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Abstract

Abstract

Multi-Agent Systems (MAS), Argumentation and Automated Planning are three lines of

investigations within the field of Artificial Intelligence (AI) that have been extensively

studied over the last years. A MAS is a system composed of multiple intelligent agents

that interact with each other and it is used to solve problems whose solution requires

the presence of various functional and autonomous entities. Multi-agent systems can be

used to solve problems that are difficult or impossible to resolve for an individual agent.

On the other hand, Argumentation refers to the construction and subsequent exchange

(iteratively) of arguments between a group of agents, with the aim of arguing for or against

a particular proposal. Regarding Automated Planning, given an initial state of the world,

a goal to achieve, and a set of possible actions, the goal is to build programs that can

automatically calculate a plan to reach the final state from the initial state.

The main objective of this thesis is to propose a model that combines and integrates

these three research lines. More specifically, we consider a MAS as a team of agents with

planning and argumentation capabilities. In that sense, given a planning problem with

a set of objectives, (cooperative) agents jointly construct a plan to satisfy the objectives

of the problem while they defeasibly reason about the environmental conditions so as to

provide a stronger guarantee of success of the plan at execution time. Therefore, the goal
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is to use the planning knowledge to build a plan while agents beliefs about the impact of

unexpected environmental conditions is used to select the plan which is less likely to fail

at execution time. Thus, the system is intended to return collaborative plans that are more

robust and adapted to the circumstances of the execution environment.

In this thesis, we designed, built and evaluated a model of argumentation based on

defeasible reasoning for planning cooperative multi-agent system. The designed system

is independent of the domain, thus demonstrating the ability to solve problems in different

application contexts. Specifically, the system has been tested in context sensitive domains

such as Ambient Intelligence as well as with problems used in the International Planning

Competitions.
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Resumen

Dentro de la Inteligencia Artificial (IA), existen tres ramas que han sido ampliamente

estudiadas en los últimos años: Sistemas Multi-Agente (SMA), Argumentación y Planifi-

cación Automática. Un SMA es un sistema compuesto por múltiples agentes inteligentes

que interactúan entre sí y se utilizan para resolver problemas cuya solución requiere

la presencia de diversas entidades funcionales y autónomas. Los sistemas multiagente

pueden ser utilizados para resolver problemas que son difíciles o imposibles de resolver

para un agente individual. Por otra parte, la Argumentación consiste en la construcción y

posterior intercambio (iterativamente) de argumentos entre un conjunto de agentes, con el

objetivo de razonar a favor o en contra de una determinada propuesta. Con respecto a la

Planificación Automática, dado un estado inicial del mundo, un objetivo a alcanzar, y un

conjunto de acciones posibles, el objetivo es construir programas capaces de calcular de

forma automática un plan que permita alcanzar el estado final a partir del estado inicial.

El principal objetivo de esta tesis es proponer un modelo que combine e integre las

tres líneas anteriores. Más específicamente, nosotros consideramos un SMA como un

equipo de agentes con capacidades de planificación y argumentación. En ese sentido,

dado un problema de planificación con un conjunto de objetivos, los agentes (coopera-

tivos) construyen conjuntamente un plan para resolver los objetivos del problema y, al

mismo tiempo, razonan sobre la viabilidad de los planes, utilizando como herramienta

de diálogo la Argumentación. Por tanto, el objetivo no es sólo obtener automáticamente

un plan solución generado de forma colaborativa entre los agentes, sino también utilizar

las creencias de los agentes sobre la información del contexto para razonar acerca de la

viabilidad de los planes en su futura etapa de ejecución. De esta forma, se pretende que

el sistema sea capaz de devolver planes colaborativos más robustos y adaptados a las

circunstancias del entorno de ejecución.
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En esta tesis se diseña, construye y evalúa un modelo de argumentación basado en

razonamiento defeasible para un sistema de planificación cooperativa multiagente. El

sistema diseñado es independiente del dominio, demostrando así la capacidad de resolver

problemas en diferentes contextos de aplicación. Concretamente el sistema se ha evaluado

en dominios sensibles al contexto como es la Inteligencia Ambiental y en problemas de

las competiciones internacionales de planificación.
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Resum

Dins de la intel·ligència artificial (IA), hi han tres branques que han sigut àmpliament

estudiades en els últims anys: Sistemes Multi-Agent (SMA), Argumentació i Planificació

Automàtica. Un SMA es un sistema compost per múltiples agents intel·ligents que in-

teractúen entre si i s’utilitzen per a resoldre problemas la solución dels quals requereix

la presència de diverses entitats funcionals i autònomes. Els sistemes multiagente poden

ser utilitzats per a resoldre problemes que són difícils o impossibles de resoldre per a un

agent individual. D’altra banda, l’Argumentació consistiex en la construcció i posterior

intercanvi (iterativament) d’arguments entre un conjunt d’agents, amb l’objectiu de raonar

a favor o en contra d’una determinada proposta. Respecte a la Planificació Automàtica,

donat un estat inicial del món, un objectiu a aconseguir, i un conjunt d’accions possibles,

l’objectiu és construir programes capaços de calcular de forma automàtica un pla que

permeta aconseguir l’estat final a partir de l’estat inicial.

El principal objectiu d’aquesta tesi és proposar un model que combine i integre les

tres línies anteriors. Més específicament, nosaltres considerem un SMA com un equip

d’agents amb capacitats de planificació i argumentació. En aquest sentit, donat un prob-

lema de planificació amb un conjunt d’objectius, els agents (cooperatius) construeixen

conjuntament un pla per a resoldre els objectius del problema i, al mateix temps, raonen

sobre la viabilitat dels plans, utilitzant com a ferramenta de diàleg l’Argumentació. Per

tant, l’objectiu no és només obtindre automàticament un pla solució generat de forma

col·laborativa entre els agents, sinó també utilitzar les creences dels agents sobre la in-

formació del context per a raonar sobre la viabilitat dels plans en la seua futura etapa

d’execució. D’aquesta manera, es pretén que el sistema siga capaç de tornar plans col·laboratius

més robustos i adaptats a les circumstàncies de l’entorn d’execució.

En aquesta tesi es dissenya, construeix i avalua un model d’argumentació basat en

raonament defeasible per a un sistema de planificació cooperativa multiagent. El sistema
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dissenyat és independent del domini, demostrant així la capacitat de resoldre problemes

en diferents contextos d’aplicació. Concretament el sistema s’ha avaluat en dominis sen-

sibles al context com és la inte l·ligència Ambiental i en problemes de les competicions

internacionals de planificació.
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Introduction

The present document is not organized as a conventional PhD dissertation but as a col-

lection of the papers derived from the development of the work. This is a PhD modality

accepted by our university whenever the publications allows to capture the main contri-

butions of the doctoral work. We believe this is the case and so we have opted for this

option.

Nevertheless, this document is not simply a list of publications. This chapter, in par-

ticular, aims at guiding the reader through the contents of the document. Thus, in section

1.1 we present the motivation that originated this PhD thesis through a brief tour along

the state-of-the-art in planning and argumentation. Section 1.2 shows the main objectives

of the work, section 1.3.1 presents the list of scientific publications and we summarize

the research projects which this PhD dissertation has contributed to in section 1.3.2. The

other two sections are intended to be a guide for the reader throughout the remainder of

the document.

1



1. INTRODUCTION

1.1 Motivation

One common problem in Artificial Intelligence (AI) is to select the best course of action

for an agent; i.e, reasoning about what to do. This problem has been primarily addressed

from two standpoints: the knowledge or epistemological perspective, which puts the em-

phasis on the representation of the world such that the solution of a problem follows from

the representation, and the reasoning or heuristic perspective, mostly concerned with the

information for solving the problem and the reasoning process on an abstract and formal

representation of the world (1). Practical reasoning, the research line mostly focused on

the epistemological view, includes a great deal of epistemic reasoning, directed at deter-

mining what to believe (2). Automated planning, on the other hand, is concerned with the

computational process for the selection and organization of the actions. Back in the 90’s,

Pollock concluded that since epistemic cognition is defeasible, a planning agent must be

prepared to revise its plans as its defeasibly held beliefs change and may have to acquire

more information through reasoning to solve a planning problem (3).

Figure 1.1 outlines our view of these two approaches to address the problem of select-

ing the best course of action for an agent, which are explained in detail below.

The mainstream in practical reasoning lies in the use of argumentation theory so as

to extend the means-end reasoning in classical planning with presumptive justifications

for the adoption of a particular action. Particularly, practical reasoning aims at a method-

ological approach for reasoning about actions that draws upon the principles of reasoning

about beliefs. Using Dung’s argumentation framework over beliefs (4) has been the pre-

dominant approach in practical reasoning. The research by Rahwan and Amgoud in (5)

proposes a framework for arguing about what desires an agent should adopt and one for ar-

guing about what plans to intend in order to achieve these desires on the basis of Dung’s

abstract argumentation theory. Instantiations of Dung’s argumentation framework have

also been used to study the goal deliberation process (6) or the generation of consistent
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Figure 1.1: Selection of actions from the practical reasoning and automated planning stand-
points.

plans from a set of conflicting beliefs (7). Building argumentation plans for negotiating

conflict resolution at a planning stage is also an interesting application of argumentation

in practical reasoning (8).

Some other works, however, follow the notion of argument scheme proposed by Wal-

ton (9) and present an approach in which arguments and conflicts are represented as ar-

gument schemes and critical questions, respectively (10, 11). This approach represents

preferences based upon individual values, thus enabling argumentation be evaluated as

a Value-Based Argumentation Framework (12), an extension to Dung’s argumentation

framework. The proposal in (10) has been one of the most popular approaches in practi-

cal reasoning, it has demonstrated its applicability in domains such as law, experimental

economics or e-democracy (13, 14, 15) and it has also been exploited for the design of

argumentation-based dialogues to support automated coordination in distributed planning
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(16), multi-agent deliberation dialogues (17) or the construction of joint plans (18).

In general, the research in the context of practical reasoning is aimed at proposing a

formal framework for action selection under the statement that ’what I believe conducts

reasoning about actions’ but it usually neglects the problem-solving process required

when dealing with planning problems. Unlike argumentation-based approaches of prac-

tical reasoning, another line of investigation closer to automated planning also explores

the relationships between classical planning and argumentation but building upon a plan-

ning formalism and using argumentation to guide the reasoning process. A first step in

this direction pointed by Pollock assumes that agent’s deductions are not always certain

information, but plausible, and the conclusions can be withdrawn when new pieces of

knowledge are found; i.e., agents must use defeasible reasoning (19). OSCAR is a goal-

regression planner that essentially performs the same search of Partial-Order Planning

(POP) but reasoning defeasibly about candidate plans at the end of the planning process

(20). In OSCAR, the plan search itself is also done defeasibly, thus enabling to reason

about the impact of unexpected environmental conditions on the solution plans and to

select the plan which is less likely to fail at execution time. All in all, the OSCAR ar-

chitecture for rational agents is one of the first attempts to build a planner based upon a

defeasible reasoner.

In the same line, another pioneer work on using argumentation in planning was pro-

posed by Ferguson and Allen in (21). The authors of this work present a formal model

of plans based on a defeasible argument system that is able to suggest aspects of a plan,

criticize a plan and revise the plan (21). Both investigations in (20) and (21), considered

as the first steps towards building an argumentation-based planning system, have clear

similarities to the works on plan modification and replanning but rather than forcing the

planner to resort to replanning in light of new information, they consider planning within

the context of a general defeasible reasoning system. That is, they adapt the reasoning
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1.1 Motivation

about actions to the beliefs about the environment (this is precisely the investigation line

of this PhD thesis, which is shown in red in Figure 1.1).

More recently, Simari et al present a defeasible argumentation framework for the def-

inition of actions and the combination of these actions into plans (22). This work lays the

foundations of an argumentation-based formalism for constructing plans (23) by using

Defeasible Logic Programming (DeLP) (24), a formalism to represent the knowledge and

build applications that deal with incomplete and contradictory information in dynamic

domains. The formalism presented in (23, 25), which we will refer to as DeLP-POP in

the following, analyzes the interplay of arguments and actions when constructing plans

using POP techniques.

Subsequently, further investigations on argumentation-based planning focus on the

application of argument-based systems to Multi-Agent Planning (MAP). Our proposal

presented in (26) is a formal extension of DeLP-POP to a multi-agent context, in which

agents are assumed to have planning and argumentation capabilities. Specifically, this

work proposes a formal dialogue for argumentative plan search, by which agents exchange

plan proposals and arguments for or against such proposals. A first practical extension for

evaluating the approach in (26) in ambient intelligent applications is presented in (27, 28).

These two latter works also contribute with a modelization language for defeasible rules

within a planning context.

An argumentation-based dialogue protocol that enable agents to discuss candidate

plans and reach agreements was proposed in (29, 30), where candidate plans of the agents

are generated by an external single-agent planner and the protocol is used then for rea-

soning about the contradictory planning beliefs in the candidate plans and select a valid

solution plan. In this approach, agents use argumentation to defend or attack the can-

didate plans put forward by others, not for cooperatively building a plan contributed by

several agents. Another interesting work that combines the benefits of argumentation in

MAP emphasizes the utilization of argumentation to solve conflicts between sub-plans
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of different agents by means of deliberative dialogues based on argumentation schemes

(31, 32). Conflicts may be caused by concurrent actions, plan constraints or norms the

agents must adhere to and argumentation is used as a mechanism for analyzing these

conflicts when several sub-plans of different agents have to be merged. Likewise, argu-

mentation in (31, 32) is not used for building plans but for arguing at end of the planning

generation, where the planning task is accomplished by an external classical planner. A

different approach that also makes use of argumentation schemes proposes structured ar-

gumentative dialogues to coordinate plan-related tasks (16). Particularly, in this approach

agents coordinate their beliefs and intentions with the use of a strategy based on an ar-

gumentation scheme and a set of related critical questions for selecting plan proposals.

Thus, choosing an appropriate question in the dialogue becomes an important issue in

terms of dialogue and cooperation efficiency.

Most of the existing argumentation-based MAP models aim at using argumentation

for solving conflicts within a plan or solving conflicts among plans proposed by different

agents, like the works in (16, 29, 30, 31, 32). In these formalisms, a plan is generated

by an external classical planner, which is then transformed accordingly so as to be used

in argumentative dialogues. Unlike some of the initial single-agent planning approaches

that use defeasible reasoning during the plan search (22, 24), these MAP models opt

for arguing about tentative solution plans rather than arguing the reasoning process that

lead to these solution plans. One glaring reason for adopting this trend is that applying

defeasible reasoning during the process of solving a MAP problem requires developing a

multi-agent planner, which is a complex and arduous task.

The line of investigation of this PhD thesis lies in the defeasible construction of plans

for solving MAP problems. We leverage the experience of our research group on the field

of multi-agent planning and, particularly, on MAP-POP (33), one of the multi-agent plan-

ners developed within the GRPS-AI group1 and which was used as the basis for the design

1http://users.dsic.upv.es/grupos/grps/
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and implementation of our argumentation-based MAP proposal. The foundations of the

architecture of our model (27, 34) were precisely inspired by the DeLP-POP formalism

(24) and the cooperative distributed planning framework presented in (33).

All in all, this PhD thesis contributes with the design, construction and evaluation of

an argumentation-based MAP model for solving problems where a team of agents, which

have diverse abilities and beliefs, are committed to achieve a set of goals. Agents put

forward their (partial) plan proposals and engage in a stepwise dialogue consisting of ex-

changing arguments for or against the plan proposals. In our approach, arguments are the

mechanism to take into account the context conditions during the plan search process. We

thus come up with an operative, domain-independent and fully-integrated argumentation

and planning framework for multi-agent contexts. To the best of our knowledge, our pro-

posal is the first defeasible planner capable to tackle MAP problems from the International

Planning Competitions (IPC)1 (35).

1.2 Objectives

In this section, we present the objectives that motivated this PhD dissertation through a

tour which shows the different lines of investigation covered in the work and the pursued

stages to reach each milestone. Then, in section 1.2.1, we present the problem formulation

and we provide a more precise overview of the paradigms and techniques that we chose

to carry out our objectives.

This work revolves around the problem of Multi-Agent Planning and, more specif-

ically, on cooperative planning, wherein multiple entities (agents) work cooperatively in

order to build a plan that solves a set of common goals. Cooperative MAP is currently

a hot research line in which our group is actively working. Under this paradigm, agents

are interpreted as entities that have different planning capabilities (specialized agents) or

1http://ipc.icaps-conference.org/
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1. INTRODUCTION

entities that are geographically distributed and do not have access to all the data of the

world. These different world views and planning capabilities of the agents define their

vision of the planning task.

In classical approaches to MAP, agents only work with the information defined in

the planning task: facts that describe the initial state of the world and a set of actions

that model the agents abilities. Then, agents realize a search process by which they infer

new facts that respond to the dynamics and causal relationships defined in the planning

task. That is, classical planning approaches assume that the planner (agent) begins with

all the relevant, accurate and necessary knowledge for solving the problem. However, in

complex and dynamic environments, encoding the complete know-how knowledge of a

planning agent into the planning task is not affordable and traditional planning systems are

not capable of properly exploiting this know-how knowledge that goes beyond the factual

knowledge and causal reasoning. Thus, our principal objective is to extend a traditional

MAP task so that the non-factual individual knowledge of the agents is considered when

building a plan. This new source of information, which stems from the expertise and

beliefs of the agents but cannot be regarded as a universal truth, will be modeled as de-

feasible knowledge which is susceptible of change in light of new information provided

by other agents.

The goal of planning is choosing the proper actions to achieve the task goals according

to some optimization criteria. This is done by using the factual information and known

abilities of the agents. The purpose of introducing defeasible knowledge in a planning

task is to account for all the external conditions that might potentially affect the execution

of an action in the real world beyond the conditions defined in the causal model. In order

to handle the agents’ defeasible knowledge that will be used to conduct the planning

process towards a successful plan execution, we opted by a multi-agent argumentation

model. Planning agents will use their know-how knowledge and beliefs of the world to

argue about the context in which an action will be executed and to prevent the action from
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a potential execution failure. In certain domains, it is crucial to obtain robust plans; i.e.,

plans that are executable despite uncertainty in the execution environment. For example,

given an emergency situation where an ambulance has to be sent to the patient’s home, a

traditional MAP approach would not take into account the contextual conditions that are

not expressed in the causal theory (e.g., traffic jam), and so the solution plan is likely to

fail during its execution in the real world.

Our argumentation model draws upon a defeasible knowledge reasoning by which

agents argue about the tentative contextual conditions that might prevent an action from

executing successfully. From the planning standpoint, the goal is to build plans consistent

with the causal theory that defines the dynamics of the world. From the argumentation

standpoint, the goal is to obtain plans consistent with the agents beliefs so as to increase

the likelihood of achieving a robust plan. Thereby, the quality of the plans will be assessed

according to the usual planning quality criteria (number of actions and plan duration)

as well as by their level of robustness (minimization of the risk of unexpected action

failures).

Ultimately, the aim of this thesis is to design, build and evaluate a domain-independent

argumentation-based MAP model to solve planning problems where the know-how

knowledge of the agents in the context of application is integrated in the planning pro-

cess.

1.2.1 Problem formulation and solution specification

In this section, we present the problem we want to solve, the proposed steps to tackle the

problem resolution and the solution specification.

As commented before, the starting point of this work is the definition of a cooperative

MAP task. We believe that partial-order planning (POP) is the paradigm that better fits the

multi-agent nature of cooperative planning wherein various agents need to work together

for solving the problem. Therefore, we adopt the MAP task definition proposed in the

9



1. INTRODUCTION

MAP-POP approach (33), defined as a tuple 〈AG, V, A,Ψ, G〉, where AG is a finite and

non-empty set of planning agents, V is the set of state variables managed by AG, A is the

set of actions of the agents, Ψ is the initial state of the problem and G is the set of goals

to be achieved by AG. Two or more agents can share actions of A and can share pairs

variable-value from Ψ.

Given that our objective is to test the resulting model in problems of the IPC bench-

marks, we will use the so well-known PDDL language problem specification adopted

by the planning community. Particularly, we will assume the PDDL codification of the

multi-agent planning tasks presented by MAP-POP.

The next step is to choose a formalism to represent the defeasible knowledge and inte-

grate it within the MAP task definition. The Defeasible Logic Programming (DeLP) for-

malism combines Logic Programming and Defeasible Argumentation (24) and provides

the possibility of representing information in the form of rules in a declarative manner,

and a defeasible argumentation inference mechanism for warranting the entailed conclu-

sions. The declarative nature of the knowledge represented in DeLP fits very well with the

declarative planning knowledge represented in PDDL. In DeLP, the effect of a defeasible

rule comes from a dialectical analysis, made by the inference mechanism, which involves

the consideration of arguments and counter-arguments where that rule is included. Thus,

our purpose is to integrate the defeasible reasons of an agent to believe something within

the POP paradigm and use these beliefs to argue or support the inclusion of a action in

the plan. This implies to establish a clear distinction between the planning knowledge that

defines the causal theory of the domain and the know-how and defeasible knowledge of

the agents. More specifically, we will analyze the framework DeLP-POP, an extension of

POP with DeLP-style argumentation for single-agent planning, where both actions and

arguments may be used to enforce some goal, if their conditions (are known to) apply and

arguments are not defeated by other arguments applying. Our principle of design is to in-

troduce arguments not only to intentionally support some step of a plan but also to defeat

10
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or defend other arguments in the plan. This principle of design is in line with DeLP-POP

but our final purpose is to extend this approximation to a multi-agent context.

Integrating defeasible knowledge within a multi-agent partial-order planner implies

some significant modifications in the POP machinery. First, the definition of a MAP task

must now include the defeasible knowledge of the agents 〈AG, V, A,Ψ, G,∆〉, where ∆

represents the set of defeasible rules of AG. Second, arguments will be deduced from

∆ and Ψ. Third, since arguments will be used by the agents to support or contradict

the inclusion of an action in the plan, we need a representational scheme that allows us

to handle actions as an element of a partial-order plan as well as a piece of defeasible

knowledge. That is, the model must be able to represent, handle and reason with A and

∆ jointly. More specifically, we need to represent the actions contributed by the agents to

the plan in such a way that any other agent can argue or support the applicability of the

action under the environment conditions. This will eventually lead to a novel proposal of

addressing the qualification problem.

The operational framework of our proposal requires to design and build multi-agent

dialogues so that each step of a partial plan can be discussed among agents. Specifically,

we will design a dialogue mechanism by which agents exchange arguments about the

conditions that might affect the feasibility of an action in the real world according to

their know-how knowledge and beliefs. Therefore, agents will not only be equipped with

planning capabilities, but also with argumentation abilities.

Our goal is to obtain more robust plans than the plans returned by MAP-POP; i.e.,

solutions that demonstrate that incorporating the know-how knowledge of the agents in

the form of defeasible knowledge allows us to obtain more robust executable plans. For

this purpose agents will instantiate argumentative dialogues, while planning, to reason

about each step comprised in the plan.

Finally, we aim for a domain-independent, fully integrated and operative argumentation-

based MAP model. This means we have not only to design and implement the model but

11
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also test it in different applications domains. Specifically, we will validate the system in

applications of ambient intelligence in the field of health-care as well as in problems from

the IPC benchmarks. We will carry out several experiments considering various levels of

difficulty of the planning and argumentation problems.

1.3 Scientific Contributions

In this section, we present the list of contributions related to this PhD thesis..

1.3.1 Scientific Publications

In this section, we show the list of publications related to this PhD thesis.

1.3.1.1 Selected Papers

1. Selected Paper 1: Defeasible Planning through Multi-Agent Argumentation (CIMA-

ICTAI 2010 and its extension in a Book):

• S. Pajares and E. Onaindía. DefPlanner: A defeasible argumentation-

based planner. 2nd International Workshop on Combinations of Intelligent

Methods and Applications (CIMA’10), in conjunction with 22th International

Conference on Tools with Artificial Intelligence (ICTAI 2010) pp. 34-42.

(2010).

• S. Pajares and E. Onaindía. Defeasible Planning through Multi-Agent Ar-

gumentation. Combinations of Intelligent Methods and Applications, Smart

Innovation, Systems and Technologies Vol. 8 pp. 1-19. (2011).

2. Selected Paper 2: An architecture for Defeasible-Reasoning-based Cooperative

Distributed Planning (CoopIS 2011):
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• S. Pajares, E. Onaindía and A. Torreño. An architecture for Defeasible-

Reasoning-based Cooperative Distributed Planning. 19th International

Conference on Cooperative Information Systems (CoopIS 2011) pp. 200-217.

(2011).

3. Selected paper 3: Multiagent Argumentation for Cooperative Planning in DeLP-

POP (AAMAS 2011) and its extension in (ArgMAS 2012):

• P. Pardo, S. Pajares, E. Onaindía, L. Godo and P. Dellunde. Multiagent Ar-

gumentation for Cooperative Planning in DeLP-POP. 10th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011)

pp. 971-978. (2011).

• P. Pardo, S. Pajares, E. Onaindía, L. Godo and P. Dellunde. Cooperative

Dialogues for Defeasible Argumentation-based Planning. Argumentation

in Multi-Agent Systems (ArgMAS). Vol. 7543, pp. 185-204. (2012).

4. Selected paper 4: Defeasible Argumentation for Multi-Agent Planning in Ambient

Intelligence Applications (AAMAS 2012):

• S. Pajares and E. Onaindía. Defeasible Argumentation for Multi-Agent

Planning in Ambient Intelligence Applications. 11th International Confer-

ence on Autonomous Agents and Multiagent Systems (AAMAS 2012) pp.

509-516. (2012).

5. Selected Paper 5: Context-Aware Multi-Agent Planning in Intelligent Environ-

ments (INS Journal 2013):

• S. Pajares and E. Onaindía. Context-Aware Multi-Agent Planning in In-

telligent Environments. Information Sciences Journal. Vol. 227 pp. 22-42.
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(2013). Impact Factor 2013: 3.89 (Q1 Computer Science, Artificial Intelli-

gence).

6. Selected Paper 6: Argumentation-based Planning (Submitted AIJ 2015):

• S. Pajares and E. Onaindía. Argumentation-based Planning. Artificial In-

telligence Journal. (Under Revision). (2015). Impact Factor 2015: 3.37 (Q1

Computer Science, Artificial Intelligence).

1.3.1.2 Other Publications

• S. Pajares and E. Onaindía. Temporal Defeasible Argumentation in Multi-Agent

Planning. 22nd International Joint Conferences on Artificial Intelligence (IJCAI

2011) pp. 2834-2835. (2011).

1.3.2 Research Projects

The work of this thesis could have not been possible without a 4-year (only 2 of them

consumed) FPU research grant granted by the Spanish Government.

In addition, this thesis has provided significant advances to the following research

projects funded by the Spanish Government:

• "Agreement Technologies” Consolider-INGENIO 2010 under grant CSD2007-00022

(Main Researcher: Carles Sierra, from 2007 to 2012). Agreement technologies is a

term coined in the last few years to refer to those technologies that allow computa-

tional entities to automatically solve conflicts. Being used by humans so frequently,

argumentation-based planning is one of the key technologies in agreement tech-

nologies. The work carried out in this thesis aims to advance the state-of-the-art in

argumentation mechanisms during the planning process.
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• "Magentix2: A Multi-agent Platform for Open Multi-agent Systems” under grant

TIN2008-04446 (Main Researcher: Ana Garcia-Fornes, from 2008 to 2011). Ma-

gentix2 is a multi-agent platform. The work of this thesis aims to provide planning

and argumentation capabilities for Magentix2 agents.

• "Multi-agent Plan Interaction” under grant TIN2011-27652-C03-01-AR (Main Re-

searcher: Eva Onaindia, from 2012). The work carried out in this thesis aims to

provide an argumentation-based multi-agent planner.

Additionally, this thesis has also provided advances to "Advances on Agreement Tech-

nologies for Computational Entities” PROMETEO/2008/051 (Main Reseacher: Vicente

Botti) funded by the Valencian Government.

1.4 Document Structure

The remainder of this thesis is structured as follows.

• Chapter 2. Selected Papers: This chapter consists on a collection of the main

articles (conferences and journals) published by the PhD. student which support this

thesis. These articles have been completely integrated into the present document of

thesis, so there is only one section of Bibliographical References at the end of this

document (thus avoiding repeated references between articles).

• Chapter 3. General Discussion of the Results: This chapter provides a discussion

about all the obtained results presented in the articles from the previous chapter.

• Chapter 4. Conclusions: This last chapter is devoted to present a final review of

the conclusions as well as promising directions for further works.
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Selected Papers

This chapter compiles the most relevant research papers published during the develop-

ment of this PhD thesis. The articles are chronologically listed and provide a thorough

description of the scientific contributions that conform this PhD thesis. This chapter is

organized as follows: section 2.1 describes the articles included in this chapter and briefly

summarizes their contents. The subsequent sections include the full text of the research

articles adapted to the format of the present PhD thesis.

2.1 Summary of the Selected Papers

The results obtained during the development of the present PhD thesis have been system-

atically communicated through the publication of a wide range of scientific papers. This

chapter focuses on the impact articles that synthesize the main body of work of this PhD

thesis, offering a clear and comprehensive summary of the results obtained.

The next sections arrange these scientific papers according to their date of publication,

which gives a clear idea of the evolution of the research activities and the main milestones

reached during the development of this PhD thesis.
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2. SELECTED PAPERS

Firstly, section 2.2 presents the first two works of this thesis. Firstly, it was pub-

lished in the 2nd International Workshop on Combinations of Intelligent Methods and

Applications (CIMA 2010), in conjunction with 22th International Conference on Tools

with Artificial Intelligence (ICTAI 2010). Secondly, the work was extended in a chap-

ter of Combinations of Intelligent Methods and Applications, Smart Innovation, Systems

and Technologies book, Vol 8. This work is an entirely theoretical approach. It introduces

DefPlanner, an argumentation-based partial order planner where different agents that have

a partial, and possibly contradictory, knowledge of the world articulate arguments for and

against supporting preconditions of the actions to be included in a plan. This work is a

first extension of (23) to a multi-agent system in argumentation. However, this work also

consider the task of planning in a single agent environment, since only an agent of the

multi-agent system can have the role of planner. The work introduces an example where

agents have to reason about contextual conditions that might prevent a partial plan will

fail at execution time.

Secondly, the article of section 2.3, originally published in the19th International Con-

ference on Cooperative Information Systems (CoopIS 2011), presents a MultiAgent Planning

and Argumentation (MAPA) architecture based on a multiagent partial order planning

paradigm using argumentation for communicating agents. Agents use an argumentation-

based defeasible reasoning to support their own beliefs and refute the beliefs of the others

according to their knowledge. Unlike the work in section 2.2, in MAPA, actions and ar-

guments may be proposed by different agents to enforce some goal, if their conditions

are known to apply and arguments are not defeated by other arguments applying. In or-

der to plan for these goals, agents start a stepwise dialogue consisting of exchanges of

plan proposals to satisfy this open goal, and they evaluate each plan proposal according

to the arguments put forward for or against it. After this, an agreement must be reached

in order to select the next plan to be refined. It is evaluated in a transit agencies scenario.

Specifically, in a Transit Journey Planning Service (TJPS) (a specialized electronic search
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engine), where MAPA is used to find the best route between two locations by using some

means of transportation.

Thirdly, section 2.4 summarizes two works: one published in the 10th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011), and its ex-

tension in the Argumentation in Multi-Agent Systems (ArgMAS 2012). This contribution

proposes a model for argumentation-based multi-agent planning, with a focus on cooper-

ative scenarios. It consists in a multi-agent extension of DeLP-POP (23). In DeLP-POP,

actions and arguments (combinations of rules and facts) may be used to enforce some

goal, if their conditions (are known to) apply and arguments are not defeated by other

arguments applying. In a cooperative planning problem a team of agents share a set of

goals but have diverse abilities and beliefs. In order to plan for these goals, agents start

a stepwise dialogue consisting of exchanges of plan proposals, plus arguments against

them. Since these dialogues instantiate an A∗ search algorithm, these agents will find a

solution if some solution exists, and moreover, it will be provably optimal (according to

their knowledge). The main contribution of this work is the formalization of DeLP-POP

for multi-agent systems.

Fourthly, the work of section 2.5 is published in the 11th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2012), and it presents a practical

extension of the theoretical model presented in section 2.4. The new framework, named

DeLP-MAPOP, is implemented on a platform for open multi-agent systems and has been

experimentally tested, among others, in applications of ambient intelligence in the field of

health-care. DeLP-MAPOP is based on a multi-agent partial order planning paradigm in

which agents have diverse abilities, use an argumentation-based defeasible reasoning to

support their own beliefs and refute the beliefs of the others according to their knowledge

during the plan search process. The requirements of Ambient Intelligence (AmI) environ-

ments featured by the imperfect nature of the context information and heterogeneity of the

involved agents make defeasible argumentation be an ideal approach to resolve potential
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conflicts caused by the contradictory information coming from the ambient agents. More-

over, the ability of AmI systems to build a course of action to achieve the user’s needs is

also a claiming capability in such systems. DeLP-MAPOP shows to be an adequate ap-

proach to tackle AmI problems as it gathers together in a single framework the ability of

planning while it allows agents to put forward arguments that support or argue upon the

accuracy, unambiguity and reliability of the context-aware information. The main contri-

butions of this work is that is the first system in the PhD thesis that has been implemented

and experimentally proven in a AmI environment.

Fifth, the work of section 2.6 is published in Information Sciences Journal, Vol. 227.

This work is an extended version of the work presented in section 2.5. This article presents

the specification, implementation and an exhaustive experimentation of CAMAP, a coop-

erative and distributed planning framework that uses defeasible argumentation to reason

about the context information on smart environments. Our most relevant contribution is

to come up with a fully implemented MAP framework that has been extensively tested

in AmI environments, particularly on health-care applications. This this work also in-

troduces a novel action representation which allow the model to implicitly address the

qualification problem as every precondition of a planning action is now supported by an

argument rather than directly by an action effect. Moreover, it presents an extension of

PDDL3.1 (Planning Domain Definition Language) in order to introduce some function-

alities required in a argumentation-based multi-agent planning task. Finally, it presents a

more exhaustive experimentation than the presented in the work of section 2.5, in order

to evaluate CAMAP in AmI environments.

Finally, the work of section 2.7 is submitted to Decision Support Systems. Now this

work is under review. This paper presents Q-DeLP-POP, an argumentation-based MAP

system that elaborates on two previous contributions: an initial formalization of a multi-

agent argumentative planning model in the framework of DeLP-POP (26) (section 2.5),

and a simple implementation of such argumentative MAP model in a domain of ambient
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intelligent applications (27, 28) (sections 2.5 and 2.6). The results obtained in these latter

works revealed that the argumentation-based MAP model was able to deal with rich argu-

mentative representations but had a limited planning capability. Q-DeLP-POP, however,

greatly outperforms the previous system by exploiting, among other things, the reuse of

argumentative dialogues during the construction of a POP search tree, which allows us

to tackle problems from the International Planning Competitions (IPC)1. Additionally,

Q-DeLP-POP provides a more sophisticated specification of the qualification problem in

planning, defining novel relationships between argument steps and action steps of a plan.

Overall, the aim of this work was to put together and exploit the investigations carried

out in (26) and (28) in order to come up with a domain-independent, fully integrated and

operative argumentation-based MAP model. The experimental results of this work are

considered as the final results of this PhD thesis.

Figure 2.1 shows a summary of the evolution of the contributions of this PhD thesis.

The first version of this Framework was labeled as DefPlanner (section 2.2); the second

version as MAPA (section 2.3); the third version as multi-agent DeLP-POP (section 2.4);

the fourth version as DeLP-MAPOP (section 2.5); the fifth version as CAMAP (section

2.6); and, the sixth and final version as Q-DeLP-POP (section 2.7).

Table 2.1: The different versions of the Framework proposed in this PhD thesis.

1http://ipc.icaps-conference.org/
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2.2 Selected Paper 1: Defeasible Planning through Multi-
Agent Argumentation (CIMA-ICTAI 2010 and its ex-
tension in a Book)

Abstract. The work reported here introduces DefPlanner, an argumentation-based partial-

order planner where different agents that have a partial, and possibly contradictory,

knowledge of the world articulate arguments for and against supporting preconditions

of the actions to be included in a plan. In this paper, we introduce an extension to multi-

ple agents of the defeasible argumentation formalism that has been proposed to address

the task of planning in a single agent environment.

2.2.1 Introduction

Planning is the art of building control algorithms that synthesize a course of action to

achieve a desired set of goals. The mainstream in planning is that of using heuristic func-

tions to evaluate goals and choices of action or states on the basis of their expected utility

to the planning agent (36). In classical planning, intelligent agents must be able to set

goals and achieve them, they have a perfect and complete knowledge of the world, and

they assume their view of the world can only be changed through the execution of the

planning actions. However, in many real-world applications, agents often have contra-

dictory information about the environment and their deductions are not always certain

information, but plausible, since the conclusions can be withdrawn when new pieces of

knowledge are posted by other agents.

On the other hand, argumentation, which has recently become a very active research

field in computer science (37), can be viewed as a powerful tool for reasoning about

inconsistent information through a rational interaction of arguments for and against some

conclusion. Systems that build on defeasible argumentation apply theoretical reasoning

for the generation and evaluation of arguments, and they are used to build applications
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that deal with incomplete and contradictory information in dynamic domains ((5, 24, 38,

39)). Particularly, the application of an argumentation-based formalism to deal with the

defeasible nature of reasoning during the construction of a plan has been addressed by

Garcia and Simari (22)(23).

This paper extends the work of (23) and presents DefPlanner, a defeasible argumen-

tation planner developed for multi-agent environments. We explicitly consider several

entities (agents) in the argumentative process for the support of the conditions of a plan-

ning action. Some recent works like (40, 41) realize argumentation in multi-agent systems

using defeasible reasoning but they are not particularly concerned with the task of plan-

ning. Specifically, we consider propositional STRIPS planning representation augmented

with the incorporation of different sources of defeasible information (agents). Defplanner

is a partial-order planner ((42, 43)) that invokes an argumentation process where many

different agents with different opinions exchange arguments and counterarguments in or-

der to determine whether a given precondition of an action is supported or not, i.e. it can

be defeasibly derived or not.

This paper is organized as follows. Next section summarizes the main notions on

defeasible logic and partial-order planning. Section 2.2.3 elaborates on the use of ar-

gumentation during the construction of a partial-order plan. Section 2.2.4 presents the

defeasible argumentation process in a multi-agent system, and section 2.2.5 presents an

example of application. Finally, section 2.2.6 concludes and presents some future work.

2.2.2 Background

2.2.2.1 Defeasible Logic

In this section, we summarize the main concepts of the work on Defeasible Logic Pro-

gramming (DeLP), a formalism that combines Logic Programming and Defeasible Ar-

gumentation (24). The basic elements in DeLP are facts and rules. Let L denote a set
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of literals, where a literal h is a fact A or a negated fact ∼A, and, the symbol v repre-

sents the strong negation. The set of rules is divided into strict rules, i.e. rules encoding

strict consequences, and defeasible rules, which derive uncertain or defeasible conclu-

sions. A strict rule is an ordered pair head ← body, and a defeasible rule is an ordered

pair head−� body, where head is a literal, and body is a finite non-empty set of literals.

For example, the strict rule animal← bird is denoting the piece of information "a bird is

an animal". However, a defeasible rule is used to describe tentative knowledge that may

be used if nothing else can be posed against it, e.g. "birds fly" (fly −� bird).

Using facts, strict and defeasible rules, an agent is able to satisfy some literal h as

in other rule-based systems. Let X be a set of facts in L, STR a set of strict rules, and

DEF a set of defeasible rules. A defeasible derivation for a literal h from X , denoted

as X|∼ h, consists of a finite sequence h1, . . . , hn = h of literals such that hi is a fact

(hi ∈ L), or there is a rule in STR ∪ DEF with head hi and body b1, . . . , bk, and every

literal of the body is an element hj of the sequence appearing before hi (j < i). A set

X is contradictory, denoted X|∼ ⊥, if two contradictory literals, eg. h and v h, can be

derived from X .

In our planning framework, the agent’s knowledge base is formed by a consistent set

of facts Ψ, and a set of defeasible rules ∆.

Definition 1. Let h be a literal, and let K = (Ψ,∆) be the knowledge base of an agent.
We say that 〈A, h〉 is an argument structure for h, or simply argument for h, if A is a set
of defeasible rules of ∆, such that:

• there exists a defeasible derivation of h from Ψ ∪A,

• the set Ψ ∪A is non-contradictory, and

• A is minimal, i.e., there is not a A
′ ⊂ A, such that A

′
satisfies the above two

conditions.
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The literal h is called the conclusion of the argument, and A the support of the argu-

ment.

Definition 2. Two literals h1 and h2 disagree iff the set Ψ ∪ {h1, h2} is contradictory.
Two complementary literals h and ∼h disagree because for any set Ψ, Ψ ∪ {h,∼h}
is contradictory. We say that the argument 〈A1, h1〉 is in conflict or counter-argues the
argument 〈A2, h2〉 at the literal h, if and only if there exists a sub-argument 〈A, h〉 of
〈A2, h2〉, that is A ⊆ A2, such that h and h1 disagree. If 〈A1, h1〉 is a counterargument
for 〈A2, h2〉 at literal h, then h is called a counter-argument point, and the subargument
〈A, h〉 is called the disagreement subargument (24).

In short, two arguments are in conflict if they support contradictory conclusions, or

one of the arguments is in conflict with an inner part of the other argument. That is, if the

head of a defeasible rule in one of the arguments contradicts the head of a defeasible rule

in the other argument.

In order to deal with counterarguments, a central aspect is to establish a formal com-

parison criterion among arguments. A possible preference relation among arguments is

the so-called generalized specificity (44). We consider an argument A1 is preferred to an

argument A2 if A1 is more precise (it is based on more information), or more concise (it

uses fewer rules in the conclusion derivation). In such a case, it is said A1 is more specific

than A2. For example, 〈{c −�a, b}, c〉 is more specific than 〈{∼c −� ∼a},∼c〉. We use

〈A1, h1〉 � 〈A2, h2〉 to denote 〈A1, h1〉 is more specific than 〈A2, h2〉 The preference

criterion is needed to decide whether an argument defeats another or not, as disagreement

does not imply preference.

Definition 3. The argument 〈A1, h1〉 is a defeater for 〈A2, h2〉 iff there is a subargument
〈A, h〉 of 〈A2, h2〉 such that 〈A1, h1〉 is a counterargument of 〈A2, h2〉 at literal h, and
〈A1, h1〉 � 〈A, h〉.

Definition 4. An argumentation line for 〈A0, h0〉 is a sequence of arguments, denoted
Λ = [〈A0, h0〉, . . . , 〈Am, hm〉], where each element of the sequence 〈Ai, hi〉, i > 0, is
a defeater of its predecessor 〈Ai−1, hi−1〉. Certain constraints over Λ are considered in
(24) in order to avoid several problematic and undesirable situations that may arise in Λ.
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Definition 5. A dialectical tree for the argument 〈A0, h0〉, denoted T〈A0,h0〉, is defined
by the root of the tree, labeled with 〈A0, h0〉, and a set of argumentation lines from the
root, where every node (except the root) represents a defeater of its parent, and leaves
correspond to non-defeated arguments, arguments with no defeaters.

Some examples of dialectical trees can be found in (24). In order to decide whether

the argument at the root of a given dialectical tree is defeated or not, it is necessary to

perform a bottom-up analysis of the tree. Every leaf of the tree is marked undefeated and

every inner node is marked defeated, if it has at least one child node marked undefeated.

Otherwise, it is marked undefeated. Let T∗〈A,h〉 denote a marked dialectical tree of the

argument 〈A, h〉. A literal h is said to be warranted, if and only if there is an argument

〈A, h〉 for h such that the root of the marked dialectical tree T∗〈A,h〉 is marked undefeated.

In such a case, 〈A, h〉 is a warrant for h. If a literal h is a fact then h is also warranted as

there are no counterarguments for 〈∅, h〉. Otherwise, if all arguments for h are marked as

defeated then the literal h is said to be not warranted.

2.2.2.2 Partial-Order Planning

Planning is the art of building control algorithms that synthesize a course of action to

achieve a desired set of goals. We consider planning problems encoded in a formal, first-

order language such as STRIPS (45), particularly in a propositional version of STRIPS.

We will denote the set of all propositions by P (ground facts or literals). A planning

state s is defined as a finite set propositions s ⊆ P. A (grounded) planning task is a

triple T = 〈O, I,G〉, where O is the set of deterministic actions of the agent’s model that

describes the state changes, and I ⊆ P (the initial state) and G ⊆ P (the goals) are sets of

propositions. An action a ∈ O is a tuple a = (pre(a), add(a), del(a)), where pre(a) ⊆ P

is the set of propositions that represents the action’s preconditions, and add(a) ⊆ P and

del(a) ⊆ P are the sets of propositions that represent the positive and negative effects,
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respectively. We will represent an action a as follows:

{q1, . . . , qn,∼r1, . . . ,∼rm}
id←− {p1, . . . , pk} (2.1)

where id is the action name, ∀ki=1pi ∈ pre(a), ∀ni=1qi ∈ add(a), and ∀mi=1ri ∈ del(a).

An action a is executable in state s if pre(a) ⊆ s. The state resulting from executing a is

defined as s′ = (s\del(a))∪add(a). That is, we delete any proposition in s that belongs

to del(a), and add the propositions in add(a). A solution plan (Π) for a planning task T

is a set of actions Π = {a1, . . . , an} ⊆ O such that when applied to I, it leads to a final

state in which the goals G are satisfied. A planning task T is solvable if there exists at

least one plan for it.

In what follows, we provide a brief introduction to the Partial-Order Planning (POP)

paradigm ((42)(43)). A more detailed tutorial can be found in (46). In POP, search is

done through the space of incomplete partially-ordered plans as opposite to state-based

planning. Thus, a key concept in POP is that of partial-order plan.

Definition 6. A partial-order plan is a tuple Π = 〈AP ,OR,CL,OC,UL〉, where:

• AP ⊆ O is the set of ground actions1 in Π.

• OR is a set of ordering constraints (≺) over O

• CL is a set of causal links over O. A causal link is of the form (ai, p, aj), and
denotes that the precondition p of action aj will be supported by an add effect of
action ai.

• OC is the set of open conditions of Π. Let ai ∈ O; if ∃p ∈ pre(ai)∧ 6 ∃aj ∈
O/(aj , p, ai) ⊆ CL, then p is said to be an open condition.

• UL is the set of unsafe causal links of Π, also called the threats. Let (ai, p, aj) ⊆
CL; (ai, p, aj) is unsafe if there exists an action ak ∈ O such that p ∈ del(ak) and
OR ∪ {ai ≺ ak ≺ aj} is consistent.

1Partial-order planners are capable of handling partially instantiated action instances and hence, the defini-
tion of a partial order plan typically includes a set of equality constraints on free variables in O (43). We will,
however, restrict our attention to ground action instances without any loss of generality for our purposes.
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Given a planning task T = 〈O, I,G〉, a POP algorithm starts with an empty partial

plan and keeps refining it until a solution plan is found. The initial empty plan Π0 =

〈AP ,OR,CL,OC,UL〉 contains only two dummy actions AP = {a0, af}, the start

action a0, and the finish action af , where pre(af ) = G, add(a0) = I, {a0 ≺ af} ⊆ OR,

CL = ∅, OC = G and UL = ∅. The empty plan has no causal links or threats, but,

has open condition corresponding to the preconditions of af (the top-level goals G). A

refinement step in a POP algorithm involves two things; first, selecting a flaw (an open

condition or a threat) in a partial plan Π, and then selecting a resolver for the flaw. The

different ways of solving a flaw are:

• Supporting an open condition with an action step. If p is an open condition, an

action a needs to be selected that achieves p. a can be a new action from O, or

any action that already exists in AP . Solving an open condition involves adding a

causal link to Π to record that p is achieved by the chosen action step.

• Solving a threat with an ordering constraint. When the flaw chosen is an unsafe

causal link (ai, p, aj) that is threatened by an action ak, it can be repaired either by

adding the ordering constraint ak ≺ ai, or the constraint aj ≺ ak, into OR. This

solving method involves reordering the action steps in Π.

Definition 7. A plan Π = 〈AP ,OR,CL,OC,UL〉 is complete if it has no open condi-
tions (OC = ∅).

Definition 8. A plan Π = 〈AP ,OR,CL,OC,UL〉 is conflict-free if it has no unsafe
causal links (UL = ∅).

Definition 9. A plan Π = 〈AP ,OR,CL,OC,UL〉 is a solution if it is complete and
conflict-free.

2.2.3 Argumentation in POP

The task of the agents in classical planning is to be able to set goals and achieve them,

i.e. finding a causal chain of actions that, when applied in the initial state, it achieves the
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desired (sub)goals. In this sense, the set pre(a) of a planning action a is interpreted as

a set of achievable preconditions. However, actions can also have preconditions whose

predicates are not affected by any of the actions available to the planning agent. Instead,

the predicate’s truth value is the result of a derivation obtained by forward chaining in-

ference rules. More concretely, in our framework, the agent is equipped with a set of

planning actions, O, and a knowledge base K = (Ψ,∆) where:

• Ψ is a consistent set of facts. Initially, Ψ = I, and this set will be updated accord-

ingly with the add and del effects of the applicable actions.

• ∆ is a set of defeasible rules that will be used to derive plausible information,

tentative conclusions that might be withdrawn with new pieces of information.

In conclusion, a planning action a is a tuple a = (pre(a), add(a), del(a)), where the

set pre(a) is divided into two subsets:

• pre_ach(a) denotes the set of achievable preconditions of the action a. The seman-

tics is the same as in classical planning; an achievable precondition p of an action

a is supported if it exists a set of actions from O that achieves the fact, and p holds

in the state in which a will be applied, i.e. p is not deleted by any action before it

holds in the state.

• pre_der(a) denotes the set of derivable preconditions of the action a, the set of

preconditions that can be solved via a defeasible derivation. More particularly, the

semantics is that a derivable precondition p of an action a is supported if there exists

an argument 〈A, p〉 such that the root of a the tree T∗〈A,p〉 is marked undefeated, i.e.

p is warranted in the state in which a will be applied.

Achievable preconditions are supported in a partial-order plan through action steps

(see section 2.2.2.2). On the other hand, derivable preconditions are supported through ar-

gument steps as proposed in the argumentation-based formalism presented in (23). Hence,
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we define a POP paradigm in combination with the argumentation formalism described in

section 2.2.2.1, and we analyze the interplay of arguments and actions when constructing

plans using POP techniques.

Definition 10. Let K = (Ψ,∆) be the knowledge base of an agent; and let 〈A, p〉,
A ⊆ ∆, an argument that supports a derivable literal p. The set facts(A) contains the
facts that appear in the bodies of the rules in A.

In a partial-order plan Π, when an argument 〈A, p〉 is used to support a derivable pre-

condition p of an action ai, Π will contain a new element, a support link of the form

(A, p, ai). This refinement step for solving a derivable precondition of an action is called

argument step (23). Like causal links, support links are used to support a derivable pre-

condition with the conclusion of an argument. Assuming an argument step A1 = 〈A, p〉,

we can interpret that add(A1) = {p}, and pre(A1) = facts(A1). As can be observed,

the introduction of argument steps does not imply any changes in the POP algorithm.

Under this new perspective, we reformulate the definition 6 as follows: A partial-

order plan is a tuple Π = 〈AP ∪ AR,OR,CL ∪ SL,OC ∪DP ,UL〉, where AP , OR,

CL, OC and UL have the usual meaning, AR is the set of argument steps included in Π,

SL is the set of support links, and DP is the set of pending derivable preconditions of the

actions in Π. Note that the facts of an argument step are the achievable preconditions of

the argument and as such they are included as open conditions in the set OC.

Unlike the approach presented in (23), DefPlanner is a defeasible argumentation-

based planner in which many different agents with different opinions argue with each

other on the warranty of a given argument. During the plan construction, at the time of

solving a derivable precondition p, DefPlanner invokes a procedure and agents initiate a

discussion in order to check whether p can be warranted or not. This procedure builds a

dialectical tree for each supporting argument of p and finally returns whether p is defeated

or undefeated. This multi-agent discussion is explained in detail in next section. Hence,

in the case of DefPlanner, argument steps are only inserted in a partial-order plan as long
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as it has been proven the argument is undefeated. This contrasts with other approaches in

which each supporting argument gives rise to a different alternative in the POP algorithm,

and discussions on the warranty of a given argument take place in case a counter-argument

is introduced in the plan. In conclusion, DefPlanner only inserts provably undefeated ar-

guments in a plan, and, consequently, no threats involving two argument steps may appear

in our approach. Let 〈A1, p〉 be an argument step inserted in a plan Π; if argument 〈A2, q〉

is later inserted in Π then DefPlanner guarantees A2 is not a counter-argument of A1 and

viceversa.

Additionally, in this first approach of DefPlanner, we assume a piece of information

can not be both derived and achieved. That is, a proposition p is either defeasibly derived

through a dialectical tree by using the rules in ∆, or achieved through a course of actions

in O. Thus, the predicates of defeasible information are never affected by the available

planning actions O and, consequently, no action-argument threats exist. In section 2.2.6,

we elaborate on this issue for future versions of DefPlanner.

2.2.4 Defeasible argumentation in a multi-agent system

DefPlanner implements a Multi-Agent System (MAS) (figure 2.1) to assist during the

construction plan. Agents can adopt one of the four different roles specified in this MAS:

• Client role: The user is represented by an agent playing this role, which is in charge

of requesting a plan for a given set of goals.

• POP role: The agent playing this role, that is, the planner takes as input the set of

goals and returns a solution plan that satisfies the client goals. There is only one

agent playing the POP role per MAS.

• Argumentative role: An agent agi which plays this role is associated with a set

of defeasible rules representing the tentative information of the agent about the

environment (∆i). The task of each argumentative agent agi is to participate as far
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as possible in the multi-agent discussions for warranting a given literal. Each agent

has an associated utility function1 that is used to maximize its benefits.

• Mediator role: The agent which plays this role (only one per MAS) is in charge of

managing the multi-agent argumentation process.

POP Agent

Argumentative Agent 2

Argumentative Agent 3

Client Agent

Mediator Agent

Argumentative Agent 1

D
ef

P
la

nn
er

Figure 2.1: An overview of DefPlanner.

A MAS, as defined in this paper, is formed by a POP agent which reasons about

which action step (for solving an open condition), or ordering constraint (for solving a

threat) should be chosen in the next iteration of the POP algorithm; a group of non-self-

interested argumentative agents, which join together to reason about the argument step
1For instance, in terms of less cost, time, resources or increased safety could be expressed their utility

functions.
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that should be chosen to satisfy/warrant a derivable precondition; and, a mediator agent,

which coordinates the multi-agent argumentation process for warranting a literal.

2.2.4.1 DefPlanner Algorithm

The POP agent implements an extension of the traditional POP algorithm by considering

the introduction of argument steps, and corresponding support links, to resolve a defea-

sible precondition (Algorithm 1). The three non-determinist choose statements state that

the algorithm has to make a choice among different alternatives (selecting the next partial-

plan to work on, selecting a pending derivable precondition in the partial plan, or selecting

the next open condition/threat to study). Typically, the selected choice will be the result of

the application of a specific heuristic (36). The multi_argumentation function encodes

the defeasible argumentation multi-agent process, which will be explained in detail in the

next subsection.

The traditional POP algorithm works as follows: starting with the initial empty plan

Π0 (step 1 in Algorithm 1), it works through the application of successive refinement steps

at each iteration. First, it chooses a partial-order plan from the list of candidates (step 3 in

Algorithm 1), and then it applies a refinement step that involves selecting a flaw (threat or

open condition) in the partial-order plan (step 11 in Algorithm 1).

In contrast with the traditional POP algorithm, the new algorithm considers argument

steps, besides action steps, to support unsatisfied derivable preconditions. The POP agent

takes an argument step as the support from the defeasible argumentation multi-agent pro-

cess (section 2.2.4.2) to derive a defeasible precondition. If no argument steps can be

constructed to support a derivable precondition, then it prunes1 the selected plan Π from

Plan_List. Note that, unlike the achievable preconditions, the algorithm does not branch

for each different argument step that supports a derivable precondition. As it will be ex-

plained later, in case of more than one undefeated argument step for a given defeasible

1i.e. the plan is discarded and the search process does not continue exploring through this plan.
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precondition, the voting phase will select the best argument step according to the prefer-

ence criterion of generalized specificity (see section 2.2.2.1).

The process ends when both subgoal_list_1 and subgoal_list_2 are empty, in whose

case Π is a solution plan, or when Plan_List is empty, in whose case there is not a

solution plan.

1: Plan_list := Π0

2: repeat
3: choose Π ∈ Plan_list

subgoal_list_1 := DP (Π)

subgoal_list_2 := OC(Π)
⋃

UL(Π)

4: if (subgoal_list_1
⋃
subgoal_list_2 = ∅) then

5: return Π {Plan solution}
6: else if subgoal_list_1 6= ∅ then
7: choose Φ ∈ subgoal_list1

Πa := multi_argumentation(Φ)

8: if Πa 6= NIL then
9: then Plan_list := Plan_list

⋃
Πa

10: else
11: choose Φ ∈ subgoal_list2

Relevant := {Πr},∀ Πr that resolves Φ {Each r is a choice (partial-order
planning) to solve Φ}

12: if Relevant 6= ∅ then
13: Plan_list := Plan_list

⋃
Relevant

14: until Plan_list = ∅
15: return fail {Not exists plan}

Algorithm 1: Outline of the DefPlanner algorithm

2.2.4.2 Defeasible Argumentation Multi-Agent Process

The objective of this process is to have multiple agents reasoning (discussing) about the

warrant for a particular derivable precondition p requested by the POP agent. The output
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of the process will be an argument step, if it exists an undefeated argument structure for

p; otherwise, the procedure will return NIL (step 8 in Algorithm 1) thus indicating there

is no refinement plan that supports the defeasible precondition p.

In what follows, we will consider the notions defined in the section 2.2.2.1, such as

argument structure, disagreement, argumentation line, etc. Unlike single-agent contexts,

in our multi-agent framework arguments and counter-arguments will be proposed by dif-

ferent argumentative agents in the MAS.

DefPlanner divides the reasoning process into three phases: the Dialogue Phase, in

which arguments and counter arguments are proposed, the Evaluation Phase, in which

each argument proposal to derive p is marked as defeated or undefeated, and the Vot-

ing Phase, in which a voting is applied - in case of more than one undefeated argument

structure- to choose the best undefeated proposal for p according to the preference crite-

rion.

Dialogue Phase. Both the argumentative agents and the mediator agent are involved in

this phase. The argumentative agents of the MAS provide two functionalities: (I) propose

an initial argument structure to support a derivable precondition p, which will be the

root of a dialectical tree, and (II) propose a counterargument to the argument articulated

by another agent in the argumentation line. We assume that argumentative agents are

ordered according to their indexes: 1, 2, ..., n. The proposed model follows a rotating

shift approach1, in which an argumentative agent can only participate during its turn. The

mediator agent is in charge of adding the proposed arguments to the appropriate dialectical

tree or creating a new dialectical tree in case of a new initial argument structure.

Let 〈Xi, h〉 be an argument structure where X is the argument support, i denotes

the argumentative proposer agent, and h is the conclusion supported by the argument.

Extending the definition 4 (section 2.2.2.1), an argumentation line in DefPlanner, Λ =

1The shift approach allows to treat uniformly each agent.
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[〈Xi, h0〉, 〈Yj , h1〉 . . . , 〈,Zi, hn〉], is a sequence of argument structures from different ar-

gumentative agents such that two consecutive argument structures cannot be proposed by

the same agent; i.e. 〈Xi, h0〉, 〈Yj , h1〉, and i 6= j. Thereby, DefPlanner does not allow

agents giving counterarguments to their own arguments, and this is achieved by ensuring

that the agent’s local belief base (∆i) is consistent with respect to the global belief base

(Ψ). In this first version of DefPlanner, at the turn of an argumentative agent, it has to

articulate all the arguments for a given derivable precondition, or all its counterarguments

for a given argument, so an agent can jump-shift the turn only if it lacks sufficient infor-

mation to make a new proposal. However, in future versions, we will consider to model

other different kinds of argumentation strategies.

Specifically, the aim of this phase is to provide reasons that support a derivable pre-

condition p ∈ pre_der(a). A new argument 〈Xi, p〉 represents the root of a dialectical

tree T〈X,p〉. In order to determine whether 〈Xi, p〉 is an undefeated argument or not in the

next phase, agents alternatively propose a counter-argument as a defeater to any of the

leaf nodes of the dialectical tree T〈X,p〉. According to (24), a counter-argument 〈Yj , h2〉

to the argument 〈Xi, h1〉 can be a direct attack to the conclusion, that is h2 and h1 are

contradictory literals, or can be an indirect attack by arguing an inner point h of 〈Xj , h1〉.

Since counter-arguments are arguments too, there may exist defeaters for them, and so

on, thus giving rise to the argumentation lines of T〈X,p〉.

Evaluation Phase. At this phase, the aim is to decide whether a dialectical tree of a

defeasible precondition p is marked as undefeated or defeated. More specifically, the

mediator agent performs a bottom-up-analysis for each dialectical tree T〈X,p〉 developed

in the above phase, obtaining a set of marked dialectical trees
n⋃
0
T∗〈X,p〉, where n is the

total number of dialectical trees for p. Nodes will be recursively marked as D (defeated) or

U (undefeated) like the minimax tree used in Artificial Intelligence for game trees. At the

end of this process, each root argument 〈Xi, p〉 will be marked as defeated or undefeated
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(Definition 5). In DefPlanner, a derivable precondition p is warranted if it has at least

a root argument that satisfies p, and the corresponding dialectical tree is marked as U

(undefeated).

Voting Phase. If the derivable precondition p has more than one undefeated argument,

we must choose one of them as the support for p in a partial-order plan Π. In this phase,

agents vote the most preferable undefeated argument according to their own utility func-

tion. The undefeated argument structure with the highest number of votes will be the

selected argument step to be included in Π. In case of tie-breaking, the mediator agent

makes the final decision. So, the voting idea is that each agent votes according to their dif-

ferent partial plans. For instance, the next utility function could be adopted: generalized

specificity (44), a function that favors two aspects in an argument to derive a derivable

precondition: it prefers (1) a more precise argument (i.e., with greater information con-

tent) or (2) a more concise argument (i.e., with less use of rules). So, the undefeated

arguments with greater information and less rules would be preferred.

The following section illustrates the application of this protocol to an example sce-

nario in order to obtain a solution plan for a planning task.

2.2.5 Example of application

Figure 2.21 shows the planning scenario where we will put our argumentation-based

model to work. There are two different locations in this scenario l1 and l2. As can

be seen in the figure, there are three different connections between l1 and l2: via truck,

train or plane, and so the client agent can reach l2 by using any of these three transport

means. The client agent, the truck, the train and the plane are initially located at l1. The

goal of the problem is to have the client agent in l2. Following, we present the objects

defined in this problem:

• l1, l2, ca - location 1, location 2, and the client agent

37



2. SELECTED PAPERS

l2

tra

tr

l1

ca
l1

pl

Figure 2.2: Scenario of the application example

• tr, tra, pl - a truck, a train, a plane,

• r, tl, al, ae - a road, a railway, an airline company, the airline experts,

• tv, in, - television news, internet news

• bw, sn, wg, - bad weather, snow, wind gusts

• br, vi, ll, esf - bad railroad, adequate visibility, landslides, electrical supply failure

• rm, va, ds - airplane engines work well, volcano ash cloud hits airline, dangerous

situation

• h, j6, tj - holidays, June 6, and traffic jam.

The actions the client agent can perform are the following ones:

• Mp(?j, ?k): moving plane pl from location j to k. It must exist an airline company

to travel from j to k, and absence of dangerous situations to assure safety. Moving

a plane takes 3 time units.
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O =



{(at tr ?k), ∼(at tr ?j), (at ca ?k), ∼(at ca ?j)} mFt←−−−
{(link r ?j ?k), (at tr ?j), (at ca ?j), ∼(tj)}

{(at tr ?k), ∼(at tr ?j), (at ca ?k), ∼(at ca ?j)} mSt←−−−
{(link r ?j ?k), (at tr ?j), (at ca ?j)}

{(at tra ?k), ∼(at tra ?j), (at ca ?k), ∼(at ca ?j)} mT←−−
{(link tl ?j ?k), (at tra ?j), (at ca ?j), ∼(br), (v)}

{(at pl ?k), ∼(at pl ?j), (at ca ?k), ∼(at ca ?j)} mP←−−
{(link al ?j ?k), (at pl ?j), (at ca ?j), ∼(ds)}



• fMt(?j, ?k): fast-moving truck tr from location j to k. It must exist a road from j

to k, and assure there is no traffic jam between j and k. This action takes 8 time

units.

• sMt(?j, ?k): slow-moving truck tr from location j to k. It must exist a road from j

to k. This action takes 20 time units.

• Mt(?j, ?k): moving train tra from location j to k. There must exist a railway from

j to k, and no bad railroad conditions to assure an adequate visibility. This action

takes 10 time units.

Our multi-agent system consists of the POP agent, the mediator agent and three argu-

mentative agents,Bob, Joe andAnn. Agents have different knowledge and two pieces of

information from different agents can appear to be contradictory. Let’s assume that each

argumentative agent is a travel agency, that Joe uses TV as a source of information, but

Ann prefers Internet to keep up to date. The goal (G) is to have the agent ca at position
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l2, (at ca l2). The global belief base (Ψ), the local belief bases (∆Bob, ∆Joe, ∆Ann),

and the action base (O) are detailed as follows:

Ψ =


(have in); (have tv); (have vi); (have va);

(have wg); (today j6); (have ae); (at ca l1);
(at tr l1); (at pl l1); (at tra l1);

(link l1 l2 r); (link l1 l2 tl); (link l1 l2 al);


∆Bob =

{
br −�ll; ll −�wg; bw −�wg;

ds−�{va, tv};

}

∆Joe =

 br −�esf ; esf −�sn; br −�sn; ∼bw −�sn;
sn−�tv; tj −�h;

h−�j6; ∼ds−�rm; rm−�ae;



∆Ann =

{
∼bw −�h; h−�j6; ∼ll −� ∼bw;

∼br −� ∼bw;∼bw −�in; ∼sn � in; ∼rm−�va;

}

For the sake of simplicity, Bob, Joe and Ann have the same utility function. Specif-

ically, we consider the same comparison criterion among defeaters arguments (section

2.2.2.1), as an utility function that returns the best undefeated argument. In what follows,

we explain how DefPlanner works to obtain a complete plan Π that satisfies the goal G.

2.2.5.1 Searching for a Solution Plan

Step 1. The planning process starts with the empty plan Π0 (leftmost plan in Figure

2.5). For solving the precondition Φ = (at ca l2), the POP agent has four different action

choices {mP (l1, l2), mFt(tr, l1, l2), mT (l1, l2), mSt(tr, l1, l2)}, so four new

partial-order plans {Π0.1,Π0.2,Π0.3,Π0.4} are added to Plan_List (see Figure 2.6).
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〈EJoe,∼ds〉D

〈EAnn,∼rm〉U 〈CBob, ds〉U

Figure 2.3: Marked dialectical tree for the derivable precondition ∼ds at step 2 of the plan
solution process

Step 2. Let’s assume the POP selects the plan Π0.1 because it is the plan that takes

fewer time units. Then we have AP (Π0.1) = {mP (l1, l2)}. The action mP (l1, l2)

has a derivable precondition p =∼ds meaning that the plane can only fly if it is assured

that no dangerous situation is expected during the flight. The POP agent invokes the

mediator agent that calls the multi_argumentation function, and it proposes a new

dialogue phase to check whether p is warranted or not.

Joe takes the first shift, and puts forward the initial argument 〈EJoe,∼ds〉 with EJoe =

{∼ds−�rm; rm−�ae}, indicating that the airline experts assert the airplane engines

work well and that there will be no dangerous situation. When counterarguments to this

argument are requested, Ann responds1 with 〈EAnn,∼rm〉 with EAnn = {∼rm−�va}, and

Bob responds 〈CBob, ds〉 with CBob = {ds−�{va, tv}}. Nobody has more information

to argue against, so the process ends here. Figure 2.3 shows the argument 〈EJoe,∼ds〉 is

marked as defeated, and, consequently,∼ds is not warranted. Themulti_argumentation

function returns Π0.1.1 = NIL because ∼ds is not warranted. Thereby, Π0.1 is discarded

from the Plan_list.

Step 3. Let’s assume the next plan to be selected is Π0.2 (see Figure 2.6), where =

AP (Π0.2) = {mFt(tr_1, l1, l2)}. The action mFt(tr_1, l1, l2) has a derivable pre-

condition p =∼tj, indicating that there should not be traffic jam for fast-moving truck.

The POP agent selects Π0.2 because it is the second plan with fewer time units. The POP

1An argumentative agent responds if it is at its turn.
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〈FAnn,∼br〉U

〈ABob, br〉D 〈BJoe, br〉D 〈CJoe, br〉D

〈BAnn,∼ll〉U 〈AAnn,∼sn〉U 〈AAnn,∼sn〉U

〈BBob, bw〉D

〈DJoe,∼bw〉U 〈CAnn,∼bw〉U 〈DAnn,∼bw〉U

Figure 2.4: Marked dialectical tree for the derivable precondition ∼br at step 2 of the plan
solution process

agent invokes the mediator agent that calls the multi_argumentation function, and it

proposes a new dialogue phase to check whether ∼tj is warranted or not.

Bob and Ann have not traffic jam information, and Joe knows there is traffic jam

because today is June 6, and {tj −�h; h−�j6}. Therefore, nobody can support ∼tj, and,

multi_argumentation function returns Π0.2.1 = NIL. Thereby, Π0.2 is discarded from

Plan_list.

Step 4. Assuming the next selected plan is Π0.3 (Figure 2.6) where AP (Π0.3) = {mT (l1, l2)},

the action mT (l1, l2) has a derivable preconditions which indicates the railroad must not

be in bad conditions; then, Φ =∼br.

Ann takes the first shift, and puts forward the initial argument 〈FAnn,∼br〉 with FAnn =

{∼br −� ∼bw;∼bw −�in}, i.e., internet news say that bad weather is not expected, and,

therefore, the railroad will not be in bad conditions. Next,Bob takes the shift and responds

directly attacking ∼br with 〈ABob, br〉, where ABob = {br −�ll; ll −�wg}, meaning that

wind gusts are expected according to the information in the initial state, and because of
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that landslides may occur. If landslides happen to occur, then it is likely the case to have

the railroad in bad conditions.

Joe takes the shift, and responds to ∼br with 〈BJoe, br〉 with BJoe = {br −�esf ;

esf −�sn; sn−�tv}, and, 〈CJoe, br〉 with CJoe = {br −�sn; sn−�tv}. That is, according

to Joe’s information, television news report it will snow, and so the railroad is likely to be

in bad conditions as well as having a electrical supply failure, which causes to have the

railroad in bad conditions.

When counterarguments to 〈BJoe, br〉 and 〈CJoe, br〉 are requested, Ann responds with

〈AAnn,∼sn〉, where AAnn = {∼sn � in}. When asked to counter-argue 〈ABob, br〉, Ann

responds with 〈BAnn,∼ll〉 where BAnn = {∼ll −� ∼bw;∼bw −�in}. According to Ann’s

information, internet reports that no bad weather is expected and so there is no chance to

find landslides.

FINISH FINISHFINISH

START STARTSTART

mT mT

FINISH

START

mT

Figure 2.5: Different partial plans for the example scenario

In turn, when asked to counter-argue 〈BAnn,∼ll〉, Bob takes the shift, and responds

43



2. SELECTED PAPERS

〈BBob, bw〉 with BBob = {bw −�wg}. In turn, Joe responds 〈DJoe,∼bw〉 with DJoe =

{∼bw −�sn; sn−�tv}, and,Ann responds 〈CAnn,∼bw〉with CAnn = {∼bw −�h; h−�j6},

and 〈DAnn,∼bw〉 with DAnn = {∼bw −�in}.

Figure 2.4 shows that the argument 〈FAnn,∼br〉 is marked as undefeated, and, conse-

quently, the derivable precondition ∼br is warranted. The multi_argumentation func-

tion returns Π0.3.1, an extension of Π0.3 with FAnn and CL(FAnn).

Step 5. Assuming the plan selected next is Π0.3.1 (because it has less duration than

Π0.4), the POP agent extends Π0.3.1 to Π0.3.1.1, adding a causal link between facts(FAnn)

and the initial state Ψ (Figure 2.6). Π0.3.1.1 is a solution plan that satisfies the goal G

(Figure 2.5).

(at ca l2)

mP mFt mT mSt

brtjds
X X

Figure 2.6: Search in the space of partial-order plans for the example scenario
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2.2.6 Conclusions and related work

In this paper, we have presented DefPlanner, a defeasible argumentation-based planner

that allows multiple agents with partial and contradictory knowledge articulate reasons for

and against the precondition of a planning action. Along the paper, we have introduced the

necessary modifications to include a defeasible reasoning into a POP algorithm. This new

and enriched planner opens up many possibilities to be applied to a multi-agent planning

context.

DefPlanner builds on the approximation of Garcia et al (23), and extends their work

by incorporating multiple agents at the time of deciding which literals (conditions of a

planning action or derivable preconditions) are warranted. Our work is also related to

conformant planning (47), an approach to deal with planning with incomplete informa-

tion in which the purpose is to generate plans given uncertainty about the initial state and

action effects, and without any sensing capabilities during plan execution. However, un-

like conformant planning, our approach is a powerful planning mechanism for reasoning

about contradictory information coming from different sources or agents. In this sense,

in the literature of classical planning we can hardly find approaches to deal with contra-

dictory information because, among other reasons, there are very few attempts to extend

planning to a multiagent environment, being a notably exception the work of Brenner

and Nebel (48). Hence, DefPlanner is a novel approach regarding the consideration of

incomplete and contradictory information of multiple reasoning entities, i.e. agents.

As for future work, we are interested in extending the argumentation process to achiev-

able preconditions; that is, a new approach towards the integration of reasoning about

action steps (practical reasoning) and reasoning about argument steps (defeasible reason-

ing). Particularly, our next immediate step is to endow agents with planning capabilities,

rather than just limiting agents to perform defeasible reasoning and discuss the warranty

of literals, and thus come up with a defeasible multiagent planning approach. In this
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context, we will also study the choice of having non-cooperative agents in the MAS.
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2.3 Selected Paper 2: An architecture for Defeasible-Reasoning-
based Cooperative Distributed Planning (CoopIS 2011)

Abstract. Cooperation plays a fundamental role in distributed planning, in which a team

of distributed intelligent agents with diverse preferences, abilities and beliefs must coop-

erate during the planning process to achieve a set of common goals. This paper presents

a MultiAgent Planning and Argumentation (MAPA) architecture based on a multiagent

partial order planning paradigm using argumentation for communicating agents. Agents

use an argumentation-based defeasible reasoning to support their own beliefs and refute

the beliefs of the others according to their knowledge. In MAPA, actions and arguments

may be proposed by different agents to enforce some goal, if their conditions are known to

apply and arguments are not defeated by other arguments applying. In order to plan for

these goals, agents start a stepwise dialogue consisting of exchanges of plan proposals to

satisfy this open goal, and they evaluate each plan proposal according to the arguments

put forward for or against it. After this, an agreement must be reached in order to select

the next plan to be refined.

2.3.1 Introduction

A Cooperative Information System (CIS) is a large scale information system that inter-

connects various systems of different and autonomous organizations, geographically dis-

tributed and sharing common objectives (49). With the emergence of new technologies in

computing, such as SaaS, cloud computing, Service Oriented Computing, mash-ups, Web

Services, Semantic Web, Knowledge Grid, and other approaches, it is becoming increas-

ingly natural to deal with Agent-based computing or MultiAgent Systems(50). Agents,

as distributed autonomous software entities, are required to engage in interactions, argue

with one another, make agreements, and make proactive run-time decisions, individually
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and collectively, while responding to changing circumstances. For this reason, agents are

being advocated as a next-generation model for engineering complex distributed systems.

Planning is the art of building control algorithms that synthesize a course of action

to achieve a desired set of goals of the information system. Unlike classical planning,

in many real-world applications agents often have distributed contradictory information

about the environment and their deductions are not always certain information, but plausi-

ble, since the conclusions can be withdrawn when new pieces of knowledge are posted by

other agents. For this purpose, argumentation, which has recently become a very active

research field in computer science (5, 37), can be viewed as a powerful tool for reasoning

about inconsistent information through a rational interaction of arguments for and against

some conclusion.

Defeasible Logic Programming (DeLP) (24) is a framework for reasoning about

defeasible information (also known as defeasible reasoning), where tentative conclusions

are obtained from uncertain or incomplete information, and conclusions might no longer

be valid after new information becomes available. The work in (23) (see section 2.7.2)

introduces a first approach known as DeLP-POP framework, to integrate DeLP in Partial

Order Planning (POP) (43), and the work in (26) (see section 2.7.2) extends DeLP-POP

framework to a multiagent environment. As an example on how defeasible reasoning is

introduced in these frameworks, we can view an agent as a business person who needs to

travel between London and Athens, and has to build a plan to get to Athens. One may

think the first action to do is to buy a flight ticket through an airline web site. However,

another agent who is aware of the latest news on the Internet, might think the business man

will not be able to fly due to a strike announcement in London. Under these circumstances,

the second agent will put forward an argument against the first one in order to ensure that

the business man accomplishes his goal to get Athens.

The motivation for introducing distributed planning in a multi-agent environment is

twofold. On one hand, a multi-agent system design can be beneficial in many domains,
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particularly when a system is composed of multiple entities that are distributed func-

tionally or spatially. On the other hand, distributed execution promotes the efficiency of

parallel processing of actions, the robustness of the system to cope with complex planning

problems and the simplicity of an incremental construction across a network of intercon-

nected agents, thus avoiding the critical failures and resource limitations of centralized

systems. In this paper, we present a MultiAgent Planning and Argumentation (MAPA)

architecture for cooperative distributed planning in a multiagent DeLP-POP framework,

which extends and refines the preliminary work presented in (26). This paper is organized

as follows: section 2 gives a short related work; section 3 describes a background; section

4 introduces the MAPA architecture; section 5 presents the planning protocol of the archi-

tecture; and section 6 shows an example of application to validate the MAPA architecture.

Finally, we conclude and present some directions for future work.

2.3.2 Related Work

This subsection is devoted to study the most relevant related works found in the literature:

multi-agent argumentation, cooperative distributed planning (without defeasible reason-

ing) and centralized planning. Some systems that build on argumentation apply theoret-

ical reasoning for the generation and evaluation of arguments to build applications that

deal with incomplete and contradictory information in dynamic domains. Some propos-

als in this line focus on planning tasks, or also called practical reasoning, i.e. reasoning

about what actions are the best to be executed by an agent in a given situation. Dung’s

abstract system for argumentation (4) has been used for reasoning about conflicting plans

and generating consistent sets of goals (51). Further extensions of these works present

an explicit separation of the belief arguments and goal arguments and include methods

for comparing arguments based on the value of goals and the cost of resources (5). The

combination of defeasible reasoning and planning has been used in (52), in which the

whole plan is viewed as an argument and then, defeasible reasoning about complete plans
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is performed. Although the work in (52) combines defeasible reasoning and partial order

planning, defeasible reasoning is not used in the same way as (23). In contrast, (23) uses

arguments for warranting subgoals, and hence, defeasible reasoning is used in each step

of the planning search process. In any case, none of these works apply to a multi-agent

environment.

A proposal for dialogue-based centralized planning is that of (53), but no argumen-

tation is made use of. The work in (29) presents a dialogue based on argumentation to

reach agreements on plan proposals. Unlike our proposal, which focuses on an argu-

mentative and stepwise construction of a plan, this latter work is aimed at handling the

interdependencies between agents’ plans. The work in (18) introduces a framework to

build joint plans supported through the use of argumentation schemes as a mechanism of

dialogue during the planning search. On the other hand, we can also find some systems

that perform argumentation in multi-agent systems by using defeasible reasoning but are

not particularly concerned with the task of planning (41).

2.3.3 Background

The key element of DeLP are defeasible rules (Head−� Body), which are used to represent

a deductive relation between pieces of knowledge that could be defeated once other piece

of knowledge is considered. Specifically, arguments (combinations of defeasible rules and

facts) for conflicting pieces of information are built, and then compared to decide which

one prevails. For instance, a defeasible rule like "According to Internet news, an airport

strike is expected", is denoted as "strike−�news". Note that, if it occurs in London, then

it will disrupt the passengers’ plans for flying between London and Athens.

The principle of least commitment in Partial Order Planning makes it one of the more

open planning frameworks. This is evidenced by the fact that most existing architec-

tures for integrating planning with execution, information gathering, and scheduling are
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based on partial order planners. In (54), authors argue that POP-based frameworks of-

fer a more promising approach for handling domains with durative actions, and temporal

and resource constraints as compared to other planning approaches. In fact, most of the

known implementations of planning systems capable of handling temporal and durative

constraints (including IxTET (55), as well as NASA’s RAX (56)) are based on the POP

paradigm. Even for simple planning tasks, partial order planners offer a higher degree of

execution flexibility. In contrast, none of the known state-space planners can find parallel

plans efficiently (57), and planners such as Graphplan (58) only generate a very restricted

types of parallel plans. For this reason, partial order planning remains attractive when

compared to state-space planning.

An extension of POP with DeLP-style argumentation, denoted DeLP-POP frame-

work, was introduced in (23), where both actions and arguments may be used to enforce

some goal, if their conditions (are known to) apply and arguments are not defeated by

other arguments applying. Unlike actions, arguments will not only be introduced to in-

tentionally support some step of a plan, but they will also be presented to defeat or defend

other supporting arguments in the plan. When actions and arguments are combined in a

partial order plan, new types of interferences or threats appear (23). These interferences

need to be identified and resolved to obtain valid plans.

Finally, the work in (26) proposes a preliminary extension of the theoretical DeLP-

POP framework to a multiagent environment. Specifically, it proposes a dialogue for

argumentative plan search, by which agents exchange plan proposals and arguments for

or against such proposals. Unlike (26), the MAPA architecture presented here solves the

qualification problem, identifies new types of threats, and extends the agents’ knowledge

bases by including a set of agent-specific preferences. This allows us to extend and adapt

the planning protocol of MAPA to a fully-automated argumentative dialogue between

agents so as to reach agreements during the plan construction. Moreover, the MAPA
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architecture promotes a more practical vision of the extension of DeLP-POP to a multi-

agent environment.

2.3.4 Elements of the MAPA Architecture

In state-based planning, a plan Π is a linear sequence of actions, and thus before each

action is added to the plan Π, we know which consistent state will hold. In contrast,

MAPA architecture is based on POP1, where a partial order plan Π is a set of actions

whose execution ordering ≺ is only partially specified (thus encoding multiple linear

plans).

The MAPA architecture works on a planning process distributed among several plan-

ning agents, which have an incomplete knowledge (i.e. the set of actions and arguments

that an agent can propose can be different from other agents’), and have to devise a joint,

non-linear plan which may be later executed by them. The following subsections expose

(i) the agents’ planning model and the notion of argument, (ii) the improvements intro-

duced to deal with the qualification problem and the notion of plan, and (iii) the new

definition and handling of threats introduced by the qualification problem.

2.3.4.1 The Agents’ Planning Model and Arguments

The planning model of each agent is based on a set of literals Lit, such that ` ∈ Lit is

a ground atom and ∼ ` ∈ Lit is a negated ground atom, where ∼represents the strong

negation and ` =∼`. Each agent x of the MAPA architecture is initially endowed with a

planning task Mx = ((Ψx,∆x), Ax, Fx, G) where:

1. Ψx ⊆ Lit, represents a consistent set of true facts which describe the initial state of

the task.

1We consider that POP is the best planning approach concerned with the dynamic multiagent nature due to
the ease to join several plan proposals into a single joint plan.
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2. ∆x is a set of defeasible rules δ = `0, . . . , `k −� `
′

0, . . . , `
′

k.

3. Ax is a set of actions α = 〈P(α),X(α)〉 where P(α) ⊆ Lit is a set of preconditions

and X(α) ⊆ Lit is a set of effects.

4. Fx represents a consistent set of the agent-specific preferences Fx ⊆ {(a, d) | (a ∈

A), d ∈ [0, 100]}, where the action a is preferred with the estimated interest degree

d.

5. G ⊆ Lit is the set of common goals which have to be satisfied.

The diversity of preferences is addressed by means of agreements between the agents

during the planning process. We assume that agents are fully cooperative, so they have

no incentives to retain relevant information. In POP, Ψ (consistent set of agents’ initial

states of the task) and G are encoded as dummy actions {αΨ ≺ αG} with X(αΨ) = Ψ,

P(αG) = G, and P(αΨ) = X(αG) = ∅.

An argument A for ` ∈ Lit, is denoted as A = ({`}, {∆′}), where ∆
′

is a subset of

defeasible rules ∆
′ ⊆ ∆. A is consistent if base(A) ∪A is non-contradictory.

Figure 2.7: An argument A for l using the two defeasible rules: δ0 = l −�{p0, p1} and
δ1 = p1 −�{q0, q1, q2}.

Figure 2.39 shows an example of an argument proposed A, where literals(A) =

{l, p0, p1, q0, q1, q2}. This argument for a literal ` does not suffice to warrant `, it de-
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pends on the interaction among arguments (see section 2.6.6.2), which will grant consis-

tency. Given two arguments A,B, we say A attacks B if the conclusion of A contradicts

some fact used in B, that is, if concl(A) ∈ literals(B). Therefore, the MAPA architec-

ture semantically differentiates between supporting arguments (or argument steps) as the

arguments specifically used to support some open condition of the plan, and attacking ar-

guments which are only introduced to attack some argument step previously introduced

in the plan (i.e. it is not used to support any open condition).

2.3.4.2 The Qualification Problem and Plan Definition

The qualification problem (59), which is an important problem currently not supported

in many planning architectures, is concerned with the impossibility of listing all the pre-

conditions required for a real-world action to have its intended effect. For instance, let α

(e.g. "flying from London to Athens") be an action with n effects {e0, e1, . . .} ⊆ Lit (e.g.

e0 ="be at Athens city"), which are defeated by the defeasible conditions {d0, d1, . . .} ⊆

Lit (e.g. d0 = "Volcanic ash cloud between London to Athens", d1 ="Airport strike in

London") respectively. Note that, if these defeasible conditions occur, the expected ef-

fects of α would not be achieved. The work in (23) solves this issue by introducing these

defeasible conditions as negated preconditions of α ({d0, d1, . . .} ⊆ P(α)), which must

be derived by arguments.

However, an action α in MAPA architecture follows a specific representation in order

to deal with this problem. We introduce a fictitious effect µ (meaning α was just exe-

cuted); then we define X(α) = {µ} and expand the set of rules ∆ with {ek −�µ} ∪ {ek −

�µ, dk}, where ek represents the effect of the action α and dk is a defeasible condition.

For instance, in Figure 2.43, the precondition e0 of the action αG is initially derived by

an argument D = ({e0}, {e0 −�µ}) whose base(D) = µ will be satisfied by α. Then an

attacking argument Q = ({e0}, {e0−�µ, d0, d1}), which is a defeater of D (Q attacks D),

arises from the distributed knowledge among agents. Triangles in Figure 2.43 represent
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Figure 2.8: An example solving the qualification problem.

argument steps (i.e. arguments that support preconditions of action steps), for instance

the argument D, or arguments attacking some other argument, for instance the argument

Q, and both are labeled with the argument name, while rectangles represent action steps

(i.e. actions that support the basis of an argument step) and are labeled with the action

name.

The MAPA architecture defines a plan Π as a tuple Π = (A(Π), Args(Π), G(Π),OC(Π),

CL(Π), SL(Π)), where A(Π) denotes the set of action steps, Args(Π) represents the set

of argument steps, G(Π) is the the task’s common goals, OC(Π) is a set of ordering con-

straints, and CL(Π) and SL(Π) represent the sets of causal and support links correspond-

ingly. Let `1 be an open goal, motivated by some action step β ∈ A, i.e. `1 ∈ P(β), and,

let `2 be another open goal, motivated by some argument step A ⊆ ∆, i.e. `2 ∈ base(A).

Then, the goal `1 ∈ P(β) must be supported by the argument A, which will introduce a

support link (A, `1, β) ∈ SL(Π), where SL(Π) ⊆ ∆ × G(Π) × A, while the goal `2

must be satisfied by an action α, by introducing a causal link (α, `2,A) ∈ CL(Π) where

CL(Π) ⊆ A×G(Π)×∆. Note that an argument B cannot support another argument A

with a support link in SL(Π), and an action α1 cannot support another action α2 with a
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causal link in CL(Π). To get B to support step A, A must be replaced by A ∪ B, and to

get α1 to support action step α2, an argument ({ek}, {ek−�µ}) must be inserted between

α1 and α2, where X(α2) = µ and P(α1) = ek. Additionally, unlike in DeLP-POP, order-

ing constraints are placed between argument steps (A,B) ∈ OC(Π), since every action

(excepting αG) is preceded by an argument which derives its actual effects.

2.3.4.3 Interferences among Actions and Arguments

If only actions are taken into account in a planning architecture, then there is only one type

of destructive interference that can arise in a plan under construction. This interference is

captured by the notion of threat in POP, and occurs when a new action inserted in the plan

threatens (deletes) a goal solved by other action steps. When actions and arguments are

combined to construct plans, new types of interferences appear that need to be identified

and resolved to obtain a valid plan. In multiagent DeLP-POP (26), we identified three

types of interferences or threats, that cover all the interferences that may arise in a partial

plan: argument-argument, action-argument and action-action threats.

However, since the goals must be initially derived by some argument step in the

MAPA architecture, and then its basis must be satisfied by another action step (includ-

ing the initial step), argument-argument threats cover all the interferences that may arise

in a plan dealing with the qualification problem. Nevertheless, MAPA architecture differ-

entiates semantically between:

1. Planning threats (PlaThreats): Threats that arise between two argument steps.

For instance, let "w" be an open condition of the plan in Figure 2.19(c’), then the

argument with an admiration is acting as a supporting argument and a PlaThreat

will be discovered. These threats override the typical action-action and action-

argument threats of (26). As we will discuss in subsection 2.6.6.1, this kind of

threats will be discovered and possibly resolved (by promote or demote) in the

POP Search Tree.
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2. Argumentation threats (ArgThreats): Threats that arise when an agent discov-

ers a new defeater which specifically attacks some argument step. Unlike the

PlaThreats, here the attacks to some argument step are made by some attacking

argument. For instance, in case that the argument with an admiration in Figure

2.19(c’) is an attacking argument (i.e "w" is not an open goal), Figure 2.19(c’)

represents an ArgThreat. Although this kind of threat is also called argument-

argument threat in (26), here we rename them to ArgThreats with the aim of dis-

tinguishing between PlaThreats and ArgThreats. As shown is subsection 2.6.6.2,

these threats will be discovered and possibly resolved (by Defeat-the-defeater in

Figure 2.19(c”)) in the POP Evaluation Tree.

Figure 2.9: (c) Selected plan. (c’) Threat. (c”) Solution to (c’): Defeat-the-defeater.

2.3.5 Cooperative Distributed Planning Protocol in the MAPA Ar-
chitecture

Figure 2.31 illustrates the planning protocol, which is mainly composed of three differ-

ent cooperative distributed processes among the planning agents: Plan Generation, Plan

Evaluation, and Plan Selection.
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Different planning heuristics such as Z-LIFO (60), or the threat detect-&-solve (23)

can be used to select the next open goal to solve. In our case, we will consider turn-

based dialogues, a mechanism traditionally used in cooperative scenarios where agents

only participate during their turn. Additionally, agents can also be modeled to put a veto

on information or decisions of other agents. Agents are enumerated, and each process is

implemented through a different argumentative dialogue.

No

Proposed refinements set

Yes

Plan Generation 
Selected open

 condition

Is it a solution?

Dummy Plan

Action-Argument threats

Plan Evaluation Plan Selection Evaluated proposed 

refinement set

No

Selected refinement

No

Yes

YesNo solution

Backtracking

Solution found 

Heuristic Flaw 

Selection

Figure 2.10: Planning Protocol in the MAPA architecture

2.3.5.1 Plan Generation

The input is both the selected plan Πr and the selected open goal (flaw) Φ, according to

the Plan Selection process (see subsection 2.6.6.3) and open goal selection heuristic. The

flaw Φ can be referred to both goals and PlaThreats. The main goal of this process is

to allow agents to propose a set of refinement plans Ref(Π,Φ), where each Πr(ξ) ∈
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Ref(Π,Φ) is a refinement step in the POP Search Tree that solves a selected flaw Φ such

that Φ ∈ flaws(Πr) and Φ /∈ flaws(Πr(ξ)). Following, we explain the two steps involved

in this process:

1. PROPOSALS ROUND: Each agent, at its turn, proposes alternative ways to achieve

or derive Φ. The process ends when all agents have had a turn. Refinements of a

plan Πr are labeled as Π
(n,i)
r (ξ), where n ∈ Z indicates the refinement proposal by

the agent, i ∈ Z represents the agent, and r ∈ Z represents the selected plan by the

Plan Selection process. Note that, at each turn, an agent can propose as many plans

as possible from its knowledge.

2. LEARNING ROUND: Each agent updates its set of actions with the new actions

which appear in the refinements proposed by other agents.

The output of this process is a set of plans Ref(Π,Φ) where each Πr(ξ) ∈ Ref(Π,Φ)

extends Πr. If |Ref(Π,Φ)| > 0, i.e. there is at least one refinement plan, it is used as an

input to the Plan Evaluation process (see section 2.6.6.2). If |Ref(Π,Φ)| = 0, i.e. there is

not any proposal to solve the flaw Φ, a backtracking step is performed, pruning the current

base plan Πr.

2.3.5.2 Plan Evaluation

Roughly, the problem stems from different agents discussing about a given plan; since

these agents may have different initial facts and defeasible rules they may not agree on

the evaluation of the plan at some step. Along with the POP Search Tree of the previous

section, the MAPA architecture also considers the notion of POP Evaluation Tree.

Definition 1. POP Evaluation Tree: Let Πr(ξ) be a refinement of plan Πr from the
previous process. A POP Evaluation Tree for Πr(ξ), denoted TΠr(ξ), where there is at
least one argument step (A, `, β) ∈ SL(Πr(ξ)), is defined as follows:

• The root of the tree is labeled with the plan 〈Πr(ξ)〉.
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• Each node of the first level 〈Πr(ξ, ξ
′
) | ξ′ = Defeater(B, (A, `, β))〉, is a new

plan extending Πr(ξ) with some new defeater B that attacks A, discovering a new
ArgThreat in Πr(ξ).

• Each node of the second level 〈Πr(ξ, ξ
′
, ξ
′′
) | ξ′′ = Defeater(C,Defeater(B,

(A, `, β)))〉, is a new plan extending Πr(ξ, ξ
′
) with some new defeater C that at-

tacks B (Defeat-the-Defeater), solving the ArgThreat in Πr(ξ).

The input of this process is a set Ref(Π,Φ) of plans proposed by the agents in the pre-

vious process. Each plan Πr(ξ) ∈ Ref(Π,Φ) represents the root of a new POP Evaluation Tree

TΠr(ξ). Following, we explain the steps involved in this cooperative process:

1. ATTACK ROUND: It initiates an evaluation dialogue for the root plan of each

TΠr(ξ), where each agent sends as many 〈Πr(ξ, ξ
′
) | ξ′ = Defeater(B, (A, `, β))〉

as they know at their turn (Figure 2.11). If the agent does not know how to attack a

root plan, then it will skip its turn.

2. DEFENSE ROUND: It allows the agents to propose ways 〈Πr(ξ, ξ
′
, ξ
′′
) | ξ′′ =

Defeater(C,Defeater(B, (A, `, β)))〉 to solve discovered ArgThreats in each 〈Πr(ξ, ξ
′
) |

ξ
′

= Defeater(B, (A, `, β))〉. This round only applies to those POP Evaluation Trees

which have discovered threats (Figure 2.11).

3. LEARNING ROUND: In this stage, each agent will update its sets of initial facts

and defeasible rules, by extracting literals ` ∈ Lit and defeasible rules, from ar-

guments’ bases and plan proposals. Unlike the previous Plan Generation process,

where agents learn abilities as actions, this step is focused exclusively on the literals

and defeasible rules.

4. EVALUATION: This stage marks each plan Πr(ξ) ∈ Ref(Π,Φ) as an undefeated

plan, in case that defeater plans 〈Πr(ξ, ξ
′
) | ξ′ = Defeater(B, (A, `, β))〉 have not

been discovered, or if they have been discovered but there is a plan 〈Πr(ξ, ξ
′
, ξ
′′
) |
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ξ
′′

= Defeater(C,Defeater(B, (A, `, β)))〉. Otherwise, Πr(ξ) is marked as a de-

feated plan.

The process ends when all the plans in Ref(Π,Φ) have been evaluated. The output of

this process is Eval(Ref(Πr)), the set of evaluated plans (Figure 2.11). As shown in the

next process, undefeated plans, which constitute the most promising refinements to reach

a solution, are preferred to defeated plans. However, defeated plans are kept, since each

non-resolved attack could be resolved in a subsequent evaluation process.
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Figure 2.11: Plan Evaluation protocol overview.

2.3.5.3 Plan Selection

Plan selection can be done through the application of standard domain-independent heuris-

tics for evaluating plans. These heuristics approximate the cost of a solution plan in terms

of the number of actions, the cost or the duration of the actions. Using this type of heuris-

tics as the standard rating (RS) for plan assessment will ignore the dynamic multi-agent
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nature of the MAPA architecture, where a set of preferences is assumed by each agent.

Therefore, a second rating based on the agents’ preferences is necessary. We will refer to

it as the preference rating (RF ). Moreover, a third rating in terms of trust in cooperative

planning is justified in (61) as a judgement about the risk attached to each component in

the plan requiring cooperation, which we will call trust rating (RT ). RT depends on the

trust in (i) each argument step and (ii) each action step in the plan, where (i) is the trust-

worthiness (reputation) of the information sources which are used by the agent in order to

have a perception of the environment (coded as facts and defeasible rules (23)), and, (ii)

is the result of dividing the number of times the action is successfully executed into the

total number of executions of the action. The MAPA architecture stores the execution of

each action as a new case (62), recorded as successful if the action is executed correctly,

or failure if the action failed during the execution. The success or failure of an action

is determined by the achievement of the action effects. For simplicity, we only consider

trust in action steps.

Unlike the Plan Generation and the Plan Evaluation process, where agents reason

about agent facts, defeasible rules and actions, here agents reason about standard ratings,

preference ratings, and trust ratings, considering a compromise between the desire to

minimize the computational overhead and that of maximizing the quality of the plan.

This process receives as input the set of evaluated plans Eval(Ref(Πr)) from the Plan

Evaluation process and a set of previously not-selected partial plans OtherRef, in order to

select a new plan Πr ∈ {Eval(Ref(Πr))
⋃

OtherRef} as output. Following, we explain

the steps involved in this process:

1. PLAN FILTERING: The aim is to guide the plan search by selecting the best sub-

set FilteredPlans ⊆ {Eval(Ref(Πr))
⋃

OtherRef} (as candidate plans), according

to the highest RS(Π) and RT (Π), such that Π ∈ {Eval(Ref(Πr))
⋃

OtherRef}1,

where:
1Undefeated plans are preferred over defeated plans.
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• RS(Π) = (cost(Π) + heuristic(Π)), where heuristic(Π) is a heuristic estima-

tion of the cost of reaching a solution plan Π? from Π, and,

• RT (Π) is the product of the trust values of the action steps in Π.

2. PLAN RANKING: The agents (i ∈ {1, 2, . . . , k}) calculate their preference ratio

for each candidate plan Πn ∈ FilteredPlans. For this purpose, they review whether

each action a ∈ A(Πn) is preferred by them. If an action a1 ∈ A(Πn) is preferred

((a1, d1) ∈ Fi | d1 > 50), then they increase by one the value RiF (Πn); if they

do not prefer an action a2 ∈ A(Πn), ((a2, d2) ∈ Fi | d2 <= 50), then they

subtract one unit fromRiF (Πn), and otherwise they keepRiF (Πn) unchanged. This

stage, which simulates a internal reasoning process for or against to select each

plan Πn, allows each agent to establish a preference relation between the plans in

FilteredPlans.

3. PLAN NEGOTIATION: Since each agent has identified its preferred candidate

plans, now the purpose of the negotiation is to reach an agreement about the next

base plan Πr ∈ FilteredPlans. This stage can range from a simple voting process

to a more sophisticated negotiation mechanism.

Finally, {NonSelectedPlans ⊂ Eval(Ref(Πr)) | Πr /∈ NonSelectedPlans} is added

to the set OtherRef, and the process returns the agreed plan Πr. If Πr is not a solution,

the control will be passed to the Heuristic Flaw Selection (see Figure 2.31). Otherwise,

the planning process will end successfully.

2.3.6 Evaluating the MAPA architecture within the context of a tran-
sit journey planning service

Transit users generally know their origin and destination cities. Based on the schedules

provided by the transit agencies, users choose the best routes that match their travel needs.
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For this purpose, a Transit Journey Planning Service (TJPS) (a specialized electronic

search engine) is used to find the best route between two locations by using some means

of transportation. TJPSs are being widely used by transit agencies accessed through a web

user interface on a computer terminal to support clients’ requests on public transport infor-

mation. Most of the existing TJPSs, provided by transit agencies and companies (Google

Transit Planner, Transport Direct, Transport for London, Trip Planning Tool etc.)1, are

based on static schedule data. To the best of our knowledge, these centralized planners (i)

do not react to environmental changes such as bad weather, traffic jams or bad railroads,

and therefore they do not provide support to defeasible reasoning, and (ii) are not able

to work in a cooperative distributed environment so there is no choice for exchanging

information between them.

However, defeasible reasoning is becoming an increasingly important feature in many

environments where context awareness in not fully specified. The work in (63) presents

a potential application for distributed defeasible reasoning in ambient computing envi-

ronments, where the ambient agents, who have different viewpoints, have to face the

available context. Similarly, defeasible reasoning is also being applied to semantic web

and e-commerce (64). Here, we present a novel application of cooperative distributed

defeasible planning to a TJPS problem.

The MAPA architecture is implemented in Magentix 22, a platform for open Multi-

agent Systems based on the Apache Qpid3 implementation of AMQP 4 for communica-

tion between agents. This platform incorporates a security module which provides key

features regarding security, privacy, openness and interoperability not offered by other

current agent platforms.

1http://www.google.com/transit, http://www.transportdirect.info,
http://www.journeyplanner.org, http://www.networkedtraveler.org

2http://www.gti-ia.dsic.upv.es/sma/tools/magentix2/index.php
3http://qpid.apache.org/
4http://www.amqp.org
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Internet 

Ag1 Ag2 

Launcher 

Figure 2.12: Deploying the MAPA architecture.

2.3.6.1 Preliminaries

According to the multi-agent systems paradigm, we have implemented a CIS as a col-

lection of software agents (Figure 2.12) in the MAPA architecture. Each agent simulates

an information system, and interacts with the others so as to achieve the common goals,

thus forming a multi-agent society. More specifically, we consider a scenario with six

different cities and two geographically distributed transit agencies, Ag1 (Greece transit

agency) and Ag2 (UK transit agency), aimed at providing a customer with a plan to travel

from London toAthens (Figure 2.13). The agencies are implemented as agents and have

different knowledge (knowledge is fully distributed), so two pieces of information derived

from each agent may appear to be contradictory. There are several ways to travel between

both cities: via car, ship, train or plane. Let’s assume thatAg1 uses BBC News as a source

of information, but Ag2 prefers CNN News to keep up to date, and both agree on finding

a plan that minimizes the journey duration. The planning tasks of the agents are defined

in Figure 2.22, where we consider propositional STRIPS (45) planning representation.

In what follows, we define the meaning of each literal and action. Literals:

• A, L - Athens, London; B, C, D, F - Other cities,
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Athens B

C
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F
Road

London

Road
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Road

Initial State
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Road
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Figure 2.13: Scenario of the application example.

• Ag, car, tra, pl, shi - a customer, a car, a train, a plane, a ship,

• r, rl, al, ml - a road, a railway, an airline company, a maritime line,

• bw, sn, wg, va, ds, aeo - bad weather, snow, wind gusts, volcano ash cloud, dan-

gerous situation, airplane engines work well (after test),

• br, ll, esf , fp - bad railroad, landslides, electrical supply failure, flying panic,

• h, tj, kudBBC, kudCNN - holidays, traffic jam, kept up to date by BBC news,

kept up to date by CNN news, and,

• µC , µP , µT , µS - moved car, moved plane, moved train and moved ship.

Actions are the following (notation: X(α)
α←− P(α), i.e. the action effects are indi-

cated on the left side, while the action preconditions on the right side):

1. mP (pl, x, y): moving plane ’pl’ from location ’x’ to ’y’ takes 2 time units and 400

cost units.

2. mT (tra, x, y): moving train ’tra’ from location ’x’ to ’y’ takes 6 time units and

200 cost units.
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ΨAg1 =
{

(wg B A); aeo; kudBBC; (at Ag L); fp; (at pl C); (at car L); (link al C A); (link r D A); . . .
}

ΨAg2 =
{
kudCNN ; fp; (at Ag L); (at tra B); (at shi C) (link rl B A); (link ml C B); (link r F A); . . .

}

∆Ag1 =


{(at pl ?y), (at Ag ?y)} −�(µP ?x ?y); {∼(at tra ?y),∼(at Ag ?y)} −�{(µT ?x ?y), (br ?x ?y)};
{(at car ?y), (at Ag ?y)} −�(µC ?x ?y); {∼(at shi ?y),∼(at Ag ?y)} −�{(µS ?x ?y), (ss ?x ?y)};

(br ?x ?y)−�(esf ?x ?y); (esf ?x ?y)−�(sn ?x ?y); (sn B A)−�kudBBC; ∼(va C A)−�aeo; . . .



∆Ag2 =



{∼(at pl ?y),∼(at Ag ?y)} −�{(µP ?x ?y), (ds ?x ?y)}; {(at tra ?y), (at Ag ?y)} −�(µT ?x ?y);

{∼(at car ?y),∼(at Ag ?y)} −�{(µC ?x ?y), (tj ?x ?y)}; {(at shi ?y), (at Ag ?y)} −�(µS ?x ?y);

(ds ?x ?y)−�(va ?x ?y); (va C A)−�kudCNN ; ∼(ll ?x ?y)−� ∼(bw ?x ?y);

∼(ll ?x ?y)−� ∼(bw ?x ?y); ∼(bw B A)−�kudCNN ; ∼(sn B A)−�kudCNN ;

(tj ?x ?y)−�{(h ?x)(link r ?x ?y)}; (h F )−�kudCNN ; . . .


AAg1 =

{
1. (µC ?x ?y)

fMc←−−− {(link r ?x ?y), (at car ?x), (at Ag ?x)}
2. (µP ?x ?y)

mP←−−− {(link al ?x ?y), (at pl ?x), (at Ag ?x)}

}

AAg2 =

{
3. (µT ?x ?y)

mT←−−− {(link rl ?x ?y), (at tra ?x), (at Ag ?x)}
4. (µS ?x ?y)

mS←−− {(link ml ?x ?y), (at shi ?x), (at Ag ?x)}

}

FAg2 =
{

(mT, 90); (mP 0); (mS 60)
}

FAg1 =
{

(fmC 70); (mT, 80); (mP 5)
}

G = {(at Ag A)}

Figure 2.14: Initial facts, defeasible rules, actions, preferences and common goals.

3. mS(shi, x, y): moving ship ’shi’ from location ’x’ to ’y’ takes 3 time units and

100 cost units.

4. fMc(car, x, y): fast-moving car ’car’ from location ’x’ to ’y’ takes 8 time units

and 80 cost units.
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2.3.6.2 Implementation

The planning process starts with an empty plan Π∅ = {αΨ ≺ αG} and flaws(Π∅) =

{(at Ag A)}. First, the MAPA architecture enters the Plan Generation process, where
four plans are suggested: i) taking the car between D and A, Π

(1,Ag1)
∅ (ξ), or ii) between

F and A, Π
(2,Ag1)
∅ (ξ), iii) taking the train between B and A, Π

(1,Ag2)
∅ (ξ), and iv) tak-

ing the plane between C and A, Π
(3,Ag1)
∅ . We only show the plan iv) Π

(3,Ag1)
∅ (ξ) =

{(mP, (µP C A),AAg1), (AAg1, (atAgA), αG)}where AAg1 = ({(atAgA)}, {(at Ag A)−�(µP C A)})
(see Figure 2.16(a)). The agents learn the actions they did not know from these plans.

 

Figure 2.15: Discussing about the plan Π
(3,Ag1)

∅ (ξ) in the Plan Evaluation process.

Second, the Plan Evaluation process starts, where: i) Π
(1,Ag1)
∅ (ξ) is not attacked by

any defeater and it is labeled as an undefeated plan. ii) Π
(2,Ag1)
∅ (ξ) is attacked because

city F is on holiday, so a traffic jam can be expected in the road between F and A, and,
therefore, the effects of the action fMc may not be satisfied. Since there are not pro-
posals to solve this ArgThreat, Π

(2,Ag1)
∅ (ξ) is labeled as a defeated plan. iii) Π

(1,Ag2)
∅ (ξ)

receives one attack because snow is expected between B and A, so an electrical failure
that damages the railroad between B and A might occur. If this happens, the effects of
the action mT may not be satisfied. Here, Ag2 proposes a Defeat-the-defeater, which
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justifies that snow conditions are not expected between B and A, and then Π
(1,Ag2)
∅ (ξ)

is labeled as undefeated plan. iv) Ag2 attacks Π
(3,Ag1)
∅ (ξ) with 〈Π(3,Ag1)

∅ (ξ, ξ
′
) | ξ′ =

Defeater(BAg2, (AAg1, (at Ag A), αG))〉 where BAg2 = ({∼(at Ag A)}, {∼(at Ag A) −
�{(µP C A), (ds C A)}; (ds C A) −�(va C A); (va C A) −�kudCNN}) (see Fig-
ure 2.15) because the volcano ashes are expected between the city C and A according
to the CNN News, but Ag1 moves against (ds C A) with 〈Π(3,Ag1)

∅ (ξ, ξ
′
, ξ
′′
) | ξ′′ =

Defeater(CAg1,Defeater(BAg2, (AAg1, (at Ag A), αG)))〉 where CAg1 = ({∼(va C A)}, {∼
(va C A) −�aeo}) (see Figure 2.15). It is a Defeat-the-defeater resolution move since
∼ concl(CAg1) ∈ literals(BAg2)) (see Figure 2.16(a”)), and then Π

(3,Ag1)
∅ (ξ) is labeled as

an undefeated plan. The agents learn the literals and defeasible rules, they do not know at
the beginning of the turn.

Third, the Plan Selection process starts. The best subset of plans is defined as
FilteredPlans = {Π(1,Ag2)

∅ (ξ), Π
(3,Ag1)
∅ (ξ)}, since Π

(2,Ag1)
∅ (ξ) was labeled as a de-

feated plan and heuristic(Π
(1,Ag1
∅ (ξ)) returns a high value. Finally, agents choose Πr =

Π
(1,Ag2)
∅ (ξ) as they prefer to take the train because of their fear of flying. For space

reasons, we omit the rest of the plan search.
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Figure 2.16: Screenshots: (a) The POP Search Tree. (a’) The POP Evaluation Tree for the
plan Π

(3,Ag1)

∅ (ξ). (a”) Viewing the content of the plan Π
(3,Ag1)

∅ (ξ, ξ
′
, ξ
′′

).
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2.3.7 Conclusions and Future work

We have presented MAPA, a decentralized architecture for cooperative planning in mul-
tiagent DeLP-POP, dealing with the qualification problem. It is implemented as three
independent cooperation processes between agents of a team who propose, criticize, de-
fend and select alternative plans by means of arguments and actions. For future work,
we intend to work in several directions: extending MAPA to other multi-agent scenarios
like argumentation-based negotiation or to temporal planning (65); and evaluating MAPA

in applications of dynamic networked cooperative business processes and knowledge-
sharing, including the ability to work with and within complex supply chains. Finally,
evaluating the efficiency and effectiveness of the MAPA architecture.
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2.4 Selected paper 3: Multiagent Argumentation for Co-
operative Planning in DeLP-POP (AAMAS 2011) and
its extension in (ArgMAS 2012)

Abstract. This contribution proposes a model for argumentation-based multi-agent plan-
ning, with a focus on cooperative scenarios. It consists in a multi-agent extension of
DeLP-POP, partial order planning on top of argumentation-based defeasible logic pro-
gramming. In DeLP-POP, actions and arguments (combinations of rules and facts) may
be used to enforce some goal, if their conditions (are known to) apply and arguments are
not defeated by other arguments applying. In a cooperative planning problem a team of
agents share a set of goals but have diverse abilities and beliefs. In order to plan for
these goals, agents start a stepwise dialogue consisting of exchanges of plan proposals,
plus arguments against them. Since these dialogues instantiate an A∗ search algorithm,
these agents will find a solution if some solution exists, and moreover, it will be provably
optimal (according to their knowledge).

2.4.1 Introduction

Artificial Intelligence Planning is the task of building control algorithms that synthesize
a course of action achieving a desired set of goals, given some (information about the)
initial state. Partial-order planning (POP) (43) is a planning paradigm based on the prin-
ciple of least commitment: decisions on parameter bindings and action orderings are not
committed until necessary during the construction of the plan. The POP approach is one
of the more open planning frameworks as evidenced by the fact that most existing archi-
tectures for integrating planning with execution, information gathering, and scheduling
are based on partial order planners (54, 55, 56). Even for simple planning tasks, partial
order planners offer a higher degree of execution flexibility.

Unlike classical planning, in many real-world applications agents can disagree about
which facts can be inferred to hold in some state or after executing some plan. For this
purpose, argumentation, which has recently become a very active research field in com-
puter science (5, 37, 39), can be viewed as a powerful tool to reason about inconsistent
beliefs through a comparison between arguments for and against some conclusion. More
specifically, Defeasible Logic Programming (DeLP) (24) is a framework for reasoning
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about defeasible information (also known as defeasible reasoning), where tentative con-
clusions, obtained from incomplete information, can later be deemed no longer valid after
new information becomes available. Nowadays, DeLP is a well known framework for
dealing with defeasible reasoning.

Argumentative methods, indeed, can also apply to the process of planning search,
making this process deliberative. In this direction, an extension of POP with DeLP-style
argumentation, denoted DeLP-POP framework, was introduced in (23) for single-agent
planning, where both actions and arguments may be used to enforce some goal, if their
conditions (are known to) apply and arguments are not defeated by other arguments ap-
plying. Unlike actions, arguments will not only be introduced to intentionally support
some step of a plan, but they will also be presented to defeat or defend other supporting
arguments in the plan. The advantages of DeLP-POP towards reasoning about actions
are clear: if planning techniques prevent the well-known frame problem, by getting rid
of the need to explicitly represent what does not change after an action, DeLP-POP suc-
ceeds against the qualification problem as well, since DeLP-rules can be used to encode
defeasible effects of actions, as shown in Section 2.4.2.3. When actions and arguments
are combined in a partial order plan, new types of interferences or threats appear (23).
These interferences need to be identified and resolved to obtain valid plans.

Although planning has been, and is, extensively studied in single-agent environments,
nowadays, more and more real-world applications require a planning environment with
more than one agent. This is where multi-agent planning methods come into play. These
enable the agents to reason about their interactions and ensure that their individual partial
plan proposals are efficient and effective. Thus, multi-agent planning generalizes the
problem of planning in domains where several agents plan and act together and have to
share resources, activities, and goals.

The present contribution proposes a formal model of argumentative dialogues for
multi-agent planning, with a focus on cooperative planning. It consists in a multi-agent
extension of the DeLP-POP framework. Here, we have a team of agents aware of a
common set of goals (hence trustable), but ignorant of others’ abilities and beliefs, who
must find a plan. An obvious solution, centralized planning carried by some planner with
knowledge of these agents’ beliefs and actions, would arise questions of efficiency and
privacy loss (beyond necessity).

The main challenge presented by cooperative multi-agent DeLP-POP is plan evalua-

72



2.4 Selected paper 3: Multiagent Argumentation for Cooperative Planning in
DeLP-POP (AAMAS 2011) and its extension in (ArgMAS 2012)

tion and search. We will use centralized DeLP-POP just for comparison with dialogues
proposed. A dialogue consists in a series of exchanges of (1) plan proposals address-
ing the current goal, plus (2) potential arguments against (1). Atomic information (facts,
rules, actions) contained in others’ messages (1) and (2) will be extracted and adopted to
devise new ideas for both (1) and (2). Dialogues are turn-based, since this choice models
typically cooperative scenarios where all agents are treated in a uniform way, but also can
(by adding some restrictions) model agents with power to veto information or decisions.

The main result of this contribution is that such a dialoguing team of planner agents
actually implements anA∗ search procedure. Thus, the team of agents need not search the
full space of plans: the dialogue terminates at a solution (if some solution exists) which
is provably optimal.

This paper is a revised version of the work titled Multiagent Argumentation for Co-
operative Planning in DeLP-POP (26). It is organized as follows: section 2 gives some
preliminaries and notations; section 3 formalizes some concepts; section 4 presents the
argumentative dialogues to Multi-Agent Planning; section 5 shows an example of appli-
cation to validate the framework. Finally, we conclude and present some directions for
future work.

2.4.2 Preliminaries

Notation: Throughout the paper we make use of these conventions: the projection func-
tions are πk(〈a0, . . . , an〉) = = ak (for k ≤ n), and πk̂(〈a0, . . . , ak−1, ak, ak+1, . . . , an〉) =

〈a0, . . . , ak−1, ak+1, . . . an〉. Given propositional variables p, . . . ∈ Var, and a negation
∼, we define the set of literals ` ∈ Lit = Var ∪ {∼ p | p ∈ Var}. Also, define ` as
p =∼ p, and ∼ p = p, for any p ∈ Var; and for X ⊆ Lit, X = {` | ` ∈ X}. In
general, if F : X → Y is a function and X ′ ⊆ X , we denote F [X ′] = {f(x) | x ∈ X ′}.
The transitive closure of a relation R is denoted tc(R). The size of a set X is denoted
|X|. If X is a set, P(X) denotes its power set, and X

(
στ...
σ′τ ′...

)
denotes the set obtained by

replacing σ by σ′, τ by τ ′, . . . in set X .

2.4.2.1 DeLP: Defeasible Logic Programming

In (24), the authors propose a non-monotonic consequence relation, called warrant, built
upon the relation of defeat between constructible arguments for or against a literal. A
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defeasible logic program (or de.l.p., henceforth) is a pair T = (Ψ,∆) consisting of a
strict and a defeasible part:

• a consistent set Ψ ⊆ Lit of facts, and

• a set ∆ of defeasible rules δ = `−� `0, . . . , `k

where `, `0, . . . , `k ⊆ Lit. Rule `−� `0, . . . , `k expresses: warrant for `0, . . . , `n provide
a (defeasible) reason for ` to be warranted1. We denote body(δ) = {`0, . . . , `n} and
head(δ) = ` as, respectively, the body and head of δ.

Derivability in T = (Ψ,∆) is closure under modus ponens: literals in Ψ are derivable
and, given a rule δ, if each ` ∈ body(δ) is derivable, then head(δ) is derivable.
An argument A for ` in a de.l.p. (Ψ,∆), denoted 〈A, `〉 or simply A, is a set of rules
A ⊆ ∆ such that (i) ` is derivable from (Ψ,A), (ii) the set Ψ ∪ A is non-contradictory,
and (iii) A is a minimal subset of ∆ satisfying (i) and (ii).

We also define, for an argument A for `

concl(A) = `,
base(A) = (

⋃
body[A]) r head[A], and

literals(A) = (
⋃

body[A]) ∪ head[A]

A derivation of -or argument for- a literal ` from (Ψ,∆), still, does not suffice for its being
warranted in (Ψ,∆). The latter depends on the interaction among arguments, which will
grant consistency.

Given two arguments A,B, we say A attacks B if the conclusion of A contradicts
some fact used in B, that is, if concl(A) ∈ literals(B). This attack relation may roughly
be seen as symmetric, in the sense that each attacked argument B contains a sub-argument
B′ attacking A. (A sub-argument of B is a subset B′ ⊆ B supporting some inner conclu-
sion `′ of B, i.e. with `′ ∈ literals(B).) To decide which contending argument prevails,
a notion for preference among pairs of conflicting arguments is needed. The formal cri-
terion for preference here adopted lies in a comparison of information used in each argu-
ment: an attacking argument which makes use of more precise rules (or more premises)
is a proper defeater for -is preferred to- the contending argument. If two contending argu-
ments are not comparable in these terms, they are a blocking defeater for each other. Or,
less abstractly, one could instead specify some particular preference between rules and
then induce a defeat relation for arguments out of it. See (66) for details.

1Strict rules, introduced in (66), (24), have not been considered in planning, see (23).
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Given an argument A0 for `, an argumentation line Λ = [A0, . . . ,An] in (Ψ,∆) is a
sequence of arguments constructible in (Ψ,∆), where each argument Ak+1 is a defeater
for its predecessor Ak. Some further conditions are needed to rule out circular or incon-
sistent argumentation lines; briefly, arguments supporting (resp. interfering with) A0, i.e.
of the form A2n (resp. A2n+1) must form a consistent set, and no sub-argument A′ of an
argument Am ∈ Λ may appear later in Λ (i.e. it cannot be that A′ = Am′ with m′ > m);
see (24) and (23).

Since in a de.l.p. (Ψ,∆) an argument can have several defeaters, different argumen-
tation lines rooted in A0 can exist. Their union gives rise to a tree-like structure, the
dialectical tree for A0, denoted TA0

(Ψ,∆). To check whether A0 is defeated or unde-
feated, the following procedure on TA0

(Ψ,∆) is applied: label with a U (for undefeated)
each terminal node in the tree (i.e. each argument with no defeaters at all). Then, in a
bottom-up fashion, we label a node with:U if each of its successors is labeled with a D

D (for defeated) otherwise

Finally, we say a literal ` is warranted in (Ψ,∆), denoted ` ∈ warr(Ψ,∆), iff there exists
an argument A in (Ψ,∆) with concl(A) = ` and A labeled U in TA(Ψ,∆). Henceforth,
B defeats A will stand for: Λ = [. . . ,A,B, . . .] is acceptable.

2.4.2.2 DeLP-POP: A DeLP extension for POP planning

We briefly recall here state-based and POP planning methods, before introducing DeLP-
POP. A planning domain is a tuple M = (Ψ,A, G) where Ψ ⊆ Lit represents initial
atomic facts, A is a set of actions and G ⊆ Lit is the set of goals of an agent. Here, an
action α = 〈P(α),X(α)〉 is a set of preconditions (for α to be applicable) and effects. A
solution is a plan Π leading a Ψ-world into a G-world by means of actions A(Π) ⊆ A.

In state-based planning, a plan Π is a linear sequence of actions, and thus before each
action αk in A(Π), we know which consistent state σk ⊆ Lit will hold, with σk consistent.

In contrast, a partial order plan (henceforth: plan) Π is a set of actions whose execution
ordering ≺Π (i.e. links on action pairs) is only partially specified (thus encoding multiple
linear plans). In POP, Ψ andG are encoded as dummy actions αΨ ≺Π αG with X(αΨ) =

Ψ, P(αG) = G and P(αΨ) = X(αG) = ∅. Partial orderings give rise to the notion of
threat in Π: an action step potentially interfering with (applicability of) some other action
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step. The set of all threats to a plan Π will be denoted AllThreats(Π). When detected,
threats are to be solved by some threat resolution step. Thus in POP, the set of flaws to be
solved in a plan Π includes threats and pending goals(initially being AllThreats(Π) = ∅
and G(Π) = P(αG)). The partial order of Π determines, for each α ∈ A(Π), a (possibly
inconsistent) set of facts potentially planned to occur before α (i.e. the threats to this α).
This set, called here the proto-state of α (in Π), will be denoted SΠ

α .

An extension of POP with DeLP-style argumentation, denoted DeLP-POP, was in-
troduced in (23). A DeLP-POP planner can appeal both to arguments and actions as a
way to resolve goals or threats. The original DeLP or POP notions of argument, plan-
ning domain, plan, link and threat must be modified accordingly. An argument A ⊆ ∆ is
consistent if base(A)∪A is non-contradictory (instead of condition (ii) above for Ψ∪A,
since now arguments may apply everywhere, not just at Ψ). DeLP-POP planning do-
mains M = (T,A, G) contain now a de.l.p. T = (Ψ,∆), where the set of initial facts
Ψ ⊆ Lit induces αΨ as before and the new element ∆ contains defeasible rules that may
apply anywhere in the plan. An action is a 3-tuple of the form α = 〈P(α),C(α),X(α)〉,
described by, resp., sets of preconditions, constraints and effects. If literals in P(α) are
enforced (or warranted) and those in C(α) fail to be enforced (or warranted), then action
α is applicable and its execution will enforce each ` ∈ X(α) (thus deleting ` if holding
previously). An argument A is applicable at SΠ

α if base(A) is enforced in SΠ
α ; in this case

concl(A) is derivable. See (23)’s backward planning algorithm for a full description of
an instance κ of an action- or argument-steps, or an open goal in a plan Π. Each such
instance κ is labeled by its full path of links up to some g ∈ G, i.e. 〈κ, . . . , g〉.

Let ` be an open goal, motivated by some step β ∈ A(Π) or A ⊆ ∆; i.e. ` ∈ P(β)

or ` ∈ base(A). If goal ` is planned to be enforced by an action α, this is encoded as
a causal link of Π, in a set denoted by CL(Π): (α, `, κ) ∈ CL(Π) ⊆ A(Π) × G(Π) ×
(A(Π) ∪ P(∆)), with κ = β or κ = A. If goal ` ∈ P(β) is to be enforced by an
argument, this is encoded as a support link of Π, in a set denoted SL(Π): (B, `, β) ∈
SL(Π) ⊆ P(∆) × G(Π) × A(Π). (Note an argument B cannot support some other
argument A as a link in SL(Π). To get B to support step A, just replace step A by
A ∪ B.) Additional ordering constraints between action steps are encoded simply as
(α, β) ∈ OC(Π) ⊆ A(Π) × A(Π). The union of causal links, support links (ignoring
their G(Π) component) and ordering constraints OC(Π) induce, by taking the transitive
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closure, the partial order of Π, i.e. the order between its steps, denoted ≺Π:

≺Π= tc(OC(Π) ∪ π1̂(CL(Π)) ∪ π1̂(SL(Π)))

Now we define a DeLP-POP plan Π for M = ((Ψ,∆),A, G) as a tuple Π = (A(Π), G(Π),

OC(Π),CL(Π), SL(Π)) containing actions to be used A(Π) ⊆ A, current open goals of
Π, and links or constraints on the execution ordering.

In DeLP-POP an agent with planning domain M builds a plan incrementally: she
keeps refining it with a new step at a time until a solution (a plan with no unsolved flaws)
is found. The algorithm used in (23) is the following: For a given ((Ψ,∆),A, G), plan
search starts with the empty plan Π∅, only containing dummy actions αΨ ≺Π αG. At each
iteration, with current plan Π∅(ξ0, . . . , ξk), the algorithm nondeterministically selects an
unsolved flaw (a threat, preferably) and a refinement step ξk+1 for it (action-, argument-
or threat resolution step); after this refinement we obtain plan Π∅(ξ0, . . . , ξk, ξk+1), and
the algorithm updates the set of detected unsolved flaws, so goals and threats are added (if
new) or deleted (if solved). If a failure occurs (no refinement is available), the algorithms
backtracks to the parent node.

We will denote by Plans(M) the graph whose nodes are plans for M, related by is
1-step refinable into; the set of solution plans will be denoted by Sol(Plans(M)).

2.4.2.3 A DeLP-POP extension for the qualification problem

The new extension is motivated by the existence of two kinds of actions’ effects in a
planning domain:

• Strict effects: these that are not susceptible to fail during the execution; i.e. there
is no change in context capable of causing a failure during the execution of this
action.

• Defeasible effects: these that might be susceptible to fail during the execution if
there is a environmental condition that prevents it.

As we will see, only the defeasible effects are likely to be discussed in the argumen-
tative dialogues. Unlike strict effects, defeasible effects are related to the qualification
problem (59), which is an important problem currently not supported in many planning
architectures. It is concerned with the impossibility of listing all the preconditions re-
quired for a real-world action to have its intended effect. For instance, let α (e.g. "flying
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from Bejing to Taipei") be an action with n effects {e0, e1, . . .} ⊆ Lit (e.g. e0 ="be at
Taipei city"), which are defeated by the defeasible conditions {d0, d1, . . .} ⊆ Lit (e.g.
d0 = "Volcanic ash cloud between Bejing to Taipei", d1 ="Airport strike in Bejing") re-
spectively. Note that, if these defeasible conditions occur, the expected effects of α would
not be achieved. The typical solution to this issue is to introduce these defeasible con-
ditions as negated preconditions of α ({d0, d1, . . .} ⊆ P(α)), which must be derived by
arguments.

e0 e0 

b 

m 
m, d0, d1 

aG 

a 

a 

Figure 2.17: An example solving the qualification problem.

However, in this new DeLP-POP extension, an action α (with defeasible effects) fol-
lows a specific representation in order to deal with this problem. We introduce a fictitious
effect µ (meaning α was just executed); then we define X(α) = {µ} and expand the set
of rules ∆ with {ek −�µ} ∪ {ek −�µ, dk}, where ek represents the effect of the action α
and dk is a defeasible condition. For instance, in Figure 2.43, the precondition e0 of the
action αG is initially derived by an argument D = ({e0}, {e0−�µ}) whose base(D) = µ

will be satisfied by α. Then an attacking argument Q = ({e0}, {e0−�µ, d0, d1}), which is
a defeater of D (Q attacks D), arises from the distributed knowledge among agents. Tri-
angles in Figure 2.43 represent argument steps (i.e. arguments that support preconditions
of action steps), for instance the argument D, or arguments attacking some other argu-
ment, for instance the argument Q, and both are labeled with the argument name, while
rectangles represent action steps (i.e. actions that support the basis of an argument step)
and are labeled with the action name.

Threat detection is based on proto-states, defined next. For a fixed M = ((Ψ,∆),A, G),
a plan Π and α ∈ A(Π), SΠ

α denotes the set of literals obtaining before α when we extend
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≺Π with some new constraint1:

SΠ
α = {` ∈ Lit : ∃α′ ∈ π(` ∈ Cn({µα′} ∪∆}) and ≺π ∪{〈α′, α〉} is consistent,

and ∀β ∈ π(∼` ∈ Cn({µβ} ∪∆})⇒{〈α′, β〉, 〈β, α〉} *≺π ∪{〈α′, α〉})}

Note that, the proto-state notion has been slightly changed with respect to the work
in (26) to deal with the solution adopted to the qualification problem. We use proto-state
SΠ
α to compute which actions or unintended arguments might be triggered by Π in a way

interfering with other steps of Π.
Three kinds of threats must be checked during plan construction in DeLP-POP, see

also Figure 2.18:

(a) action-action: (β, (α0, `, α1)) ∈ A(Π) × CL(Π), s.t. ` ∈ X(β) and ≺ Π ∪
{〈α0, β〉, 〈β, α1〉} is consistent; here β threatens the link between α0 and α1,

(b) action-argument: ((β, n), (B, b, α1)) ∈ (A(Π)×Lit)×SL(Π), with X(β)∩literals(B) ⊇
{n}, where ≺Π makes β to supply n ∈ SΠ

α1
; here β threatens some literal used in

B, and

(c) argument-argument: (C, (B, b, α1)) ∈ P(∆) × SL(Π), with C defeating B and
base(C) ⊆ SΠ

α1
, C undefeated in SΠ

α1
.

For each kind of threat, different maneuvers, inspired by those in POP, may be tried:
moving the cause of the threat to a harmless position (with new ordering constraints; see
Figures 2.19 and 2.20(c’)); or eliminating the threat itself (with a counter-argument or a
new action step; see Figures 2.20(c”)-(c”’). Note a new precondition p and new link of
type SL(Π) or CL(Π) are needed to preserve these maneuvers’ effect in future refine-
ments. Informally, we might see this threat detection-resolution process as generating a
dialectical tree T(SΠ

α ,∆)(A0) for each (A0, ·, α) ∈ SL(Π). But now the tree is built w.r.t.
varying Π, due to new threat resolution refinements. We refer the reader to the algorithm
in (23) for details.

2.4.3 Argumentative Dialogues on Multi-agent Plans

The purpose of multi-agent argumentative dialogues is to let agents reach an agreement
on (i) the evaluation of plans (Section 2.4.4.1); and (ii) adoption of a plan in decentralized

1Note that SΠ
α is computed as if α was already applicable. In particular, arguments occurring before α play

no role in SΠ
α .
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Figure 2.18: Threat types: (a) action-action, (b) action-argument and (c) argument-argument.

plan search (Section 2.4.4.2), by allowing agents to refine or revise other agents’ plans
and defend one’s proposals. Before addressing (i) and (ii), though, several modifications
of single-agent DeLP-POP are in order.

First, each agent x ∈ Ag is initially endowed with a planning domain Mx = ((Ψx,∆x),Ax, Gx).
Communication (of facts, rules, actions) from agent x to an agent y will be rendered as
an expansion (resp., in Ψy,∆y,Ay) of My .

Second, towards collaborative discovery of potential argument steps or threats and
their applicability, agents must send each other known initial facts and pre-arguments;
these are like arguments but with partial knowledge of its base, and can be expanded with
others’ known rules and facts. Given an agent x’s plan Π and some α ∈ A(Π), we define
a pre-argument A as a pair of literals and rules (X,A), where X ⊆ base(A) are literals
known to hold before α, and base(A) r X contains literals that may not be known that
hold, or how to derive them. We define the set of pre-arguments in a proto-state SΠ

α as
PArgs(SΠ

α ,∆x) := {(X,A) | X ⊆ SΠ
α ,A ⊆ ∆x}. Third, we introduce the cost of an

action, e.g. define action α as 〈P(α),X(α), cost(α)〉 where cost(α) ∈ R+. This induces
an additive plan cost function cost(Π∅(ξ0, . . . , ξk) = Σk′≤kcost(ξk′) that will guide plan
search. Another modification needed is the following.

80



2.4 Selected paper 3: Multiagent Argumentation for Cooperative Planning in
DeLP-POP (AAMAS 2011) and its extension in (ArgMAS 2012)

Figure 2.19: Solutions to (a), (b). Demote: (a’), (b’); and Promote: (a”), (b”).

Relativizing plans to domains. Even if any plan Π originates from a fixed planning
domain M, we can think of so-originated Π also as a plan for some other planning domain
M′, and (re-)evaluate Π w.r.t. M′. This is useful when an agent revises her beliefs or is
communicated a plan. We denote by M v M′ that M′ is an expansion of M, i.e. M′ is
such that for all X ∈ M, its counterpart X ′ ∈ M′ satisfies X ⊆ X ′. And similarly for
T v T ′. All these expansions may actually translate Π into Π′ = Π

(
αΨαG
αΨ′αG′

)
.

Lemma 1. Proto-states SΠ
α are ⊆-monotonic under expansions of T : T v T ′ implies

SΠ
α ⊆ SΠ′

α , where Π′ := Π
(
αΨ

αΨ′

)
.

Also, note that PArgs(SΠ
α , ·) is ⊆-monotonic under expansions of ∆: ∆ ⊆ ∆′ makes

PArgs(SΠ
α ,∆) ⊆ PArgs(SΠ

α ,∆
′).

Lemma 2. Action-action and action-argument threats (with action 6= αΨ) do not increase
after expansions of T .

In contrast, new (αΨ) action- and argument-argument threats may appear after expan-
sions of Ψ and, resp., Ψ-or-∆.

For expansions M′ w M a sufficient condition for M′ to accept Π′ is that M′ at least
contains the elements of Π (and, for Ψ′, no more than Ψ).
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Figure 2.20: Solutions to (c): Delay (c’), Defeat (c”) and Disable (c”’).

Lemma 3. Let M = ((Ψ,∆),A, G) be a planning domain and Π a plan for M. Define
MΠ = ((Ψ?,∆?),A?, G?) as:
Ψ? = {` ∈ Lit | (αΨ, `, ·) ∈ CL(Π)}, ∆? =

⋃
π0[SL(Π)], G? = G r G(Π) and

A? = (A(Π) r {αΨ, αG}) ∪ {αΨ? , αG?}. Then, for any M′ = ((Ψ′,∆′),A′, G′) with
Ψ′ ⊆ Ψ,

Π
(
αΨαG
αΨ′αG′

)
is a plan for M′ iff MΠ vM′

Only these types of threats that may increase after expansions will be open to argu-
mentation when evaluating the plan’s flaws (or its planhood). These results justify the
sufficiency of the next relativizations:

Definition 2. Let Π be a POP for a given ((Ψ,∆),A, G), and let T ′ = (Ψ′,∆′) be
another de.l.p.. We define the relativization of SΠ

α to Ψ′,as SΨ′

α = SΠ′

α , with Π′ = Π
(
αψ
αψ′

)
.

We denote by ThreatsT
′
(Π) the set of threats to argument steps in Π according to T ′, as

the set of tuples (κ, (A, g, α)) ∈ (P(∆) ∪ Lit)× SL(Π) such that either:

κ ⊆ ∆, base(κ) ⊆ SΨ′

α , κ defeats A, and undefeated in SΨ′

α ; or κ = `, with
` ∈ X(αΨ′) ∩ literals(A), and αΨ′ makes ` ∈ SΨ′

α true.

Initial dummy action αΨ is also initially different to each agent. We will assume each
agent x, when speaking, uses the convention of referring to her initial action, i.e. αψx , by
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using the neutral symbol αΨ.

2.4.4 Argumentative-Dialogues-based Multi-Agent Planning

In the following, we assume we have a set of agents Ag = {1, . . . , k}, each one with
a planing domain Mx = ((Ψx,∆x), Ax, Gx). In purely cooperative scenarios, agents
have no individual interests (i.e. Gi = Gj for any i, j ∈ Ag) and hence no incentives
to retain relevant information. Moreover, we assume

⋃
i∈Ag Ψi is a consistent set. Also,

a unique team dialogue to find a solution would suffice. Before presenting dialogues for
cooperative plan search, we introduce first a simpler dialogue to evaluate a fixed plan.

2.4.4.1 Argumentative Plan Evaluation

We present now a turn-based dialogue (an agent talking only during her turns) permitting
agents i, j to collaborate to discover threats to any argument step A, i.e. with (A, ·, α) ∈
SL(Π). Here Π is a plan for some Mi made public. (That is, we assume MΠ v Mx,
x ∈ Ag.). All agents may contribute to argue against A.

Agents are enumerated by function ε : N+ → Ag as: ε(i + r · |Ag|) = i for any
r, i ∈ N+ and i ≤ |Ag|; that is, ε assigns turns to agents this way: 1, 2, . . . , k, 1, 2, . . .

At each turn n + 1, agent ε(n + 1) sends a set An+1 of pre-arguments1 (X,B) or initial
facts (∅, `), against an argument A used in some support link (A, ·, α). For each (X,B) ∈
An+1, any other agent j 6= ε(n + 1) learns as initial facts those literals stated in X that
are not in her view of the proto-state, i.e. with ` ∈ X r S

ψnj
α . All rules from B which are

novel to j are learned as well. Formally,

Definition 3. For x ∈ Ag let Mx = ((Ψx,∆x),Ax, G) be given, and ε : N+ → Ag as
above. Let Π be a plan communicated by, say, agent 1 to Ag. We define for each x ∈ Ag,
A0 = ∅, ψ0

x = Ψx, ∆0
x = ∆x and

1By exchanging arguments only, an agent might fail to share information, if unaware of its relevance.
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An+1 = {(κ, (A, ·, α) ∈ P(Lit)× ThreatsT
n+1
ε(n+1)(Π) |

either κ = (X,B) and X ⊆ base(B) ∩ S
ψn+1
ε(n+1)

α ;
or κ = (∅, `) ∈ {∅} × X(αψn+1

ε(n+1)
)}

ψn+1
x = ψnx ∪

⋃
{X r S

ψnx
α | ((X,B), (A, ·, α)) ∈ An+1}

∪{` ∈ Lit | ((∅, `), (A, ·, ·)) ∈ An+1}
∆n+1
x = ∆n

x ∪ (π1[An+1] r Lit)

Finally, let n? be the smallest number such that An? = . . . = An?+|Ag| = ∅. We define
ψωx = ψn

∗

x , and ∆ω
x = ∆n∗

x .

First note that literals learned in ψn+1
x from some ((X,B), ·) ∈ An+1 really come

from the agent n+ 1’s ψ-set and propagated to this proto-state.

Lemma 4. If ` ∈ X r S
ψnx
α for some ((X,B), (A, ·, α)) ∈ An+1, then ` ∈ ψnε(n+1).

Also note that, since the de.l.p. of each agent is finite, n? is finite, i.e. these dialogues
will always terminate in a finite number of steps. This dialogue is compared next with
centralized plan evaluation, where (a) we consider the fusion of agents’ initial de.l.p.’s
TΣAg = (ΨΣAg,∆ΣAg) = (

⋃
x∈Ag Ψx,

⋃
x∈Ag ∆x), and then (b) a central planner com-

putes arguments and threats in this new de.l.p. (ΨΣAg,∆ΣAg). The next theorem, then,
compares the result of any agent after the evaluation dialogue for ThreatsT

ω
x (Π) with that

of centralized evaluation ThreatsTΣAg(Π). Even if Tωx @ TΣAg may hold, both evaluations
agree on threats detected in Π and whether Π is a plan.

Theorem 1. Given Mx = ((Ψx,∆x),A, G) for each x ∈ Ag, Π a plan for M1 com-
municated to Ag r {1}. Then, for each x, Π is a plan for ((ψωx ,∆

ω
x ),A, G) iff it is for

(TΣAg,A, G), and Threats(ψωx ,∆
ω
x )(Π) = Threats(ΨΣAg,∆ΣAg)(Π)

2.4.4.2 Dialogue-based A∗ plan search

The next step is to use these dialogues as part of more dynamic dialogues wherein new
plans are proposed. The main result of this paper is that we can decentralize multi-agent
planning, at least in cooperative scenarios, by using a dialogue-based plan search proce-
dure. This is done by comparing these dialogues with centralized planning in the fusion
of agents’ planning domains MΣAg = (TΣAg,AΣAg, G), where AΣAg =

⋃
x∈Ag Ax. But

first, we recall A∗ search and show it can be used in single-agent DeLP-POP.

84



2.4 Selected paper 3: Multiagent Argumentation for Cooperative Planning in
DeLP-POP (AAMAS 2011) and its extension in (ArgMAS 2012)

A∗ search in DeLP-POP. Search algorithms, in the literature, are abstractly defined
with non-deterministic choice. In DeLP-POP plan search we saw two such places for
non-deterministic choice exist: the selection of the next flaw to be solved (this is optional)
and a selection function g for the next refinement, based on minimizing some evaluation
function f(Π) that estimates the cost of a solution refining Π. As examples of such
heuristics to flaw selection: FAF, where flaws are according fewer alternatives first, as
(60)’s Z-LIFO. Or the threat detect-&-solve order used in (23)’s algorithm.

We opt for an A∗ search algorithm, based on delayed termination and an additive
evaluation function f(Π) = cost(Π) + f ′(Π), where f ′(Π) is some heuristic estimation
of the cost of some best solution Π? extending Π.

Recall that A∗ procedure is as follows. Start with the initial node Π∅, and define sets
open = {Π∅} and closed = ∅. At each iteration, open is expanded with all generated
refinements of current node Π, while Π is sent to closed. Then, we minimize f [open] to
select a refinement Π(ξ).

Notice that A∗ does not terminate at the first solution, but keeps exploring for less
costly possibilities, guided by g(open) = argmin(f(open)). If, moreover, f ′ is opti-
mistic, i.e. f ′(Π) ≤ f ′(Π?) = cost(Π?, then this A? search finds an optimal solution
(if a solution exists). Below we will consider the particular case f ′(Π) = 0, so our next-
refinement choice function will be just g(open) := argmin(cost[open]).

For a given planning domain M, we define Plansg(M) as the set of nodes in Plans(M)

that are generated under A∗ search with g.

Proposition 1. If f ′ be optimistic, g is admissible for DeLP-POP search: Sol(Plans(M)) 6=
∅ iff Sol(Plansg(M)) 6= ∅, and a solution Π? in the latter is optimal.

The reason is as follows. Suppose M = (T,A, G) is a finite domain, so that the cost
of any action α ∈ A has positive lower bound cost[A] ≥ δ > 0. Then if (T,A, G)

is solvable, a search algorithm guided by g is guaranteed to output an optimal solution
in Sol(Plansg(M)) if every infinite path has unbounded cost (see (67)). To see this: if
the path contains infinite action steps then it is unbounded, since A is finite implies that
0 < δ ≤ cost[A] for some δ. Now, if M is finite, so is flaws(Π); hence null-cost threat
resolution moves must be finite. The same reasoning, plus the no-argument-supports-
argument policy, implies there can be no infinite sequence of null cost argument steps so
we are done.
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Hence, A∗ can be applied to DeLP-POP plan search for a fixed domain, e.g. cen-
tralized MΣAg. Below, we show that A∗ is also applicable to dialogue-based multi-agent
plan search.

A∗ search in cooperative DeLP-POP. Given agents Ag = {1, . . . , k}, decentralized
plan search is also realized as a turn-based dialogue. Turns are now of the form (n,m) ∈
N×N, ordered lexicographically: (n,m) occurs before (n′,m′) iff n < n′, or n = n′ and
m < m′. The agent speaking at (n,m) is ε(m), who sends a set Π(n,m) of refinements
of the plan selected at the n-th iteration of A∗, and a set U(n,m) of potential threats to
previous plans in Π(n,m′) form′ ≤ m. Potential threats are now labeled with the link and
the plan targeted, say Π′ in Π(n,m′). In terms of evaluation dialogues, U(n,m) contains, for
each such Π′, the corresponding Am−m′ × {Π′} (under some permutation τ : Ag → Ag

and initial domains set at 〈M(n,m′)
τ(x) 〉x∈Ag).

Other agents x 6= ε(m) learn from U(n,m) and Π(n,m): (1) literals from pre-arguments
and causal links of the form (αΨ, `, ·), (2) rules from pre-arguments and support links,
and (3) other agents’ actions from suggested plans. This grants that each Π′ ∈ Π(n,m) is
understood: MΠ′ vM(n,m)

x .
Only when, during |Ag| successive turns (n,m), . . . , (n,m + |Ag|), agents do not

submit more plans or possible threats, we set ω(n) = m and move to turn (n+ 1, 0). To
do so, the set of open nodes is updated with refinements for the current plan: Π(n,ω(n)) =

Π(n−1,ω(n−1)) ∪
⋃
m Π(n,m).

At (n+ 1, 0) agents select the best of open nodes: Π(n+1,0) = {g(Π(n,ω(n))}. If this
contains no flaw, the dialogue terminates. Otherwise the procedure starts again for this
plan.

Definition 4. Given Mx = ((ψx,∆x),Ax, G) as before, we set M(0,0)
x := Mx and define

Π(0,0) = U(0,·) = U(·,0) = ∅, flaw(0) = h(G), and Π(0,1) = {Π∅}. And,

Π(n,m+1) = {Π(ξ) ∈ Plans(M(n,m)
ε(m+1)) | Π ∈ Π(n,0), and

flaws(Π(ξ)) r flaws(Π) 6= ∅}
Π(n+1,ω(n+1)) = (Π(n,ω(n)) r g(Π(n,ω(n)))) ∪Π(n,mn),
where mn = min m s.t. Π(n,m) = . . . = Π(n,m+|Ag|−1)

and U(n,m) = . . . = U(n,m+|Ag|−1) = ∅
Π(n+1,0) = {g(Π(n,ω(n)))}
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U(n,m+1) = {(κ0, κ1), (κ′, `, κ′′),Π′) | Π′ ∈ Π(n,m+1) and

(κ1, (κ
′, `, κ′′)) ∈ ThreatsT

(n,m)

ε(m+1)(Π′) and
κ0 ⊆ base(κ1) or (κ0, κ1) ∈ {∅} × Lit}

At turns of the form (n,m+ 1) agents learn as follows:

Definition 5. Each agent x 6= ε(m+ 1) updates, at turn (n,m+ 1),

ψ
(n,m+1)
x = ψ

(n,m)
x ∪ (π1(U(n,m+1)) ∩ Lit)∪⋃

{X r S
ψ(n,m)
x

α1 | ((X,B), (A, ·, α1)) ∈ U(n,m+1)}
∆

(n,m+1)
x = ∆

(n,m)
x ∪ {π0(ξ) | ξ ∈ SL[Π(n,m+1)] ∪ . . .

∪π1({(κ, . . .) ∈ U(n,m+1)) | π1(κ, . . .) /∈ Lit})
A

(n,m+1)
x = A

(n,m)
x ∪ {α ∈ AΠ(ξ) | Π(ξ) ∈ Π(n,m+1)}

For sets X(n,·)
x defined here plus M(n,·)

x we define X(n+1,0)
x = X

(n,ω(n))
x =

⋃
mX

(n,m)
x ,

and Xω
x =

⋃
n∈ωX

(n,0)
x .

Theorem 2. Let 〈Mx〉x∈Ag and g be as above. Then, Sol(Plansg(MΣAg)) 6= ∅ iff
Sol(Plansg(Mω

x )) 6= ∅, for any x; moreover, a solution Π? in the latter is optimal.

Thus, agents may safely use these dialogues to find an optimal, cooperative plan which
makes use of their abilities.

2.4.5 A scenario of validation

Figure 2.21 shows a scenario to Multi-Agent Planning. There are three different locations
in this scenario Bejing, Fuzhou and Taipei. Our multi-agent systems is composed of
two agents, Joe andAnn, who wish to travel to Taipei to attend the AAMAS conference
as invited speakers. As can be seen, there are several direct or indirect connections be-
tween Bejing and Taipei: via car and ship, train and ship, or plane. The agents, the car,
the train and the plane are initially located at Bejing, and the goal (G = {(at Ag l3)})
is to have the two agents at Taipei subject to the restriction that they must always travel
together. We consider propositional STRIPS planning representation, and the default
proposition (have p) to any literal p that does not have an associated proposition. Literals
and actions are the following:

• l1, l2, l3 - Bejing, Fuzhou and Taipei,
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• car, tra, pl, shi - a car, a train, a plane, a ship,

• r, rl, al, ml - a road, a railway, an airline company, a maritime line,

• bw, sn, wg, ss - bad weather, snow, wind gusts, stormy sea,

• br, ll, esf , aeo - bad railroad, landslides, electrical supply failure, airplane engines
work well (after test)

• va, ds, ip, gw - volcano ash cloud, dangerous situation, risk of increased pollution,
contribution to global warming,

• h, tj, kudTV , kudI - holidays, traffic jam, kept up to date by TV news, kept up to
date by Internet news,

• µC , µP , µT , µS - moved car, moved plane, moved train and moved ship

Taipei Fuzhou
Maritime Line

Airline

Bejing

Train Line

Initial StateGoal State
Road

Traffic jam?

Bad
railroad?

Volcano ash 
cloud hits 
airline?

Electrical
supply
failure?

Stormy
Sea?

Figure 2.21: Scenario of the application example

1. mP (pl, j, k): moving plane ’pl’ from location ’j’ to ’k’. It is necessary an airline
company to travel from ’j’ to ’k’, the plane in ’j’ and both Joe and Ann in ’j’.
Moving a plane takes 2 time unit and 400 cost units.

2. mT (tra, j, k): moving train ’tra’ from location ’j’ to ’k’. This action takes 6 time
units and 200 cost units.

3. mS(shi, j, k): moving ship ’shi’ from location ’j’ to ’k’. This action takes 3 time
units and 100 unit cost.
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A
(0,0)
Joe =



1. {µC , ip}
fMc←−−− {(link r l1 l2), (at car l1),

(at Ag l1)}

2. µP
mP←−− {(link al l1 l3), (at pl l1),

(at Ag l1)}



A
(0,0)
Ann =



3. µT
mT←−− {(link rl l1 l2), (at tra l1),

(at Ag l1)}

4. µS
mS←−− {(link ml l2 l3), (at shi l2),

(at Ag l2)}


Ψ

(0,0)
Joe =

{
wg; aeo; kudTV ; (at Ag l1);

(at pl l1); (link al l1 l3); (link r l1 l2);

}

Ψ
(0,0)
Ann =

{
kudI; (at Ag l1); (at tra l1); (at shi l2)

(link rl l1 l2); (link ml l2 l3)

}

Figure 2.22: Knowledge of actions and initial facts.

4. fMc(car, j, k): fast-moving car ’car’ from location ’j’ to ’k’. This action takes 8
time units and 80 cost units.

We describe next the initial planning domains: for x ∈ Ag = {Ann, Joe}, let
M(0,0)
x = ((Ψ

(0,0)
x ,∆

(0,0)
x ),A

(0,0)
x , G) be defined as in Figures 2.22 and 2.23. Actions

α = (P(α),X(α), ·) are represented under the form X(α)
α←− P(α). Ann and Joe have

different knowledge so two pieces of derived information from each agent can appear to
be contradictory. Let’s assume that Joe uses TV as a source of information, but Ann
prefers Internet to keep up to date, and both agree in finding a plan that minimizes the
time units.

In what follows, we explain how to obtain an optimal plan Π? that satisfies the goal
G = {(at Ag l3)}.

The planning process starts with Ann’s empty plan Π∅, essentially, {α∅ ≺ αG} and
U(0,1) = ∅. Joe learns nothing from it; and both agents set g(Π(0,ω(0))) = Π∅. Then
flaws(Π) returns (at Ag l3). At turn (1,1) Ann suggests the ship argument, while at next
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∆
(0,0)
Joe =



{(at pl l3), (at Ag l3)} −�µP ;

{(at car l2), (at Ag l2)} −�µC ;

{∼(at tra l2),∼(at Ag l2)} −�{µT , br};
{∼(at shi l3),∼(at Ag l3)} −�{µS , ss};
br −�ll; ll −�wg; br −�esf ; esf −�sn;

sn−�kudTV ; tj −�h; h−�kudTV ;

ss−�bw; bw −�wg; ∼va−�aeo;



∆
(0,0)
Ann =



{∼(at pl l3),∼(at Ag l3)} −�{µP , ds}
{∼(at car l2),∼(at Ag l2)} −�{µC , tj}
{(at tra l2), (at Ag l2)} −�µT ;

{(at shi l3), (at Ag l3)} −�µS ;

ds−�va; va−�kudI; ∼ss−� ∼bw;

∼bw −�h; h−�kudI; ∼ll −� ∼bw; ∼br −� ∼bw;

∼bw −�kudI; ∼sn−�kudI; gw −�ip;


Figure 2.23: Defeasible rules known by each agent.

turn (1, 2), Joe puts forward this argument step (Figure 2.24(a)):

Π∅(ξ
Joe) ∈ Π(1,2) where ξJoe = (AJoe, (at Ag l3), αG)) and AJoe = ({(at Ag l3)

−� µP }). Ann learns the rule in AJoe. This is the plan with less cost, so it selected at
Π(2,0) with flaws(Π∅(ξ

Joe)) = {µP }.
At (2, 1) turn, Ann cannot refine this plan. This is done, at turn (2, 2) by Joe:

Π∅(ξ
Joe, (mP,µP ,A

Joe)) ∈ Π(2,2), where he proposes the action mP (pl, l1, l3) to
enforce µP (Figure 2.24(b)). Let Π′ denote this plan. Each agent x learns in (2, 2) that

µP ∈ S
ψ(2,2)
x

αG . Ann learns action mP .

Now itsAnn’s turn (2, 3). She finds an argument-argument threat to AJoe based on her
initial knowledge of kudI . She sends U(2,3) = {(({kudI},BAnn), (AJoe, atAg l3, αG),Π′)}
where BAnn = {∼(at Ag l3)−�{µP , ds}; ds−�va; va−�kudI} (Figure 2.24(c)). The ini-
tial fact kudI and these rules are learnt by Joe. Assume Joe’s plan is selected at Π(3,0)

with flaws(Π′) containing Ann’s threat based on BAnn.

At Ann’s turn (3, 1), she finds nothing else relevant to Joe’s plan. Joe’s turn (3,2).
To solve Ann’s threat, Joe selects a Defeat move against ds, based on his knowledge.
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Π(3,2) = {Π′(Defeat(CJoe,BAnn))} where CJoe = ({aeo}, {∼va −�aeo}). It is a Defeat
resolution move since: ∼ concl(CJoe) ∈ literals(BAnn)) (Figure 2.25(d)).

In summary, Joe suggested to take the plane to arrive to Taipei, but Ann attacked
the proposal because the volcano ashes are expected according to the Internet information,
and Joe replied that this situation will not affect the flight between Beijing and Taipei
(according to the results on engine tests). For space reasons, we omit the rest of the
dialogue showing this is plan can be refined to an optimal solution.

Figure 2.24: (a), (b): Joe’s turns and (c): Ann’s turn

Figure 2.25: (d): Joe’s turn
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2.4.6 Related Work

The work presented here is similar to several proposals found in the literature: multi-agent
argumentation (in non-dynamic scenarios), cooperative planning (without defeasible ar-
gumentation) and centralized planning.

Some systems that build on argumentation apply theoretical reasoning for the gen-
eration and evaluation of arguments to build applications that deal with incomplete and
contradictory information in dynamic domains. Some proposals in this line focus on plan-
ning tasks, or also called practical reasoning, i.e. reasoning about what actions are the best
to be executed by an agent in a given situation. Dung’s abstract system for argumentation
(4) has been used for reasoning about conflicting plans and generate consistent sets of
goals (6, 51). Further extensions of these works present an explicit separation of the be-
lief arguments and goals arguments and include methods for comparing arguments based
on the worth of goals and the cost of resources (5). In any case, none of these works apply
to a multi-agent environment.

A proposal for dialogue-based centralized planning is that of (53), but no argumen-
tation is made use of. The work in (29) presents a dialogue based on an argumentation
process to reach agreements on plan proposals. Unlike our focus on an argumentative
and stepwise construction of a plan, this latter work is aimed at handling the interdepen-
dencies between agents’ plans. The works in (68, 69) present an argumentation scheme
to propose and justify plans. Unlike our approach of considering defeasible reasoning,
these last works are referred to critical questions that address specific elements of the plan
proposals. On the other hand, we can also find some systems that realize argumentation
in multi-agent systems using defeasible reasoning but are not particularly concerned with
the task of planning (41).

All in all, the novelty of our approach is the combination of all these aspects: defeasi-
ble reasoning, decentralized planning and multi-agent systems.

2.4.7 Conclusions and Future Work

We have presented a decentralized A∗ plan search algorithm for multiagent argumenta-
tive planning in the framework of DeLP-POP. This search is implemented as a dialogue
between agents, which cooperate to criticize or defend alternative plans by means of de-
feasible arguments. Only potentially relevant information is exchanged in the dialogue
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process, which terminates in a provably optimal solution upon which agents cannot dis-
agree.

As future work, we have the intention of:

• extending the present approach to model Argumentation-Based Negotiation, so that
ambient agents are able to negotiate on refinement plans (70, 71).

• extending the present approach to Temporal Planning by using t-DeLP (65, 72); we
believe that exploiting temporal argumentation and planning would report impor-
tant benefits not only as for what to do but also when to do it in order to achieve a
temporally consistent set of goals;

• studying the influence of the trust on the sources used by the planning agents to
acquire the defeasible rules as well as how a trust level may determine the conflict
resolution between arguments;

• implementing the presented multi-agent framework in an agent platform, which
allows us to test this model in various real-world application domains (for in-
stance, Ambient Intelligence applications (27) or Transit Journey Planning Ser-
vices (34, 73)) by getting experimental results in order to validate it. In this way,
we will experimentally test the performance, scalability and quality of multi-agent
DeLP-POP versus DeLP-POP, and multi-agent DeLP-POP versus a Multi-Agent
Planning system with no argumentation. For more details about this last extension
see the work in (27).

Acknowledgments. The authors acknowledge partial support of the Spanish MICINN
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14704-C03-03; LoMo-ReVI FFI2008-03126-E/FILO (FP006); FPU grant reference AP2009-
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PROMETEO/2008/051; and the Generalitat de Catalunya grant 2009-SGR-1434.
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2.5 Selected Paper 4: Defeasible Argumentation for Multi-
Agent Planning in Ambient Intelligence Applications
(AAMAS 2012)

Abstract. This contribution presents a practical extension of a theoretical model for
multi-agent planning based upon DeLP, an argumentation-based defeasible logic. Our
framework, named DeLP-MAPOP, is implemented on a platform for open multi-agent
systems and has been experimentally tested, among others, in applications of ambient
intelligence in the field of health-care. DeLP-MAPOP is based on a multi-agent partial
order planning paradigm in which agents have diverse abilities, use an argumentation-
based defeasible reasoning to support their own beliefs and refute the beliefs of the oth-
ers according to their knowledge during the plan search process. The requirements of
Ambient Intelligence (AmI) environments featured by the imperfect nature of the con-
text information and heterogeneity of the involved agents make defeasible argumentation
be an ideal approach to resolve potential conflicts caused by the contradictory informa-
tion coming from the ambient agents. Moreover, the ability of AmI systems to build a
course of action to achieve the user’s needs is also a claiming capability in such systems.
DeLP-MAPOP shows to be an adequate approach to tackle AmI problems as it gathers
together in a single framework the ability of planning while it allows agents to put for-
ward arguments that support or argue upon the accuracy, unambiguity and reliability of
the context-aware information.

2.5.1 Introduction

Ambient Intelligence (AmI) integrates concepts ranging from Ubiquitous Computing to
Artificial Intelligence with the vision that technology will become invisible, embedded
in our natural surroundings, present whenever we need it, and adaptive to users (74). In
AmI environments, people are surrounded with networks of embedded intelligent devices
that can sense the available context information, anticipate, and perhaps adapt to their
needs. In this contribution, we handle these requirements by modeling ambient agents
as entities which manage a portion of the AmI environment, i.e. they are responsible for
one or more devices. Due to the imperfect nature of the context and the heterogeneity of
ambient agents, whose different viewpoints lead them to infer different assumptions about
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the user’s current situation, ambient agents, as distributed autonomous software entities,
are required to engage in interactions, argue with one another, and make agreements,
individually or collectively, while responding to changing circumstances of the ambient
environment. For this reason, ambient agents are being advocated as a next-generation
model for engineering complex distributed systems such as AmI systems. The aim in
AmI is to make the interaction between users and the smart environment easy.

Defeasible is the opposite of irrefutable or indisputable. A defeasible piece of infor-
mation is a non-demonstrative piece of information that is acknowledged to be able to
fail or be corrected. Defeasible reasoning is usually realized as a rule-based approach
for reasoning with incomplete and inconsistent information through the use of rules that
may be defeated by other rules. Defeasible reasoning has been successfully used in AmI
applications (63). On the other hand, Defeasible Argumentation, which has recently
become a very active research field in computer science (75), is a form of defeasible rea-
soning that emphasizes the notion of argument. An argument is a chain of reasoning that
concludes one piece of information (conclusion) on the basis of some other pieces of in-
formation (premises). Thus, defeasible argumentation can be viewed as a powerful tool
for reasoning about inconsistent information through a rational interaction of arguments
for and against some conclusion derived by an ambient agent. Defeasible argumentation
has also been successfully proved in AmI applications (76).

The defeasible logic programming formalism DeLP (24) is one of the most popular
approaches to build defeasible argumentation. Our framework, DeLP-MAPOP, builds
upon DeLP to implement the defeasible argumentation mechanism. The key element of
DeLP are defeasible rules (Head −� Body), which are used to represent a deductive rela-
tion between pieces of knowledge that could be defeated once another piece of knowledge
is considered. For instance, a defeasible rule like emergency −� patient-fever denotes that
an ambient agent believes that if the monitoring system returns the patient has fever then
there are provable reasons to declare an emergency. The defeasible rule ∼emergency
−� {normal-pulse, conscious, correct-breathing} provides reasons to believe the contrary,
in whose case we say that the first piece of information is acknowledged to fail in case
{normal-pulse, conscious, correct-breathing} hold in the context. However, assuming that
another ambient agent knows that the patient is vomiting blood, i.e. {bloody-vomit} holds
in the context, then it might derive the patient has not a normal pulse by following the de-
feasible rules {∼normal-pulse −� internal-bleeding; internal-bleeding −� bloody-vomit},
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which represents an attack to the defeasible rule whose conclusion is ∼emergency. Thus,
arguments (combinations of defeasible rules and facts) for conflicting pieces of informa-
tion are built, and then compared to decide which one prevails.

Planning is a desired ability in AmI systems to achieve a goal-oriented behavior, i.e.
to decide the course of action to meet the needs of the specific application, for instance,
stabilizing a patient in a home-care system. Planning has been used in some AmI appli-
cations for monitoring and responding to the needs of a diabetic patient (77). Particularly,
the work in (77) presents a centralized planner that manages distributed capabilities as it
assumes that some agents do not have planning capabilities. In this case, an agent is im-
plemented as a device, which prevents the agent from taking responsibilities in building
the plan due to its limitations in processing and communication; for example, a cell phone
could not be able to autonomously plan to call a doctor given that other devices detected
that a user in the environment is ill (77). However, in our contribution an ambient agent
is executed on an independent host and can encompass several devices. This increases
the communication capacity as well as autonomy and endow agents with the necessary
abilities to pose a goal and build a plan for this goal. This approach allows us to address
many real applications where the capabilities to perceive the context and perform the ac-
tions are distributed across agents. Multi-Agent Planning (MAP) applied to an AmI
environment is intended as the ability of a team of ambient agents to build collaboratively
a plan of actions that, when performed in the AmI context, meets the needs and goals of
the application.

Partial Order Planning (POP) is a suitable planning approach to address the require-
ments derived from a distributed planning thanks to the application of a non-sequential
behaviour and the least commitment principle (43). This is evidenced by the fact that
most existing architectures for integrating planning with execution, information gathering
and scheduling are based on partial order planners. In (54), authors argue that POP-based
frameworks offer a more promising approach for handling domains with durative actions
and temporal and resource constraints as compared to other planning approaches. In fact,
most of the known implementations of planning systems capable of handling temporal and
durative constraints (e.g. NASA’s RAX (56)) are based on the POP paradigm. Even for
simple planning tasks, partial order planners offer a higher degree of execution flexibility.
For these reasons, this work is based on Multi-Agent Partial Order Planning (MAPOP).

A extension of POP with DeLP-style argumentation, denoted as DeLP-POP, was
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introduced in (23), where both actions and arguments may be used to enforce some goal,
if their conditions (are known to) apply and arguments are not defeated by other arguments
applying. Unlike actions, arguments are not only introduced to intentionally support some
step of a plan, but they are also presented to defeat or defend other supporting arguments
in the plan. When actions and arguments are combined in a partial order plan, new types of
interferences or threats appear (23) which need to be identified and resolved to obtain valid
plans. Finally, the work in (26, 34, 73) proposes an extension of the DeLP-POP to a multi-
agent environment. Specifically, it proposes a dialogue for argumentative plan search, by
which agents exchange plan proposals and arguments for or against such proposals. To
the best of our knowledge, these theoretical works have neither been implemented nor
tested on real-world domains such as AmI applications.

This contribution presents DeLP-MAPOP, a system that combines, implements and
tests features like multi-agent defeasible argumentation and multi-agent planning in AmI
applications. DeLP-MAPOP develops and implements an extended and refined version
of the framework presented in (26); DeLP-MAPOP is applied and experimentally tested
in an AmI environment, it extends the agents’ knowledge bases and the dialogues during
the plan search and it offers a new classification of planning interferences. The remainder
of this paper is divided as follows. First, we introduce the basic elements of the system;
then we present the MAP protocol applied in an AmI scenario to deal with a person
suffering from a heart disease. Next, the experiments carried out to validate the present
work are described and analyzed. Finally, we conclude and present some directions for
future work.

2.5.2 Components of the system

In this section, we provide definitions for the notions of ambient agent, context infor-
mation, planning task, argument versus action and plan, that will be later used for the
definition of the DeLP-MAPOP protocol.

2.5.2.1 Ambient Agents

In DeLP-MAPOP, ambient agents act as planning agents with different beliefs, capabil-
ities and preferences. Thus, we assume the capabilities to perceive the context, perform
actions and derive new conclusions are distributed across ambient agents. Agents are
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managed and supervised by the Agent Management System (AMS) that is responsible
for the following tasks: i) Exercising supervisory control over access to the multi-agent
platform; it is responsible for authentication of resident ambient agents and control of
registrations. ii) Discovering new user’s needs generated directly by the user or indirectly
by a smart device, which provides the input to a DeLP-MAPOP process in terms of goals
to be reached. iii) When ii) occurs, the AMS agent gathers the ambient agents who will
participate in the planning process and will return the action plan to satisfy the user’s
needs. For instance, a device that monitors the patient’s heart’s rate may detect the pres-
ence of arrhythmias by means of an electrocardiogram, a symptom that might entail a
heart attack. In this case, the monitoring system generates the goal patient-to-be-treated,
and communicates it to the AMS agent.

The knowledge of an ambient agent mainly comprises context information encoded as
defeasible rules and initial facts, and context capabilities represented as planning actions.

2.5.2.2 Context information

The representation scheme used by DeLP-MAPOP to model components of the AmI
environment is based on a state-variable representation, where variables map to a finite
domain of values which represent the problem objects. A state-variable representation is
equivalent to a classical planning representation in expressive power and it is also useful
in non-classical planning problems as a way to handle numbers, functions and time. In
this paper, we will restrict our attention to only non-numeric variables. Since actions
change the state of the world and defeasible rules make assumptions about the state of the
world, actions and defeasible rules are most naturally modeled as elements that change
the values of the state variables. The variable-value pair 〈vi, vli〉 denotes the value vli is
assigned to the variable vi. For instance, the variable-value pair 〈 at-amb, pH 〉 indicates
that the ambulance amb is located at the patient’s home pH , that is, the value of the
variable denoting the position of the ambulance is the patient’s home.

In what follows, we define the set of elements used to represent the agent’s context
information. (i) the set of objects O that model the elements of the planning domain over
which the actions and defeasible rules can act. (ii) the set of state variables V that are
used to model the states of the world: each state variable vi ∈ V is mapped to a finite
domain of mutually exclusive values Dvi , where ∀vi ∈ V , Dvi ⊆ O. (iii) the initial
state of the problem Ψ, which is a consistent set of variable-value pairs; a variable with
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no assigned value in the initial state is assumed to have an unknown value. (iv) the set of
defeasible rules ∆, where each rule δ follows the form 〈head(δ)−�body(δ)〉; if the set of
variable-value pairs in body(δ) is warranted, i.e. if variables have the specified values in
the pair, then δ is applicable and for each 〈vi, vli〉 that appears in the head of the rule, vi is
assigned the value vli. (v)A is the set of planning actions α = 〈P(α),X(α)〉, where P(α)

is a set of preconditions encoded as variable-value pairs that must be satisfied in order to
apply the effects in X(α), also encoded as 〈vi, vli〉.

2.5.2.3 Planning task

Each ambient agent x ∈ {Ag1 . . .Agn} is initially endowed with a planning task Mx =

(Ox, Vx,Ψx,∆x, Ax, Fx, G) where:

1. Ox is the set of objects known by the agent x.

2. Vx is the set of variables managed by agent x to represent the agent’s knowledge
about the state of the world.

3. Ψx = {〈vi, vli〉 | vi ∈ Vx; vli ∈ Dvi} represents the partial view of the initial
world state of agent x, i.e. the information that agent x knows about the initial
state. We assume

⋃
x∈{Ag1...Agn}

Ψx is a consistent set.

4. ∆x is a set of defeasible rules known by the agent x.

5. Ax is a set of planning actions known by the agent x.

6. Fx represents a consistent set of the agent-specific preferences Fx ⊆ {(a, d) | (a ∈
Ax), d ∈ [0, 100]}, where action a is preferred with the estimated interest degree
d.

7. G is the set of global goals that represent the needs of a user in an AmI environment.
G is expressed as a set of pairs variable-value thus indicating the value each variable
is expected to assume in the final state. Unlike the rest of elements, G is known by
all of the ambient agents.

99



2. SELECTED PAPERS

2.5.2.4 Arguments versus Actions

As we saw in the Introduction section, and based on the framework presented in (23), both
actions and arguments may be used to enforce some task goal in DeLP-MAPOP. As illus-
trated in Figure 2.43 (a), an argument A for 〈vi, vli〉 proposed by an ambient agent Ag1,
is denoted as AAg1 = ({concl(AAg1)}, {rules(AAg1)}), where concl(AAg1) = 〈vi, vli〉
is the argument conclusion and rules(AAg1) is a subset of defeasible rules such that
rules(AAg1) ⊆ ∆x. AAg1 is consistent if there exists a defeasible derivation for 〈vi, vli〉
from base(AAg1)∪ rules(AAg1), where base(AAg1) is the argument base, the set of <vari-
able,value> that must be warranted in the agent’s context information. The existence of
an argument AAg1 does not suffice to warrant its conclusion 〈vi, vli〉, this depends on
the interactions among arguments as we will see in Section 2.6.6.2. We semantically
distinguish between supporting arguments (also known as argument steps) as the argu-
ments specifically used to support some goal of the plan, and attacking arguments (also
known as defeaters) which are only introduced to attack some argument step previously
introduced in the plan.

The difference between assigning a value to a variable by an argument or by an action
is that in the case of a planning action the value is indisputable because it reflects a mod-
ification stated in the problem domain modelling; however, the confirmation of a value
assigned to a variable by an argument depends on the interaction with other attacking
arguments.

2.5.2.5 Plans

In POP, a partial order plan Π is a set of partially ordered actions (denoted by the relation
≺) which actually encodes multiple linear plans. More specifically, a plan Π is a tuple
Π = (A(Π),AR(Π), G(Π), OC(Π),CL(Π), SL(Π)), where A(Π) denotes the set of
action steps, AR(Π) represents the set of argument steps, G(Π) is the task’s common
goals (the user’s needs), OC(Π) is a set of ordering constraints, and CL(Π) and SL(Π)

represent the sets of causal and support links, respectively. In POP, Ψ and G are encoded
as dummy actions {αΨ ≺ αG} where αΨ is also refereed to as the initial step of the plan
and αG to as the final step of the plan, with X(αΨ) = Ψ, P(αG) = G, and P(αΨ) =

X(αG) = ∅.
Let 〈vi, vli〉 be an open goal in Figure 2.43(b), motivated by some action step αG ∈

A(Π), i.e. 〈vi, vli〉 ∈ P(αG); let 〈vk, vlk〉 be another open goal, motivated by some
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argument step AAg1 , i.e. 〈vk, vlk〉 ∈ base(AAg1). Then, the goal 〈vi, vli〉 ∈ P(αG)

must be supported by an argument, argument AAg1 in Figure 2.43(b), which introduces
a support link (AAg1 , 〈vi, vli〉, αG) ∈ SL(Π), where SL(Π) ⊆ ∆ × G(Π) × A. In
contrast, the goal 〈vk, vlk〉 must be supported by an action, α1 in Figure 2.43(b), which
introduces a causal link (α1, 〈vk, vlk〉,AAg1) ∈ CL(Π), where CL(Π) ⊆ A × G(Π) ×
∆. Triangles in Figure 2.43(b) represent argument steps (i.e. arguments that support
preconditions of action steps), while rectangles represent action steps (i.e. actions that
support the basis of an argument step). Therefore, in this approach, goals must always
be initially derived by some argument step, and an argument base must be satisfied by
another action step (including the initial step). This way, a typical causal link in POP

is now replaced by a causal link and a support link. Note this representation allows us
to implicitly address the qualification problem (59) as every precondition of a planning
action is now supported by an argument step rather than directly by an action effect. This
way, agents may attack the fulfillment of such precondition if they believe that there exist
other non-explicit conditions that prevent the supporting action from having its intended
effects. This new conception of mandatorily supporting preconditions through argument
steps gives rise to a new and unique notion of threat. Under this new perspective, the
concept of argument-argument threat in (23, 26) is now replaced by a broader notion of
argument-argument threat that covers all the interferences that arise between the elements
of a plan in which the qualification problem is addressed through the use of argument
steps. Depending on where these argument-argument threats occur in the plan, we will
distinguish between threats (Section 2.6.6.1) and attacks (Section 2.6.6.2).

2.5.3 Multi-Agent Planning Protocol

First, we outline the procedure followed by the DeLP-MAPOP protocol that interleaves a
planning stage, an argumentation stage and a selection stage. Given a set of global goals,
G, that address the requirements of an AmI application, agents build their own planning
task Mx so they can differently contribute to the construction of the joint solution plan.
The starting point of the MAP protocol is an empty initial plan Π0 and the output is the
solution plan. Once checked the plan Π is not a solution, the first step is to select an open
goal Φ ∈ G(Π) of the planning task for resolution (choose1 step in Algorithm 2). Then it

1The open goal Φ is selected as the most costly open goal according to a reachability analysis of the
variables.
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Figure 2.26: (a) An argument AAg1 for 〈vi, vli〉 by using two defeasible rules: δ0 =

{〈vi, vli〉}−�{〈vj , vlj〉} and δ1 = {〈vj , vlj〉}−�{〈vk, vlk〉}, such that vi 6= vj and vj 6= vk

and {vi, vj , vk} ⊆ Vx; (b) An example of a partial plan.

comes the planning stage (PROPOSALS step in Algorithm 2) where agents put forward
and exchange different partial order plans that would potentially solve Φ. Following,
agents get involved in an argumentative dialogue (EVALUATION step in Algorithm 2) in
which they expose their arguments for or against each of the proposals. This evaluation
process performs a warranty procedure to determine which proposals do not receive at-
tacks or, otherwise, the received attacks do not succeed. Subsequently, ambient agents
reach an agreement as to which about the next partial plan and they continue the search
exploration (SELECTION step in Algorithm 2). The process is repeated until a solution
plan is found.

The state-variable representation used in DeLP-MAPOP is based on the latest PDDL
(Planning Domain Definition Language) version, PDDL3.1 (78), which was introduced
in the context of the 2008 International Planning Competition. Here, we extend the
language PDDL3.1 for supporting the specification of defeasible rules and the ambient
agent’s preferences. Moreover, our language allow us to specify binary variables. A state
variable vi is interpreted in PDDL3.1 as a function that represents a characteristic shared
by some of the objects that define the problem. vi is a tuple that takes the following form
vi = (vNi p1 . . . pn), where vNi is the unique variable’s name and p1 . . . pn are the
objects as input parameters of the function. For instance, let pos-t11 be a variable that in-
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input : The initial plan Π0 := {αΨ ≺ αG}.
output: The solution plan Π.

Π := Π0

while Π <> null do
if G(Π) = ∅ then

return Π [It is a plan solution.]
end
else

choose Φ ∈ G(Π);
Ref(Π,Φ) := PROPOSALS(Π,Φ);
[Each plan Πr of the set Ref(Π,Φ) is a choice (partial-order plan)
extending Π.]
if Ref(Π,Φ) = ∅ then

[Backtracking process.]
end
else

EVALUATION(Ref(Π,Φ));
Π := SELECTION();

end
end

end
return fail; [Not exists plan.]

Algorithm 2: Multi-agent planning protocol overview.
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dicates the current position of the medical team t11; this variable is encoded in PDDL3.1
through the function (pos t11), where ’pos’ is the function name and t11 is the func-
tion parameter. An assignment of a value vli to a variable vi in PDDL3.1 is denoted by
(assign vi vli); and the comparison operation is represented by (= vi vli). We also
allow to express multi-valued variables for ease of coding, denoted by (member vi vli).
For simplicity, we will use the notation <variable,value> in the explanations and use the
PDDL3.1 language only to show the encoding of the defeasible rules and planning actions
of the planning task. All of these encodings will be shown in a framed box labeled with
the caption name Listing.

2.5.3.1 Overview of the Application Scenario

This section provides a brief overview of the AmI application upon which the framework
DeLP-MAPOP is applied. The purpose is to motivate the interest of this type of applica-
tions as well as the utilization of a defeasible planning model to carry out the necessary
operations to fulfill the user’s need at a specific time.

Nowadays, more and more patients are suffering heart diseases which is the main
cause of premature death. The monitoring of people suffering heart failure is currently a
challenge for AmI systems. The work in (77) presents a first approach to use an AmI sys-
tem with centralized planning capabilities for assisting patients suffering diabetics prob-
lems. Here, we assume that the patient’s home is equipped with appropriate technologies
to create the AmI environment. The patient is monitored with a system, in the form of
a bracelet, which collects the patient’s physical activity and wirelessly transmits it to a
device responsible for monitoring patient’s heart rate. When a need is detected by this
device, e.g. an extremely lower level of a patient’s physical activity which may end up
in a heart attack, the AmI environment executes DeLP-MAPOP for assisting the patient
until the health services arrive to the patient’s home.

In this application, we have the following ambient agents: a communication agent in
charge of using telecommunication devices such as a cell telephone to call the emergency
services; the assistant agent, who is responsible for controlling an automated external
defibrillator, an activity tracking device, a position tracking device, etc. to interact with
both the environment and the user; and the transport agent, whose main function is to
guide the ambulance/helicopter to follow the best path to reach the patient’s home. Agents
have different capabilities according to their role so they contribute to the overall plan with
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different actions accordingly. However, we assume that agents’ beliefs concern any aspect
of the context information and so agents can make assumptions on the current status of
the application regarding any type of information. That is, beliefs are not necessarily
related to the planning capabilities of the agent, they can refer to any aspect of the AmI
environment. The hospitals’ preferences are associated with the transport-agent specific
preferences, while the patient’s preferences are related to the specific preferences of the
assistant agent. For space reasons, we omit the specification of the planning task of each
ambient agents.

2.5.3.2 Plan proposals process

At the PROPOSALS stage, agents generate their refinements Ref(Π,Φ) to solve an open
goal Φ in a partial plan Π, similarly to a plan-space planning process that builds a POP

tree, except that each refinement or successor of Π may be now generated by a differ-
ent agent. Another distinguishing characteristic of the partial order plans generated in
DeLP-MAPOP is that they also contain argument steps, as explained in section 2.6.4.5,
to support action preconditions; this argument structure formed in each partial plan will
be later used in the EVALUATION process. The PROPOSALS stage finishes when all
agents have made their plan proposals at their turn and these are communicated to the rest
of agents. Then, agents update their set of actions with the information appearing in the
refinements proposed by the other agents.

Let’s suppose an ambient agent Ag1 who has transport capabilities and knows there
are three hospitals in the city {H1, H2, H3}. Each hospital disposes of two ambulances
from {a11, a12 . . ., a32} (one equipped with an Advanced Life Support (ALS) equipment,
and the other equipped with a Basic Life Support (BLS) equipment) and one emergency
helicopter from {h1, . . . h3}. Moreover, Ag1 knows there are always two emergency med-
ical teams from the set {t11, t12 . . ., t32} on call in each hospital: one handles the ALS
emergency equipment, and is formed by an ambulance driver, a nurse and a physician;
the other handles the BLS equipment and is formed by an ambulance driver and a nursing
assistant. Ag1 also has the defeasible rule specified in Listing 2.10 and the planning action
shown in Listing 2.9, among others. Note that the new location of the ambulance and the
medical-team are generated through the defeasible rule moved-medical-assistance, which
is embedded in an argument whose base must be supported by the effects of the action
moving-medical-assistance. This allows agents to intervene during the argumentative dia-
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logue in the EVALUATION stage to defeasibly attack the intended effects of the planning
action; that is, in case agents have beliefs that make them conclude that the action would
not achieve its expected effects.�
(:def-rule moved-medical-assistance

:parameters(?a - ambulance

?a1 address-hospital ?a2 - address-patient-home

?m - medical-team)

:head (and (assign (at ?a) ?a2)

(assign (pos ?m) ?a2))

:body (and (= (moved-amb ?a ?a1) ?a2)

(= (moved-team ?m ?a1) ?a2))) 
� �
Listing 2.1: The body of the defeasible rule matches the effects of the action moving-medical-
assistance to deal with the qualification problem.

�
(:action moving-medical-assistance

:parameters (?a - ambulance

?a1 address-hospital ?a2 - address-patient-home

?m - medical-team ?t - support-type)

:effect (and (assign (moved-amb ?a ?a1) ?a2)

(assign (moved-team ?m ?a1) ?a2))

:precondition (and (member (link ?a1) ?a2)

(member (type ?t) ?m)

(member (contains ?t) ?a)

(= (at ?a) ?a1)

(= (pos ?m) ?a1))) 
� �
Listing 2.2: An action for moving an ambulance from a location to other one.

Let pH be the patient’s home. If Ag1 is asked to solve the open goal P(αG) = 〈
at-?a, pH 〉 (’?a’ is an ambulance) generated by the AMS agent to assist the patient, Ag1

generates at least 6 refinement plans (3 hospitals * 2 ambulances) by using Listings 2.10
and 2.9 at the PROPOSALS stage. One of these proposed refinement plan generated is
Π

Ag1
r , such that OC(Π

Ag1
r ) = {αΨ ≺ α1; α1 ≺ AAg1 ; AAg1 ≺ αG}, as shown graphically

in Figure 2.43(b); in this particular example:

• concl(AAg1) = {〈 pos-t11, pH 〉, 〈 at-a11, pH 〉} matches P(αG).

• X(α1) = {〈 moved-amb-a11-H1, pH 〉, 〈 moved-team-t11-H1, pH 〉} matches
base(AAg1).
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Therefore, argument AAg1 is indirectly deriving the effects of the action α1. However,
unlike non-argumentative MAP systems, in DeLP-MAPOP the open goal 〈 at-?a, pH
〉 can also be derived by means of an argument that an agent, say Ag2, puts forward
to indicate, that according to its knowledge, ambulance a31 is already at the patient’s
home. The base of this argument may be supported with the information provided by an
ambulance position tracking device which allows Ag2 to infer that an ambulance is already
located at the patient’s home. As the rest of agents do not own this information, they
would claim for the inclusion of an action that moves an ambulance to the indicated place.
Therefore, unlike classical planning, the argumentation mechanism in DeLP-MAPOP

enables supporting an open goal with the context information of an agent without having
to necessarily include an action to satisfy such goal, which results in less costly plans. The
next stage would show the procedure to guarantee that a goal is satisfactorily warranted
by an argument.

2.5.3.3 Plan evaluation process

At the EVALUATION stage, agents become engaged in a number of argumentative di-
alogues aimed at evaluating the guarantee of a successful execution of a plan proposal,
i.e the possibility that the actions’ intended effects or the derived information, both rep-
resented as argument steps in the plan proposal under evaluation, are not achieved as a
result of AmI environment changes.

The input of this process is Ref(Π,Φ), the set of plans proposed by the agents at the
previous plan proposal stage. Since ambient agents may have different available con-
text information (represented as a combination of facts and defeasible rules) depending
on their information sources, they may not agree on the evaluation of a plan proposal
at some point during the dialogue. The EVALUATION stage generates as many argu-
mentative dialogues as argument steps are present in the proposal plan under evaluation.
An argumentative dialogue is an exchange of arguments for or against the fulfillment
of an argument step, represented as a Plan Argument Dialogue (PAD) tree TA

Πr
, where

Πr ∈ Ref(Π,Φ) is the refinement plan to be evaluated and A ∈ AR(Πr) is the particular
argument step to be evaluated. We denote the nodes in a PAD tree as tuples of the form
(Πr, A, Γ), where Γ is a set of attacking arguments (whose bases are warranted in the
plan Πr) that will finally determine if argument A is warranted in plan Πr. Every node in
a PAD tree (except the root) represents a defeater of its parent, and the leaves of the tree
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correspond to undefeated plans. The set of direct successors nodes of a given node Πr, is
denoted as succ(Πr). More specifically:

1. The root of the tree is labeled with (Πr,A, ∅).

2. A plan node (Πr,A, {B}) ∈ succ(Πr) represents an attack against the argument
A in plan Πr through the inclusion of an attacking argument, namely B. Conse-
quently, each node in succ(Πr) stands for a defeater of the root argument A, i.e. B
is a defeater of A.

3. A plan node (Πr,A, {B,C}) ∈ succ(succ(Πr)) indicates an attack to the argument
child B of the parent node through the inclusion of a new attacking argument, say
C, so this new node is a supporter of the root argument A.

Informally we might see a PAD tree for an argument step A as generating a dialectical
tree (24) for A. But in DeLP-MAPOP the nodes in the PAD tree are contextualized within
a plan. Every linear path from the root to a leaf corresponds to one different acceptable
argumentation line. Circular argumentation (also known as fallacious argumentation) is
avoided by applying both conditions from (24): no argument can be reintroduced in the
same argumentation line and argument concordance must be guaranteed.

Let Ag2 be an agent that has the defeasible rules detailed in Listing 2.14, and {〈device-
measure-the-traffic-H1-pH, high 〉, 〈maps-google-distance-H1-pH, long 〉}⊆ ΨAg2

. When
Ag1 sends the PAD tree TAAg1

Πr
(containing only the root node) to the rest of agents, Ag2

puts forward an attacking argument BAg2 =({〈 pos-t11, H1 〉}, {δ0; δ1; δ2}), inspired by
Listing 2.14, where:

• δ0 =(and 〈 pos-t11, H1 〉 〈 at-a11, H1 〉) −� (and 〈 moved-amb-a11-H1, pH 〉 〈
moved-team-t11-H1, pH 〉 〈 traffic-jam-between-H1-pH, true 〉 〈 is-far-from-H1-
pH, true 〉).

• δ1 =〈 traffic-jam-between-H1-pH, true 〉 −�〈 device-measure-the-traffic-H1-pH,
high 〉.

• δ2 =〈 is-far-from-H1-pH, true 〉 −� 〈 maps-google-distance-H1-pH, long 〉.

which attacks AAg1 . Unlike agent Ag1, agent Ag2 knows that traffic jam is expected
according to a smart device from the AmI system that monitors the traffic density be-
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tween the hospital H1 and the patient’s home pH, and also knows that the distance be-
tween them provided by a web mapping service as Google Maps, is rather large. Both
informations may be a reason to believe that an ambulance, initially located at the hospital
H1 will not arrive to pH in time for assisting the patient. Thus, Ag2 creates a new node
(Π

Ag1
r ,AAg1 , {BAg2}) ∈ succ(Π

Ag1
r ) among others, and sends it to rest of agents.�

(:def-rule moved-medical-assistance-denied

:parameters(?a - ambulance

?a1 address-hospital ?a2 - address-patient-home

?m - medical-team)

:head (and (assign (at ?a) ?a1)

(assign (pos ?m) ?a1))

:body (and (= (moved-amb ?a ?a1) ?a2)

(= (moved-team ?m ?a1) ?a2)

(= (traffic-jam-between ?a1 ?a2) true)

(= (is-far-from ?a1 ?a2) true)))

(:def-rule traffic-jam
:parameters(?a1 address-hospital

?a2 - address-patient-home)

:head (assign (traffic-jam-between ?a1 ?a2) true)

:body (= (device-measure-the-traffic ?a1 ?a2) high))

(:def-rule distance

:parameters(?a1 address-hospital

?a2 - address-patient-home)

:head (assign (is-far-from ?a1 ?a2) true)

:body (= (maps-google-distance ?a1 ?a2) long)) 
� �
Listing 2.3: Defeasible rules for representing situations in which the ambulance may not
arrive on time.

In the next round of the dialogue, (Π
Ag1
r ,AAg1 , {BAg2}) is received by the ambient

agent Ag3 who discovers a new attacking argument CAg3 that defeats BAg2 , which is based
on Listing 2.15.�
(:def-rule carpool-lane

:parameters(?a1 address-hospital

?a2 - address-patient-home)

:head (assign (traffic-jam-between ?a1 ?a2) false)

:body (= (carpool-lane-between ?a1 ?a2) true)) 
� �
Listing 2.4: The defeasible rule used for representing a carpool lane which may prevent an
ambulance from being stuck by a traffic congestion situation.

Assuming that 〈 carpool-lane-between-H1-pH, true 〉 ∈ ΨAg3
, then CAg3 = ({〈 traffic-

jam-between-H1-pH, false 〉},{〈 traffic-jam-between-H1-pH, false 〉 −� 〈 carpool-lane-
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between-H1-pH, true 〉}). That is, Ag3 knows that there is a carpool lane (as an express
lane) between H1 and pH, which is a reason to believe that the ambulance a11 can skip
the traffic congestion on the way to reach the patient’s home. Ag3 creates a new plan
(Π

Ag1
r , AAg1 , {BAg2 , CAg3}) extending (Π

Ag1
r ,AAg1 , {BAg2}) with CAg3 , and sends it to

the rest of agents. The evaluation dialogue for TAAg1

Πr
continues until all defeaters are put

forward in a round.
In order to check whether the argument of the root node is defeated or undefeated,

the following procedure on the PAD tree is applied: label with a U (for undefeated) each
terminal plan in the tree (i.e. each plan with no defeaters at all). Then, in a bottom-up
fashion, we label a node with: U if each of its successors is labeled with a D; and D (for
defeated) otherwise.

A plan in Ref(Π,Φ) is labeled as an undefeated refinement plan if all the root plans
of its PAD trees are labeled as undefeated. Otherwise the plan is provisionally labeled as
a defeated refinement plan in the POP tree. Undefeated plans are obviously preferred
over defeated plans as they represent a plan with no expectation failures according to
the ambient agents. Nevertheless, defeated plans are maintained in the POP tree as their
arguments may become later undefeated as the problem evolves and information changes.
Finally, each ambient agent updates its initial facts and defeasible rules with the facts and
defeasible rules from the exchanged arguments’ bases.

2.5.3.4 Plan selection process

At the SELECTION stage, the aim is to select the next plan Π to be refined and continue
with the plan-space planning process of the PROPOSALS stage, unless Π is already a
solution in which case the DeLP-MAPOP protocol stops.

For selecting a plan, agents apply three criteria in order of priority over the set of
evaluated plans from the previous stage. The objective is to select a plan considering
a compromise between the desire to minimize the computational overhead and that of
maximizing the quality of the solution plan. The three criteria are: first, the system ap-
plies a warranty procedure to discard the plans evaluated as defeated in the evaluation
stage. Second, a heuristic function is applied over the undefeated plans resulting from the
above filtering. We use two of the most popular heuristics in planning: SUM and MAX
heuristics (79). The SUM heuristic estimates the cost of a plan as the sum of the cost of
the pending open goals in the plan whereas the MAX heuristic returns the value of the
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most costly open goal as heuristic estimation. Plans whose heuristic estimation is below
a certain threshold are discarded from consideration. Finally, the last filtering over the re-
maining plans considers the preference functions. We have implemented two intersection
techniques aimed at selecting the most preferable plan by the ambient agents according
to their preferences. The first mechanism selects the plan whose actions are all among the
preferences of every agent with a degree of preference above a certain threshold. If the
application of this method returns an empty list then we compute the number of preferred
actions in each plan and we select the plan with the largest proportion of preferred actions
by the ambient agents.

2.5.4 Experimental Evaluation

The purpose of this section is to test the overall performance, scalability and quality of
DeLP-MAPOP versus a MAP system with no argumentation (MAPOP) which has also
been implemented in the same agent platform, and discuss the benefits and limitations of
each system. We carried out several experiments considering three different levels of dif-
ficulty of the planning problem: small (composed by 8 grounded actions and 50 grounded
defeasible rules), medium (composed by 16 grounded actions and 100 grounded defea-
sible rules) and large (composed by 24 grounded actions and 150 grounded defeasible
rules). We used teams of agents of different size ranging from 1 (single-agent) to 5.
We performed several tests varying the number of agents of each type in the AmI en-
vironment, namely transportation, communication and assistant agents, and we took the
median values over 20 repetitions for each set of experiments with ’n’ agents, regardless
the type of agent. We used the MAX heuristic and the Intersection function.

DeLP-MAPOP and MAPOP are implemented on Magentix21, a multi-agent platform
based on Apache Qpid2, an open-source implementation of Advanced Message Queuing
Protocol for communication.

With regard to scalability and performance, Figures 2.27(a), 2.27(b) and 2.27(c) show
the average time spent on each stage of the DeLP-MAPOP protocol, while Figure 2.27(d)
shows the average total time to find a solution plan, including parsing the problem file and
grounding the planning actions and defeasible rules. The horizontal axis (the same for the
rest of the figures) depicts the size of the team of ambient agents, while the vertical axis

1http://www.gti-ia.upv.es/sma/tools/magentix2/index.php
2http://qpid.apache.org/
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Figure 2.27: Performance measures.

displays the time in milliseconds. As expected, the average time spent in DeLP-MAPOP

is always greater than the time spent in MAPOP due to the following reasons: i) in the
PROPOSALS stage, the ambient agents from DeLP-MAPOP do not only have to rea-
son about which actions would achieve the selected open goal, but also need to reason
about which arguments would support it; ii) the EVALUATION stage is not considered
in MAPOP; and iii) the SELECTION stage is replaced in MAPOP by a single heuristic
function. It is also noticeable that the more agents in a team, the more exchanged mes-
sages between them, causing each stage to take longer in DeLP-MAPOP. Figure 2.27(e)
illustrates precisely that, as the number of agents increases, the number of exchanged
messages is larger; Figure 2.27(f) shows that as the size of the team increases, the number
of dialogue rounds is lower because in this case more attacking arguments tend to appear
in a single round, thus decreasing the number of rounds.

Figure 2.28 shows the evaluation of the quality of the obtained solution plans. Figure
2.28(g) shows that the average number of action steps in solution plans of DeLP-MAPOP

is lower or equal than the average number in solution plans of MAPOP. The reason is that
in MAPOP, an open goal that is not a threat can only be achieved through an action step,
while in DeLP-MAPOP the open goal can also be supported by an argument step whose
base is already guaranteed in the plan. In these cases, the cost of the DeLP-MAPOP

plans is smaller because fewer actions are required to support the open goals, meaning
that the agents’ beliefs support the fulfillment of a goal without explicitly including an
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additional action in the plan. The fact that argument steps are not used in MAPOP is
precisely shown in Figure 2.28(h). On the other hand, we can see in Figure 2.28(i) a com-
parison of the quality of plans generated with a single-agent team versus plans generated
by teams with more than one agent. Obviously, in the first case, plans are sequential while
DeLP-MAPOP returns plans with parallel actions that can be simultaneously executed by
different ambient agents.

We also carried out one more experiment: which action steps in MAPOP solution
plans are actually discarded during an argumentative dialogue in DeLP-MAPOP plans.
This latter aspect is also a very relevant issue as we wanted to compare the plans returned
by both systems and see how many plans, and actions correspondingly, of MAPOP were
actually discarded by the agents in DeLP-MAPOP during the argumentative dialogues.
The results of this experiment are shown in Figure 2.28(j). As can be seen, according
to the knowledge of the ambient agents, 0% of the solution plans generated by DeLP-
MAPOP comprise failing actions, i.e. actions whose intended effects were acknowledged
to fail at the EVALUATION stage. Obviously, as long as agents acquire more information
from the context, argumentative dialogues will fit reality better and, therefore, the guaran-
tee of a successful solution plan (a plan with no expected failures) would also be greater.
Furthermore, this experiment allowed us to check the correctness of the argumentative
dialogues at the EVALUATION stage. However, in the case of MAPOP, up to 50% of the
plans had actions that were discarded by the ambient agents in DeLP-MAPOP, that is,
actions that agents acknowledged that would not be successfully executed.

Examining the influence of preferences in DeLP-MAPOP, Figure 2.28(k) shows that
the average satisfaction of each team with the solution plans decreases as the size of the
team increases. We calculated the satisfaction of an individual agent on a solution plan
by averaging its preferences in the action steps of the plan, while the team satisfaction
is calculated as the average of the individual satisfactions. Figure 2.28(l) shows that the
difference of satisfaction between agents tends to increase as the size of the teams also
increases. It is desirable that the difference is as small as possible for that all agents are
equally satisfied.

2.5.5 Conclusions and Future Work

This paper presents the specification, implementation and an exhaustive experimentation
of DeLP-MAPOP, an argumentation-based defeasible planning framework, on AmI ap-
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Figure 2.28: Quality measures.

plications. Our most relevant contribution is a fully implemented MAP framework that
has been extensively tested in AmI environments. DeLP-MAPOP realizes three inde-
pendent but cooperative processes to propose, criticize, defend and select alternative plan
proposals. The results show two advantages of DeLP-MAPOP over a MAP process with
no argumentation: (i) since each plan step of a plan proposal is collaboratively argued,
DeLP-MAPOP returns plans whose actions are not likely to fail at execution time accord-
ing to the information and beliefs of the ambient agents; and (ii) since open goals can also
be supported by argument steps whose base is warranted with the facts of the plan, the
context information and defeasible reasoning of agents provide a means to satisfy goals
of the problem without an explicit inclusion of a planning action; this avoids considering
unnecessary action steps thus reducing the total cost of the plan.

As future work, we intend to test the effectiveness and feasibility of DeLP-MAPOP

in a hospital pilot program, as well as an extension to temporal defeasible argumenta-
tion for MAP (65). Currently, we are working on the development of a more elaborated
heuristic function that (i) analyzes the transitions between the values a state variable can
take, and (ii) considers the experiences from the plan evaluation process (case-based ar-
gumentation) to predict the potential number of attacks that a plan can receive. We are
also interested in studying the influence of the trust on the sources (devices) used by the
ambient agents to acquire the context information as well as how a trust level determines
the conflict resolution between attacking arguments. Finally, a comparison with other
MAP approaches will be considered.
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2.6 Selected Paper 5: Context-Aware Multi-Agent Plan-
ning in Intelligent Environments (INS Journal 2013)

Abstract. A system is context-aware if it can extract, interpret and use context infor-
mation and adapt its functionality to the current context of use. Multi-agent planning
generalizes the problem of planning in domains where several agents plan and act to-
gether, and share resources, activities, and goals. This contribution presents a practical
extension of a formal theoretical model for Context-Aware Multi-Agent Planning based
upon an argumentation-based defeasible logic. Our framework, named CAMAP, is im-
plemented on a platform for open multi-agent systems and has been experimentally tested,
among others, in applications of ambient intelligence in the field of health-care. CAMAP

is based on a multi-agent partial-order planning paradigm in which agents have diverse
abilities, use an argumentation-based defeasible contextual reasoning to support their
own beliefs and refute the beliefs of the others according to their context knowledge dur-
ing the plan search process. CAMAP shows to be an adequate approach to tackle ambient
intelligence problems as it gathers together in a single framework the ability of planning
while it allows agents to put forward arguments that support or argue upon the accuracy,
unambiguity and reliability of the context-aware information.

2.6.1 Introduction

Context-aware is concerned with the acquisition of context information, the abstraction
and understanding of this information, and application of behaviour based on the recog-
nized context information(80, 81). Much of the work on context-aware has been focused
more deeply on perceiving the context as a matter of user location. This trend has put the
emphasis on research fields as location awareness (82) and on the manifold ways, such as
sensors, network information or smart devices, to extract the context information. How-
ever, in the last few years, the notion of context-aware has been extended to describe not
only the ability of the computer to sense and extract information in the field, but also to
enable selective responses such as triggering actions based on context (83).

The work we present here lays on the adaptive and intelligent behavior of context-
aware systems; particularly, on the contextual behavior of Ambient Intelligence (AmI)
applications. AmI is an emerging discipline that brings intelligence to our everyday envi-
ronments and makes those environments sensitive to us. In AmI environments, technol-
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ogy becomes invisible and people are surrounded with networks of embedded intelligent
devices that can sense the available context information, anticipate, and adapt to their
needs (74, 84). As an example, Easishop is an ubiquitous commerce application for as-
sistance in everyday shopping that emerges as a juxtaposition of AmI and e-commerce
(85). Easishop autonomously and proactively provides assistance to the user by seek-
ing out shops that sell the items on the user’s shopping list. To realize such ubiquitous
applications with optimal usability, context-aware behaviour is seen as the key enabling
factor.

The use of agent technology is becoming very popular in AmI applications because
they can be seen as involving entities as autonomous agents that extract, process, change
and share the available context information (76). While software agents have been used
before for building AmI middleware, hardware agents are recently being used for the
design of multi-agent architectures for AmI Systems (86) or in multi-agent based simula-
tions for testing and validating large-scale AmI systems in dangerous environments (87).
We can find various examples of AmI systems concerning the coordination of agents as-
sociated to devices in order to resolve complex tasks that no agent can do by itself; for
instance, the AmbieAgents infrastructure (88) for context-based information services, or
the SpacialAgents platform (89) which uses mobile agents to offer services on the user’s
devices when the user enters a place that offers certain capabilities. In general, in all these
applications, ambient agents are entities associated to a device which extract raw context-
data, offer services and share the context information, but they are not endowed with
reasoning capabilities to achieve the desired context-aware behavior. Thus, agents are
simply conceived as sources of information that extract, share and exchange data but con-
textual adaptive behaviour is usually designed as a single-agent and independent process
that takes as input the context-data collected by the ambient agents. This is reasonable if
we consider that in most applications ambient agents are not other than device agents.

We want to exploit the use of agent technology in AmI applications, particularly on
the field of health-care problems (90). Homecare applications are becoming very popu-
lar, above all among elderly people (91), because they allow synchronizing an electronic
agenda with a central system that collects the daily reports and interfaces the central sys-
tems. However, we want to go a step further and design ambient agents not only as device
agents associated to blood pressure or temperature monitors, but as entities like doctors
or nurses that receive the monitor readings, perform context inferences to find out the
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real patient’s conditions and exchange their findings for a more accurate diagnosis. Put
another way, the final objective is to have agents involved in designing a plan to stabilize
a patient accordingly to their raw context-data and context inferences. Thus, we explore
the application of Artificial Intelligence planning techniques (36) as planning is a desired
ability in AmI systems in order to achieve a goal-oriented behavior. More particularly,
our aim is to apply multi-agent planning (92) to decide the course of action to meet the
needs of the patient.

Very few applications are actually able to offer a plan for fixing anomalies detected
during monitoring the vital signs of a patient. Amigoni et al. present a centralized planner
to assist a diabetic patient (77) where device agents do not take part in the planning activ-
ity but they are simply device agents. Therefore, agents in (77) are not able to do context
inference nor distributed planning. It is also important to remark the imperfect nature
of the context in AmI environments, the inherently distributed nature of health-care as-
sistance, where several agents intervene in the problem, and the heterogeneity of local
context theories. Thus, it is required to introduce mechanisms for agents to exchange,
discuss and solve the potential conflicts that may arise from the interaction of different
contexts (93). We opt for using argumentation (94) as a defeasible reasoning mechanism
that will allow agents to defeasibly support their decisions, interact to each other and come
up with a joint solution plan for the patient.

In this paper, we present Context-Aware Multi-Agent Planning (CAMAP), an ap-
proach for multi-agent planning that applies argumentation mechanisms to decide the
most appropriate course of action according to the context information distributed among
the agents. CAMAP is applied to a real-world application of AmI in the field of health-
care. The remainder of this paper is divided as follows. After a brief review of the related
work and background, we introduce the basic elements of the CAMAP system. We then
describe a real-life AmI scenario to deal with a person suffering from a heart disease. Fol-
lowing, we present the CAMAP protocol applied to the AmI scenario. The next section
presents the experiments carried out to test and validate the planning model. Finally, the
last section concludes and presents some directions for future work.

2.6.2 Related Work

In this section, we briefly review related work on AmI in health-care, multi-agent planning
and argumentation, the three main topics related to CAMAP. We only focus on works
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that combine at least two of the above topics, without paying special attention to the large
amount of specific works on each research topic.

Argumentation can be viewed as a powerful tool for reasoning about incomplete and
inconsistent contextual information through a rational interaction of arguments for and
against some conclusion derived by an ambient agent. An argument is a chain of reasoning
that concludes one piece of information (conclusion) on the basis of some other pieces of
information (premises). Argumentation has been successfully proved in AmI applications
as exposed by A. Bikakis (76) and P. Moraitis (95). Specifically, A. Bikakis proposes
an argumentation model to decide if a context-aware mobile phone should ring (in case
of incoming calls) based on the context of the owner of the phone. In (95), authors
propose a different argumentation model to decide the type of public transportation that
a person, who uses a wheelchair and has heart problems, should take according to the
specific context. The main idea of these relevant works is very similar; they use context
information for building arguments for or against a given action in a given context. Their
reasoning process is focused only on one action but not on a course of action (planning).

The work presented by D.R. García (23) combines argumentation (as a mechanism for
reasoning about context) and a centralized planner that follows a Partial-Order Planning
(POP) approach (43) although this framework has not been experimentally tested in real
applications yet. Unlike (23), F. Amigoni presents a planner applied to an AmI environ-
ment in the field of health-care (77), which is used to monitoring and responding to the
needs of a diabetic patient. More specifically, F. Amigoni assumes that only one agent is
endowed with planning abilities, but considers several device agents which have no re-
sponsibilities in building the plan due to its limitations in processing and communication.
The work in (77), however, does not use argumentation. On the other hand, the work of
A. Bahrani (96, 97), which follows a mixed initiative planning approach (98), proposes
a planning model that enables to analyze contextual information exclusively referred to
military situations. Specifically, it uses a graphical tool to visualize the contextual infor-
mation through which the user may decide whether this information should be taken into
account in the planning for military tasks. All the aforementioned approaches present an
important limitation; they are centralized planning models which do not allow automated
reasoning with multiple agents in a distributed way.

The motivation for introducing distributed reasoning in a multi-agent environment is
threefold. First, multi-agent systems can be beneficial in many domains, particularly when
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a system is composed of multiple entities that are distributed functionally or spatially
(99, 100). Second, a multi-agent system allows for realizing multiple device agents that
read raw context data and perform their own context inferences on the basis of the monitor
readings as well as improve the ability to more rapidly detect context information changes.
Third, distributed execution promotes the efficiency of parallel processing of actions, the
robustness of the system to cope with complex planning problems and the simplicity of
an incremental construction across a network of interconnected agents, thus avoiding the
critical failures and resource limitations of centralized systems. In Multi-Agent Planning
(MAP), an ambient agent is usually executed on an independent host and can encompass
several devices. This increases the communication capacity as well as autonomy and
endow agents with the necessary abilities to pose a goal and build a plan for this goal.
Typically, MAP approaches have been conceived as:

(1) Plan Selection: Agents construct independent plans for the same common goal and
a centralized algorithm is used to select the best solution plan. In this case, MAP

emphasizes the problem of selecting the best solution plan.

(2) Plan Merging: Agents construct independent plans for different subgoals and a
centralized algorithm is used to merge these plans. In this case, MAP emphasizes
the problem of controlling and coordinating a posteriori local plans of independent
agents.

(3) Plan Construction: Agents propose iteratively refinements to a base plan until a
consistent joint plan that solves the problem goals is obtained. In this case, MAP

is about an incremental construction of a joint plan among several agents that have
incomplete views of the world, which prevents them from coming up with complete
local plans for themselves.

With respect to (1), A. Belesiotis (29) proposes dialogue protocols that enable agents
to discuss candidate plans and reach agreements. Specifically, they introduce the defeasi-
ble situation calculus, a novel formalism based on the combination of situation calculus
and defeasible logic programming for reasoning about plans based on contradictory plan-
ning beliefs. Secondly, with respect to (2), one of the most well-known approaches for
the coordination of plans is the partial global planning framework (101) and its extension,
the generalized partial global planning approach (102). In addition, A. Toniolo (31, 103)
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presents an argumentation-based model for deliberative dialogues based on argumenta-
tion schemes. This work focuses on conflicts among the plans of agents, which may be
caused by concurrent actions, plan constraints or norms the agents must adhere to. Fi-
nally, as we will see in Section 2.6.3, the works in (26, 34, 73) follow a MAP approach
based on (3).

The benefits and advantages of (3) with respect to (1) and (2) are widely discussed
in the works (33, 104). Basically, the MAP model (3) can be successfully applied in
problems where agents have little iteration to each other to solve the planning problem
(loosely-coupled problems) as well as problems where agents have necessarily to in-
teract to engage their respective sub-plans (tightly-coupled problems). The underlying
principle of this general-purpose MAP model is interleaving planning and coordination
continuously. It is empirically demonstrated in (33) that (1) and (2) are not appropriate
approaches for solving tightly-coupled planning problems. In order to be able to solve
any type of planning problem, CAMAP relies on a MAP model (3). On the other hand,
none of the works that follows one of these three MAP approaches have been designed
and tested to cope with the requirements of AmI applications in health-care.

Table 2.2 summarizes the approaches presented in this section. As we can see, the
novelty of this contribution is the combination of all the topics into the same model, which
results in a CAMAP system for intelligent environments. To the best of our knowledge
there are no works that combine all of these topics, let alone implementations or empirical
evaluation.

 

 

 

 Ambient 
Intelligence 

Health-Care 
System 

Argumentation Multi-Agent 
System 

Planning 

F. Amigoni Yes Yes No No Yes 

A. Bikakis Yes No Yes Yes No 

A. Bahrani Yes No No No Yes 

A. Belesiotis No No Yes Yes MAP (1) 

A. Toniolo No No Yes Yes MAP (2) 

D.R. García No No Yes No Yes 

P. Moraitis Yes No Yes Yes No 

Our proposal Yes Yes Yes Yes MAP (3) 

Table 2.2: Summary of the related work.
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2.6.2.1 Contributions of our model

This paper contributes with the design, implementation and evaluation of a model for
Context-Aware Multi-Agent Planning (CAMAP) particularly applied to health-care sce-
narios in AmI environments, which uses a special type of argumentation, known as de-
feasible argumentation (75). Particularly:

a) CAMAP tackles planning problems in AmI environments where several ambient
agents extract raw context-data, make context inferences, and cooperate in the plan-
ning process.

b) The model can be used in many real applications where the capabilities of perceiv-
ing the context and planning are distributed across the ambient agents.

c) CAMAP is capable of solving problems with different levels of complexity and
coupling level (loosely-coupled and tightly-coupled).

d) Agents involved in the problem put forward their opinions about the plan construc-
tion by using defeasible argumentation. This allows agents to gradually interact
and discuss the impact and consequences of the context information in the actions
of the plan and present arguments for or against a particular action choice.

e) Agents are able to take the best action choice for the plan under construction by
taking into account the context information of the other agents.

2.6.3 Background

In this section, we summarize the foundations and previous works which the present con-
tribution is based on. Our framework, CAMAP, builds upon the formalism DeLP (24)
for the definition and specification of the defeasible argumentation mechanism. DeLP, a
defeasible logic programming formalism, is one of the most popular approaches to make
context inferences by using defeasible argumentation. The key element of DeLP are the
defeasible rules (Head−� Body), which are used to represent a deductive relation between
pieces of knowledge that could be defeated once another piece of knowledge is consid-
ered. For instance, a defeasible rule like emergency −� patient-high-fever represents the
belief of an ambient agent that if he holds a fact that the monitor reading returns the patient
has high fever then there are provable reasons to declare an emergency. The defeasible
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rule ∼emergency −� {normal-pulse, conscious, correct-breathing} provides reasons to
believe the contrary, in whose case we say that the first piece of information is acknowl-
edged to fail in case {normal-pulse, conscious, correct-breathing} hold in the context.
However, assuming that another ambient agent knows that the patient is vomiting blood,
i.e., {bloody-vomit} holds in the context, then he might derive the patient does not have
a normal pulse by following the defeasible rules {∼normal-pulse −� internal-bleeding;
internal-bleeding −� bloody-vomit}, which entails an attack to the defeasible rule whose
conclusion is ∼emergency. Thus, arguments are combinations of defeasible rules and
facts which may result in conflicting pieces of information. In this case, arguments are
evaluated and compared to each other to decide which one prevails.

Partial-Order Planning (POP) is a suitable planning approach to address the require-
ments derived from a distributed planning thanks to the application of the least commit-
ment principle (43), which delays commitment of action orderings until such commit-
ments become necessary to resolve inconsistencies. In POP, a plan is represented as a set
of actions and a set of ordering constraints defining a partial order between actions. The
POP paradigm has been widely used in architectures for planning and execution, infor-
mation gathering, planning and scheduling or temporal planning. In (54), authors argue
that POP-based frameworks offer a more promising approach for handling domains with
durative actions and temporal and resource constraints as compared to other planning ap-
proaches. Even for simple planning tasks, partial-order planners offer a higher degree of
execution flexibility. For these reasons, the underlying planning model of ambient agents
in CAMAP is a POP planner.

A theoretical extension of POP with DeLP-style argumentation, denoted as DeLP-
POP, was introduced in (23), where both actions and arguments may be used to enforce
some goal, if their conditions (are known to) apply and arguments are not defeated by
other arguments applying. Unlike actions, arguments are not only introduced to inten-
tionally support some step of a plan, but they are also used to defeat or defend other
supporting arguments in the plan. When actions and arguments are combined in a partial-
order plan, new types of interferences or threats appear, which need to be identified and
resolved in order to obtain valid plans (23).

The works in (26, 34, 73) propose a theoretical extension of the DeLP-POP to a
multi-agent environment. Specifically, these works present a dialogue based on a logic
formalism for argumentative plan search, by which agents exchange plan proposals and
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arguments for or against such proposals, taking into account their context information.
To the best of our knowledge, these theoretical works have neither been implemented nor
tested on real-world domains like AmI applications.

This contribution presents CAMAP, a context-aware system that combines, imple-
ments and evaluates features of multi-agent defeasible argumentation and multi-agent
planning in AmI applications. CAMAP extends the theoretical works in (26, 34, 73) with
some additional capabilities to account for the requirements of a context-aware system.
Finally, CAMAP is implemented and experimentally tested in a real-world context as a
health-care application.

2.6.4 Definition of Components of the Context-Aware System

In this section, we provide definitions for all the elements used in the CAMAP framework.

2.6.4.1 Ambient Agents and Ambient Artifacts

In CAMAP, ambient agents act as planning agents that hold different beliefs encoded in
the form of defeasible rules and facts, and capabilities encoded as planning actions. Thus,
we assume that the capabilities to extract the raw context-data, make context inferences,
and plan actions are distributed across the ambient agents.

An ambient artifact is an entity which acts as a mediator between an ambient agent
and a smart device of the environment (105). The aim of artifacts is to allow agents to
easily interact with the context in order to: (a) extract the context information and encode
it in the form of facts that will be then provided to the agents; (b) achieve a goal-oriented
behavior, by which artifacts generate goals as input to the planning process; and, (c)
execute actions of a solution plan. We distinguish between informative artifacts for the
tasks (a) and (b) and executor artifacts for the task (c). In CAMAP, an ambient agent
interacts with one or more artifacts.

2.6.4.2 Context-Aware Information

The representational scheme used by CAMAP to model components of the AmI environ-
ment is based on a state-variable representation, where variables map to a finite domain
of values which represent the problem objects. A state-variable representation is equiv-
alent to a classical planning representation in expressive power and it is also useful in
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non-classical planning problems as a way to handle numbers, functions and time. In this
paper, we will restrict our attention to only non-numeric variables. Since planning actions
change the state of the world and defeasible rules make assumptions about the state of the
world, actions and defeasible rules are most naturally modeled as elements that change
the values of the state variables. The variable-value pair 〈vi, vli〉 denotes that the value
vli is assigned to the variable vi. For instance, the variable-value pair 〈 at-amb, pH 〉
indicates that the location of the ambulance amb is the patient’s home, pH; that is, the
value of the variable denoting the position of the ambulance is the patient’s home.

In what follows, we define the elements used to represent the agent’s context informa-
tion:

(i) The set of objects, O, represents the elements of the planning task involved in the
planning actions and defeasible rules.

(ii) The set of state variables, V, are used to model the state of the world. Each state
variable vi ∈ V is mapped to a finite domain of mutually exclusive values Dvi ,
where ∀vi ∈ V, Dvi ⊆ O.

(iii) The initial state of the problem, Ψ, is a consistent set of facts, represented as
variable-value pairs. A variable which has not been assigned a value in the ini-
tial state is assumed to have an unknown value.

(iv) The set of defeasible rules, ∆, where each rule δ follows the form 〈head(δ)−�
body(δ)〉. If the set of variable-value pairs in body(δ) is warranted, i.e., if the
variables that model the problem state have the values specified in body(δ), then δ
is applicable in such state, and for each 〈vi, vli〉 that appears in the head of the rule,
vi is assigned the value vli.

(v) The set of planning actions, A, such that an action is represented asα = 〈P(α),X(α)〉,
where P(α) is a set of preconditions encoded as variable-value pairs that must be
satisfied in the problem state in order to achieve the effects in X(α), also encoded
as variable-value pairs 〈vi, vli〉.

2.6.4.3 Planning Tasks

A MAP task is defined to find, collaboratively, a sequence of actions that transform the
initial world state to a state satisfying a given goal condition. In CAMAP, a MAP task M
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is a 5-tuple 〈AG,Ψ,∆,A,G〉 consisting of:

1. AG = {Ag1 . . .Agn} | n = |AG| is a finite non-empty set of ambient agents
with planning and argumentation capabilities. It is assumed that agents are fully
cooperative.

2. Ψ is a set of values assigned to the state variables in V and represents the initial
state of M. Each ΨAgi ⊆ Ψ represents the partial view of the initial state of agent
Agi such that Ψ =

⋃
∀Agi∈AG

ΨAgi is a consistent set.

3. ∆ is a finite set of (non-deterministic) defeasible rules. ∆Agi ⊆ ∆ is the set of rules
known by agent Agi such that ∆ =

⋃
∀Agi∈AG

∆Agi is a set of possibly contradictory rules.

4. A is a finite set of deterministic planning actions. AAgi ⊆ A is the set of actions
known by agent Agi such that A =

⋃
∀Agi∈AG

AAgi .

5. G is a set of global goals that denotes the needs of a user in an AmI environment. G

is expressed as a set of pairs variable-value, indicating that each variable is expected
to take on the corresponding value in the final state. Unlike the rest of elements, G

is known by all of the ambient agents.

The group of agents AG involved in the resolution of the AmI application form a
planning team since it is assumed that agents are fully cooperative, i.e., agents are not
self-interested in CAMAP.

2.6.4.4 Arguments versus Actions

In what follows, we briefly introduce the theoretical framework underlying the context-
aware system (for a more detailed description, see (23, 26, 34)). In the rest of the paper,
we will use letters A,B, . . . ,Z to denote arguments, and alpha symbols α1, α2, . . . αn,
αΨ and αG to represent actions. Both actions and arguments may be used to enforce some
task goal in CAMAP. As illustrated in Figure 2.29, an argument A for 〈vi, vli〉 proposed
by an ambient agent Ag1, is denoted as AAg1 = ({concl(AAg1)}, {rules(AAg1)}), where
concl(AAg1) = 〈vi, vli〉 is the argument conclusion and rules(AAg1) is a subset of defea-
sible rules such that rules(AAg1) ⊆ ∆Ag1

. AAg1 is consistent if there exists a defeasible
derivation for 〈vi, vli〉 from base(AAg1)∪rules(AAg1), where base(AAg1) is the argument
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base, the set of variable-value pairs that must be warranted in the agent’s context infor-
mation. The existence of an argument AAg1 does not suffice to warrant its conclusion
〈vi, vli〉, this depends on the interactions among arguments from different agents as we
will see in Section 2.6.6.2. We semantically distinguish between supporting arguments
(also known as argument steps) as the argument that agents specifically use to support
some goal of the plan, and attacking arguments (also known as defeaters) which are
only introduced to attack some argument step previously introduced in the plan by an
ambient agent.

d0 

d1 

... 

... 

... 

Figure 2.29: An argument AAg1 for 〈vi, vli〉 by using two defeasible rules, among others:
δ0 = {〈vi, vli〉} −� {〈vj , vlj〉} and δ1 = {〈vj , vlj〉} −�{〈vk, vlk〉}, such that vi 6= vj ,
vj 6= vk and {vi, vj , vk} ⊆ Vx.

The difference between a conclusion 〈vi, vli〉 derived by an argument or derived by
an action is that in the case of a planning action the conclusion or effect is indisputable
because it reflects a modification stated in the planning task modelling; however, the
confirmation of a conclusion derived by an argument depends on the interaction with
other attacking arguments. Put another way, planning actions are intended to express the
physics of a domain so the effects of an action reflect the changes that will be produced in
the world when the action is executed. However, an argument represents a belief inferred
by an agent according to the knowledge and partial world view of such an agent so the
belief may be invalidated if another agent puts forward an opposite conclusion.

127



2. SELECTED PAPERS

2.6.4.5 Plans

In POP, a partial-order plan Π is a set of partially ordered actions (denoted by the relation
≺) which actually encodes multiple linear plans. More specifically, a plan Π is a tuple
Π = (A(Π),AR(Π), G(Π), OC(Π),CL(Π), SL(Π)), where A(Π) denotes the set of ac-
tion steps, AR(Π) represents the set of argument steps, G(Π) is the set of goals of the
planning task (the user’s needs), OC(Π) is a set of ordering constraints between actions
in A(Π) (denoted by the relation ≺), and CL(Π) and SL(Π) represent the sets of causal
and support links, respectively.

The initial state, Ψ, and goals, G, of a planning task, M, are encoded as dummy actions
{αΨ ≺ αG} where αΨ is also refereed to as the initial step of the plan and αG to as the
final step of the plan, with X(αΨ) = Ψ, P(αG) = G, and P(αΨ) = X(αG) = ∅.

Let 〈vi, vli〉 be an open goal (unsupported precondition) of some plan Π, motivated by
some action step αG ∈ A(Π), i.e., 〈vi, vli〉 ∈ P(αG); let 〈vk, vlk〉 be another open goal,
motivated by some argument step AAg1 ∈ AR(Π), i.e., 〈vk, vlk〉 ∈ base(AAg1) (Fig-
ure 2.43). The goal 〈vi, vli〉 ∈ P(αG) and must be supported by an argument, argument
AAg1 in Figure 2.43, which introduces the support link (AAg1 , 〈vi, vli〉, αG) ∈ SL(Π),
where SL(Π) ⊆ ∆ × G(Π) × A. In contrast, the goal 〈vk, vlk〉 must be supported by
an action, α1 in Figure 2.43, which introduces the causal link (α1, 〈vk, vlk〉,AAg1) ∈
CL(Π), where CL(Π) ⊆ A × G(Π) × ∆. Specifically, in Figure 2.43, the real effects
of α1 (X(α1) = 〈vi, vli〉) are encoded through a supporting argument AAg1 such that
concl(AAg1) = 〈vi, vli〉; rules(AAg1) = {〈vi, vli〉 −�〈vk, vlk〉}; and base(AAg1) is sat-
isfied with 〈vk, vlk〉, a fictitious effect of the action α1. The generation of 〈vk, vlk〉 is
actually used as an indication that action α1 has been executed while 〈vi, vli〉, the real
effects of α1, are supported through an argument to let other agents discuss about the
successful achievement of 〈vi, vli〉 when α1 is executed. This is an implicit way of ac-
counting for the qualification problem (59), an open way for the rest of agents to be able
to attack the supporting argument, as an indication that agents have their concerns regard-
ing that the execution of α1 will actually achieve 〈vi, vli〉. However, it is important to
note that supporting arguments are not only used as an intermediate step to derive the real
effects of actions, but also as supporters to directly satisfy the open goal of an action step.
In other words, open goals of action steps can be indirectly supported with the effects of
another action through the use of an argument, or directly supported with the conclusion
of an argument. This latter case means that the agent supports the goal with a belief of
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its own so he believes it is not necessary to introduce an action for this purpose.

Let’s suppose that an Emergency Medical Service (EMS) has been requested to assist
injured people in an accident. CAMAP creates and runs a planning team, AG, to obtain
a plan that satisfies the goal 〈 at-EMS, accident-place 〉, i.e., a plan to assist and treat
people involved in the accident. 〈 at-EMS, accident-place 〉 is the goal of the planning
task; at-EMS is a state variable and accident-place is the value the variable is expected to
take on the final state. For this purpose, Ag1 ∈ AG constructs a partial plan that contains
a supporting argument AAg1 that derives 〈 at-EMS, accident-place 〉, whose base(AAg1)

is supported by the fictitious effect of an action α1 that sends the ambulance amb11 from
the hospital H1 to the accident place. Thus, 〈 at-amb11, H1 〉 ∈ P(α1) is the precondition
of α1, and the effects, X(α1), are supported by AAg1 that derives the conclusion 〈 at-EMS,
accident-place 〉. At this point, the plan proposed by Ag1 still has some open goals to be
achieved, specifically the unsupported precondition 〈 at-amb11, H1 〉 of α1. The addition
of new actions in the plan will eventually require preconditions such as having a doctor,
a nurse or an ambulance driver available in H1 to form the EMS that will be sent to the
accident place.

Agents build attacking arguments for or against a supporting argument when they
have beliefs (derived through their defeasible rules) that sustain or contradict the validity
of the supporting argument. More specifically, BAg2 = ({concl(BAg2)}, {rules(BAg2)})
in Figure 2.43 is an attacking argument acting as a defeater of AAg1 (BAg2 attacks AAg1 ),
where concl(BAg2) = 〈vi, vli′〉 | vli 6= vli′ , and vi is a single-valued variable. This
means that if an action α1 is executed in a state in which 〈vs, vls〉 holds (Figure 2.43
where 〈vs, vls〉 ∈ base(BAg2)), then, Ag2 has enough reasons to believe 〈vi, vli′〉, which
will cause α1 to fail in the current context and thus not to produce its intended effect
〈vi, vli〉. The blue triangle in Figure 2.43, AAg1 , represents an argument supporting the
precondition 〈vi, vli〉 of action αG; and the yellow triangle, BAg2 , represents an argument
attacking AAg1 . Rectangles represent action steps, i.e., actions that support the base of
an argument step. The existence of BAg2 means that agent Ag2 has reasons to believe
that ambulance amb11 will not reach the accident place; this would occur, for instance, if
according to Ag2’s knowledge amb11 is not available. On the other hand, Ag2 might also
propose another plan with a supporting argument, AAg2 , which also derives 〈 at-EMS,
accident-place 〉 and whose base(AAg2) is supported by the effects of an action α2 that
sends another ambulance, amb21, from hospital H2, and which Ag2 knows it is available.
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Figure 2.30: An example solving the qualification problem.

In our approach, goals must always be supported by the conclusion of an argument
step, and the argument base must be satisfied by an action step (including the initial step).
This way, a typical causal link in POP is now replaced by a causal link and a support
link. Note that this representation allows us to implicitly address the qualification prob-
lem as every precondition of a planning action is now supported by an argument step
rather than directly by an action effect. The default approach in traditional planning to the
qualification problem is to assume the world will behave as expected, that no unexpected
circumstances may at any time prevent the successful performance of an action and, there-
fore, the achievement of the desired effects. In CAMAP, accounting for the unexpected
circumstances that may happen in the context where the plan is being constructed is done
via argumentation, allowing agents to build an attacking argument against the argument
that supports the effect of an action α. This way, an attack to an argument stands for any
unexpected contingency that would prevent α from being successfully executed, i.e., for
any precondition not listed in P(α) that would prevent the execution of α from having
its intended effects. Ambient agents are thus enabled to attack any step of the plan under
construction.

Finally, we distinguish between the notions of threat and attack that may arise during
the plan construction: a threat is a conflict that arises during the planning process, an
interference between a support link and an argument step; an attack is a conflict that
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arises during the argumentative process, an interference between a support link and an
attacking argument. This is referred to as planning threats (threats) versus argumentation
threats (attacks) in (34).

2.6.5 Overview of the Ambient Intelligence Application Scenario

This section provides a brief overview of the AmI application upon which the framework
CAMAP will be applied. We highlight the fact that CAMAP is a domain-independent
planning system but in this paper we apply CAMAP to a specific application of AmI in
the field of health-care.

The emerging advances in pervasive computing technologies hold great potential for
improving people’s quality of life. One of the most promising area of applications of
these technologies is home health-care (90, 91, 106). In recent years, remote monitoring
of patients (hospitalized at home) in real-time via wearable health monitoring devices has
become a special focus of interest (107). For instance, monitoring people prone to suffer
from heart diseases gives rise to a task of periodically controlling the patient’s heart in
order to prevent a premature death. Here, we assume that the patient’s home is equipped
with appropriate technologies to create the AmI environment. The patient is monitored
with a bracelet, which collects the patient’s physical activity and wirelessly transmits it to
a device responsible for monitoring patient’s heart rate.

Health-care applications are more concerned with the wearable technology required
for patient monitoring (107), but the real problem arises when an anomaly is detected
in the monitor readings, e.g., an extremely low level of the patient’s physical activity
which may end up in a heart attack. These situations claim the construction of a plan
that: i) sends a health service to the place where the patient is, ii) assists the patient,
and iii) moves the patient to a hospital, in case this is necessary. The construction of a
plan to tackle this type of situations is still a challenge for health-care systems in AmI. In
fact, to the best of our knowledge, there are no works that apply an automated planning
process in context-aware environments with multiple intervening entities. In this paper,
we propose to execute CAMAP for assisting a patient whose monitor readings report some
disfunctions.
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2.6.5.1 Modeling the Health-Scenario with a Planning Language

CAMAP uses a language based on the latest version of PDDL (Planning Domain Defi-
nition Language), PDDL3.1 (78), which was introduced in the context of the 2008 Inter-
national Planning Competition. Unlike its predecessors, that model a planning domain
through logical predicates, PDDL3.1 also incorporates state variables by adding object
fluents that map a tuple of objects to an object of the problem.

PDDL, the most popular language for modeling planning tasks, allows for the speci-
fication of the components of a planning task, namely type of objects specified in a struc-
ture called :types; objects specified in a structure called :objects; predicates specified
in a structure called :predicates; single-valued state variables specified in a structure
called :functions; planning actions specified in a structure called :action; the initial
state specified in a structure called :init and goal state of the task specified in a structure
called :global-goal. Additionally, we have extended PDDL3.1 in order to introduce
some functionalities required in a multi-agent planning task. Specifically, we incorporate
new structures in the language to define:

(a) The multi-agent features of the planning task; this requires the specification of mul-
tiple planning problems, one per agent, defining the abilities, initial state and plan-
ning context of each agent. Since information of the planning task is distributed
across agents, we have also created specific structures to define the information
that agents will exchange between each other during the planning process.

(b) The set of defeasible rules of the agents is defined through the additional structure
:def-rule.

In this section, we focus on the definition of the following elements: AG, the ambient
agents, V, the state variables, ∆, the defeasible rules, A, the planning actions, O, the
planning objects, Ψ, the initial state, and G, the goal state.

Object Types and Ambient Agents. Planning objects are the basic entities of a MAP

task. In PDDL, it is possible to define object types and create a hierarchy of types. As
shown in Listing 2.5, we define the following principal object types:

• hospital, is an object type that represents the existing infrastructure of a hospital.
By hospital we refer to all the components that constitute a hospital entity, i.e.,
hospital rooms, units of the hospital, staff working in the hospital, etc.
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• the type emergency-medical-transportation comprises the vehicles that hospi-
tals utilize for assisting an emergency; e.g., ambulance, helicopter, etc. In turn,
ambulances are divided into ALS (Advanced Life Support) and BLS (Basic Life
Support) depending on the equipment of the ambulance.

• patient, represents the injured patients. It includes those who are hospitalized in
hospital and those who are hospitalized at home.

• patient-disease, represents different types of diseases. It is divided into seven
types of diseases.

• address is a type that represents the address of the locations.

• density is a type that represents the density of traffic.

• distance is a type that represents the distance between two places.

In our health application, we have the following types of ambient agents:

(a) Transport agents, whose main function is to guide the ambulance/helicopter to fol-
low the best route to reach the patient’s home.

(b) Communication agents in charge of using telecommunication devices such as a cell
telephone to call the emergency services.

(c) Assistant agents, who are responsible for controlling an automated external defib-
rillator, an activity tracking device, a position tracking device, etc. to interact with
both the environment and the user.�

(:types
[hospital emergency-medical-transportation] - object

[patient patient-disease address density distance] - object

[patient-home patient-hospital] - patient

[hospital-name hospital-tower hospital-floor hospital-unit] - hospital

[hospital-bed hospital-room EMS-team hospital-staff] - hospital

[doctor nurse driver first-aid-assistants security-guards] - hospital-staff

[critical-patient-unit deceased-patient-unit other-unit] - hospital-unit

[intensive-care neonatology reanimation burnt] - critical-patient-unit

[ambulance helicopter] - emergency-medical-transportation

[BLS-ambulance ALS-ambulance] - ambulance

[BLS-EMS-team ALS-EMS-team] - EMS-team

[mentally-illness chronic-illness terminal-illness] - patient-disease

[short-illness long-illness minor-illness] - patient-disease)
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� �
Listing 2.5: Types of objects.

In the particular scenario case we present in this paper, we deal with only one transport
agent (Ag1), one communication agent (Ag2) and one assistant agent (Ag3).

State Variables. In PDDL3.1, state variables are specified as functions with any number
of parameters. Listing 2.6 shows the definition of some of the functions we use in our
health-care scenario. For instance, (pos ?a - ambulance) - address specifies a state
variable that represents the position of an ambulance, and the value of this variable is
an object of type address. And (deviceTraffic ?ad1 - address ?ad2 - address) -

density is a state variable that returns the traffic density between two given addresses. As
we can see in Listing 2.6, state variables are defined as functions where the first element
is the function name and the rest of elements are typed parameters.�
(:functions

(pos ?a - ambulance) - address

(pos ?m - EMS-team) - address

(pos ?p - patient) - address

(location ?h - hospital-name) - address

(moved ?a - ambulance ?ad - address) - address

(moved ?m - EMS-team ?ad - address) - address

(deviceTraffic ?ad1 - address ?ad2 - address) - density

(deviceDistance ?ad1 - address ?ad2 - address) - distance

...) 
� �
Listing 2.6: Single-valued variables represented as functions.

Additionally, particular pieces of information are modelled with predicates as shown
in Listing 2.7. For instance, (carpoolLaneBetween ?ad1 - address ?ad2 - address)

is a predicate that indicates whether or not there is a carpool lane (an express lane) that
emergency vehicles can use to quickly reach a location.�
(:predicates

(trafficJamBetween ?ad1 - address ?ad2 - address)

(carpoolLaneBetween ?ad1 - address ?ad2 - address)

(isFarFrom ?ad1 - address ?ad2 - address)

(assistingThePatient ?p - patient)

(toBeAssisted ?p - patient)

...)
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� �
Listing 2.7: Predicates.

Finally, CAMAP language also supports multi-functions, i.e., state variables that can
take on several values (multi-valued variables). This is done trough the additional struc-
ture :multi-functions. Listing 2.8 shows one of the multi-valued variables denoting the
sanitary coverage area of a hospital. The area covered by each hospital includes several
addresses although one same address may belong to different sanitary coverage areas.�
(:multi-functions

(sanitaryCoverage ?h - hospital) - address

...) 
� �
Listing 2.8: Multi-valued variables represented as multi-functions.

Defeasible Rules and Actions. Listing 2.9 and listing 2.10 show the structure of a plan-
ning action and a defeasible rule of agent Ag1, respectively. As we can see in the listings,
the symbol = is used to check whether the value of a single-valued variable matches a
specific value, while member is used to test if a multi-valued variable contains a specific
value. Both = and member are the comparison operators in CAMAP for single-valued and
multi-valued variables, respectively. On the other hand, assign is used to assign a value
to a state variable, either in an action rule or defeasible rule. For the ease of specification,
we will continue using the notation variable-value pair 〈vi, vli〉 to refer to preconditions
and effects of actions as well as the body and head of defeasible rules within the text.

Action moving-BLS-medical-assistance in Listing 2.9 represents the movement of a
BLS-ambulance from one location to another. The effects of this action are actually ficti-
tious conclusions that are used for a defeasible rule to derive the real effects of the action,
i.e., to have the ambulance and the EMS team at the patient’s home and the patient being
assisted. Recall that the effects of an action are used to support the base of an argument,
which in turn is used as a mechanism to allow agents dispute about the successful execu-
tion of an action (see our interpretation of the qualification problem in Section 2.6.4.5).
Listing 2.10 shows the defeasible rule moved-BLS-medical-assistance that derives the
real effects of the action moving-BLS-medical-assistance and whose body matches the
fictitious conclusions of that action.
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Agents have different capabilities according to their role so they will contribute with
different actions in the plan construction. On the other hand, the beliefs of an agent are
the derivations of its defeasible rules, and these may relate to any aspect of the context
information. That is, agents can make assumptions on the current status of the application
regarding any issue of the AmI environment.�
(:action moving-BLS-medical-assistance

:parameters (?a - BLS-ambulance ?h - hospital-name ?ad1 - address ?ad2 - address

?m - BLS-EMS-team ?p - patient-home)

:precondition (and (member (sanitaryCoverage ?h) ?ad2)

(= (pos ?a) ?ad1)

(= (pos ?m) ?ad1)

(= (pos ?p) ?ad2)

(= (location ?h) ?ad1))

:effect (and (assign (moved ?a ?ad1) ?ad2)

(assign (moved ?m ?ad1) ?ad2)

(toBeAssisted ?p))) 
� �
Listing 2.9: An action for moving an ambulance from a location to another.�

(:def-rule moved-BLS-medical-assistance
:parameters(?a - BLS-ambulance ?ad1 - address ?ad2 - address ?m - BLS-EMS-team

?p - patient-home)

:body (and (= (moved ?a ?ad1) ?ad2)

(= (moved ?m ?ad1) ?ad2)

(toBeAssisted ?p))

:head (and (assistingThePatient ?p)

(assign (pos ?a) ?ad2)

(assign (pos ?m) ?ad2))) 
� �
Listing 2.10: The body of the defeasible rule matches the effects of the action moving-BLS-
medical-assistance to deal with the qualification problem.

Objects, Initial State and Goals. Listing 2.5 displays the object types of our health-
care scenario. Particularly, in our problem we model three hospitals in a city {H1, H2,

H3} (Listing 2.11). Each hospital disposes of two ambulances out of 6 ambulances avail-
able in the problem {amb11, amb12, amb21, amb22, amb31, amb32}. One ambulance is
equipped with an ALS equipment, and the other is equipped with a BLS equipment. Each
hospital has also one emergency helicopter out of three helicopters available in the prob-
lem {he1, he2, he3}. Moreover, there are two EMS teams on call in each hospital from
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the set {t11, t12, t21, t22, t31, t32}: one handles the ALS emergency equipment, and
is formed by an ambulance driver, a nurse and a physician; the other handles the BLS
equipment and is formed by an ambulance driver and a nursing assistant.�
(:objects

[amb11 amb21 amb31] - BLS-ambulance

[amb12 amb22 amb32] - ALS-ambulance

[he1 he2 he3] - helicopter

[H1 H2 H3] - hospital-name

[t11 t21 t31] - BLS-EMS-team

[t12 t22 t33] - ALS-EMS-team

[high medium low] - density

[long normal short] - distance

[p1 p2 ... p50] - patient-home

[aH1 aH2 aH3 pH1 pH2 ... pH50] - address

...) 
� �
Listing 2.11: The objects that encodes the elements of the planning task.

In CAMAP, as in many MAP systems, agents do not have a complete view of the
world and, consequently, some details of the problem may be unknown to them. In this
sense, unlike most planning representations that adopt the closed-world assumption, here
we associate each piece of information with three possible truth values: true, false and
unknown. Particularly, if a single-valued variable vi is assigned the value vli then the
variable-value pair 〈vi, vli〉 is true, and the pair 〈vi, vlj〉 | vlj 6= vli is false because the
variable is not assigned the value vlj . In case the variable has not yet been assigned a
value, any pair 〈vi, vli〉 is unknown. Since we now allow for three possible logic states
of the information, we have to explicitly represent the true and false information, leaving
the unknown state to the information that does not appear explicitly in the representa-
tion of a world state. Specifically, the initial state of an ambient agent in CAMAP is
composed of: (i) the positive and negative values of the single-valued variables in the
structure :functions; (ii) one or more values for the multi-valued variables specified in
the structure :multi-functions; and, (iii) the positive and negative facts specified in the
structure :predicates.

For instance, in our health-care domain, the state variable pos-p1 indicates the location
of a patient p1, which is assigned a value of type address; otherwise, while the variable is
not assigned a value, all possible 〈 pos-p1, vlpos−p1〉 pairs are unknown. Values pH1, pH2,
etc. denote the home address of patients hospitalized at home whereas aH1, aH2, etc. are
addresses of the hospitals in which patients are hospitalized (this is the case, for instance,
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of patients with a serious health deterioration). Listing 2.12 shows a partial description
of the information that the transport agent, Ag2, knows about the initial state (Ψ2). Ψ2

represents a situation in which patient p1 is not being assisted yet (〈 assistingThePatient-
p1, false 〉), there is a high traffic density between the hospital (denoted by address aH1),
and the patient’s home (denoted by address pH1), and the two locations are far away from
each other (long distance between them). Consequently, the pairs 〈 deviceTraffic-aH1-
pH1, medium 〉 and 〈 deviceTraffic-aH1-pH1, low 〉 are false. The symbol = is used in
Listing 2.12 to assign a value to a variable according to PDDL3.1 specifications.�
(:init

(= (pos p1) pH1)

(= (location H1) aH1)

(not (assistingThePatient p1))

(= (deviceTraffic aH1 pH1) high)

(not (deviceTraffic aH1 pH1) medium)

(not (deviceTraffic aH1 pH1) low)

(= (deviceDistance aH1 pH1) long)

...) 
� �
Listing 2.12: Initial state of agent Ag2.

Let’s assume that the health of patient p1, who is hospitalized at home (〈 pos-p1,
pH1 〉) and monitored from a hospital, suddenly worsens considerably. CAMAP is then
required to build a plan to assist the patient p1; this is represented by defining the goal 〈
assistingThePatient-p1, true 〉 as shown in Listing 2.13.�
(:global-goals

(assistingThePatient p1)

...) 
� �
Listing 2.13: Global goals.

2.6.6 Context-Aware Multi-Agent Planning Protocol

In this section, we outline the CAMAP protocol that works in three steps; a planning
stage, an argumentation stage and a selection stage.

Given a set of global goals, G, representing the requirements of an AmI application,
agents build their own partial view of the planning task M so that they will contribute
differently to the construction of the joint solution plan. The CAMAP protocol starts
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with a plan, Π0 = {αΨ ≺ αG}, that is initially empty and searches through a space of
possible plans. A successful search terminates with a solution plan, i.e., a plan in which
all action step preconditions are necessarily true. The search space is characterized as a
POP tree, T, where each node corresponds to a plan and each arc corresponds to a plan
transformation (108). We denote by OpNodes(T) the set of leaf nodes of T, i.e., the
candidate nodes that have not been expanded yet. Initially, OpNodes(T) = {Π0}. The
plan Π selected from OpNodes(T) at each time is called the base plan, and this is the plan
over which the agents will create their refinements.

The overall idea of CAMAP protocol is to collaboratively and progressively refine the
base plan until it becomes a solution plan. Given the base plan Π, the first step is to se-
lect an open goal Φ ∈ G(Π) of the planning task (Goal Selection Process in Figure 2.31).
Then it comes the planning stage (Plan Proposal Process in Figure 2.31) where agents put
forward and exchange different partial-order plans that would potentially solve Φ. Fol-
lowing, agents become involved in an argumentative dialogue (Plan Evaluation Process

in Figure 2.31) in which they expose their arguments for or against each of the plan pro-
posals. This Plan Evaluation Process performs a warranty procedure to determine which
proposals do not receive attacks, or otherwise, the received attacks do not succeed. Sub-
sequently, ambient agents reach an agreement about the next base plan Π ∈ OpNodes(T)

to be refined (Plan Selection Process in Figure 2.31) and they continue the search explo-
ration. The process is repeated until a solution plan is found.

2.6.6.1 Plan Proposal Process

Plan refinements, or simply refinements, denote the plan proposals put forward by ambi-
ent agents to solve a selected open goal Φ of a base plan Π ∈ OpNodes(T). This stage
follows a process similarly to a plan-space planning process that builds a POP tree, except
that each refinement or successor of Π can be generated now by a different agent. Another
distinguishing characteristic of CAMAP is that the nodes also contain argument steps, as
explained in Section 2.6.4.5, to support action preconditions; this argument structure of
the plans will be later used in the Plan Evaluation Process. We denote by Ref(Π,Φ) the
set of refinement proposed by the agents to solve an open goal Φ of a base plan Π.

The Plan Proposal Process finishes when all agents come up with their plan proposals
at their turn and these are communicated to the rest of agents. Then, agents update their
set of actions with the information appearing in the refinements proposed by the other
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Figure 2.31: Overview of the CAMAP protocol.

agents, and the elements in the set Ref(Π,Φ) are added to OpNodes(T).

Let’s suppose that ambient agents are asked to solve the open goal P(αG) = 〈 assistingThePatient-
p1, true 〉 in our AmI scenario described in Section 2.6.5. Agent Ag1, the transport
agent, generates at least 6 refinement plans (3 hospitals x 2 ambulances) by using the
planning action and defeasible rule shown in Listings 2.9 and 2.10, respectively, among
others. As shown Figure 2.32(a), one of the refinements proposed by agent Ag1 is
Πr ∈ Ref(Π,P(αG)) such that OC(Πr) = {αΨ ≺ α1; α1 ≺ AAg1 ; AAg1 ≺ αG},
where:

• AAg1 is an argument built by using the defeasible rule moved-BLS-medical-

assistance such that:

– concl(AAg1) = {〈 assistingThePatient-p1, true 〉, 〈 pos-t11, pH1 〉,
〈 at-amb11, pH1 〉} ⊇ P(αG).

– base(AAg1) = {〈 moved-amb11-aH1, pH1 〉,
〈 moved-t11-aH1, pH1 〉, 〈 toBeAssisted-p1, true 〉}.

• α1 is a ground action out of moving-BLS-medical-assistance such that:
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– X(α1) = {〈 moved-amb11-aH1, pH1 〉, 〈 moved-t11-aH1, pH1 〉,
〈 toBeAssisted-p1, true 〉} that matches base(AAg1).

– P(α1) = {〈 sanitaryConverage-H1, {pH1} 〉, 〈 at-amb11, aH1 〉,
〈 pos-t11, aH1 〉, 〈 pos-p1, pH1 〉, 〈 pos-H1, aH1 〉}.

(a) (b) 

… 

… 

… 
… 

) 
) ( 

( 

Figure 2.32: Examples of the (a) Plan Proposal Process, and (b) Plan Evaluation Process.

The conclusion of argument AAg1 derives the real effects of the actionα1, and base(AAg1)

is supported by the fictitious effects of the action α1, X(α1) (Figure 2.32(a)).
In most MAP systems (29, 31, 103), open goals are supported by the inclusion of

an action whose effects match the open goals. However, as we said in Section 2.6.4.5,
CAMAP allows agents to directly enforce action preconditions with their beliefs, meaning
that agents believe these preconditions can be supported with their context inferences,
without having to consider taking action to meet them. For example, suppose that an agent
extracts information from a car position tracking device that there is already an ambulance
available at the patient’s home. In this case, the agent will meet the open goal 〈 assisting-
ThePatient-p1, true 〉 with an argument that reflects its belief that an ambulance is already
at the patient’s. As the rest of agents do not own this information, their proposals would
claim the inclusion of a planning action that moves an ambulance or helicopter to the
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indicated place.

2.6.6.2 Plan Evaluation Process

At the Plan Evaluation Process, agents become engaged in a series of argumentative di-
alogues aimed at evaluating the guarantee of a successful execution of a plan proposal.
Specifically, argumentation occurs when agents believe it is likely that unexpected cir-
cumstances will prevent the action from achieving its intended effects or when they are
against a belief that has been used to meet some open goal. Agents will build their argu-
ments on the basis of their context information and inferences, which may differ to each
other. Therefore, agents may not agree on the evaluation of a plan proposal at some point
during the plan construction.

The Plan Evaluation Process generates as many argumentative dialogues as argument
steps are present in a refinement. An argumentative dialogue is an exchange of arguments
for or against the fulfillment of a particular argument step AAgi ∈ AR(Πr) such that
Πr ∈ OpNodes(T) and Agi ∈ AG.

In CAMAP, an argumentative dialogue is encoded as a tree structure, called Plan
Argument Dialogue (PAD) tree. Specifically, the PAD tree to evaluate an argument AAgi

in plan Πr, is denoted as TAAgi

Πr
. The nodes of a PAD tree TAAgi

Πr
are labeled with an

argument that attacks the argument represented by its parent node and whose bases are
supported in the plan Πr. More specifically:

1. The root node of the tree is labeled with [AAgi ] such that AAgi ∈ AR(Πr).

2. A child node [BAgj ] of the parent node [AAgi ] represents an attacking argument
against the argument AAgi in plan Πr, i.e., BAgj is a defeater of AAgi . Conse-
quently, each child node of [AAgi ] stands for a defeater of the root argument [AAgi ],

3. A child node [CAgz ] of the parent node [BAgj ] indicates an attack to argument BAgj ,
so this new node is actually a supporter of the root argument AAgi .

And so on for the rest of nodes. The leaves of the PAD tree correspond to undefeated
arguments. Informally, we might see a PAD tree for an argument step AAgi as generating
a dialectical tree for AAgi in order to determine whether argument AAgi is warranted or
not (24). Unlike the dialectical trees of a general argumentative process, the nodes in
our PAD tree are contextualized within a plan. Every linear path from the root to a leaf
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corresponds to one different acceptable argumentation line. Circular argumentation (also
known as fallacious argumentation) is avoided by applying both conditions from (24): no
argument can be reintroduced in the same argumentation line and argument concordance
must be guaranteed.

Following, we will explain an example of the Plan Evaluation Process to evaluate the
argument step AAg1 in plan Πr of Section 2.6.6.1. This is graphically shown in Figure
2.32(b). Ag1 starts the process by sending the PAD tree TAAg1

Πr
, which only contains the

root node [AAg1 ], to the rest of ambient agents. When TAAg1

Πr
is received by ambient

agent Ag2, it reads the traffic density between the hospital location aH1 and the patient’s
location pH1 from a smart device connected to the AmI system, and the reading returns a
high traffic density between the two locations. In addition, Ag2 knows the two locations
are far away from each other thanks to the a web mapping service as Google Maps. Both
informations, which are unknown to ambient agent Ag1, may be a reason for Ag2 to
believe that an ambulance, initially located at the hospital aH1 will not arrive at pH1 in time
for assisting the patient p1. More specifically, Ag2 puts forward an attacking argument
BAg2 =({〈 assistingThePatient-p1, false 〉, not(〈 pos-amb11, pH1 〉), not(〈 pos-t11, pH1
〉)}, {δ0; δ1; δ2}) that attacks AAg1 , as shown in Figure 2.32(b); this attack is derived from
the defeasible rules in Listing 2.14 where:

• δ0 =(and 〈 assistingThePatient-p1, false 〉 not(〈 pos-amb11, pH1 〉) not(〈 pos-t11,
pH1 〉))−� (and 〈moved-amb11-aH1, pH1 〉 〈moved-t11-aH1, pH1 〉 〈 toBeAssisted-
p1, true 〉 〈 trafficJamBetween-aH1-pH1, true 〉 〈isFarFrom-aH1-pH1, true〉).

• δ1 =〈 trafficJamBetween-aH1-pH1, true 〉 −�〈deviceTraffic-aH1-pH1, high〉.

• δ2 =〈 isFarFrom-aH1-pH1, true 〉 −� 〈 deviceDistance-aH1-pH1, long 〉.�
(:def-rule moved-BLS-medical-assistance-denied

:parameters(?a - BLS-ambulance ?ad1 - address ?ad2 - address ?m - BLS-EMS-team

?p - patient-home)

:body (and (= (moved ?a ?ad1) ?ad2)

(= (moved ?m ?ad1) ?ad2)

(toBeAssisted ?p)

(trafficJamBetween ?ad1 ?ad2)

(isFarFrom ?ad1 ?ad2))

:head (and (not (assistingThePatient ?p))

(not (pos ?a) ?ad2)

(not (pos ?m) ?ad2)))

(:def-rule traffic-jam
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:parameters(?ad1 - address ?ad2 - address)

:body (= (deviceTraffic ?ad1 ?ad2) high)

:head (trafficJamBetween ?ad1 ?ad2))

(:def-rule is-far-away
:parameters(?ad1 - address ?ad2 - address)

:body (= (deviceDistance ?ad1 ?ad2) long)

:head (isFarFrom ?ad1 ?ad2)) 
� �
Listing 2.14: Defeasible rules of agent Ag2 for representing situations in which the ambulance
may not arrive on time.

Assuming that {〈 deviceTraffic-aH1-pH1, high 〉, 〈 deviceDistance-aH1-pH1, long
〉} ⊆ ΨAg2

, as shown in Listing 2.12 of Section 2.6.5.1, Ag2 sends [BAg2 ] to Ag1, who
manages the argumentative dialog. The first argumentative round ends here since no other
agent disputes [AAg1 ].

In the next round of the dialogue, Ag1 updates the PAD tree TAAg1

Πr
with [BAg2 ] and

sends it to the rest of agents. TAAg1

Πr
is received by ambient agent Ag3, but it knows

about the existence of a carpool lane between aH1 and pH1, which is a reason for Ag3

to believe that the ambulance amb11 can skip the traffic congestion on the way to reach
the patient’s home (Listing 2.15). Thus, Ag3 builds a new attacking argument CAg3 =

({〈 trafficJamBetween-aH1-pH1, false 〉},{〈 trafficJamBetween-aH1-pH1, false 〉 −� 〈
carpoolLaneBetween-aH1-pH1, true 〉}) that defeats BAg2 , such that 〈 carpoolLaneBetween-
aH1-pH1, true 〉 ∈ ΨAg3

(Figure 2.32(b)). Ag3 sends [CAg3 ] to agent Ag1.�
(:def-rule carpool-lane

:parameters(?ad1 - address ?ad2 - address)

:body (carpool-lane-between ?ad1 ?ad2)

:head (not (traffic-jam-between ?ad1 ?ad2))) 
� �
Listing 2.15: Defeasible rule used by Ag3 that derives the possibility of avoiding a traffic
congestion situation if a carpool lane exits between two locations.

In another argumentation line against AAg1 , Ag2 might argue that patient p1 is in a
critical state according to its context information. In this case, Ag2 has reasons to believe
that p1 should be attended by a physician who could immediately diagnose and treat the
patient. However, since the BLS medical equipment is only formed by an ambulance
driver and a nursing assistant (Section 2.6.5.1), Ag2 builds a new attacking argument
DAg2 against AAg1 such that concl(DAg2) = 〈 assistingThePatient-p1, false 〉. Ag1 will
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update the PAD tree TAAg1

Πr
with the new received defeaters and will send it back again to

the rest of ambient agents.
The dialogue process continues until none of the ambient agents has more arguments

against any of the arguments in the PAD tree TAAg1

Πr
. Then, CAMAP invokes the warrant

procedure in order to check whether the argument AAg1 is defeated or undefeated: label
with a U (for undefeated) each terminal node in the PAD tree (i.e., each argument with no
defeaters at all). Then, in a bottom-up fashion, CAMAP labels a node with: U if each of
its successors is labeled with a D; and D (for defeated) otherwise. Note that the evaluation
of AAg1 is a key issue in the overall process as the patient’s stabilization will most likely
depend on a correct plan execution, specifically on the timely arrival of an ambulance.

A refinement plan is labeled as an undefeated refinement plan if the root node of
the PAD tree of each argument in the plan results undefeated. Otherwise, the plan is pro-
visionally labeled as a defeated refinement plan in the POP tree. Undefeated plans are
obviously preferred over defeated plans as they represent a plan with no expectation of
failures according to the ambient agents. Nevertheless, defeated plans are maintained in
the POP tree as their arguments may become undefeated as long as the problem evolves
and information changes. Finally, each ambient agent updates its initial facts and defea-
sible rules with the information exchanged during the argumentative process.

2.6.6.3 Plan and Goal Selection Process

The aim of the Plan Selection Process is to select the best plan Π from the list OpNodes(T)

and then choose a goal to solve from this plan (Goal Selection Process). Once this is done,
the CAMAP protocol starts all over again with the Plan Proposal Process.

In order to select the next best plan, we consider a compromise between different
parameters: maximizing the likelihood of a successful execution of the solution plan;
and, minimizing both the computational overhead and the total time of the search. The
application of the first parameter discards the plans evaluated as defeated in the Plan
Evaluation Process. With respect to the second parameter, we apply a heuristic function
over the undefeated plans resulting from the first filtering. We use two of the most popular
heuristics in planning: SUM and MAX heuristics (79). The SUM heuristic estimates the
cost of a plan as the sum of the cost of the pending open goals in the plan whereas the
MAX heuristic estimates the cost of the plan as the cost of the most costly open goal in
the plan. Plans whose heuristic estimation is above a certain threshold are discarded from

145



2. SELECTED PAPERS

consideration.
On the other hand, the aim of the Goal Selection Process is to choose an open goal Φ

from the selected base plan Π. Specifically, Φ can be a goal of the planning task M or a
subgoal that appears in Π as a result of the planning process. Among all the pending open
goals in G(Π), we apply a heuristic function that selects the most costly open goal. Af-
terwards, CAMAP proceeds with the Plan Proposal Process unless Π becomes a solution
plan, in which case CAMAP stops.

2.6.7 Experimental Evaluation

The purpose of this section is to compare CAMAP with a Traditional Multi-Agent Plan-
ning (TMAP) system with no argumentation mechanism for reasoning about the context
information. The final objective is to analyze the benefits and limitations of both ap-
proaches.

2.6.7.1 Experimental Settings

We carried out several experiments considering three different levels of difficulty of the
planning problems: small-size problems (composed of 8 ground actions1 and 50 ground
defeasible rules), medium-size problems (composed of 16 ground actions and 100 ground
defeasible rules) and large-size problems (composed of 24 ground actions and 150 ground
defeasible rules). We used teams of agents of different size ranging from 1 (single-agent)
to 5 agents. Planning actions are associated to the agents according to the type of agent
(transport, communication, assistant). Defeasible rules are distributed among agents in-
dependently of the agent type, thus making agents be able to extract context inferences
about any issue of the AmI environment. This implies that the more agents, the more
distributed the context information and, consequently, the fewer choices for an agent to
link information and derive beliefs (arguments). As we will see later in Section 2.6.7.2,
this has an impact on the obtained results.

We performed several tests varying the number of agents of each type in the AmI en-
vironment, and we took the median values over 20 repetitions for each set of experiments
with n agents, independently of the type of agent. We used the SUM heuristic in the Plan
Selection Process.

1A ground action is a planning action with all its parameters instantiated. Similarly with defeasible rules.
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2.6.7.2 Experimental Results

In this section, we show the assessment measures we used for testing CAMAP and TMAP.
Specifically, we are interested in assessing the performance and scalability of both sys-
tems, the quality and feasibility of the solution plans, and the level of trust and contribu-
tion among agents.

Performance and Scalability. For evaluating the performance and scalability, we mea-
sured the computational time of CAMAP and TMAP to find a solution plan. Figure 2.33
shows the average time spent by each system on each stage. Figures do not include the
time of parsing the problem file and grounding the actions and defeasible rules. The hor-
izontal axis depicts, for each protocol, the number of ambient agents and the size of the
planning problem. The vertical axis displays the time in seconds to find a solution plan.

As expected, CAMAP always takes more time than TMAP to find a plan due to the
following reasons:

(i) in the Plan Proposal Process, ambient agents in CAMAP do not only have to reason
about which actions would achieve the selected open goal, but also about which
arguments would support it;

(ii) since TMAP does not involve argumentation, the Plan Evaluation Process is not
carried out in this protocol;

(iii) in the Plan Selection Process, TMAP simply applies the SUM heuristic to select
the base plan whereas CAMAP previously executes a procedure to filter out the
defeated plans from the Plan Evaluation Process; and,

(iv) in the Goal Selection Process, ambient agents in CAMAP work with a larger num-
ber of open goals, including those motivated by the argument steps.

Figure 2.33 also shows the evolution of the computational cost as the number of agents
in a team increases. Obviously, the more agents in a team, the more messages exchanged
between them, making each stage be much more costly. Figure 2.34 corroborates this fact.
The horizontal axis of Figure 2.34 depicts the number of ambient agents, the protocol (the
first three bars show CAMAP results and the other three bars represent TMAP results), as
well as the size of the planning problems (green for small, red for medium, and blue for
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Figure 2.33: Evaluating the average time spent on each stage.
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Figure 2.34: Evaluating the total number of exchanged messages between ambient agents.

large problems); the vertical axis displays the number of exchanged messages. As it can
be observed, the number of exchanged messages is far larger in CAMAP than TMAP due
to the exchange of arguments, which are encapsulated as messages as well.

148



2.6 Selected Paper 5: Context-Aware Multi-Agent Planning in Intelligent
Environments (INS Journal 2013)

     1-agent                   2-agents                 3-agents                   4-agents                   5-agents N
u

m
b

e
r 

o
f 

A
ct

io
n

 S
te

p
s 

o
r 

Ti
m

e
 S

tp
e

s 

0

1

2

3

4

5

6

7

Figure 2.35: Evaluating the quality of the solution plans obtained for large difficulty: average
number of action steps and average number of time steps.

Quality of the Solution Plans. In this section, we assess the quality of the solution
plans according to two parameters:

• the cost of the solution plans; we assume that all action steps have one-unit cost and
argument steps have no added cost.

• the number of time steps or execution steps of the solution plan; at each time step
several actions can be executed in parallel by different agents.

We only show the results for large-size problems as the results are similar for small-
size and medium-size problems. In order to evaluate the cost of the solution plan, Figure
2.35 shows, for each agent team and system, the average number of action steps in a
solution plan. For example, for 2-agent teams, the average number of action steps of a
CAMAP solution plan is 4.6 (first bar) and 6.6 for TMAP (second bar). In general, Figure
2.35 shows that the average number of action steps in solution plans of CAMAP is lower
or equal than the average number in solution plans of TMAP. The reason is that in TMAP,
an open goal that is not a threat, can only be achieved by an action step, while in CAMAP

the open goal can also be supported by an argument step whose base is guaranteed in
some state of the world generated during the planning process. In these cases, the cost of
CAMAP plans is smaller because it contains fewer actions since agents’ beliefs are also
used to support the fulfillment of an open goal. In CAMAP, we can also observe that the
average number of action steps in 4-agent and 5-agent teams is significantly higher than
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for the rest of team sizes. As we explained in Section 2.6.7.1, when defeasible rules are
widely distributed among agents, they are likely not to have enough information to link
and build an argument step, thus increasing the number of action steps in the plan.

Regarding the comparison of time steps, plans of the of the 1-agent team are sequential
plans as only one action can be executed at a time by the single agent of the team. This
result contrasts with the time steps of the other teams, where actions in the plan can be
executed in parallel depending on the number of agents. Obviously, the number of time
steps for the 1-agent team is far more larger than for the rest of teams. On the other hand,
the difference of time steps between CAMAP and TMAP is rather noticeable because it
is usually the case that the fewer actions in a plan, the fewer time steps.

Feasibility of the Solution Plans. Given a context and a TMAP solution plan, we say
that a plan is feasible if it does not contain actions that would be otherwise discarded in
a CAMAP solution. That is, feasibility is a rough measure to know if a TMAP solution
would contain action steps that CAMAP has labeled as failing actions as a result of the
argumentative dialogues among the agents (defeated arguments) and according to the
context information. Obviously, depending on the environment, feasibility can be more
or less important. In our health-care scenario, feasibility is a very relevant issue. In this
sense, we wanted to compare the plans returned by both systems and see how many plans,
and actions correspondingly, of TMAP were actually discarded by the agents in CAMAP

during the argumentative dialogues.
We carried out an experiment to count the number of actions in a TMAP solution plan

that were discarded in the CAMAP counterpart. The results of this experiment are shown
in Figure 2.36. As can be seen, TMAP solutions included at least 30% of action steps that
CAMAP agents acknowledged not to be successfully executed. For medium and large size
problems, this percentage increases considerably. However, there are hardly differences
in the number of failing actions between the agent teams, an indication that feasibility is
not dependent on whom proposes the actions or how many agents a team has.

Trust and Contribution. Finally, we were also interested in checking the contribution
and trust level achieved by ambient agents in CAMAP. More specifically:

• The trust level for an agent is calculated as the number of undefeated argument steps
in all of the plans proposed by an agent divided by the total number of argument
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Figure 2.36: Evaluating the % of failing actions of the obtained solution plans.

steps proposed by the same agent in the Plan Proposal Process.

• The contribution level of an agent to a solution plan is calculated as the number of
action and argument steps contributed by the agent to the solution plan divided by
the total number of plan steps.

Our hypothesis is that agents with a high level of trust would normally have a high
degree of contribution in the solution plan. Figure 2.37 shows the trust level of each agent
(depicted in the vertical axis) in each experiment. We performed one experiment per team
size and problem size. The results shown in Figure 2.37 indicate that the more defeasible
rules known by the agents, the lower trust level achieved by the agents. For instance, in
Figure 2.37 (2-agent team), agent Ag2 obtains 33% of trust level in small-size problems
but 12% in large-size problems. The reason is that in large problems, agents have more
defeasible rules and so they can build more context inferences about the environment,
which in turn means they are likely to have more information to attack the proposal of
other agents; in short, this results in fewer undefeated arguments.

Figure 2.38 shows the contribution of each agent in the solution plan returned by
each team. For instance, in the 3-agent team for small problems, the individual level of
contribution to the solution plan is as follows: 25% steps proposed by ambient agent Ag1,
50% proposed by Ag2 and 25% proposed by Ag3. According to our hypothesis, if Ag2

is the agent with the highest contribution in this solution plan, then Ag2 should have a
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Figure 2.37: Evaluating the agents’ trust level based on their proposed argument steps.
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Figure 2.38: Evaluating the agents’ contribution level in the solution plans.

high individual trust level in this team. As we can see in Figure 2.37, Ag2 has the highest
individual trust level for this experiment.

2.6.7.3 Discussion

This section shows the advantages and disadvantages of CAMAP with respect to other
existing approaches. Specifically, the experimental results support two main advantages
of CAMAP:

(1) since each plan step of a plan proposal is collaboratively argued, CAMAP returns
plans whose actions are not likely to fail at execution time according to the infor-
mation and beliefs of the ambient agents; and

(2) since open goals can also be supported by the beliefs of the agents, the context in-
formation and defeasible contextual reasoning of agents provide a means to satisfy
goals of the problem. This contrasts with a classical planning system where goals
must always be supported by the inclusion of an action that achieves the desired ef-
fect. Therefore, CAMAP introduces a very important functionality: it allows agents
to use their knowledge and context inferences to actually infer that a goal holds in
the environment and that no planning action is needed to meet the goal.
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It is important to highlight the relevance of aspect (1) in health-care applications where
the patient’ life depends, in many cases, on a timely successful execution of the plan. We
can conclude that planning systems that ignore the changes in the context information are
not adequate to tackle health-care applications. On the other hand, the only limitation
of CAMAP in comparison to classical MAP systems is that it requires more exchange of
messages between agents, which results in an increase of the computational cost.

2.6.8 Conclusions and Future Work

This article presents the specification, implementation and an exhaustive experimentation
of CAMAP, a cooperative and distributed planning framework that uses defeasible ar-
gumentation to reason about the context information on smart environments. Our most
relevant contribution is to come up with a fully implemented MAP framework that has
been extensively tested in AmI environments, particularly on health-care applications.
CAMAP realizes three independent but cooperative processes in order to propose, crit-
icize, defend and select alternative plan proposals. All in all, the novelty in CAMAP is
that of proposing a multi-agent system where ambient agents have the ability of planning
while simultaneously doing context-aware reasoning. This allows agents to continuously
adapt a health-care plan by performing defeasible argumentation on the beliefs of the
other agents.

As future work, we would like to extend CAMAP to allow agents to put forward argu-
ments that support or argue upon the accuracy, unambiguity and reliability of the context
aware information as well as the trust level between ambient agents. Trust can be used
as a preference criterion for comparing attacking arguments and resolving conflicts by
prioritizing the argument with the highest trust level. Finally, we also intend to augment
CAMAP to include agents’ preferences and, thus, return the solution plans most prefer-
able by the ambient agents (109, 110). For instance, an elderly patient may prefer to be
hospitalized at home rather than in a hospital. This kind of preferences may be taken into
account by ambient agents during the construction of the plan.
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Abstract. This paper proposes a planning system that uses defeasible argumentation to
reason about context information during the planning process. The system is designed to
operate in cooperative multi-agent environments where agents are endowed with planning
and argumentation capabilities. Planning allows agents to contribute to the construction
of the plan with actions, and argumentation is the mechanism that agents use to defend
or attack the planning choices according to their beliefs. We present the formalization of
all the components of the model and we provide a novel specification of the qualification
problem. The multi-agent planning system, which is designed to be domain-independent,
is evaluated with two planning tasks from the problem suites of the International Planning
Competition. We compare our system with a non-argumentative planning framework and
with a different approach of planning and argumentation. The results will show that our
system is able to obtain less costly and more robust solution plans.

2.7.1 Introduction

One common problem in Artificial Intelligence (AI) is to select the best course of action
for an agent; i.e, reasoning about what to do. This problem has been primarily addressed
from two standpoints: the knowledge or epistemological perspective, which puts the em-
phasis on the representation of the world such that the solution of a problem follows from
the representation, and the reasoning or heuristic perspective, mostly concerned with the
information for solving the problem and the reasoning process on an abstract and formal
representation of the world (1). Practical reasoning, the research line mostly focused on
the epistemological view, includes a great deal of epistemic reasoning, directed at deter-
mining what to believe (2). Automated planning, on the other hand, is concerned with the
computational process for the selection and organization of the actions. Back in the 90’s,
Pollock concluded that since epistemic cognition is defeasible, a planning agent must be
prepared to revise its plans as its defeasibly held beliefs change and may have to acquire
more information through reasoning to solve a planning problem (3).

The mainstream in practical reasoning lies in the use of argumentation theory so as to
extend the means-end reasoning in classical planning with presumptive justifications for
the adoption of a particular action. Using Dung’s argumentation framework over beliefs
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(4) has been the predominant approach in practical reasoning, like a proposal for arguing
about what desires an agent should adopt and about what plans to intend in order to
achieve these desires (5); the study of the goal deliberation process (6); or the generation
of consistent plans from a set of conflicting beliefs (7). Building argumentation plans
for negotiating conflict resolution at a planning stage is also an interesting application of
argumentation in practical reasoning (8). Some other works, however, follow the notion
of argument scheme proposed by Walton (9) and present an approach in which arguments
and conflicts are represented as argument schemes and critical questions, respectively
(10). This latter work has been one of the most popular approaches in practical reasoning,
it has demonstrated its applicability in domains such as law, experimental economics or
e-democracy (13, 14, 15) and it has also been exploited for the design of argumentation-
based dialogues to support automated coordination in distributed planning (16), multi-
agent deliberation dialogues (17) or the construction of joint plans (18).

Unlike argumentation-based approaches of practical reasoning, another line of in-
vestigation closer to planning also explores the relationships between classical planning
and argumentation but building upon a planning formalism and using argumentation to
guide the reasoning process. A first step in this direction assumes that agent’s deductions
are not always certain information, but plausible, and the conclusions can be withdrawn
when new pieces of knowledge are found; i.e., agents must use defeasible reasoning (19).
OSCAR is a goal-regression planner that essentially performs the same search of Partial-
Order Planning (POP) but reasoning defeasibly about candidate plans at the end of the
planning process (20). In OSCAR, the plan search itself is also done defeasibly, thus
enabling to reason about the impact of unexpected environmental conditions on the so-
lution plans and to select the plan which is less likely to fail at execution time. In the
same line, another pioneer work presents a formal model of plans based on a defeasible
argument system that is able to suggest aspects of a plan, criticize a plan and revise the
plan (21). Both of these investigations, considered as the first steps towards building an
argumentation-based planning system, have clear similarities to the works on plan modi-
fication and replanning but rather than forcing the planner to resort to replanning in light
of new information, they consider planning within the context of a general defeasible
reasoning system.

More recently, Simari et al present a defeasible argumentation framework for the def-
inition of actions and the combination of these actions into plans (22). This work lays
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the foundations of an argumentation-based formalism for constructing plans (23) by us-
ing Defeasible Logic Programming (DeLP) (24), a formalism that agents use to represent
their knowledge and build applications that deal with incomplete and contradictory in-
formation in dynamic domains. The formalism presented in (23), which we will refer
to as DeLP-POP in the following, describes how the traditional POP algorithm can be
extended to consider arguments as planning steps.

Subsequently, further investigations on argumentation-based planning focus on the ap-
plication of argument-based systems to Multi-Agent Planning (MAP). An argumentation-
based dialogue protocol that enable agents to discuss candidate plans and reach agree-
ments was proposed in (29, 30), where candidate plans of the agents are generated by an
external single-agent planner and the protocol is used then for reasoning about the con-
tradictory planning beliefs in the candidate plans and select a valid solution plan. In this
approach, agents use argumentation to defend or attack the candidate plans put forward
by others, but not for cooperatively building a plan contributed by several agents. Another
interesting work that combines the benefits of using argumentation in MAP emphasizes
the utilization of argumentation to solve conflicts between sub-plans of different agents
by means of deliberative dialogues based on argumentation schemes (31, 32). Conflicts
may be caused by concurrent actions, plan constraints or norms the agents must adhere
to and argumentation is used as a mechanism for analyzing these conflicts when several
sub-plans of different agents have to be merged. Likewise, argumentation is not used
for building plans but for arguing at end of the planning generation, a task that is ac-
complished by an external classical planner. A different approach that also makes use of
argumentation schemes proposes structured argumentative dialogues to coordinate plan-
related tasks (16). Particularly, agents coordinate their beliefs and intentions with the use
of a strategy based on an argumentation scheme and a set of related critical questions for
selecting plan proposals. Thus, choosing an appropriate question in the dialogue becomes
an important issue in terms of dialogue and cooperation efficiency.

On the other hand, the work in (26) presents a formal extension of DeLP-POP to
a multi-agent context in which agents are assumed to have planning and argumentation
capabilities. Specifically, this work proposes a formal dialogue for an incremental argu-
mentative plan search, by which agents exchange plan proposals and arguments for or
against such proposals. To the best of our knowledge, this work represents the first at-
tempt to use an argumentation-based MAP mechanism for a cooperative construction of
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plans. Subsequently, the works in (27, 28, 34) present a first practical extension for evalu-
ating the approach in (26) in a transit journey planning service and in ambient intelligent
applications.

In this paper, we present the formalization of Q-DeLP-POP and its extension to a
MAP environment (Q-DeLP-MAP), an argumentation-based MAP system that elaborates
on two previous contributions: an initial formalization of a multiagent argumentative plan-
ning model in the framework of DeLP-POP (26), and a preliminary implementation of
such argumentative MAP model in a domain of ambient intelligent applications (27, 28).
The results obtained in these latter works revealed that the argumentation-based MAP

model was able to deal with rich argumentative representations but had a limited planning
capability. Q-DeLP-MAP, however, greatly outperforms the previous system by exploit-
ing, among other things, the reuse of argumentative dialogues during the construction of
a POP search tree, which allows us to tackle problems from the International Planning
Competitions (IPC)1. Additionally, Q-DeLP-POP provides a more sophisticated spec-
ification of the qualification problem in planning, defining novel relationships between
argument steps and action steps of a plan. Overall, the aim of this paper is to put together
and exploit the investigations carried out in (26) and (28) in order to come up with a
domain-independent, fully integrated and operative argumentation-based MAP model.

This paper is organized as follows. Section 2.7.2 summarizes the main foundations
in which this work is based on. Section 2.7.3 presents in detail the components of our
defeasible-argumentation-based planning framework. Section 2.7.4 presents the multi-
agent protocol for our planning framework. Next, the experiments carried out to validate
the present work are described and analyzed. Finally, we conclude and present some
directions for future work.

2.7.2 Preliminary notions

In this section, we summarize the foundations used throughout this paper in order to fa-
cilitate the understanding of our proposal that will be presented in the following sections.

1http://ipc.icaps-conference.org/
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2.7.2.1 DeLP: a framework for defeasible argumentation

Defeasible Logic Programming (DeLP) is a framework for reasoning about defeasible
information in single-agent contexts (24). Defeasible reasoning is a process where tenta-
tive conclusions are obtained from uncertain or incomplete information, and conclusions
might no longer be valid after new information becomes available (111). DeLP is one
popular approach to make context inferences by using defeasible argumentation, a partic-
ular type of defeasible reasoning.

The key element of DeLP is the defeasible rules (Head −� Body), which are used to
represent a deductive relation between pieces of knowledge that could be defeated once
another piece of knowledge is considered.

In (24), the authors propose a non-monotonic consequence relation, called warrant,
built upon the relation of defeat between constructible arguments for or against a literal.
The agent’s knowledge base is a pair T = (Ψ,∆) consisting of a strict and a defeasible
part:

• a consistent set Ψ ⊆ Lit of facts, and

• a set ∆ of defeasible rules δ = `−� `0, . . . , `k

where `, `0, . . . , `k ⊆ Lit. Rule `−� `0, . . . , `k expresses that a warrant for `0, . . . , `n
provides a (defeasible) reason for ` to be warranted1. We denote body(δ) = {`0, . . . , `n}
and head(δ) = ` as, respectively, the body and head of δ.

Given T , a derivation for a literal ` from T is called ’defeasible’ because there may
exist information in contradiction with ` that will prevent the acceptance of ` as a valid
conclusion. For example, let’s consider:

• Ψ = {connection(space, earth), solar_storm(space)}, and

• ∆ = {δ0 = communicated_rock_data(space, earth)−� connection(space, earth),
δ1 =∼communicated_rock_data(space, earth) −� solar_storm(space)}

where the first fact of Ψ means that there is a connection between the space and
the earth, and the second that it exists a solar storm at space. δ0 denotes that there are
reasons to believe the rock data are successfully communicated from the space to the

1Strict rules introduced in (66) (24) have not been considered in planning, see (23).
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earth. However, δ1 provides reasons to believe the contrary, in whose case we say that
the piece of information derived by δ0 is acknowledged to fail1. Thus, the set of derivable
literals in T will be not in general consistent. Additionally, there could be more one
defeasible derivation for a literal ` (rule set consisting of one or more defeasible rules)
and more than one defeasible derivation against.

Defeasible argumentation is a form of defeasible reasoning that emphasizes the no-
tion of an argument. An argument is a chain of reasoning that concludes one piece of
information (conclusion) on the basis of some other pieces of information (premises). An
argument A for a literal ` in T is a subset of defeasible rules Rul(A) ⊆ ∆, denoted as
〈Rul(A), `〉 or simply A, such that:

(i) ` is derivable from Ψ ∪ Rul(A),

(ii) the set Ψ ∪ Rul(A) is non-contradictory, and,

(iii) Rul(A) is a minimal subset of ∆ satisfying (i) and (ii).

We also define, for an argument A for ` (26):

base(A) = body(Rul(A)) r head(Rul(A))

concl(A) = head(Rul(A)) r body(Rul(A))

literals(A) = body(Rul(A)) ∪ head(Rul(A))

Figure 2.39: An argument A for l composed of two rules δ0, δ1 ∈ Rul(A).
1Notation: we use both ∼p and p to deny the literal p, s.t. p =∼p.

160



2.7 Selected Paper 6: Argumentation-based Planning (Submitted AIJ 2015)

The argument A shown in Figure 2.39 is encoded as follows: Ψ = {p0, q0, q1, q2},
and ∆ = {δ0 = ` −� {p0, p1}, δ1 = p1 −� {q0, q1, q2}}. The existence of A for a literal
`, i.e. concl(A) = `, still, does not suffice for ` being warranted; we must guarantee that
A is not defeated by some other argument. More specifically, given two arguments A and
A1, where {base(A)∪ base(A1)} ⊆ Ψ, we say that A1 attacks A if the conclusion of A1

contradicts some literal derived in A, that is, if concl(A1) ∈ head(Rul(A)). The attack
relation may roughly be seen as symmetric, in the sense that each attacked argument A
contains a sub-argument A′ attacking A1. To decide which contending argument prevails
in an attack, a notion for preference among pairs of conflicting arguments is needed. In
the rest of this article, we follow a formal criterion based on a comparison of information
used by each argument: an argument which makes use of more precise rules (or more
information) is a proper defeater for -is preferred to- the contending argument (24). If
two contending arguments are not comparable in these terms, they are a blocking defeater
for each other1. As shown in Figure 2.40(a), a counter-argument A1 can attack directly
the conclusion of an argument A, or as illustrated in Figure 2.40(b), it can attack an inner
point of A.

… 

(a) (b) 

Figure 2.40: Attack types: (a) a direct attack, and (b) an indirect attack.

Given an argument A0 for `, an argumentation line Λ = [A0, . . . ,An] is a sequence
of arguments constructible from (Ψ,∆), where each argument Ak+1 is a defeater for
its predecessor Ak. Arguments supporting (resp. interfering with) A0, i.e. of the form
A2n (resp. A2n+1) must form a consistent set, and no sub-argument A′ of an argument
Am ∈ Λ may appear later in Λ (i.e. it cannot be that A′ = Am′ with m′ > m).

Given a root argument A, the union of its argumentation lines gives rise to a tree-like
structure, the dialectical tree for A, denoted TA(Ψ,∆). Figure 2.41 shows an example of
two dialectical trees.

1Alternatively, one can specify by hand a preference between rules and then induce a defeat relation for
arguments out of it. See (66) for details.
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(a) (b) 

Figure 2.41: Computing warrancy for l: (a) TA: A is a defeated argument, and (b) TB: B is
an undefeated argument.

As shown in (24), to check whether the argument of the root node of Figure 2.41
(a) and (b) is defeated or undefeated, the following procedure on the Dialectical Tree is
applied: label with a U (for undefeated) each terminal node in the tree (i.e. each argument
with no defeaters at all). Then, in a bottom-up fashion, we label a node with:U if each of its successors is labeled with a D

D (for defeated) otherwise

The application of this procedure in Figure 2.41 (a) returns that A is a defeated argu-
ment, and Figure 2.41 (b) that B is an undefeated argument.

2.7.2.2 POP: Partial Order Planning

Partial-Order Planning (POP) is a suitable planning approach to address the requirements
derived from a distributed planning thanks to the application of the least commitment
principle (43, 46), which delays commitment of action orderings until a decision is nec-
essary to solve some inconsistency. In POP, a plan is represented as a set of actions and
a set of ordering constraints defining a partial order between actions. In this sense, the
partial order paradigm is a flexible mechanism to deal with the individual plans of dif-
ferent agents and combine them into a single joint plan. Since our goal is the integration
of planning and defeasible argumentation in a multi-agent context, we adopt POP as the
planning approach of the agents. In this section, we show the basic foundations of POP.
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A planning task is defined as a tuple M = (Ψ, A,G), where Ψ ⊆ Lit is the set of facts
that represent the initial state of the planning task, A is the set of actions and, G ⊆ Lit is
the set of goals of the planning task. An action α = 〈P(α),X(α)〉 is a set of preconditions
(for α to be applicable) and effects.

A POP plan Π, or simply a plan Π, is a 3-tuple 〈A(Π), CL(Π), OC(Π)〉, where A(Π)

is the set of action steps in Π, CL(Π) is the set of causal links in Π, and OC(Π) is the
set of ordering constraints on A(Π). A causal link between two actions: αi and αj , is
denoted as (αi, `, αj) ∈ CL(Π), meaning that ` ∈ P(αj) is planned to be supported
by αi. In addition, for a certain pair of action steps αi and αj , αi may precede αj or
viceversa. Such a relationship is called ordering constraint and is denoted as αi ≺Π αj

(or αj ≺Π αi) ∈ OC(Π). It is important to note that not every pair of actions has to
be ordered: for a given pair of action steps, it may be that neither action step precedes
the other in the plan. In POP, Ψ and G are encoded as dummy actions αΨ ≺Π αG with
X(αΨ) = Ψ, P(αG) = G and P(αΨ) = X(αG) = ∅. Finally, the set of unsupported
preconditions of the action steps in Π is called open goals, and is denoted as goals(Π).

A(Π) and CL(Π) in a plan may cause the appearance of threats in POP: an action
β potentially interfering with a causal link (αi, `, αj) is denoted by (β, (αi, `, αj)). A
threat means that the interfering action would invalidate the causal link if this step is
ordered between the two actions of the causal link. The set of all threats in a plan Π is
labeled as threats(Π), and initially, threats(Π) = 0. When detected, threats are to be
solved by some threat resolution step: demote or promote.

The set of flaws to be solved in a plan Π includes threats(Π) and goals(Π), and is
denoted as flaws(Π). A plan Π is solution if flaws(Π) = ∅; i.e, if Π is a threat-free plan
and all the goals in G are achieved through a causal link. If Π is a solution plan, then
A(Π) applied over the initial state Ψ leads to a problem state in which the goals of the
task, G, hold.

2.7.2.3 DeLP-POP: A first extension of POP with DeLP

DeLP-POP is a theoretical extension of POP with DeLP-style argumentation (23). A
DeLP-POP planner can appeal both to arguments and actions as a way to resolve goals
or threats. DeLP-POP distinguishes between two types of steps for supporting goals:
actions steps and argument steps. Actions are intended to express the physics of a domain
so the effects of an action reflect the changes that will be produced in the world when the
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action is executed. However, argument steps represent the conclusion inferred by an agent
according to its local knowledge and partial view of the world. The novelty of DeLP-
POP is that arguments can be introduced in the plan to support action preconditions.
Consequently, the conclusion derived through an argument may be invalidated if another
agent puts forward an opposite conclusion.

A planning task M is extended in DeLP-POP as a tuple (Ψ,∆, A,G), where Ψ ⊆ Lit

is the set of initial facts, the new element ∆ contains defeasible rules that may apply in any
of the world states that result from the execution of the plan, A is the set of actions, and
G ⊆ Lit is the set of goals. The new element ∆ allows the agent to construct arguments
during the planning search.

Let ` be an open goal, motivated by some step β ∈ A(Π) or A ⊆ ∆; i.e. ` ∈ P(β)

or ` ∈ base(A). If goal ` is planned to be enforced by an action α, this is encoded as
a causal link of Π and included in the set CL(Π): (α, `, κ) ∈ CL(Π), with κ = β or
κ = A. If goal ` ∈ P(β) is to be enforced by an argument, this is encoded as a support
link of Π, in a set denoted SL(Π): (B, `, β) ∈ SL(Π), where B ⊆ ∆.

A plan Π for a DeLP-POP task M, is a 5-tuple 〈A(Π), AR(Π), CL(Π), SL(Π),

OC(Π)〉, where A(Π) denotes the set of action steps; AR(Π) represents the set of ar-
gument steps, or more particularly, the utilization of the defeasible rules in ∆ within Π;
CL(Π) and SL(Π) represent the sets of causal and support links, respectively; and OC(Π)

is a set of ordering constraints.
In DeLP-POP, arguments are not only introduced to intentionally support an action

precondition of a plan, but they are also presented to defeat or defend other arguments in
the plan.

When actions and arguments are combined in a partial order plan, new types of threats
appear and need to be solved (23, 112). In section 2.7.3.2, we provide some more details
on the DeLP-POP threats and we compare them with the definition of threats in our
proposal.

2.7.3 Components of Q-DeLP-POP

In this section, we introduce the semantics of a new planning framework, Q-DeLP-POP,
that extends DeLP-POP (23) for dealing with the qualification problem (59). As we will
see, the adopted solution to the qualification problem leads to redefine some of the compo-
nents of the DeLP-POP framework (23) as well as to introduce new ones. Q-DeLP-POP
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has been previously applied to scenarios that range from applications of ambient intelli-
gence in the field of health-care (27, 28) to a transit journey planning service (34, 73). In
this work, we present a detailed and thorough formalization of Q-DeLP-POP.

The motivation behind Q-DeLP-POP arises from the fact that in natural environments
the successful execution of actions can never be predicted with absolute certainty. Unex-
pected circumstances, albeit unlikely, may at any time prevent an autonomous agent from
performing the intended actions (113).

Example 1. An air traffic control strike is due to take place in Munich. An action that
involves taking a plane at the Munich airport could fail during the plan execution, thus
invoking a plan repair or replanning procedure at execution time. If the announcement
of the strike were known during the construction of the plan, an alternative journey route
with no stops in Munich would have been selected.

The information about the controllers’ strike at the Munich airport of Example 1 is
one of the many unexpected conditions that might prevent the user from executing an
action such as taking a plane in Munich. The qualification problem is concerned with the
impossibility of listing all the preconditions required for a real world action to have its
intended effect.

Within the planning community, the default choice to the qualification problem is to
assume away the numerous possible unexpected circumstances that may prevent an ac-
tion from being executed in the real world and resort to replanning in case a plan turns
out not to be executable due to a non-anticipating condition. Some approaches suggest
treating actions as qualified by general constraints describing the domain being investi-
gated such that the action is computed without considering these domain constraints, and
the action is only taken to qualify if and only if any of the constraints is violated after the
computation is complete (59). Other method though cope with the qualification problem
by respecting causality when minimizing anomalous models, which requires a prior defi-
nition of abnormal qualifications and anomalous models (113). Our method to overcome
the qualification problem during the construction of a plan relies on the local knowledge
of the agent about anomalous situations. Rather than verifying all unusual situations in
the preconditions of the actions, agents put forward an action to the plan in the form of an
argument so that any one agent that has information about a tentative anomalous situation
that might prevent the action from being executed launches an attack against the argument
representing the action. This new semantic representation will be shown hereinafter.
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2.7.3.1 Action-Argument Steps

Q-DeLP-POP provides a novel representation mechanism for action specifications, through
which agents are able to attack an action step of the plan if they hold information about an
environmental condition that could potentially prevent the action from having its intended
effects. Given an action α that is to be inserted in a plan Π as an action step of A(Π),
the underlying idea is to represent the generation of X(α) through a defeasible deriva-
tion and encode such a derivation as an argument of Π. For this purpose, Q-DeLP-POP

replaces the notion of action step (elements in A(Π)) by a new compound entity called
action-argument step, whereas it keeps the notion of argument step (AR(Π)) as defined
in DeLP-POP.

Definition 6. [Action-Argument Step]. Let α be an action with X(α) = ` to be inserted
in a plan Π. In Q-DeLP-POP, α is inserted in Π as a pair action-argument γ = 〈α′,A〉.
Particularly:

• X(α′) = µα′ , where µα′ is a ficticious and irrevocable effect used to denote the
actual execution of action α′.

• Rul(A) = `−�µα′ where base(A) = µα′ and concl(A) = X(α).

• P(γ) = P(α′) = P(α).

• X(γ) = concl(A) = X(α).

Thus, in Q-DeLP-POP, action steps are all replaced by action-argument steps. This
leads to a redefinition of a plan Π as a 5-tuple 〈AA(Π),AR(Π), CL(Π), SL(Π), OC(Π)〉,
where AA(Π) represents the set of action-arguments in Π. We will call the set AR(Π)

supporting arguments so as to distinguish them from the arguments comprised inAA(Π),
which are simply a type of fictitious arguments artificially created to transform the effect
of an action into a defeasible derivation. Identifying AR(Π) as the set of supporting
arguments of the plan Π will also be helpful to characterize this set of arguments versus
the attacking arguments, a distinct type of arguments that will be later introduced. In any
case, an argument always denotes a defeasible piece of knowledge or belief of the agent.

The introduction of the compound entity action-argument step also implies to re-
visit the notions of causal link and support link. Specifically, let γ2 = 〈α′2,B〉 be the
action-argument of an action α2 which is represented on the right of Figure 2.421; and

1Note that we represent the effects of α′
1 above the rectangle of action α′

1 and its preconditions below.
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let P(γ2) = P(α′2) = ` be an open goal of γ2; then, if ` is supported by the action-
argument step γ1 = 〈α′1,A〉 of an action α1, represented on the left of Figure 2.42, then
Q-DeLP-POP introduces a causal link (γ1, `, γ2) ∈ CL(Π), as shown in Figure 2.42.

…

…

Figure 2.42: Example of causal link (γ1, `, γ2) ∈ CL(Π).

Similarly to DeLP-POP, where a precondition of an action step can be supported
by an argument step, we allow preconditions of action-argument steps to be likewise
supported by supporting arguments. Specifically, let’s consider the action α2 in Figure
2.43 represented through the action-argument γ2. If ` ∈ P(γ2) is to be supported by
an argument step C, then Q-DeLP-POP introduces a support link (C, `, γ2) ∈ SL(Π)

and inserts C in the set AR(Π). This is graphically represented in Figure 2.43 where the
supporting argument C is used to support P(γ2).

…

…

Figure 2.43: Example of support link (C, `, γ2) ∈ SL(Π) and causal link (γ3, p,C) ∈
CL(Π).

Finally, as it also occurs in DeLP-POP, a literal p that belongs to the base of an
argument, say p ∈ base(C), can be supported by an action-argument γ3 = 〈α′3,D〉 in
Q-DeLP-POP, thus introducing a causal link (γ3, p,C) ∈ CL(Π), as shown on the left of
Figure 2.43.

In case that an action α has more than one effect, i.e., X(α) = {`0, `1, . . . , `n}, the
corresponding action-argument step is denoted as a 2-tuple γ = 〈α, {A0,A1, . . .}〉, where
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Rul(A0) = `0 −�µα, Rul(A1) = `1 −�µα, and so on. Thus, an action-argument step is a
compound entity that comprises a grounded action and a set of arguments that encapsulate
the effects of this action. As we will see in section 2.7.3.2, representing the effects of an
action through a defeasible derivation instead of a strict derivation as it occurs in DeLP-
POP, allow agents to put forward arguments for or against the successful execution of
the action and the achievement of its intended effects. Note that our aim is to ensure that
when the solution plan is to be executed in the real world, things happen as featured in the
plan; that is, as envisioned by the agents according to the contextual knowledge defined
by their beliefs.

We say that a literal ` ∈ Lit is an open goal in Π, denoted as ` ∈ goals(Π), if
∃γ ∈ AA(Π) | ` ∈ P(γ) or ∃A ∈ AR(Π) | ` ∈ base(A), and it does not exist a causal
link or support link for the precondition of the action-argument or a causal link for the
base of the argument in Π that supports `.

2.7.3.2 Conflicting situations

During the construction of a plan, different conflicting situations or interferences may
arise that need to be solved in order to guarantee the validity or correctness of the plan
and its feasibility or executability in the real world. In POP, interferences between actions
are captured through the notion of threat, as shown in section 2.7.2.2. However, when
actions and arguments are involved in the construction of a plan, new types of conflicting
situations appear that need to be identified and solved in order to obtain a valid plan.
Particularly, DeLP-POP extends the notion of POP threat to capture the interactions of
actions with arguments and arguments with arguments. Unlike DeLP-POP (23, 112), we
distinguish between two types of conflicting situations in a plan:

• Threats: they occur between two unordered steps of the plan such that if one is
ordered before the other, the first one invalidates the application of the second one.

• Attacks: they occur when an agent holds some belief that may contradict the conclu-
sions of a step of the plan. Attacks arise because of the existence of contradictory
local information of the agents.

The difference between threats and attacks is as follows: while threats are used to
validate the plan according to the physics expressed in the domain of the problem, attacks
respond to the local and contextual information held by the agents (beliefs), which is not
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expressed in the physics of the domain. Thereby, threats are aimed at checking the validity
of the plan while attacks are aimed at checking the executability of the actions in the plan
and the achievement of their intended effects. In what follows an example for the ease of
understanding.

Example 2. In Figure 2.44(a), the action-argument step γ1 represents the planning action
’fly plane apn1 from Munich to London’. The argument step A derives ’apn1 at Munich’
according to information provided by the air traffic control tower of Munich airport. The
precondition of γ1 is thus supported by the conclusion of A. In this case, the conflicting
situation occurs when a new action-argument, step γ2, contradicts the support link (A,
apn1-at-Munich, γ1) ∈ SL(Π). This conflicting situation is similar to the classical notion
of threat in POP but in this case γ2 threatens a support link. On the other hand, Figure
2.44(b) shows two arguments: argument B1 denotes there are reasons to believe ’a vol-
canic and ash cloud’ might happen and argument B2 denotes that the agent believes ’an
airport strike might occur’. B1 and B2 are not part of the plan since these arguments are
not supporting any open goal of the plan, but they are a consequence of the beliefs of the
agents, which may prevent γ1 from achieving its intended effects. In other words, agents
are saying that there are reasons to believe that these two unexpected circumstances (a
volcanic ash cloud and airport strike) may occur and prevent the plane from flying from
Munich to London. This conflicting situation is known in Q-DeLP-POP as an attack.

(a)

apn1 at Munich

apn1 at London

apn1 at Munich

apn1 at Munich

(b)

apn1 at Munich

apn1 at London

apn1 at Munich

Plan Plan

Figure 2.44: Example 2: (a) a threat in the plan; and, (b) attacks to the plan.
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The following sections 2.7.3.2 and 2.7.3.2 address in detail the management of threats
and attacks, respectively.

Threats. A threat happens when some step of the plan threatens the support provided by
another step of the plan. Formally, we define a threat as a tuple 〈k3, (k1, `, k2)〉, where k1,
k2 and k3 are action-argument steps or supporting arguments; k3 is the threatening step
which threatens the support (k1, `, k2), being k1 the step which provided some support
to k2. All type of threats in Q-DeLP-POP will follow this uniform definition. In DeLP-
POP, however, threats are defined as a step threatening a link or a step threatening another
step depending on the type of the threat (23, 112). By keeping a uniform threat format,
a neater classification of threats as well as a simpler definition of the solutions can be
defined. In the following, we will also point out some differences with respect to the
DeLP-POP threat classification.

Threats in Q-DeLP-POP are classified according to the type of support is being threat-
ened: a causal link, a support link or an internal support of an argument:

(1) Causal Links Threat (CLT): this interference occurs when a plan step threatens a
causal link of the plan.

(2) Support Link Threats (SLT): this interference occurs when a plan step threatens a
support link of the plan.

(3) Internal Support Threats (IST): this interference occurs when a plan step threatens
an internal literal derived by some argument step of the plan.

Given a plan Π, and following the above threat definition 〈k3, (k1, `, k2)〉, we define
the following types of threats:

Causal Link Threat (CLT). Let (k1, `, k2) be a causal link; then, k1 must be an
element inAA(Π) and k2 can be an action-argument or a supporting argument of the plan.
In this case, we say k3 is threatening a causal link of the plan. The two situations that may
arise are graphically depicted in Figures 2.45(a) and 2.45(b). Figure 2.45(a) represents
the classical POP threat. In Figure 2.45(b), the supporting argument A ∈ AR(Π) has
been introduced to support some precondition of γ2 and then γ1 is used to support the
literal ` of base(A). Therefore, k3 = γ3 is threatening the causal link (γ1, `,A). In
both cases, 2.45(a) and 2.45(b), the threat is solved by applying demotion (γ2 ≺Π γ3)
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or promotion (γ1 ≺Π γ3). Our CLTs are denoted in DeLP-POP as action-action and
action-base threats.

(a) (b)

Figure 2.45: Examples of threats of type CLT.

Support Link Threats (SLT). (k1, `, k2) is a support link if k1 ∈ AR(Π) and k2 ∈
AA(Π), and k3, the threatening step, can be an action-argument or a supporting argu-
ment. The former case is shown in Figure 2.46(a), where k1 = B and k2 = γ2. This
threat is solved by applying demotion (γ2 ≺Π γ3). The case in which k3 ∈ AR(Π) is
shown in Figure 2.46(b). The threatening step is k3 = C, which has been introduced
in the plan to support the precondition of some other action (this is not graphically rep-
resented). Although the appearance of C in the plan can be interpreted as an interfer-
ence with other steps of Π, this type of threat is not solved until base(C) is supported
by an action-argument since ordering constraints are only established between action-
arguments. This does not entail any drawback since the resolution of threats, as potential
conflicts they are, can be postponed in the problem-solving process. The solution to this
threat is to insert the ordering constraint (γ2 ≺Π γ5). The threat in Figure 2.46(a) is en-
compassed in the action-argument threats in DeLP-POP, and the threat in Figure 2.46(b)
is included in the argument-argument threat definition of DeLP-POP.

Internal Support Threats (IST). The two situations that arise as an IST are depicted
in Figures 2.46(c) and 2.46(d). In both cases, k1 ∈ AR(Π), k2 ∈ AA(Π) and the support
(k1, `, k2) is not of the form of a link but an internal literal n in the supporting argu-
ment k1 = B that is necessary to derive the conclusion ` for k2 = γ2. In case 2.46(c),
k3 = γ3 is the threatening step and the solution to this threat is to insert the ordering
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constraint (γ2 ≺Π γ3). In case 2.46(d), the solution also involves the application of de-
motion through the ordering constraint (γ2 ≺Π γ5). The ISTs are also encompassed by
the action-argument and argument-argument threats in DeLP-POP since this framework
does not distinguish the support that is being threatened.

(a) (c)(b) (d)

Figure 2.46: Examples of threats of type SLT and IST.

We must note that DeLP-POP introduces one more type of threat called action-
assumption, in which an action threatens the base of an argument even though the base
is not warranted yet (reason why the threaten is so-called assumption). However, under
our threat definition, a threat does not exist until a support is explicitly introduced in the
plan; that is, until the base of the argument is warranted via an action-argument, in which
case it would become a CLT and would be solved by promotion or demotion. It has
been proved that many potential threats can actually be delayed until the end (114) and
in practice many planners adopt threat deferral as a flaw selection strategy (46, 114). The
inclusion of supporting arguments in the threat machinery does not change this circum-
stance because the no-argument-supports-argument policy implies that any threatening or
threatened supporting argument is involved in a threat as long as its base is supported by
an action-argument.

Attacks. Attacks are conflicting situations that happen in a plan as a notice issued by
an agent that some unexpected circumstances might affect the executability of an action
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in the plan. Attacks are based on the contextual information or beliefs of the agents and
they are detected so as to provide a stronger guarantee of success of the plan at execution
time.

Formally, given a plan Π, we define an attack as a tuple 〈A0, {A1, . . . ,An}, Ψ〉,
where:

• A0 is an argument of Π, either a supporting argument (AR(Π)) or a fictitious argu-
ment of an action-argument (AA(Π)).

• {A1,A2, . . . ,An} is the set of attacking arguments such that A1 attacks A0, A2

attacks A1, and so on.

• Ψ is a set of literals that denote the activation context for the attacking arguments
within the plan1.

Notice that the first two elements of the attack tuple form an argumentation line [A0,
A1, A2, . . .An] as defined in section 2.7.2.3.

Example 3. Let’s suppose an emergency case where the system demands a plan to move
an ambulance from the hospital to the patient’s home. An agent believes that the traffic
congestion in the road that connects the hospital and the patient’s home may prevent
the ambulance from arriving in time. In this case, taking into account this contextual
information in the design of the plan might be helpful to ensure the executability of the
plan at runtime; that is, that the ambulance will get on time to the patient’s home (27).

Formally, given an agent whose knowledge base is T = (Ψ,∆), it can build an argu-
ment A1 in T that attacks an argument A0 of a plan Π if the conclusion of A1 contradicts
some literal derived in A0, that is, if concl(A1) ∈ head(Rul(A0)) (see definition of attack
relation in section 2.7.2.1). Particularly, in Example 3, an agent builds an argument A1

which concl(A1) =’ambulance not on time’ contradicts concl(A0) =’ambulance on time’
given that both arguments use the same road between the hospital and the patient’s home
to make their inferences (base(A0)∪base(A1) ⊆ Ψ); and the agent is aware of a conges-
tion situation in such a road. This attack is represented as 〈A0, {A1},Ψ〉 where: A0 is the
argument of Π; A1 is the attacking argument; and, Ψ is the set of literals where body(A1)

1The meaning of Ψ is the same as in the knowledge base T = (Ψ,∆) of an agent but here it is referred to
a particular context of the plan Π.
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is warranted. Additionally, an argument A2 against A1 can be built in Example 3 if, for
instance, an agent also holds an additional information of the existence of a fast track lane
that avoids the traffic congestion. In this case, an argument A2 constructible in (Ψ,∆) is
a defeater of argument A1, such that the attack tuple now is formed by 〈A0, {A1,A2},Ψ〉
and [A0, A1, A2] is the argumentation line. Note that attacking arguments A1 and A2 do
not support any item in goals(Π) and they are agents’ beliefs specifically used to attack
or defend A0.

An initial attack of an argument A1 against an argument A0 of Π is represented
in Figures 2.47(a), 2.47(b), 2.47(c) and 2.47(d). The four figures feature the attack
〈A0, {A1},Ψ〉, where A0 is the fictitious argument of γ1 in Figures 2.47(a) and Figure
2.47(d), and a supporting argument (A0 ∈ AR(Π)) in Figures 2.47(b) and Figure 2.47(c).
Particularly, in Figure 2.47(b), A1 is attacking ` ∈ concl(A0); and, in Figure 2.47(c), A1

is attacking n, an internal literal of A0. This different attacking point in the argument A0

does not make any difference in the semantics of the attack. Although it is not graphically
represented in Figure 2.47, an argument A2 could attack A1, thus giving rise to the attack
tuple 〈A0, {A1,A2},Ψ〉.

It is important to note that all the attacking arguments {A1,A2, . . . ,An} have to be
activated in the same context Ψ of the plan Π; that is, base(A1), base(A2), . . ., base(An)

have all to be warranted in Ψ, which in turn depends on the plan step of Π to which
argument A0 is giving support (for instance, in Figure 2.47, argument A0 is giving support
to the action-argument γ2). The activation of the attacking arguments is explained in detail
in the next section.

As shown in Figure 2.41(a) of section 2.7.2.1, given a root argument A0, the union
of its argumentation lines gives rise to a tree-like structure, the dialectical tree for A0. In
order to evaluate the root argument, the same procedure of Figure 2.41(a) is applied. At
the end, the root argument is labeled as U or D. If A0 is labeled as U, it means there is
no evidence against the conclusions of A0. Otherwise, agents will consider that there are
reasons to believe that conclusions of A0 might not be achieved.

2.7.3.3 Activation of Attacking Arguments

The two attacking A1 and A2 of Example 3 shown in the previous section are constructible
in (Ψ,∆); that is, the base of the two arguments are to be warranted in Ψ. Therefore, we
need to check that the base of the attacking arguments for or against an argument A0 of
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(a) (c)
Plan

(b)
Plan Plan

(d)
Plan

…

Figure 2.47: Examples of types of attacks.

Π are warranted in the state of the plan step to which A0 is giving support. That is, an
attack or defense to A0 affects the plan step being supported by A0 and, consequently,
the potential attacking arguments must be activated in the same context in which the
corresponding plan step would be executed. In order to prevent an attacking argument
from a false activation, we need to define a specific procedure to compute ’the state of a
plan step’.

In state-based planning, a plan is a linear sequence of actions and the consistent state
that holds before each action is known. However, a partial order plan Π is a set of ac-
tions whose execution ordering ≺Π is only partially specified, thus encoding multiple
linear plans. Hence, POP does not explicitly represent state information associated to the
actions in the plan.

Since states are not explicitly represented in POP, Q-DeLP-POP needs to calculate,
for each γ ∈ AA(Π), the possibly inconsistent set of literals potentially planned to occur
before γ. Specifically, in (26), we presented and formalized the problem of identifying
possible states in a partial plan with the notion of proto-state. Basically, the partial order
of a plan Π determines, for each γ ∈ AA(Π), a possibly inconsistent set of literals planned
to occur before γ. The proto-state (also known as Cutsets in (79)) of an action-argument
step γ can be seen as the set of literals that may hold before γ. The latest version of
DeLP-POP (112) similarly introduced a concept named propagated effects for an action
α, which is the set formed by adding together the effects of the actions that may be
possibly ordered before α.
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The set of proto-states of a plan must be continuously updated every time a step or
an order constraint is inserted into the plan. As the plan search progresses, the proto-
states will match better the sates that will result from the execution of the solution plan.
Definition 7 presents formally the notion of proto-state.

Definition 7. [Q-DeLP-POP Proto-State]. Let Π be a plan for M, and γ, γ′, γ′′′, . . . ∈
AA(Π). In Q-DeLP-POP, the proto-state of an action-argument step γ in Π, labeled as
sγ , is comprised by1:

sγ = {` ∈ Lit | ∃γ′ ∈ AA(Π), ` ∈ X(γ′) and ≺Π ∪{〈γ′, γ〉} is consistent,
and ∀γ′′ ∈ AA(Π), if ` ∈ X(γ′′) then {〈γ′, γ′′〉, 〈γ′′, γ〉} * tc(≺Π ∪{〈γ′, γ〉})}

Figure 2.48 shows an example of a partial plan with five action-argument steps. The
proto-state of the action-argument γ5, i.e., the set of literals that can possibly occur before
γ5 is sγ5

= {p, q, q}, where: p is part of sγ5
due to the ordering constraint (γ2 ≺Π γ5);

p is not included in sγ5
because of the ordering constraint (γ1 ≺Π γ2) and X(γ2) denies

X(γ1); and, q and q are part of sγ5 because 〈γ3, γ5〉 and 〈γ4, γ5〉 are possible relations
consistent with OC(Π). Following Definition 7, we observe that 〈γ3, γ4〉 belongs to the
transitive closure of the relations in the plan but 〈γ4, γ5〉 does not, reason why q ∈ sγ5

.
Note that Figure 2.48 shows an example of a proto-state containing an inconsistent set of
literals.

…

…

Figure 2.48: Example of the proto-state sγ5 = {p, q, q}.

Back to Figure 2.47, the base of the attacking argument A1 needs to be warranted in
the proto-state of the action-argument γ2. This is graphically shown in Figure 2.47 by a

1We use tc to refer to the transitive closure
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cloud drawn under A1. Therefore, the attack tuple 〈A0, {A1,A2},Ψ〉 (A2 is not graphi-
cally represented) is now replaced by 〈A0, {A1,A2}, sγ2

〉 in order to ensure that the at-
tacking arguments against A0 are warranted in the proto-state of γ2, the action-argument
supported by A0. Additionally, in Figure 2.47(d), we have that (γ1, `,B) ∈ CL(Π) and
(B, z, γ2) ∈ SL(Π). In this case, the proto-state or activation context of the attacking
argument A1 would also be sγ2 . The reason is that an attacking argument represents a
belief of an agent against a successful execution of an action so, ultimately, the target of
an attacking argument is always an action-argument step. This is also confirmed by Def-
inition 7, where proto-states are only formed by the effects of the action-argument steps,
and hence γ1 would be indirectly supporting γ2 in this example.

2.7.4 Cooperative Planning Protocol

Unlike DeLP-POP, where a single agent is responsible of the argumentation-based plan-
ning process, Q-DeLP-POP has been extended to a multi-agent context. In this section,
we present the application of Q-DeLP-POP to a Multi-Agent Planning (MAP) scenario,
hereinafter labeled as Q-DeLP-MAP.

2.7.4.1 Multi-Agent Planning Task

Agents in Q-DeLP-MAP are entities of the problem equipped with planning and argumen-
tation capabilities that possess their own planning and contextual information. Therefore,
given a planning task M, each agent will have a different and local view of the task,
MAgi = 〈ΨAgi , ∆Agi , AAgi , G〉.

We denote a planning team as AG = {Ag1 . . .Agn} such that n = |AG| is a finite
non-empty set of agents with planning and argumentation capabilities. It is assumed that
agents are fully cooperative. Each agent Agi is endowed with a tuple MAgi , where:

• ΨAgi ⊆ Ψ represents the partial view of the initial state of agent Agi such that
Ψ =

⋃
∀Agi∈AG

ΨAgi is a consistent set.

• ∆Agi ⊆ ∆ is the set of defeasible rules known by agent Agi such that ∆ =
⋃

∀Agi∈AG
∆Agi

is a set of possibly contradictory rules.

• AAgi ⊆ A is the set of planning actions known by agent Agi such thatA =
⋃

∀Agi∈A
AAgi .
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• G is a set of global goals that represent the needs of a user in an environment.
Unlike the rest of elements, the goal state G is known to all the agents.

Q-DeLP-MAP is aimed at cooperative planning tasks where agents contribute to cre-
ating the plan with their planning actions and to ensuring the executability of the plan
through their defeasible rules. Thus, agents in a MAP task jointly solve G and help dis-
cover the non-anticipating conditions that might prevent the plan from being executable.

The team formation is not covered in this article and we assume that AG is a static
team that does not vary during the planning process. The formation of dynamic teams,
where agents autonomously enter and exit the team, falls within the investigation in open
Multi-Agent Systems (MAS) and it will addressed in future works.

A relevant aspect in MAS is the notion of privacy. Let MAgi = 〈ΨAgi , ∆Agi , AAgi ,
G〉 and MAgj = 〈ΨAgj , ∆Agj , AAgj , G〉 be the planning task as regarded by two agents
Agi and Agj :

• Agi and Agj can share some of the planning capabilities, in which case AAgi ∩
AAgj 6= 0.

• Agi and Agj can share all or some of the facts in the initial world state, in which
case ΨAgi ∩ΨAgj 6= 0.

• Agi and Agj can share some of their beliefs, in which case ∆Agi ∩∆Agj 6= 0.

• Agi and Agj share the set G as these are the common goals to be cooperatively
achieved by both agents.

If a literal l is private to agent Agi then l is not shared with any other agent and l can
only be used by Agi during the plan construction and argumentative evaluation. The more
private information of the agents, the less the interaction between them during the plan-
ning and argumentation. For this reason, in Q-DeLP-MAP scenarios, it is important that
as much information as possible is labeled as public in order to promote argumentation
as a coordination mechanism that enable agents to contrast their beliefs about the world
towards a successful achievement of an executable plan.

Specifically, the existence of public information is more concerned with Ψ, the initial
world state, and the successive planning states generated along the plan construction.
However, it is commonly accepted that two agents may have different defeasible rules;
for instance, Agi may possess information that allows the agent to infer the state of the
traffic whereas Agj may have defeasible information about the weather. Similarly, it is
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also commonly accepted that in a planning task an agent represents an entity with different
planning capabilities than other agents; this is the case, for instance, when Agi represents
a plane and Agj represents a truck in a logistic domain. Note also that in Q-DeLP-MAP

planning data as well as beliefs of an agent denote defeasible information since, unless
they involve some private data to the agent, it can be rebutted by the rest of the agents.

Multi-Agent Planning is required when the domain of application is composed of mul-
tiple entities that are distributed functionally, in which case they need to work together to
solve the planning task, or spatially, in which case they accomplish the planning task bet-
ter by cooperating (115). On the other hand, distributed execution promotes the efficiency
of parallel processing of actions, the robustness of the system to cope with complex plan-
ning problems and the scalability of a construction across a network of interconnected
agents (each agent is installed in a different machine), thus avoiding the critical failures
and resource limitations of centralized systems.

2.7.4.2 Multi-Agent Search Protocol

Figure 2.49 outlines the three main stages of the Q-DeLP-MAP protocol: plan and goal
selection, plan generation and plan evaluation. Given a planning task M, and a set of
agents AG, the Q-DeLP-MAP protocol starts with an initial empty plan, Π0 = {αΨ ≺
αG}, and agents progressively search through a space of possible plans (POP tree). At
each iteration of the protocol, agents collaboratively select a node of the POP tree and
expand it. The process finishes when a plan in which all step preconditions are necessarily
true is found (solution plan). The final goal of Q-DeLP-MAP is to return a solution plan
with guarantees of robust execution in the real-world.

Unlike other approaches, Q-DeLP-MAP successively interleaves planning and argu-
mentation so as to build a plan incrementally. Once a plan Π is selected by the agents,
and unless Π is labeled as a solution plan, agents select an open goal Φ of Π. Then, Π

is expanded in the plan generation stage, where agents put forward and exchange refine-
ment plans of Π that would potentially solve Φ. Following, agents evaluate each plan
proposal by argumenting the unexpected circumstances that might occur in the context of
the proposal. Plan evaluation consists of two steps; (1) the application of the Case-based
Reasoning module in order to find similar argumentative cases and (2) the Plan Argu-
mentation phase, where agents get involved in an argumentative dialogue in which they
expose their arguments for or against the plan proposals.
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Figure 2.49: Main algorithm of Incremental Plan Construction in Q-DeLP-MAP.

Plan generation Plan refinements are the plan proposals put forward by the agents as a
result of expanding a selected plan Π when solving an open goal Φ. This stage follows a
process similarly to a plan-space planning process that builds a POP tree, except that each
refinement or successor of Π can be now generated by a different agent and can contain
arguments to support the action preconditions or arguments base. Agents exchange their
refinements to each other and learn the new steps, literals and links of the plan, which
they keep in their local POP tree.

In a previous multi-agent version of DeLP-POP (26), agents engage in a turn-based
dialogue permitting agents to collaborate to discover threats to any argument step of a
refinement. However, in Q-DeLP-MAP, as explained in section 2.7.3.2), threats caused
by an argument step A are not solved until base(A) is supported, thus permitting any other
agent of AG to insert action-arguments in the plan to support base(A) and solve the threat
by promotion or demotion. This is consistent with the partial-order structure of the plan
and, consequently, with the local information held by the agents. Subsequently, agents
will learn the new ordering constraints and will update their local POP tree accordingly.
Additionally, unlike DeLP-POP (26), in Q-DeLP-MAP the refinements of Π generated
by the agents are free of threats. It means that if an agent finds a threat in one of its
new refinements, then it solves it before exchanging the new proposal with the rest of the
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agents.
Agents need to coordinate the exchange of their plan proposals. In Q-DeLP-MAP,

the coordination protocol is based on a democratic leadership where a leadership baton
is scheduled among the agents following a round-robin strategy. Once the baton agent
has sent his refinements to the rest of the agents, and acknowledgment is received, the
coordination stage is completed, and the baton is handed over to the following agent.
Thus an agent can only speak when it holds the baton, and it is listening the rest of the
time. The process is repeated until all the agents have once taken the baton role.

Plan evaluation Evaluating a plan and analyzing its executability in the real world,
according to the agents’ beliefs, is done through two alternative protocols: Plan Argu-
mentation and Case-Based Reasoning (CBR). In the Plan Argumentation stage, agents
become engaged in a series of argumentative dialogues aimed at evaluating the guarantee
of a successful execution of a plan proposal. Specifically, argumentation occurs in the
context of the agents’ beliefs and they build arguments to defend or attack a plan pro-
posal. Subsequently, the CBR will register the argumentative case in order to be able to
re-use it in further evaluations.

Given a refinement or plan proposal Πr, agents generate as many argumentative dia-
logues as supporting arguments and action-argument steps are present in Π. Let AAgi be
one argument of Πr, where Agi is the agent that inserted A in Πr, and let γ be the action-
argument to which A is giving support. The argumentative dialogue to evaluate AAgi is
encoded as a dialectical tree TAAgi

Πr
(see Section 2.7.2.1). Nodes of TAAgi

Πr
are labeled with

an argument that attacks the argument in its parent node and which base is supported in
the proto-state sγ . More specifically:

1. The root node of the tree is labeled with AAgi such that AAgi ∈ AR(Πr) or
〈α′,AAgi〉 ∈ AA(Πr). The argumentative process identifies the action-argument γ
of Π supported by AAgi and creates the corresponding proto-state, sγ .

2. A child node BAgj of AAgi represents an attacking argument against AAgi ; i.e.,
BAgj is a defeater of AAgi . Consequently, children of AAgi stand for defeaters of
the root argument AAgi .

3. A child node CAgz of BAgj indicates an attack against BAgj , so this new node is
actually a supporter of the root argument AAgi .
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4. And so on.

The above process creates an argumentation line 〈AAgi , {BAgj ,CAgz , . . .}, sγ〉 of
TAAgi

Πr
. A dialectical tree is generated for each argument in Πr and the leaves of the tree

are undefeated arguments. Unlike the dialectical trees of a general argumentative pro-
cess (24), the nodes in our dialectical tree are supported in the proto-state of the action-
argument supported by the root argument. Every linear path from the root to a leaf cor-
responds to one different acceptable argumentation line. Circular argumentation (also
known as fallacious argumentation) is avoided by applying both conditions from (24): no
argument can be reintroduced in the same argumentation line and argument concordance
must be guaranteed.

Similarly to the Plan Generation phase, agents can only adopt one role, namely, the
baton agent, or the participant agent, during the argumentative process, and the roles are
iteratively exchanged. The baton agent is the agent that inserted the argument in Πr and
it is the responsible for the construction of the dialectical tree. The baton agent is also
allowed to put forward a self-attacking argument as well as processing the attacking/sup-
porting arguments of the rest of agents in the dialectical tree. The Plan Argumentation
phase of a particular argument ends when an argumentative round with no new attacking
arguments is detected.

The Plan Argumentation phase is applied to every argument in all nodes of a POP
search tree. Let Πr be a node which is expanded into a child node Π′r. Many of the
arguments in Π′r will also be comprised in Πr and will have been evaluated at the plan
argumentation stage of Πr. Since the structure of a partial plan changes along its con-
struction, the proto-state of some action-arguments in Π′r may have changed and others
may have not with respect to Πr. Thus, it seems convenient to store the results of the Plan
Argumentation phase so as to re-use them in the evaluation of refinement successors.

Case-Based Reasoning (CBR) systems allow agents to learn from their experiences
(62). Q-DeLP-MAP uses a CBR module with the only objective of improving the per-
formance of the plan evaluation stage. A case in the argumentation database is a 4-tuple
structure 〈A,TA, sγ , r〉, where A is the root argument, TA is the dialectical of A; sγ is
the proto-state of γ, the action-argument directly or indirectly supported by A; and, r
is the result of the evaluation of A, that is, D (defeated) or U (undefeated). This way,
whenever an argument is evaluated, a new 4-tuple case is inserted in the argumentation
database. Likewise, before applying the Plan Argumentation to an argument, we perform
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a query to the database to search for a similar past experience. If a similar case is found,
the Plan Argumentation protocol is not executed and the step is directly labeled with r.
Otherwise, a new argumentation phase is launched. In this way, Q-DeLP-MAP avoids to
repeat similar Plan Argumentation protocol. As we will see in section 2.7.5, using the
CBR module allows for a more efficient model and solve more complex problems than
the ones in (27, 28).

Plan and Goal Selection phase In order to select the next open goal from goals(Π),
Q-DeLP-MAP applies a heuristic function that selects the most costly goal according to a
reachability analysis method based on the relaxed planning graph (RPG) of the planning
task (116). Specifically, the cost of a goal g, cost(g), is estimated as the first literal level
of the RPG where g appears. This is clearly an underestimation of the real cost of g since
cost(g) only accounts for the number of actions necessary to reach g from the initial
situation with no regard of the cost of the actions preconditions or the possibly negative
interactions among actions in the plan.

As for the selection plan heuristic, Q-DeLP-MAP applies first a warranty procedure
to discard the plans evaluated as defeated in the plan argumentation phase. Subsequently,
the undefeated plans are estimated according to h(Π) = cost(goals(Π)) (79); specifically,
h(Π) is estimated as h(Π) =

∑
g∈goals(Π)(cost(g)). The possibly overestimation of this

additive heuristic lies in that one same action that achieves the precondition of two or
more actions is counted as many times as needer actions. In contrast, this overestimation
balances out the underestimation of cost(g).

2.7.5 Experimental evaluation

Q-DeLP-MAP draws upon CAMAP (27, 28), a preliminary implementation of the argumentation-
based MAP model specifically adapted to applications of ambient intelligence in the field
of health-care. CAMAP was only able to solve simple planning problems. Q-DeLP-MAP,
however, is a domain-independent framework which has been optimized to address more
complex planning problems, incorporating features such as the CBR module. In order to
analyze the benefits and limitations of Q-DeLP-MAP, we compare it with two other MAP

approaches:

• MAP-POP: a general-purpose MAP framework suitable to cope with a wide va-
riety of multi-agent planning domains (33). MAP-POP is a POP-based refine-
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ment planning approach that iteratively combines planning and coordination where
agents have only the ability of planning; i.e. no argumentation is used in MAP-
POP.

• PS-Q-DeLP-MAP: we also tested Q-DeLP-MAP for plan selection (PS) instead
of applying defeasible reasoning during the search process of building a plan. In
this case, the plan generation phase is executed until completion (a solution plan
that solves the problem goals is returned) and then the plan is evaluated in an ar-
gumentative dialogue among the agents. PS-Q-DeLP-MAP emulates the behavior
of other approaches (29, 30) that draw upon a one-shot planning-argumentation
approach instead of continuously interleaving planning and argumentation like in
Q-DeLP-MAP. This iterative one-shot procedure is repeated until the evaluation
phase returns an undefeated solution plan.

The experiments were carried out in two well-known domains used in the IPC (Inter-
national Planning Competitions):

• rovers: it is a simplification of the NASA Mars Exploration Rover problem. Multi-
ple planetary rovers explore the environment by taking pictures, gathering samples
and communicating them back to a lander. The rovers benchmark includes prob-
lems where all rovers have typically capabilities for gathering samples and only one
rover is equipped with a camera to take pictures.

• logistics: it involves driving trucks and airplanes around delivering packages be-
tween locations. Locations are either airports, only reachable by planes, or places
within a city, only reachable by trucks. The objective is to deliver packages to their
destinations, which can be any location in the problem.

Since the IPC problem suites only contain single-agent versions of the planning prob-
lems, we used the multi-agent version of the rovers and logistics domains presented in
(115)1. The agentization of the rovers domain consists in creating a planning task per
rover. In this case, agents are all of the same type (rovers) and, therefore, the same set
of planning actions is defined in all of the tasks. However, two different types of agents
are identified in the logistics domain, trucks and planes, thus generating a truck or a plane
planning task per agent. On the other hand, the rovers domain generates loosely-coupled
tasks because rovers are generally able to achieve a problem goal by themselves although

1Domains are also available at http://users.dsic.upv.es/grupos/grps/tools/map/fmap.html
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they need to access certain shared resources in their environment, namely the rock and
the soil samples they collect and analyze. In contrast, the logistics problems fall into the
tightly-coupled category since agents need to cooperate in order to transport the packages
to their target locations and tasks present several coordination points (airports) at which
trucks and planes can interact (115).

Specifically, the planning problems in (115) are encoded in PDD3.1 language1, a ver-
sion of PDDL language that introduces state variables. We then incorporated the defeasi-
ble rules into the planning tasks of the agents2. In the rovers domain, defeasible rules are
related to:

1. due to the existence of solar storms, one or more agents may believe this is a prob-
ably cause of communication failures between a rover and the lander whereas other
agents may believe the opposite.

2. agents that have a more accurate picture of the mars surface may hold reasons to
believe that a rover will not be able to move across some particular area at night.
However, some rovers may be equipped with a spotlight, which would allow them
to move between waypoints at night, being this information is unknown to the at-
tacking agent.

3. an agent may hold reasons to believe that the usual low temperatures in the space
will prevent a rover from moving to a specific waypoint; but, if the rover is equipped
with a electrical heater, he would be able to refute the attack of the agent.

We must note that news like the solar storms or atmospheric conditions in the space
may be likewise considered as defeasible knowledge if we assume that the agent might
have an outdated information. This frequently happens in a Mars domain since current
Mars rovers communicate to Earth via orbital relays and the communication from Mars
to Earth has a long delay of at least 2.5 minutes, and at most 22 minutes. Consequently,
depending on the time elapsed since the news was received from Earth, it can be managed
as a fact or a belief.

1http://ipc.informatik.uni-freiburg.de/PddlExtension
2Defeasible rules are encoded in the form of operators, like planning operators, through the special con-

structor :def-rule (see (28)) of our language. Internally, our planner works with ground instances of operators
like most planners do. Ground instances of :def-rule are generated using the set of literals derived from the
grounding of the planning operators plus the literals of the initial situation. In the following, we will use here
the term defeasible rule to refer to any instance of a :def-rule operator.
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Problems Ag Act Def Go Ag Act Def Go Ag Act Def Go Ag Act Def Go Ag Act Def Go

Rovers 

Simple
1R 41 25 3 2R 52 25 3 2R 86 44 3 2R 144 44 7 3R 151 71 6

Rovers 

Hard
1R 41 64 3 2R 52 64 3 2R 86 123 3 2R 144 123 7 3R 151 161 6

Logistics 

Simple
1P 2T 56 31 4 1P 2T 80 31 6 1P 3T 133 39 7 1P 3T 156 39 8 1P 3T 174 81 9

Logistics 

Hard
1P 2T 56 62 4 1P 2T 80 62 6 1P 3T 133 87 7 1P 3T 156 87 8 1P 3T 174 164 9

Problem 1                  

(R-Pfile1 and L-Pfile1)

Problem 2                  

(R-Pfile3 and L-Pfile3)

Problem 3                      

(R-Pfile4 and L-Pfile4)

Problem 4                      

(R-Pfile5 and L-Pfile5)

Problem 5                      

(R-Pfile7 and L-Pfile6)

Figure 2.50: Configuration of the Experiments.

In the logistics domain, defeasible rules are concerned with the following knowledge
held by agents:

1. weather conditions: some agents may have a more precise weather forecast or sim-
ply know that bad weather conditions may provoke delays in takeoffs or even flight
cancellations.

2. environment conditions: a relatively common situation that may alter the elabo-
ration of any plan is a call for a transport strike. Initially, this is handled as a
prediction, later either it is confirmed or suspended. Agents can then argue about
the possibility that the strike takes place and the consequences in the transport plan.

We created two defeasible scenarios, simple and hard, for all the problems in each do-
main (see Figure 2.50). Basically, the difference between these two scenarios relies in the
number of defeasible rules that contradict to each other. The overall number of defeasible
rules used in each problem can be seen in Figure 2.50 under the legend ’Def’. Particu-
larly, the additional defeasible rules of the hard problems are designed in such a way that
their heads contradict the head of some other rule of the respective simple problem. Hard
scenarios introduce a higher level of disagreement among agents but this does not nec-
essarily entail a higher level of defeated arguments since more attacks to arguments also
imply more rebuttals and, consequently, this may lead to more supports. Defeasible rules
were distributed across agents independently of the agent type, thus making agents be
able to extract context inferences about any issue of the context. A detailed description of
the specification of the defeasible rules can be found in the paper that describes CAMAP

(28).
We tested five problems for each domain, which all correspond to a particular problem

of the IPC suites. In the IPC, problems are identified with names pfile1, pfile2, etc., where
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it is usually the case that the higher the file index, the more complex the problem is1.
The correspondence between our problems and the IPC pfiles is shown in Figure 2.50
under the caption of each problem. In both domains, Problem1, Problem2, Problem3 and
Problem4 correspond to pfile1, pfile3, pfile4 and pfile5, respectively. Problem5 is the
pfile7 of the rovers domain and pfile6 in the logistics domain.

The remainder values of Figure 2.50 indicate the size and complexity of the problems.
The column ’Ag’ shows the number of agents (R stands for rovers, T for trucks and P for
planes). ’Act’ is the number of planning actions and ’Go’ is the number of goals to solve
in the problem. As we can see, problems increase in complexity with respect to almost
all the parameters: agents, actions, defeasible rules and goals.

All the agents are executed on a single machine with a 2.83 GHz Intel Core 2 Quad
CPU and 8 GB RAM (only 1 GB RAM available for the Java VM); and a broker of
Java Message Service2 to allow the communication between agent is executed in other
machine also with 2.83GHz and 1GB of RAM.

2.7.5.1 Performance analysis

The results obtained for the two scenarios (simple and hard) of the rovers domain are
presented in Figures 2.51(a) and 2.51(b), respectively; and Figures 2.52(a) and 2.52(b)
show the results for the logistics domain. Additionally, we present some figures of the
complexity of the search process for the problems of the hard scenarios in Figure 2.53.
We will use all these figures to analyze the performance of the three MAP approaches
(MAP-POP, Q-DeLP-MAP and PS-Q-DeLP-MAP).

There are several performance parameters that determine the obtained results for the
three approaches:

1. The size of the search space. This factor, which is directly related to the size of the
problem (see Figure 2.50), affects the three approaches.

2. Number of planning messages exchanged between agents. This parameter also
determines the performance of the three approaches and it is related to the size of

1We chose the pfiles so as to solve a fairly broad range of problems with different complexity and different
number of agents

2MAP-POP, Q-DeLP-MAP and PS-Q-DeLP-MAP are based on Magentix2: a platform of multi-agent
systems (117)
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(a) Problems. Simple Defeasible Scenario.
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(b) Problems. Hard Defeasible Scenario.
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Figure 2.51: Evaluating the average time spent on each model by executing the rovers prob-
lem.
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(a) Problems. Simple Defeasible Scenario.
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(b) Problems. Hard Defeasible Scenario.
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Figure 2.52: Evaluating the average time spent on each model by executing the logistics

problem.

Hard Defeasible Scenario
P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

Rovers: Total number of proposed plans 1 30 20 450 504 1 386 22 664 606 3 9 9 18 26

Rovers: Total Number of Dialogues 0 0 0 0 0 10 341 60 2742 2632 24 90 63 360 442

Rovers: Arguments of CBR with Reuse = 0 0 0 0 0 0 10 144 35 1781 1583 20 71 55 325 412

Rovers: Arguments of CBR with Reuse ≥ 1 0 0 0 0 0 0 197 25 961 1049 4 19 8 35 32

Logistics: Total number of proposed plans 65 128 101 354 253 132 183 1366 557 1341 8 10 12 24 47

Logistics: Total Number of Dialogues 0 0 0 0 0 252 306 2562 1232 1363 144 230 396 648 1598

Logistics: Arguments of CBR with Reuse = 0 0 0 0 0 0 147 176 1355 669 819 102 192 321 387 1147

Logistics: Arguments of CBR with Reuse ≥ 1 0 0 0 0 0 105 130 1207 563 544 41 38 75 261 451

MAPOP Q-DeLP-MAP PS-Q-DeLP-MAP

Figure 2.53: Results of the search process for the problems in the hard defeasible scenarios.

the problem as well as to the complexity of the domain. In the case of the tightly-
coupled problems of the logistics domain, the high interaction level among agents
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also entail a greater number of planning messages (plan proposals).

3. Number of dialogues or dialectical trees. This parameter only affects Q-DeLP-
MAP and PS-Q-DeLP-MAP since no argumentation is employed in MAP-POP.

4. Number of argumentation messages exchanged between agents. This parameter
only impacts in Q-DeLP-MAP because the argumentative dialogues (plan evalua-
tion) take places along with the plan generation during the construction of the plan.
However, the argumentation phase in PS-Q-DeLP-MAP is performed at once at the
end of the plan generation, that is, over the solution plan.

5. Number of times the planning process (plan generation) is executed in PS-Q-DeLP-
MAP. This parameter, which only affects PS-Q-DeLP-MAP, is related to the im-
plementation of this approach. We used Q-DeLP-MAP as an external planner (with
the planning evaluation stage deactivated) in order to obtain the solution plans for
PS-Q-DeLP-MAP. Thus, we obtain a solution plan composed of action-argument
steps that is sent to the argumentative process. If the plan turns out to be defeated,
Q-DeLP-MAP is invoked again from scratch and the CBR module filters out the
already discarded solution plans. This behaviour emulates exactly the usage of an
external planner as in (29, 30).

Regarding these parameters, the values in Figure 2.53 give an idea of the complexity
of each approach in the hard scenarios of both domains (P1 stands for Problem1, P2 stands
for Problem2 and so on):

1. The number of proposed plans in MAP-POP and Q-DeLP-MAP is the total number
of nodes (partial-order plans) generated in the search tree. Note that Q-DeLP-MAP

sends all the generated nodes to the argumentative process so as to discard the
defeated plans whereas MAP-POP only expands the nodes that result from the
application of the heuristic function. Typically, Q-DeLP-MAP will generate more
partial plans than MAP-POP since a node that is expanded by MAP-POP may be
labeled as ’defeated’ in Q-DeLP-MAP and so the node will be discarded. On the
other hand, in PS-Q-DeLP-MAP the number of proposed plans indicates the total
number of solution plans, that is, how many times Q-DeLP-MAP is invoked as an
external planner (with no argumentative process activated).
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2. The number of dialogues of MAP-POP is obviously 0. We remark that the dif-
ference in the number of dialectical trees between Q-DeLP-MAP and PS-Q-DeLP-
MAP is due to their different behaviour as explained above: agents do not exchange
argumentative messages in PS-Q-DeLP-MAP because the evaluation stage is ap-
plied only at the end of the plan generation.

3. The next two rows in each domain show the number of arguments that have never
been reused or have been reused at least once out of the total number of evaluated
arguments (dialogues).

We examine now the results of Figures 2.51, 2.52 and 2.53. The first observation
on the results of Figures 2.51 and 2.52 is that MAP-POP is the most efficient approach
thanks to the absence of an argumentative process. We can also see in Figures 2.51 and
2.52 that PS-Q-DeLP-MAP is always more costly than Q-DeLP-MAP although the num-
ber of proposed plans, dialectical trees and, consequently, the number of exchanged mes-
sages between agents is significantly higher in Q-DeLP-MAP than in PS-Q-DeLP-MAP

(actually, there are no argumentation messages exchanged between agents in PS-Q-DeLP-
MAP). This is explained as follows. In Q-DeLP-MAP, the argumentative process occurs
at each node of the search tree where a successor node n’ of a node n only introduces a
new action-argument with respect to n. If the proto-states of the plan in n do not change
in n’ then the plan evaluation stage of n’ will reuse all the dialectical trees of the par-
ent node and only the new action-argument is sent for evaluation. However, the CBR
module in PS-Q-DeLP-MAP can only reuse argumentative cases of solution plans, thus
being necessary to generate a complete plan before discovering whether the solution plan
is defeated or undefeated. This evidences the high computational cost of the planning
machinery compared to the cost of the argumentation. Thus, as shown in Figures 2.51
and 2.52, interleaving planning and argumentation approach is more beneficial because
argumentation helps conduct the planning process and reduce the planning workload even
at the cost of a higher argumentation activity in the system.

With respect to the results of the rovers domain (Figures 2.51(a) and 2.51(b)), we
can observe that the computation time of Problem2 and Problem3 is almost identical
for the three approaches, particularly in the hard defeasible scenario. This is explained
because the size of Problem2 and Problem3 is very similar, same number of agents and
goals (see Figure 2.50), as it also reveals the similar number of proposed plans of MAP-
POP and PS-Q-DeLP-MAP for these two problems. However, the number of proposed
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plans and dialogues of Problem2 is significantly higher than Problem3 in Q-DeLP-MAP

and even so the computation time is identical (Figure 2.51(b)). This reinforces the idea
that the planning workload is still more determinant than the argumentation load in the
performance of the model. We can also observe the increase in the computation time of
Problem4 and Problem5. This is due to the increase in the number of goal of Problem4
(7 goals) with respect to Problem3 (3 goals), which is also translated into a significantly
higher number of proposed plans and dialogues in all the approaches.

Regarding the logistics domain, Figures 2.52(a) and 2.52(b) show an almost linear
increase in the computation time of the five problems. This is partly explained because,
unlike the rovers domain, the size of the logistics problems increase gradually (see Figure
2.50) and so it does the size of the search space. However, the differences between the
simple and hard defeasible scenarios are more pronounced in this domain and this affects
particularly negatively to PS-Q-DeLP-MAP. In logistics, agents (trucks and planes) need
each other to accomplish the goal so typically a plan will contain at least a truck and a
plane. The more agents involved in the plan, the more attacks the plan will receive since
defeasible rules are uniformly distributed across agents.

In summary, we can conclude that the performance of Q-DeLP-MAP pays off the
utilization of the argumentation in solving multi-agent cooperative planning problems
with respect to the other two MAP approaches.

2.7.5.2 Quality of the solution plans

In this section, we analyze the quality of the solution plans returned by the three MAP

approaches. Figure 2.54 shows the number of actions and the duration (number of time or
execution steps) of the solution plans for the five problems of the hard defeasible scenarios
in both domains. By actions we mean the actions of the plan that are executable in the
real-world where each of them corresponds with an action-argument step in Q-DeLP-
MAP and PS-Q-DeLP-MAP.

The first observation is that the plans returned by Q-DeLP-MAP and PS-Q-DeLP-
MAP are the same. The reason is that the planning model of PS-Q-DeLP-MAP is the
same that Q-DeLP-MAP (without argumentative process activated); and, the way to build
dialogues in PS-Q-DeLP-MAP is similar than Q-DeLP-MAP. The only difference is the
way in which both models reach the solution plan.

We can also observe that the number of actions in Q-DeLP-MAP and PS-Q-DeLP-
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Quality Metrics of the 

Solution Plan P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

Rovers: Action Steps 10 12 8 24 18 8 10 7 20 17

Rovers: Duration 7 8 5 10 7 6 7 4 9 7

Logistics: Action Steps 20 25 37 31 36 18 23 33 27 34

Logistics: Duration 9 9 13 11 13 8 9 13 11 13

MAPOP Q-DeLP-MAP / PS-Q-DeLP-MAP

Figure 2.54: Quality of the solution plans for the hard scenarios.

MAP is always lower than in MAP-POP. The reason is that, unlike MAP-POP, in PS-Q-
DeLP-MAP and Q-DeLP-MAP, an open goal of an action-argument can be supported
through a supporting argument rather than with another action-argument; that is, the
agents beliefs that succeed the argumentative process are used as a support of the con-
ditions of the planning actions. For instance, let’s assume a rover situated in waypoint w1
that plans to move to a waypoint w2 in order to collect a soil sample. If another agent
believes that a soil sample can also be found at w1 and no other agent contradicts this
information, then then agent will not need to move to w2, thus saving one planning ac-
tion. In these cases, the plans contain fewer actions because agents beliefs are also used
to support the fulfilment of an open goal. On the other hand, the difference in the duration
of MAP-POP plans with respect to Q-DeLP-MAP and PS-Q-DeLP-MAP plans is rather
noticeable because it is usually the case that the fewer actions in a plan, the fewer time
steps.

Additionally, we wanted to assess the feasibility of the solution plans of MAP-POP.
Given a context, we say that a solution plan is feasible if it does not contain actions
that would be otherwise discarded in an argumentation process. That is, feasibility is a
rough measure to know if a solution would contain actions that an argumentation process
would label as failing actions, as a result of the argumentative dialogues among the agents
(defeated arguments) and according to the context information. In this sense, we analyzed
the plans of MAP-POP that were actually discarded by the other two approaches since
some of the actions of the plans were labeled as failing actions. For instance, in the rovers
domain, at least 50% of the actions of the solution plan of Problem3 were acknowledged
not to be successfully executable in Q-DeLP-MAP and PS-Q-DeLP-MAP. Similarly,
for Problem5 in logistics, 25% of the actions in the solution plan of MAP-POP were
cataloged as failing action according to Q-DeLP-MAP and PS-Q-DeLP-MAP.
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(a) Rovers. (b) Logistics.

P1 P2 P3 P4 P5

Truck 1 25,0% 28,0% 13,5% 32,3% 44,4%

Truck 2 50,0% 32,0% 24,3% 16,1% 8,3%

Truck 3 18,9% 16,1% 16,6%

Airplane 1 25,0% 40,0% 43,2% 35,5% 30,5%

P1 P2 P3 P4 P5

Rover 0 100,0% 100,0% 25,0% 29,2% 16,7%

Rover 1 0,0% 75,0% 70,8% 44,4%

Rover 2 38,9%

Figure 2.55: Evaluating the agents’ contribution level in the solution plans (with high contra-
diction) of rovers and logistics in Q-DeLP-MAP.

Finally, we were also interested in checking the contribution level of the agents in the
solution plans of Q-DeLP-MAP. This is calculated as the number of action-arguments
or supporting arguments contributed by each agent to the plans. Figure 2.55 shows the
contribution of each agent to the the solution plan of each problem. For instance, Figure
2.55(a) shows that in Problem5 the three rovers collaboratively participate in the construc-
tion of the solution. The same is observed in the logistics results of Figure 2.55(b).

2.7.6 Conclusions and Future Work

This paper describes Q-DeLP-MAP, a domain-independent Argumentation-based Multi-
Agent Planning system. The main contributions of this paper are: (i) the extension of
DeLP-POP framework for Multi-Agent Planning and for the qualification problem; (ii)
the presentation of all the technical components of Q-DeLP-MAP; (iii) the experimental
evaluation with two domains from the IPC and comparison to two other MAP approaches.

We conclude that using argumentation is a promising line to tackle planning problems
while incorporating the agents beliefs within the reasoning process. This allows us to con-
sider unexpected environmental conditions which cannot be modeled within the planning
representation. Additionally, the extension of the model to a multi-agent system opens
many possibilities of application in real-world problems where knowledge, abilities and
beliefs are distributed across several entities.
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General discussion of the results

The objective of this chapter is to summarize the main contributions of this PhD thesis
presented in Chapter 2. This chapter is organized as follows: section 3.1 presents the
contributions related to the theoretical model; section 3.2 summarizes the main features
of the planning language; section 3.3 shows the functional components of the framework;
and, finally, section 3.4 presents a summary of the experimental results.

3.1 Theoretical Model

One of the first steps of this research work was to analyze the key components of a MAP

task in order to later integrate it with the argumentation model. Our definition of a MAP

task draws upon the specification of a cooperative MAP task presented in MAP-POP (33).
This definition was progressively updated and revised to include the defeasible knowledge
of the agents.

The specification of a MAP task includes a non-empty set of agents AG = {Ag1 . . .Agn}
with planning and argumentation capabilities. Each agent Agi is endowed with a tuple
MAgi = 〈ΨAgi ,∆Agi , AAgi , G〉, where: ΨAgi represents the partial view of the initial
state of agent Agi; ∆Agi is the set of defeasible rules known by agent Agi; AAgi is the set
of planning actions known by agent Agi; and, G is a set of global goals that represent the
needs of a user in an environment. Since we are dealing with cooperative planning, the
goal state G is known to all agents as they will all contribute to the solution that achieves
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G.

The agents in AG jointly solve G and help discover the non-anticipating conditions
that might prevent the actions in A from being executable in their particular context of
application. All details of the MAP task have been explained throughout the compendium
of articles of this PhD thesis: sections 2.3.4.1, 2.5.2.3, 2.6.4.3, 2.7.4.1.

In order to allow agents to argue about the executability of an action of the plan,
every action is encoded in the form of an argument so that any agent that has information
about a tentative anomalous situation that might prevent the action from being executed
launches an attack against the argument representing the action. Q-DeLP-MAP represents
an action of the plan as an action-argument, which consists of a fictitious argument (that
derives the real effects of the action) and an action that now derives a fictitious effect and
supports the base of the fictitious argument. More specifically, a planning action α is
internally translated into a pair 〈α′,A〉 where α′ is used to denote the execution of α and
the argument A embodies the achievement of the effects of α. This way, an attack to A is
an attack to the successful execution of α. All the details are widely explained in section
2.7.3.1.

The action-argument representational scheme is the baseline of our framework to ad-
dress the formalization of the qualification problem. In planning, the default choice to
the qualification problem is to assume away the numerous possible unexpected circum-
stances that may prevent an action from being executed in the real world and resort to
replan in case a plan turns out to not being executable due to a non-anticipating condition.
The theoretical argumentation MAP model presented in this thesis is precisely a method
to address the qualification problem by integrating the local know-how knowledge of the
agents within the planning task. Agents put forward an action α to the plan in the form
of a action-argument 〈α′,A〉 and any other agent that anticipates an unexpected condition
that affects the application of α generates an attacking argument B against A. In turn, an
agent whose beliefs contradict B, activates an attacking argument C against B and so on.
This way, in Q-DeLP-MAP, all the components of a partial plan are treated as defeasible
knowledge and agents’ beliefs as attacking arguments against the action-arguments of the
plan. Details on the attacking arguments can be seen in section 2.7.3.1.

Another contribution of the theoretical model is a comprehensive classification of the
conflicting situations in threats and attacks. We propose a similar representation scheme
for both types of interferences. In the case of threats, we provide a thorough analysis of
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the threats that arise in a plan according to the type of link that is being threatened. As for
the attacks, we represent the argument of the plan under attack and the external attacking
arguments. Threats and attacks share a similar semantics: a threat represents a conflicting
situation according to the causal theory that governs the physical world whereas an attack
represents a conflicting situation according to the know-how knowledge of the agents.
This unified view of conflicts is one of the distinguishable features of Q-DeLP-MAP.
Details on the conflicting situations can be seen in section 2.7.3.2.

Finally, we provide a detailed formalization of the concept of proto-state and its role
in the activation of the attacking arguments. Even though this notion of propagated effects
was previously introduced in other approaches, we provide a more comprehensive view
of the proto-state of an action-argument thanks to the use of a uniform representational
scheme for action-arguments, threats and attacks. Details on the proto-states can be seen
in section 2.7.3.3.

3.2 Language of Planning and Argumentation

Our planning language is based on PDDL3.1, the latest version of PDDL (Planning
Domain Definition Language). Unlike its predecessors, that model a planning domain
through logical predicates, PDDL3.1 also incorporates state variables by adding object
fluents that map a tuple of objects to an object of the problem. More specifically, we
assume the PDDL codification of the multi-agent planning tasks presented by MAP-POP

(33). This requires the specification of multiple planning problems, one per agent, defin-
ing the abilities, initial state and planning context of each agent. Since information of the
planning task is distributed across agents, we also create specific structures to define the
information that agents will exchange between each other during the planning process.
Additionally, we extended the PDDL3.1 language presented by MAP-POP with the set
of defeasible rules of the agents defined through the additional constructor :def-rule.

Listing 3.1 shows an example of a planning action from the rovers domain. The sec-
tion :precondition is the same as in a classical PDDL action. The section :effects

contains the effects of the action as specified in the domain, and the fictitious effect
((communicated-established ?p ?x ?y)). Q-DeLP-MAP converts this action into a pair
〈α,A〉 where concl(A) = (communicated-soil-data ?p), that is, the real effects of the
action. Thus, our system automatically transforms the action into an action-argument,
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resulting in an action α′ that support the basis (communicated-established ?p ?x ?y) of
the fictitious argument A which in turn derives the real effects (communicated-soil-data
?p). In a first version of the language (section 2.6.5.1), the user was required to explicitly
encode a planning action as an action and a defeasible rule. However, in Q-DeLP-MAP,
the system performs this automatically so it is transparent to the user.�
(:action communicate-soil-data

:parameters (?r - rover ?l - lander ?p - waypoint ?x - waypoint ?y - waypoint)

:precondition (and

(myRover ?r)

(= (at ?r) ?x)

(= (at_lander ?l) ?y)

(have_soil_analysis ?r ?p)

(visible ?x ?y))

:effect (and

(communicated-soil-data ?p)

(communicated-established ?p ?x ?y))) 
� �
Listing 3.1: Example of an action for communicating the soil data of a rover.

Listing 3.2 and 3.3 show two defeasible rules that represent the beliefs of an agent or of
two distinct agents. In the first rule, assuming the agent is aware of a solar storm through
some available source of information, the agent will infer communication problems in
the particular waypoint. On the basis of the existence of communication problems, in the
second rule, the agent will deduce that the soil data can not be communicated properly.�
(:def-rule R-communication-problems

:parameters(?x - waypoint ?y - waypoint)

:body (solar-storm ?x)

:head (communication-problems ?x ?y)) 
� �
Listing 3.2: Rule 1: Example of a defeasible rule of communication problems.�

(:def-rule R-communicate_soil_data-Denied

:parameters(?r - rover ?l - lander ?p - waypoint ?x - waypoint ?y - waypoint)

:body (and

(communication-problems ?x ?y)

(communicated-established ?p ?x ?y))

:head (not (communicated-soil-data ?p))) 
� �
Listing 3.3: Rule 2: Example of a defeasible rule of communication problems.
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Given these two defeasible rules, an agent can build an argument against the fictitious
argument that is generated by the action communicate-soil-data, provided that there are
solar storms.

Finally, the language is designed to encode MAP tasks in a factored way: each agent
receives a separate domain and problem that model its knowledge of the MAP task.

3.3 Framework for cooperative distributed planning

One of the main results of this PhD thesis is to come up with an operative, domain-
independent and fully-integrated argumentation and planning framework for multi-agent
contexts. The functional architecture of Q-DeLP-MAP follows the same stages of a tra-
ditional partial-order planner but it features some distinctive characteristics due to the
existence of multiple agents planning and arguing together. The starting point is an empty
plan and agents start a stepwise dialogue consisting of plan proposals plus arguments
against them. More specifically:

Plan Generation. Plan refinements are the plan proposals put forward by the agents
as a result of expanding a selected plan when solving an open goal. This stage follows
a process similarly to a plan-space planning process that builds a POP tree, except that
each refinement or successor of the selected plan can be now generated by a different
agent and can contain arguments to support the action preconditions or argument base.
Agents exchange their refinements to each other and learn the new steps, literals and links
of the plan, which they keep in their local POP tree. In Q-DeLP-MAP, the coordination
of the plan proposals is carried out by a coordination protocol based on a democratic
leadership where a leadership baton is scheduled among the agents following a round-
robin strategy. Once the baton agent has sent his refinements to the rest of the agents, and
acknowledgment is received, the coordination stage is completed, and the baton is handed
over to the following agent. The process is repeated until all the agents have once taken
the baton role.

Plan Evaluation. Evaluating a plan and analyzing its executability in the real world,
according to the agents’ beliefs, is done through two alternative protocols: Plan Argu-
mentation and Case-Based Reasoning (CBR) (62, 118). In the Plan Argumentation stage,
agents become engaged in a series of argumentative dialogues aimed at evaluating the
guarantee of a successful execution of a plan proposal. Specifically, argumentation oc-

199



3. GENERAL DISCUSSION OF THE RESULTS

curs in the context of the agents’ beliefs and they build arguments to defend or attack a
plan proposal. Subsequently, the CBR will register the argumentative case in order to be
able to re-use it in further evaluations. Before starting a dialectical tree over an argument
A that supports an action-argument γ under a proto-state sγ , we search for the existence
of an identical case in the database, in which case the argument is directly labeled with
the same evaluation result (defeated or undefeated). Otherwise, a new dialectical tree is
launched.

The first prototype of the multi-agent planning and argumentation architecture is de-
scribed in paper (34), where we introduce the main components of the model and their
relationships. Subsequently, in papers (26), (27) and (28), we formally present the multi-
agent argumentative dialogues. Finally, paper (35) provides a complete and detailed
overview of the cooperative planning protocol, highlighting the functional behavior of
Q-DeLP-MAP.

3.4 Empirical Evaluation

In this work, we present two sets of experiments to assess the performance and scalability
of the model. The first set of experiments evaluate the model in a particular application of
ambient intelligence in the field of health-care (27) and (28). In the second test of exper-
iments, we test Q-DeLP-MAP in two well-known domains of the IPC benchmarks: the
rovers domain and the logistics domain. With this whole experimentation, we accomplish
our objective of designing and building a domain-independent framework.

Regarding the evaluation of the model in the health-care application, we created sev-
eral planning problems with three types of agents (transport, communication and assis-
tant) and we measured the performance of our model (CAMAP) compared to a traditional
MAP system with no argumentation. Results corroborate that the computational time
considerably increases when argumentation is included in the reasoning process. How-
ever, we observe an improvement in the quality of the solutions according to the number
of actions and makespan of the solution plans. Interestingly, many solutions returned by
CAMAP comprised supporting arguments, meaning that the beliefs of the agents were
also used to support open goals of the plan without need to specifically include a plan-
ning action. That is, the know-how knowledge and expertise of the agents, which is not
encoded in the form of planning actions, is also a very valuable source of information to
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achieve goals of the problem. The results also show that, for small problems, the solu-
tions returned by the non-argumentative model included at least 30% of the actions that
CAMAP agents acknowledged not to be successfully executed.

In section 2.7.5, we evaluated Q-DeLP-MAP with several problems from the rovers

and logistics domain from the IPC benchmarks. The logistics problems fall into the
tightly-coupled category since agents (trucks and planes) have to cooperate to transport
the different packages to the target locations and problems present several coordination
points (locations) at which agents can interact. However, the problems from the rovers

domain present a medium coupling level: rover agents are independent but they have ac-
cess to certain shared resources in their environment, namely the rock and soil samples
they collect and analyze.

The details and figures of the experimentation are shown in section 2.7.5. The more
complex problem Q-DeLP-MAP was able to solve was an instance of the logistics do-
main comprising: 174 actions, 164 defeasible rules, 9 goals, 4 agents and a high level
of contradiction between the information of the agents. Q-DeLP-MAP took 480 seconds
to solve this problem whereas MAP-POP (with no argumentation) took 300 seconds.
Nevertheless, in average, Q-DeLP-MAP computation time is only slightly higher than
MAP-POP.

Although the performance worsens with the use of argumentation, as it also happened
in the health-care application, we think it is a minimum cost overrun. The reason is that
in Q-DeLP-MAP agents need to exchange thousands of messages in order to guarantee
the validity and feasibility of the plan. At this point, it is worth noting that the use of the
CBR module brought a significant improvement in the overall performance.

The results in section 2.7.5 also show that the solution plans of Q-DeLP-MAP are
more robust than those of MAP-POP since actions have a higher guarantee of a successful
execution (are not likely to fail at execution time). This is widely discussed in sections
2.5.4, 2.6.7 and 2.7.5. More specifically, in general, at least 50% of the actions in the
plans returned by MAP-POP were labeled as defeated in Q-DeLP-MAP. This confirms
that the beliefs of the agents about the environment can be successfully used during the
construction of a plan to assess the contextual conditions that affect the applicability of
the actions and which are not encoded in the causal theory of the planning task.
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Conclusions

This PhD contributes with an argumentation-based model for solving MAP problems that
incorporates the know-how knowledge of the agents in the form of defeasible knowledge
to determine the feasibility of the actions when executed in the real world. The contents
of this document present the chronological achievements and successive refinements of
the argumentation model to eventually come up with Q-DeLP-MAP, the final version of
the model, which provides a unified representational framework for planning and argu-
mentation and notably improves the performance of the overall system.

We highlight two main strengths of Q-DeLP-MAP:

(1) To the best of our knowledge, Q-DeLP-MAP is the first attempt to integrate an
argumentation-based model within a multi-agent planner. Unlike most argumenta-
tion MAP models, aimed at solving conflicts that arise among the plans calculated
by each individual agent with a single-agent state-of-the-art planner, in our proposal
the argumentation model is embedded into MAP-POP. This way, planning and ar-
gumentation continuously feed each other during the process of building a plan and
the arguments of the agents are used to prune those plans that turn out to be de-
feated, as a probably indication of a failing execution. In the experiments presented
in the paper (35), we show the benefits of interleaving planning and argumentation
versus using a one-shot planning and argumentation procedure.

(2) Q-DeLP-MAP is a domain-independent model that can be applied to any planning
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application and provides an easy-to-use, PDDL-like language for defining defea-
sible rules. Defeasible knowledge is expressed with the same state variables and
argument terms used for the planning task specification and the internal conversion
of actions to action-argument steps is totally transparent to the user. This unified
representational scheme allows Q-DeLP-MAP to handle all the planning and argu-
mentation components uniformly, which results in an efficient management of the
internal structures. Q-DeLP-MAP has been extensively tested on a practical health-
care application as well as on some of the IPC benchmarks, which demonstrates its
versatility, flexibility and adaptability to be used in any application context.

As for weaknesses of the approach, we enumerate some of the current limitations of
Q-DeLP-MAP and possible ways to overcome them in future developments of the model:

(1) Even though all the achievements done in the model greatly improved Q-DeLP-
MAP performance, including the incorporation of a CBR module, the solving capa-
bility of Q-DeLP-MAP is still limited as it is unable to solve problems that involve
a high number of agents, actions and defeasible rules. One matter we did not deal
with in this PhD dissertation is the heuristic functions. We simply adopted the clas-
sical POP heuristics, which are known not to be very informative. In this regard,
there are two possible ways of action:

(a) Incorporate state-based heuristics in Q-DeLP-MAP. We must note that state-
based heuristics applied to POP imply to change the classical POP search
scheme so as to generate problem states in which the heuristic can be ap-
plied. This is the usual approach adopted by forward-chaining partial-order
planners. However, since Q-DeLP-MAP internally computes the proto-states
of the actions, we could make use of this concept to regressively calculate a
state-based heuristic from the proto-state of an action-argument to the initial
state, instead of from the problem state to the goal state. This way, we could
benefit of the more informative state-based heuristics without need to change
the backwards Q-DeLP-MAP search scheme.

(b) The heuristic function of Q-DeLP-MAP is exclusively calculated in terms of
planning, no argumentation items are involved in its calculation, and it only
prioritizes the selection of undefeated plans. Our hypothesis is that the search
guidance could be improved by incorporating argumentation information in
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the heuristic function; for instance, a prediction of the potential number of
attacks that a refinement plan might receive in the subsequent iterations.

(2) Defeasible knowledge not only changes in the light of new evidences brought by
the agents of the system but also as a result of a changing world that impacts the
beliefs of the agents. Q-DeLP-MAP is an offline system and defeasible rules are
static so the issue of introducing new information that may alter the beliefs of the
agents is not addressed in this work. In order to incorporate this desirable property
and make Q-DeLP-MAP a truly adaptive system, a belief revision mechanism that
updates the status of the defeated and undefeated arguments of the plans should be
included. The use of the CBR module is crucial here since argumentative dialogues
would be revised only once instead of checking every appearance of the argument
in the partial plans of the search tree. On the other hand, this belief revision would
not imply any change in the planning process, just revising the nodes of the tree
and updating the lists of nodes accordingly.

(3) Defeasible knowledge of the agents basically stems from the expertise of the agents
and the information sources available to them. In Q-DeLP-MAP, all agents’ beliefs
are given the same importance and no reliability or accuracy measure is used to
distinguish or rank them. Thus, a key improvement would be to associate beliefs to
a degree of trust according to the origin of the belief; i.e., reliability of the informa-
tion source, reputation of the agent, etc. A trust level associated to the beliefs would
be used to classify the attacking arguments so that agents would be only allowed to
attack arguments with similar or lower trust level. Likewise, old evidences would
prevail over new evidences if they hold a greater trust level.

All in all, Q-DeLP-MAP is an easily extensible and adaptable model thanks to the
modular design of the framework, the use of domain-independent, off-the-shelf planning
technology and a unified representational scheme for planning and argumentation.
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