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Abstract Bucket elevators are efficient machines to
transport granular materials in industrial and civil en-

gineering applications. These materials are composed of

hundreds, thousands or even more particles, the global

behavior of which is defined by contact interactions.

The first attempts to analyze the transportation of gran-
ular materials were treated by very simple continuum

methods that do not take into account these interac-

tions, producing simulations that do not fit the exper-

imental results accurately. Given the internal disconti-
nuity nature of granular media, it is reasonable to use

numerical methods to model their behavior, such as

Discontinuous Deformation Analysis (DDA)—a mem-

ber of the Discrete Element Method family that started

to be used in the 90’s to analyze similar problems.

The version of DDA used in the current work treats

grains as rigid circular particles with friction, damping
and eventually cohesion with the objective of simulat-

ing and analyzing in detail the discharge of granular

materials with bucket elevators. A deterministic com-
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puter code has been implemented and validated against
simplified analytical formulae and experimental results

taken from the literature. This computer code is then

used to obtain optimum two-dimensional bucket geome-

tries under specific working conditions. The optimiza-

tion aims to maximize transport distance and to min-
imize remaining material, taking into account bucket

velocity and the properties of the grains. The resulting

geometries are discussed and compared against stan-

dard designs.

Keywords Discontinuous Deformation Analysis ·

Bucket elevators discharge · Numerical contact ·

Penalty method · Golden section algorithm · Bezier
curves.

1 Introduction

Bucket elevators are machines that allow the continu-

ous transportation of granular materials to a specific
location under given conditions. They consist of a vari-

able number of buckets attached to a moving belt or

chain that transmits the motion to the buckets, see [27],

[16] for a complete mechanical description. Although
the functioning of the machine might seem simple, the

study of the granular material movement requires the

use of sophisticated numerical methods.

Water has been transported by bucket elevators since

ancient times. The first modern bucket designs were
used for transporting and discharging granular mate-

rials at low velocities (gravity discharge). In this situ-

ation, gravity is the responsible for the discharge and

the material is simply poured into a nearby pile, with
strong limitations in the amount and in the distance of

the transported material. The experiments evidenced

that the behavior of the grains was similar to that of
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a viscous fluid flow, therefore the shape of the bucket

was simple and aimed to transport the maximum ma-

terial volume. The need to increase volume and dis-

tance forced the rising of the operational velocity and,

therefore, the development of discharge by the action
of a centrifugal force. In this case, the mechanics of

discharge is not simple anymore and requires a precise

tool to analyze the behavior of the material inside the

bucket.

Traditionally, the analysis of the discharge and de-

sign of buckets has been treated by analytical and ex-

perimental procedures based on practical but not fully

realistic considerations; see [15] and [19] for states of the

art of bucket elevator technology. The first works [16],
[17] formulated, and contrasted with experiments, the

trajectory of the center of gravity (cg) of the granu-

lar material inside the bucket for centrifugal discharge.

Later, addressing the problem of completely emptying
by centrifugal discharge resulted in the experimental de-

sign of the “T-type” bucket [18]. Work continued with

the development of a more detailed analytical formu-

lation to describe the centrifugal and gravitational dis-

charge resulting in an improvement of the operational
efficiency under certain conditions [12], [13]. Although

the latter formulation was based on complex mechan-

ics, more specifically on kinematical considerations, it

was only able to describe the evolution of the cg and
not of the whole system of particles.

Recent numerical techniques allow the analysis of

the large number of grains that constitutes the granu-

lar flow inside the bucket. In section 2, we introduce a

method that simulates the micromechanics of the grains
called Discontinuous Deformation Analysis (DDA), a

displacement-based method similar (in the contact me-

chanics sense) to the force-based Discrete Element Method

(DEM) (see e.g. [29] and [25]). The DDA method is
particularly attractive for modeling granular material

problems with internal discontinuous geometry. Its ap-

plicability ranges from large scale problems (i.e., the

mechanical response of rock assemblies and masonry,

[28], [24], [26]) to small scale ones (i.e., a previous work
for granular discharge of bucket elevators in [25]). The

newer reference [22] completes [25]. DDA considers the

global behavior of the particles through the analysis of

the individual behavior of each member plus the in-
teraction of particles by friction and non-penetrating

contacts, resulting in a single momentum balance for-

mulation with the addition of contact restrictions.

Some examples on the application of DEM to indus-

trial problems can be found in [20] for a convey filled
with wood pellets, and in [31] for the analysis of pow-

der behavior in a rotatory drum. Additionally, DEM

has been used to optimize several other discontinuous

problems: Mixtures of powders [8], efficient shape for

soil–tillage interaction [30], rock cutting conditions for

tunnel boring machines [23] and wear reduction in ball

mills [21]. In the previous references, the election of the

optimal parameters is based on brute force analyses of
a very large number of cases with different parameter

values. Optimization algorithms are not used and there-

fore, a high computational and post-processing cost is

needed. This cost can be reduced as described in [1],
which analyzes and optimizes the discharge time and

flow of a hopper using multiobjective optimization pro-

cedures.

This article develops and validates the contact DDA

method necessary for the complete analysis of bucket
elevators. In addition, the “gradual deformation opti-

mization algorithm” [9] is used to calculate the shape

that provides the optimum discharge of a given granular

material under given working conditions. The resulting
computer code allows to identify the most significant

aspects of the bucket geometry regarding the granu-

lar discharge, to analyze the dynamics of the granular

flow and to design the optimal shape of the bucket. Sec-

tion 3 describes the discharge process from the granular
flow point of view and lists three types of generic, com-

monly used, bucket types. In section 4, the numerical

aspects of the procedure are developed; first, the trajec-

tory of a single particle inside a bucket is simulated and
compared existing analytical formulae; second, a simi-

lar comparison is done for discharges of a real granular

mass, the experimental results of which are taken from

the literature. In section 5, simulations of gravitational

and centrifugal discharges using thousands of particles
are presented, which serve to identify the granular ma-

terial flow. In order to simulate compaction during fill-

ing, an orderer array of particles is dropped into the

bucket from a certain height under the action of grav-
ity. A parametric analysis of the discharge as a function

of rotation speed and a comparison with experimental

results are presented in section 6. Section 7 ends the

article with the optimization of the bucket shape for

several operational conditions and materials, and for
several bucket types.

2 Discontinuous Deformation Analysis

In two-dimensional modelling, granular materials are
represented as an aggregate of polygonal particles with

highly variable sizes. Polygons can be replaced with

disks or with other complex forms easy to paremeterize,

such as ellipsoids. DDA is able to analyze the physics
of discontinuous media using rigid disks and frictional

contacts at a reduced computational cost. This analysis

includes the simulation of particle interactions among
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themselves and with the containers, i.e., with the phys-

ical boundaries.

2.1 Formulation of DDA

DDA is based on the laws of classical mechanics, more

specifically on Hamilton’s Principle, an energy method
constructed with the Lagrange function:

L (U ,U̇) =
n

∑
i=1

[

T (U̇ i
)−V (U i)

]

(1)

where T (U̇ i
), V (U i) are the kinetic and potential en-

ergies of a generic body numbered i = 1, . . . ,n. These
energies depend on velocity U̇ i and displacement U i =

{ui,vi}, functions defined ∀x,y ∈ i. Applying Hamilton’s
Variational Principle of Minimal Action, the correspond-

ing Euler-Lagrange equation is:

d
dt

∂T

∂U̇ i −
∂V

∂U i = 0 (2)

This equation leads to the differential equations of mo-

tion of a system composed of n particles:

MÜ +CU̇ +KU = F(U , t) (3)

In Eq. (3), M, C and K are the mass, damping and stiff-

ness matrices of a nonlinear system subject to a load F
dependent on time and displacement. DDA calculates

an approximation of U i at any point from the displace-
ments Di(t) of a designated point by means of a linear

combination of shape functions (Eq. 4). The designated

point lies inside the body, usually it is its cg, and its

variables carry subindex o. The simplest approxima-
tion of U i is obtained using first-order shape functions.

Given that granular materials are often composed of

rock fragments of high Young’s modulus, the material

can be considered nearly incompressible. Therefore, the

kinematic hypothesis of movement of a rigid solid is the
most appropriate:

(
ui

vi

)

︸ ︷︷ ︸

U i(x,y, t)

=

(
1 0 −(y− yi

o)

0 1 (x− xi
o)

)

︸ ︷︷ ︸

S
i(x,y)





uo

vo

γo





︸ ︷︷ ︸

Di(t)

(4)

where ui
o, vi

o are the horizontal and vertical displace-

ments of the cg with coordinates xo, yo, and γo the ro-

tation of the body around this cg, the three of them
grouped in Di. Inserting Eq. (4) into the Euler-Lagrange

Eq. (2) provides the discrete equations of motion:

MD̈+CḊ+K(D)D = F(D, t) (5)

These equations have to be integrated in time apply-

ing discrete methods such as the traditional family of

Newmark-β algorithms with initial conditions D(0) =
D0 and Ḋ(0) = Ḋ0.

i©

f ki
c

X

k©

f ik
c

T ki

i© Rki
Y

g ik
N (X)

g
ik T
(X

)

f ik
c

f ki
c

T ki

Rki
Y X

k©

Fig. 1 Penalty method: Contact and penetration between
two circular bodies, top. Distances gik

N define maximum pene-
tration, gik

T tangential displacement. After convergence, gik
N ≈

gik
T ≈ 0, bottom.

2.2 Numerical contact

DDA simulates the interaction among rigid particles

through non-penetrating contacts and friction. Figure 1

top depicts the non-realistic situation of two interpene-
trating bodies. The gap function gik

N(X) is used to mea-

sure the penetration between the two particles and is

used to impose non-penetration through the constraint:

gik
N(X) =

[
X−Y

]
Rik ≥ 0 (6)

The vectors X , Y define the coordinates of the two clos-

est points in bodies i, k, and Rik=−Rki is the normal

vector at the contact point. In reality, the bodies should

be either in contact gik
N = 0 or separated gik

N > 0. Some

small penetration gik
N < 0 may result since the inequal-

ity Eq. (6) cannot be enforced exactly in the numerical

computation.

To describe the motion in the tangential direction

of the contact points, an additional kinematic condition

introducing the tangential gap gik
T is necessary:

gik
T (X) =

[

X + ui(X)−Y − uk(Y
)]

T ik (7)



4 J.L. Pérez-Aparicio et al.

where ui(X), uk
(
Y
)
are the displacements related to a

certain time increment of the contact points at both

bodies, and T ik is the tangential unit vector also at the

contact, Figure 1. To dynamically prescribe the non-

penetration, the method imposes a contact force:

f ik
c = f ik

cN Rik + f ik
cT T ik (8)

in which f ik
cN , f ik

cT are the components of the contact

force in the normal and tangential directions. For the

case of two rigid rounded bodies, this force is applied at

a single point. The tangential displacement is governed

by the frictional Coulomb’s law with a sliding function:

Φ ik = f ik
cT −

∣
∣
∣ f ik

cN

∣
∣
∣µ ≤ 0 (9)

where
∣
∣ f ik

cN

∣
∣µ is the frictional force, µ = tanφ the fric-

tion coefficient and φ the friction angle. When Φ ik ≥ 0
sliding starts and gik

T 6= 0; when Φ ik < 0 rolling occurs

and gik
T = 0. Both situations are considered mutually

exclusive.

The constitutive equation for the contact force is fre-

quently modeled by penalization techniques, e.g. see [7]

and references therein. The key idea is to introduce two
parameters KN , KT related to two high stiffness elas-

tic springs placed between the contact points of the

bodies along the normal and tangential directions (see

Figure 1 bottom). The associated potential energies V

are expressed as KNgik 2
N /2, KT gik 2

T /2 for rolling, and

KNgik 2
N /2,

∣
∣ f ik

cN

∣
∣µgik

T for sliding. Inserting these energies

in Eq. (2) provides the contact forces needed in Eq. (8):

f ik
cN =KNgik

N and f ik
cT =KT gik

T for rolling, f ik
cN =KNgik

N and

f ik
cT = µ f ik

cN for sliding.

The calculation of precise non-penetrating contacts

is sensitive to a proper tuning of KN and KT . Among sev-

eral alternatives to model non-penetrating contacts [3],
we adopt the penalization approach because it has been

shown to be both accurate and efficient for problems

with large number of contacts such as the ones studied

in this work.

3 Basic theory of discharge and types of

buckets

The bucket elevator is a machine to transport granular

industrial materials in the vertical direction or along

inclined planes. The design and performance of the ele-
vators vary with the characteristics of the material, and

must at least consider the geometry of the bucket and

the operational speed.

Emptying the buckets can be done in two princi-

pal ways: By action of gravity or by centrifugal force

(Figure 2 left and right, respectively). In the former,

the material falls along the inner edge of the bucket

and is thus guided to the discharge mouth or deflector,

Figure 3. This type of discharge occurs for low oper-

ating speeds 0.5 to 0.8 m/s. Centrifugal discharge is

performed by emptying the material along the outer
wall by the action of centrifugal force, activated when

the movement changes from linear to circular. Early

Fig. 2 Gravity (left) and centrifugal (right) discharges for a
straight bucket during rotation.

studies of granular material discharge considered the
material mass lumped at a single point located at the

initial cg. The approach assumes that this cg maintains

a constant distance from the center of rotation (cr) of

the bucket. For gravity elevators this fact is generally
correct, as Beckert and Foll [2] demonstrated in 1966.

However, in the following numerical simulation section,

we will show that the cg, in general, does not occupy a

constant position but rather moves along and outside

the outer wall of the bucket, as is the case of centrifu-
gal discharge. Thus, the distance cg-cr increases as a

function of the bucket opening angle, and for a con-

stant rotation speed the forces on the material decrease

progressively.

In any case this simplification is useful for certain

simple calculations, such as obtaining the important an-

gle of detachment –angle at which the material leaves
the bucket. The results of these calculations, comple-

mented with many experiments, have resulted in the

following criteria for bucket elevator design (Figure 3):

– It is advisable to use buckets designed with the de-

flector inclined about 45◦.

– Deep, high-capacity buckets are defined by a tulip-

shaped outer wall with double curvature.
– The deeper the bucket and the smaller its opening

angle, the harder will be to empty the contents, spe-

cially under high centrifugal action.
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– A shallow bucket must have a large exit perimeter

and a variable opening angle.

Outer wall

Inner wall

Deflector

Fig. 3 Straight bucket, left. T-type, outer wall with double
curvature, middle. Logarithmic, outer wall with logarithmic
spiral, right.

The first item is mostly related with gravitational dis-

charge, for which optimal and controlled residual emp-

tying is obtained at all times, and large amounts of ma-

terial can be transported although at short distances.

The second item refers to the so called T-type, this
design expels the material prematurely between pre-

discharge and discharge phases. It can also achieve op-

timal emptying and is appropriate for all kinds of granu-

lar solids. The third item implies that to obtain good re-
sults in fast-moving installations the bucket must have

a sufficiently large opening angle as in Figure 3 middle

and right. The fourth item applies to the handling of

fine-grained or dust-like materials, which have low co-

hesion and large fluidity. In this design, the outer wall
adopts the form of a logarithmic spiral, which results

in a progressive decrease of the opening towards the

outer edge. This shape causes the material to compact

in its way out, making discharge somewhat more diffi-
cult, but achieving better overall performance than the

conventional design.

The best design should adapt the bucket geometry

to the required transportation distance, the amount and

properties of the material, and should aim at the com-
plete emptying of the bucket. Section 7 shows optimal

designs considering all of these objectives.

4 Numerical validations

This section studies the penalty, a critical parameter of

the numerical model. It is necessary to tune this param-

eter to avoid unreal interpenetrations of the grains. The

section also analyzes the performance and describes the
evolution of representative granular materials inside the

buckets during the filling and discharge phases.

4.1 Optimal value of the penalty parameter

Low values of the penalty parameter will result in large

penetrations that must be avoided. A possible solution

is to sequentially increase the parameter, for example

by 25%, when these interpenetrations exceed a certain

tolerance.

Table 1 shows a sensitivity analysis to the choice of

the initial value of the penalty parameter for the simu-

lation of a discharge by gravity. The implementation of

this discharge is described in detail in section 5, and it
assumes that KN = KT . It presents the initial value cho-

sen, the final value at which the sequential approach

described above arrives, and the number of iterations

needed for the numerical model to converge. From the
results, we can appreciate that for initial values of the

penalty of 106 N/m, the algorithm does not need to in-

crease the penalty in any of the contact iterations for

the code to converge. We thus find appropriate a value

of 106, or slightly larger, for these type of problems,
with a significant reduction of iterations.

Table 1 Evolution of the penalty parameter KN =KT in N/m
and number of required iterations for a complete gravitational
discharge simulation.

Initial Final # iterations

103 2.3·108 4400
104 4.1·107 2400
105 7.4·106 1900
106 1.0·106 900

4.2 Validations

DDA results are validated in this section against an

analytical formulation from [11] and [4]. These refer-

ences provide the position vector S Eq. (10) and the
corresponding velocity and acceleration Ṡ, S̈, for the

discharge of a particle around a pulley with radius r
= 500 mm.

S = x eλ1t + y eλ2t − µr+
g

2ω2(1+ µ2)
·

[
−(1− µ2)sin(α0+ωt)+2µ cos(α0+ωt)

]

(10)

where λ1,λ2 = ω
(

µ±
√

1+ µ2
)

, g is the gravity accel-

eration, ω the rotational velocity, t time and α0 the

bucket position angle at t = 0; see [5], [11] for defini-

tions of straight and curved outer walls. This solution

is limited, since it is applicable only to a single particle
and does not take into account its rolling.

In the first two simulations (Figure 4), we compare
the numerical and analytical results for gravity and

centrifugal discharges. The material density, not con-

sidering voids, is 2500 kg/m3, with particles of 2 mm
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diameter. The friction coefficient between particles and

bucket surface is 10◦ without cohesion. The initial value

of the penalty parameter is chosen as 106 N/m.

Figure 4 shows the numerical and analytical tra-

jectories during rotation for gravity discharge, ω = 2.4
rad/s, and for centrifugal discharge, ω = 8.9 rad/s. The

origin of coordinates (0,0) is situated at the pulley’s cr.
For gravity discharge the correspondence is very good.

x (m)

y
(m

)

0.40.20-0.2-0.4

0.4

0.2

0

-0.2

-0.4

Fig. 4 Analytical (line) and numerical (symbol) trajecto-
ries of a single particle for centrifugal discharge and straight
bucket (exterior graph). Idem for gravity discharge and any
bucket (interior graph).

For centrifugal discharge the correspondence is again

very good with an small exception at the beginning, the
analytical formulation does not account for the sudden

appearance of a small centrifugal acceleration, which

causes the particle to rise and hit the outer wall. The

slight variation of trajectories at the end of both dis-
charges is due to a greater exit velocity predicted by

DDA, since it accounts for particle rotation.

Next, in Figure 5 the numerical prediction of the

centrifugal discharge for two particles located on the

outer wall of a straight bucket is compared with the
analytical prediction and the experimental results from

[4]. One particle is located deep inside the bucket and

the other one close to the edge. The differences are no-

ticeable at the beginning of the rotation, as before, they
are due to the sudden change from linear to circular

displacement. This effect is not considered by the ana-

lytical formulation, although it is only important before

the bucket reaches a ≈ 40◦ angle; after this, the trajec-

tories resemble closely each other. Table 2 shows the
rotation angles of initial discharge and initial sliding

for the three trajectories. All results show considerable

similarity; it is evident that the numerical and analyti-

cal models are able to approximate well the movement
of a single particle. The only exception is the angle of

sliding of the outer particle, for which the initial condi-

tions in the experiment are uncertain.

0
◦

20
◦

40
◦

60
◦ 80

◦ 100
◦

120
◦

140
◦

160
◦

Fig. 5 Centrifugal discharge. Experimental (open circle), nu-
merical DDA (black circle) and analytical (grey circle) results
for two particles in different starting positions.

Table 2 Angles of sliding and discharge for two particles, one
located deep into the bucket, and another one located close
to the edge. Experimental, analytical and numerical results.

Exp. Anl. DDA

Outer particle sliding 50◦ 67◦ 62◦

Inner -”- 86◦ 83◦ 84◦

Outer particle discharge 113◦ 116◦ 114◦

Inner -”- 162◦ 160◦ 155◦

Finally, Figures 6 represents the analytical results

from the formulation by [11] and the numerical ones by

DDA of the centrifugal trajectories followed by a par-
ticle inside a T-type and inside a logarithmic bucket.

In both figures, every tick indicates the position of the

particle spaced at constant time intervals. The results

show that the T-type favor centrifugal discharge, as
confirmed by the larger distance between ticks. Notice

also that this design is able to force the material to

reach a higher distance in a lower time than the log-

arithmic design as measured by the slope of the curve

when x > 0.8 m, and that this bucket expels the par-
ticle prematurely with higher velocity, as observed in

the change of slopes at x≈ 0.32 for T-type and x≈ 0.4
for logarithmic. For discharge by gravity, all trajectories

would coincide due to the equal geometry of the inner
wall, see Figure 4.

5 Numerical results

In this section, several cases of realistic processes of

discharge under common conditions in the transport

of granular material industry are simulated by DDA
showing its ability to model the behavior of granular

materials.

To the best of our knowledge, there is no analytical

formulation in the literature to describe problems with
a large number of particles; therefore, the only means of

validation are based on descriptions and in some cases

experimental results obtained from [5], [14] and [4]. As
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y
(m

)

0.2

-0.2

-0.6

T–Type

x (m)

y
(m

)

0.80.40-0.4

0.2

-0.2

-0.6

Logarithmic

Fig. 6 Analytical (line) and numerical (symbol) trajectories
of a single particle for centrifugal discharge for two bucket
types.

in any process of transporting granular material, we

will tackle the phases of filling, transport itself and dis-
charge.

The penalty parameter used for the simulations of

this section is now 107 N/m, obtained by trial and er-

ror as explained in the previous section. The penalty

has been increased with respect to the one obtained in
section 4.1 because many discharges are centrifugal and

the number of particles has been considerably increased,

what implies that higher impact forces will appear re-

quiring a higher penalty.

5.1 Filling the buckets

The filling of the bucket is a process by which the mate-

rial adopts the form of the container that holds it. This

moulding process is facilitated by the semifluid charac-

teristics of the particles, which reach a stable configu-
ration through the process of minimizing the energy of

the whole. During the process, all particles are in con-

tact with the surrounding ones or with the walls of the

bucket, see Figure 7. In reality, the buckets are filled

in multiple ways, but the numerical simulation assumes
that the discharge is by vertical loading of particles with

diameters between 3.5 and 4.5 mm, original disposed

in a compact rectangular array.

The sample of about 700 particles has a solid vol-
ume of 252 cm3, which nearly fills the bucket to the

top. We have adopted an angle of friction within the

material of 47◦ and between material and bucket of 34◦.

With these parameters, the resulting density (including

voids) is 600 kg/m3. The properties do not correspond

to real granular materials but to plastic beads, a con-

venient material for repetitive experiments used by [4].

The different grey levels in Figure 7 allow the visual-
ization of the particle redistribution through the filling

process.

Fig. 7 Filling a straight bucket. Large bullet represents the
material center of gravity, gray shades associated to the initial
horizontal strata.

Starting from a statically ordered and separated ma-

trix of the sample, the filling progresses under gravity.

Since the particles are dropped from a relatively high
position, the final free surface of the material is ap-

proximately flat, corresponding to a stable equilibrium

(minimum energy). Note that after the filling, the lay-

ers are almost parallel and moulded to the shape of the

bucket. The position of the cg is represented by a thick
bullet. Fillings for the three buckets (Figure 3) have

been simulated, although for brevity only one is shown.

5.2 Gravity discharge

The filled bucket is subject to a rotation around a pul-

ley of radius 0.5 m with an initial and constant velocity
of 1.68 rad/s. In this simulation, we use the mechani-

cal characteristics and material properties established

in the previous subsection. Figure 8 shows the posi-

tions of the bucket, the material distribution and its
cg for rotation angles in increments of approximately

20◦. Unfortunately, we have not found experimental re-

sults to compare with the numerical ones; we can only
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Fig. 8 Simulation of gravity discharge from a straight
bucket; trajectory of the system’s gravity center. Strata indi-
cated by gray shades.

use the explanations and descriptions (not full experi-

ments) given in [5]. From the analysis of Figure 8 we

reach the following technological conclusions:

– When rotation starts, there is no displacement to-

wards the bucket’s exterior since weight is the dom-

inant force.
– At 70◦, the particles’ movement is small due to weight

and friction, but after 90◦ the weight, helped by the

centrifugal force, induces movement and provokes

the discharge.
– The cg position does not change before 90◦; after

that, it approaches the deflector and finally moves

outside the bucket.

– The outer layers slide more easily than the deepest

ones, since for the latter, friction is large due to the
large normal component induced by the contacts.

The particles close to the inner wall only move dur-

ing the final phases.

– Discharge starts after the bucket passes the highest
point, finalizing only when rotation is complete.

– Layers that initially are at the bottom turn to the

top at the end. This effect forces all layers to be dis-

charged as a block; in particular, particles initially

in contact with the outer wall are discharged first.

As mentioned, the results from Figure 8 strongly de-

pend on the penalty parameter; different values can

give very different responses, some of them non realis-
tic. Figure 9 shows the percentage of material remain-

ing inside a straight bucket as a function of the angle of

rotation for different values of the penalty. The figure

indicates that very low values (< KN = 1.5 ·105 N/m)
give poor results, predicting an unrealistic “explosion”

at the beginning of the rotation. For intermediate val-

ues < 6·105 this effect is also present at the beginning,
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Fig. 9 Simulated remaining material in % vs. rotation an-
gle for a straight bucket and gravity discharge, for different
penalty parameter values (KN = number in legend ×105 N/m).

but, after ≈ 30◦, a more realistic holding of the material

is predicted up to 110◦, with a smooth discharge after.

Note that the change of curve slope denotes recaptur-

ing of material, a negative phenomenon that sometimes
occurs in real discharges although probably not in this

case. Finally for KN ≥ 50· 105 the simulation is com-

pletely realistic and convergent: The smooth discharge

starts only after 110◦, finishing almost at the end of the
rotation. The upper limit for KN is set by instabilities

in the numerical simulator due to the poor conditioning

of some matrices that must be inverted.

A physical explanation for the variation of results

with the penalty parameter comes from the fictitious

energy that is introduced by the fictitious springs, see

reference [6]. A simplified expression of this energy is

E = KNg2
N/2. Since the lower the penalty, the larger

the penetration allowed, the total energy will grow un-

bounded for diminishing values of the penalty; whereas,

for very large values of the penalty, the penetrations are

very small, and the energy will grow with the penalty
parameters. The optimal penalty value will fall in the

middle. The smaller the penalty KN , the larger the quadratic

penetration and consequently the added energy, result-

ing in unbounded displacements.

5.3 Centrifugal discharge

The structure of this subsection is almost the same as

that of the previous one, although for centrifugal dis-

charge the rotation speed is increased up to 8.9 rad/s.

Experimental results are available for a logarithmic

bucket from [4] allowing us to compare them with the
numerical ones. Starting from the same filling process of

subsection 5.1, calculations are performed for straight,

T-type and logarithmic buckets. For the sake of brevity,
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Fig. 10 Simulation of centrifugal discharge from a logarith-
mic bucket; trajectory of the system’s gravity center. Strata
indicated by gray shades.

we describe next only the results for the last type. These

numerical results (Figure 10) confirm the results of the

laboratory experiment:

– The movement starts at the inner wall: Particles

move outwards in the direction of the centrifugal

force, and a slight convexity appears in the free sur-

face.
– At ≈ 40◦ particles exit from the outer wall, discharge

begins.

– Afterwards, the layers initially at the bottom slide

along the outer wall and start exiting at 90◦.
– Through the discharge phase, no significant distor-

tion occurs in the layers.

– During most of the discharge the particles are lo-

cated in the outer wall, with the inertial forces mov-

ing them forward.
– Part of the expelled material lags behind the bucket

but eventually is discharged ahead of it.

– The cg moves away from the bucket through the

discharge process.

The last item invalidates the hypothesis of a fixed lo-

cation of the cg within the bucket, assumed in many

analytical studies.

For the second centrifugal simulation, experimental

data from a controlled experiment [4] and numerical re-

sults are compared, Figure 11. The sample is composed
of plastic spheres of 3 mm diameter, with the density

and friction given in subsection 5.1. In the experiment,

the spheres are deposited manually with compact order-

ing, an initial condition that we can replicate exactly in
our numerical simulations. A straight bucket (M-type,

according to [4]) is subject to 8.58 rad/s on a pulley of

diameter 0.5 m.

DDA results are clearly inside the experimental ones,

although we observe that DDA predicts a slightly more

forward away trajectory than the experiments. This is
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Fig. 11 Centrifugal experimental results from [4] (dashed
line) vs. DDA numerical simulation (points).

due in part to neglecting both the additional friction

due to air drag and the axial forces in the plane per-

pendicular to the simulation.
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Fig. 12 Simulated remaining material in % vs. rotation angle
for straight bucket and centrifugal discharge for several values
of the penalty parameter (KN value = number in legend ×105

N/m).

Figure 12, the counterpart of Figure 9, shows the

percentage of material remaining in the bucket as a
function of the rotation angle for several values of KN .

Since there are many fewer contacts than for gravity

discharge, a realistic and smooth process is simulated

with smaller penalty parameters KN > 3.5 · 105 N/m,

resulting in a lower computation cost. Due to the high
rotational velocity, no recapturing is observed for any

KN .

6 Rotational velocity and bucket geometry

This section studies the evolution of a granular sample

under a range of rotational velocities, from low values

typical of gravitational discharge to high ones typical of
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centrifugal discharge. Rademacher [14] uses the dimen-

sionless parameter Ka = r ω2/g, (usually called in fluid

mechanics the Froude number), where r is the variable

distance between cg and cr. For a concentrated mass,

this parameter defines the type of discharge: Gravita-
tional Ka < 1 or centrifugal Ka > 1. The numerical re-

sults are compared to the experimental ones from [4].

Again the material for the next two simulations is plas-

tic beads, see section 5.

115
◦ 135

◦ 165
◦

Fig. 13 Experimental (continuous line) and numerical
(dashed line) gravitational discharge for several rotation an-
gles. Rademacher number Ka = 0.8.

The simulation, Figure 13, shows that for Ka = 0.8
the discharge begins at ≈ 100◦, with the material sliding

along the inner wall. When the bucket reaches 135◦,
the material separates from the outer wall. The effects

of the centrifugal force are not observed until the last
angles, when the material is ejected from the bucket as

a compact volume at an angle of ≈ 165◦.

90
◦ 135

◦

165
◦ 180

◦

Fig. 14 Experimental (continuous line) and numerical
(dashed line) centrifugal discharge for several rotation angles.
Rademacher number Ka = 2.0.

When Ka is increased to 2.0 (Figure 14), the dis-

charge is predominantly centrifugal, emptying the bucket
at a lower rotation angle. The first indications of dis-

charge occur before 90◦, with material compactly slid-

ing along the outer wall. Although the bucket is not

completely emptied at the end of the rotation, this dis-

charge performs better than the previous one due to

the higher velocity.

Figure 15 presents the effect of the bucket opening

for the last 180◦ rotation angle, comparing the experi-

mental and numerical distributions for centrifugal dis-
charge. The material is now gravel of high density and

friction. In the relatively closed bucket A more than

40% material remains undischarged at the end of the

process. As the opening angle increases up to bucket D,
the percentage is reduced to less than 10%.

A B

C D

Fig. 15 Influence of bucket openings on remaining mate-
rial at end of rotation, angle 180◦. Experimental (continu-
ous line) and numerical gravitational discharge (dashed line).
Rademacher number Ka = 2.0.

Based on these and other cases not presented in the
paper, we can draw the following conclusions:

– The rotation angle in which movement of the mate-
rial begins, ≈ 25◦, is constant for any bucket shape,

as long as it is initially full.

– When the angle of the bucket outer wall increases,

the amount of discharged material also increases.

The last item implies that if the opening angle increases,

the rotation angle for initial sliding decreases implying

a performance increase.

The quantitative results are given in Table 3, the
small differences between the experimental and numer-

ical results are small given the uncertainties in material

properties and geometry. From these simulations, we

conclude that DDA approximates well the experimen-
tal results from [4] for a significant range of velocities

and bucket geometries, providing physical support for

the numerical results.
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Table 3 Remaining material in % for last rotation angle
180◦: Experimental, DDA and difference between them.

Type Exp. DDA Difference

A 55 52 3
B 32 29 3
C 19 18 1
D 8 8 0

7 Optimal design

7.1 Parametric analysis

The present analysis consists on the optimization of the

shape of the outer bucket wall for several bulk materi-
als and operational velocities. To the best of our knowl-

edge, the only attempt to optimize a bucket shape for

centrifugal discharge is the practical approach from [11],

previously presented in [10]. In these two references, the
optimal shape is obtained studying the analytical tra-

jectories of a single particle initially located at differ-

ent positions on the piecewise linearly-discretized outer

wall.

In the present work, the optimization is performed
using DDA with a large number of particles (up to

4000), taking into account contacts with friction. More

realistic results than in [11] are expected thanks to the

many interactions and better physics. The criteria to
optimize are:

– Maximum horizontal distance reached by the cg of

the particle system: cost function f1
– Maximum absolute distance traveled by the cg of

the particle system: cost function f2
– Minimum amount of remaining particles inside the

bucket after discharge: cost function f3
– Minimum dispersion as measured by the radius of a

circle centered at the cg including 80% of the flying

particles: cost function f4

All the cost functions are correlated to each other, i.e. f2
is directly related with f3 since the farther the particles

are thrown, the lower the amount of remaining material.

7.2 Optimization algorithm

The shape of the outer wall, see Figure 16, is para-

metrically defined by a hypercubic Bezier curve in the

domain (x,y) ∈ [0,−1]× [0,1] as

(x,y) = θ 4x1+4θ 3(1−θ )x2+6θ 2(1−θ )2x3

+4θ (1−θ )3x4+(1−θ )4x5

(11)

with θ ∈ [0,1] and where x1 = (0,0) and x5 = (−0.4,0.4)
are the fixed initial and final points. The figure shows a

possible concave outer wall, for three arbitrary positions

of points x2, x3, and x4. Fixing the ordinate position

of these three points, x2 = (x2,0.1), x3 = (x3,0.2), x4 =

(x4,0.3), the optimization algorithm aims at determin-

ing their abscissae such that the shape of the outer wall
produces an optimum discharge. The algorithm cho-

sen is the“gradual deformation optimization algorithm”

consisting of the following steps:

1. Generate a group of three abscissae (x2,x3,x4)i us-
ing independent random numbers from the domain

[−1,0]× [−1,0]× [−1,0].
2. Interpolate the Bezier curve xi, simulate discharge

and measure the multiobjective cost function f (xi):

f (xi) =
2

∑
j=1

α j
f j(xi)

f j(x0 j)
−

4

∑
j=3

α j
f j(xi)

f j(x0 j)
(12)

3. Generate a second set (x2,x3,x4)i+1 and obtain xi+1

and f (xi+1).

4. Optimize the value of t ∈ [0,1] in xi+2 = txi +(1−
t)xi+1 that minimizes f

(
txi +(1− t)xi+1

)
.

5. Assign xi← xi+2 and go back to item 3.

In item 2, the scalars α j , ( j = 1, . . . ,4) are positive weights
assigned to each cost function f j . Since each cost func-
tion has a different range of possible values, it is nec-

essary to normalize them. To this end, we use the val-

ues of the cost function evaluated at an initial vector

x0 j. Item 4 is a one-parameter optimization that can

x5

x4

x3

x2

x1

0.1

0.1

0.1

0.1

x3

Fig. 16 Knot positions for the definition of optimal bucket
outer wall. Dimensions in m and shape defined concave (from
bucket inside).

be performed using a standard method such as “golden

sections”. In this item, the optimal top obtained fullfils

f (xi+2)≤ f (xi+1) and f (xi+2)≤ f (xi).

7.3 Optimal results

Figure 17 shows the optimized outer wall shapes for two
rotational velocities and for several particle diameters,

for each optimization criteria considered independently.

For centrifugal discharge C, the rotation velocity is 10
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rad/s, and for intermediate discharge I, the rotation

velocity is 7.85 rad/s. The material is of high density

2200 kg/m3 and has a high inner friction angle of 40◦,

corresponding to sand (3 mm diameter, 4000 particles)

and to two gravels (10 mm, 300 particles; and 20 mm,
120 particles). The number of particles is chosen so that

they roughly represent the size of real grains.

C

C

C

I

I

I

f1 f2 f3 f4

Fig. 17 Optimal external wall when each optimization cri-
teria is considered independently, for heavy and high friction
materials with diameter 3 mm (top), 10 mm (middle), and
20 mm (bottom). Centrifugal (C with ω = 10.5 rad/s) and
intermediate discharges (I with 7.85 rad/s).

For sand, and centrifugal discharge C we obtain an
open (T-type or double curvature bucket) or even straight

shape when the objective is to discharge as far as pos-

sible the material and/or completely empty the bucket

( f1, f2, f3). On the contrary, when the objective is to
minimize dispersion ( f4) the result is a closed-shape log-
arithmic bucket. The intermediate velocity I results are
very similar to those of C except for f1; the reason is

that at lower velocity the bucket needs to be even more

open than in C for the material to reach a high hor-

izontal distance. Notice that this small-particle, high

frictional sand behaves as a viscous fluid, therefore for

both C and I the dispersion outside the bucket is small
as long as this sand is compacted during the sliding

along the outer wall. Also, due to this fluidity, the tip

of the outer wall is curved, outward (convex) for max-

imum distance or inward (concave) for minimum dis-
persion. In general, a double curvature favors emptying

since during the internal movement the material in con-

tact with the outer wall partially detaches, reducing the

friction of the total mass.

For gravel, the predicted outer wall shapes are very
similar to those obtained for sand for f2, f3 and f4 but

fairly different for f1. This is so for both particle diam-

eters and velocities: The interstitial space among parti-

cles or voids is now relevant and the number of contacts
(consequently friction) smaller than before; in addition,

the momentum of each individual particle at ejection

is larger due to the larger individual mass. Therefore,

not much curvature is needed at ejection. Functions

f1 (maximum horizontal distance) and f3 (minimum
undischarged material) demand opposite shapes at ejec-

tion; this is the reason for which the outside curvature

changes sign. At intermediate velocities the discharge

is not completely by sliding along the other wall but
rather a compact“take off”, see Figure 13. Therefore, to

prevent premature discharge, the optimized outer wall

intends to “attract” the particles. Gravels, as opposed

to sand, do not behave as a fluid, and include a sub-

stantial number of voids, what results in very similar
shapes for almost all objectives, for both gravels and

for the two velocities analyzed.

The optimal values of the objective functions are

shown in Table 4: Distances related to f1 and f2 almost
double between sand and gravel; with a small differ-

ence between the two gravel diameters. As expected,

the minimum remaining material f3 is almost zero for

C but significant for I. Finally, the dispersion outside

the bucket f4 is small for sand and larger for gravels.
This dispersion in the gravels is due to the mentioned

higher momentum and to the existence of less contacts,

and therefore less energy dissipation, with respect to

sand.

New simulations were done for discharges of smelt-
ing slag, a material with very low density, 1200 kg/m3

and also low internal friction angle, 12◦; Figure 18 shows

the only shape that is different from those of Figure 17.

This shape corresponds to the maximum horizontal dis-
tance for centrifugal discharge of 3 mm diameter sand.

The discrepancy of this single case is due to the low

friction and low density; the material easily escapes the
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Table 4 Quantified results for the optimizing functions in
centrifugal, intermediate discharges and three particle diam-
eters. Outer wall shapes given in Figure 17.

Discharge Size f1 f2 f3 f4

mm m m % m

C
3 0.78 0.84 0.0 0.20

10 1.53 1.82 1.0 0.63
20 1.64 1.92 0.0 0.61

I
3 0.66 0.84 6.0 0.18
10 1.32 1.58 4.0 0.52
20 1.47 1.62 2.0 0.54

bucket resulting in a discharge almost equal to that of

I for the heavy material of Figure 17, left second row.

About the numerical results for smelting slag (not

shown), it can be mentioned that the distances and the

dispersion are much higher than for high density mate-

rial, and that the remanent material is zero. Again, this

is due to the lower friction and lower energy acquired
by the light material during bucket rotation.

C

f1

Fig. 18 Optimal external wall for light smelting slag mate-
rial; results are almost equal to those in Figure 17 except for
the one shown corresponding to centrifugal discharge at 10.5
rad/s, maximum distance and sand of 3 mm diameter.

Finally, Figure 19 shows the evolution of the bucket

shape for 3 mm diameter sand and centrifugal discharge

when the four criteria are combined into a multiobjec-

tive optimization.

In the top row, α1 = α2 = α3 = 1, while α4 takes the

values 1, 2, 4, 6, 8, from left to right. For the lowest

values of α4, the optimization gives a T-type (see Fig-

ures 3), since the added contribution of f1, f2 and f3 is
dominant over that of f4 and these three objectives re-

quire approximately similar shapes (except at the outer

wall end). Comparing these shapes to those from the

Figure 17 we can notice that the optimal shape com-

bines the lower zone of the wall from the optimal f1, and
the upper zone from the optimal f2 or f3 but with more

curvature. As the weight of f4 increases twofold for each

figure, intermediate combinations of T-type and loga-

rithmic shapes result, until a pure logarithmic one is
given for α4 = 8 at the top right of Figure 17. The opti-

mal shape for α4 = 4 in the center shows a strong dou-

ble curvature intended to minimize dispersion and reach

maximum distance at the same time: The bottom curve

enforces the concentration of particles to minimize dis-

persion; the compacted particles travel along the wall

until the curvature changes, then they lose contact and

take off. For the optimal shape for α4 = 2, center-left,
the double curvature is almost unnoticeable and the

curvature change is close to the wall bottom; therefore,

this shape almost exclusively favors the detachment of

the concentrated particles. Finally, the optimal shape
for α4 = 6, center-right, is a transition from the unusual

center figure and the one in the right when the weight

α4 = 8, any convexity disappears and the shape is fully

logarithmic, as in current practical buckets.

Table 5 Evolution of horizontal and total distances, remain-
ing material and dispersion values when the weight of the
objective function minimizing dispersion is increased.

α j f1 f2 f3 f4

m m % m

1/1/1/1 0.76 0.79 0.5 0.54
1/1/1/2 0.74 0.77 2.0 0.48
1/1/1/4 0.58 0.63 5.3 0.33
1/1/1/6 0.52 0.57 6.7 0.27
1/1/1/8 0.43 0.48 15 0.20

Table 5 contains the optimal values of the objective

functions for the shapes of the top row in Figure 19.

The first row is for equal weights, with results similar

to those in the first row in Table 4, corresponding to

the top left bucket of Figure 17. The only significantly
difference value is for f4, since as mentioned before,

with this combination of weights, the first three func-

tions are predominant. As α4 increases while the other

weights are kept constant, the bucket performance de-
creases with respect to f1, f2 and f3; for a high α4 = 8
we recover the optimal dispersion radius of 0.20m with

numbers typical of the logarithm bucket: modest travel

distances (only 43% of the optimal) and with a signifi-

cant remaining material of 15%.

In the bottom row of Figure 19 α1 = α3 = α4 = 1,
while α2 takes the values 1, 2, 4, 6, 8, from left to right.

Starting with the same optimal shape obtained in the
top row, the twofold increment of α2 does not induce as

significative changes as when α4 is the variable weight.

The only noticeable change is the curvature of the bot-

tom part of the bucket that goes from slightly concave
to straight to slightly convex as α2 increases.

The optimization of the gravity discharge is much

simpler than the previous ones and is not shown here:
This discharge occurs exclusively along the inner wall

and the only relevant parameter is the deflector incli-

nation, and to a lesser extend, its length.
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Fig. 19 Outer wall shape evolution when all objective func-
tions are considered. Sensitivity to the weight applied to ob-
jective function f4 (top row) and to objective function f2
(bottom row). Centrifugal discharge, high density and fric-
tion sand of 3 mm diameter.

8 Conclusions

The Discrete Deformation Analysis (DDA) method has

been used to analyze the bucket elevator discharge of
granular materials for several velocities, bulk materials

and bucket shapes. After a brief theoretical introduc-

tion on solid rigid mechanics of contact and friction,

numerical results have been compared with analytical
and experimental ones obtaining a good agreement. The

parametrical analyses have allowed us to explain the

most significant aspects of the behavior of granular ma-

terials inside and outside of the most common bucket

types. In addition, these analyses have permitted to de-
fine the most influential discharge parameters for each

bucket type.

Traditionally, the optimization of the bucket shape

has been done using experimental or simple analyti-

cal procedures based in a single particle, but DDA can

be used as an important part of this optimization pro-
cess. Cost functions have been defined to maximize the

reached horizontal and absolute distances, and to min-

imize the material left in the bucket and the dispersion

after exiting. With these functions and using the grad-

ual deformation optimization algorithm, bucket shapes
have been automatically designed for heavy frictional

material (sand, gravel) and light low-frictional slag.

Practical conclusions can be drawn from these anal-

yses. For instance, the optimal shapes change depend-

ing which is the main objective chosen; combining the

different objectives the optimal shapes result in hybrid

combinations of the optimal shapes for each objective.
It is demonstrated that the classical T- and logarith-

mic types are optimal for opposite objectives in the dis-

charge, and that intermediate shapes can achieve com-

promise results. The analyses presented in this work are
therefore considered a useful tool to design the most

efficient shape of the bucket for any specific working

conditions.
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