from a file”.
EO2. “Retrieve the effects of the polymorphisms from a prediction

algorithm14”.
EO3. “Filter polymorphisms by the effect types 15 calculated by the

prediction algorithm”.

13 A polymorphism is a change in the DNA sequence of an individual with respect to a “DNA
reference sequence”. The “DNA reference sequence” is a representative sequence of all the
individuals from a species, which is agreed upon by the genetic community.
14 An effect prediction algorithm predicts how the polymorphism changes the DNA and therefore
the corresponding protein. As a result of this analysis, it predicts whether this change is benign or
damaging for the patient.
15 The effect types represent a benign or a damaging effect, however, depending on the algorithm
further types can be predicted.

172 8. Validation

EO4. “Calculate the frequency of the polymorphisms16”.

Therefore, the goal of the experiment was to gather information about the
mechanisms (M1-M5) while applying the method to create a DSL that supports
these four requirements.

8.9 Instruments

This section describes the instruments that were used to run the experiment:

• Artefacts of the method: These are the artefacts that have been proposed
in the method to develop the DSL: 1) the DSL backlog (artefact AA1);
2) the requirements (artefact AA2); 3) the domain model (artefact AA3);
4) the syntax models (artefact DA1); 5) the semantic models (artefact
DA2); 6) the tests (artefact IA1); 7) the DSL infrastructure (artefact
IA2); 8) the demonstration (TA1); and 9) the DSL feedback (artefact
TA2).

• Mechanisms of the method: These are the mechanisms that have been
proposed in the method to involve end-users in the development of the
DSL (mechanism M1-M5).

• Instruments of the experiment: These are the questionnaires that have
been designed (instruments E1-E5) to assess the end-users’ satisfaction
(RQ1) for each mechanism (M1-M5).

• Guidelines of the experiment: These are the documents for guiding end-
users through the different experiment activities. The
Overview_Guideline summarizes all the activities to be performed by
geneticists in the experiment. The guidelines T1_Guideline,
T2_Guideline, T3_Guideline, T4_Guideline, and T5_Guideline explain
the session and the training, and the Experimenter_Guideline helps the

16 The frequency of a polimorfism is the number of times that this polymorphism appears in the
patients divided by the total number of patients.

8. Validation 173

experimenter in the conduction and execution of the complete
experiment plan.

8.10 Experiment procedure

This section describes the experiment that was executed. Figure 8.1 presents
an overview of the meetings between the developer and the geneticists before
starting the execution of the experiment. In meeting 1, the geneticists from
INCLIVA explained their domain and their daily work to the developer. This
meeting was necessary in order to know their working context and to be able to
define real experimental objects. After this meeting, the developer selected the
experimental objects (explained in Section 8.8).

Figure 8.1 Experiment overview

Once the experimental objects were selected, in meeting 2, the developer
presented to the geneticists the goal of the experiment, a proposal for the schedule,
and the general structure of the experimental sessions. In order to provide
freedom to the geneticists to choose the most suitable days for them to participate
in the experiment, we scheduled each session in different weeks, one session per
week (See Table 8.3). The sessions started on time (the second week of
September), however, due to miscellaneous reasons (holidays and work
restrictions), the next sessions were postponed a few weeks, and the experiment
finished one month later (second week of November).

174 8. Validation

Table 8.3 Preliminary schedule

Activity Estimat
ed time
(mins)

Start End

T0. Presentation 10 mins 15/09/14 21/09/14

T1. Review Usage
Scenarios, User
stories and
Acceptance tests

40 mins 15/09/14 21/09/14

T2. Syntax
Questionnaire

15 mins 22/09/14 28/09/14

T3. Semantic
Templates

40 mins 29/09/14 05/10/14

T4. DSL
Prototype
Demonstration

10 mins 06/10/14 12/10/14

T5. DSL
Prototype
Assessment

15 mins 06/10/14 12/10/14

After the geneticists had all of the experiment information and agreed to the
schedule, the developer fulfilled the DSL backlog with the list of requirements to
be addressed (artefact AA1) and geneticists described further details about these
requirements. Using this information, the developer formalized the geneticists’
requirements in the form of User stories (US), acceptance tests (AT), and usage
scenarios (USC) (artefact AA2).

After these two meetings and the formalization of requirements, we executed
the experiment sessions. The experiment had 4 sessions of approximately one
hour each, which were held once a week (4 weeks in total). All of the sessions
were carried out face-to-face with the developer, except session 2. Session 2
consisted of completing two questionnaires; since the developers’ presence was
not imperative for answering these questionnaires, we offered them the chance to
complete them on their own.

Each session had the same structure: 1) a training of the activities to be
performed in the session; 2) the application of the mechanism of the method
being validated; and 3) a questionnaire for assessing the geneticists’ satisfaction
regarding the mechanism. The training was performed with all of the geneticists
together, and the application of the mechanism was done individually by each
geneticist with the help of the developer. The objective of the individual meetings
between the developer and each geneticist was to get the most personalized
feedback possible. This decision was made to avoid the threat of losing important
feedback, which is a common issue when an experiment is performed

8. Validation 175

simultaneously with several subjects. Additionally, individual meetings avoid the
learning effect among end-users when they talk.

Below, we describe the four sessions of the experiment as well as the tasks
performed by the developer after each of these sessions, a.k.a post-sessions. In
each experiment session, the developer and the geneticists collaborated to apply
the mechanisms of the method, and in the post-sessions, the developer processed
the geneticists’ feedback to create the corresponding DSL artefacts of the method
(Figure 8.2):

Figure 8.2 Overview of the steps of the experiment

• Session 1: The goal of this session was to apply and gather information
about mechanism M1. This session included the following tasks:
1. Training of mechanism M1: The developer presented the activity to

be carried out during this session and provided the guidelines of the
method that explain the structure of the user stories (US), the
acceptance tests (AT), and the usage scenarios (USC).

2. Application of mechanism M1: The geneticists together with the
developer reviewed the subset of the US, AT, and USC descriptions
(artefact AA2) that had been formalized by the developer before
starting the experimental sessions (Figure 8.1, meeting 2). During

176 8. Validation

this activity, the developer wrote down all of the comments and the
time spent.

3. Assessment of mechanism M1: The geneticists answered the
assessment questionnaire about mechanism M1 (instrument E1).

• Post Session 1: After applying mechanism M1, the developer created the
analysis models of the DSL (artefact AA3), designed the abstract syntax
metamodel and several concrete syntax options (artefact DA1), and
prepared the syntax questionnaire (mechanism M2).

• Session 2: The goal of this session was to apply and gather information
about mechanism M2. The geneticists performed this session on their
own. This session included the following tasks:
1. Training of mechanism M2: The developer sent to the geneticists by

email an explanation of the activity to be carried out and the
guidelines of the method that explain the syntax questionnaire.

2. Application of mechanism M2: The geneticists answered the syntax
questionnaire to indicate their preferences about the DSL syntax and
to refine the abstract syntax. Since the developers were not present
during this activity, the questionnaire included two additional
questions to gather their comments and measure the time spent.

3. Assessment of mechanism M2: The geneticists answered the
assessment questionnaire about mechanism M2 (instrument M2).

• Post Session 2: After applying mechanism M2, the developer analyzed
the responses about syntax preferences and designed the definitive syntax
models (artefact DA1). Additionally, the developer prepared the
semantic templates (mechanism M3).

• Session 3: The goal of this session was to apply and gather information
about mechanism M3. This session included the following tasks:
1. Training of mechanism M3: The developer presented the activity to

be carried out during this session and provided the geneticists with
the guidelines of the method that explain the structure of the
semantic templates.

2. Application of mechanism M3: The geneticists together with the
developer completed the templates to specify the DSL semantics
(artefact DA2). During this activity, the developer recorded all of the
comments and the time spent.

8. Validation 177

3. Assessment of mechanism M3: The geneticists answered the
assessment questionnaire about mechanism M3 (instrument E3).

• Post session 3: After applying mechanism M3, creating the set of tests
(artefact IA1) and implementing the complete DSL infrastructure
(artefact IA2), the developer prepared the demonstration (artefact TA1,
mechanism M4) and the questionnaire to assess the DSL infrastructure
(mechanism M5).

• Session 4: The goal of this session was to apply and gather information
about mechanism M4 and mechanism M5. In order to reduce the
number of the experiment sessions and avoid the geneticists to meet for
another experiment session, we decided to combine the assessment of
both mechanisms into a single session of two hours. This session included
the following tasks:
1. Training of mechanism M4: The developer presented the activity to

be carried out during the first part of this session (session 4a) and
provided the guidelines of the method that describe the
demonstration structure.

2. Application of mechanism M4: The developer demonstrated the
DSL and encouraged geneticists to provide comments. During this
activity, the developer recorded all of the comments and the time
spent.

3. Assessment of mechanism M4: The geneticists answered the
assessment questionnaire about mechanism M4 (instrument E4).

4. Training of mechanism M5: The developer presented the activity to
be carried out during the second part of this session (session 4b) and
provided the guidelines of the method that describe the testing
questionnaire.

5. Application of mechanism M5: The geneticists used the DSL
infrastructure freely and answered the testing questionnaire. During
this activity, the developer recorded all of the comments and the time
spent.

6. Assessment of mechanism M5: The geneticists answered the
assessment questionnaire about mechanism M5 (instrument E5).

• Post session 4: After applying mechanism M5, the developer analyzed
the feedback obtained from the geneticists in order to improve the DSL
infrastructure (artefact TA2).

178 8. Validation

8.11 Evaluation of validity

Before running the experiment, we needed to ensure that the complete
experiment design was suitable to achieve the experimental goal. Specifically, we
wanted to ensure its validity to assess the satisfaction and efficiency of the
mechanisms of the proposed method.

The experiment design was validated in terms of four criteria: internal validity,
external validity, construction validity, and conclusion validity. To assess each
type of validity, we followed the work of [98] and discussed all the potential
threats that apply to the context of our experiment:

1. Internal Validity: Internal validity assesses the causality relationships of the
experiment between the treatment and the outcome of the experiment:

a. Maturation threat is the appearance of different subjects’ reactions as
time passes. In our experiment, besides the method restrictions, we
organized the experimental task in different sessions, with an
approximate duration of up to two hours to keep geneticists from
getting bored. In order to ensure that the satisfaction of geneticists
for each mechanism was captured equally, geneticists were asked
about the mechanisms of the method at the end of each session. This
was done to avoid problems recalling their opinion about the
mechanisms they applied first.

b. Testing threat is the appearance of different responses when a test is
applied several times because it has been learned by subjects. Our
experiment did not have this threat because each mechanism and the
corresponding assessment instruments were only applied once.
Moreover, the mechanisms were different from each other since they
tackled different aspects of DSL development. By using one
mechanism, the geneticists did not acquire further knowledge that
could affect the usage of the following ones.

c. Instrumentation threat can appear if instruments are not well
designed. In order to mitigate this situation, we conducted a pilot
experiment with two Master students that had a biotechnology
degree and expertise in bioinformatics. With their feedback, we
solved some errors and clarified some terminology and concepts that
were needed for the experiment.

8. Validation 179

d. Hierarchical relationships among experimenter and subjects can affect
the planning of the experiment and the results obtained. The
geneticists participated voluntarily (for research purposes), so the
developer was not in full control of the experimental environment
because she was not in a hierarchical position to give orders.
Therefore, this threat was not avoided.

e. Hierarchical relationships among subjects can affect the freedom of
subjects to provide their opinion. In our experiment, since one of the
geneticists supervised the other, these two geneticists might have
waited for feedback provided by their supervisor and hid their real
opinion. We avoided this threat by meeting with geneticists
individually.

2. External Validity: External validity assesses the ability to generalize the
experiment results to industrial practice:

a. Inadequate subjects is the threat of having subjects that are not
representative of the population that is going to be generalized to.
We avoided this threat since the chosen subjects were geneticists who
were experts in genetic disease diagnosis and who perform genetic
analysis in their daily work. Moreover, they fit the expected profile
because only geneticists with that domain experience were suitable to
be involved in the development of a DSL for the genetic analysis
domain. However, we did not avoid this threat for the developer
because the developer and the method creator were the same person.
This situation hindered our ability to get information about the
learnability of the mechanisms of the method for developers since the
developer already knew the details of the mechanisms before starting
the experiment. In order to reduce the subjectivity when measuring
the developer’s satisfaction using the method, we proposed objective
metrics (comprehension questions, degree of agreement, and
undetected errors).

b. Inadequate objects is the threat of having objects that are not
representative of industrial practice. We avoided this threat since the
experimental objects were selected from the daily work requirements
of the geneticists. Hence, the target DSL was not a toy DSL because
it addressed a problem that occurs in a real environment.

180 8. Validation

c. Inadequate environment is the threat of conducting the experiment in
a specific environment or on a special day or time that affects the
subjects. We avoided this threat by conducting the experiment in the
geneticists’ workplace and during the days and times that were the
most suitable for them.

3. Construction Validity: Construct validity assesses whether the experiment
design is able to measure the effect of the treatment over the experimental
objects and ensure the reliability of the observed outcome:

a. Inadequate preoperational explication constructs is the threat of having
constructs that are not sufficiently defined before they are translated
into measures or treatments. We avoided this threat by adopting the
metrics and instruments of the Method Evaluation Model (MEM),
which have already been used in several experiments of the literature
and have been validated by several authors.

b. Mono-operation bias is the threat to experiments with one single
factor or treatment in which the experiment underrepresents the
construct. In order to mitigate this threat, the Method Evaluation
Model (MEM) [102], proposes a set of metrics to assess satisfaction
and a questionnaire that is specially designed to measure them. To
ensure the validity of the questionnaire, the author includes
redundant questions, describes questions in positive and negative
style, and excludes the items that fail a correlation analysis
(Chronbach’s alpha [103]). In our experiment, we adopted the same
metrics and adapted the questionnaire to our context. We also
included redundant questions and we described them in positive and
negative style. However, we were not able to run Chronbach’s alpha
analysis due to the small number of subjects.

4. Conclusion Validity: Conclusion validity assesses the ability to extract
conclusions from the results of the experiment:

a. Low-statistical power is the threat of not having enough data to be
able to identify a true pattern. Our experiment had this threat due to
the small sample. Since we were not able to mitigate this threat, we
could not conclude that the results were statistically significant.
However, we conducted the experiment with this issue in mind with
the following goals: 1) to demonstrate the feasibility of the proposal;

8. Validation 181

and 2) to obtain preliminary insights of the success of the method to
involve end-users in real practice.

b. Fishing for a result is the threat that occurs when the experimenter
seeks a specific result. We did not avoided this threat because the
experimenter was the same person that designed the method and
nobody else was available to conduct the experiment.

8.12 Data analysis

As a result of the experiment, we obtained data from three sources: 1) the
responses from geneticists’ satisfaction questionnaires; 2) the geneticists’ feedback
recorded by the developer; and 3) the time spent by each geneticist while applying
each mechanism of the method. All these data are gathered in Annex C.

For the end-users’ satisfaction response variable, we gathered five data sets
(one per mechanism). It should be noted that: 1) we negated some questions to
stimulate the attention of the geneticists; 2) we combined questions that assess
two metrics (perceived ease of use and perceived usefulness) in the same
questionnaire; 3) we used several questions to ask about the same metric to ensure
robustness of responses; and 4) we used a 5-level Likert Scale to assess each metric.
Hence, in order to correctly analyze this response variable, we must pre-process
the obtained data sets so that they can be compared. To do this, we proceeded as
follows:

• Standardization of responses: Since we narrated the questions using
positive and negative adjectives to attract the attention of the geneticists,
we had to standardize the responses so they could be compared.
Therefore, we changed the responses of the negative questions to their
opposites (e.g., when the response was “strongly disagree” it was changed
for “strongly agree”). For example, Table 8.4 shows the original responses
of the questionnaire of the second session (Syntax Questionnaire
Assessment, instrument E2) and Table 8.5 shows how the responses to
the negative questions Q1 and Q4 have been changed for their opposites;
while the responses of the positive questions Q2, Q3, and Q5 remain
unchanged.

182 8. Validation

Table 8.4 Responses about the assessment of the syntax questionnaire

 Q1 Q2 Q3 Q4 Q5
Geneticist G1 Disagree Agree Strongly Agree Disagree Agree
Geneticist G2 Strongly disagree Strongly Agree Agree Disagree Agree
Geneticist G3 Neutral Agree Neutral Disagree Neutral

Table 8.5 Responses about the assessment of the syntax questionnaire after
standardization

 Q1 Q2 Q3 Q4 Q5
Geneticist G1 Agree Agree Strongly Agree Agree Agree
Geneticist G2 Strongly agree Strongly Agree Agree Agree Agree
Geneticist G3 Neutral Agree Neutral Agree Neutral

• Separation of responses into two data sets, one per metric (PEOU and
PU): Since the questionnaires asked about two different metrics, the
responses could not be compared and had to be analyzed separately. For
each mechanism (M1- M5), PEOU was measured through three
questions (Q1, Q2 and Q3) and PU was measured through two questions
(Q4 and Q5). Hence, we separated the responses into two datasets (one
per metric). As an example, Table 8.5 is divided into one dataset that
contains the responses to questions Q1, Q2, and Q3 (which asked the
geneticists about PEOU) and one dataset that contains the responses to
questions Q4 and Q5 (which asked about PU). These datasets are shown
in Table 8.6 and Table 8.7, respectively.

Table 8.6 Ease of Use responses about the assessment of the syntax questionnaire

PEOU Q1 Q2 Q3
Geneticist G1 Agree Agree Strongly Agree
Geneticist G2 Strongly agree Strongly Agree Agree
Geneticist G3 Neutral Agree Neutral

Table 8.7 Usefulness responses about the assessment of the syntax questionnaire

PU Q4 Q5
Geneticist G1 Agree Agree
Geneticist G2 Agree Agree
Geneticist G3 Agree Neutral

Once we obtained the two datasets with each geneticist’s responses separated
by metric (PEOU and PU), we aggregated their responses to obtain further
information about the geneticists’ opinions. We focused our analysis on the
following questions:

• What is each geneticist’s opinion about each mechanism by metric? In
order to answer this question, we aggregated the responses of each

8. Validation 183

geneticist by metric (PEOU and PU). Since the question scale is ordinal,
in order to aggregate the responses, we calculated the median value
(according to [96]). To do this, we associated each Likert level with a
number; since there were five categories, the numbers ranged from 1 to
5 (“strongly disagree”=1, “disagree”=2, “neutral”=3, “agree”=4 and
“strongly agree”=5). As an example, Table 8.8 shows the equivalent
numbers of the responses provided by geneticist G1 about the PEOU of
the mechanism M2 (syntax questionnaire): “4”, “4”, and “5”, representing
“agree”, “agree”, and “strongly agree”, respectively. These numbers
correspond to questions Q1, Q2, and Q3 that were shown in Table 8.6.
In order to obtain the opinion of geneticist G1 about the PEOU of
mechanism M2, we calculated the median of these numbers, whose result
was “4”.

Table 8.8 Geneticist G1’s opinion about the PEOU of Mechanism M2

Mechanism M2
PEOU Q1 Q2 Q3 Median (opinion about mechanism M2)
Geneticist G1 4 4 5 4

• What is each geneticist’s opinion about the treatment by metric? In
order to answer this question, we aggregated the responses of each
geneticist about mechanisms M1-M5 by metric (PEOU and PU) (from
Table 8.8). As before, since the scale of the responses was ordinal, we
calculated the median to aggregate the responses. As an example, Table
8.9 shows the opinion of geneticist G1 about the metric PEOU for the
mechanism M1-M5, whose numbers are “5”, “4”, “4”, ”5”, and “5”,
respectively. In order to obtain the opinion of geneticist G1 about the
treatment, we calculated the median of these numbers, whose result is
“5”.

Table 8.9 Geneticist G1’s opinion about the PEOU of the treatment

PEOU M1 M2 M3 M4 M5 Median (opinion of geneticist G1 about the
treatment)

Geneticist G1 5 4 4 5 5 5
• What is the general opinion about the treatment by metric? In order to

answer this question, we aggregated the geneticists’ responses about the
treatment (from Table 8.9). As before, since the scale of the responses
was ordinal, we calculated the median. As an example, Table 8.10 shows
the opinion of the geneticists G1, G2, and G3 about the metric PEOU

184 8. Validation

for the treatment, whose numbers are “5”, “5”, and “4”. In order to obtain
the general opinion of geneticists about the PEOU of the treatment, we
calculated the median of these numbers, whose result is “5”.

Table 8.10 General opinion about the PEOU of the treatment

PEOU Treatment
Geneticist G1 5
Geneticist G2 5
Geneticist G3 4
Median (opinion of all of the geneticists about the treatment 5

For the developers’ satisfaction response variable, the developer gathered
feedback from the geneticists about all of the mechanisms of the method during
the experiment sessions. In order to analyze all this data, we classified it into one
of the three metrics of the developer’s satisfaction: comprehension questions,
degree of agreement, and undetected errors. As described in the Section 8.6, all
these metrics were measured through quantitative values, such as the number of
questions, the percentage of agreement, disagreement, and individual feedback,
and the number of errors.

For the time response variable, the developer measured the time spent by the
geneticists to apply each mechanism. In order to know the total time spent by
geneticist, we added the individual times to apply each mechanism. Additionally,
in order to know the average time that geneticists needed to apply each
mechanism, we calculated the average of the times spent by the three geneticists.

8.13 Results

In this section, we discuss about the experiment results for each of the
response variables: 1) end-users’ satisfaction; 2) developers’ satisfaction; 3) and
time to apply the mechanisms.

For the end-users’ satisfaction response variable, we obtained information
about: 1) the geneticists’ individual satisfaction for each mechanism (Table 8.11);
2) the geneticists’ individual satisfaction for the treatment (Table 8.12); and 3)
the general satisfaction for the treatment (Table 8.13).

Table 8.11 shows the values that represent the geneticists’ opinion about each
mechanism. For the PEOU metric, all of the geneticists mostly “agree” or
“strongly agree” that the proposed mechanisms are easy to use, with only one

8. Validation 185

geneticist (geneticist G3) being neutral about the mechanism M2 (syntax
questionnaire) and the mechanism M3 (semantic templates). For the PU metric,
the geneticists’ opinion is similar and we observe values ranging from “neutral”
(3) to “strongly agree” (5); being higher values more frequent.

Table 8.11 The opinion of each geneticist about each mechanism

 Perceived Ease of Use (PEOU) Perceived Usefulness (PU)
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Geneticist G1 5 4 4 5 5 4 4 4,517 5 5
Geneticist G2 4 5 4 5 5 5 4 3 5 5
Geneticist G3 4 3 3 5 5 3 3,517 5 5 5
1=“Strongly Disagree”, 2=“Disagree”, 3=“Neutral” 4=“Agree”, 5=“Strongly Agree”.

Table 8.12 shows the values that represent the geneticists’ opinion about the
treatment. For the PEOU metric, we observe that the median values that wre
calculated for each geneticist (the five mechanisms of the method) are always
equal to or greater than 4 (“agree”). This means that the geneticists’ perception
about the ease of use is high. For the PU metric, we observe that the values are
always greater than 4, which means that the geneticists’ perception of usefulness
is also high.

Table 8.12 The geneticists’ opinion about the treatment

 Perceived Ease of Use (PEOU) Perceived Usefulness (PU)
Treatment Treatment

Geneticist G1 5 4,5
Geneticist G2 5 5
Geneticist G3 4 5

These results are consistent with Table 8.13, which shows the values that
represent the general opinion about the treatment. We observe that the
aggregated opinion of all geneticists is 5 for both metrics (PEOU and PU), so we
can say that, in general, the three geneticists that participated in the experiment
were satisfied with the mechanisms of the method.

Table 8.13 Population’s opinion about the treatment

 Perceived Ease of Use (PEOU) Perceived Usefulness (PU)
Treatment Treatment

All geneticists 5 5
For the developers’ satisfaction response variable, we obtained information

about: 1) the comprehension of the mechanisms (Table 8.14); 2) the degree of

17 This median contains decimal places because it is calculated from two values.

186 8. Validation

agreement among the geneticists (Table 8.15); and 3) the undetected errors
(Table 8.16).

Table 8.14 shows the amount of comprehension questions asked by the
geneticists and the total number of questions asked per mechanism. The total
number of questions asked were low, which means that, in general, the geneticists
did not have doubts about the mechanisms. They correctly understood how to
review user stories, acceptance tests, and usage scenarios (mechanism M1) since
only one question arose during the application of the mechanism. Specifically,
geneticist G1 did not understand what the abbreviation US and AT meant, so as
a solution, we propose adding the definitions of the abbreviations of the user
stories, acceptance tests, and usage scenarios in the guidelines of the mechanism.
Additionally, the geneticists indicated that they understood the acceptance tests
particularly well because they reflected examples of their domain, with specific
and real inputs and specific and real outputs.

Table 8.14 Comprehension questions that were asked by the geneticists

 Comprehension Questions
M1 M2 M3 M4 M5

Geneticist G1 1 0 1 0 2
Geneticist G2 0 0 1 0 0
Geneticist G3 0 0 1 0 2
Total 1 0 3 0 4

Good comprehension was also indicated for the syntax questionnaire
(mechanism M2) and the demonstration of the DSL infrastructure (mechanism
M4), since the geneticists did not ask any questions. In contrast, several questions
were asked for the semantic templates (mechanism M3) and the testing
questionnaire (mechanism M5). For mechanism M3, all three geneticists asked
about the source field and they indicated that this field was not clear. As a solution,
this field should be changed for two new fields: authors/creators, which defines
the stakeholders that created the artefact; and link to the service provider, which
indicates if the artefact is obtained through a website, a framework, or locally
from the file system.

Similarly, for mechanism M5, the geneticists asked several questions.
Geneticist G1 left two questions of the testing questionnaire unanswered, and
geneticist G3 asked for clarification about two other questions. These
comprehension questions showed that this questionnaire needs to be improved.
Also, the developer observed that the relationship between the activities
suggested for the testing and the questions of the questionnaire was not clear for

8. Validation 187

the geneticists. As a solution, the questions will be reviewed to remove
ambiguities and the testing activities will be redesigned in a way that end-users
see the relationship between activities and questions. We propose to interleave
both activities and questions in a way that end-users are asked to try one aspect
of the DSL and then they are asked about it immediately afterwards.

Table 8.15 shows degree of agreement among the geneticists’ feedback.
Mechanisms M3 and M4 showed a 100% of agreement among the three
geneticist, while M1, M2, and M5 showed different distributions of agreement,
disagreement and individual feedback. For mechanism M1, all of the geneticists
agreed that one of the user stories was ambiguous (3 comments, 20%), but each
of them provided different comments and proposed changes (12 changes, 80%)
in the other user stories, acceptance tests, and usage scenarios. This means, that
mechanism M1 was useful for detecting big mistakes but not so powerful for
detecting small ones.

Table 8.15 Percentages of agreement from the geneticists’ feedback.

 Degree of Agreement
M1 M2 M3 M4 M5

Agreement 20% 33% 100% 100% 66%
Disagreement 0 50% 0 0 22%
Individual feedback 80% 13% 0 0 12%

For the syntax questionnaire (mechanism M2), lots of different feedback was
provided. All of the geneticists agreed on the suitability of two of the proposed
syntaxes (2 agreements, 33%), but they disagreed on the suitability of the other
two, and, eventually, they completely differed on their preferred syntax (3
disagreements, 50%). Moreover, only one geneticist proposed a change in the
syntax (1 change, 13%). As a consequence, the developer had to weight their
answers to try to choose the best rated syntax option. This means that mechanism
M2 should be improved by getting additional feedback about all the syntax
options to ensure that the final result satisfies all the end-users as much as possible.

For both the semantic templates (mechanism M3) and the demonstration
(M4), all the results provided by the three geneticists were identical. Since all of
the geneticists completed the template with the same information (agreement of
100%), and no feedback was provided (agreement of 100%) for the mechanism
M4, there is no evidence that suggests that this mechanisms should be improved.

In the testing questionnaire (mechanism M5), the geneticists agreed on 27
responses (66%), disagreed on 9 (22%), and provided additional feedback in 5

188 8. Validation

responses (12%) (e.g., the correction of the syntax keyword possibly_damaging or
the addition of a new user story filter by list of genes from file). In general, there
were many coincidences by the geneticist, even though full agreement between
all of the geneticists was not achieved in some cases. Individually, some of them
gave suggestions that were not given by the others. Nevertheless, no contradiction
arose, which means that mechanism 5 was suitable to understand the general
opinion about the DSL.

Table 8.16 shows the undetected errors that should have been detected earlier
during the application of the mechanisms. The geneticists missed four errors
related to mechanism M1 (review of user stories, acceptance tests, and usage
scenarios) and mechanism M2 (syntax questionnaire). For mechanism M1,
geneticist G2, indicated the need of including a new user story named filter by list
of genes from file (1 error). For mechanism M2, all the geneticists proposed new
changes to the syntax, which means that the questions of mechanism M2 were
not effective in gathering end-user requirements. Specifically, geneticists G1 and
G3 suggested transforming the enumeration AlphAsc, AlphDes, Min2Max, and
Max2min into Ascendant and Descendant” (2 errors), and geneticist G2 suggested
adding an underscore to the keyword possibly_damaging (1 error). These
undetected errors revealed that mechanism M1 should be improved to detect
additional requirements that are highly related to existing ones and mechanism
M2 should be improved to encourage end-users to provide feedback about the
specific details of the abstract and concrete syntax. In order to improve the syntax
questionnaire, we propose: 1) removing all the questions with free-text answers;
2) adding a question that shows the entire scenario as a whole (instead of splitting
it up into several questions); 3) coloring different syntax elements to highlight the
different constructs; 4) and providing more engaging questions about each syntax
construct.

Table 8.16 Undetected errors that were observed by geneticists in the testing stage

 Undetected Errors
M1 M2 M3 M4 M5

Geneticist G1 0 1 0 0 -
Geneticist G2 1 1 0 0 -
Geneticist G3 0 1 0 0 -
Total 1 3 0 0 -

For mechanisms M3 and M4, the geneticists did not find any error. For
mechanism M5, we cannot measure the undetected errors unless we run an

8. Validation 189

additional iteration and detect the errors that could have been missed in the
application of this mechanism (testing questionnaire).

For the time spent to apply the mechanisms of the method, Table 8.17 shows
that the mechanisms that required more time were M1, M3, and M5, and the
mechanisms that required less time were M2 and M4. In general, the geneticists
spent similar times applying the mechanisms, although there was greater variety
among the geneticists when applying mechanisms M1, M2 and M3. In total,
geneticists G1 and G2 spent approximately 2 hours while geneticist G3 spent 3
hours.

Table 8.17 Time spent by each geneticist

Time(minutes) M1 M2 M3 M4 M5 Total
Geneticist G1 24 7 25 14 57 127
Geneticist G2 30 4 26 14 60 134
Geneticist G3 49 12 46 14 60 181
Average 34,3 7,7 32,3 14 59,0 147,3

8.14 Threats to validity

In this section, we discuss the experiment experiences related to the threats
to validity that arose during the experiment.

With regard to internal validity, we detected a usability problem in the
measurement instrument of the mechanism M1 (instrument E1) during the first
session. The geneticists indicated that they were having doubts about choosing
which response represented their opinion. The questions asked for agreement or
disagreement for several statements, but they doubted between choosing agree or
disagree when the question statement used a negative adjective such as difficult or
tedious.

For practical reasons, we decided not to repeat the questionnaire of this first
session. Instead, in order to ensure the validity of the responses already provided,
we analyzed them looking for inconsistencies. As we explained in Section 8.6, the
geneticists were asked several questions to measure the same metric: 3 questions
to measure the PEOU metric, and 2 questions to measure the PU metric. Thanks
to this, we were able to compare the responses that assess the same metric keeping
in mind that some answers could be expressing the opposite of what the

190 8. Validation

participants wanted to answer. For instance, geneticist G1 answered three
questions regarding the PEOU metric for mechanism M1. In two of the
questions, this geneticist indicated a high PEOU but a very low PEOU in the
other question. When asked to review the three questions, the geneticist detected
that one of the questions was not correctly answered and changed the response
given. In total, we detected two inconsistencies that we verified with the
corresponding geneticists.

Once we detected this problem in instrumentation (and before executing the
rest of the sessions), we analyzed the other instruments E2, E3, E4, and E5 to
check if they had the same problem. Since the questions were worded similarly,
we changed some labels to improve usability. For instance, when the question
statement asked about how difficult a mechanism was, we changed the label of
the responses to clarify it. As a result, the labels were agree (difficult) and disagree
(easy).

We did not observe any other inconsistency in the other sessions; however, in
order to ensure the validity of the instruments for future experiments, a thorough
analysis should be done to assess the understanding of end-users about the labels
agree and disagree and the clarifications that we added.

Another threat related to internal validity was that the social aspects between
the developer and the geneticists affected the planning of the experiment. During
Session 1, one of the geneticists received a phone call to solve a work matter and
left the experiment activity (temporarily). The developer could not keep the
geneticists from leaving; as a consequence, the geneticist’s perception could have
been affected and no action was available to avoid this threat.

With regard to external validity, we had a potential change in the
experimental environment. Session 4 was planned as a session to be performed
with all of the geneticists on the same day; however, due to work restrictions, we
had to schedule several sessions: one for geneticists G1 and G2, and another one
for geneticist G3. Initially, we believed that the day a session is held could affect
the experimental environment, but since all the geneticists accomplished all the
tasks of the session normally, there is no evidence that the environment was
compromised. Geneticist G3 carried out the activities without any noticeable
issues. Had Subject 3 attended the original session, the fact that the work
problems were not solved could have affected his attitude and motivation to
participate in the experiment.

8. Validation 191

8.15 Discussion

As a result of this experiment, we have found that the set of mechanisms of
the method are suitable for involving end-users in the context of DSL
development since the results show that the mechanisms are satisfactory to both
end-users and developers. We now discuss the usability problems, the limitations,
and the potential improvements in the mechanisms of the method.

From the end-users’ perspective (the end-users’ satisfaction variable), the
high levels of perceived ease of use and perceived usefulness lead us to think that
the mechanisms of the method are a good approach for end-users to
communicate their needs and preferences and do not have any usability problem.
However, from these measures, we are not able to extract further conclusions
about the limitations or potential improvements of the method.

From the developers’ perspective (the developers’ satisfaction variable), the
low values for the comprehension questions metric, the high values for the degree
of agreement metric, and the low values for the undetected errors metric lead us
to think that developers perceive all of the mechanisms of the method as a good
approach to gather end-users’ feedback and represent it in the DSL. The feedback
and anecdotes that gathered developers from the geneticists during the
application of the mechanisms has provided a big picture about developers’
satisfaction, but it has been also useful for detecting some usability problems,
limitations, and points of improvement.

Thanks to the comprehension questions that the geneticists asked during
their experiment and the existence of undetected errors, we have detected usability
problems in mechanisms M1, M2, M3, and M5: for mechanism M1, some
abbreviations were not clear; for mechanism M2, some questions were tedious
and too open; for mechanism M3, a field from the template was ambiguous; and
for mechanism M5, some questions were similar or they contained ambiguous
expressions.

Additionally, we have detected a limitation in mechanism M2 due to the low
degree of agreement in the geneticists’ responses. The geneticists were asked to
rate each syntax proposed and eventually to choose their favorite. We expected to
find variability in their preferences, but we also expected a slight convergence
since all the geneticists are experts in the same area and they accomplished the

192 8. Validation

same tasks (and used the DSL for the same purpose). However, since each of the
three geneticists chose a different syntax, the developer found it very difficult to
determine the most suitable one. This situation has revealed that the geneticists
were asked about few aspects of concrete syntaxes.

As a solution for these usability problems and limitations, we propose the
following potential improvements: for mechanism M1, improving the guidelines
to clarify all the abbreviations; for mechanism M2, performing a study of usability
aspects about concrete syntaxes and using the results to improve the syntax
questionnaire and to create a weighting system that obtains the most suitable
concrete syntax for end-users; for mechanism M3, removing ambiguities from
the template; for mechanism M4, encouraging end-users to provide feedback
during the demonstration; and for mechanism M5, removing ambiguities in the
questions and improving the relationship between activities and questions.

Finally, for the time spent (the time response variable) to apply the
mechanisms of the method, the geneticists invested up to three hours to apply
the five mechanisms, which seems to be a reasonable amount of time to be spent
on participating in the development of a DSL. With this information, we have
not been able to detect usability problems in the mechanisms; however, the time
measures have revealed which mechanisms are the most costly for end-users
(mechanisms M1, M3, and M5). For mechanism M5, we believe that the reason
could be the difficulties of learning the DSL and how the DSL application is
deployed, which actually means that there is a limitation in mechanism M4. If
the geneticists had problems getting familiar with the DSL while applying
mechanism M5, this could mean that the demonstration (mechanism M4) was
not effective. As a potential improvement, we propose to define a demonstration
session that is more interactive and encourages the end-users to ask questions
about the DSL, even if the session is interrupted.

In summary, we believe that mechanism M1 was well accepted among the
geneticists because of the easy structure of the templates based on user stories,
acceptance tests, and usage scenarios and also because of the use of natural
language. Similarly, using questionnaires (mechanism M2 and M5) is the most
common way to gather end-user feedback. Therefore, we believe that our
questionnaires have been well received among the geneticists because they were
short and easy to answer and they used domain examples in the questions.
Similarly, mechanism M3 has been well accepted because the templates

8. Validation 193

structured the data in different sections and they were not extremely difficult or
large. Mechanism M4 has been well accepted because the demonstration was
visual, and it did not require any effort from the geneticists. This is in contrast to
the testing questionnaire, which is the most complex because the geneticists had
to carry out a set of activities with the DSL infrastructure and find errors in the
DSL.

It is worth mentioning that these conclusions are the experimental results of
applying only one iteration of the method, which addresses four requirements
with three geneticists. As we already mentioned in Section 8.11, these
preliminary results assess the feasibility of the proposal and provide preliminary
insights about the acceptance of the involving mechanisms by both end-users and
developers. However, having such a small number of subjects limits our ability to
generalize these results to the population.

Besides the limitations of the method, during the experiment, we also learned
some lessons that are related to the experimentation design and execution. First,
asking end-users to perform a task during their free time it is not productive. We
asked the geneticists to answer the syntax questionnaire (mechanism M2) in their
free time, but after a week, only one geneticist had done it, and we had to insist
several times. Since practitioners have a busy working schedule, it is difficult for
them to accommodate an experimental task in their free time. Second, in contrast,
we learned that spending time with practitioners is worthwhile since the feedback
they provide is more oriented to industry. Third, we were able to get a lot of
individual feedback and avoid social validity threats because our experiment was
especially designed for subjects to participate individually. Since we only had
three subjects, applying the different method mechanisms individually was
feasible.

8.16 Conclusions

In this chapter, we have validated the mechanisms for involving end-users
with an experiment of the type “Researching expert opinion” with three subjects
from an industrial environment. The experiment focuses on evaluating the users’
participation in the DSL development process with respect to end-users’ and
developers’ satisfaction while applying the involving mechanisms of the method.
As a conclusion of the experiment, we found that the use of agile practices has

194 8. Validation

helped to involve end-users in DSL development since the data measured in the
experiment showed high levels of end-user satisfaction and developer satisfaction
with the involving mechanisms. We also found that these mechanisms can be
applied in a reasonable amount of time.

As we already mentioned, the results obtained from this experiment cannot
be generalized due to their sample size. However, the findings are very valuable
because the data originates in experts from an industrial environment and the
experimental objects are based on a subset of their real problems. Another
relevant aspect of this experiment is the benefit obtained from observing the
participants individually. We gathered very detailed feedback about the
experiment and the method; a kind of feedback that is more difficult to observe
with a bigger sample.

Despite the lack of generalization, this experiment has been useful to learn
some lessons about the method, although it was useful as well to learn how to
improve the planning of a future experiment. Regarding the method, we have
detected usability issues, limitations, and potential improvements in several
mechanisms of the method. Regarding the experiment, we have detected threats
to validity that were not considered during design and problems in the guidelines,
the measurement instruments, and the schedule.

In summary, despite the limitations of the experiment, its impact is twofold.
On the one hand, we have proved the feasibility of the proposal by applying the
method in a real context. This means that, using the method, we have been able
to involve end-users in DSL development and we have obtained positive feedback
from end-users about the involving mechanisms. On the other hand, we have
gathered a big amount of feedback about the mechanisms of the method to
improve it for the next method version.

9. Conclusions 195

9. Conclusions
This PhD thesis focuses on the field of DSL development. We identified the

need of involving end-users within the process and we analyzed the state of the
art to identify which issues remain unsolved. As a solution, we proposed a method
to involve end-users in DSL development and we validated the proposal with
geneticists in a real DSL development context.

In this chapter, we start summarizing the contributions of this PhD thesis.
Next, in order to justify the value of these contributions, we present the list of
publications, their relevance, and their coverage in regards to each contribution.
Then, we discuss the lessons that we have learned while conducting the research
of this PhD. Finally, we present the future research lines to improve this work.

9.1 Contributions

Contribution 1: A discussion of the need of involving end-users in DSL
development.

In order to illustrate the need of involving end-users in DSL development we
chose the genetic analysis domain as example. We collaborated with geneticists

196 9. Conclusions

from two different industrial environments to characterize their problems with
genetic analysis software tools: Imegen (in the context of the Project Diagen18)
and INCLIVA.

We analyzed the possibility to propose a DSL for geneticists; but as a result
of this analysis, we realized of the complexity of this domain and the need of
involving them in the development process to ensure the suitability and
correctness of this DSL. This contribution is presented in Chapter 2.

Contribution 2: State of the art of DSL development approaches for
involving end-users.

In order to justify that the motivation of the PhD thesis has not been
previously addressed, we searched for works in the literature that address the
participation of end-users in the development of DSLs. First, we analyzed the
most relevant works in the literature related to DSL development and observed
how they take into account end-users. Second, we searched for works that focused
on involving end-users in DSL development and we compared them in regards
to process completeness and end-user involvement. Since none of them provided
a DSL development method that besides involving end-users also covers the
complete DSL development lifecycle, we identified a gap in the state of the art.
This contribution is presented in Chapter 3.

Contribution 3: Design and implementation of a method to involve end-
users in DSL development.

As a solution to the gap that we identified in the state of the art, we proposed
a new DSL development method. In order to design this method, we studied
approaches for DSL development, model-driven practices in the context of DSL
development, and agile practices that focus on enhancing the participation of
end-users. After this analysis, together with the geneticists and bioinformaticians
from Imegen, GEM Biosoft and INCLIVA, we proposed a DSL development
method that combines model-driven and agile practices to improve the DSL
development efficiency and to enhance end-user participation.

 Additionally, this method is the proof of concept of combining into a single
proposal the practices of such different development paradigms as model-driven

18 “Modulo de carga para genes especificos en una base de datos del genoma humano con el
objetivo de facilitar la busqueda de variaciones en secuencias genomicas y su interpretacion
fenotipica”, Instituto De Medicina Genomica, S.L.

9. Conclusions 197

development and agile development. Model-driven development focuses on
creating rigorous and complete representations and use these representations to
create the corresponding software implementation, while agile principles are
more focused on producing working software so it can be early delivered to end-
users. This method has achieved a balance between those paradigms focusing on
delivering software to end-users as soon as possible but enhancing the creation of
models throughout the process and guidelines to transform those models into
working software.

This contribution is presented in chapters 4, 5, 6, and 7.

Contribution 4: A DSL for supporting genetic analysis.

After designing this method, again together with the geneticists from Imegen,
GEM Biosoft, and INCLIVA, we applied it to develop a DSL for supporting
genetic analysis. This DSL provides domain abstractions to allow geneticists to
specify their pipelines for genetic analysis. At the moment, this DSL is a
prototype that only supports a subset of constructs, but it can still be used to
specify a set of genetic analysis of diseases such as Breast Cancer or Diabetes
Mellitus Type 2. This contribution is presented in chapters 4, 5, 6, and 7. Further
details are provided in the Annex B and in the technical report [83].

Contribution 5: Validation of the proposal in a real environment

In order to assess the whether the proposal is a suitable approach to enhance
end-user involvement in DSL development, we conducted an experiment of the
type Researching expert opinion with three geneticists from INCLIVA. In this
experiment, we gathered information from the end-users’ and the developers’
perspective about the end-user involving mechanisms. During this experiment,
we also identified the current limitations and the potential improvements to the
method. This contribution is presented in Chapter 8.

9.2 Research publications

The contributions of this PhD thesis have been presented to the software
engineering and the bioinformatics communities through the following
publications:

198 9. Conclusions

[1] Oscar Pastor, Ana M. Levin, Matilde Celma, Juan Carlos Casamayor,
Luis Eraso, Maria José Villanueva and Manuel Perez-Alonso, “Enforcing
Conceptual Modeling to Improve the Understanding of Human
Genome”, International Conference on Research Challenges in Information
Science (RCIS 2010). IEEE Computer Society, pp. 85-92, 2010.

[2] Maria José Villanueva, Francisco Valverde, Ana M. Levin and Oscar
Pastor, “Diagen: A Model-driven Framework for Integrating
Bioinformatic Tools”, Forum of the International Conference on Advanced
Information Systems Engineering (CAiSE Forum), pp. 105-112, 2010.

[3] Maria José Villanueva, Francisco Valverde, Ana M. Levin and Oscar
Pastor, “Diagen: A Model-Driven Framework for Integrating
Bioinformatic Tools”, CAiSE Forum (Selected Papers), Lecture Notes in
Business Information Processing, Springer-Verlag, Heidelberg, ISBN 978-
3-642-29748-9, vol. 107, pp. 49-63, 2012.

[4] Maria José Villanueva, Francisco Valverde and Oscar Pastor, “Applying
Conceptual Modeling to Alignment Tools One Step towards the
Automation of DNA Sequence Analysis”, International Conference on
Bioinformatic models, methods and algorithms (BIOINFORMATICS), pp.
137-142, 2011.

[5] Maria José Villanueva, “An agile model-driven approach for simplifying
the development of genetic analysis tools”, International Conference on
Advanced Information Systems Engineering (RCIS), pp. 1-6, 2012.

[6] Maria José Villanueva, Francisco Valverde and Oscar Pastor, “Involving
End-users in Domain-Specific Languages Development -Experiences
from a Bioinformatics SME”, International Conference on Evaluation of
Novel Approaches to Software Engineering (ENASE), pp. 97-108, 2013.

[7] Maria José Villanueva, Francisco Valverde and Oscar Pastor, “Involving
End-Users in the Design of a Domain-Specific Language for the
Genetic Domain”, International Conference on Information Systems
Development: Improving Enterprise Communication (ISD), pp. 99-110,
2013.

[8] Maria José Villanueva Francisco Valverde and Oscar Pastor, “Como
diseñar pipelines científicos sin tener que aprender programación ni comandos
Linux”, I Congreso Biomedicina Predocs (CONBIOPREVAL), 2014.

[9] Francisco Valverde and Maria José Villanueva, “Applying Capability
Modelling in the Genomics Diagnosis Domain: Lessons Learned”,

9. Conclusions 199

International Workshop on Capability-oriented Business Informatics (CoBI),
CEUR workshops Proceedings, 2015.

[10] Maria José Villanueva, Francisco Valverde, Ignacio Panach and Oscar
Pastor, “Involving end-users in the development of domain- specific
languages (DSLs): Researching expert opinion”. Submitted to Journal of
Software and Systems.

Table 9.1 overviews these publications and shows the relevance of each of
them, indicating the type of communication (publication in editorial, workshop,
forum, short paper at conference, regular paper at conference, or article), whether
they have been published in a conference or editorial with international reach,
and whether this conference or an editorial is classified according to any relevant
ranking (such as CORE or JCR). This table also shows the contents of the
publication, indicating which contributions of the thesis (motivation, state of the
art, solution, and validation) have been covered.

Publications [1], [2], [3], [5], [6], [7], and [9] have been published in forums
related with software engineering to present the five contributions. Publications
[4] and [8] have been published in forums related with biotechnology and
bioinformatics in order to present the contributions 1 and 4, that is, the
motivation related to the genetic analyses domain and the DSL for supporting
genetic analysis.

200 9. Conclusions

Table 9.1 Summary of publications

 Relevance Coverage
 Communic

ation type
Intern
ational

Ranking Contrib.1
(Motivatio
n)

Contrib.
2
(State of
the Art)

Contrib.
3
(Solution)

Contrib
. 4
(DSL)

Contrib. 5
(Validation
)

[1] Regular
paper

 Core B  - - - -

[2] Short paper
at forum

 CORE
A
(forum)

 - - - -

[3] Selected
paper for
publication

 -  - - - -

[4] Short paper
at
conference

 -  - - - -

[5] Doctoral
consortium

 Core B
(doctoral
)

 - - -

[6] Regular
paper

 Core B     

[7] Regular
paper

 Core A     

[8] Oral
communica
tion

× -  - -  -

[9] Workshop
paper

 -  - - - -

[10] Article
(submitted)

 JCR     

9.3 Discussion

In this section, we discuss the research conducted in this PhD thesis,
analyzing the benefits and the limitations of the proposed method and the
developed DSL.

Regarding the investigation of the problem, we found that developing a DSL
is difficult because it requires coming up with the right domain abstractions for
the users of the DSL. Since the developers are the ones who know how to provide
these abstractions but not the ones that hold the knowledge about the domain,
this task is harder as the complexity of the domain increases. In order to illustrate
this complexity, as an example we chose the genetic analysis domain, a domain

9. Conclusions 201

with very complex concepts that has traditionally struggled with software tools
because of the huge existing gap between domain experts and developers.

We met and interviewed geneticists who work daily performing genetic
analyses. We were able to precisely analyze their problems because they were very
interested and willing to answer all of our questions. Thanks to their enthusiasm,
they showed us real examples of their genetic analyses to illustrate their problems.
Because of this collaboration, we were able to observe the real complexity that
involves developing a DSL for this domain. This complexity justifies both the
need of advanced software engineering practices during the development process
and the need of involving geneticists from the beginning.

In this PhD thesis, we analyzed the genetic analysis domain and we found
that developing a genetic DSL required involving geneticists. However, we
believe that this problem is not specific to the genetic analysis domain and it can
we generalized to other domains, especially to complex ones whose domain
concepts are not closer to the background knowledge of a software engineer. We
are aware that each domain has their own particularities; however, we believe that
eliciting requirements and end-users’ preferences for a DSL is always difficult (no
matter the domain). Also, trying to understand the semantics of the different
specific concepts of a domain is also hard for developers that do not have the
proper domain knowledge.

Regarding the state of the art, our main source was a systematic mapping of
the current state of DSL development, and we also analyzed the most relevant
and most cited DSL development proposals focusing on their approaches for
involving end-users. In order to find additional proposals that involve end-users
in some activities of DSL development, we have been constantly looking for novel
proposals in journal and conference proceedings using academic search engines.
We analyzed the most relevant ones by characterizing their benefits and their still
unsolved issues. Although we did not perform a systematic review, we are positive
that there is no method for involving end-users in DSL development that
supports the whole development lifecycle (from decision to maintenance).

Regarding the proposed method, we have described a method for involving
end-users in DSL development that combines model-driven development and
agile practices. The proposed method covers all the stages of the development
lifecycle by detailing the steps that must be followed and the artefacts that must
be created in each step; ensures the process efficiency, through the adoption of

202 9. Conclusions

model-driven practices and the definition of model-based transformations to
systematize the development; and involves end-users in the definition and
assessment of different DSL artefacts through five agile-based involving
mechanisms applied in the stages analysis, design, testing and maintenance.

In order to design this method, we collaborated with geneticists from Imegen,
GEM Biosoft and INCLIVA. This collaboration was very valuable to ensure that
the ideas and feedback from the end-users of a complex domain were reflected in
the method. We collaborated with Imegen and GEM Biosoft to design and
improve three versions of the method and we carried out an empirical validation
with geneticists from INCLIVA. The benefit of designing and validating the
proposal in different environments is reducing the chances of having a method
highly dependent on the preferences of the end-users that collaborated in the
method design. A set of end-users provided feedback to design the method and
another set of end-users provided feedback once the method was designed.

Additionally, in order to propose a set of mechanisms to involve end-users
throughout the development process, we studied agile methods and selected agile
practices that focused on involving end-users. We selected and analyzed each
practice and we customized them to fit the specifics of the DSL development
context. From this experience, we proposed a set of involving mechanisms, which
simplified some development tasks by using closer language to end-users or real
examples.

Nevertheless, during the design of the method, we found a set of issues that
we could not addressed in the context of this PhD. We have described these issues
at the end of each method chapter, in Sections 5.3, 6.3, and 7.4. Examples of
these issues are the inattention to usability requirements for the DSL, the lack of
support of internal DSLs, or not having applied the stages deployment and
maintenance in real practice. Next, in Section 9.4, we discuss the ideas that we
have for future work in order to solve each of these issues.

Regarding the developed DSL for supporting genetic analysis, we applied
the proposed method with geneticists from Imegen, GEM Biosoft, and
INCLIVA to develop a DSL for their complex domain. This DSL aimed to
provide a friendly infrastructure to specify genetic analysis without worrying
about selection, configuration, and integration of software tools.

9. Conclusions 203

The current version of this DSL prototype supports the specification of a set
of pipelines to perform genetic analysis of genetic diseases such as Lactose
Intolerance, Breast Cancer, and Diabetes Mellitus Type 2. At the moment, this
DSL only supports a small set of constructs since we only executed three iterations
of the method and the two first were focused on being a proof of concept for the
method. Nevertheless, although the generated specifications still do not support
all of the details to specify a complete genetic analysis, the geneticists from
INCLIVA provided positive feedback about the DSL. Next, we describe some
of the insights that we gathered from this experience.

The DSL is useful for geneticists who do not have technological skills. The geneticists
from INCLIVA are currently specifying their analysis using and configuring by
themselves existing software tools. They acquired computer skills, and they
perceive that by using the DSL they lose control and flexibility over their pipelines
for genetic analysis. For instance, the DSL has a construct to annotate the
variations’ gene, but the geneticists are used to work with specific software tools
and they need to know which tool is performing the annotation, which
parameters are configuring the tool, and even which version of the tool is being
used. In contrast, these geneticists admit that acquiring all this technical
knowledge and experience is not easy and the DSL could be very helpful for
geneticists who do not have this background.

The DSL offers the opportunity to embrace a new paradigm for genetic analysis research.
Complementing the previous thoughts, this DSL can offer geneticists (including
as well the geneticists who have a high technical knowledge) the possibility to
decouple the genetic analysis from existing software tools. Nowadays, when
geneticists design a genetic analysis they focus on the tool selection and
configuration instead of thinking about the overall process. As a solution, the
DSL provides a clear separation of concerns. On the one hand, geneticists can
use the DSL to design and specify the genetic analysis they want to perform. On
the other hand, they can deal separately with the mapping between DSL
constructs and the most suitable software implementation. In this scenario,
geneticists deal with the domain complexity, whereas software engineers (or by
geneticists with bioinformatics skills) deal with technological complexity.

The DSL needs to be very expressive but easy to understand. In order to convince
geneticists to embrace this new paradigm, we need the DSL to be expressive
enough to support any analysis that geneticists can think of. This concern is a

204 9. Conclusions

challenge in this domain because of its constant evolution. DSLs usually target
domains with well-established concepts; for this reason, at the moment, we have
oriented this DSL to support well-established genetic analysis procedures for
medical diagnosis. Therefore, this DSL can be used to save and reuse the
specification of pipelines that are used in the every-day diagnosis or for teaching
purposes to help novice geneticists to learn how to create different genetic analysis
pipelines.

Finally, for the validation, we carried out an experiment with geneticists from
INCLIVA, and although only three geneticists participated in the experiment,
we obtained valuable information from experts about the involving mechanisms.
As a result, we learned that some of the mechanisms had some issues and we
gathered information from the geneticists about how to improve them. We have
described these issues in the validation chapter, concretely in Sections 8.13 and
8.15. Examples of these issues are the need of clarifying the abbreviation used in
the mechanism M1, the need of running a further usability study to improve the
mechanism M2, or the need of removing an ambiguous field in the mechanism
M3. Next, in Section 9.4, we discuss our ideas to solve each of them as well as
how some of them have been already solved.

9.4 Future work

In summary, in this PhD we have proposed a method that supports all the
stages of the DSL lifecycle, adopts model-driven practices to benefit from MDD
efficiency, and adopts agile practices to involve end-users. For practical reasons,
we prioritized covering all the stages of the development process over covering
different design possibilities. As a consequence, we have left for future work the
following research lines:

• The mechanisms of the method do not gather feedback in regards to usability or
performance concerns. The mechanisms of the method have been designed
especially to gather end-user feedback regarding domain knowledge and
functional requirements. Our priority was to gather end-user’s
requirements, preferences about the DSL syntax, information about DSL
semantics, and feedback about each DSL release. However, we did not
designed the involving mechanisms to gather non-functional

9. Conclusions 205

requirements such as usability or performance. Since, this kind of
requirements are also important for the adoption success of the DSL, as
future work, we aim to modify or add new involving mechanisms to take
into account these aspects. In the state of the art, there is a proposal [104]
that performed an analysis of the usability concerns to take into account
during DSL development and proposed a questionnaire to ask end-users
about these concerns in the Testing stage. As future work, we will analyze
the possibility to integrate their proposal in our DSL development
method. Using this approach, we could improve the mechanisms of the
Analysis, Design, and Testing stages to take into account usability
concerns.

• The method only supports the development of external DSLs. The design of
the syntax and semantics was restricted to support external DSLs because
covering all the DSL development lifecycle was a priority. Among the
decision to support an external or an internal DSL, we chose to support
external DSLs first because the scenario of application that was used in
this PhD (a DSL for supporting genetic analysis) follows this approach.
This decision was made according to the geneticists needs, but this does
not mean that the method could not support the development of internal
DSLs as well. As future work, we will analyze which artefacts are needed
to design the syntax and semantics of an internal DSL and how to extend
the existing language infrastructure to support internal DSLs.

• The method only supports the development of textual DSLs. The design of
the syntax was restricted to support textual DSLs because, as we already
explained, covering all the DSL development lifecycle was a priority.
Among the decision of supporting graphical or hybrid syntaxes, we chose
to support textual syntaxes first because the use case that was developed
in this PhD (a DSL for supporting genetic analysis) follows this approach.
Also, developing a graphical editor for such DSL is a time consuming
implementation task and we needed an editor that could be shown to the
end-users as soon as possible. As a future work, we will design the
artefacts that are needed to design a graphical syntax (such as, defining
the notation of the graphical syntax using GMF), as well as the
mechanisms to show graphical and hybrid syntaxes to the end-users to
rate and to choose their preferred one. We would add a questionnaire to
ask about their preferences before proposing several syntaxes, or adopt

206 9. Conclusions

the ideas of one of proposals of the state of the art (such as [71] or [72])
in which end-users can draw their preferred graphical shapes for the
syntax. Additionally, we will analyze how to implement the parser that
recognizes graphical and hybrid syntaxes.

• The method only supports the specification of operational semantics. Although
there are several approaches to specify the semantics of a language:
operational, denotational, and axiomatic, we only support the
specification of semantics through the specification of a mapping
between a DSL construct and a service that is implemented by a
technological artefact. The rationale of this decision was the easiness of
understanding for end-users and the easiness of specification and
implementation for the developers. The drawback is that this approach
requires a set of ready-to-use services already available, which can be a
limitation for some domains. As future work, we will explore the
alternatives that can be applied for domains where such services are not
available yet.

• The method does not have tool support. Although we used several tools like
textual editors and frameworks for DSL development, we do not have a
single tool to manage all the steps and artefacts from the method and
guide its application. In order to implement this tool support, as future
work we will analyze the possibility to apply the proposal of Cervera et
al. [105]. This work allows software developers to create a support
environment for their method, which integrates under a single
environment all the software tools that are used in the method steps and
includes the method steps to guide the developers through the
development. Using this work, we could implement a tool that supports
the interaction of the method with both the developers and the end-users.

• The stages Deployment and Maintenance have not been assessed with end-
users, applied in practice, or validated. The method includes the stages
Deployment and Maintenance and a mechanism to involve end-users in
the maintenance stage. However, these stages were designed in the last
iteration of the method and they still need a further analysis and
assessment of the artefacts to be created. Moreover, we did not include
these stages in the experiment with the geneticists since we considered
that the DSL release was not stable enough to be deployed and delivered.
As future work, we plan to perform a further analysis of the artefacts of

9. Conclusions 207

these stages as well as to develop a more stable version of DSL so we can
assess these stages with geneticists.

• The experiment focused on validating the mechanisms of the method. We
validated the main contribution of the PhD with an empirical experiment.
The benefits of MDD (such as efficiency) in the context of DSL
development and the different artefacts of the method have been already
validated in existing works of the state of the art. Nevertheless, as future
work, we believe that it is necessary to validate with developers and end-
users the entire method working as a whole: steps, artefacts, guidelines,
and involving mechanisms.

• The validation experience identified potential improvements in the involving
mechanisms. During the experiment, thanks to the feedback gathered
from the geneticists, we detected some issues in the mechanisms. We
solved some of the issues by modifying the artefacts, guidelines, and
mechanisms of the method. In order to solve the ambiguity of the
mechanism M1, we changed the guidelines and redefined each
abbreviation that was unclear. In order to solve the ambiguity found in
mechanism M3, we changed one of the fields and explained this change
in the corresponding guideline. In order to improve the comprehension
of the DSL release for end-users in the mechanism M4, we changed the
developer guidelines to encourage end-users to participate during the
demonstration. Finally, in order to improve the comprehension of the
questionnaire of mechanism M5, we rewrote some of the questions that
were ambiguous and joined the ones that were repetitive. For future work,
we left some of the limitations detected. In order to improve mechanism
M2, we will run a further study about the different aspects to take into
account when designing a concrete syntax for end-users. Then, we will
use the conclusions of this analysis to improve the questionnaire of the
mechanism M2. Also, in order to improve mechanism M5, we will
analyze how to establish a better link between the activities to test the
DSL release and the testing questionnaire.

Besides the research lines identified in regards to the method, as a result of
collaborating with the geneticists, we also identified future work related to the
DSL for supporting genetic analysis:

208 9. Conclusions

• The textual syntax may not be the best for every geneticist. Using the method,
the questions that were asked to geneticists revealed that using a textual
syntax was the most suitable approach for geneticists. This was due to the
fact that the geneticists from INCLIVA are used to program their own
pipelines using scripts, so they are comfortable with a textual syntax. This
syntax was the best for the geneticists involved; however, since the goal
of the DSL is to specify pipelines, it is possible that a hybrid approach
(graphical and textual) could facilitate geneticists the description of the
data and control flow. As future work, we will assess the advantages and
drawbacks of these alternatives and review the method questions that are
used to decide between an external and internal approach.

• Validate a more stable version of the DSL with an empirical experiment.
Although the geneticists provided informal comments about their
opinion about the DSL, we did not provide empirical data that
demonstrates whether this DSL could be a solution to their current
problems with software tools, or whether this DSL will improve their
experience in contrast with existing bioinformatics pipeline development
environments. As future work, we want to run further iterations of the
method to obtain a more stable version of the DSL and validate with an
empirical experiment whether a DSL is a suitable solution to improve the
geneticists’ efficiency. Our plan is to compare how efficient is creating a
pipeline specification with the DSL in comparison with creating a
pipeline with a bioinformatics pipeline development environment such
as Galaxy [52].

9.5 Final thoughts

DSLs are the most natural and simple way to encapsulate source code, tasks,
or knowledge and improve the efficiency of their users. Since I started doing my
research on DSLs, I also started to see DSLs everywhere in my daily routine.
They were already there, but I had not seen it before. For example, the DSL for
writing music when I was at band practice.

What defines a DSL is not always clear since it is a matter of defining the
boundaries of a domain; boundaries that are not predefined and are open to
interpretation. What is indeed clear is that DSLs have no other aim than facilitate

9. Conclusions 209

descriptions or tasks. That is why I found DSLs interesting and worth to study
for a PhD.

After being in contact with geneticists (and their software problems) for
several months, I wanted to know whether a DSL could be a suitable solution for
their problems. However, I realized that I was not able to respond to this question.
I could not develop this DSL since I was not a geneticist. Geneticists could not
develop the DSL either. We had to do it together.

I researched how DSLs were developed, but they did not mentioned much
the role played by the domain experts; mostly because the developers designed
DSL for technical domains, closer to their knowledge. There, I had found the
research problem of my PhD: I wanted to propose a method to help software
developers as myself to have guidance and tools to develop such a useful, but
difficult-to-develop, kind of languages. Besides proposing this method, from the
beginning, I wanted to go a step further and apply this method to create a real
DSL; to create the DSL for supporting genetic analysis.

The proposed method is not reinventing the wheel. On the contrary, a lot of
interesting work has been done towards the development of DSLs and the
method presented in this PhD thesis aims to get the best of these works together
(both methodologies and technologies), fill the gaps so that future developers can
use it altogether, and support the participation of end-users seamlessly.

There is still work to do for this method to become into a method that covers
all the decisions that a DSL developer would face. However, I strongly believe
that this proposal goes a step further towards that direction.

We did not released the DSL for genetic analysis into real practice. However,
after seeing the geneticists’ responses to the first DSL release and after seeing that
their problems remain as the time passes, I also believe that the definition of a
DSL to specify and customize genetic analysis software tools is a project that can
provide huge benefits for geneticists in terms of efficiency and organization.

DSLs are here to stay since, in a figurative way, everything is a DSL

210 9. Conclusions

.

10. References 211

10. References

[1] The Standish Group, "Chaos Manifesto 2013", 2013.
[2] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett and others,

"The State of the Art in End-User Software Engineering", ACM
Computing Surveys (CSUR), vol. 43, no. 3, pp. 21:1-21:44, 2011.

[3] A. Van Deursen, P. Klint and J. Visser, "Domain-Specific Languages: An
Annotated Bibliography", SIGPLAN Notices, vol. 35, no. 6, pp. 26-36,
2000.

[4] M. Fowler, "Domain-Specific Languages", Addison-Wesley Professional,
2010.

[5] L. Nascimento, D. Viana, P. Silveira Neto, D. Martins, V. Garcia and
others, "A Systematic Mapping Study on Domain-Specific Languages",
The Seventh International Conference on Software Engineering Advances
(ICSEA), 2012.

[6] M. J. Villanueva, "Diagen: Modelado e Implementación de un framework
para el análisis personalizado del ADN", Master Thesis, Universitat
Politècnica de València, 2011.

212 10. References

[7] M. J. Villanueva, "An agile model-driven approach for simplifying the
development of genetic analysis tools", Research Challenges in Information
Science (RCIS), 2012.

[8] M. J. Villanueva, A. R. Guzmán, F. Valverde and A. M. Levin, "Diagen:
A model-based bioinformatic tool for genetic analysis", Research
Challenges in Information Science (RCIS), 2012.

[9] N. Rusk, "Focus on Next-Generation Sequencing Data Analysis", Nature
Methods, vol. 6, no. 11s, p. S1, 2009.

[10] M. Mernik, J. Heering and A. M. Sloane, "When and How to Develop
Domain-Specific Languages", ACM Computing Surveys (CSUR), vol. 37,
no. 4, pp. 316-344, 2005.

[11] I. Ceh, M. Crepinsek, T. Kosar and M. Mernik, "Ontology Driven
Development of Domain-Specific Languages", Computer Science and
Information Systems (ComSIS), vol. 8, no. 2, pp. 317-342, 2011.

[12] M. Strembeck and U. Zdun, "An approach for the systematic
development of domain-specific languages", Software: Practice and
Experience, vol. 39, no. 15, pp. 1253-1292, 2009.

[13] D. Spinellis, "Notable design patterns for domain-specific languages",
Journal of Systems and Software (JSS), vol. 56, no. 1, pp. 91-99, 2001.

[14] K. Czarnecki and U. W. Eisenecker, "Generative Programming", Edited
by G. Goos, J. Hartmanis, and J. van Leeuwen, p. 15, 2000.

[15] C. Atkinson and T. Kuhne, "Model-Driven Development: A
Metamodeling Foundation", IEEE Software, vol. 20, no. 5, pp. 36-41,
2003.

[16] O. Pastor and J. C. Molina, "Model-Driven Architecture in Practice. A
Software Production Environment Based on Conceptual Modeling",
Springer Science & Business Media, 2007.

[17] B. Selic, "The Pragmatics of Model-Driven Development", IEEE
Software, vol. 20, no. 5, pp. 19-25, 2003.

[18] B. Hailpern and P. Tarr, "Model-driven Development: The Good, the
Bad, and the Ugly", IBM Systems Journal, vol. 45, no. 3, pp. 451-461,
2006.

[19] A. Olive, "Conceptual Schema-Centric Development: A Grand
Challenge for Information Systems Research", Advanced Information
Systems Engineering (CAiSE), 2005.

[20] Ó. Pastor and S. Espana, "Full Model-Driven Practice: From
Requirements to Code Generation", Advanced Information Systems
Engineering (CAiSE), 2012.

[21] D. C. Schmidt, "Guest Editor's Introduction: Model-Driven
Engineering", IEEE Computer, vol. 39, no. 2, pp. 25-31, 2006.

10. References 213

[22] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander and
others, "DSL Engineering - Designing, Implementing and Using
Domain-Specific Languages", dslbook.org, 2013, pp. 1-558.

[23] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn and W.
Cunningham, "The Agile Manifesto", 2001.

[24] S. Ambler, "Agile modeling: Effective practices for eXtreme
Programming and the Unified Process", John Wiley and Sons Inc., 2002.

[25] R. Wieringa, "Empirical research methods for technology validation:
Scaling up to practice", Journal of Systems and Software (JSS), vol. 95, pp.
19-31, 2014.

[26] H. A. Simon, "The sciences of the artificial", MIT press, vol. 136, 1996.
[27] S. T. March and G. F. Smith, "Design and natural science research on

information technology", Decision Support Systems (DSS), vol. 15, no. 4,
pp. 251-266, 1995.

[28] A. R. Hevner, S. T. March, J. Park and S. Ram, "Design Science in
Information Systems Research", MIS quarterly, vol. 28, no. 1, pp. 75-105,
2004.

[29] J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural and
others, "The Sequence of the Human Genome", Science, vol. 291, no.
5507, pp. 1304-1351, 2001.

[30] Gene Codes Corporation, Sequencher, 2010.
[31] Applied Biosystems, SeqScape, 2010.
[32] Codon Code Corporation, Codon Code Aligner, 2010.
[33] Softgenetics, Mutation Surveyor, 2010.
[34] M. Stephens, J. S. Sloan, P. Robertson, P. Scheet and D. A. Nickerson,

"Automating sequence-based detection and genotyping of SNPs from
diploid samples", Nature Genetics, vol. 38, no. 3, pp. 375-381, 2006.

[35] C. Manaster and others, "InSNP: a tool for automated detection and
visualization of SNPs and InDels", Human Mutation, vol. 26, no. 1, pp.
11-19, 2005.

[36] P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks and others,
"The variant call format and VCFtools", Bioinformatics, vol. 27, no. 15,
pp. 2156-2158, 2011.

[37] S. Haider, B. Ballester, D. Smedley, J. Zhang, P. Rice and others,
"BioMart Central Portal—unified access to biological data", Nucleic Acids
Research, vol. 37, no. suppl 2, pp. W23-W27, 2009.

[38] K. Wang, M. Li and H. Hakonarson, "ANNOVAR: functional
annotation of genetic variants from high-throughput sequencing data",
Nucleic Acids Research, vol. 38, no. 16, pp. e164-e164, 2010.

[39] P. Cingolani, A. Platts, L. L. Wang, M. Coon, T. Nguyen and others, "A
program for annotating and predicting the effects of single nucleotide

214 10. References

polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster
strain w1118; iso-2; iso-3", Fly, vol. 6, no. 2, pp. 80-92, 2012.

[40] W. McLaren, B. Pritchard, D. Rios, Y. Chen, P. Flicek and others,
"Deriving the consequences of genomic variants with the Ensembl API
and SNP Effect Predictor", Bioinformatics, vol. 26, no. 16, pp. 2069-2070,
2010.

[41] A. McKenna, M. Hanna, E. Banks and others, "The Genome Analysis
Toolkit: A MapReduce framework for analyzing next-generation DNA
sequencing data", Genome Research, vol. 20, no. 9, pp. 1297-1303, 2010.

[42] H. Li and others, "The Sequence Alignment/Map Format and SAM
Tools", Bioinformatics, vol. 25, no. 16, pp. 2078-2079, 2009.

[43] M. J. Villanueva and F. Valverde, "Software for the genetic analysis
domain", Technical Report, http://hdl.handle.net/10251/57428".

[44] J. C. Bartlett and E. G. Toms, "Developing a protocol for bioinformatics
analysis: An integrated information behavior and task analysis approach",
Journal of the American Society for Information Science and Technology
(JASIST), vol. 56, no. 5, pp. 469-482, 2005.

[45] S. Pabinger, A. Dander, M. Fischer, R. Snajder and others, "A survey of
tools for variant analysis of next-generation genome sequencing data",
Briefings in bioinformatics, vol. 15, no. 2, pp. 256-278, 2014.

[46] L. D. Stein, "Towards a cyberinfrastructure for the biological sciences:
progress, visions and challenges", Nature Reviews Genetics, vol. 9, no. 9,
pp. 678-688, 2008.

[47] W. M. Pereira and G. H. Travassos, "Towards the conception of scientific
workflows for in silico experiments in software engineering", in Empirical
Software Engineering and Measurement (ESEM), 2010.

[48] J. E. Stajich and others, "The Bioperl Toolkit: Perl Modules for the Life
Sciences", Genome Research, vol. 12, no. 10, pp. 1611-1618, 2002.

[49] P. J. A. Cock and others, "Biopython: freely available Python tools for
computational molecular biology and bioinformatics", Bioinformatics, vol.
25, no. 11, pp. 1422-1423, 2009.

[50] R. C. G. Holland, T. A. Down, M. Pocock, A. Prlic, D. Huen and others,
"BioJava: an open-source framework for bioinformatics", Bioinformatics,
vol. 24, no. 18, pp. 2096-2097, 2008.

[51] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers and
others, "The Taverna workflow suite: designing and executing workflows
of Web Services on the desktop, web or in the cloud", Nucleic Acids
Research, vol. 41, no. Web Server Issue, pp. 557-561, 2013.

[52] B. Giardine, C. Riemer, R. C. Hardison, R. Burhans, L. Elnitski and
others, "Galaxy: A platform for interactive large-scale genome analysis",
Genome Research, vol. 15, no. 10, pp. 1451-1455, 2005.

10. References 215

[53] I. Wassink, M. Ooms, P. Neerincx, G. van der Veer, H. Rauwerda and
others, "e-BioFlow: Improving Practical Use of Workflow Systems in
Bioinformatics", Information Technology in Bio- and Medical Informatics
(ITBAM), vol. 6266, S. Khuri, L. Lhotska and N. Pisanti, Eds., Springer-
Verlag, Heidelberg, 2010, pp. 1-15.

[54] S. Ghosh, Y. Matsuoka, Y. Asai, K.-Y. Hsin and H. Kitano, "Software
for systems biology: from tools to integrated platforms", Nature Reviews
Genetics, vol. 12, no. 12, pp. 821-832, 2011.

[55] T. McPhillips, S. Bowers, D. Zinn and B. Ludascher, "Scientific
workflow design for mere mortals", Future Generation Computer Systems,
vol. 25, no. 5, pp. 541-551, 2009.

[56] V. Cuevas-Vicenttin, S. Dey, S. Kohler, S. Riddle and B. Ludascher,
"Scientific Workflows and Provenance: Introduction and Research
Opportunities", Datenbank-Spektrum, vol. 12, no. 3, pp. 193-203, 2012.

[57] A. Barker and J. Van Hemert, "Scientific Workflow: A Survey and
Research Directions", in Parallel Processing and Applied Mathematics,
Springer-Verlag Berlin, Heidelberg, 2008, pp. 746-753.

[58] S. Cohen-Boulakia and U. Leser, "Search, Adapt and Reuse: The Future
of Scientific Workflows", ACM SIGMOD Record, vol. 40, no. 2, pp. 6-16,
2011.

[59] J. Bhagat, F. Tanoh, E. Nzuobontane, T. Laurent, J. Orlowski y others,
"BioCatalogue: A universal catalogue of web services for the life sciences",
Nucleic Acids Research, vol. 38, no. suppl 2, pp. W689-W694, 2010.

[60] M. A. Swertz, M. Dijkstra, T. Adamusiak, J. K. van der Velde, A.
Kanterakis and others, "The MOLGENIS toolkit: rapid prototyping of
biosoftware at the push of a button", BMC bioinformatics, vol. 11, no.
Suppl 12, p. S12, 2010.

[61] N. Sedlmajer, D. Buchs, S. Hostettler, A. Linard, E. Lopez and others,
"GReg: a domain specific language for the modeling of genetic regulatory
mechanisms", International Workshop on Biological Processes and Petri Nets
(BioPN), 2012.

[62] M. L. Wilson, S. Okumoto, L. Adam and J. Peccoud, "Development of
a domain-specific genetic language to design Chlamydomonas reinhardtii
expression vectors", Bioinformatics, vol. 30, no. 2 pp. 251-257, 2013.

[63] J. Elhai, A. Taton, J. Massar, J. K. Myers, M. Travers and others,
"BioBIKE: a Web-based, programmable, integrated biological knowledge
base", Nucleic Acids Research, vol. 37, no. suppl 2, pp. W28-W32, 2009.

[64] J. McCarthy, "LISP 1.5 programmer's manual", MIT press, 1962.
[65] S. Kelly and J.-P. Tolvanen, "Domain-Specific Modeling: Enabling Full

Code Generation", John Wiley & Sons, 2008.

216 10. References

[66] F. Perez, P. Valderas and J. Fons, "Towards the Involvement of End-
Users within. Model-Driven Development", End-user Development
(EUD), 2011.

[67] H. Nishino, "Misfits in abstractions: towards user-centered design in
domain-specific languages for end-user programming", Proceedings of the
ACM International Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion (OOPSLA), 2011.

[68] H. Nishino, "How can a DSL for expert end-users be designed for better
usability?: a case study in computer music", Extended Abstracts on Human
Factors in Computing Systems (CHI), 2012.

[69] D. A. Sadilek, M. Scheidgen, G. Wachsmuth and S. Weibleder,
"Towards Agile Language Engineering", Institut fur Informatik, 2009.

[70] A. Barisic, V. Amaral, M. Goulao and A. Aguiar, "Introducing Usability
Concerns Early in the DSL Development Cycle: FlowSL Experience
Report", Model-Driven Development Processes and Practices Workshop
Proceedings (MD2P2), 2014.

[71] D. Wuest, N. Seyff and M. Glinz, "Semi-automatic generation of
metamodels from model sketches", Automated Software Engineering
(ASE), 2013.

[72] H. Cho, J. Gray and E. Syriani, "Creating Visual Domain-Specific
Modeling Languages from End-User Demonstration", Modeling in
Software Engineering (MISE), 2012.

[73] M. Kuhrmann, G. Kalus and A. Knapp, "Rapid Prototyping for Domain-
specific Languages-From Stakeholder Analyses to Modelling Tools",
Enterprise Modelling and Information Systems Architectures, vol. 8, no. 1, pp.
62-74, 2013.

[74] J. Sanchez Cuadrado, J. De Lara and E. Guerra, "Bottom-Up Meta-
Modelling: An Interactive Approach", Model Driven Engineering
Languages and Systems (MODELS), Springer-Verlag, Heidelberg, 2012,
pp. 3-19.

[75] J. L. Canovas Izquierdo and J. Cabot, "Enabling the Collaborative
Definition of DSMLs", Advanced Information Systems Engineering
(CAiSE), 2013.

[76] A. Blackwell and T. Green, "Notational Systems – the Cognitive
Dimensions of Notations Framework", HCI Models, Theories, and
Frameworks: Toward an Interdisciplinary Science, 2003.

[77] C. Sadowski and S. Kurniawan, "Heuristic evaluation of programming
language features: two parallel programming case studies", SIGPLAN
workshop on Evaluation and usability of programming languages and tools
(PLATEAU), 2011.

10. References 217

[78] A. Barisic, V. Amaral, M. Goulao and B. Barroca, "How to reach a usable
DSL? Moving toward a Systematic Evaluation", Electronic
Communications of the EASST, vol. 50, 2012.

[79] H. Cho and J. Gray, "Design Patterns for Metamodels", SPLASH '11
Workshops, 2011.

[80] J. L. Canovas Izquierdo, J. Cabot, J. J. López-Fernández, J. S. Cuadrado,
E. Guerra and others, "Engaging End-Users in the Collaborative
Development of Domain-Specific Modelling Languages", Cooperative
Design, Visualization, and Engineering, Springer-Verlag Berlin,
Heidelberg, 2013, pp. 101-110.

[81] M. J. Villanueva, F. Valverde and O. Pastor, "Involving End-users in
Domain-Specific Languages Development - Experiences from a
Bioinformatics SME", Evaluation of Novel Approaches to Software
Engineering (ENASE), 2013.

[82] M. J. Villanueva, F. Valverde and O. Pastor, "Involving End-Users in the
Design of a Domain-Specific Language for the Genetic Domain", in
Information System Development (ISD), 2013.

[83] M. J. Villanueva, F. Valverde and O. Pastor, "DSL Development with
Geneticists", Technical Report,
https://riunet.upv.es/handle/10251/57326".

[84] D. Embley and B. Thalheim, "Handbook of Conceptual Modeling",
Springer-Verlag, Heidelberg, 2011, p. 608.

[85] B. Henderson-Sellers and J. Ralyté, "Situational Method Engineering:
State-of-the-Art Review", Journal of Universal Computer Science (JUCS),
vol. 16, no. 3, pp. 424-478, 2010.

[86] J. M. Rivero, J. Grigera, G. Rossi, E. R. Luna and F. Montero, "Mockup-
Driven Development: Providing agile support for Model-Driven Web
Engineering", Information & Software Technology (IST), vol. 56, no. 6, pp.
670-687, 2014.

[87] E. Visser, "WebDSL: A case study in domain-specific language
engineering", Generative and Transformational Techniques in Software
Engineering II, pp. 291-373, 2008.

[88] K. Beck and C. Andres, "Extreme Programming Explained: Embrace
Change", Addison-Wesley Professional, 2004.

[89] K. Schwaber and M. Beedle, "Agile Software Development with
SCRUM", Prentice Hall PTR Upper Saddle River, vol. 18, 2002.

[90] M. Fowler, "Language Workbenches: The Killer-App for Domain
Specific Languages" Accessed online from: http://www. martinfowler.
com/articles/languageWorkbench. html, pp. 1-27, 2005.

[91] S. Efftinge, "Xtext Reference Documentation", openArchitectureWare.org,
https://eclipse.org/Xtext/documentation, 2006.

218 10. References

[92] E. Merks, R. Eliersick, T. Grose, F. Budinsky and D. Steinberg, "The
Eclipse Modeling Framework", Adison Wesley, 2003, p. 37.

[93] R. Likert, "A Technique for the Measurement of Attitudes", Archives of
Psychology, vol. 22, no. 140, p. 55, 1932.

[94] F. Valverde, "OOWS 2.0: Un Método de Ingeniería Web Dirigido por
Modelos para la Producción de Aplicaciones Web 2.0", PhD Thesis,
Universitat Politècnica de València, 2010.

[95] J. Sanchez Cuadrado, J. Canovas and J. Garcia Molina, "Comparison
Between Internal and External DSLs via RubyTL and Gra2MoL",
Formal and Practical Aspects of Domain-Specific Languages: Recent
Developments. IGI Global, 2012.

[96] S. Jamieson and others, "Likert scales: how to (ab) use them", Medical
education, vol. 38, no. 12, pp. 1217-1218, 2004.

[97] N. Wirth, "Extended Backus-Naur Form (EBNF)", ISO/IEC, vol. 14977,
p. 2996, 1996.

[98] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell and others,
"Experimentation in Software Engineering", Springer Science & Business
Media, 2012.

[99] N. Juristo and A. M. Moreno, "Basics of Software Engineering
Experimentation", 1st ed., Springer Publishing Company, Incorporated,
2010.

[100] C. Robson, Real World Research, Wiley, 2002.
[101] ISO/IEC/IEE, "Systems and Software Engineering--Vocabulary," 2010.
[102] D. L. Moody, "The Method Evaluation Model: A Theoretical Model for

Validating Information Systems Design Methods," in European
Conference on Information Systems (ECIS), Utrecht, 2003.

[103] L. J. Cronbach, "Coefficient alpha and the internal structure of tests,"
Psychometrika, vol. 16, no. 3, pp. 297-334, 1951.

[104] A. Barisic, V. Amaral and M. Goulao, "Usability Evaluation of Domain-
Specific Languages," in 8th International Conference on the Quality of
Information and Communications Technology (QUATIC), 2012.

[105] M. Cervera, M. Albert, V. Torres and V. Pelechano, "MOSKitt4ME
Approach: Providing Process Support in a Method Engineering
Context," in Conceptual Modeling. Lecture Notes in Computer Science,
Springer-Berlin, Heidelberg, 2012, pp. 228-241.

Annex A. 219

Annex A
This annex gathers the written guidelines that have been proposed in the

method in order to explain to developers and end-users how apply each of the
mechanisms (M1-M5) of the method:

A.1 Mechanism M1: Review DSL requirements (user stories,
acceptance tests, and usage scenarios)

A.1.1. Guidelines for developers

These guidelines offer an alternative for developers to address end-users and
facilitate the review of user stories acceptance tests and usage scenarios. To do
that, these guidelines propose a set of questions that can be asked to end-users.
The steps to review DSL requirements are:

1) Set the time of start and the time stamps along the document.
2) Ask end-users to read all the scenarios, user stories and acceptance tests
3) Ask the following questions to be able to detect errors, find out desirable

changes and new essential elements only regarding the current iteration.
Q1) Did you understood both usage scenarios?

220 Annex A.

Q2) Are both scenarios fairly reflecting your task?
Q3) ¿Did you find any error? (Indicate Usage Scenario, number and letter)

• Wrong activity (explain why)
• Wrong parameters (point mistakes and correct them)
• Wrong order between activities (indicate activities involved, explain

why and propose the correct order)
• Missing activity that is a prerequisite (explain why)

Q4) Did you find any error or would you change something in User stories?
(Indicate number of User Story)
• Wrong description (write the words you want to use)
• Wrong action (explain the action you want to perform)
• Wrong goal (explain the goal you want to achieve)

Q5) Did you find any error or would you change something in Acceptance
Test? (Indicate number of Acceptance Test)
• Wrong description (write the words you want to use)
• Wrong action (explain the action you want to perform)
• Wrong result (explain the result you expected)
• An additional acceptance test is missing (write the acceptance test

using the pre-defined structure: As a role, When context, I will
perform action, and I will get the result)

A.1.2. Guidelines for end-users

These guidelines offer a background about the step of revision. This way,
end-users know exactly what developers expect from them, but also, they have a
reference to consult the rationale of the artefacts of the method “user stories”,
“acceptance tests” and “usage scenarios”. Additionally, this guideline provides a
toy example for end-users to understand them. Concretely, an example related
with a hotel booking service. The steps to review DSL requirements are:

1) Read all the scenarios, user stories and acceptance tests
2) Discuss with DSL developers the errors you detected or the changes and

new essential elements only related with usage scenarios, user stories and
acceptance tests included in the draft.

Example of mechanism M1 applied:

Scenario: A complete example of a domain

Annex A. 221

• Domain: “Tourism Reservation Management”

Scenario: “A client makes a reservation of a hotel for their vacation”

The client first searches the hotels of the city of vacation and chooses one of
them. Then the dates of the staying are provided. Then, the information about
all the guests to stay in the hotel are provided. Then the payment option is chosen.
And finally, the client confirms their final intention to make the reservation.

• Domain: “ATM Operations”

Scenario: “A bank client pays a receipt on the ATM”

The client authenticates in the systems with its personal password. Then, the
option to pay a receipt is selected. Then, the client bank account to charge the
payment is selected. Then the receipt identifier is provided. And finally, the client
confirms the operation.

User Stories: Feature/Step from end-user perspective

As a client, I want to search for the hotels of a city,
so that I can choose the one I like most.

As a bank client, I want to choose the option to
pay a receipt, so that I can choose the one I like most.

Acceptance Test: Concrete example of a user
story

Given set of hotels from the hotel chain “Holiday
Inn” and hotels in Spain when search hotels in
Barcelona, then I am showed the “Holiday Inn
Barcelona”, “Holiday Inn Ramblas” and the “Holiday
Inn Gracia”.

Given set of hotels from the hotel chain “Holiday
Inn” and hotels in Spain when search hotels in
Helsinki, then I am showed the error message “There

is no Hotel from the system in Helsinki”.

As a <role>

I want <action>

So that <goal>

Given
<context>

When <action>

Then <result>

222 Annex A.

A.2 Mechanism M2: Syntax questionnaire

A.2.1. Guidelines for developers

These guidelines offer developers the steps to deliver the questionnaire to
end-users. The steps are the following:

1) Explain that the goal of the questionnaire: Choose syntax, propose
changes to the syntax and identify errors in the description of the usage
scenario.

2) Deliver the questionnaire to end-users. It can be handed to end-users or
create an online questionnaire and deliver the link, for instance, by email.

3) Process the responses:
a. Choose the most preferred syntax. To do this, you may pay

choose the one that has been considered as preferred by the
majority of end-users. If there is not one syntax that highlights
over the rest, the preferred syntax is selected by observing the
values that have been given by the end-users (Likert questions
with scale 1-5). To do so, you may obtain the median of these
values for each syntax.

A.2.2. Guidelines for end-users

These guidelines explain the end-users how to proceed to answer the syntax
questionnaire. The steps are the following:

1) You will be handed a questionnaire to provide your opinion about the
DSL syntax proposed by the developers.

2) Read each syntax proposed and indicate whether you like it or not, being
the lowest rate 1 and the highest rate 5.

3) Choose the one you liked most, or make suggestions to propose a new
one.

4) If you have chosen one of the syntaxes proposed by the developers,
observe the usage scenario and indicate whether you would change or add
any word, or step.

Annex A. 223

A.3 Mechanism M3: Behavioral semantic templates

A.3.1. Guidelines for developers

These guidelines offer developers how to explain end-users the different fields
of the template. The steps to fulfil the templates are:

1) Prepare a copy of the user stories together with templates both to end-
users and developers.

2) Prepare several copies of the templates in order to hand them to end-
users if they need it (document “SemanticTemplates.docx”).

3) Address each user story at a time
• Ask end-users to read the user story.
• Ask end-users to fulfil the template.

Example of mechanism M3 applied:

Semantic Template: An example of behavior mapping between a user story
and a technological artefact

• User Story: Name of the user story whose semantics is being defined.
• Service Identifier: Name of the software service used to implement the

functionality of the user story.
• Source description: Additional Information of the origin of the software

service. Describing if it is a tool or web service, the operative system
compatibility, the provider of the service, etc.

• Inputs/Outputs: Details about the information that flows in/out the
software service.

o Name of the parameter
o Description of the parameter name in natural language
o Type (it may correspond to an entity of the conceptual model)
o For input parameters:

 if it is constant or it may change.
 Predefined value (usually if the value is constant).

o For output parameters:
 If it is an output relevant (visible) for the user story

224 Annex A.

A.3.2. Guidelines for end-users

These guidelines describe the different fields of the template and one example.
In order to facilitate the explanation, it continues with the example of the hotel
booking service. This way, end-users can also realize of the relationship between
semantic templates and requirements. The steps to fulfil these templates are:

1) Read the User Story
2) Fulfil the semantics template together with DSL developers

Semantic Template: An example of behavior mapping between a user story
and a technological artefact

• User Story: Name of the user story whose semantics is being defined.
• Service Identifier: Name of the software service used to implement the

functionality of the user story.
• Source description: Additional Information of the origin of the software

service. Describing if it is a tool or web service, the operative system
compatibility, the provider of the service, etc.

• Inputs/Outputs: Details about the information that flows in/out the
software service.

o Name of the parameter
o Description of the parameter name in natural language
o Type (it may correspond to an entity of the conceptual model)
o For input parameters:

 if it is constant or it may change.
 Predefined value (usually if the value is constant).

o For output parameters:
 If it is an output relevant (visible) for the user story

User Story “Search the Hotels from a city”
Service Identifier GetAccommodation
Source description Rest Service provided by the provider Booking.com
Inputs Description Type Constant Value
City City of Interest String No -
Search_criteria Type of accommodation to

be searched
Enumeration Yes Hotels

Outputs Description Type Visibility
AccommodationList List of accommodations

that fulfil the search criteria
 List of
Accommodation

Yes

Annex A. 225

A.4 Mechanism M4: Demonstration

A.4.1. Guidelines for developers

These guidelines propose to the developers a script template to present the
DSL infrastructure to end-users and the different options they may chose. The
steps proposed in this script are:

1. Context description: Describe the scenario to be presented to end-users
2. Syntax presentation: Use the DSL editor to write with the chosen syntax

one scenario described in the analysis stage.
a. Characterize in advance a set of potential mistakes that end-users

can introduce in the DSL editor and show the error/warning
messages provided.

3. Semantics presentation: Compile the DSL script written in the previous
step and show the effects.

4. Execution: If applicable, run the executable produced by the DSL editor
and explain and compare the results with the scenario described in the
beginning of the demonstration.

The demonstration can be performed online or composing a video in advance.

A.5 Mechanism M5: DSL testing

A.5.1. Guidelines for developers

These guidelines propose a set of activities and a questionnaire to test the
following DSL aspects: functional requirements, syntax correctness, semantic
correctness and implementation correctness. Although they will be asked about
the DSL editor features, they must focus on the language not the editor. The
steps are the following:

1) Encourage end-users to play first with the editor and try to reproduce the
example of the demonstration and the other usage scenarios.

2) Recall end-users that the DSL is still a prototype that only supports the
requirements of the iteration.

226 Annex A.

3) Suggest end-users to answer the questionnaire once they are familiar with
the DSL infrastructure.

A.5.2. Guidelines for end-users

These guidelines suggest to the end-users a set of activities they may
accomplish to facilitate the usage of the DSL and the further testing.

1) Get familiar with the DSL infrastructure. You may accomplish the
following activities:

a. Write the same usage scenario of the demonstration.

…<written here>.…………………………………………

b. Write another usage scenario: Choose one of the following usage
scenarios.

US1) …………………………….

US2) ……………………………

4. With this purpose, you may follow the DSL syntax:

c. Test the code generated

2) Answer the testing questionnaire.

Syntax description

Annex B 227

Annex B
This annex gathers the complete set of artefacts that have been created for

the last version of the DSL. Due to lack of space, we provide a summary of the
usage scenarios, user stories, and acceptance tests that have been addressed in the
three iterations, the final versions of the analysis and design models, and some
examples that illustrate the implementation.

B.1 Usage scenarios, user stories and acceptance tests

Table B. 1 Overview of the number of Usage Scenarios, User Stories and Acceptance
Tests

Iteration Usage Scenarios User stories Acceptance Tests
1 4 7 14
2 2 5 9
3 3 13 25

B.1.1. Iteration 1
Usage Scenario 1.1. In order to diagnose the Lactase Persistence disease, I want to read the

patient variations from a VCF file, annotate the variations with their Hgvs Notation, search the
variations in HgvsDna NC_000002.11:g.136608646G>A and NC_000002.11:g.136616754C>A,

228 Annex B.

and create a report with the variations found with the variations main properties and their hgvs
notations.

Usage Scenario 1.2. In order to diagnose the Alkaptonuria disease, I want to read the patient
variations from a VCF file, annotate the variations with their Hgvs Notation, search the
variations in HgvsCoding NM_000187.3:c.688C>T, NM_000187.3:c.899T>G,
NM_000187.3:c.174delA, NM_000187.3:c.16-1G>A, NM_000187.3:c.342+1G>A,
NM_000187.3:c.140C>T, and create a report with the variations found with the variations main
properties and their hgvs notations.

Usage Scenario 1.3. In order to diagnose the Achondroplasia disease, I want to read the
patient variations from a VCF file, annotate the variations with their Hgvs Notation, search the
variations in HgvsCoding NM_000142.4:c.1123G>T NM_000142.4:c.1138G>A
NM_000142.4:c.1138G>C, and create a report with the variations found with the variations main
properties and their hgvs notations.

Usage Scenario 1.4. In order to diagnose the Achondroplasia disease, I want to read the
patient variations from a VCF file, annotate the variations with their Hgvs Notation, search the
variations in HgvsProtein NP_000133.1:p.Gly375Cys NP_000133.1:p.Gly380Arg, and create a
report with the variations found with the variations main properties and their hgvs notations.

Table B. 2 User Stories of Iteration 1

US1.1 I want to read a patient’s variations from a VCF file, so that I can analyse
potential genetic diseases

US1.2 I want to annotate the patients’ variations with the HGVS notation, so that I
can see the change at the DNA, Coding and Protein level of each patient’s
variation expressed using a standard notation.

US1.3 I want to search a set of variations in HGVSDna in the patient’s variations, so
that I can focus on the suitable variations for the diagnosis

US1.4 I want to search a set of variations in HGVSCoding in the patient’s variations,
so that I can focus on the suitable variations only

US1.5 I want to search a set of variations in HGVSProtein in the patient’s variations,
so that I can focus on the suitable variations only.

US1.6 I want to create a report with a list of the variations and their main properties
(chromosome, position, reference, alternative), so that I can see the main
properties of the patient’s variations

US1.7 I want to add to a report with the variations their HGVS (Dna, Coding and
Protein), so that I can see the patient variation’s expressed in a standard
notation

B.1.2. Iteration 2
Usage Scenario 2.1. In order to diagnose the Mammalian Cancer disease (Analysis 1), I want

to read the patient variations from a VCF file, annotate the variations with their Hgvs Notation,
annotate the variations with their genes, annotate their variations with their rsId from DbSNP,

Annex B 229

filter the variations by the genes BRCA1 and BRCA2, and create a report with the variations found
with their main properties, their hgvs notations, their genes and their rsIds.

Usage Scenario 2.2. In order to diagnose the Mammalian Cancer disease (Analysis 2), I want
to read the patient variations from a VCF file, annotate the variations with their Hgvs Notation,
annotate the variations with their genes, annotate their variations with their rsId from DbSNP,
filter the variations by the gene RAD51C, and create a report with the variations found with their
main properties, their hgvs notations, their genes and their rsIds.

Table B. 3 User Stories of Iteration 2

US2.1 I want to annotate the patient variations with the gene names provided by
HGNC, so that I can see all the genes involved each variation

US2.2 I want to annotate the patient variations with the rsId from dbSNP, so that I
can see if a variation has been identified with an rsId from dbSNP and get
additional information about it afterwards

US2.3 I want filter the patient’s variations by a set of genes (by HGNC Gene Name),
so that I can focus on the suitable variations only

US2.4 I want to add to a report with the variations their gene, so that I can locate
easily each variation of the report

US2.5 I want to add to a report with the variations their rsId, so that I can easily see
which variations of the report are known SNPs

B.1.3. Iteration 3
Usage Scenario 3.1. In order to research the diabetes mellitus type II disease, I want to read

the genotypes of several samples from a VCF file. I want to annotate the variations with their genes,
with all the names of the transcripts that they hit, and with the score and effect of SIFT and
POLYPHEN. I want to filter the variations by the diabetes genes “ABCC8, CAPN10,KCNJ11,
GCGR, SLC2A2, HNF4A, INS, INSR, PPARG, TCFl2, ADIPOQ, AKT2, PAX4,
MAPK81p1, GPD2, MNTR1B”, by the “deleterious” variations according to SIFT and “possibly
damaging” or “probably damaging” variations according to POLYPHEN. Finally, I want to create
a report with the variations main properties, their genes, their transcript names and their Sift and
Polyphen predictions.

Usage Scenario 3.2. In order to research the diabetes mellitus type II disease, I want to read
the genotypes of several samples from a VCF file. I want to annotate the variations with all the
names of the transcripts that they hit and the sample MAF. I want to filter the variations by the
diabetes genes “ABCC8, CAPN10,KCNJ11, GCGR, SLC2A2, HNF4A, INS, INSR, PPARG,
TCFl2, ADIPOQ, AKT2, PAX4, MAPK81p1, GPD2, MNTR1B”, I want to prioritize by the
sample Sift [0,0.5] and order it from minimum to maximum. Finally, I want to create a report with
the variations main properties, the genes and the Sift prediction.

230 Annex B.

Usage Scenario 3.3. In order to research the diabetes mellitus type II disease, I want to read
the genotypes of several samples from a VCF file. I want to annotate the variations with all the
names of the transcripts that they hit and the sample MAF. I want to filter the variations by the
diabetes genes “ABCC8, CAPN10,KCNJ11, GCGR, SLC2A2, HNF4A, INS, INSR, PPARG,
TCFl2, ADIPOQ, AKT2, PAX4, MAPK81p1, GPD2, MNTR1B”, I want to prioritize by the
sample MAF [0.1,0.5] and order it from maximum to minimum. Finally, I want to create a report
with the variations main properties and the sample MAF.

Table B. 4 User Stories of Iteration 3

US3.1 I want to read several samples’ genotypes from a VCF file, so that I can perform
several analysis over those samples

US3.2 I want to annotate the patients’ variations with the transcripts names (provided
by RefSeq) that each variation hits (exons), so that I can see the different
transcription patterns that the variation hits

US3.3 I want to annotate the patients’ variations with the prediction of the SIFT
algorithm score and effect for each variation transcript, so that I can preliminary
assess the predicted effect of each variation taking into account to this algorithm

US3.4 I want to annotate the patient’s variations with the prediction of the
POLYPHEN algorithm score and the effect, for each transcript, so that I can
preliminary assess the predicted effect of each variation taking into account to
this algorithm

US3.5 I want to annotate the patients’ variations with the sample Minor Allele
Frequency, so that I can see the frequency of the allele that has minor
occurrence in the analyzed samples

US3.6 I want to filter the patient variations by the effect predicted by SIFT
(tolerated/deleterious), so that I can see only the variations that pass the filter

US3.7 I want to filter the patient variations by a set of effects predicted by
POLYPHEN (benign, probably damaging, possibly damaging, unknown), so
that I can see only the variations that pass the filter

US3.8 I want to prioritize the patient’s variations by an interval (between 0 and 1) of
the sample minor allele frequency and an order,Min2Max or Max2Min, so that
I can focus and on the most important variations according to this frequency.

US3.9 I want to prioritize (filter and order) the patient’s variations by a range (between
0 and 1) and an order of the SIFT prediction (min2Max, Max2Min), so that I
can focus and on the most important variations for the analysis based on this
algorithm

US3.10 I want to prioritize (filter and order) the patient’s variations by a range(between
0 and 1) and order of the POLYPHEN prediction, so that I can focus and on
the most important variations for the analysis based on to this algorithm

US3.11 I want to add the MAF to the variations’ report, so that I can see which allele
has the minimum frequency and the value of this frequency

US3.12 I want to add to a variation report their SIFT predictions, so that I can see
which variations have an effect in codification

US3.13 I want to add to a variation report their POLYPHEN predictions (score and
effect), so that I can see which variations have an effect in codification

Annex B 231

B.2 Analysis models:

B.2.1. Feature model

Figure B. 1 Feature Model of the DSL

B.2.2. Concepts model

Figure B. 2 Conceptual model of the DSL

Optional
Mandatory
Single Choice
Multiple Choice

Requires

Genetic Analysis

Sample Data
Variation Analysis

Filter

HGVS

Report

Variations

VCF

Variations

DNA ProteinCoding

HGVS

Annotate

HGVS

Structure

rsId

GenersId

Prioritize

Several
Individuals

Gene Transcript

DataSource Calculations

Effect
Prediction

Effect
Prediction Gene

TranscriptEffect
Prediction

Effect ScoresMAF

sMAF

sMAF

-id
Sample

-chr
-chrPos
-refValue
-value

Variation

0..1
*

0..1

analysisVariations-disease
GeneticAnalysis

-path
DataFile

1
1

-description
HGVSNotation

1

0..*
hgvs

Dna

-RefSeqidentifier
ReferenceSequence

*
1

*
1

reference

ProteinCoding

Report 0..1
1

1
*

targetVariations

-HGNCId
Gene

*

1

Transcript
-AlgorithmName
-Score
-Effect

PredictedEffect

1..1

*
-rsId
DbSNPData

1
1

Multiple

Single

1

*

1

*

1

*

+Sift
+Polyphen

«enumeration»
PredictionAlgorithm

+Benign
+Damaging

«enumeration»
Effect

+Ascendant
+Descendant

«enumeration»
Order

-allele1
-allele2
-individualId

Genotype

*

1

-frequency
-allele

SMAF

1
*

**

232 Annex B.

B.2.3. Glossary of terms
• Genetic Analysis: Analysis that is performed to a sample observing

genetic data.
• Report: Relevant information gathered as a result of a genetic analysis.
• Sample: Object of study to perform a genetic analysis (one or several

individuals).
• Single (Sample): When the object of study is a single individual
• Multiple (Sample): When the object of study are several individuals.
• Datafile: Genetic data of the sample saved in a textual file.
• Variation: Each of the nucleotides that each individual of the sample has

different in regards to a reference sequence.
• Reference Sequence: A representative sequence of nucleotides that

theoretically represents the sequence of a “disease free” human.
• HGVS Notation: Standard nomenclature the describe variations
• (HGVS Notation) DNA: HGVS Nomenclature that represents the

value of the variation at nucleotide level.
• (HGVS Notation) Coding: HGVS Nomenclature that represents the

value of the variation at the coding level.
• (HGVS Notation) Protein: HGVS Nomenclature that represents the

value of the variation at the amino acid level.
• Gene: Functional unit that delimiters a subset of nucletides from the

DNA sequence that is responsible to regulate a function of the body.
• DbSNPData: Information from the database of SNPs dbSNP, a

reference database in the field.
• Transcript: Functional structure of the gene that represents the parts that

play a role in the transcription of the nucleotides of the genes to proteins.
• Predicted Effect: Result of the execution of a prediction algorithm that

assesses the effect of the variation in an individual.
• Genotype: Two alleles of an individual in a position in the chromosome.
• sMAF: Abbreviation of sample Minimum Allele Frequency. Calculation

that represents the allele has the minimum frequency among the
individuals of the sample.

B.2.4. Relationships between the concepts model and the feature
model
• Feature VCF-> Entity DataFile

Annex B 233

• Feature Annotate.Calculations.EffectPrediction-> Entity PredictedEffect
• Feature Filter.Gene->Entity Gene
• Feature Filter.EffectPrediction->Entity PredictedEffect
• Feature Filter.sMAF->Entity sMAF
• Feature Priotitize->Entity Interval
• Feature Priotitize->Entity Order
• Feature Hgvs.HgvsDna->Entity DNA
• Feature Hgvs.HgvsCoding->Entity Coding
• Feature Hgvs.HgvsProtein->Entity Protein

B.3 Design models:

B.3.1. Concrete syntax grammar
grammar diagnosis.it3.mydsl.MyDiag with

org.eclipse.xtext.common.Terminals
import "diagnosis"
import "http://www.eclipse.org/emf/2002/Ecore" as ecore

geneticAnalysis returns geneticAnalysis: 'Analyze' disease=disease
patientData=patientData analyses+=analysis+ report=report;

/*PATIENT DATA */
patientData returns PatientData: 'Read' variations=variations;

variations returns Variations: 'variations' several=severalPatients
format=vcf;

severalPatients returns
SeveralPatients:'genotypes'{SeveralPatients};

vcf returns Vcf:'from' 'a VCF file' datafile=dataFile;

/*ANALYSES */
analysis returns Analysis: annotation | search;
//Variation Annotation

annotation returns Annotation: 'Annotate variations with'{Annotation}
(hgvs=hgvsA)? (gene=geneA)?(transcript=transcriptA)?
prediction+=predictionA* (rsId=rsIdA)?;

//Annotation Fields
hgvsA returns HgvsA: 'hgvs'{HgvsA};
geneA returns GeneA: 'gene'{GeneA};
transcriptA returns TranscriptA: 'transcript'{TranscriptA};
predictionA returns PredictionA: algorithm=predictionAlgorithm;
rsIdA returns RsIdA:'rsId'{RsIdA};
//Variations Filter

234 Annex B.

search returns Filter: hgvsS |('Filter variations by' (geneF |
predictionF))|('Prioritize variations by' (geneF | predictionF)
order=order);

hgvsS returns HgvsS: 'Search variations'(dnaS|codingS|proteinS);
dnaS returns DnaS: hgvsdna+=hgvsdna+;
codingS returns CodingS: hgvscoding+=hgvscoding+;
proteinS returns ProteinS: hgvsprotein+=hgvsprotein+;
geneF returns GeneF: 'gene' gene+=gene+;
predictionF returns PredictionF: effectF|scoreF;

effectF returns EffectF: algorithm=predictionAlgorithm 'effect'
effect+=effectEnum+;

scoreF returns ScoreF: algorithm=predictionAlgorithm 'score'
'['minScore=EDouble','maxScore=EDouble']';

order returns Order: criteria=orderCriteria;

/*REPORT */
report returns Report: 'Report'reportVariations=reportVariations;
reportVariations returns ReportVariations: 'variations'

{ReportVariations} ('with' (hgvs=hgvsR)? (gene=geneR)? (rsId=rsIdR)?)?;
hgvsR returns HgvsR: 'hgvs' {HgvsR};
geneR returns GeneR: 'gene' {GeneR};
rsIdR returns RsIdR: 'rsId' {RsIdR};
transcriptR returns TranscriptR: 'transcript'{TranscriptR};
predictionR returns PredictionR: algorithm=predictionAlgorithm;

/*DataModel Types */
disease returns Disease: name=EString;

dataFile returns DataFile: 'from'{DataFile} (dynamic?=INPUT
|path=EString);

hgvsdna returns HgvsDna: reference=refSeqReference
':''g.'description=HGVSEXPR;

hgvscoding returns HgvsCoding: reference=refSeqReference
':''c.'description=HGVSEXPR;

hgvsprotein returns HgvsProtein: reference=refSeqReference
':''p.'description=HGVSEXPR;

gene returns Gene: hgncId=(EString|HGNCGENE);
refSeqReference returns RefSeqReference:

identifier=(REFSEQ|ASSEMBLY);

/* Data Types ecore */
EBoolean returns ecore::EBoolean: 'true' | 'false';
EString returns ecore::EString: STRING | ID;
EInt returns ecore::EInt: '-'? INT;
EDouble returns ecore::EDouble: '-'? INT '.' INT;

/*Terminals and Enumerations */
terminal

HGNCGENE:(('A'..'Z')+((('0'..'9')+('A'..'Z')+)*|('0'..'9')+));

Annex B 235

terminal INPUT: 'input';
terminal REFSEQ:'N'('C'|'G'|'M'|'P')'_' INT'.'INT;
terminal ASSEMBLY: ('Hg'INT) | ('NCBI'INT);
terminal HGVSEXPR:
(INT(('+'|'-')INT)?('ins'|'del')('A'|'T'|'G'|'C')+)|//ins/del
(INT(('+'|'-')INT)?('A'|'T'|'G'|'C')+'>'('A'|'T'|'G'|'C')+)|//indel
(('A'..'Z'|'a'..'z')+INT('A'..'Z'|'a'..'z')+);//Protein
enum predictionAlgorithm returns PredictionAlgorithm: Sift='Sift' |

Polyphen='Polyphen';
enum orderCriteria returns OrderCriteria: AlphAsc='AlphAsc'|

AlphDes='AlphDes'|Max2Min='Max2Min'|Min2Max='Min2Max';
enum effectEnum returns Effect: Benign=benign| Damaging= 'damaging'|

Tolerated='tolerated'|ProbablyD='probably damaging'|PossiblyD='possibly
damaging';

B.3.2. Abstract syntax metamodel

Figure B. 3 Abstract Syntax Metamodel of the DSL

236 Annex B.

B.3.3. Implementation example
Figure B. 4 and Figure B. 5 are fragments of the complete implementation.

These figures show respectively the generator test used to guide the
implementation, and the source code that makes this test succeed. The test checks
that the generator generates the correct Galaxy workflow fragment associated
with the user story “Annotate MAF”. The generator contains the corresponding
transformation rules in order to create a fragment of a Galaxy workflow that will
execute the annotation of the MAF with the tool allele frequencies.

The complete implementation of the DSL is uploaded to GitHub in
https://github.com/mvillanueva/GeneticAnalysisDSL

Figure B. 4 Test that checks the user story "Annotate with sample MAF"

@Before
def void testSetupOnce() {
DiagnosisPackage.eINSTANCE.eClass();
diagnosis = parser.parse ('''Analyze Diabetes Mellitus Type 2 (Analysis 3)
Read Variations genotypes from VCF file Patient1.vcf
Annotate Variations with gene, transcripts, maf
Filter Variations by genes {ABCC8, CAPN10, KCNJ11, GCGR, SLC2A2,
HNF4A, INS, INSR, PPARG, TCFl2, ADIPOQ, AKT2, PAX4, MAPK81p1,
GPD2, MNTR1B}
Prioritize Variations by MAF [0.1, 0.5] max2min
Report Variations with gene, predicted_effect''')
fsa= new InMemoryFileSystemAccess()
generator.doGenerate(diagnosis.eResource, fsa)
filecontent=fsa.getTextFiles().values().iterator().next().toString() }
@Test
def testAnnotateMAF(){
Assert.assertTrue("The workflow fragment of AnnotateMAF is different to
the generated one",GeneratorGalaxy.checkGeneratorGalaxy(filecontent,
path.concat("US5AnnotateMAF.ga"), "ensembl_id"))}

https://github.com/mvillanueva/GeneticAnalysisDSL

Annex B 237

Figure B. 5 Source Code of the Generator (Xtend)

 def steps(Resource resource)'''«/*PatientData */»
«var patient=new PatientDataGenerator()»
«patient.readPatientData(resource.allContents.toIterable.filter(PatientData).
get(0))»«
/*Analyses */»
«FOR Analysis a:resource.allContents.toIterable.filter(Analysis)
SEPARATOR ','»
«var analysis=new AnalysisGenerator()»
«analysis.runAnalysis(a)»«ENDFOR»,«
/*Report */»
«var report=new ReportGenerator()»
«report.generateReport(resource.allContents.toIterable.filter(ReportVariation
s).get(0))»'''
def annotateVaritionsWithVCFTools(boolean maf)'''«
var step=galaxy.getLastStep+1»
 "«step»": {
 "annotation": "Annotate MAF",
 "id": «step»,
 "input_connections": {
 "input": {
 "id": «galaxy.getLastWorkflowStep»,
 "output_name": "output"}
 },
 "inputs": [],
 "name": "Allele Frequencies",
 "outputs": [{
 "name": "output1",
 "type": "tabular"
 }, {
 "name": "output",
 "type": "vcf"
 }],
 "tool_errors": null,
 "tool_id": "allele_frequencies",
 "tool_state": "{«
 »\"__page__\": 0, \"input\": \"null\", \"__rerun_remap_job_id__\":
null,«
 »\"mafOption\": \"{«mafTranslator(maf)»}\"«
 »}",
 "tool_version": "latest",
 "type": "tool",
 "user_outputs": []
 }«
def mafTranslator(Boolean maf)'''«
»\\\"mafFieldname\\\": \\\"«maf»\\\",«
»\\\"mafCheckbox\\\": \\\"«IF maf»True«ELSE»False«ENDIF»\\\", «
» \\\"__current_case__\\\": «IF maf»0«ELSE»1«ENDIF»'''

238 Annex B.

Annex C 239

Annex C
This annex gathers the extra material of the experiment. Specifically, it

gathers the questionnaires that measure the end-user satisfaction and the raw data
that has been collected from subjects.

C.1 Questionnaires for measuring end-user satisfaction about
mechanisms:

Next, we provide the five questionnaires that were used in the experiment to
assess the perceived ease of use and usefulness. Each question had 5 response
options: strongly disagree, disagree, neutral, agree and strongly agree. The
questions were

C.1.1. Demographic assessment

Q1. My experience in genetic diagnosis is: “None”, “1 year or less”, “Between
1 year and 5 years”, “More than 5 years”.

Q1. My experience in designing languages is: “None”, “1 year or less”,
“Between 1 year and 5 years”, “More than 5 years”.

240 Annex C.

C.1.2. Assessment of the review step (T2)

For each activity described below, indicate the extent to which you agree with
the statement:

Q1. “I found difficult to fulfill the activity”:
• Reviewing Usage Scenarios that describe diagnosis that the DSL must

represent
• Reviewing user Stories about diagnosis steps
• Reviewing acceptance tests that describe examples that validate diagnosis

steps that the DSL must support.
Q2. Overall, I found the usage scenarios, user stories and acceptance tests easy

to understand.
Q3. “The activity took me the expected time”
• Reviewing Usage Scenarios that describe diagnosis that the DSL must

represent
• Reviewing user Stories about diagnosis steps
• Reviewing acceptance tests that describe examples that validate diagnosis

steps that the DSL must support.
Q4. “I found the activity useless to provide my knowledge”
• Reviewing Usage Scenarios that describe diagnosis that the DSL must

represent
• Reviewing user Stories about diagnosis steps
• Reviewing acceptance tests that describe examples that validate diagnosis

steps that the DSL must support.
Q5. Overall, I found that the activities proposed engaged my participation in

the DSL development.

C.1.3. Assessment of the syntax questionnaire (T3)

For each activity described below, indicate the extent to which you agree with
the statement:

Q1. “I found difficult to fulfill the activity”:
• Fulfilling the questionnaire for selecting the most suitable syntax
Q2. Overall, I found the questionnaire about syntax examples easy to

understand.
Q3. “The activity took me the expected time”
• Fulfilling the questionnaire for selecting the most suitable syntax

Annex C 241

Q4. “I found the activity useless to provide my knowledge”
• Fulfilling the questionnaire for selecting the most suitable syntax
Q5. Overall, I found engaging the questionnaire for selecting my favorite

syntax.

C.1.4. Assessment of the semantic templates (T3b)

For each activity described below, indicate the extent to which you agree with
the statement:

Q1. “I found difficult to fulfill the activity”:
• Fulfilling the service templates to detail the semantics of a user story.
Q2. Overall, I found the semantic templates easy to understand.
Q3. “The activity took me the expected time”
• Fulfilling the service templates to detail the semantics of a user story
Q4. “I found the activity useless to provide my knowledge”
• Fulfilling the service templates to detail the semantics of a user story
Q5. Overall, I found engaging the service templates for describing DSL

semantics.

C.1.5. Assessment of the demonstration (T4)

For each activity described below, indicate the extent to which you agree with
the statement:

Q1. “I found difficult to fulfill the activity”:
• Watching a demonstration to understand the current state of the DSL

and the usage of the DSL editor.
Q2. Overall, I found the demonstration easy to understand.
Q3. “The activity took me the expected time”
• Watching a demonstration to understand the current state of the DSL

and the usage of the DSL editor.
Q4. “I found the activity useless to provide my knowledge”
• Watching a demonstration to understand the current state of the DSL

and the usage of the DSL editor.
Q5. Overall, I found engaging the demonstration for understanding the

current state of the DSL and usage.

242 Annex C.

C.1.6. Assessment of the testing guidelines (T5)

For each activity described below, indicate the extent to which you agree with
the statement:

Q1. “I found difficult to fulfill the activity”:
• Using the DSL editor to assess the language correctness
• Following the guidelines to assess the language correctness.
Q2. Overall, I found the testing guidelines easy to understand.
Q3. “The activity took me the expected time”
• Using the DSL editor to assess the language correctness
• Following the guidelines to assess the language correctness.
Q4. “I found the activity useless to provide my knowledge”
• Using the DSL editor to assess the language correctness
• Following the guidelines to assess the language correctness.
Q5. Overall, I found engaging the testing guidelines for assessing the DSL

correctness.

C.2 Data gathered from questionnaires (end-user satisfaction)

Acronyms: SA=Strongly Agree, A=Agree, N=Neutral, D=Disagree, and
SD=Strongly Disagree

C.2.1. Raw data from Google Forms

Table C. 1 Responses about Usage Scenarios, User Stories and Acceptant Tests

 Difficult Adequate time Overall (easy) Useless Overall (engaging)
 USC US AT USC US AT USC US AT
P1 SA SA A SA SA SA SA D D D SA
P2 D D D A A A A SD SD SD A
P3 SD SD D A A A SA N N N A

Table C. 2 Responses about the Syntax Questionnaire

 Difficult Adequate time Overall (easy) Useless Overall (engaging)
P1 D SA A D A
P2 SD A SA D A
P3 N N A D N

Annex C 243

Table C. 3 Responses about Semantic Templates

 Difficult Adequate time Overall (easy) Useless Overall (engaging)
P1 D A SA D SA
P2 D A A A A
P3 N D SA SD SA

Table C. 4 Responses about the demonstration

 Difficult Adequate time Overall (easy) Useless Overall (engaging)
P1 SD SA SA SD SA
P2 SD SA SA SD SA
P3 SD SA SA SD SA

Table C. 5 Responses about the DSL editor and the assessment guidelines

 Difficult Adequate time Overall
(easy)

Useless Overall
(engaging) Editor Guidelin

es
Editor Guidelines Editor Guidelin

es
P1 SD D SA A SA SD SD SA
P2 D D SA SA SA SD SD SA
P3 SD D N SD SA SD SD SA

C.2.2. Standardization of responses

Table C. 6 Standardization of Responses about Usage Scenarios, User Stories and
Acceptance Tests

 Easy (Opp.
Difficult)

Adequate
time

Overall
(easy)

Useful (Opp.
Useless)

Overall
engaging

 USC US AT US
C

US AT USC US AT

P
1

SD SD D SA SA SA SA A A A SA

P
2

A A A A A A A SA SA SA A

P
3

SA SA A A A A SA N N N A

Table C. 7 Standardization of Responses about the Syntax Questionnaire

 Easy (Opp.
Difficult)

Adequate
time

Overall
(easy)

Useful (Opp.
Useless)

Overall
(engaging)

P
1

A SA A A A

P
2

SA A SA A A

P
3

N N A A N

244 Annex C.

Table C. 8 Standardization of Responses about Semantic Templates

 Easy (Opp.
Difficult)

Adequate
time

Overall
(easy)

Useful (Opp.
Useless)

Overall
(engaging)

P
1

A A SA A SA

P
2

A A A D A

P
3

N D SA SA SA

Table C. 9 Standardization of Responses about the demonstration

 Easy (Opp.
Difficult)

Adequate
time

Overall
(easy)

Useful (Opp.
Useless)

Overall
(engaging)

P
1

SA SA SA SA SA

P
2

SA SA SA SA SA

P
3

SA SA SA SA SA

Table C. 10 Standardization of Responses about the DSL editor and the assessment
guidelines

 Easy (Opp.
Difficult)

Adequate time Overall
(easy)

Useful (Opp.
Useless)

Overall
(engaging)

 Editor Guidelines Edito
r

Guidelin
es

Editor Guideline
s

P
1

SA A SA A SA SA SA SA

P
2

A A SA SA SA SA SA SA

P
3

SA A N SD SA SA SA SA

C.2.3. Separation of responses per variable

C.2.3.1 Ease of use
Table C. 11 Ease of Use Responses about Usage Scenarios, User Stories and

Acceptance Tests

 Easy (Opp. Difficult) Adequate time Overall (easy)
 USC US AT USC US AT
P1 SD SD D SA SA SA SA
P2 A A A A A A A
P3 SA SA A A A A SA

Annex C 245

Table C. 12 Ease of Use Responses about the Syntax Questionnaire

 Easy (Opp. Difficult) Adequate time Overall (easy)
P1 A SA A
P2 SA A SA
P3 N N A

Table C. 13 Ease of Use Responses about Semantic Templates

 Easy (Opp. Difficult) Adequate time Overall (easy)
P1 A A SA
P2 A A A
P3 N D SA

Table C. 14 Ease of Use of Responses about the demonstration

 Easy (Opp. Difficult) Adequate time Overall (easy)
P1 SA SA SA
P2 SA SA SA
P3 SA SA SA
Table C. 15 Ease of Use Responses about the DSL editor and the assessment guidelines

 Easy (Opp. Difficult) Adequate time Overall (easy)
 Editor Guidelines Editor Guidelines
P1 SA A SA A SA
P2 A A SA SA SA
P3 SA A N SD SA

C.2.3.2 Usefulness
Table C. 16 Usefulness Responses about Usage Scenarios, User Stories and Acceptance

Tests

 Useful (Opp. Useless) Overall (engaging)
 USC US AT
P1 A A A SA
P2 SA SA SA A
P3 N N N A

Table C. 17 Usefulness Responses about the Syntax Questionnaire

 Useful (Opp. Useless) Overall (engaging)
P1 A A
P2 A A
P3 A N

Table C. 18 Usefulness of Responses about Semantic Templates

 Useful (Opp. Useless) Overall (engaging)
P1 A SA
P2 D A
P3 SA SA

246 Annex C.

Table C. 19 Usefulness of Responses about the demonstration

 Useful (Opp. Useless) Overall (engaging)
P1 SA SA
P2 SA SA
P3 SA SA

Table C. 20 Usefulness of Responses about the DSL editor and the assessment
guidelines

 Useful (Opp. Useless) Overall (engaging)
 Editor Guidelines
P1 SA SA SA
P2 SA SA SA
P3 SA SA SA

C.2.4. Calculation of means and ranges

Responses from a participant for the questions that measure the same variable
must not oscillate from one side to the other, since they are designed to measure
the same concern. For this reason, when we observed that some range values of
the responses to be very high, our hypothesis for this situation was a lack of
comprehension of some questions. We blame the likert scale labels because
during the experiment participants complained about the extra effort they had to
do to respond correctly.

As a solution, for each of the concerns with a high range, we identified the
values that were outside the central tendency, and we asked end-users to review
them. As we can check in Table C. 21, we observed a high range (with value 4),
so we asked the corresponding participant (P1) to review the first question. At
the end, the participant confirmed that the answers were the opposite of their
opinion. As a consequence, we change the values and the range was back to
normal (Table C. 22).

Table C. 21 Observation of unexpected values

 Easy (Opp. Difficult) Adequate time Overall (easy) Median Range
 USC US AT USC US AT
P1 1 1 2 5 5 5 5 5 4
P2 4 4 4 4 4 4 4 4 0
P3 5 5 4 4 4 4 4 4 1

Annex C 247

Table C. 22 Correction of wrong values

 Easy (Opp. Difficult) Adequate time Overall (easy) Median Range
 USC US AT USC US AT
P1 5 5 4 5 5 5 5 5 1
P2 4 4 4 4 4 4 4 4 0
P3 5 5 4 4 4 4 4 4 1

Since our sample size is small, this observation of ranges and reasoning was
our approach to assess the validity and reliability of the results. In future
assessments, if the sample is big enough, construct validity and reliability can be
assessed by conducting the Chronbach’s alpha calculation: calculating the
variances between responses and checking that the coefficient is at least 0.7.

C.2.4.1 Ease of Use
Table C. 23 Ease of Use numerical values about Usage Scenarios, User Stories and

Acceptance Tests

 Easy (Opp. Difficult) Adequate time Overall (easy) Median Range
 USC US AT USC US AT
P1 1 1 2 5 5 5 5 5 4
P2 4 4 4 4 4 4 4 4 0
P3 5 5 4 4 4 4 4 4 1

Table C. 24 Ease of Use numerical values about the Syntax Questionnaire

 Easy (Opp. Difficult) Adequate time Overall (easy) Median Range
P1 4 5 4 4 1
P2 5 4 5 5 1
P3 3 3 4 3 1

Table C. 25 Ease of Use numerical values about Semantic Templates

 Easy (Opp. Difficult) Adequate time Overall (easy) Median Range
P1 4 4 5 4 1
P2 4 4 4 4 0
P3 3 2 5 3 3

Table C. 26 Ease of Use numerical values about the demonstration

 Easy (Opp. Difficult) Adequate time Overall (easy) Median Range
P1 5 5 5 5 0
P2 5 5 5 5 0
P3 5 5 5 5 0

Table C. 27 Ease of Use numerical values about the DSL editor and the assessment
guidelines

 Easy (Opp. Difficult) Adequate time Overall (easy) Median Range
 Editor Guidelines Editor Guidelines
P1 5 4 5 4 5 5 1
P2 4 4 5 5 5 5 1
P3 5 4 3 5 5 5 2

248 Annex C.

C.2.4.2 Usefulness
Table C. 28 Usefulness numerical values about Usage Scenarios, User Stories and

Acceptance Tests

 Useful (Opp. Useless) Overall (engaging) Median Range
 USC US AT
P1 4 4 4 5 4 1
P2 5 5 5 4 5 1
P3 3 3 3 4 3 1

Table C. 29 Usefulness numerical values about the Syntax Questionnaire

 Useful (Opp. Useless) Overall (engaging) Median Range
P1 4 4 4 0
P2 4 4 4 0
P3 4 3 3,5 1

Table C. 30 Usefulness numerical values about Semantic Templates

 Useful (Opp. Useless) Overall (engaging) Median Range
P1 4 5 4,5 1
P2 2 4 3 2
P3 5 5 5 0

Table C. 31 Usefulness numerical values about the demonstration

 Useful (Opp. Useless) Overall (engaging) Median Range
P1 5 5 5 0
P2 5 5 5 0
P3 5 5 5 0

Table C. 32 Usefulness numerical values about the DSL editor and the assessment
guidelines

 Useful (Opp. Useless) Overall (engaging) Median Range
 Editor Guidelines
P1 5 5 5 5 0
P2 5 5 5 5 0
P3 5 5 5 5 0

C.2.5. Summary

Table C. 33 Perceived Ease of Use and Usefulness of the method by participants

 Ease of Use Usefulness
 M1 M2 M3 M4 M5 All M1 M2 M3 M4 M5 All
P1 5 4 4 5 5 5 4 4 4,5 5 5 4,5
P2 4 5 4 5 5 5 5 4 3 5 5 5
P3 4 3 3 5 5 4 3 3,5 5 5 5 5
Median 4 4 4 5 5 5 4 4 4,5 5 5 5
Range 1 2 1 0 0 1 2 0,5 2 0 0 0,5

Annex C 249

C.3 Data gathered by the developer (developers’ satisfaction)

C.3.1. Mechanism M1

C.3.1.1 Comprehension:
• Only one question was asked about how to apply M1. Only one subject

asked “What do US and AT from the template mean?”
o Developers’ conclusion: Geneticists understood well the

mechanism 1.
• Geneticists reviewed acceptance tests with better enthusiasm and celerity,

proposing additional tests for each user story.
o Developers’ conclusion: Acceptance tests were the most familiar

artefact

C.3.1.2 Agreement degree
• All subjects agreed that one of the user stories was ambiguous. The three

geneticists told the developer that the user story “calculate the frequency
(MAF)” was not clear because it could be the samples’ frequency of the
population’s

o Developers’ conclusion: The mechanism 1 was useful to detect
big mistakes (about requirements).

• Some syntax errors and changes in acceptance tests were only detected by
some geneticists.

o The mechanism 1 was not powerful to detect small mistakes
(about requirements descriptions)

C.3.1.3 Undetected errors
• After the DSL released, some geneticists complained that they

brainstormed the addition of two new requirements that were not
recorded.

o The mechanism 1 needs to add the use of a product backlog to
record new requirements that are important for end-users.

C.3.2. Mechanism M2

C.3.2.1 Comprehension
• None questions about the syntax was made about the four syntaxes

provided. Geneticists understood the four syntaxes because they were

250 Annex C.

four different ways to describe the usage scenario “Analyse Diabetes
Mellitus using MAF”, an example they understand well

o Developers’ conclusion: Mechanism 2 is well understood by end-
users because it uses a domain example to reduce the DSL syntax
complexity

C.3.2.2 Agreement degree
• Geneticists had to rate each syntax option according to their preferences

and choose their favourite. However, there were lots of differences of
opinion among geneticists. As a solution, in order to choose the most
preferred syntax by geneticists, developers had to weight their ratings and
choose the syntax supposedly best rated in general.

o Developers’ conclusion: Mechanism 2 should be improved to
ensure a better agreement among end-users.

C.3.2.3 Undetected errors
• One geneticist suggested changing the word “Diagnose” for “Find

putative variations” by using the questionnaire. However, other changes
like: 1) adding an underscore between the terms “possibly” “damaging”
to be “possibly_damaging”, or 2) change the enumeration “AlphAsc,
AlphDesc, Min2Max, Max2Min” for the enumeration “Ascendent and
Descendent”, were only proposed by geneticists after the DSL released
instead of using the syntax questionnaire.

• Developers’ conclusion: Mechanism 2 is not optimal to refine the syntax
structure. It should provided a more usable mechanism to gather end-
users’ feedback about the concrete and abstract syntax.

C.3.3. Mechanism M3

C.3.3.1 Comprehension
• All the geneticists understood correctly all the fields of the template but

the field “source description”. The three geneticists did not know what
information to provide in this field.

o Developers’ conclusion: Mechanism 3 is suitable to gather the
details of how to use a technological artefact to fulfil geneticists
goals, however, it should be improved to be able to gather
information about the source (author, consortium, website, etc.)

Annex C 251

from which the technological artefact was created and from
which is available.

• One geneticist was not expert enough to provide all the required
information of the template

o Developers’ conclusion: Mechanism 3 should be improve to
ensure that the end-users who apply the mechanism have enough
knowledge to contribute in them.

C.3.3.2 Agreement degree
• Geneticists specified in the semantic template the same information

about the technological artefact that implemented the functionality.
o Developers’ conclusion: Mechanism 3 is suitable to gather

information about technological artefacts and their specific
details

C.3.3.3 Undetected errors
• None error was detected by geneticists in regards to semantics.

o Developers’ conclusion: Mechanism 3 is suitable to gather the
correct information about DSL semantics.

• Developers had all the information required to implement the semantics
of the DSL

o Developers’ conclusion: Mechanism 3 is suitable to gather all the
information required by developers for the implementation of
the DSL semantics.

C.3.4. Mechanism M4

C.3.4.1 Comprehension
• None questions were asked by geneticists during the demonstration.

Geneticists understood how to use the DSL infrastructure because the
demonstration exemplified how to do it with the usage scenario “Analyse
Diabetes Mellitus using MAF”, an example they understand well.

o Developers’ conclusion: The mechanism 4 is suitable to present
the DSL to end-users.

252 Annex C.

C.3.5. Mechanism M5

C.3.5.1 Comprehension
• One geneticists left two questions unanswered, and another geneticist

had doubts about the meaning of another two questions.
o Developers’ conclusion: The mechanism 5 needs to be improved

to ensure the comprehension of the questions. The relationship
between each testing question with the DSL element under test
should be clearer.

C.3.5.2 Agreement degree
• Geneticists agreed in the majority of the testing questions. In general

they agreed the suitability of the DSL syntax and semantics, although
some of them provided some suggestions to improve the DSL, such as
the addition of a new user story “filter by a list of genes from a file” or the
correction of syntax elements such as “possibly_damaging”, none of these
feedback was contradictory.

• Developers’ conclusion: The mechanism 5 is suitable to test the general
satisfaction of end-users about the DSL release.

