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The diamond partial order in rings

Leila Lebtahi* Pedro Patriciof Néstor Thome*

Abstract

In this paper we introduce a new partial order on a ring, namely
the diamond partial order. This order is an extension of a partial
order defined in a matrix setting in [J.K. Baksalary and J. Hauke,
A further algebraic version of Cochran’s theorem and matrix partial
orderings, Linear Algebra and its Applications, 127, 157-169, 1990].
We characterize the diamond partial order on rings and study its re-
lationships with other partial orders known in the literature. We also
analyze successors, predecessors and maximal elements under the di-
amond order.

Keywords: star partial order, minus partial order, sharp partial order, ring,

principal ideal.
AMS subject classification: Primary: 15A09; Secondary: 06A06

1 Introduction and Background
Let R be an associative ring with unity 1. For a given a € R, we will denote

a{l} :={z € R: ara = a}
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the set of all {1}-inverses of a. A particular {1}-inverse of a will be written
as a”, and the element a is regular if a{l1} # 0. As usual, R is a regular
ring if all elements of R are regular. A {1,2}-inverse of a is a {1}-inverse
of a that is a solution of the ring equation raxr = x, it will be denoted by
x € a{l,2}. The unique {1,2}-inverse of a that commutes with a is called
the group inverse of a (when it exists) and denoted by a#. The set of group
invertible elements is denoted by R*.

An involution % in R is an anti-isomorphism of degree 2 in R, that is to
say, ()" =z, (x4 y)* = 2* +y* and (xy)* = y*z*, for all x,y € R. We will
use the following notation: aR = {ax : * € R} and Ra = {za : x € R} the
principal ideals; °(a) = {x € R: xa = 0} and (a)° = {z € R : ax = 0}.

We say a € R is Moore-Penrose invertible (with respect to *) if the equa-
tions ara = a, rax = z, (ax)" = az, (ra)* = xa have a common solution.
If such a solution exists, then it is unique, and denoted by af. The set of
Moore-Penrose invertible elements is denoted by RT.

We recall some well-known partial orders on a regular ring R:

e the minus partial order: a <~ biff a—a = a b and aa™ = ba™.

the star partial order: a <* b iff a*a = a*b and aa* = ba*, which in
turn is equivalent to a'a = a'b and aa’ = ba' in RT.

the left star partial order: ax < b iff a*a = a*b and aR C bR.

the right star partial order: a < *b iff aa* = ba* and Ra C Rb.
e the sharp partial order in R#: a <# b iff a*a = a™b and aa™ = ba™.
e the direct sum partial order: a <® b iff bR = aR @ (b — a)R.

A detailed analysis of these partial orders has been done in [8] for a matrix
approach.

Throughout this paper, R will be a ring with involution and we will
assume R is *-regular, i.e., all elements have a Moore-Penrose inverse.

We define (see [3])

a<sb iff aR CbR, Ra C Rb and aa™a = ab*a.

In Section 3 we are going to prove that the binary relation <, defines a partial
order on R and, from now on, it is called the diamond partial order. It should



be mentioned that the diamond partial order has not been considered in the
literature, as far as we know, in the setting of rings.
We recall some well-known facts.

Lemma 1 Leta € R and a™,a~ € a{l}. Then aaa~ € a{l,2}.

Lemma 2 Let a,b € R. Then

(a) a <~ b iff there exists b~ such that bb-a = ab~b = ab~a = a.

(b) aR C bR iff Ra* C Rb* and Ra C Rb iff a*R C b*R.

(c) a*R=a'R and Ra* = Ra'.

Proof. (a) (=) By hypothesis we have: a~a = a~b and aa™ = ba~. Then
bb-a=0b"aa a=0bb"ba a=0ba" a=aa a=a,
ab-b=aa " ab b=aa"bb"b=aa"b=aa a=a,

and

ab a=aa ab aa"a=aa bb"ba"a=aa ba"a=aa aa a = a.
(«<=) We note that b~ is a {1}-inverse of a since ab~a = a. The equalities

a = ba~a = aa™b hold by taking a= = b~ since a = bb~a = ab™b.

(b) Trivial by definition.

(c) It follows from the properties a* = af(aa*) = (a*a)a’ and af =
a*(aa*)! = (a*a)ta*. |

We remark that

(I) ab'a = a = ab" and b'a are idempotent.
(IT) bbla = a <= bb'aa’ = aa'.
(ITI) ab’™ = a <= a'ab'b = da'a.
)

(IV) If the equalities bb~a = ab~b = ab"a = a hold for some b~ then
they hold for any choice of b~. Indeed, the independence of b~ in
bb-a = ab~b = a follows directly from [9, Lemma 2.1]. For a {1}-
inverse b~ of b, it is well known [10, pp. 26] that all {1}-inverses of b
are of the form b= = b=+ (1—b"b)h+2z(1—bb~) for some choice of h and
z. Asbb~a = ab b = ab”a = a it follows that ab=a = a. To sum up
we showed the independence of the equalities bb~a = ab b =ab"a = a
to the choice of b™.



Lemma 3 [}, Corollary 4] Let x,y € R such that y is idempotent. Then
<" yiffr=a®=xy =yx.

Proof. For the sake of completeness we include a proof.

(=) Since zz~ = yxr~ and z 7z = z7y, we get * = xr"Y = Yyr x.
Then zy = z2 y? = 227y = 2 and yr = y*x 2 = ya~x = x. Moreover,
¥’ = xryr = x0Ty = TY.

(<=) From z? = z we have that z is group invertible and z# = x. Taking
r~ =" we get vx” = 2% = yr = yr~ and 2”2 = "y is similar. [ ]
A wide range of properties related to these orders and the generalized inverses
involved in each of them can be found in [1, 2, 3, 6, 7, 11, 12, 13].

This paper is organized as follows. In Section 2 we analyze some rela-
tionships between the diamond binary relation and the minus, left star, right
star, star and sharp partial orders. In Section 3 the diamond partial order
on rings is characterized. Section 4 is devoted to the study of successors and
predecessors under the diamond order. In addition, maximal elements under
the diamond partial order are found.

2 Relations between the diamond order and
other partial orders

Firstly, we notice that the equivalence a <, b <= b — a <, b does not hold
for the diamond partial order (see an example in [3]) despite of it remains
valid for the star and minus orders, as stated in the following result.

Lemma 4 Given reqular x,y € R,
(a) 2 <" yiffy—z <"y
(b) <"y iffy—z <y
Proof.(a) If <~ y then by [5, Proposition 3 (i)]
y=a+ (1 —za")s(l —atx)

for some {1,2}-inverse 27 of x and an arbitrary s € R. Setting the idempo-
tents e = 1 — zz™ and f = 1 — 2T there exists (y — )™ = fwe for some
w € R. For this choice, (y—z)(y—z)" = esfwe = (z+esf) fwe =y(ly—x)".
Similarly, (y — )Ty = fwe(x + esf) = fwesf = (y —z)" (y — x).
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Conversely, if y — 2z <~ y then by the previous implication * =y — (y —
x) <" y.

(b) From = <* y we obtain the equalities (y — z)z* = 2*(y — z) = 0,
from which (y —2)(y — 2)" = (y — 2)y" and (y — 2)"(y — z) = y*(y — ).
Since these are hermitian, the equalities (y — z)(y — 2)* = y(y — x)* and
(y —x)"(y —2) = (y — x)"y hold.

The converse follows from the above implication as in (a). [

We also observe that in the diamond partial order the symbol { does
not play the same role that * as in the star partial order. That is, nei-
ther of the implications aa*a = ab*a = aa'a = ab'a (in C**? take a =

[ (1) (1) } and b = [ (2) (2) ]) nor aa'a = ab'a = aa*a = ab*a (in C>*? take

11 1

a and b = 0 ]) is valid in general.

— 100 01

We remark that * is isotone with respect to the diamond partial order.
That is to say a <, b exactly when a* <, b*. This follows from Lemma 2.
As a consequence we have the following proposition.

Proposition 1 a <, (a")* iff a is a partial isometry (i.e., a’ = a*).

Proof. If a <, (a')* then aa*a = aa’a = a, that is a* € a{1}. Since aa* and
a*a are hermitian and a*aa* = a*, we get a* = a'. The converse is trivial. B

Some equivalent conditions to aa*a = ab*a are given in the following
result.

Lemma 5 Let a,b € R. Then the following conditions are equivalent:
(a) aa*a = ab*a.

(b) a'ba’ € a{1}.

(c) a'ba’ € a{1,2}.

(d) a'ba’ = a'.

Proof.
(a) = (b) Multiplying aa*a = ab*a on the left and right sides by a' we
get a* = a'aa*aa’ = a'ab*aa’ = a*(a'ba’)*a*. Hence, a'ba’ € a{l1}.



(b) = (a) Multiplying a(a'ba’)a = a on the left and right sides by a*
item (a) can be easily obtained.

(b) = (c) It follows applying Lemma 1 with a~ = a'ba' and a= = af.

(c) = (b) is trivial.

(a) = (d) Multiplying firstly both sides of a*aa* = a*ba* by (a’)* and
then both sides of the obtained result by a we get at = a'bal.

(d) = (¢) = (a) are trivial. |

Theorem 1 Let a,b € R. Then the following conditions are equivalent:
(a) a <, 0.

(b) aR C bR, Ra C Rb and a'ba’ € a{1}.

(¢) aR C bR, Ra C Rb and a'ba’ € a{l,2}.

(d) aR C bR, Ra C Rb and a'ba’ = a'.

Proof. It follows by definition of the diamond partial order and Lemma 5. B

The implications ax < b = a <, b and a <, b = ax < b are not valid in
general. Similarly, for < x instead of x <.

Even for matrices over a field, the implication a < *b = a <, b might not
7

hold. Take, over the field Z;3, the matrices A = [ g 3 } and B = [ 18 g } ,
and the transposition as the involution. Then [ 9 7 ] = 10[ 10 2 ],
[ 2 3 } =8 [ 10 2 ] and row space of A is a subspace of the row space of
B. As AA* = BA* then A < xB. Nevertheless, [ g } =« [ 100 } +p [ (2) }
has no solutions in Z;3, and hence the column space of A is not a subspace
of the column space of B.

Needless to say a similar conclusion can be drawn for x <, as A*x < B*
and yet A* £, B* since the row space of A* is not a subspace of the row
space of B*, where A and B are as the previous example.

Lemma 6 Let us consider the following statements:

(a) a <,b.



(b) ax < b and Ra C Rb.
(¢c) a < xb and aR C bR.
Then (b) = (a) and (c) = (a).

Remark 1 Observe that in Lemma 6 neither (a) = (b) nor (a) = (c¢) as
the following example allows us to check in C**2:

10 11
a_{O()} and b_{l(J]'

Proposition 2 Let a,b € R. Then
(a) a <*b=a <, b.
(b) a <# b= a' <, bl & a <.

Proof. (a) Suppose a <* b, that is, aa* = ba* and a*a = a*b. Then
a*(b — a)a* = 0, from which aa*a = ab*a. Furthermore, post-multiplying
aa* = ba* and pre-multiplying a*a = a*b by (a')*, we obtain a = ba*(al)* =
(a")*a*b € bR N Rb and as such aR C bR and Ra C Rb.

(b) Tt is well known that a <# b = a <~ b and this last expression is
equivalent to af <, bf (as we will see in Theorem 2). [ |

Note that, despite Theorem 2 has been not proved yet, we have included
Proposition 2 in this section to collect all the relationships between the dia-
mond partial order and the other ones.

Now, we remark that a <, b does not imply a <* b. A counterexample
can be found by taking the real matrices

SRS !

We can also observe that a <# b does not imply a <, b as the following
real matrices show:
111 - 10
““lo ol 1o 1|

We close this section with the following remark.
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Remark 2 The condition on the Moore-Penrose invertibility of a in (a) of
the previous Proposition cannot be dropped. We will present an example
using matrices over Z, with the involution % as transposition. Take A =

[ ; g } and B = [ ; 8 } which satisfy A <* B, since AA* = BA*, A*A =

A*B. Yet, A= B [ i ; 1 would imply z = 0 and 0 = 2, and therefore

A <, B does not hold. Note that AT does not exist as the (free) Z,-module
generated by the columns of A is not a submodule of the generated by the

columns of AA*. Indeed, there are no solutions in Z, for [ g } =« { ; } +
2
i)

3 Characterizations of the diamond partial
order

Now, we characterize the diamond partial order in terms of the minus partial
order.

Theorem 2 Let a,b € R. Then the following statements are equivalent:
(a) a <, 0.

(b) at <~ 0.

(c) aa’bb’ = aa', biba'a = a'a, aTba’ = al.

Proof. (a) = (b) and (c) By hypothesis and Lemma 2 we have: Ra' C Rb'
and a' R C b'R. Since a' = a'aa’ € a' RN Ra' C b'R N RbT.

Since a' = bfz for some x € R, b'ba’ = bbb’z = bl = af. Hence,
biba’ = af and so bfba’a = a'a.

Since af = yb! for some y € R, a'bbl = ybfbb" = yb' = a'. Hence,
a'bb’ = a' and so aa'bb’ = aa'.

Lemma 5 assures that the condition a*aa* = a*ba* is equivalent to af =
a'ba’. Finally, Lemma 2 implies that a' <= b holds.

(b) = (a) From a'a = bfa and aa’ = ab’ we get a' = blaa’ € b'R and
al = a'ab’ € RbY. Then a'R C bR and Ra' C Rbf. Moreover, Lemma 2 (a)
assures that a' = a'ba’. Finally, Lemma 5 implies that a*aa* = a*ba*.

8



(c) = (a) From aa'bb" = aa' we get a'bb’ = a', that is a' € Rb'. Thus,
Ra* = Ra' C Rb' = Rb* and this implies aR C bR.

Similarly, b'ba’a = a'a yields Ra C Rb. Moreover, the equivalence be-
tween a'ba’ = a' and aa*a = ab*a has been shown in Lemma 5. Hence,

a <, b. [ |

We remark that in Theorem 2 (c) the hypothesis a'ba’ = a' cannot be
dropped. Take the real matrices, with transposition as involution, A =

[(1) (1)] and B = I, for which A £, B since AATA # A? = A, and yet

AATBBT = AAT, BIBATA = ATA, but ATBAT £ AT,

Theorem 2 allows us to assure that the diamond relation is a partial order.
Corollary 1 The binary relation <, is a partial order on the ring R.

Notice that neither of the implications a <, b= a <~ bnora <~ b =
a <, b are valid in general (see examples in [3, pp. 165]).

We recall that a <~ b iff there exist idempotents e, f € R such that
a=eb=>0f. This will lead to the following result.

Theorem 3 Let a,b € R. Then the following conditions are equivalent:
(a) a <;b.

(b) (o' —a")l <, 0.

(¢c) There exist idempotents e, f € R such that a = (eb')T = (b f)T.

Proof. The equivalences follow from the properties of the minus partial or-
der, Theorem 2 and Lemma 4. [ |

We remark that a <, b does not imply af <, bf, even though aR C
bR and Ra C Rb imply Ra' = Ra* C Rb* = Rb' and 'R = a*R C
b*R = b R. The implication is not valid as aa*a = ab*a is not sufficient to
al(a")*a’ = a'(b')*a’. Take the rational matrices, with the transposition as

10 1 0 1 2
. . . T i T— RB-1 =
involution, A = {O O} with AT = {O O}’ and B [1 1} with BT = B

[ _1 _? ] Then A <, B and yet AT £, B~



Theorem 4 Let a,b € R. Then a <, b <= al <% b,

Proof. It is well known that = <~ y iff x <% y [4, Lemma 3|. Then, this
item follows directly applying Theorem 2 with x = af, y = b. [ |

Neither the implication a <, b = a <® bnor a <% b = a <, b are
valid in general. Indeed, it follows from the fact that z <= y iff z <% y.
Moreover, for the matrices

11 ,_ 10
“=510 0| “lo 1]

it is easy to see that a <, b and however a ﬁ# b.
Defining a™" = 1 — aa' and a™ = 1 — a'a we obtain:

Lemma 7 Let R be a ring with unity and a,b € R. Then the following
conditions are equivalent:

(a) a <,b.
(b) b <, a™", b™ <, a™! and (1 —a™")(1 — ba') = 0.
(c) ™" <= a™", b™ <= a™ and (1 —a™")(1 — ba') = 0.

Proof. We first observe that (1 — z2")T =1 — 22" and (1 — 2'2)' =1 — 2'z
for x € {a,b}. Now, we apply Theorem 2. The following equivalences are
valid:

aa’bb’ = aa’ = bbTaa’ =

= 1-bb'=(1—aa")(1-0bb") = (1 -bb")(1—aa’) <= 1-bb' <~ 1 —aa',

Similarly, it can be shown that b'ba'a = a'a is equivalent to b™ <, @™ and
a'ba’ = a' is equivalent to (1 — a™")(1 — ba') = 0. Hence, (a) <= (b). The
equivalence between (b) and (c) follows directly from Theorem 2. |

4 Successors and predecessors under the di-
amond partial order

Let us start this section with a result valid for the minus partial order.

10



Lemma 8 Let x,y € R. Then the following conditions are equivalent:

(a) x <™ y.

(b) There exists x= € x{1,2} such that y —x € °(z=) N (z7)°.

Proof. If x <~ y then 27z = 27y and za~ = yz~ for some z~ € x{1}.
Taking = = x~xzz~ we have that = € z{1,2} with =2 = 27y and z2= =
yr=. So, (y —x)z= = 0 and 2= (y — x) = 0 and this last two equalities are

equivalent to y —z € °(x7) N (27)°.
The converse is trivial. |

Given a € R, in the following we find all the elements b € R such that
a <, b. Such elements b are called the successors of a.

Theorem 5 Let a € R. Then the following conditions are equivalent:

(a) There exists b € R such that a <, b.
(b) There exists h € °((a")™) N ((a")7)° such that b= (a’ + h)T.

Proof. If a <, b then af <~ bf. Taking z = a', y = b’ in Lemma 8 we have
that (a) = (b). The converse is evident. |

Given b € R, all the elements a € R such that a <, b are called the prede-
cessors of b. A partial solution of the problem of finding all the predecessors
of a fixed element is given in the following result.

Theorem 6 Let byh € R. If (b—h)T =b" —hl and h <* b then a = b — h
satisfies a <, b.

Proof. Since h <* b, we have bh'h = h = hh'b. Hence, we get aa' = ab'
and a'a = bla since
aa’ = (b—h)(b—h)" = (b— h)b' — bhT + hh! = abl,
ala=(b—h)"(b—h)=0b(b—h)—hTb+h'h =bla.
Now, Theorem 2 ends the proof. [ ]

Other method to find predecessors of a given element b € R has been
stated in Theorem 3 where the idempotents in the ring have to be previously
found.

Theorem 6 allows us to state a similar result to that in Lemma 4 for the
diamond partial order as follows.

11



Theorem 7 Let a,b € R such that (b—a)' = b —a'. Then b—a <* b iff
a <, b.

Proof. By definition of star partial order and the assumption we have that
b—a <* b holds iff (b' —a')(b—a) = (b' —a")band (b—a)(b' —a') = b(b" —a').
Some computations leads to a'a = bfa and aa’ = ab’. Theorem 2 yields
a <, b. The converse can be shown in a similar way. |

Corollary 2 If (b—a)' = b — a' for all element a,b € R then the star and
diamond partial orders coincide, that is a <* b iff a <, b.

Theorem 8 Let b € R. The following statements are valid:
(a) If b1 is idempotent then a <, b iff (a')? = a' = a'b' = blal.

(b) If b is hermitian idempotent then a <, b iff (a')? = a' = a'b = ba'.

Proof. (a) It follows directly from Lemma 3 taking x = af, y = b and
Theorem 2.
(b) It is a particular case of (a). [

Now we characterize the intervals
0,a™]={beR: 0<,b<,a™} and [0,a™]={beR:0<,b<,a™"}
for a fixed element a € R.
Proposition 3 Let a € R. Then
[0,a™"] = {b€ R:b is idempotent and b' € "an (a')’}.

and
[0,a™'] = {b € R : b is idempotent and b’ € °(a’) N a’}.

Proof. Since a™" is idempotent and hermitian, we apply Theorem 8 and
then b <, a™" iff (b7)? = bl = bla™ = a™"b'. Some algebraic manipula-
tions show that these last equalities are equivalent to b is idempotent and
a'b’ = b'a = 0. Similarly for the idempotent a™'. |

12



Lemma 9 Ifu € R is a unit then u is maximal under the diamond partial
order.

Proof. Given a unit u and an arbitrary a € R, if u <, a then u=! <~ al.
On account of [5, Proposition 3 (i)], a' = u~! from which a = u is maximal. W

Theorem 9 Let a € R”. Then a is a unit iff a is mazimal of R under the
diamond partial order.

Proof. (=) It follows directly from Lemma 9.

(<) Take u = a + 1 — aa’ with @ € R¥. Then u is a unit with
uw ' = a” + 1 — aa’. Therefore, aR C uR = R and Ra C Ru = R. Also,
aa*a = au*a. These mean a <, u. Since a is maximal then ¢ = u is a unit
and the result follows. [ |
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