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Abstract
The distributed permutation flowshop problem has been recently proposed as
a generalization of the regular flowshop setting where more than one factory
is available to process jobs. Distributed manufacturing is a common situation
for large enterprises that compete in a globalized market. The problem has
two dimensions: assigning jobs to factories and scheduling the jobs assigned
to each factory. Despite being recently introduced, this interesting scheduling
problem has attracted attention and several heuristic and metaheuristic
methods have been proposed in the literature. In this paper we present a
scatter search (SS) method for this problem to optimize makespan. SS has
seldom been explored for flowshop settings. In the proposed algorithm we
employ some advanced techniques like a reference set made up of complete
and partial solutions along with other features like restarts and local search.
A comprehensive computational campaign including 10 existing algorithms,
together with statistical analyses, shows that the proposed scatter search
algorithm produces better results than existing algorithms by a significant
margin. Moreover all 720 known best solutions for this problem are improved.
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1. Introduction

Scheduling deals with the allocation of resources, typically machines, to
tasks (commonly referred to as jobs) over time with the goal of optimizing
a given objective (Pinedo, 2012). Scheduling is an important problem that
appears mainly in manufacturing industries. It is well known that good
schedules contribute greatly to the overall performance of a company (McKay
et al., 2002). The layout of the machines on the production floor, along with
the flow of the jobs in the machines, together with a myriad of constraints
and real life settings determine the type of scheduling problem to solve. The
flowshop scheduling problem (FSP) is arguably the most common processing
layout in practice as it is typical for manufacturing plants to manufacture a
given family of products that have to visit machines in a known order. For
example, in car manufacturing, the painting of the car body must go after the
body as been welded and before any assembly operation, hence a flowshop
structure. Reisman et al. (1997) reviewed practical cases and concluded that
the flowshop problem has many real life applications. This applicability of the
flowshop is also highlighted in the many exiting reviews from the literature
like Framinan et al. (2004), Ruiz and Maroto (2005), Hejazi and Saghafian
(2005) and Gupta and Stafford (2006). As a matter of fact, once generalized
to hybrid flowshops or flexible flowline problems, many production problems
can be modeled after a flowshop (Linn and Zhang, 1999; Vignier et al., 1999;
Wang, 2005; Quadt and Kuhn, 2007; Ruiz and Vázquez-Rodríguez, 2010;
Ribas et al., 2010). The FSP can be formally described as follows: A set N
of n different and independent jobs has to be scheduled. Jobs usually model
client orders or batches of products to be manufactured after a production
planning process has been carried out (Pochet and Wolsey, 2006). Each job
j, j ∈ N has to visit, in order, all m machines in the set of machines M .
Without loss of generality, each job visits first machine 1, then machine 2
and so on until machine m. A job cannot go to the next machine until it is
finished in the current machine and a machine cannot process more than one
job at the same time. As a result of the machines being disposed in series,
each job is broken down into m tasks, one per machine. Each task from a
job j, j ∈ N needs a given processing time at each machine i, i ∈ M . This
processing time is denoted as pij and it is deterministic, known in advance
and usually non-negative, represented by an integer quantity.
The objective in the FSP is to find a schedule or processing sequence of all
the jobs in the machines such that a given optimization criterion is optimized.
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According to the previously cited review papers, the most commonly studied
objective is the minimization of the maximum completion time or makespan,
denoted as Cmax. Given the completion time of a job in the last machine m,
denoted as Cj, the makespan is then the minimization of the maximal Cj,
j = 1, . . . , n. Since there are as many possible schedules as job sequences
at each machine, the total number of solutions is (n!)m, i.e., all possible
job permutations at each machine, considering that these permutations can
change from machine to machine. Given this huge search space, the FSP is
usually simplified to what is called the Permutation Flowshop Scheduling
Problem or PFSP by forbidding job-passing, i.e., once the production sequence
is fixed for a machine, all machines follow the same production sequence. This
brings down the total number of solutions to n! Using the well known three
field notation for scheduling problems (Graham et al., 1979; Pinedo, 2012),
the PFSP with makespan criterion is denoted as F/prmu/Cmax.
This problem was first studied almost 60 years ago by Johnson (1954) where
the well known Johnson’s algorithm was proposed for solving the two machine
version. For three or more machines, the problem is known to beNP-Complete
in the strong sense Garey et al. (1976). Nowadays, the literature on the PFSP
is immense and the problem and many variants have been thoroughly studied.
The topic is so widely studied that there are even some dedicated monographs
such as Chakraborty (2009) and Emmons and Vairaktarakis (2012), or even
for some variants, like lot streaming in Sarin and Jaiprakash (2007). However,
there is one extension that was only recently presented. In 2010, Naderi and
Ruiz studied a variant that was referred to as the Distributed Permutation
Flowshop Scheduling Problem or DPFSP. In essence, the regular PFSP
considers one single factory where products are manufactured. However,
multi-factory enterprises are much more competitive in a globalized economy.
The literature on manufacturing systems abounds with examples where it is
shown that distributed manufacturing is key for high product quality, low
production costs and reduced management risks, among many other benefits
(Wang, 1997; Moon et al., 2002; Kahn, 2004, among many others). Distributed
manufacturing is now a topic of interest as the recent editorial in a special issue
of a reputable manufacturing journal shows (Chan and Chung, 2013). In that
editorial and in many of the papers of the cited special issue the importance
and benefits of distributed manufacturing are praised and highlighted.

In the DPFSP there is an important added complexity with respect to the
PFSP: Jobs need to be assigned to factories and then a schedule must be built
for each factory. More formally, the DPFSP extends the regular permutation
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flowshop in the following way: The set N of n jobs must be processed by a set
G of F identical factories. Each factory has the same set M of m machines.
The processing times of all the tasks of a given job do not change from factory
to factory. Once assigned to a factory, a job has to be completed in that
factory. The objective is to minimize the maximum makespan among all
factories. Naderi and Ruiz (2010) referred to this problem as DF/prmu/Cmax.
The same authors demonstrated that no factory must be left empty with no
jobs assigned (given n > F ) as this does not improve the makespan value.
They also concluded that the total number of solutions in the DPFSP is(

n− 1
F − 1

)
n! Additionally, since the DPFSP reduces to the regular PFSP if

F = 1, it is easy to conclude that the DPFSP is also an NP-Hard problem.
From the paper of Naderi and Ruiz (2010), several other authors built upon

those results and several methodologies have been proposed to solve this new
problem. Naderi and Ruiz (2010) proposed some mathematical models, simple
heuristics and local search methods. Therefore, more complex methodologies
might reveal new interesting solutions to this hard combinatorial problem.
Furthermore, given the existing recent methods proposed, it is also worthwhile
comparing the effectiveness and efficiency of existing approaches to ascertain
which are the state-of-the-art methods. These are some of the objectives of
this paper. When deciding about which advanced techniques could be applied
to the DPFSP we observed that simple local search based methods failed to
escape strong local optima and therefore we chose a powerful methodology:
Scatter Search (Glover et al., 2000; Laguna and Martí, 2003; Martí et al.,
2006, among others). Contrary to many existing metaheuristic frameworks,
which have been applied several times to flowshop problems, scatter search
(SS) has seldom been used for these scheduling settings. References with
applications of scatter search to regular flowshops are scarce. Nowicki and
Smutnicki (2006) presented some methods, including ideas from path relinking
and scatter search to the regular PFSP with makespan criterion but failed to
significantly advance the state-of-the-art. In a short paper, Saravanan et al.
(2008) proposed another scatter search method for the same problem and
reported average percentage deviations over the best known solutions for the
benchmark of Taillard (1993) of a little over 1%. This is clearly not better
than the deviations below 0.5% given by the simpler Iterated Greedy (IG)
method of Ruiz and Stützle (2007) or the deviations of just 0.22% given in
Vallada and Ruiz (2009). As regards the PFSP, it seems that there are no
other noteworthy scatter search applications. Therefore, it is plausible to think
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that scatter search methods for flowshop problems still have some headroom
for improvement and therefore we choose them for this paper. Furthermore,
the controlled diversification in scatter search shows, as we will empirically
demonstrate, great strength in the DPFSP.

The remainder of this paper is organized as follows: Section 2 provides a
comprehensive literature review on the DPFSP. Section 3 presents in detail
the proposed scatter search approach. This method is calibrated in Section 4.
In the same Section, almost all relevant algorithms from the literature on the
DPFSP are reimplemented and carefully evaluated. Through comprehensive
computational and statistical analyses we show that the presented scatter
search algorithm can be considered as the new state-of-the-art method for
the DPFSP and makespan minimization. Finally, Section 5 concludes this
paper and proposes some avenues for future research.

2. Literature review

In Naderi and Ruiz (2010) the authors presented six different Mixed Integer
Linear Programming models for the DPFSP together with 12 heuristics that
resulted from applying two different job to factory assignment rules to six
famous heuristics for the regular flowshop problem. The two rules are the
following:

• Assign a given job j to the factory with the lowest current Cmax, not
including job j.

• Assign job j to the factory which completes it at the earliest time, i.e.,
the factory resulting in the lowest Cmax after assigning job j.

The rules are applied each time a job is scheduled. From the six tested
heuristics the NEH method of Nawaz et al. (1983) with the second job to
factory assignment rule (referred to as NEH2) resulted in the best heuristic
performance. Apart from the heuristic methods, Naderi and Ruiz (2010)
presented a simple Variable Neighborhood Descent (VND, Mladenović and
Hansen, 1997) starting with the NEH2 solution and with two neighborhoods.
One being the insertion local search for all factories (until local optima at each
factory) and the second local search takes the factory generating the makespan
value and extracts all of its jobs and testes them in all other factories. Two
different acceptance criteria are used: a) Accept the new solution if the critical
makespan (the largest makespan among all factories) is reduced and b) Accept
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the solution if there is a net gain in the makespan values between the involved
factories in the local search. More details are given in Naderi and Ruiz (2010).
The resulting VND methods with both acceptance criteria were referred
to as VND(a) and VND(b), respectively. The experimental results showed
that VND(a) produced an average percentage deviation over the best known
solutions for large problems of up to 500 jobs, 20 machines and 7 factories
of just 0.10%. Note that all presented methods by Naderi and Ruiz (2010)
are fast, as the slowest method –VND(a)– needed less than 0.15 seconds on
average on a Intel Core 2 Duo computer running at 2.4 GHz with 2GB of
RAM memory.

As Naderi and Ruiz (2010) pointed out, prior to 2010 there was almost
no literature on distributed flowshop scheduling apart from some loosely
related papers. However, after the publication of that paper, several authors
published follow up studies. The first was the work of Liu and Gao (2010).
The authors presented a complex electromagnetism metaheuristic (referred
to as EM in this paper). They improved the VND local search of Naderi and
Ruiz (2010) and extended it to a more powerful Variable Neighborhood Search
(VNS, Mladenović and Hansen, 1997) with several neighborhoods such as
insertion within the critical factory (the one generating the makespan), swap
in the critical factory and general insertion and swap. In their computational
evaluation, Liu and Gao (2010) did not directly compare against the VND(a)
but rather pointed out the improvement of 151 best known solutions out of
the 720 large instances presented in Naderi and Ruiz (2010). As we will later
highlight, these comparisons can be misleading. Furthermore, the CPU times
of the EM method are significantly larger than those of VND(a). Therefore,
it remains to be seen if EM is competitive with VND(a).

Later, Gao and Chen (2011a) presented a Hybrid Genetic Algorithm with
local search (GA_LS) which we simply refer to as HGA. The genetic method
is inspired by the GA for the regular permutation flowshop of Ruiz et al.
(2006). The algorithm employs NEH2 and VND(a) as initialization. The local
search phase is similar to that of VND(a) but a third neighborhood is included
in which exchange of jobs from the critical factory and all other jobs in all
other factories are tested. In their experiments, HGA reported better solutions
than VND(a) but again at the expense of much larger CPU times. According
to the results of Gao and Chen (2011a), their HGA method uses almost 246
times more CPU time than VND(a). In the same paper the authors test their
proposed HGA with the same CPU time as VND(a) and the results are quite
the contrary with HGA showing apparently worse performance than VND(a).
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Therefore, another interesting experiment is to test HGA vs. VND(a) in a
completely comparable scenario.

Gao and Chen (2011b) presented an improvement of the NEH heuristic of
Nawaz et al. (1983) and the NEH2 of Naderi and Ruiz (2010). The enhance-
ment consists of inserting F jobs at a time (one to each factory) instead of one
job at a time as it is usual in the NEH heuristic. This multi-insertion is carried
out through an unspecified branch and bound procedure and the authors
also employ the previously commented second job to factory assignment rule
as well as other published improvements of the NEH. The best combined
proposed method is referred to as NEHdf. In the computational experiments,
NEHdf is shown to slightly outperform NEH2 (however, in a provided sta-
tistical experiment, NEHdf is not shown to statistically outperform NEH2).
Again, this outperformance comes at an additional CPU cost.

More recently, Gao et al. (2012b), presented a genetic algorithm which is
shown to slightly outperform the HGA of Gao and Chen (2011a). In their
comparisons, the average relative percentage deviation of the new algorithm,
referred to as GA_KB, is reduced by 0.3%, which is a rather marginal
improvement. The CPU times are also slightly reduced but remain more than
200 times larger than those of VND(a).

In the same year, related authors (Gao et al., 2012a) have presented
a revised VNS method. Basically, the authors mix VND(a) of Naderi and
Ruiz (2010) with their improved NEHdf method presented in Gao and Chen
(2011b). The resulting algorithm is refereed to as VNS(B&B). Computational
analyses show that VNS(B&B) is superior to VND(a) but obviously at the
expense of additional CPU time.

More recently, the rate of publications in the DPFSP area is increasing. Gao
et al. (2013) have presented a tabu search method. The proposed algorithm
builds upon the local search schemes presented in Gao and Chen (2011a)
and includes some more extended local search processes. In the experimental
section this new TS method is shown to outperform the HGA of Gao and
Chen (2011a) by a good margin, improving also the computational efficiency.
However, from the tables given in Gao et al. (2013), the proposed TS is still
almost 117 times slower than VND(a).

Also recently, Lin et al. (2013) have presented an iterated greedy method
inspired by the work of Ruiz and Stützle (2007). Four IG variants are presented
and the best one, denoted as IGV ST is compared against the HGA of Gao and
Chen (2011a) and the TS of Gao et al. (2013). The results favor the IGV ST

method by a wide margin and also with greatly reduced CPU times albeit
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the conditions are not fully comparable and the reported CPU times are still
much larger than those of VND(a).

After all experimentation and analyses of this paper had been finished we
became aware of a recently published paper (Wang et al., 2013). The authors
have presented an estimation of distribution algorithm (EDA). While the
proposed method is shown to outperform VND(a), the new solutions obtained
are not as good as those reported in other recent papers. Furthermore, the
presented algorithm is much slower than VND(a), needing no less than almost
788 times more CPU time than VND(a).

As we can see, a myriad of metaheuristic methods have been recently
presented for the DPFSP. As our critical review shows, many of these methods
have not been compared against each other. Most comparisons are done
against VND(a), which is basically a heuristic improved by some local search
mechanism. Newer and more advanced methods might improve the solutions
much further.

3. Scatter Search method

Scatter search is a type of evolutionary algorithm which is strongly based
on a principled approach to solution generation and recombination and
steers away from the randomness of other evolutionary methods like genetic
algorithms. The main characteristic of SS is the diversification of solutions as
a means for high quality optimization. Its roots date back to the 70s with the
works of Glover (1977) or Glover (1998), to be later formalized in Glover et al.
(2000), Laguna and Martí (2003) or Martí et al. (2006) to name just a few.

The SS employed in this paper follows the basic template given in Laguna
and Martí (2003) and in Martí et al. (2006) which is based on the known
“‘five methods”: 1) Diversification generation method. The initial population
of the method is created using an input solution. Here a pool P of PSize
diverse solutions is created 2) Improvement method. A mechanism, usually
a form of local search, to improve solutions from any of the working sets.
Normally it is also applied to the set P at the beginning of the SS procedure.
3) Reference set update method. In SS the reference set or RefSet usually
contains the b best solutions of P initially. This set is desired to be as diverse
as possible, so selecting not only the best but also the maximally diverse
solutions is preferable. RefSet is an ordered list with the best solution first.
As the SS method iterates, new solutions enter RefSet according to their
quality and diversity. 4) Subset generation method. Here, some solutions
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from RefSet are selected for later processing. The simplest procedure is to
generate all possible pairs of solutions from RefSet as subsets. 5) Solution
combination method. The selected solutions in the subset generation method
are recombined to create new solutions. Normally, new solutions are enhanced
with the improvement method and later considered for insertion in RefSet in
the reference set update method. The entire process iterates while there are
changes in RefSet, i.e., while new different solutions are being discovered.
Let us instantiate all these methods in our proposed SS algorithm.

3.1. Solution representation and diversification generation method
In the PFSP literature, the most common solution representation is a

permutation of the n jobs. Since in the DPFSP this permutation is divided
among the F factories, the most straightforward representation is to have F
lists, one per factory. Each list contains a partial permutation with the order
in which the jobs have to be processed at each factory. This is the solution
representation that Naderi and Ruiz (2010) and subsequent authors have
employed. For example, if we have a problem with 10 jobs (n = 10) and three
factories (F = 3), one possible solution is:

4, 8, 1
2, 10, 5
7, 6, 3, 9

In this solution, jobs 4, 8 and 1 are assigned to factory 1 and follow that
order, jobs 2, 10 and 5 to factory 2 and so on. The sequence at each factory
is obtained by scanning each job list from left to right.

In our proposed SS procedure for the DPFSP we have two specially
constructed sets inside the reference set. The first is set H which contains
a number b of the best ever found solutions. The second set, denoted as
S, is made up of l factory assignment vectors. The union of these two sets
makes the reference set, i.e., RefSet = H ∪ S of size b + l. The sets are
clearly different. Set H contains full solutions according to the aforementioned
solution representation. However, set S only contains factory assignments for
jobs, i.e., given a 10 job, 3 factory DPFSP instance, a member of the set S
could be the following: {2, 3, 1, 1, 2, 2, 2, 3, 1, 3} meaning that job 1 is assigned
to factory 2, job 2 to factory 3 and so on until job 10 which is assigned to
factory 3. These are not complete solutions but just factory assignments as no
job ordering at each factory is given. The rationale behind these two distinct
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sets inside the reference sets will be clear after the solution combination
method.

For the initial construction of set H we start with a Psize of 25 random
job permutations. 24 of these permutations are used as an initial ordering
that is passed to the NEH2 method of Naderi and Ruiz (2010). Recall that
this is an extension of the NEH method of Nawaz et al. (1983). For the last
25th permutation we use the regular NEH initial ordering instead of random.
Basically, in the NEH2, jobs are inserted, one by one and according to the
initial ordering into all positions of all factories. The job is finally placed
in the position resulting in the minimal partial makespan. The second job
to factory assignment rule (see Section 2) is used. Let us give an example
following the previous case with 10 jobs and 3 factories. Let us consider the
initial ordering of jobs as {4, 2, 7, 6, 1, 3, 10, 5, 9, 8}. Starting from the following
partial solution: 

4, 1
2
7, 6

the next job to insert is job 3, as 4, 2, 7, 6 and 1 (the previous jobs in the
initial ordering) are already in the solution. Therefore, job 3 has to be inserted
in 8 different positions in the previous solution, resulting in the following
alternatives: 

3, 4, 1
2
7, 6

,


4, 3, 1
2
7, 6

,


4, 1, 3
2
7, 6

,


4, 1
3, 2
7, 6

,


4, 1
2, 3
7, 6

,


4, 1
2
3, 7, 6

,


4, 1
2
7, 3, 6

,


4, 1
2
7, 6, 3

The alternative resulting in the best partial makespan is selected. In order
to speed up the insertion procedure, the well known accelerations of Taillard
(1990) are used. This procedure is applied to all job permutations to have
25 NEH2 improved solutions. Then, the best b solutions among these 25 are
included in set H. Note that this applies to the initial H set construction.
Later, at each iteration of the SS procedure, set H contains the best b visited
solutions.

As for set S, used for diversification, we simply initialize it with random job
to factory assignments. As we will see, at each iteration of the SS algorithm,
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sets H and S are combined. Therefore, and in order to keep the diversity, set
S is randomly regenerated at each iteration of the SS method.

3.2. Subset generation and solution combination methods
In the proposed SS method, the subset generation method is also different

from most scatter search applications given the nature of the two sets H and
S inside RefSet. The procedure consists of selecting all possible combinations
of solutions in set H with factory assignments in set S. Therefore, at each
iteration, b · l pairs are considered. For example, let us suppose we have b = 3
and l = 2, i.e., H = {h1, h2, h3} and S = {s1, s2}. Therefore we have six
combinations: (h1, s1), (h1, s2), (h2, s1), (h2, s2), (h3, s1) and (h3, s2).

The combination method is crucial in the SS procedure. All pairs selected
in the previous subset generation method undergo combination. We refer to
the solution selected from set H as p1 and to the factory assignment vector
selected from S as p2. The new combined solution, referred to as pn is at first
identical to p1. The combination method has n iterations. At each iteration,
a job from pn is randomly selected, without repetition, so at the end all
jobs have been selected. We refer to this randomly selected job as h. If a
random number uniformly distributed between 0 and 1 (rand) is less than a
given value p the combination method checks if job h is assigned to different
factories in pn and in the job to factory assignment vector p2. If this is the
case, job h is extracted from its current factory in pn and tested in all possible
positions of the factory indicated in p2. The final placement of job h is the
position resulting in the lowest makespan at the factory indicated in p2. If
rand is greater or equal than p then the job is not assigned to another factory
and left untouched. Let us further illustrate the combination mechanism by
applying it to an example with 10 jobs and 10 factories. Let us suppose the
subsets are:

hi =


2, 5, 6, 1
10, 3, 7
4, 9, 8

and sj = {3, 1, 2, 2, 1, 1, 3, 2, 1, 2}

The randomly selected job is job 4 and the random value is 0.12 (p = 0.2);
hence, we check job 4. This job in hi is assigned to factory 3 and in sj in
factory 2. Therefore, we remove the job from factory 3 and assign to factory
2. To put this job into the sequence of jobs in factory 2, there are 4 possible
positions as follows:
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2, 5, 6, 1
4, 10, 3, 7
9, 8

,


2, 5, 6, 1
10, 4, 3, 7
9, 8

,


2, 5, 6, 1
10, 3, 4, 7
9, 8

,


2, 5, 6, 1
10, 3, 7, 4
9, 8

The makespan of each solution is calculated and the solution resulting
in the best makespan marks the new position for job 4. Suppose the next
randomly selected job is job 8 and the random value is 0.43. Since this
value is greater than p = 0.2, we skip changing the position of this job and
go to the next job. The procedure repeats for all jobs. Figure 1 shows a
pseudoalgorithmic listing of the proposed combination method.

procedure Solution_Combination_Method(p, p1, p2)
pn = p1
for j := 1 to n do
Take a random job, without repetition, from pn, let this job be h
if (rand < p) then
if factory assigned to h in pn <> factory assigned to h in p2 then
Extract h from its factory in pn and assign it to the factory indicated in p2
Insert h into all positions of the factory indicated in p2
Place h at the position with the best Cmax at the factory indicated in p2

endif
endif

endfor
return pn

end
Figure 1: Solution combination method pseudoalgorithm.

Note that the parameter p controls the intensity of the diversification. Too
low of a p value and pn will be essentially similar to p1 whereas if p is large,
most jobs will be assigned to different factories. Initial experiments indicated
that a low p value of 0.1 sufficed to maintain the diversification. In Section 4.1
we will calibrate, using sound statistical techniques, other more important
parameters of the proposed SS method.

3.3. Improvement method
The improvement procedure is applied at each iteration of the SS to each

solution pn obtained by the solution combination method. Note that we do
not apply it after the RefSet initial generation. The proposed method is a
simplification of the VND procedure of Naderi and Ruiz (2010). Two local
search procedures are iteratively applied until the improved solution is a
local optima with respect to both neighborhoods. More precisely, in the first
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local search, for each factory, each job assigned to that factory is extracted
and inserted into all possible positions of the sequence at that factory. The
position resulting in the best makespan for that factory is chosen. If there has
been an improvement in the makespan value for that factory, the procedure is
repeated. Therefore, at the end of this first local search, each factory contains
local optima solutions with respect to the insertion neighborhood. Note that
the accelerations of Taillard (1990) are also applied here.

In the second local search, each job from the critical factory (the factory
with the maximal makespan value) is extracted and inserted into all possible
positions of the sequence of all other factories. The procedure continues while
no improvements in the maximal makespan are found. However, once the
maximal makespan is improved, the second local search terminates and we go
back to the first local search scheme as in a Variable Neighborhood Descent
(VND) method. Contrarily, the process terminates (and the VND too) if
all jobs from the critical factory are inserted into all positions of all other
factories unsuccessfully. Again the accelerations of Taillard (1990) are used
in the second local search as well. It is important to note also that after an
improvement in the maximal makespan, only two factories are affected (the
one from which the job has been extracted and the one to which the job has
been inserted) therefore, when applying again the first local search procedure,
only these two factories are examined.

3.4. Reference set update method and restart procedure
After the improvement method is applied to pn we need to check if this new

solution is incorporated into the set H of RefSet. Inspired by the generational
schemes of Ruiz et al. (2006) and Vallada and Ruiz (2010), pn is included
into H if and only if: 1) The makespan of pn is better than the makespan
of the worst solution in set H and 2) It is unique, i.e., there are no other
identical solutions in set H.

If all conditions are satisfied, pn substitutes the worst solution in set
H, otherwise, pn is simply discarded. Note that we tested some other more
elaborated diversity mechanisms, like adding a third condition by which pn
should not decrease the diversity of set H, even if better than the worst
and strictly unique. However, continuously checking for diversity is expensive
and after further detailed experiments and calibrations (not shown here due
to space constraints) the results were not better. As a result, we dropped
diversity checking from the proposed SS. This also simplifies the final algorithm.
However, after initial experiments, the removal of the diversity checking also
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resulted in a fast convergence to local optima solutions. We have to consider
that set H contains full solutions and these are never diversified after the initial
diversification generation method. Only set S, which contains random job
to factory assignments is randomly regenerated at each iteration. Therefore,
we include a procedure to restart set H after a number of iterations without
improvements in the best solution. The procedure is simple; after a iterations
without improvements in the best solution, the worst 50% of solutions in set
H are discarded and the diversification generation method is employed to
generate new solutions. An important remark is that this restart procedure
is applied until the best solution is improved, i.e., the counter of iterations
without improvement is not reset after the restart procedure is applied.

The complete proposed SS method is given in pseudoalgorithmic form in
Figure 2.

procedure SS(b, l, a)
Set p := 0.1; counter := 0
Generate 25 solutions with the NEH2 heuristic %diversification gen method
Initialize set H with the best b solutions among the 25
while (termination criterion not satisfied) do
Generate new set S with l vectors randomly %diversification gen method
for i := 1 to b do %subset generation method
p1 = i-th solution from set H
for j := 1 to l do %subset generation method
p2 = j-th solution from set S
pn=solution_combination_method(p,p1,p2)
pn

′=solution_improvement_method(pn)
reference_set_update_method(pn

′)
endfor

endfor
if best solution in H has improved then counter := 0 else counter + +
if counter > a then apply restart_procedure to set H

endwhile
end

Figure 2: Proposed Scatter Search (SS) method. Note the parameters b, l and a.

4. Calibration, computational comparisons and statistical analyses

In this section we first calibrate the presented scatter search. Then we
carry out a detailed and comprehensive computational comparison of the
proposed scatter search method against the best existing methods from the
literature. We carefully explain the aspects of the comparison, instances tested
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and all conditions that facilitate the generalization and replicability of the
results obtained.

4.1. Calibration of the proposed Scatter Search method
We have chosen to calibrate only the most meaningful parameters. The

size b of RefSet is typically not greater than 20 (Martí et al., 2006). According
to these and other well known indications, the following factors are tested at
the following levels, resulting in 48 combinations: 1) Size b of set H in the
RefSet. Tested at four levels: {2, 5, 10, 15}. 2) Size l of set H in the RefSet.
Tested at three levels: {2, 5, 10} and 3) Number of iterations a before restart
occurs. Tested at four levels: {10, 20, 30, 40}.

Naderi and Ruiz (2010) presented two sets of instances for the DPFSP.
The first set contains 420 small instances of up to 16 jobs, 5 machines and
4 factories. These small instances were used for solving the proposed MILP
models in that paper and are deemed too easy for calibration and testing. They
are therefore not used in the remainder of this paper. Naderi and Ruiz (2010)
also presented a set of 720 large instances based on the 120 instances of Taillard
(1993) which has 12 sets with the following different combinations of number
of jobs n and mumber of machines m (n ×m): {(20, 50, 100) × (5, 10, 20)},
{200 × (10, 20)} and 500 × 20. Each combination has 10 replicates and
therefore the 120 instances in total. All these 120 instances are considered
with a different number of factories. We have F = {2, 3, 4, 5, 6, 7}, which gives
us 720 instances in total. All instances are available from http://soa.iti.es.

It has to be noted that calibrating the proposed scatter search using the
720 instances of Naderi and Ruiz (2010) would result in an over fitting or
over calibration. Calibrating methods on the same instances on which they
are going to be tested later is bad practice and potentially unfair. Instead,
we present a set of 50 random instances. In this set n, m and F are randomly
chosen from the previous combinations. Once chosen, the processing times
are randomly sampled from a uniform distribution in the range [1, 99] as it is
common in the scheduling literature. Therefore, the 50 calibration instances
are different from the 720 test instances. These calibration instances are also
available online.

We have used the Design of Experiments (DOE) approach (Montgomery,
2012) for the calibration. The experimental configuration is a full factorial
experiment with as many treatments as the previous combinations (48). b, l
and a are controlled factors. The response variable is the Relative Percentage
Deviation over the best solution known for each instance, calculated as follows:
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RPD = Somesol−Bestsol

Bestsol
·100. Somesol is the solution obtained by any of the 48 SS

configurations over a given instance and Bestsol is the lowest makespan known
for that instance. In order to increase the power of the experiment we used
5 replicates raising the total number of treatments to 48× 50× 5 = 12, 000.
With such a large number of results the power of the experiment is expected
to be high.

The results of the experiment are analyzed using the Analysis of Variance
(ANOVA) technique. ANOVA is a parametric statistical tool and three hy-
potheses must checked. From more to less important these are independence
of the residuals, homoscesdasticity of the factor’s levels (also known as homo-
geneity of variance) and normality of the residuals. After careful checking we
found no significant deviations from the hypotheses. Note that a screening
full factorial experimental design is by no means an elaborated and fine-tuned
calibration process. Actually, a full factorial design analyzed by means of
ANOVA can be considered as the first step in an algorithm calibration. For
more exhaustive approaches, the reader is referred to Bartz-Beielstein et al.
(2010) where advanced techniques are shown. The reason behind our choice
of a simple calibration is none other than to avoid an unfair comparison
with existing approaches. After all, if a thorough and extensive fine tuning
calibration was carried out over the proposed scatter search methods, we
would not be able to ascertain in the computational evaluation if a better
performance is obtained because of good algorithm constructs and operators
or just because of a better calibration process.

For the computational experiments we have at our disposal a cluster with
30 computing blades, each one has two Intel XEON E5420 processors running
at 2.5 GHz. with 4 cores each (which makes 8 cores per blade). Each blade
has 16 GBytes of RAM memory. Therefore, in total we have 240 cores and
480 GBytes. This cluster allows us to use many different virtual machines
for the experiments, each one running Windows XP operating system with
one single virtualized processor and 2 GBytes of RAM memory each. These
virtual machines were used for the computational experiments to distribute
the computational load.

It is important to set a meaningful stopping criterion for each scatter search
configuration. A common error in the literature when calibrating algorithms is
to give a fixed number of iterations to each combination of factors. Obviously,
a larger RefSet needs substantially larger CPU times and one can finally
conclude that a configuration with larger sets is better while the real truth is
that it is better just because more CPU time was allowed. Therefore, we use
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an elapsed CPU time termination criterion that is a function of the number
of jobs n, number of machines m and number of factories F . This is needed
in order to observe the statistical effect of the tested factors. If a fixed CPU
time was used, smaller instances would end up with very good results as a
relatively large CPU time would have been employed. The effect would be the
contrary for large instances where the same CPU time would probably be not
enough. This scenario would be disastrous as a lurking variable “CPU time”
would mask the effect of the factors. As a result, we employ the following
expression as a CPU time termination criterion for each run of the proposed
scatter search configurations: n×m× F × C, where C is set to 10 and the
whole expression is in milliseconds. This is a moderately short CPU time as
for the largest instances of 500 jobs, 20 machines and 7 factories the total
elapsed CPU time will be 700 seconds and just of 2 seconds for the smallest
instances of 20× 5× 2.

The results of the ANOVA are summarized as follows (the ANOVA table
is not reproduced here due to space constraints but it is available upon request
from the authors). All three factors b, l and a are statistically significant
with high F -Ratios and p-values very close to zero. Therefore, there are
statistically significant differences in the response variable between the levels
of the studied factors. In more detail, the most significant factor is the size b
of set H. The second most significant factor is the size l of set H and the third
the number of iterations after which restart is applied (a). The means plots
of these factors, along with 95% Tukey’s Honest Significant Difference (HSD)
confidence intervals are shown in Figure 3. It has to be noted that overlapping
confidence intervals signify that observed differences in the response variable
(RPD) of the overlapped means are statistically not significant.

The 2 level interactions between the factors are not significant. From the
plots we see that the levels 10 and 15 are statistically equivalent for factor b.
The same applies to levels 5 and 10 for factor l. We choose the values 10 and
10, respectively as together they make 20, an ideal size for RefSet according
to Martí et al. (2006). For the number of iterations before restart, the level of
40 is equivalent to 20 and 30 but it results in a lower average. Although not
shown here, values larger than 10 for l and larger than 40 for a resulted in
worse performance in confirmation experiments. As a result we fix b and l to
10 and a to 40.
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Figure 3: Means plot for the size b of set H, size l of set S and number of iterations
before restart a for the SS ANOVA calibration experiment. All means have Tukey’s Honest
Significant Difference (HSD) intervals at the 95% confidence level.

4.2. Methods compared and experimental setting
We now detail the experimental setting for the computational campaign.

The following methods are included in the comparison:

• The Discrete Electromagnetism metaheuristic of Liu and Gao (2010),
referred to as EM. This algorithm includes four neighborhoods in a VNS
local search phase. Random initialization as per the authors’ design.

• Hybrid Genetic Algorithm with local search (GA_LS) of Gao and Chen
(2011a), referred to as HGA. This algorithm employs NEH2 and VND(a)
as initialization.

• The improved NEH of Gao and Chen (2011b), referred to as NEHdf.
Note that in the original paper, the details of the employed branch and
bound procedure used inside NEHdf are not given. We contacted the
authors for help and source codes. Source codes were not given to us.
Instead, the original authors provided us with a slightly extended paper
version (Gao and Chen, 2011c). However, this paper did not contain
sufficient explanations either. In the end, since the branch and bound
enumerates all possible factory assignments and the maximum value
of F is 7 in the benchmark, we found out that it was actually faster,
using all possible accelerations, to try all 7! possible solutions at each
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step of the NEHdf. With this we got comparable, if not faster, CPU
times that those reported in Gao and Chen (2011b).

• The improved VND of Gao et al. (2012a), referred to as VNS(B&B).
Note that this algorithm is basically a mixture of VND(a) and the
previous NEHdf and we faced the same reimplementation issues.

• The tabu search method of Gao et al. (2013), referred to as TS.

• The best iterated greedy algorithm of Lin et al. (2013) which the authors
called IGV ST and is simply referred to as IG here.

• The comparison also includes the original methods presented in Naderi
and Ruiz (2010), namely NEH1, NEH2, VND(a) and VND(b). Note
that VND(a) and VND(b) have been slightly modified so to stop at a
given specified CPU time and not after local optimality is reached. It
has to be stressed though that neither method has any diversification
mechanism so they eventually get stuck at a local optima from which
they cannot escape. In any case, this change in the stopping criterion
has been introduced in order to ease the comparisons among methods.

• We finally include in the comparison the proposed scatter search method
SS.

In total we are comparing 11 methods. As we can see from the previous
list and from the literature review of Section 2, only two algorithms have
not been included in the computational comparison. We did not reimplement
and test the GA_KB of Gao et al. (2012b) as according to the authors the
performance is very similar to that of the HGA of Gao and Chen (2011a).
Also, the paper is scant in details and an independent reimplementation
of GA_KB is unlikely to succeed without access to the source codes. As
commented in Section 2, the paper Wang et al. (2013) was published after
all experimentation in this paper was finished. In any case, and as it was
mentioned, the EDA method proposed in that paper is not competitive, being
somewhat better than VND(a) but needing much more CPU time. It is clear
that this method is much worse than other recent methods like the IG or TS
above and therefore we have chosen not to reimplement it. We will provide,
however, indirect comparisons against EDA later in this section.

Note that all methods have been carefully coded in C++ following the
original author’s explanations in their respective papers. The stopping criterion
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of all methods has been modified so that all algorithms will be using the same
CPU time in all experiments. This CPU time follows the same expression as
in the calibration of the proposed scatter search method (n×m× F × C).
However, in this case, C has been tested at several values, namely 20, 40, 60,
80 and 100. This means that the CPU time employed by all methods ranges
from 4 seconds for the smallest instances of n = 20, m = 5, F = 2 and the
shortest tested time of C = 20 to 7, 000 seconds for the largest instances of
500× 20× 7 and C = 100. Note that we do not test each method for C = 100
and record the times at 20, 40, 60 and 80. In each test, each algorithm is
restarted from the beginning. This helps in avoiding self correlation in the
results which would be problematic for later statistical testing. Testing all
methods with 720 instances and with so many stopping times that range from
a few seconds to almost two hours guarantees a full range of results and a
sound statistical analysis. Furthermore, since all algorithms have been coded
in the same language and are run on the same computers with the same
CPU time stopping criterion we have a completely comparable computational
campaign. Note that the makespan evaluation, most local search operators
and initialization procedures are shared among the methods. If a given method
works better than another it can only be attributed to the method itself and
not to a faster computer, better coding or different stopping times.

In total we have tested 11 methods. NEH1, NEH2 and NEHdf are heuristics
and do not have a stopping criterion and therefore are only tested once with
each instance. All other 8 methods are tested with the 720 instances and
with the 5 aforementioned different stopping times which means that we
have 3 × 720 = 2, 160 results for the heuristics and 8 × 5 × 720 = 28, 800
results for the metaheuristics. Given the large number of results we have not
used replicates. The total CPU time needed for the metaheuristic results
(not considering the calibration of the scatter search or the heuristics) is
almost 165 days. The same cluster of computers used for the SS calibration
is employed for the comparisons.

4.3. Heuristic results for large instances
Table 1 shows the average relative percentage deviation for the three tested

heuristic methods, grouped by the number of factories. Each cell contains the
average of the 120 instances per value of F . The CPU times (in seconds) are
also provided.

NEH1 is inferior to NEH2 which confirms the previous results of Naderi
and Ruiz (2010). At the same time, it has to be considered that, on average,
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AVRPD CPU time (seconds)
F NEH1 NEH2 NEHdf NEH1 NEH2 NEHdf

2 6.35 4.58 4.29 0.007 0.015 0.029
3 7.17 4.82 4.45 0.006 0.018 0.030
4 8.21 5.00 4.51 0.005 0.022 0.032
5 8.51 5.03 5.01 0.005 0.026 0.035
6 9.32 5.40 5.27 0.005 0.028 0.038
7 10.28 6.04 5.91 0.004 0.032 0.049

Average 8.31 5.15 4.91 0.006 0.023 0.035
Table 1: Average Relative Percentage Deviation (AVRPD) and CPU time needed (in
seconds) for the three tested heuristics grouped by number of factories F .

NEH1 is almost 4 times faster. NEHdf is only slightly better than NEH2 and
also about 50% slower. All three heuristics are in any case incredibly fast,
needing in the worst case less than 0.3 seconds (NEHdf for instances of size
500× 20× 7). Recall that Gao and Chen (2011b) showed NEHdf not to be
statistically better than NEH2. Let us check if this is the case. We carry out
a multifactor ANOVA where n, m, F and the heuristics are controlled factors
and the Average Relative Percentage Deviation is the response variable. We
are only interested in the means plot of the factor algorithm, which is given
in Figure 4.

Note that the means plotted are actually the average relative percentage
deviations for all 720 large instances. As we can see, we confirm the previous
results of Gao and Chen (2011b) and conclude that while NEHdf obtains
slightly better results than NEH2, these differences are not large and/or
consistent enough so to be statistically significant. As a conclusion, NEH2
is a preferred method given also that NEHdf is difficult to reimplement and
slower than NEH2.

4.4. Metaheuristic results for large instances
Table 2 summarizes the results of the 8 tested metaheuristics. The results

are grouped by each CPU time stopping criterion level (C) as well as per
number of factories F . Again, each cell contains the average of 120 results.
Even though the stopping time is a fixed equation for each instance and
method (n×m× F × C), the last column gives the average CPU time (in
seconds) as a guidance.
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C F EM HGA IG SS TS VND(a) VND(b) VNS(B&B) CPU Time

20 2 4.33 2.72 2.51 0.98 1.66 2.77 3.02 2.56 73.17
3 4.92 3.09 2.69 1.02 2.08 3.02 3.43 2.44 109.75
4 4.90 3.34 2.74 1.18 2.82 3.27 3.27 2.44 146.33
5 5.15 3.62 2.66 1.50 3.48 3.72 3.72 2.47 182.92
6 5.42 3.95 2.50 1.87 4.05 4.08 4.08 2.77 219.50
7 6.18 4.76 2.49 2.44 4.98 4.92 4.77 3.41 256.08

Average 5.15 3.58 2.60 1.50 3.18 3.63 3.78 2.68 164.63

40 2 4.68 2.63 2.37 0.88 1.54 2.77 3.02 2.57 146.33
3 4.86 3.00 2.57 0.96 1.99 3.02 3.43 2.56 219.50
4 5.00 3.32 2.45 1.06 2.76 3.27 3.56 2.45 292.67
5 5.19 3.56 2.40 1.29 3.46 3.72 3.79 2.40 365.83
6 5.46 3.87 2.30 1.75 3.96 4.08 4.08 2.73 439.00
7 6.16 4.74 2.25 2.25 4.97 4.92 4.77 3.32 512.17

Average 5.23 3.52 2.39 1.36 3.11 3.63 3.78 2.67 329.25

60 2 4.73 2.56 2.27 0.80 1.46 2.77 3.02 2.62 219.50
3 4.87 2.99 2.41 0.81 1.93 3.02 3.43 2.49 329.25
4 5.00 3.26 2.46 0.95 2.70 3.27 3.56 2.50 439.00
5 5.40 3.53 2.34 1.25 3.42 3.72 3.79 2.43 548.75
6 5.54 3.85 2.25 1.66 3.84 4.08 4.08 2.66 658.50
7 6.03 4.72 2.07 2.16 4.88 4.92 4.77 3.38 768.25

Average 5.26 3.49 2.30 1.27 3.04 3.63 3.78 2.68 493.88

80 2 4.52 2.56 2.21 0.76 1.43 2.77 3.02 2.63 292.67
3 4.98 2.99 2.42 0.75 1.92 3.02 3.43 2.52 439.00
4 4.93 3.22 2.43 0.93 2.66 3.27 3.56 2.41 585.33
5 5.18 3.52 2.32 1.16 3.44 3.72 3.79 2.45 731.67
6 5.58 3.83 2.11 1.64 3.94 4.08 4.08 2.78 878.00
7 5.81 4.67 1.96 2.20 4.93 4.92 4.77 3.30 1024.33

Average 5.17 3.47 2.24 1.24 3.05 3.63 3.78 2.68 658.50

100 2 4.65 2.49 2.10 0.70 1.42 2.77 3.02 2.65 365.83
3 4.84 2.90 2.34 0.69 1.96 3.02 3.43 2.50 548.75
4 5.11 3.18 2.34 0.90 2.62 3.27 3.56 2.46 731.67
5 5.32 3.52 2.22 1.14 3.28 3.72 3.79 2.41 914.58
6 5.48 3.80 1.94 1.57 3.89 4.08 4.08 2.69 1097.50
7 6.09 4.67 1.99 2.14 4.92 4.92 4.77 3.31 1280.42

Average 5.25 3.43 2.16 1.19 3.02 3.63 3.78 2.67 823.13

Tot. average 5.21 3.50 2.34 1.31 3.08 3.63 3.78 2.68 493.88

Table 2: Average Relative Percentage Deviation (AVRPD) and CPU time used (in seconds)
for the tested metaheuristics grouped by CPU time limit C and number of factories F .
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Figure 4: Means plot for the heuristic algorithms. All means have Tukey’s Honest Significant
Difference (HSD) intervals at the 95% confidence level.

The results of the computational evaluation contain some important find-
ings. First of all, we confirm the better performance of VND(a) versus VND(b)
as was explained in Naderi and Ruiz (2010). However, being just local search
methods that stop at a local optima and without any diversification method,
VND(a) and VND(b) do not improve their performance with additional CPU
time. Both methods get stuck way before the shortest CPU times of C = 20
are reached. Actually, and as shown in Naderi and Ruiz (2010), both methods
find their solutions in 0.147 and 0.096 seconds, on average, respectively. Other
methods also get stuck as their solutions do not improve with additional times.
An example is the VNS(B&B) of Gao et al. (2012a). In any case, the average
deviation at 2.68% is clearly below VND(a) and VND(b), which confirms the
results reached by the original authors.

An important finding resulting from the evaluation is that the EM method
of Liu and Gao (2010), apart from being stuck as no better solutions are
found with additional CPU time, is that its performance is below all other
tested metaheuristics at 5.21% relative percentage deviation. As a matter of
fact, this deviation is larger than that of NEHdf and NEH2 from Table 2.
If we take the average CPU times in the shortest experiment of C = 20,
EM needs 164.63 seconds on average, while NEHdf and NEH2 need just
0.035 and 0.023 seconds, respectively. This means that EM obtains a similar
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performance but at the same time needs an exorbitant amount of CPU time
that is between 4,704 and 7,157 times longer. Note that in their paper, Liu
and Gao (2010) claimed to have improved 151 best known solutions out
of the 720 of Naderi and Ruiz (2010). We would like to stress, that these
comparisons are often misleading. We do not claim that their results did not
improve the best known solutions. As a matter of fact, our reimplementation
of EM improves not 151 but 161 best known solutions when compared to the
original best solutions given in Naderi and Ruiz (2010) (so it seems that our
implementation of EM is actually slightly more efficient). The fact is that
there are another 559 instances in which EM does not improve the best known
solutions. Herein lies the problem, as the solutions given by EM in these
559 cases are not good. The result is that even though Liu and Gao (2010)
improved 151 of the original best known solutions of Naderi and Ruiz (2010),
their average performance, when compared in an apples to apples scenario, is
poor. Summing up, improving a fraction of the best known solutions is not
indicative of good performance. Had Liu and Gao (2010) compared their EM
against VND(a) of Naderi and Ruiz (2010) they would have found out that
VND(a) is about 43% better in performance and about 1,120 times faster
according to the results in this paper and in Naderi and Ruiz (2010).

The HGA method of Gao and Chen (2011a), as commented in Section 2
was shown to outperform VND(a) but at an unfair CPU time advantage.
In the experiments in this paper the same CPU times are employed and
we confirm that indeed HGA results in a slightly better average relative
percentage deviation than VND(a) (3.50% versus 3.63%). It remains to be
seen, however, if this small difference in performance is indeed statistically
significant. At the end of this section we will carry out additional statistical
analyses that will confirm this question. The TS of Gao et al. (2013) is
confirmed to outperform VND(a) and HGA, which ratifies the results of the
original paper. It is, however, quite interesting that our implementation of
the VNS(B&B) of Gao et al. (2012a) seems to be much better than both
HGA and TS albeit VNS(B&B) is not mentioned or used in the comparisons
of this last paper of Gao et al. (2013).

We can also comment on the recent IG method of Lin et al. (2013). We can
see that the IG beats all other existing metaheuristics clearly, bringing down
the relative percentage deviation to just 2.34%. IG are simple methods and
therefore we can safely recommend IG over EM, HGA, TS and VNS(B&B).
VND(a) and VND(b) are actually much faster and therefore should be con-
sidered separately. Additionally, and similarly to HGA and TS, the results
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of IG steadily improve as more CPU time is given. For example, IG with
C = 20 has an average deviation of 2.60% compared to a deviation of 2.16%
for C = 100.

We finally comment on the results of the proposed scatter search method
SS. We can see that the overall relative percentage deviation is just 1.31%
which is almost 79% better than the closest competitor IG. Except in some
isolated cases with F = 7 and large CPU times where IG manages slightly
better solutions, SS obtains, by far, the lowest deviations in all cases. From
the reported results, all indications are that the proposed SS is a much better
performer after being tested in a wide range of CPU times and instances.
Furthermore, it has to be noted that the solutions given by the proposed
SS method when tested with the shortest CPU time of C = 20 already
improve 719 out of the 720 best known solutions reported in Naderi and
Ruiz (2010). For the single instance where the solution is not improved, the
reported makespan is just one unit larger. For C = 40 all 720 best known
solutions are already improved. Comparatively, the recently proposed IG
algorithm of Lin et al. (2013) was reported in that paper to have improved
“almost half” of the instances of Naderi and Ruiz (2010). A similar indirect
test can be carried out with the untested EDA algorithm of Wang et al.
(2013). Recall that this algorithm was not reimplemented because it was just
recently proposed. However, the authors report their best found solutions, so
an indirect comparison is possible. In their paper the authors claim 589 best
new solutions. In an appendix, they report just 585 best solutions. Comparing
all these values against our new best known solutions obtained in this paper
we conclude that their EDA method produces an average relative percentage
deviation of 2.28% in these 585 instances that they improved. It has to be
mentioned that this is a best case scenario, since we are only considering the
585 instances the authors improved in respect to the original best known
values of Naderi and Ruiz (2010). Comparatively, the SS proposed in this
paper, for the shortest tested CPU time of C = 20 results in a deviation
of just 1.62% for the same 585 instances. Actually, for these 585 instances,
the proposed SS (C = 20) is better than or equal to the EDA in 508 cases.
Although the tests have been carried out on different computers (the computer
used by Wang et al. (2013) being faster at 3.2Ghz than ours which runs at
2.5Ghz), our proposed SS with C = 20 has comparable CPU time demands
to the EDA of Wang et al. (2013). As a result, it is safe to state that even
indirectly compared, the proposed SS obtains much better solutions than the
EDA of Wang et al. (2013). The new improved solutions obtained in this
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paper are available at http://soa.iti.es.
While the differences between the proposed SS and the existing meta-

heuristics reported in Table 2 are clearly large enough as to be statistically
significant, we still carry out an ANOVA to check if the observed differences
are indeed statistically significant. In a first summarized ANOVA we check
the EM method against NEH2 and NEHdf. Due to reasons of space we do
not report the means plots but we confirm our suspicions that the overall
average relative percentage deviation of EM is not statistically better than
that of NEH2 or NEHdf.

In order to have a clearer picture, NEH1, NEH2, NEHdf and EM are
removed for subsequent statistical analyses. Another ANOVA is carried out
where F and C, together with the type of algorithm, are controlled factors.
By far, the most significant effect comes from the algorithm factor with an
F -Ratio of almost 423 and a p-value very close to zero. The factor F (as well
as n and m if we augmented the experiment) are very significant. Conversely,
the factor C is not very significant. This is a result of many algorithms showing
the same performance regardless of the CPU time employed. Figure 5 shows
the means plot of the factor algorithm averaged across all 720 instances and
all C values (3,600 data points averaged at the center of each interval).
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Figure 5: Means plot for the metaheuristic algorithms (excluding EM). All means have
Tukey’s Honest Significant Difference (HSD) intervals at the 95% confidence level.

As we can see, the differences depicted in Table 2 are, for most methods,
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statistically significant. SS is statistically better than IG which in turn is
better than VNS(B&B) which improves on TS which again is better than
HGA. However, HGA is statistically equivalent to VND(a). This confirms the
experiments of Gao and Chen (2011a), which showed that with similar CPU
time, HGA was actually worse than VND(a). Our implementation of HGA
shows slightly better results than VND(a) when run at the same CPU time
but the difference is not statistically significant. Furthermore, recall that even
though throughout this paper VND(a) and VND(b) are run for the same
CPU time as all other methods, in reality they take a fraction of the time. As
a result, HGA cannot be recommended over VND(a). Finally, VND(a) is not
statistically better than VND(b), which again concurs with the experiments
carried out in Naderi and Ruiz (2010).

It is also interesting to study the interaction between the CPU time limit
C and algorithm, shown in Figure 6.
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Figure 6: Means plot for the interaction between the CPU time limit C and the metaheuristic
algorithms (excluding EM). All means have Tukey’s Honest Significant Difference (HSD)
intervals at the 95% confidence level.

We confirm that for many algorithms better solutions are not obtained with
additional CPU time. SS is statistically better than IG for all time periods and
it is seen that among all methods, the only ones that progressively improve
as more CPU time is allowed are IG and SS although most of the time the
differences are not large enough to be statistically significant. Note however
that the width of the Tukey’s Honest Significant Difference intervals shortens
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as the number of results increase. Had we run each algorithm more times
(replicates) for each instance and C value, the differences for IG and SS would
have resulted as significant as C increases.

As a final note, small focused experiments between IG and SS for C = 60,
80 and 100 and F = 7 (the cases in which, according to the reported averages
in Table 2, IG is better than SS) show that the small differences are not enough
to be statistically significant. As a rule of thumb, a difference between two
averages has to be consistent over a large number of cases and/or large enough
so as to be statistically significant. This fact, far from being undesirable in
statistical testing, is the real backbone of the generalization capabilities of the
ANOVA. A method A has to be substantially better than another method
B and over a large number of test cases in order to generalize results to
other cases and populations. Otherwise, a 0.1% better performance over a
small number of lab cases in a method A over another method B would not
guarantee that outside the lab these differences would hold true.

5. Conclusions and future research

The Distributed Permutation Flowshop Problem (DPFSP) is an inter-
esting multi-factory extension of the regular flowshop recently proposed by
Naderi and Ruiz (2010). The authors initially proposed six alternative Mixed
Integer Linear Programming models as well as two simple heuristics (NEH1
and NEH2) based on the well known high performing flowshop heuristic
of Nawaz et al. (1983) augmented with efficient job to factory assignment
rules. The authors also presented two simple Variable Neighborhood Descent
algorithms VND(a) and VND(b). After this initial work, a number of authors
have proposed a number of methods and have compared mainly against the
best performing method at the time –VND(a)–. In this follow up research
we have studied again the DPFSP and have proposed an effective Scatter
Search (SS) procedure. The main characteristic of the presented SS is a
hybrid RefSet made up of full solutions as well as job to factory assignment
vectors. The solution combination method combines all full solutions with
all job to factory assignment vectors. This results in an effective strategy as
the solution improvement procedure works in the job permutations at each
factory and the combination method explores different effective job to factory
assignments. Together with a stringent reference set update procedure and a
restart mechanism, the proposed SS results in state-of-the-art performance.
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We have carried out a thorough computational analysis where most ex-
isting methods from the literature have been carefully reimplemented and
tested in a comprehensive set of 720 instances. Almost 165 days of CPU time
have been employed in the tests where all algorithms have been tested at
5 different stopping times. The computational results are accompanied by
sound statistical analysis using design of experiments and analysis of variance
techniques. Results indicate that the proposed SS outperforms all existing
methods by a wide statistical margin, including methods that have been
proposed very recently. Another contribution of this paper is the compari-
son among the other existing methods. Many algorithms, when tested in a
completely comparable scenario frequently show a performance that was not
observed in the original experiments. For example, we have shown that the
performance of the EM algorithm, despite claims from the original authors, is
not competitive. On the other hand, our reimplementation of the VNS(B&B)
method shows a promising performance even though the original authors have
not compared this method in their latest published study.

The DPFSP is a recently proposed scheduling problem and many avenues
for future research lay open before us. There is no reported research on the
DPFSP with other objectives apart from makespan. Furthermore, the problem
should be generalized, as not all factories are often completely identical. Other
aspects could include leveling the load among the factories or considering
important real-life constraints such as assembly operations, setup times, etc.
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